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Abstract: We propose a hierarchical control framework for the synthesis of correct-by-
construction controllers for nonlinear control-affine systems with respect to reach-avoid-stay
specifications. We first create a low-dimensional continuous abstraction of the system and use
Sum-of-Squares (SOS) programming to obtain a low-level controller ensuring a bounded error
between the two models. We then create a discrete abstraction of the continuous abstraction
and use formal methods to synthesize a controller satisfying the specifications shrunk by the
obtained error bound. Combining both controllers finally solves the main control problem on
the initial system. This two-step framework allows the discrete abstraction methods to deal
with higher-dimensional systems which may be computationally expensive without the prior
continuous abstraction. The main novelty of the proposed SOS continuous abstraction is that it
allows the error between abstract and concrete models to explicitly depend on the control input
of the abstract model, which offers more freedom in the choice of the continuous abstraction
model and provides lower error bounds than when only the states of both models are considered.
This approach is illustrated on the docking problem of a marine vessel.
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1. INTRODUCTION

Abstraction-based control synthesis aims to abstract a
system into a simpler model, synthesize a controller on
the abstraction and finally refine this controller to ensure
the satisfaction of the same control objective on the initial
system. Starting from a continuous initial system modeled
as a differential equation, two abstraction-based control
approaches can be considered. In the hierarchical control
approach, we create a continuous abstraction with less
variables or simpler dynamics than the initial model, and
we create a low-level controller for the concrete model to
track the abstract one (Girard and Pappas, 2009). Note
that this is slightly different from model reduction in which
the input and output variables of both models are kept
identical (Antoulas et al., 2001). In the symbolic control
approach, we create a discrete abstraction by partitioning
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the state space and using reachability analysis methods
to over-approximate the continuous dynamics into a finite
transition system (see e.g. Reissig et al., 2016). Due to
the state space partitioning, discrete abstractions are lim-
ited in their scalability. One possible approach to reduce
the complexity is to decompose the concrete system into
smaller subsystems for which discrete abstractions are
more easily created (see e.g. Pola et al., 2017). This method
is applicable to weakly interconnected networked systems,
but is not always practical for strongly interconnected sys-
tems with no clear structure to guide the decomposition.

In this paper, we address the scalability problem of discrete
abstractions through an alternative approach, by consider-
ing a two-step process sketched in Figure 1 and described
in more details in Section 2.2. In the first step, we design
a continuous abstraction of the concrete model and use
Sum-of-Squares (SOS) programming to find a low-level
controller ensuring that the concrete model tracks tra-
jectories of the continuous abstraction with an associated
error bound. Therefore, for the concrete system to satisfy
a reach-avoid-stay specification (reach a target set while
avoiding unsafe sets, then stay there), it is sufficient to look
for a controller of the continuous abstraction satisfying the
same specification with sets shrunk by the error bound.
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the initial system. This two-step framework allows the discrete abstraction methods to deal
with higher-dimensional systems which may be computationally expensive without the prior
continuous abstraction. The main novelty of the proposed SOS continuous abstraction is that it
allows the error between abstract and concrete models to explicitly depend on the control input
of the abstract model, which offers more freedom in the choice of the continuous abstraction
model and provides lower error bounds than when only the states of both models are considered.
This approach is illustrated on the docking problem of a marine vessel.

Keywords: Abstraction-based control, hierarchical control, model reduction, symbolic control,
high level planning.

1. INTRODUCTION

Abstraction-based control synthesis aims to abstract a
system into a simpler model, synthesize a controller on
the abstraction and finally refine this controller to ensure
the satisfaction of the same control objective on the initial
system. Starting from a continuous initial system modeled
as a differential equation, two abstraction-based control
approaches can be considered. In the hierarchical control
approach, we create a continuous abstraction with less
variables or simpler dynamics than the initial model, and
we create a low-level controller for the concrete model to
track the abstract one (Girard and Pappas, 2009). Note
that this is slightly different from model reduction in which
the input and output variables of both models are kept
identical (Antoulas et al., 2001). In the symbolic control
approach, we create a discrete abstraction by partitioning

� This work was supported by the Peder Sather Center for Advanced
Study, a consortium of UC Berkeley and nine Norwegian academic
institutions. It was also supported in part by the U.S. National
Science Foundation grant ECCS-1906164, the U.S. Air Force Office
of Scientific Research grant FA9550-18-1-0253, and Research Council
of Norway through the Centres of Excellence funding scheme, project
number 223254 AMOS, FRINATEK project 274441 UNLOCK, and
MAROFF project 280655 ORCAS.

the state space and using reachability analysis methods
to over-approximate the continuous dynamics into a finite
transition system (see e.g. Reissig et al., 2016). Due to
the state space partitioning, discrete abstractions are lim-
ited in their scalability. One possible approach to reduce
the complexity is to decompose the concrete system into
smaller subsystems for which discrete abstractions are
more easily created (see e.g. Pola et al., 2017). This method
is applicable to weakly interconnected networked systems,
but is not always practical for strongly interconnected sys-
tems with no clear structure to guide the decomposition.

In this paper, we address the scalability problem of discrete
abstractions through an alternative approach, by consider-
ing a two-step process sketched in Figure 1 and described
in more details in Section 2.2. In the first step, we design
a continuous abstraction of the concrete model and use
Sum-of-Squares (SOS) programming to find a low-level
controller ensuring that the concrete model tracks tra-
jectories of the continuous abstraction with an associated
error bound. Therefore, for the concrete system to satisfy
a reach-avoid-stay specification (reach a target set while
avoiding unsafe sets, then stay there), it is sufficient to look
for a controller of the continuous abstraction satisfying the
same specification with sets shrunk by the error bound.
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The second step aims to create a discrete abstraction of the
lower-dimensional continuous abstraction and synthesize,
using formal methods, a correct-by-construction controller
to satisfy the shrunk specifications.

