
N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

fo
rm

as
jo

ns
te

kn
ol

og
i o

g
el

ek
tr

ot
ek

ni
kk

In
st

itu
tt

 fo
r d

at
at

ek
no

lo
gi

 o
g

in
fo

rm
at

ik
k

Torstein Martinsheimen Egge
Åsmund Hunderi Stemland
Omer Jonuzi

Cloud Backup Architectures Resistant
to Ransomware
Attacks

Bacheloroppgave i Digital infrastruktur og cybersikkerhet
Veileder: Helge Hafting
Medveileder: Gleb Sizov
Mai 2022

Ba
ch

el
or
op

pg
av

e

Torstein Martinsheimen Egge
Åsmund Hunderi Stemland
Omer Jonuzi

Cloud Backup Architectures Resistant
to Ransomware
Attacks

Bacheloroppgave i Digital infrastruktur og cybersikkerhet
Veileder: Helge Hafting
Medveileder: Gleb Sizov
Mai 2022

Norges teknisk-naturvitenskapelige universitet
Fakultet for informasjonsteknologi og elektroteknikk
Institutt for datateknologi og informatikk

Cloud Backup Architectures Resistant to
Ransomware Attacks

Torstein Martinsheimen Egge Åsmund Hunderi Stemland
Omer Jonuzi

May 20, 2022

Abstract

Ransomware attacks have been on the rise globally the last few years. They pose a
serious threat to any business’s data, reputation and operational capability. Back-
ups are an essential part of an effective strategy against ransomware attacks, func-
tioning as the last line of defense. How do you prevent a hacker from corrupting
or outright deleting your backups before unleashing their ransomware?

In this thesis, we attempt to find the trends and characteristics that define
modern ransomware, as well as how to recover from modern ransomware attacks.
We explore various backup solutions for managed and unmanaged databases in
Azure, the cloud service platform operated by Microsoft, and evaluate their ef-
fectiveness against modern ransomware attacks. In addition, we look at security
mechanisms and features in Azure that can help defend backups from malicious
actions.

The results address several security features which block a number of attack
vectors. Furthermore, issues with the existing backup solutions are highlighted
and in some cases suggestions for improvement proposed.

i

Sammendrag

Løsepengevirusangrep har sett en økning globalt de siste årene. De representerer
en alvorlig trussel mot enhver bedrifts data, omdømme og operasjonelle kapa-
biliteter. Sikkerhetskopier er en essensiell del av en effektiv strategi for å motså
løsepengevirus-angrep, med funksjonen til en siste forsvarslinje. Hvordan skal en
hindre en hacker fra å infisere eller slette sikkerhetskopier før de setter i gang med
løsepengevirusangrepet?

I denne oppgaven forsøker vi å se på de trender og karakteristiske preg som
definerer moderne løsepengevirus, i tillegg til hvordan gjenopprettelse etter et
moderne løsepengevirusangrep utspiller seg. Vi utforsker løsninger for sikkerhet-
skopiering av både administrerte og ikke-administrerte databaser på Azure, Mi-
crosoft sin plattform for skytjenester, og sammenligner hvor effektive de løsnin-
gene er på å motstå moderne løsepengevirus. I tillegg ser vi på sikkerhetsmekanis-
mer og funksjoner i Azure som bidrar til sikring av backup mot ondsinnede han-
dlinger.

Resultatene tar for seg flere sikkerhetsfunksjoner som setter en stopper for
en rekke angrepsvektorer. Videre fremhever vi problemer knyttet til eksisterende
backupløsninger og i noen tilfeller foreslår vi forbedringer.

ii

Contents

Abstract . i
Sammendrag . ii
Contents . iii
Figures . viii
Glossary . ix
Preface . x
1 Introduction . 1

1.1 Background . 1
1.2 Thesis Topic . 2

1.2.1 Research questions . 2
1.2.2 Partner organisation . 2

1.3 Thesis outline . 2
1.4 Scope and delimitation . 3

2 Theory . 5
2.1 Definitions and concepts . 5

2.1.1 Public cloud . 5
2.1.2 CIA-triad . 6
2.1.3 Ransomware . 6
2.1.4 Databases . 6
2.1.5 Cryptography concepts . 6
2.1.6 RPO and RTO . 7

2.2 Ransomware . 7
2.2.1 Definition . 7
2.2.2 Ransomware trends . 7
2.2.3 Ransomware gangs . 9
2.2.4 How ransomware works . 9

2.3 The anatomy of an attack . 10
2.3.1 Attacks against backups . 11

2.4 Backup . 12
2.4.1 Types of backup . 13
2.4.2 Database backup . 14

2.5 The Azure cloud platform . 14
2.5.1 Azure Backup . 14
2.5.2 Role based access control (RBAC) 16

iii

Contents iv

2.5.3 Multi-User Authorization (MUA) 17
2.5.4 Soft delete . 17
2.5.5 Azure Monitor . 18
2.5.6 Interacting with Azure . 18
2.5.7 Azure Blob Storage . 18

2.6 ClickHouse . 18
2.6.1 Introduction to ClickHouse . 18
2.6.2 Backup solutions for ClickHouse 19
2.6.3 Backup solutions for ClickHouse in Azure 19

2.7 PostgreSQL . 19
2.7.1 Introduction to PostgreSQL . 19
2.7.2 Backup solutions for PostgreSQL 20
2.7.3 Backup solutions for PostgreSQL in Azure 20

2.8 Security Best Practices . 21
2.8.1 Principle of least privilege . 21
2.8.2 Zero trust . 21

3 Method . 23
3.1 Chapter outline . 23
3.2 Criteria for analysis . 23

3.2.1 Resistance to ransomware attacks 24
3.2.2 Ease of use . 24
3.2.3 RPO and RTO . 24
3.2.4 Cost . 25

3.3 Backup solutions to analyze . 25
3.3.1 Backup solutions for ClickHouse 25
3.3.2 Backup solutions for Azure Database for PostgreSQL 26

3.4 Test environments . 26
3.4.1 Illustration of test environment 26
3.4.2 Test environments for ClickHouse 26
3.4.3 Test environment for PostgreSQL 28

3.5 Scenarios . 28
3.5.1 Scenario 1: Attacker encrypts database data 28
3.5.2 Scenario 2: Attacker deletes backups 30
3.5.3 Scenario 3: Backup administrator compromised 33

