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Abstract. Extreme value statistics can often be based on the assumption that 
exceedance events of a high threshold level are statistically independent and 
identically distributed (i.i.d. process), which further implies the Poisson as-
sumption to be valid. This makes it possible to express the extreme response 
statistics through the mean up-crossing rate. For non-linear processes, analytic 
expressions of the mean up-crossing rate do not in general exist. Reliable statis-
tics of mean up-crossing rate based on the brute-force approach, e.g. Monte 
Carlo simulation (MCS) require long time domain simulations considering a 
number of different ensemble input. The associated computations can be very 
time consuming especially when a detailed physical (e.g. hydrodynamic) model 
is applied. The First Order Reliability Method (FORM) has previously been 
found efficient for estimation of extreme value prediction of stationary stochas-
tic time domain processes, However, if the non-linearity in a response is signif-
icant, the accuracy of the FORM linearized mean up-crossing rate can be lim-
ited.  

The present work attempts to improve the extreme value prediction for non-
linear parametric roll motions of ships based on applications of the FORM ap-
proach and suggests a model for the mean up-crossing rate for strong non-linear 
response, validated by comparing with MCS results. 

Keywords: Extreme value statistics, Poisson up-crossing, intact stability of 
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Introduction 

The Poisson assumption is often used for extreme value prediction for stationary 
stochastic processes and requires only two parameters: the up-crossing rate and the 
time duration of the response. For a linear system, the up-crossing rate is a product of 
the mean zero up-crossing rate and an exponential term depending on the threshold 
level in terms of the reliability index. For non-linear systems, the determination of the 
up-crossing rate is more complicated, and moreover, the reliability index is not a line-
ar function of the threshold level. The question is then to determine the reliability 
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index and to establish an accurate model of the up-crossing rate for non-linear sys-
tems. The First Order Reliability Method (FORM) can be used to determine the relia-
bility index and it has been shown in several papers that often a good agreement is 
found as compared to direct Monte Carlo Simulations (MCS), e.g. Der Kiureghian 
(2000), Jensen (2015), Choi et al. (2017) and Jensen et al. (2017). The reason is that 
the reliability index is calculated using the exact non-linear limit state function. The 
mean zero up-crossing rate can be estimated from the linearized FORM solution, 
Jensen and Capul (2006), Fujimura and Der Kiureghian (2007), Garrè and Der Kiu-
reghian (2010). However, due to the linearization it might not be as accurate as the 
reliability index, especially for systems with very strong (or bifurcation type of) non-
linearity.  

This paper attempts to improve the estimation of the up-crossing rate for non-linear 
response based on the framework of the First Order Reliability Method. As a case 
study, large parametric roll motions of a ship are considered in long-crested head sea 
seas, which is mainly a non-linear bifurcation problem without any linear compo-
nents. Two models for the up-crossing rate are examined, both making use of the 
reliability index from FORM. The results are in line with findings based on Monte 
Carlo Simulations.  

 

First Order Reliability method (FORM) 
Extreme value statistics can often be based on the assumption of independent peaks 

implying a Poisson model. For stationary processes the probability that the response
( )X t  exceeds the level 0x  during the time T  then becomes 

                             ( )0 0max ( ) 1 exp ( )
T
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For linear (Gaussian) systems, the mean up-crossing rate 0( )v x+  takes the form 
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Eq. (2) requires calculation of the spectral moments 0 2,m m  and therefore also a 
spectral formulation of the response. For non-linear systems, a linearization around 
the design point 0x using FORM can often provide a useful estimate of the mean up-
crossing rate, e.g.  Jensen and Capul (2006), Fujimura and Der Kiureghian (2007), 
Garrè and Der Kiureghian (2010). FORM searches the solution *u  of the limit state 
problem: 



3 

                        ( )
0

*

( ) (0 ) 0

:  Minimize ;  Subject to 0
 

 
 

T

G u x X u

u u u G u

º - =

=                               (3) 

where [ ]1 2, , ,...,T
nu u u u=  are uncorrelated standard normal distributed variables 

defining the stochastic variations of the input ( )Y t u , e.g. the wave elevation and 
gust wind speed. The time instance t=0, must be so far away from the initial condi-
tions that these do not influence the response. For parametric roll 300s was found in 
Jensen (2007) to be sufficient. 