Although continuous and discrete abstractions are not
novel ideas on their own, few results have attempted to
combine them, and their applicability has been limited to
restrictive classes of systems, such as a double integra-
tor (Fainekos et al., 2009), piecewise affine systems (Mick-
elin et al., 2014), differentially flat systems (Colombo and
Girard, 2013) or bipedal robots (Ames et al., 2015). In
contrast, the SOS-based continuous abstraction proposed
here is applicable to the large class of control-affine nonlin-
ear systems approximated with polynomial dynamics. In
addition to its broader applicability, the proposed method
allows the error between abstract and concrete models to
depend not only on the states of both models, but also
on the control input of the abstract model. This input
dependence is particularly important when abstracting a
dynamical model into its kinematic version, since we want
to minimize the error between the velocities which are
states of the concrete model and inputs of the abstract
one. More generally, this offers more freedom in the choice
of the continuous abstraction model and provides lower
error bounds than when only the abstract state is consid-
ered (Singh et al., 2018; Smith et al., 2019).

We apply this approach to a scenario where a marine vessel
docks autonomously at a harbor. Today, this maneuver
is done manually, due to high risk of collision and strict
requirements for precision, even when system faults have
occurred. Typically, path planning for autonomous ships
will consist of an offline algorithm making the preliminary
plan based on available information like time and fuel
consumption constraints, weather, and pre-defined safety
margins, and an online part doing contingency-handling
(e.g. collision avoidance). In order for autonomous ships
to be allowed to sail, the control system software must be
verified so that it is at least as safe as human navigated
ships (DNV GL, 2018). By using correct-by-construction
methods for design of offline path planning algorithms,
the burden on simulation-based testing of the autonomous
control system implementation is greatly reduced.

This paper is organized as follows. Section 2 formulates
the considered problem and provides an overview of the
proposed two-step approach. Section 3 presents the first
step and main theoretical contribution of this paper on
continuous abstraction. Section 4 provides the discrete ab-
straction procedure of the second step, which is presented
for self-containment of the overall approach. Finally, the
proposed method is illustrated in Section 5 for the docking
problem on the 6-dimensional model of a marine vessel.
Due to space limitations, proofs of the theoretical results
are only included in the extended version of this paper. 1

2. PRELIMINARIES

Let N, R and R+ denote the sets of non-negative integers,
real numbers and non-negative real numbers, respectively.
For ξ ∈ Rn, R[ξ] represents the set of polynomials in ξ
with real coefficients, and Rm[ξ] and Rm×p[ξ] denote all

1 Available at: https://arxiv.org/abs/1911.09773

vector and matrix valued polynomial functions. The subset
Σ[ξ] = {p = p21 + p22 + ...+ p2M | p1, ..., pM ∈ R[ξ]} of R[ξ]
is the set of SOS polynomials in ξ. A set X ⊆ Rn is an
interval of the vector space Rn if there exists x, x ∈ X such
that for all x ∈ X we have x ≤ x ≤ x using componentwise
inequalities. Given a positive vector ε ∈ Rn

+ and a set X ⊆
Rn, we introduce X+ε = {x+ e ∈ Rn | x ∈ X, e ∈ [−ε, ε]}
and X−ε = {x ∈ Rn | x + [−ε, ε] ⊆ X} as the set X
expanded and shrunk by the interval [−ε, ε], respectively.

2.1 Problem formulation

Consider a control-affine nonlinear system

ẋ = f(x,w) + g(x,w)u, (1)

with state x ∈ X ⊆ Rnx , bounded control input u ∈
U ⊆ Rnu , bounded disturbance input w ∈ W ⊆ Rnw and
Lipschitz continuous functions f : Rnx × Rnw → Rnx and
g : Rnx × Rnw → Rnx×nu . The sets X, U and W are
assumed to be intervals of their respective spaces.

The control objectives are formulated as reach-avoid-stay
games which combine several safety and reachability sub-
goals. In addition to the state constraints defined by the
set X, we define two subsets Xa, Xr ⊆ X, where the safety
specification aims to avoid the set Xa at all time, while the
reach-stay objective is to reach the set Xr in finite time
and then stay there forever.

Problem 1. Given system (1) and subsets Xa, Xr ⊆ X,
find a set of initial states X0 ⊆ X and a control strategy
u : X → U such that for any disturbance signal w : R+ →
W , all trajectories x : R+ → Rnx of the closed-loop system
initialized in X0 satisfies x(t) ∈ X\Xa for all t ≥ 0 and
there exists tr ≥ 0 such that x(t) ∈ Xr for all t ≥ tr.

2.2 Overview of the proposed approach

In this paper, we solve Problem 1 in a two-step approach
summarized below and in Figure 1, first by creating a
continuous abstraction of the concrete model (1), and
next by using formal methods to synthesize a correct-
by-construction controller on a discrete abstraction of the
lower-dimensional continuous abstraction.

Given the concrete model (1), the continuous abstraction

˙̂x = f̂(x̂, û, ŵ), (2)

and the state and input constraints on both the concrete
model (X ⊆ Rnx , U ⊆ Rnu , W ⊆ Rnw) and the abstract

model (X̂ ⊆ Rn̂x , Û ⊆ Rn̂u , Ŵ ⊆ Rn̂w), the first step is

to design a low-level controller κ : R × X × X̂ × Û → U
ensuring that the concrete model (1) can track trajectories
of the abstract model (2) with an error upper bounded by
the known vector ε ∈ Rnx . This is achieved by applying
the Sum-of-Squares (SOS) methods detailed in Section 3.