3.6 Performance testing . 35
3.6.1 Performance tests for ClickHouse 35
3.6.2 Performance tests for PostgreSQL 36

4 Results . 37
4.1 ClickHouse . 37

4.1.1 Scenario 1, experiment 1: Encrypting database files 37
4.1.2 Scenario 2, experiment 1: Encrypting local backups made

with clickhouse-backup . 38
4.1.3 Scenario 2, experiments 2 and 3: Deleting backups made

with clickhouse-backup . 39

Contents v

4.1.4 Scenario 2, experiment 4: Deleting backups in Recovery Ser-
vices Vaults . 39

4.1.5 Scenario 3, experiment 1: Disabling soft delete and deleting
backups . 39

4.1.6 Scenario 3, experiment 2: Deleting a Recovery Services vault 40
4.1.7 Scenario 3, experiment 3: Preventing soft delete from being

disabled with MUA . 40
4.1.8 Performance tests for ClickHouse 41
4.1.9 Cost . 42

4.2 PostgreSQL . 43
4.2.1 Scenario 1, experiment 1: Recovery with Point-in-time-Restore 43
4.2.2 Scenario 1, experiment 2: Recovery with Azure Backup For

PostgreSQL . 44
4.2.3 Scenario 2, experiment 1: Deleting database-server and restor-

ing with PITR . 44
4.2.4 Scenario 2, experiment 2: Deleting backup-instance in Backup

vault and attempting undelete 45
4.2.5 Scenario 2, experiment 3: Setting up alerts and deleting

backup-instance . 45
4.2.6 Scenario 3 . 45
4.2.7 Performance tests for PostgreSQL 46
4.2.8 PostgreSQL cost . 47

5 Discussion . 48
5.1 Discussion of backup solutions for each database 48

5.1.1 ClickHouse . 48
5.1.2 PostgreSQL . 50

5.2 Research questions . 51
5.2.1 Research question 1 . 51
5.2.2 Research question 2 . 52

5.3 Future work/Limitations . 53
6 Conclusion . 55

6.1 Summary . 55
6.2 Future developments . 56
6.3 Greater context . 56

Bibliography . 57
A Experiment Data . 63

A.1 Setup of test environment for ClickHouse experiments 64
A.1.1 Declare variables . 64
A.1.2 Generate SSH keys . 64
A.1.3 Set up a resource group . 65
A.1.4 Set up a VM . 66
A.1.5 Install ClickHouse . 66
A.1.6 Load test data . 67
A.1.7 Run test queries . 68

Contents vi

A.1.8 Install clickhouse-backup . 69
A.1.9 Set up Azure Blob storage for use with clickhouse-backup 70
A.1.10 Enable soft delete for Blob container 72
A.1.11 Configure clickhouse-backup to use Blob storage 73
A.1.12 Set up Azure Backup . 83

A.2 Test environment for ClickHouse performance tests 89
A.2.1 Declare variables . 89
A.2.2 Set up a resource group . 89
A.2.3 Set up a VM . 90
A.2.4 Install ClickHouse . 91
A.2.5 Load test data . 91
A.2.6 Verify data ATTACH 102
A.2.7 Install clickhouse-backup . 103
A.2.8 Set up Azure Blob storage for use with clickhouse-backup 103
A.2.9 Configure clickhouse-backup to use Blob storage 107
A.2.10 Set up Azure Backup . 112

A.3 Azure Backup performance tests . 119
A.3.1 Recovery with Azure Backup via CLI (failed first attempt) . . 119
A.3.2 Recovery with Azure Backup (failed second attempt) 123
A.3.3 Recovery with Azure Backup via Portal (successful third at-

tempt) . 128
A.3.4 Recovery with Azure Backup via CLI (successful fourth at-

tempt) . 129
A.4 clickhouse-backup performance test 133

A.4.1 Recovery with clickhouse-backup (first set of attempts) . . 134
A.4.2 Recovery with clickhouse-backup (second set of attempts) 141

A.5 Encrypt ClickHouse and recover from backup 177
A.5.1 Procedure . 177
A.5.2 Determine which files to encrypt 177
A.5.3 Install ccrypt . 179
A.5.4 Perform test queries . 179
A.5.5 Encrypt file and repeat test queries 180
A.5.6 Decrypt file and repeat test query 181
A.5.7 Encrypt all files in /var/lib/clickhouse/store and repeat

test queries . 182
A.5.8 Rebuild VM and try to recover 186
A.5.9 Repeat encryption and recover database with Azure Backup 191

A.6 Encrypt local backups . 198
A.6.1 Create and encrypt a local backup 198

A.7 Delete backups via clickhouse-backup 201
A.7.1 Preparation . 201
A.7.2 Delete local backups . 201
A.7.3 Delete remote backups via clickhouse-backup and restore

via Azure CLI (first attempt) . 202

Contents vii

A.7.4 Enable soft delete for blobs . 205
A.7.5 Delete remote backups via clickhouse-backup and restore

via Azure CLI (second attempt) 206
A.8 Delete backups stored in Azure blob storage via Azure CLI 228

A.8.1 Preparation . 228
A.8.2 Delete the blobs . 228
A.8.3 Restore the blobs . 229

A.9 Delete backups in Azure Backup . 230
A.9.1 Delete Azure Backups via CLI 230
A.9.2 Undelete soft deleted backup items 233
A.9.3 Re-enable backup . 235

A.10 Disable soft delete and delete backups 238
A.10.1 Disable soft delete . 238
A.10.2 Disable protection and delete backup items 238
A.10.3 Verify deletion . 240

A.11 Delete Recovery Services vault . 240
A.11.1 Make a backup in the RSV . 240
A.11.2 Download script . 244
A.11.3 Verify deletion . 255

A.12 Applying MUA to vault and attempting deletion 256
A.12.1 Creating a resource guard . 256
A.12.2 Assigning reader role to backup admin 257
A.12.3 Applying MUA to vault . 258
A.12.4 Testing protected action . 260
A.12.5 Permitting protected actions . 268

A.13 Restore from a backup vault . 275
A.14 Postgres: PITR with REST API performance test 280
A.15 Setup of test environment for PostgreSQL experiments 280

A.15.1 Creating test environment for PostgreSQL 280
A.15.2 Data population . 281
A.15.3 Postgres: Azure backup setup 282

A.16 Postgres: Restoring from PITR . 284
A.17 Postgres: Protecting with Azure Backup 286

A.17.1 Restoring from Azure Backup 286
A.18 Postgres: Deleting database and restoring from PITR 289
A.19 Postgres: Enabling alerts for Backup vault instance deletion 291