As shown in Jensen (2011) the spectral density ( )xS w  of the FORM linearized 

response becomes 
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when each iu  is associated with a sinusoidal linearized response variation in time 

with frequency iw . Hence,  
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It is noted that both 0m  and 2m  depend on the design point *u  and thereby on 

0x .  Eq. (2) can then be written, using Eq. (5)  
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where the reliability index b  is defined as 
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The autocorrelation function of the linearized FORM solution becomes 

                          * 2

1
( ) ( )cos cos

n

x i i
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R t u S td e tw w w w
=
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The corresponding most probable linear response is then 

                                          * *0

0

( ) ( )Linear
xX t u R t u
m

=                                          (9) 

A comparison between *( )LinearX t u and *( )X t u  provides an indication of how 

close the FORM linearization is to the real limit state surface ( )G u  around the de-

sign point *u . 

Choi and Jensen (2019) have investigated the accuracy of Eq. (6) for two types of 
ship roll motions: dead ship conditions in beam sea and parametric rolling in long-
crested head sea. For the dead ship case, comparison between Eq. (9) and *( )X t u  

shows good agreement, whereas the opposite was the case for parametric rolling, 
where a significant difference was found between the dominating period in the two 
results for the most probable response. Hence, Eq. (6) as based on the FORM lineari-
zation might not be accurate for highly non-linear responses and alternative expres-
sions are proposed in the next section.  

Parametric roll responses are obtained by solving 6 DOF equation of motion for a 
Post-Panamax container ship. Radiation forces are calculated by using the impulse 
response function approach, and the nonlinearities are considered in the damping, the 
Froude-Krylov and restoring forces. The waves are generated using JONSWAP spec-
trum with the significant wave height of 3.25m, and the zero up-crossing period of  
13.1 sec. Further details can be found in Choi and Jensen (2019). The probability 
Density Function (PDF) of the calculated roll response are shown in Fig.1. A strong 
non-linearity can be seen from the shape of PDFs as they do not follow the Gaussian 
distribution, and moreover different wave realizations produce different distributions. 

Fig.1. Probability density function of parametric roll angle. Red curve: Gaussian dis-
tribution 
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Up-crossing rate 

For a stochastic process the up-crossing rate ( )xn +   can in general be calculated 
as 

                                                  
0

( ) ( , )
x

x p x x xdxn
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=
= ò! ! ! !                                      (10) 

For stationary processes, the covariance of x  and x!  is zero. For some processes, 
this implies that x  and x! are (nearly) uncorrelated. In that case, the joint and mar-
ginal density functions of x  and x! are related by ( , ) ( ) ( )x xp x x p x p x=

!
! !  and the 

up-crossing rate becomes  
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 The reliability index b  is defined through the standard normal distribution function 
F   
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Thus, by differentiation 
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For symmetric processes, e.g. parametric roll, (0)b = 0 yielding  

                          2( ) 1( ) (0) exp ( )
(0) 2
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b
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                                  (13) 

Eq. (13) depends only on the assumption of statistical independence between ,x x!  . 
For Gaussian processes b  varies linearly with x  and the usual formula  
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is obtained. For non-linear processes the effective up-crossing rate of the mean 
level in Eq. (13) 
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depends solely on x in contrast to the true mean up-crossing rate, i.e. Eq. (10).  

Without the assumptions of statistical independence, Eq. (14) is replaced by 
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where  
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It could be noted that the FORM result, Eq. (6), for ( )xn +  does not assume statistical 

independence of ,x x! .  
Based on Eqs (11)-(16) two semi-empirical formulas for the up-crossing rate are 

considered. The first is  

                               
2

0
1Model-A: ( ) exp ( )
2
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                          (17) 

The differences between in Eq.(17) and Eq. (2) are in the introduction of 	𝜈# and 𝛽. 
The up-crossing rate relative to the mean level	𝜈# can be obtained either from a small 
number of simulations or estimated from the roll natural frequency 𝜔&'((, i.e. 𝜈# =
𝜔&'((/2𝜋. In Eq. (17), 𝛽 is used due to the mapping of the non-linear process to the 
standard normal distribution, Eq.(12). From Monte Carlo Simulations the reliability 
index can be calculated as  

                         
1 1( ) 1 ; 1 1,2,...,MCS i

ix M
M

b - -æ ö= -F - =ç ÷
è ø

                       (18) 

where 𝑥/ are the ordered ensemble samples of roll response taken at a fixed time 
instance: 𝑥/ ≤ 𝑥/12; 𝑖 = 1,2, … ,𝑀., (e.g. Jensen et al. 2017).  
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The second model is based on Eq. (15), and for better estimation of extreme val-
ues, a reference point refx  introduced  