To solve the reach-avoid-stay specifications (X,Xa, Xr)
from Problem 1 on the concrete model (1), it is thus
sufficient to solve an auxiliary problem on the abstract
model (2) with respect to the reach-avoid-stay specifica-
tion (X−ε, X+ε

a , X−ε
r ) with the shrunk state constraints

X−ε and target set X−ε
r and the expanded set of states

to be avoided X+ε
a (see Figure 3 in Section 5 for an

illustration of these sets). The second step of the approach,
detailed in Section 4, then consists in creating a discrete

abstraction of the abstract model (2) to synthesize a sym-

bolic controller K : X̂ → Û solving this auxiliary problem.

Combining the symbolic controller K : X̂ → Û with the
low-level controller κ : R ×X × X̂ × Û → U then results
in a controller solving Problem 1 on the concrete system.

SOS continuous abstraction
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Discrete abstraction and synthesis

Updated reach-avoid-stay
(X−ε, X+ε

a , X−ε
r )

Reach-avoid-stay
(X,Xa, Xr)

Solution to Problem 1

SOS feedback
κ : R×X×X̂×Û → U

Symbolic controller
K : X̂ → Û

Concrete model
ẋ = f(x,w) + g(x,w)u

Abstract model
˙̂x = f̂(x̂, û, ŵ)

Fig. 1. Overview of the design steps to solve Problem 1.

3. CONTINUOUS ABSTRACTION

The first step of the proposed approach is to create a
simplified version of the concrete model (1), referred to as
continuous abstraction or abstract model and defined with
hatted notations as in (2), with state x̂ ∈ X̂ ⊆ Rn̂x , control

input û ∈ Û ⊆ Rn̂u and disturbance ŵ ∈ Ŵ ⊆ Rn̂w .
Since the main goal of this first step is to reduce the
complexity of the second step in Section 4 (exponential
in the state-control dimension), we want to choose a
continuous abstraction whose state and control dimensions
satisfy n̂x + n̂u < nx + nu.

We introduce a map π : Rn̂x × Rn̂u → Rnx providing a
reference trajectory to be followed by the concrete model,
based on both the state and the control signals of the
abstract model, while all other methods in the literature
(see references in Section 1) only rely on the abstract state.
We can then define the error e ∈ Rnx between trajectories
of the concrete and abstract models:

e = x− π(x̂, û). (3)

In this paper, we use affine maps π(x̂, û) = P [x̂; û] + Ω,
where matrix P ∈ Rnx×(n̂x+n̂u) has at most one non-zero
element per row, and Ω ∈ Rnx .

The error dynamics resulting from (3) are given as

ė = fe(e, x̂, û, w, ŵ) + ge(e, x̂, û, w)u− ∂π(x̂, û)

∂û
˙̂u, (4)

with fe(e, x̂, û, w, ŵ) = f(e+π(x̂, û), w)− ∂π(x̂,û)
∂x̂ f̂(x̂, û, ŵ)

and ge(e, x̂, û, w) = g(e+π(x̂, û), w). Let E0 ⊆ Rnx denote
a compact set of initial conditions for the error system (4).

In Section 4, û is first designed as a discrete-time signal,
then implemented in the abstract model (2) with a zero-
order hold. This means

û(t) = û(τi), ∀t ∈ [τi, τi+1), with τi = iTs,

û(τi+1) = û(τi) + ∆û(τi+1), (5)

where Ts is the sampling period, ∆û(t) is the periodic

change in the abstract control, restricted to a set ∆Û ⊆
Rn̂u . Since the signal û is piecewise constant, we thus have

˙̂u(t) = 0, ∀t ∈ [τi, τi+1).

We initially focus our analysis of the error system (4) on
the first sampling period [0, Ts), before the input jump
∆û at time Ts. Given the bounded set of initial conditions
E0, we want to enforce the boundedness of the error state
during [0, Ts) by introducing a low-level controller

u(t) = κ(t, e(t), x̂(t), û(t)), (6)

defined by a time-varying, error-state feedback control law
κ : R × Rnx × Rn̂x × Rn̂u → Rnu . Below, we provide the
design requirements on κ to obtain such an error bound.

Proposition 2. Given the error dynamics (4) and γ ∈ R,
Ts > 0, X̂ ⊆ Rn̂x , Û ⊆ Rn̂u , Ŵ ⊆ Rn̂w , W ⊆ Rnw ,
if there exists a C1 function V : R × Rnx → R, and
κ : R× Rnx × Rn̂x × Rn̂u → Rnu , such that

E0 ⊆ {e | V (0, e) ≤ γ}, (7)

∂V (t, e)

∂e
(fe(e, x̂, û, w, ŵ) + ge(e, x̂, û, w)κ(t, e, x̂, û))

+
∂V (t, e)

∂t
≤ 0, ∀t, e, x̂, û, w, ŵ, s.t. t ∈ [0, Ts),

V (t, e) = γ, x̂ ∈ X̂, û ∈ Û , w ∈ W, ŵ ∈ Ŵ , (8)

then for all e(0) ∈ E0, we have e(t) ∈ {e | V (t, e) ≤ γ}, for
all t ∈ [0, Ts).

Although Proposition 2 is stated for the first sampling
period [0, Ts), it can be used for any other sampling period
[τi, τi+1) with τi = iTs.