Figures

2.1 Illustration of the anatomy of a cyber attack 12

3.1 Illustration of the databases and their backup solutions 27
3.2 Illustration of Scenario 1, a malicious attacker encrypting databases 29
3.3 Illustration of Scenario 2, a malicious attacker deleting backups . . 31
3.4 Illustration of Scenario 3, a malicious attacker compromising backup

admin . 34

A.1 PITR deploys the database in a newly created server 280
A.2 The size of the inventory table . 285
A.3 Dropping the table . 285
A.4 The size of the inventory table after dropped table 285
A.5 The restore operation took 31 minutes 27 seconds to complete . . . 286
A.6 JSON output of the delete operation 289
A.7 Summary of the API call . 290
A.8 Server created and database restored 290

viii

Glossary

backup Copy of data that can be used to restore the original in case something
happens to it.. 2, 11

malware Malicious software. General term for software that does damage to
computers, IT systems, etc.. 7

managed service A cloud service that is operated and maintained by the cloud
provider.. 2

privilege escalation Attack where the attacker obtains unauthorized privileges/per-
missions, often by exploiting a vulnerability.. 11, 17

ransomware Type of malware that encrypts files, in order for the attacker to de-
mand a ransom from their victims in exchange for the files being decrypted..
1

security control A security control is any action taken to secure something in a
system.. 5, 6

unmanaged service A cloud service that is operated and maintained by the cus-
tomer, and not by the cloud provider.. 2

virtual machine A virtual machine (VM) is a computer emulated in software.
One of the building blocks of cloud infrastructures.. 3

zero-day Computer security vulnerability that is unknown or unpatched.. 8

ix

Preface

This thesis was written as the final assignment of our bachelors degree in digi-
tal infrastructure and cybersecurity at the Norwegian University of Science and
Technology (NTNU). It explores the cross section between infrastructure and se-
curity: Security controls against ransomware in databases hosted in a public cloud
environment.

We were motivated to write this thesis because we felt it was both relevant and
important to organisations facing the growing threat of ransomware. No other
theme has been as prevalent in cybersecurity news while studying for our degree.
The choice to focus on cloud environments is relevant for today, but will also
remain relevant for years to come as well.

We hope this thesis is relevant to organizations that are unsure of how to assess
the myriad of security features in cloud environments, and help them stay secure.

We would like to thank TrønderEnergi for their help with the project, NTNU
for the opportunity to study relevant and important subjects. We would also like
to thank our advisors: Helge Hafting, Gleb Sizov, and Joakim Klemets. All your
advice helped us greatly.

x

Chapter 1

Introduction

1.1 Background

Ransomware is one of the biggest cyber threats businesses and organisations face
today [1]. Ransomware has been around since the early days of computers, and
was first delivered via floppy disks, targeting AIDS researchers in 1989 [2]. With
the advent of asymmetric encryption schemes, the creation and growth of cryp-
tocurrencies, and an ever growing reliance on digital workspaces, ransomware is
bigger than ever [3].

As more and more organizations go through a digital transformation, in partic-
ular because of the Covid-19 pandemic, more and more work is done digitally, and
over the internet. The risk surface is greater than ever, and ever interconnected
systems prove to be great targets for ransomware. Nowadays ransomware gangs
operate as legitimate software companies, delivering ransomware-as-a-service to
less sophisticated cybercriminals who launch attacks as their affiliates – splitting
the profits [3].

Ransomware is no longer spread widely and randomly to any system that will
run it. Ransomware gangs are now looking to buy access to corporate networks,
and partner with affiliates that are willing to perform the attack on that network.
Weeks of research go into a single attack to ensure it is as effective as possible,
and to ensure that the ransom is set at an amount that maximizes the likelihood
of a payout [4].

Many businesses are moving to the cloud, and rely on cloud platforms to main-
tain security. A big advantage of this is that cloud platform providers are inherently
interested in maintaining a secure platform – or their reputation will suffer. At the
same time they are always in development and driven by a desire to make as large
a profit as possible by delivering as much value as possible, for the smallest cost.

This is the background for our thesis topic. In a digital landscape where ran-
somware is one of the biggest threats, and data is an organisations greatest asset,
can organisations rely on the security solutions in the cloud? Despite the fancy
words and fantastical features of security solutions – do they hold up?

1

Chapter 1: Introduction 2

1.2 Thesis Topic

Our thesis topic is to analyze cloud backup architectures with regards to their
resistance to ransomware attacks, and recommend a set of features to aid imple-
mentation in a secure manner.

We have chosen to focus on the cloud platform, the second largest cloud
platform by revenue [5]. Within Azure we will look at two different databases, one
that is managed service and one that is unmanaged service, and analyze different
backup options for both. To aid us in this search, we have developed the following
research questions that we will answer based on our analysis.

1.2.1 Research questions

Research question 1

What are some best practices for securing backups against ransomware and other
malware, and how can they be implemented in Azure?

Research question 2

Are Azure’s security mechanisms effective against a modern ransomware attack?

1.2.2 Partner organisation

This project was completed in cooperation with the Norwegian energy company
TrønderEnergi, who suggested the topic, and who have been providing guidance
throughout the project. Because of this cooperation, certain deliminations and
choices regarding the technologies used have been made.

We tested two databases in our analysis. The first is a ClickHouse database run-
ning in a VM in Azure. The other is a single server PostgreSQL database hosted on
Azure. These were both chosen because TrønderEnergi uses them in their produc-
tion environment, and because they were different enough to provide generalized
results for managing backups in Azure. As becomes apparent throughout the re-
port, they are supported by a very different set of security features within Azure.

To analyze the backup solutions, a number of scenarios were created. The
scenarios were made in cooperation with TrønderEnergi, which was done in order
to ensure our tests matched the threat landscape the an organisation such as theirs
is facing.

1.3 Thesis outline

Chapter 1: Introduction In the introductory chapter, we provide the background
for the project, as well as the topic and scope of our report.

Chapter 1: Introduction 3

Chapter 2: Theory In the theory chapter, we examine the current ransomware
threat landscape and how ransomware works in order to be able to simulate it in
our analysis. We also use this chapter to present any external sources that provide
the theoretical background for our later deliminations in terms of our method and
analysis. This includes sources that define backups, the relevant resources and
services in Azure, as well information about ClickHouse and PostgreSQL. Finally
we also look at some relevant security best practises that will become relevant
when discussing the research questions toward the end of the report.

Chapter 3: Method In this chapter, we define the criteria which our security
implementation will have to pass in order to prove effective. This includes not only
criteria in terms of how secure it is, but also non-functional requirements such as
performance, cost and ease of use. The chapter also outlines how experiments
were performed, as well as how our test environments were set up.

Chapter 4: Results In this chapter, the results of our experiments are presented.
These results are discussed briefly for each experiment.