 ( )2 20
0 0

( ) ( ) 1Model-B: ( ) ( ) exp ( ) ( )
( ) ( ) 2ref ref
ref ref

x f xx v x x xx f x
bn b b

b
+ + æ ö

ç ÷
è ø

¢
= - -

¢
(19) 

where, 𝑥&89 is selected as large as possible within the range where the MCS up-
crossing rate, 𝜈1 𝑥&89  is accurate. The derivative 𝛽′ 𝑥  of the reliability index is 
calculated numerically from 𝛽 𝑥 .  

An analytic expression for the conditional partial probability density function 
( )xp x x
!
!   does not exist in general for non-linear processes. Therefore, 𝑓 𝑥#  in Eq. 

(16) is calculated from the time histories by taking average of the velocities 𝑥 at given 
threshold levels. If 𝑥 and 𝑥 are independent, then 0( ) / ( ) 1reff x f x = .  

The remaining problem is how to calculate an accurate reliability index β for ex-
treme roll angles outside the range that can be covered by MCS. Here, FORM pro-
vides 𝛽 values for extreme roll angles efficiently. For the present parametric roll ex-
ample, the results in Fig. 2, taken from Choi and Jensen (2019), will be used in the 
validation process of Model-A and Model-B. The figure shows that FORMb  is slightly 
smaller than MCSb  when large roll angles are considered, implying that the estimated 
results then will be slightly conservative using FORMb  instead of MCSb . The reliability 

index ( )0FORM xb  for 0 28 degrefx x³ =  will thus be used in the following.  

 

 
Fig. 2. Reliability index b  from FORM and MCS, Choi and Jensen (2019) 
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Fig. 3. β′ x# /β′ x>?@  from βABCD for parametric rolling (x>?@=28 deg.) 

The corresponding 𝛽′ 𝑥# /𝛽′ 𝑥&89  curve is shown in Fig. 3. For use in Model-B, 

0( )f x , Eq.(16), is extrapolated for 0 28 degrefx x³ =  from the Monte Carlo simula-
tion and shown in Fig. 4. The dotted lines denote 95% of confidence interval of the 
𝛽′ 𝑥# /𝛽′ 𝑥&89 . The extrapolation chosen is linear fit based on the mean values in 
the tail regions, which inevitably leads to a large uncertainty. However, 0( )f x is not 
that important for the up-crossing rate, which is dominated by exponential term. 

 
Fig. 4. The extrapolated 0( )f x   for parametric rolling obtained from MCS 
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Fig. 5 shows the calculated up-crossing rates from the two different models. In 
general, no significant differences are found. One attractive feature seen from the 
figure is that both methods A and B can capture the complex probability behavior at 
extreme levels (𝑥# > 40 deg.) where a strong non-linearity (capsize) causes different 
response characteristics. This is difficult to obtain by an extrapolation technique and 
is one of the advantages of the FORM application for extreme value predictions. For 
larger extreme angles i.e. 𝑥#>40 deg, the discrepancies between Model-A and Model-
B seem not to be important since the probability levels are very small. It is interesting 
that Model-A can be used for extreme value predictions with good accuracy as it can 
be calculated purely from FORM to obtain 𝛽HIJK and by replacing 𝜈# with 𝜔&'((/2𝜋.  

 
Fig. 5. Estimated up-crossing rates from the present methods 

 

Conclusion 
The purpose of the paper is to investigate the applicability of the Poisson extreme 

value model for stationary stochastic processes as applied to non-linear roll motion of 
ships. The probabilistic framework is the First Order Reliability Method (FORM), 
where previous studies have shown that the reliability index b  obtained by FORM is 
very close to the results from direct Monte Carlo Simulations (MCS).  

The paper focuses on the up-crossing rate. It was found in Choi and Jensen (2019) 
that for bifurcation type non-Gaussian processes such as parametric rolling of ships, a 
significant discrepancy between a Gaussian estimation and Monte Carlo Simulations 
is observed. Therefore, alternative models for mean up-crossing rate are evaluated in 
the present study through Monte Carlo Simulations, and it is found that a simple mod-
el (Model-A) provides a reasonably good estimation.  
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