Corollary 3. Define the funnel F (t) = {e | V (t, e) ≤ γ} ⊆
Rnx . For all e(τi) ∈ F (0), we have e(τi + t) ∈ F (t), for all
t ∈ [0, Ts), under the control signal u(τi + t) = κ(t, e(τi +
t), x̂(τi + t), û(τi + t))).

Next, we focus on the effect of the input jump ∆û at the
end of each sampling period as in (5). From (3), ∆û induces
a jump on the error described as follows, where τ−i+1 and

τ+i+1 denote sampling instant τi+1 before and after the
discrete jump, respectively:

e(τ+i+1) = x(τ+i+1)− P [x̂(τ+i+1); û(τ
+
i+1)]− Ω

= x(τ−i+1)− P [x̂(τ−i+1); û(τ
−
i+1) + ∆û(τ+i+1)]− Ω

= e(τ−i+1)− P
[
0;∆û(τ+i+1)

]
.

We introduce the additional condition below to charac-
terize the error jump induced by the control jump ∆û in
terms of the funnel from Corollary 3.
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in the state-control dimension), we want to choose a
continuous abstraction whose state and control dimensions
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We introduce a map π : Rn̂x × Rn̂u → Rnx providing a
reference trajectory to be followed by the concrete model,
based on both the state and the control signals of the
abstract model, while all other methods in the literature
(see references in Section 1) only rely on the abstract state.
We can then define the error e ∈ Rnx between trajectories
of the concrete and abstract models:

e = x− π(x̂, û). (3)

In this paper, we use affine maps π(x̂, û) = P [x̂; û] + Ω,
where matrix P ∈ Rnx×(n̂x+n̂u) has at most one non-zero
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The error dynamics resulting from (3) are given as

ė = fe(e, x̂, û, w, ŵ) + ge(e, x̂, û, w)u− ∂π(x̂, û)

∂û
˙̂u, (4)

with fe(e, x̂, û, w, ŵ) = f(e+π(x̂, û), w)− ∂π(x̂,û)
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and ge(e, x̂, û, w) = g(e+π(x̂, û), w). Let E0 ⊆ Rnx denote
a compact set of initial conditions for the error system (4).

In Section 4, û is first designed as a discrete-time signal,
then implemented in the abstract model (2) with a zero-
order hold. This means

û(t) = û(τi), ∀t ∈ [τi, τi+1), with τi = iTs,

û(τi+1) = û(τi) + ∆û(τi+1), (5)

where Ts is the sampling period, ∆û(t) is the periodic

change in the abstract control, restricted to a set ∆Û ⊆
Rn̂u . Since the signal û is piecewise constant, we thus have

˙̂u(t) = 0, ∀t ∈ [τi, τi+1).

We initially focus our analysis of the error system (4) on
the first sampling period [0, Ts), before the input jump
∆û at time Ts. Given the bounded set of initial conditions
E0, we want to enforce the boundedness of the error state
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defined by a time-varying, error-state feedback control law
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then for all e(0) ∈ E0, we have e(t) ∈ {e | V (t, e) ≤ γ}, for
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period [0, Ts), it can be used for any other sampling period
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Rnx . For all e(τi) ∈ F (0), we have e(τi + t) ∈ F (t), for all
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Next, we focus on the effect of the input jump ∆û at the
end of each sampling period as in (5). From (3), ∆û induces
a jump on the error described as follows, where τ−i+1 and

τ+i+1 denote sampling instant τi+1 before and after the
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Proposition 4. Given γ ∈ R, ∆Û ∈ Rn̂u , if there exists a
function V : R× Rnx → R satisfying

V (0, e− P [0;∆û]) ≤ γ, ∀e,∆û,

s.t. V (Ts, e) ≤ γ, ∆û ∈ ∆Û , (9)

then for all e(τ−i+1) ∈ F (Ts), we have e(τ+i+1) ∈ F (0).

We next combine the conditions for the error boundedness
for each sampling period and discrete jump from Propo-
sitions 2 and 4, respectively, to obtain the main result on
the boundedness of the error at all time, formulated below
and illustrated in Figure 2.

Theorem 5. If there exists V and κ satisfying (7)–(9),
define ε ∈ Rnx

+ such that ∪t∈[0,Ts)F (t) ⊆ [−ε, ε]. Then

for all t ≥ 0, x̂(t) ∈ X̂, û(t) ∈ Û , ∆û(t) ∈ ∆Û , w(t) ∈ W

and ŵ(t) ∈ Ŵ , the error system (4) under control law
u(t) = κ(t̃, e(t), x̂(t), û(t))) with t̃ = (t mod Ts) ∈ [0, Ts)
satisfies: e(0) ∈ E0 ⇒ ∀t ≥ 0, e(t) ∈ [−ε, ε].

t = 0 t = Ts t = 2Ts

F (t) F (t)

E0 e(t)[", "]

Fig. 2. Illustration of Theorem 5, with initial error set E0,
funnels F on each sampling period, bounded error
jumps at sampling times. The red interval hull [−ε, ε]
of ∪t∈[0,Ts)F (t) bounds the error e(t) for all times.