Chapter 5: Discussion In this chapter, we answer the research questions from
1.2.1, based on our discussion of the experiments and their results in chapter 4.
We evaluate the backup solutions we analyzed, and look at the results in a greater
context.

Chapter 6: Conclusions In the conclusion, we summarize our findings. We will
also look at future work on the topic, as well as this project’s place in the greater
picture.

1.4 Scope and delimitation

The goal of this project was to assess backup solutions in Azure, and how ef-
fectively they mitigate the risk of data loss when attacked by ransomware. The
backup solutions back up two different databases hosted on the public cloud
platform Azure. The databases were Azure Database for PostgreSQL, a managed
database server in Azure, and ClickHouse, an unmanaged database running in an
Azure virtual machine.

While the project delves into the current ransomware threat landscape, the
analysis did not use real ransomware, as it seemed an unnecessary complication
of our analysis without providing any significant insights. The goal was rather to
determine how well we could protect our backups with the security features in
Azure, not how ransomware operates in a system or network.

The methodology was as follows: First we determined our scope, and began
researching our chosen technologies, ransomware and security more in general.
Once we had a good idea of the the threat landscape, we decided to define some

Chapter 1: Introduction 4

scenarios which outline potential attacks that a good backup solution should be
able to withstand. Finally we created test infrastructures and performed exper-
iments based on the scenarios. The results were used to evaluate the different
backup solutions with regards to certain criteria.

Outside the scope of this project are most of the other ways of increasing secu-
rity in an organisation that is also necessary to prevent ransomware attacks from
occurring. Be it cultural, technical or organizational aspects of security, they are
beyond our scope. We will only focus on the security features of backup solutions
in Azure, and considerations on how to implement it.

Chapter 2

Theory

This chapter of the report is where we lay the theoretical groundwork for the
discussions and choices in the rest of the report. The choice of technologies in
chapter 3, is based on the information in this chapter. The chapter starts with
some definitions and concepts and a concise summary of the ransomware threat
in sections 2.2 and 2.3. The technologies we utilized in the project are described in
sections 2.4 to 2.7. The last section (2.8) presents some best practices for security
controls.

2.1 Definitions and concepts

2.1.1 Public cloud

Any search for a definition of the cloud will yield a tremendous number of results,
and just about as many different interpretations of what the cloud actually is. In a
2010 article, Hofmann and Wood [6] provide the following definition: "At its core,
cloud computing means providing computing services via the Internet. The ’cloud’
idea is tightly connected with the ’as-a-service’ idea." They go on to describe the
public cloud as a set of standard resources that can be combined into applications
or services. While this article is over ten years old, the fundamentals are still the
same.

The public cloud is available to organisations and consumers through cloud
platforms such as Amazon Web Services (AWS), Microsoft Azure, and Google
Cloud Platform (GCP), which are the biggest providers on the market [5]. Cloud
platforms generally provide resources to the user. Resources are manageable items
that are available through that cloud platform [7]. A common example is virtual
machines, that are compute resources made available to costumers as a server
over the internet, but it is in fact a virtual server on top of a physical server.

5

Chapter 2: Theory 6

2.1.2 CIA-triad

An important aspect of Security design is the concept of the CIA-triad. CIA is
short for: Confidentiality, Integrity, and Availability [8]. Any security control must
address either the confidentiality of the thing you are trying to secure, its integrity
or its availability. A security control is any action taken to secure something in an
system.

• Confidentiality
This involves keeping data secret, and preventing unauthorized disclosure
of data.
• Integrity

This ensures that data is not modified by unauthorized persons, or unautho-
rized modifications are not made to data no matter by whom. It also ensures
data consistency.
• Availability

This aspect is about making sure that data and resources are available to
authorized personnel in a timely manner.

2.1.3 Ransomware

Ransomware is a central aspect of this project and has a dedicated chapter (2.2)
Ransomware is a type of malware that encrypts files on an infected system and
holds the files as ransom for typically large sums of money – typically in the form
of cryptocurrency. The malicious actor that spread the ransomware in question
will usually have the decryption key and only share it with the victim once the
ransom has been paid [1].

2.1.4 Databases

A database is a type of system that stores and organizes data. Databases are used
for many different purposes including storing application data, analytics, or any
information that can be stored as data. Structured Query Language (SQL) is a
commonly used language for interacting with databases. Databases that do not
use SQL exist as well. These are commonly referred to as "NoSQL" databases.

2.1.5 Cryptography concepts

One of the essential building blocks of any ransomware is the concept of cryptog-
raphy. Sjaak Laan defines cryptography in his book as "the practice of hiding in-
formation using encryption and decryption techniques" [8]. Only those who know
how to decrypt the information can read it. This is usually done using a cipher,
which are a pair of algorithms, that along with a key – the secret only known by
the encrypter and those they share it with – controls the encryption or decryption
process.

Chapter 2: Theory 7

A number of different methods of encryption exists, some more advanced than
others. For security purposes, it is generally advised to use a known cipher, with
a secret key. As the cipher will be subject to scrutiny by security professionals
at large, the odds of gaining any security by obfuscation in this space is limited.
Given that the key can remain secret however, a tried and tested, open-source
cipher method with a secret key is by far the most secure.

2.1.6 RPO and RTO

The efficiency of a data protection or disaster recovery plan can be measured by
two specifications, namely; Recovery Point Objective (RPO) and Recovery Time
Objective (RTO) [9].

RPO The Recovery point objective (RPO) is the data loss after disaster recov-
ery, measured by time, upon where data loss exceeds the threshold of what an
organization can accept.

RTO Recovery Time Objective (RTO) is a metric that defines both the time du-
ration within which a service must be restored to after a disaster in order to avoid
detrimental damage caused to the business.

2.2 Ransomware

2.2.1 Definition

Ransomware is a type of malware that encrypts files on an infected system and
holds the files as ransom for large sums of money – typically in the form of cryp-
tocurrency. Access to data is usually blocked by encrypting the data (crypto ra-
nomsware) or by locking the computer (locker ransomware) [1].

Recovering encrypted files is generally exceedingly difficult without access to
the encryption key that was used. Paying the ransom is also not a reliable recovery
option, as there is no guarantee the attacker will keep their end of the bargain.
In addition, by paying the ransom the victim is likely to be marked as a target
in future attacks, as well as funding the ransomware threat actor. According to
reserach from Cybereason 80% of victim organisations that paid the ransom were
attacked again [10].

2.2.2 Ransomware trends

Ransomware has been steadily on the rise and has become highly relevant for
the cybersecurity industry during the late 2010s. Malware actors have become
more organized, and more goal-oriented, which according to cybersecurity re-
search group Cisco Talos means that they now primarily try to follow the money
[11]. Cisco Talos pose that threat actors do not want to risk getting discovered

Chapter 2: Theory 8

by installing low-profit malware, when they instead can sell the access, or use
ransomware to make a larger profit.

This explains why ransomware has grown in popularity by threat actors in
recent years. According to a report by the security firm Check Point, the first half
of 2021 saw twice as many known ransomware attacks compared to 2020 [12].
The report also highlights some trends that further Cisco Talos’ point: Threat ac-
tors keep searching for ways to employ double- or triple-extortion techniques to
maximize profits. Double- and triple-extortion involves not only extorting the vic-
tim organisation for ransom, but also threatening the organisations customers or
clients and threaten to release their data unless they also pay up.

The energy and utilities sector was also the second-most targeted, which is
part of the reason for this project focusing on the needs of the Norwegian energy
sector [12]. Prominent examples of this are the ransomware attacks on Volue, a
Norwegian company that provides technology to the energy and infrastructure
sector, as well as the prolific Colonial Pipeline attack. In the latter the pipeline
that supply the southeastern United States with gasoline had to stop all operation
because of a ransomware attack on its computerized equipment. Both attacks oc-
cured in May 2021 [13]. The latter has been named "one of the most disruptive
ransomware attacks ever on US critical infrastructure" [14].

The goal for any business has to be the prevention of ransomware attacks, but
that may not always be possible, as with the attack on the Norwegian parliament
in March 2021 [15], where a zero-day vulnerability in Microsoft Exchange proved
fatal enough for data to be exfiltrated. Similar examples are prevalent, and it is
impossible for an organisation to guarantee prevention.

When prevention is not possible, the mitigation of the consequences of ran-
somware attacks become vital. One of the most important risk mitigation mea-
sures that an organisation can do is to set up backup solutions for their data. For
critical infrastructure this backup has to both be frequent, and consistent enough
to let the company return to normal operations quickly, even when they are the
victim of a ransomware attack.

Human-operated ransomware

In a human-operated ransomware attack, the attacker targets a specific organiza-
tion, manually breaks in and deploys ransomware. This is done in order to increase
their chance of success and a potential payout. Before deploying the ransomware,
they might make preparations in order to decrease the organization’s ability to
defend themselves, such as destroying backups. This is unlike more traditional,
undirected ransomware attack, where the ransomware spreads to random com-
puters by replicating itself across a network.

Being struck by a human-operated ransomware attack can be very expensive,
even if the ransom is not paid, as rooting out the infection can be difficult [16]. The
attacker might leave backdoors, entry points in the infrastructure for the attacker
to reuse later, or compromise the organization’s security in other ways.

Chapter 2: Theory 9

Ransomware as a service, access as a service

Ransomware-as-a-service (RaaS) is a business model for ransomware developers,
in which the developers license their ransomware to other threat actors. According
to an article published by Threatpost, ransomware gangs look more and more like
legitimate businesses, with IT-support, and customer service. These ransomware
gangs offer affiliate programs to whom they provide RaaS-offerings [4].

RaaS is a driving factor in today’s ransomware landscape, and most ransomware
gangs operate on the RaaS model, according to research from security firm Abnor-
mal [3]. This shows an overarching trend in the way that ransomware gangs pick
their targets. Gone are the days of spreading malware to as many systems and net-
works as possible, hoping something will stick. Nowadays, an attack is preceded
by weeks or months of reconnaissance. Not only do the attackers explore the sys-
tems they’ve penetrated, but they also explore the businesses financial situation
and internal communications in order to set a ransom that has the highest chance
of resulting in a payout, whilst also being as large a sum as possible [4].

The model for choosing affiliates is also highly selective, and hopefuls will
have to go through a rigorous application process, submitting a resume and im-
pressing the ransomware gang in an interview. The ransomware gangs are on
their hand worried about poor-performing affiliates which may compromise the
brand’s reputation, or infiltrators from western law enforcement agencies. As a
result many ransomware gangs are quite picky both in terms of technical abilities,
as well as language and knowledge of Russian history and culture that is not easily
researched [4].

2.2.3 Ransomware gangs

According to research made by Abnormal [3], a few ransomware gangs have domi-
nated the ransomware scene in the last two years. These are Conti, LockBit, Pysa,
REvil, and Maze/Egregor. They were responsible for more than half of all ran-
somware attacks in this time period. Conti, LockBit and Pysa are still active as of
the publication of their research, and all have a large number of victims.

The aforementioned prolific attacks on Volue and the Colonial Pipeline (see
2.2.2) were conducted by Darkside and Ryuk respectively [14]. Both are known
for attacking the energy sector.

2.2.4 How ransomware works

The ransomware field is ever evolving, and any analysis is only snapshot of ran-
somware at the time of publishing. Despite this it is useful to assess the present
situation to understand the threat at hand.

An analysis of encryption schemes in modern ransomware was published in
2020 by Plozek, Svec, and Debnar [17]. In the paper 10 different ransomware
samples were analysed, but only one of those, LockBit, overlaps with the domi-
nating groups as assessed by Abnormal. The samples were collected between 2019

Chapter 2: Theory 10

and 2020, so this might show the rate of evolution in this field.
In the analysis the researchers identified four different encryption schemes in

the ransomware malware samples. The differences mainly concerned where the
keys were generated, and how they are distributed. Prevalent in their findings was
that different keys are usually generated for each victim, indicating that the goal
no longer is to affect as many victims as possible, but to make as much profit per
victim that they can [17].

Another major finding in their research was that malware authors are get-
ting better at cryptography. Generally compared to older research the researchers
found that modern ransomware used more secure encryption algorithms than
older ransomware. This trend toward more advanced encryption schemes align
with the general trend of ransomware gangs getting more professional [17].

This makes brute force decryption less feasible or in many cases not feasible at
all, and any files encrypted by ransomware should be considered lost, as decryp-
tion of those files is not likely to have effect, especially in the time necessary for
an organisation to not suffer great losses. In addition the paper discovered that
several of the ransomware strains created a separate key for each encrypted file,
so the brute-force method would be even less feasible [17].

2.3 The anatomy of an attack

Cyberattacks generally follow a similar pattern, with the same main steps or phases.
The number of steps, and the names they are assigned differ, but they are gen-
erally similar. A brief overview of the anatomy of an attack is described below.
Figure 2.1 illustrates these steps visually, as a flowchart, showing possible paths
an attacker may take.

Reconnaissance

An attacker can spend a long time before an attack gathering information, in or-
der to evaluate which organization they should target to earn the most money,
as well as looking for vulnerabilities that can be used to gain a foothold in the
organization’s network.