Finding storage functions V and control laws κ satisfying
the constraints (7)–(9) is a difficult problem. In this paper,
we use SOS programming to search for them at the cost
of a restriction to polynomial candidates V ∈ R[(t, x)]
and κ ∈ Rnu [(t, x, x̂, û)]. For a general nonlinear system,
least-squares regression, Taylor expansion and change of
variables can be used to obtain a polynomial system (see
e.g. Papachristodoulou and Prajna, 2002). By applying
the generalized S-procedure (Parrilo, 2000) to (7)–(9),
and choosing the volume of F (t) as the cost function,
we can define a non-convex optimization problem which
is solved as in Smith et al. (2019) by solving a series
of convex problems where we alternatingly fix the the
decision variables V or κ. The detailed formulation of
the optimization problem and the algorithm solving it are
provided in the extended version of this paper. 2

After finding the funnel F (t) characterized by the resulting
storage function V , computing the interval error bound
[−ε, ε] ⊆ Rnx is achieved by solving the optimization
problem: minε

∑nx

i=1 εi, s.t. F (t) ⊆ [−ε, ε] for all t ∈ [0, Ts),
which can be formulated as a convex SOS problem. Once
ε is known, Theorem 5 implies that Problem 1 on the
concrete model (1) with the reach-avoid-stay specification
(X,Xa, Xr) can be solved through an auxiliary problem
on the abstract model (2) with respect to the modified
reach-avoid-stay specification (X−ε, X+ε

a , X−ε
r ) using the

notations from Section 2 to shrink the state constraints
X−ε and target set X−ε

r and expand the set of states
to be avoided X+ε

a (see Figure 3 in Section 5 for an

2 Available at: https://arxiv.org/abs/1911.09773

illustration of these sets). Since X, Xa, Xr are intervals
of Rnx , the updated sets are also intervals. We can then
define X̂ε, X̂ε

a, X̂
ε
r ⊆ Rn̂x and Ûε, Ûε

a , Û
ε
r ⊆ Rn̂u as the

projections of these sets into the abstract state-input space
Rn̂x×Rn̂u using the inverse image of π : Rn̂x×Rn̂u → Rnx ,

X̂ε × Ûε = {(x̂, û) ∈ Rn̂x × Rn̂u | π(x̂, û) ∈ X−ε},
X̂ε

a × Ûε
a = {(x̂, û) ∈ Rn̂x × Rn̂u | π(x̂, û) ∈ X+ε

a },
X̂ε

r × Ûε
r = {(x̂, û) ∈ Rn̂x × Rn̂u | π(x̂, û) ∈ X−ε

r }.
Due to the restriction of the affine map π in (3), all these
hatted sets are intervals.

Problem 6. Given system (2) and subsets X̂ε
a, X̂

ε
r ⊆ X̂ε

and Ûε
a , Û

ε
r ⊆ Ûε, find a set of initial states X̂0 ⊆ X̂ε

and a control strategy κ̂ : X̂ε → Ûε\Ûε
a such that for

any disturbance signal ŵ : R+ → Ŵ , all trajectories
x̂ : R+ → Rn̂x of the closed-loop system initialized in

X̂0 satisfies x̂(t) ∈ X̂ε\X̂ε
a for all t ≥ 0 and there exists

t̂r ≥ 0 such that x̂(t) ∈ X̂ε
r and κ̂(x̂(t)) ∈ Ûε

r for all t ≥ t̂r.

4. DISCRETE ABSTRACTION AND SYNTHESIS

In Section 3, we defined a continuous abstraction (2) and
obtained from Theorem 5 a bound ε ∈ Rnx on the error
with respect to the concrete model (1). In this section, the
second step of the proposed approach is to solve Problem 6
by creating a discrete abstraction of (2) and using classical
model checking tools to synthesize a satisfying controller.

The discrete abstraction of (2) takes the form of a finite
transition system defined as a triple (X ,U , δ) containing
a finite set of states X , a finite set of inputs U , and a
non-deterministic transition relation δ : X × U → 2X . We
first take a finite partition of X̂ε\X̂ε

a into smaller intervals,
where each partition element is represented by a unique
discrete state (also called symbol) in X . We add a last
symbol Out ∈ X corresponding to the complement set
Out = Rn̂x\(X̂ε\X̂ε

a), so that X is a partition of the whole
state space Rn̂x . Next, we define U as a finite discretization
of the set of admissible control inputs Ûε\Ûε

a .

Before defining the transition relation δ, we first introduce
x̂(t; x̂0, û, ŵ) to denote the state reached at time t ≥ 0 by
the abstract model (2) starting in x̂0, with constant control

input û and with disturbance signal ŵ : [0, t] → Ŵ . Then
for an interval of initial states [a, b] ⊆ Rn̂x , the finite time
reachable set of (2) is defined as

R̂(t, [a, b], û) = {x̂(t; x̂0, û, ŵ) | x̂0 ∈ [a, b], ŵ : [0, t] → Ŵ}.
Then, given the time sampling Ts from Proposition 2,
the set of successors associated to each pair (s, û) ∈
(X\{Out})× U is defined as

δ(s, û) = {s′ ∈ X | s′ ∩ R̂(Ts, s, û) �= ∅}. (10)

Since the true reachable set R̂(Ts, s, û) can rarely be
computed exactly, we can replace it in (10) by an over-
approximation. Using over-approximations preserves the
fact that any behavior of (2) can be reproduced by
the discrete abstraction, which in turns ensures that a
controller synthesized on the discrete abstraction also
satisfies the desired specifications on (2). Several methods
for the over-approximation of reachable sets using intervals
and applicable to most nonlinear systems are described

in Meyer et al. (2019). Problem 6 on (2) is then translated
into a control problem on its discrete abstraction.

Problem 7. Find a set of initial symbols X0 ⊆ X\{Out}
and a control strategy K : X → U such that any closed-
loop trajectory of the discrete abstraction s0, s1, . . . (i.e.
such that s0 ∈ X0 and si+1 ∈ δ(si,K(si)) for all i ≥ 1)
satisfies si ∈ X\{Out} for all i ≥ 0, and there exists k ∈ N
such that si ⊆ X̂ε

r and K(si) ∈ Ûε
r for all i ≥ k.