Initial access

After gathering information about the organization, the hacker will try to gain
access to the network. According to BankInfoSecurity [18], the following three
attacks are the most common types of attacks used for initial access:

• RDP compromise
By exploiting weak Remote Desktop Protocol (RDP) endpoints, a hacker
can get full access to a user account on the network. RDP compromise is
currently the most common vulnerability used for initial access [18, 19]

Chapter 2: Theory 11

• Phishing
Phishing is a type of social engineering attack where the attacker sends a link
or email attachment containing malware, pretending that it is legitimate.
Through the information gathered in the reconnaissance step, the attacker
may be able to craft believable emails.
• Software vulnerabilities

Vulnerabilities or bugs in software can expose the organization in a way that
an attacker can take advantage of.

Expansion

After getting a foothold in the organization’s network, the attacker will move
through the network (lateral movement) to gain information about resources and
assets, and attempt to expand their privileges (privilege escalation).

Exploitation

After gaining access to enough privileges and resources, the main attack can be-
gin. Before deploying the ransomware, the attacker might first attempt to exfil-
trate (steal) valuable data. The attacker might also try to destroy backups before
proceeding to deploy the ransomware itself, encrypting the data.

After this, the attacker typically demands a ransom in order to decrypt the
data. If the data has been exfiltrated, the attacker might try to perform a dou-
ble extortion attack, in which they make a threat to release the exfiltrated data
publicly if the organization does not pay the ransom.

2.3.1 Attacks against backups

Since backups are an essential part of being able to recover from a ransomware
attack, hackers will often try to destroy their victim’s backups before encrypting
files. Backups are explored in detail in section 2.4 In this section, we will outline a
few possible attack vectors against the backups themselves that could try to make
them useless.

The simplest way of destroying backups is to simply delete them. By delet-
ing an organization’s backup, hackers can deny recovery, which can increase the
chance that the organization pays the ransom.

A potential method of corrupting an organization’s backups could be to slowly
encrypt the data that is being backed up. Over time, the backups would be over-
written with invalid data, making them useless by the time the ransomware is
deployed.

A hacker could potentially exfiltrate data from backups. By encrypting data
before backing it up, this risk can be mitigated. If a hacker exfiltrates encrypted
data, they will not be able to read it without having access to the encryption key
used.

Chapter 2: Theory 12

Figure 2.1: Illustration of the anatomy of a cyber attack

2.4 Backup

Faced with ransomware attacks and malicious actors that target the data of or-
ganisations, securing that data is essential. It is a fact of living in a digital, in-
terconnected world that malicious actors will attempt to target any data that is
available. Face with that risk keeping backups is an important security control.

According to Sjaak Laan, "Managing security is all about managing risks" [8].
Faced with any type of risk, senior management has the option between risk accep-
tance, avoidance, transfer, and mitigation. While having no data stored digitally,
or completely disconnecting all systems from the outside world would be con-
sidered avoidance, and some sort of insurance would be considered risk transfer
(although almost half of victim organisations that has cyber insurance only got
a portion of the losses covered [10].) An effective backup solution would be an
effective risk mitigation technique.

Sjaak Laan defines a backup as copies of data, used to restore data to a previous
state in case of data loss, data corruption, or a disaster recovery situation. Laan
argues that a backup older than a few weeks is of little use, as old, outdated
data is probably not very useful for a company in an emergency. The archiving of

Chapter 2: Theory 13

older data for compliance should be done separately from backups (but should be
backed up also) [8].

Recovery is the process of restoring files from a backup, and is an essential part
of any plan to mitigate data loss risk. A backup without a good plan for recovery
loses a lot of its use. Recovery should also include procedures for spinning up new
VMs as in case of a ransomware attack it would be fair to assume the network to
be infected.

In his book "Infrastructure as Code," Kief Morris [20] argues that in the cloud
age organisations should plan for disaster recovery continuously, for example by
using the same tools to recover from a disastrous event that the organisation uses
to provision and change infrastructure. Recovering from complete disaster should
according to him be as easy as anything else. Restoring from a backup in the
cloud, and accessing the necessary data on fresh, secure VMs is principal in cloud
infrastructure design.

2.4.1 Types of backup

Depending on the type of data, and the organization’s needs, different types of
backups are used. The three main types of backups are are full, differential and
incremental backups [21] [22]. A brief description of each type of backup follows
below.

Full backup

A full backup is one of the most straightforward types of backup. In a full backup,
all the data is backed up at once. Depending on the amount of data, this can take
a long time, and may require a lot of storage. Recovering from a full backup is
usually very simple. All one needs to do is load the disk containing the backup,
and start the recovery process.

Full backups only require one backup medium (unless the amount of data is
very large, in which case it needs to be distributed).

Differential backup

Differential backups are built upon an existing full backup. They work by only
backing up the changes made since the last full backup, instead of backing up all
the data. Since the amount of data changed is generally much lower than the total
amount of data, this is usually faster than doing a full backup every time.

Differential backups require at least two disks, one for the full backup and one
for the changes. Recovery can be done by loading the full backup first, and then
the changes. Recovery from a differential backup is generally slower than from a
full backup, but faster than from an incremental backup.

Chapter 2: Theory 14

Incremental backup

Incremental backups are similar to differential backups, in that only changes since
the last full backup are backed up. However, unlike differential backups, where
all changes since the last full backup are stored, incremental backups store only
changes since the previous backup activity (full or incremental).

Recovery from incremental backups consist of first loading the full backup,
then all the incremental backups in order. This can be a time consuming and com-
plicated process, especially if done using physical drives. Some cloud platforms,
like Azure, automate this process, making it both fast and easy [23].

2.4.2 Database backup

There are several ways to back up databases. Many databases support a way to
to generate a series of SQL statements that recreate the database. This is called a
database dump. To recover from a dump, the SQL statements are simply run by
the database engine.

Another way to back up a database is to make a backup of the entire virtual
machine the database is running on. This consumes more storage than a dump,
but can potentially be faster to recover from, since software and configuration
files are backed up alongside the data.

2.5 The Azure cloud platform

Microsoft Azure is one of the largest cloud platforms on the market [5]. The plat-
form provides a number of services to organisations that wish to move to the
cloud.

2.5.1 Azure Backup

Azure Backup is the go-to backup service in Azure. It aims to "provide simple,
secure, and cost-effective solutions" for backing up, and recovering data from the
Microsoft Azure cloud [24]. The service supports a number of services and storage
solutions, and the list appears to be expanding. One month into this project for
example, it was announced that Azure Backup now supports the managed Azure
Database for PostgreSQL-service that is in the scope of our project, with the release
of Azure PostgreSQL backup with long-term retention in February 2022 [25].

Azure Backup offers a number of benefits, according to the Azure documenta-
tion [24]. The data stored in Azure backup is not directly available to the attacker
[26]. Protecting backup vaults with Role Based Access Controls (RBAC) is also
an important part of protecting the data from ransomware [27]. RBAC will be
discussed in more detail shortly, in section 2.5.2.

Azure Backup has support for backing up a number of different resources.
There is support for backing up files, folders, and system state of on-premise sys-
tems by using Microsoft Azure Recovery Services (MARS) agent [28].

Chapter 2: Theory 15

Backup items are stored in vaults, either a Recovery Services vault, or a Backup
vault. Vaults are online storage entities in Azure. According to Microsoft they are
designed to make it easier to manage the backed up data. Vaults offer monitoring
of the backup data, and configuration of things such as redundancy. Each vault
holds data, "such as backup copies, recovery points, and backup policies." [29]

Recovery Services Vault

A Recovery Services vault (RSV) is a type of management entity for backups in
Azure. It is a newer version of Backup vaults with a number of additional features.
Since its release in 2016, it has been supported with security features like soft
delete, Cross Region Restore, and Multi-user authorization [30]. The Multi-user
authorization and soft delete features are discussed in sections 2.5.3 and 2.5.4
respectively.

Vaults also support a variety of data redundancy tiers (2.5.1), which provide
different ways to replicate data across data centers.

The services supported by Recovery Services vaults, according to Microsoft
[30], are:

• Azure Virtual machines
• SQL in Azure VMs
• Azure Files (Azure Storage)
• SAP HANA databases in Azure VMs
• Azure Backup server
• Azure Backup Agent
• DPM

Backup items are held locally, in a storage account, for a while before being
transferred to the vault. Transferring items to a vault can take several hours, but
it happens automatically.

Backup Vault

Backup vaults are the older version of recovery services vaults, and therefore offer
less functionality. There is no support for soft delete, Multi-user authorization, or
other newer security features. In 2017 Microsoft announced in a blog post that
they would support "seamless upgrade of classic Backup or Site Recovery vaults
to ARM based Recovery Services vaults. " [31]

Backup vaults are still supported in Azure backup to this day, but its primary
use is to be "a storage entity in Azure that houses backup data for certain newer
workloads that Azure Backup supports" [32]. This includes Azure Database for
PostgreSQL servers, and other newer workloads:

• Azure Database for PostgreSQL servers
• Azure Blobs (Azure Storage)
• Azure Disks

Chapter 2: Theory 16

• Kubernetes Service (In preview)
• AVS Virtual machines (In preview)

Azure snapshots

A snapshot typically refers to a read-only point-in-time copy of something, for
example a virtual machine or a hard drive. Unlike file based backups which store
only data files, snapshots store state the state of the object.

Azure snapshots are read-only copies of a managed virtual hard disk (VHD).
These snapshots can be used for backup and recovery purposes. The snapshots
can then be recovered to a new VHD. If the snapshotted disk was an operating
system disk, it’s possible to create a new VM directly from the snapshot.

Azure provides two types of snapshots, full and incremental. These are essen-
tially implementations of full and incremental backups (see 2.4.1). A full snapshot
makes a copy of the entire disk, while an incremental snapshot only makes a copy
of the changes since the last snapshot. Traditionally, incremental snapshots pro-
vide faster backup speeds, at the cost of a slower and more complex recovery
process. This is not the case with Azure’s snapshots. According to Microsoft blog,
recovery is almost as fast from incremental snapshots as with full snapshots, and
recovery time is constant no matter how many snapshots are used [23]. Incre-
mental snapshots in Azure can be deleted without invalidating newer snapshots.

Azure data redundancy tiers

Azure provides several tiers of redundancy for data stored in certain Azure ser-
vices. These tiers provide different ways of replicating data, the goal being to pre-
vent data loss in case an incident occurs. The tiers are described below in order
of increasing price [33].

Locally redundant storage (LRS) stores 3 copies of the data, in the same data
center. Zone-redundant storage (ZRS) stores 3 copies of the data, in different data
centers in the same region (one copy per data center). Geo-redundant storage
(GRS) replicates LRS from the primary region to a different secondary region
(2×3 copies). Geo-zone-redundant storage (GZRS) combines ZRS and LRS. Data
in the primary region is stored in ZRS, while data in the secondary region is stored
in LRS.

2.5.2 Role based access control (RBAC)

In Azure, access to resources is only granted when an identity can be authenti-
cated, and it has been assigned the correct permissions. Identites are essentially
what seperates different users and resources from each other. Each user has a
different identity that is used to grant them the access they need. According to
Modi, in Azure for Architects, this is known as authorization, or more commonly
as Role-Based Access Control, or RBAC [34]. "RBAC in Azure refers to the assign-

Chapter 2: Theory 17

ing of permissions to identities within a scope. The scope could be a subscription,
a resource group, or individual resources."

RBAC helps control which users have access to which resources, with as much
granularity as is needed to segregate permissions within an organisation, or within
a single team. In general it is considered best-practice to only provide the least
level of access necessary to perform a task. Modi argues that separating access be-
tween team-members helps ensure both security, as well as keeping team-members
feeling responsible for their jobs as they may be the only ones with a necessary
level of access to perform some tasks.

RBAC has been an important concept of security administrations since its for-
malization in 1992, by by David Ferraiolo and Rick Kuhn [35]. It is the predomi-
nant model of advanced access control according to NIST. One of the advantages
of RBAC is that security is managed at a level to closely corresponds to an organi-
zation’s structure. Many important security features, such as multi-user authenti-
cation, and the zero-trust model builds upon RBAC.

2.5.3 Multi-User Authorization (MUA)

While RBAC is useful for administrating access to Azure resources, it may be by-
passed if an attacker is able to perform a privilege escalation attack. Destructive
actions will still trigger alerts for system administrators, but by the time these are
initiated, it may be too late.

Multi-user authorization is a relatively new security feature in Azure which can
mitigate this risk. MUA allows the use of a Resource Guard to protect Recovery
Services Vaults in Azure (2.5.1). This Resource Guard is owned by a different user
(the security administrator) in Azure. The owner of the resource needs to request
permission from the security administrator, in order to to perform destructive ac-
tions on the resource [36]. As a result, no person is solely in control of any task
that may be destructive to the backup data. This can greatly reduce the risk of
data loss in case one of the administrator accounts is compromised.