The control synthesis on the discrete abstraction is
achieved in two stages: first a safety game for the stay part
of the specifications by computing a controlled invariant
subset of the set of symbols fully included in the target
interval {s ∈ X | s ⊆ X̂ε

r}; then a reachability game for
the reach-avoid part by iteratively finding all symbols that
can be forced to reach the resulting safe set. Both these
games are solved through classical fixed-point algorithms
that are known to terminate in finite time and reach the
maximal fixed-points (Tabuada, 2009). These algorithms
are provided in the extended version of this paper. 3

The final step of the overall approach is to refine the
controllers K : X → U obtained in this section and
κ : R × Rnx × Rn̂x × Rn̂u → Rnu from Section 3 into
a controller solving Problem 1 for the concrete system
(1). We first introduce the function H : Rn̂x → X such
that H(x̂) = s ⇔ x̂ ∈ s, mapping each state of the
continuous abstraction (2) to the unique symbol of the
discrete abstraction containing it. We can then define a
controller κ̂ : R × X̂ε → Ûε\Ûε

a for (2) as the zero-order
hold version of K : X → U with sampling period Ts. For
all index k ∈ N and time t ∈ R+ such that kTs ≤ t < (k+
1)Ts, we have

κ̂(t, x̂(t)) = K(H(x̂(kTs))). (11)

Combining (11) with the low-level controller κ : R×Rnx ×
Rn̂x ×Rn̂u → Rnu from (6), we obtain a controller C : R×
Rnx × Rn̂x → Rnu for the concrete model defined as

C(t, x, x̂) = κ(t, x− π(x̂, κ̂(t, x̂)), x̂, κ̂(t, x̂)). (12)

Since this controller also depends on the abstract state
x̂(t), its use in the concrete model (1) requires the com-
putation of a trajectory of the closed-loop continuous ab-
straction, as stated in the main result of this paper below.

Theorem 8. Given E0 ⊆ Rnx bounding the initial error
state (which is a design parameter in Proposition 2),
the set of winning initial states for Problem 1 is X0 =
{π(x̂,K(H(x̂))) ∈ Rnx | H(x̂) ∈ R}+E0. Given an initial
state x0 ∈ X0, let x̂ : R → Rn̂x be any trajectory of
the continuous abstraction (2) with controller κ̂ in (11)
initialized in {x̂0 ∈ ⋃

s∈R s | x0 − π(x̂0,K(H(x̂0))) ∈ E0}.
Then, the closed-loop system (1) with controller (12)
satisfies the reach-avoid-stay specification from Problem 1.

5. CASE STUDY: MARINE VESSEL

The autonomous docking maneuver consists of four phases:
transit, transition from high speed to low speed maneuver-
ing, docking, and dockside keeping a steady contact force
with the dock. In this work we focus on the transition
phase, which is challenging due to large changes in the
ship dynamics when the speed is reduced. This means that

3 Available at: https://arxiv.org/abs/1911.09773

unlike the general Problem 1, we only consider a reach-
avoid specification to reach the area near the dock (light
blue in Figure 3) while avoiding the piers (gray areas). The
stay part of the specification is omitted as it is handled in
the later docking and dockside phases.

The ship motion at moderate speed can be modeled as
in Fossen (2011):

η̇ = R(ψ)ν + vc, (13a)

Mν̇ + C(ν)ν +Dν = τ +R(ψ)�τwind, (13b)

where η = [N ;E;ψ] are the South-North and West-
East positions and heading of the ship (ψ = 0 points
North, ψ = π/2 points East), ν = [u; v; r] are the surge
and sway velocities, and yaw rate of the ship. R(ψ) =[
cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

]
is a rotation matrix. τ ∈ R3 is the

control input affecting the three acceleration states of
the ship. vc ∈ R3 and τwind ∈ R3 are disturbances
corresponding to current velocities and wind forces. The
inertia matrix including hydrodynamic added mass M =[
87.4 0 0
0 98.3 2.48
0 2.48 22.2

]
, damping matrix D =

[
6.58 0 0
0 37.7 2.66
0 2.66 19.3

]
and

Coriolis matrix C(ν) = ν(1)
[
0 0 0
0 0 98.3
0 0 2.48

]
are chosen for a

1 : 30 scale model of a platform supply vessel.

Using the notations from (1), we have state x = [η; ν] ∈
R6, control input u = τ ∈ R3 and disturbance input
w = [vc; τwind] ∈ R6. The controls are unconstrained
(U = R3) and the disturbances signals are assumed to be
evolve in W = [−0.01, 0.01]5 × [−0.05, 0.05]. The chosen
reach-avoid specification focuses on the first three states
with the safety constraints X = [0, 10]× [0, 6.5]× [−π, π]×
R3, the obstacles Xa = Xa1 ∪ Xa2 with Xa1 = [2, 2.5] ×
[0, 3]×[−π, π]×R3 and Xa2 = [5, 5.5]×[3.5, 6.5]×[−π, π]×
R3 (in grey in Figure 3), and the target set Xr = [7, 10]×
[0, 6.5]× [π/3, 2π/3]× R3 (light blue).

The continuous abstraction is chosen as the kinematics
part of the concrete model (13):

˙̂η = R(ψ̂)ν̂ + v̂c (14)

where the abstract states, inputs and disturbances are
x̂ = η̂, û = ν̂ and ŵ = v̂c. The map π is chosen as
π(x̂, û) = [x̂; û]. However, instead of defining error as in
(3), we redefine the error state as e = φ · (x − π(x̂, û)),
where φ =

[
R−1(ψ̂),03×3;03×3, I3

]
. The matrix φ al-

lows to replace the trigonometric functions in ψ̂ in the
error dynamics (4) by trigonometric functions in e(3) =

(ψ − ψ̂), which can easily be approximated by polyno-
mials in certain range of e(3). The input, input jump,

and disturbances spaces for the abstract model are Û =
[0, 0.18]× [−0.05, 0.05]× [−0.1, 0.1], ∆Û = [−0.18, 0.18]×
[−0.1, 0.1]× [−0.2, 0.2], and Ŵ = [−0.01, 0.01]3. The SOS
optimization problem is run with degree-2 polynomials
to characterize the storage function V , control law κ,
and multipliers s, l, and terminates in 6 minutes on a
computer with 3.6GHz processor and 62GB of RAM. The
resulting error bounds ε on (N,E, ψ) are [−0.427, 0.427]×
[−0.432, 0.432] × [−0.235, 0.235] and the expanded ob-
stacles X+ε

a and shrunk target set X−ε
r are outlined in

green in Figure 3. Due to the consideration of the ab-
stract control û = ν̂ in the error definition (3), the ob-
tained error bounds are less conservative than those com-



 Pierre-Jean Meyer  et al. / IFAC PapersOnLine 53-2 (2020) 1831–1836 1835

in Meyer et al. (2019). Problem 6 on (2) is then translated
into a control problem on its discrete abstraction.

Problem 7. Find a set of initial symbols X0 ⊆ X\{Out}
and a control strategy K : X → U such that any closed-
loop trajectory of the discrete abstraction s0, s1, . . . (i.e.
such that s0 ∈ X0 and si+1 ∈ δ(si,K(si)) for all i ≥ 1)
satisfies si ∈ X\{Out} for all i ≥ 0, and there exists k ∈ N
such that si ⊆ X̂ε

r and K(si) ∈ Ûε
r for all i ≥ k.

The control synthesis on the discrete abstraction is
achieved in two stages: first a safety game for the stay part
of the specifications by computing a controlled invariant
subset of the set of symbols fully included in the target
interval {s ∈ X | s ⊆ X̂ε

r}; then a reachability game for
the reach-avoid part by iteratively finding all symbols that
can be forced to reach the resulting safe set. Both these
games are solved through classical fixed-point algorithms
that are known to terminate in finite time and reach the
maximal fixed-points (Tabuada, 2009). These algorithms
are provided in the extended version of this paper. 3

The final step of the overall approach is to refine the
controllers K : X → U obtained in this section and
κ : R × Rnx × Rn̂x × Rn̂u → Rnu from Section 3 into
a controller solving Problem 1 for the concrete system
(1). We first introduce the function H : Rn̂x → X such
that H(x̂) = s ⇔ x̂ ∈ s, mapping each state of the
continuous abstraction (2) to the unique symbol of the
discrete abstraction containing it. We can then define a
controller κ̂ : R × X̂ε → Ûε\Ûε

a for (2) as the zero-order
hold version of K : X → U with sampling period Ts. For
all index k ∈ N and time t ∈ R+ such that kTs ≤ t < (k+
1)Ts, we have

κ̂(t, x̂(t)) = K(H(x̂(kTs))). (11)

Combining (11) with the low-level controller κ : R×Rnx ×
Rn̂x ×Rn̂u → Rnu from (6), we obtain a controller C : R×
Rnx × Rn̂x → Rnu for the concrete model defined as

C(t, x, x̂) = κ(t, x− π(x̂, κ̂(t, x̂)), x̂, κ̂(t, x̂)). (12)

Since this controller also depends on the abstract state
x̂(t), its use in the concrete model (1) requires the com-
putation of a trajectory of the closed-loop continuous ab-
straction, as stated in the main result of this paper below.

Theorem 8. Given E0 ⊆ Rnx bounding the initial error
state (which is a design parameter in Proposition 2),
the set of winning initial states for Problem 1 is X0 =
{π(x̂,K(H(x̂))) ∈ Rnx | H(x̂) ∈ R}+E0. Given an initial
state x0 ∈ X0, let x̂ : R → Rn̂x be any trajectory of
the continuous abstraction (2) with controller κ̂ in (11)
initialized in {x̂0 ∈ ⋃

s∈R s | x0 − π(x̂0,K(H(x̂0))) ∈ E0}.
Then, the closed-loop system (1) with controller (12)
satisfies the reach-avoid-stay specification from Problem 1.

5. CASE STUDY: MARINE VESSEL

The autonomous docking maneuver consists of four phases:
transit, transition from high speed to low speed maneuver-
ing, docking, and dockside keeping a steady contact force
with the dock. In this work we focus on the transition
phase, which is challenging due to large changes in the
ship dynamics when the speed is reduced. This means that

3 Available at: https://arxiv.org/abs/1911.09773

unlike the general Problem 1, we only consider a reach-
avoid specification to reach the area near the dock (light
blue in Figure 3) while avoiding the piers (gray areas). The
stay part of the specification is omitted as it is handled in
the later docking and dockside phases.

The ship motion at moderate speed can be modeled as
in Fossen (2011):

η̇ = R(ψ)ν + vc, (13a)

Mν̇ + C(ν)ν +Dν = τ +R(ψ)�τwind, (13b)

where η = [N ;E;ψ] are the South-North and West-
East positions and heading of the ship (ψ = 0 points
North, ψ = π/2 points East), ν = [u; v; r] are the surge
and sway velocities, and yaw rate of the ship. R(ψ) =[
cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

]
is a rotation matrix. τ ∈ R3 is the

control input affecting the three acceleration states of
the ship. vc ∈ R3 and τwind ∈ R3 are disturbances
corresponding to current velocities and wind forces. The
inertia matrix including hydrodynamic added mass M =[
87.4 0 0
0 98.3 2.48
0 2.48 22.2

]
, damping matrix D =

[
6.58 0 0
0 37.7 2.66
0 2.66 19.3

]
and

Coriolis matrix C(ν) = ν(1)
[
0 0 0
0 0 98.3
0 0 2.48

]
are chosen for a

1 : 30 scale model of a platform supply vessel.

Using the notations from (1), we have state x = [η; ν] ∈
R6, control input u = τ ∈ R3 and disturbance input
w = [vc; τwind] ∈ R6. The controls are unconstrained
(U = R3) and the disturbances signals are assumed to be
evolve in W = [−0.01, 0.01]5 × [−0.05, 0.05]. The chosen
reach-avoid specification focuses on the first three states
with the safety constraints X = [0, 10]× [0, 6.5]× [−π, π]×
R3, the obstacles Xa = Xa1 ∪ Xa2 with Xa1 = [2, 2.5] ×
[0, 3]×[−π, π]×R3 and Xa2 = [5, 5.5]×[3.5, 6.5]×[−π, π]×
R3 (in grey in Figure 3), and the target set Xr = [7, 10]×
[0, 6.5]× [π/3, 2π/3]× R3 (light blue).

The continuous abstraction is chosen as the kinematics
part of the concrete model (13):

˙̂η = R(ψ̂)ν̂ + v̂c (14)

where the abstract states, inputs and disturbances are
x̂ = η̂, û = ν̂ and ŵ = v̂c. The map π is chosen as
π(x̂, û) = [x̂; û]. However, instead of defining error as in
(3), we redefine the error state as e = φ · (x − π(x̂, û)),
where φ =

[
R−1(ψ̂),03×3;03×3, I3

]
. The matrix φ al-

lows to replace the trigonometric functions in ψ̂ in the
error dynamics (4) by trigonometric functions in e(3) =

(ψ − ψ̂), which can easily be approximated by polyno-
mials in certain range of e(3). The input, input jump,

and disturbances spaces for the abstract model are Û =
[0, 0.18]× [−0.05, 0.05]× [−0.1, 0.1], ∆Û = [−0.18, 0.18]×
[−0.1, 0.1]× [−0.2, 0.2], and Ŵ = [−0.01, 0.01]3. The SOS
optimization problem is run with degree-2 polynomials
to characterize the storage function V , control law κ,
and multipliers s, l, and terminates in 6 minutes on a
computer with 3.6GHz processor and 62GB of RAM. The
resulting error bounds ε on (N,E, ψ) are [−0.427, 0.427]×
[−0.432, 0.432] × [−0.235, 0.235] and the expanded ob-
stacles X+ε

a and shrunk target set X−ε
r are outlined in

green in Figure 3. Due to the consideration of the ab-
stract control û = ν̂ in the error definition (3), the ob-
tained error bounds are less conservative than those com-
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puted using Singh et al. (2018), that is [−0.462, 0.462] ×
[−0.493, 0.493]× [−0.339, 0.339].

For the discrete abstraction as in Section 4, we take a
uniform partition of X̂ into 50 intervals per dimension
(resulting in |X | = 125000) and a uniform discretization

of Û into 9 values per dimension (i.e. |U| = 729). To
define the transition relation δ as in (10), we compute
interval over-approximations of the reachable set of the
continuous abstraction (14) using the continuous-time
mixed-monotonicity approach implemented in the tool
TIRA (Meyer et al., 2019). The choice of the partition
granularity with respect to the sampling period Ts = 3
was done so that the reachable set would jump on average
two to three partition cells away from its initial cell. This
ensures that the transitions do not jump too far, while
also avoiding self-loops which hinder the synthesis. On
a server with 24 cores at 2.5GHz and 128GB of RAM,
the abstraction is created in 10 seconds and the control
synthesis is achieved after 15 hours, resulting in a winning
set R ⊆ X covering 93% of the set of symbols X .

The synthesized controller is then converted into the
controllers (11) and (12) for the abstract (14) and concrete
ship models (13), respectively. The initial state is chosen
as a random point in the bottom left corner of the (N,E)-
plane, and both closed-loop trajectories with random
disturbance signals are plotted in red for (14) and blue
for (13) in Figure 3. The black arrows represent the
orientation ψ of the ship at each discrete time step. We can
first note that the low-level controller (6) provides a very
efficient tracking of the abstract model’s trajectory (red)
by the concrete model (blue). Both models satisfy their
reach-avoid specifications by reaching the (shrunk) target
set in blue while avoiding the (expanded) obstacles in grey.
Once the ship has reached the desired [N ;E] position (blue
set) but not the correct orientation ψ, we can see it slowly
drift sideways while it turns to face East.

Fig. 3. Closed-loop trajectories of the abstract (red) and
concrete (blue) models in the (N,E)-plane with the
ship heading ψ (black arrows), the initial and shrunk
state constraints X and X−ε (thick and thin black
lines), the target set Xr (light blue), the obstacles Xa

(grey) and the shrunk target set X−ε
r and expanded

obstacles X+ε
a (green).

REFERENCES

Ames, A.D., Tabuada, P., Schürmann, B., Ma, W.L.,
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