The actions supported by MUA as of this report is:

• Disable soft delete
• Disable MUA protection
• Modify backup policy
• Modify protection
• Stop protection
• Change MARS security PIN

2.5.4 Soft delete

Soft delete is a security feature for Azure Backup or Azure Storage Blobs. When
soft delete is enabled, data that is deleted is not removed immediately. Instead it
is retained for 14 days before being permanently deleted. During this time, it is

Chapter 2: Theory 18

possible to "undelete" the data. Soft delete is enabled for Recovery Services Vaults
by default[37].

2.5.5 Azure Monitor

Azure Monitor is a service that monitors resources and services in Azure. If cer-
tain actions or events are detected, Azure Monitor can issue alerts to the relevant
administrators. An example is the Delete Backup Data alert, which is sent out if
any backup data is deleted. Alerts are either sent to the Azure Monitor view or
via email, if it is serious enough. According to the documentation, certain alerts
relating to Azure Backup are sent via email automatically [38]. Custom alert rules
can also be configured.

2.5.6 Interacting with Azure

Azure provides three main methods of interaction:

• Azure Portal
The Azure Portal is a graphical interface for managing an Azure environ-
ment. The Portal is generally quite user friendly.
• Azure CLI

The Azure CLI is a set of commands which can be used to manage an Azure
Environment. The CLI can be accessed through the Azure Cloud Shell, which
is a type of console in the Azure Portal. The CLI makes it possible to make
scripts to automate processes.
• Infrastructure as Code (IaC)

Infrastructure as Code is an approach to infrastructure management where
resources are declared and configured programmatically. This can improve
stability and reduce maintenance. IaC can be implemented using Azure Re-
source Manager templates, or by using third-party tools like Terraform [39].

2.5.7 Azure Blob Storage

Azure Blob Storage is a storage solution in Azure. It is optimized for large amounts
of unstructured data [40]. This makes it usable for a variety of workloads, includ-
ing as a low cost storage solution for backups. Like many other storage options
in Azure, it supports data redundancy tiers [33] (see 2.5.1), and security features
like soft delete [41] (see 2.5.4).

2.6 ClickHouse

2.6.1 Introduction to ClickHouse

ClickHouse is a database used for Online Analytical Processing (OLAP). It is highly
optimized for certain types of workloads, and is able to process large amounts of
data in an efficient manner [42].

Chapter 2: Theory 19

ClickHouse runs as a server on a virtual machine, which can be accessed using
the program clickhouse-client. ClickHouse uses SQL as its query language.

2.6.2 Backup solutions for ClickHouse

According to the ClickHouse Documentation, there is no universal backup solu-
tion for ClickHouse, but the documentation contains a few different suggested
solutions [43]. In this section, we will provide a short summary of the solutions
listed in the documentation.

• Duplicating Source Data Somewhere Else
A program such as Apache Kafka can be used to serve a stream of data as
input to ClickHouse. This stream can be forked and diverted to send data to
backup storage at the same time as it is sent to ClickHouse.
• Filesystem Snapshots

Some filesystems like ZFS support making snapshots of the filesystem’s state.
These snapshots can then be sent to an external storage solution.
• clickhouse-copier

clickhouse-copier is a tool that can be used to copy data between ClickHouse
clusters. Originally intended for petabyte-sized databases.
• Manipulations with Parts

A local copy of a table can be made with ClickHouse’s built-in ALTER TABLE
FREEZE query. The copy can be exported with a program like rsync.
• clickhouse-backup

clickhouse-backup is a tool that automates the manipulations with parts
approach. The tool is installed on the same server as ClickHouse. It can
store backups locally or on a remote server, using various storage methods,
like Azure Blob Storage or AWS S3 object storage.

2.6.3 Backup solutions for ClickHouse in Azure

Azure provides tools for backing up data. These are not mentioned in the Click-
House documentation, since they are not specific to ClickHouse. Azure Backup
supports backing up individual virtual machines as described in 2.5.1. This fea-
ture can be used to back up the VM running ClickHouse.

2.7 PostgreSQL

2.7.1 Introduction to PostgreSQL

PostgreSQL is an open-source relational database management system (RDBMS).
It is suited for operations requiring complex SQL queries, and provides functional-
ity enabling data analysis. Azure has its own hosted solution called Azure Database
for PostgreSQL, which automates maintenance, patching, and updates [44]. It also
allows effortlessly scaling the database size and computing.

Chapter 2: Theory 20

There are only a few backup options that are relevant to look into when work-
ing with a managed PostgreSQL instance hosted in Azure. This short introduction
will also include frequently seen practices for unmanaged instances of PostgreSQL
before narrowing the focus into managed ones hosted on Azure.

2.7.2 Backup solutions for PostgreSQL

One recovery option for protecting backup could be removable storage. This will
however not be the focus when exploring options for a ransomware-resistant
backup architecture.

Some options for backing up a PostgreSQL database include extraction of data
using the pg_dump command. This way one could back up data off-site for in-
creased security by air-gapping, although setting this up in such a way that RTO
and RPO are met can prove challenging. Moreover, a backup restore from a remote
server takes longer time than a local copy.

2.7.3 Backup solutions for PostgreSQL in Azure

Azure Backup

Azure Database for PostgreSQL backup has long-term retention in Backup Vaults.
A backup vault is a storage entity housing backup data in Azure [45]. It requires
connecting to a Key Vault to integrate with the database instance that will be
backed up. Azure Key Vault stores and allows accessing secrets [46]. Examples of
secrets could be API keys, passwords, certificates, or cryptographic keys. In this
case, it is the database connection string.

The Backup Vault has long-term retention of up to 10 years. It also allows
configuration and granular control allowing for a backup policy that complies
with the organisations needs.

Point-in-time-Restore

Point-in-time Restore (PITR) is a solution that automatically backs up PostgreSQL
data in either local- or georedundant storage.

In contrast to the Backup Vault, the built-in PITR-solution has a default re-
tention of only 7 days, which can be set to a maximum of 35 days if using Stan-
dard or Premium tier. Different tiers vary in cost and capabilities. Full backups are
taken every week, differential backups every day, and log backups every 5 minutes.
These do not need to be scheduled, and no maintenance downtime is associated
as they run in the background. PITR is a security measure that one need not opt-
in to and does not cost anything unless it gets used. It always restores to an new
database which is configured in the same tier as the original database.

The built-in backup solution and the Azure Database for PostgreSQL backup
can operate simultaneously.

Chapter 2: Theory 21

2.8 Security Best Practices

2.8.1 Principle of least privilege

When assigning permissions to users and processes to access resources in an or-
ganisation, it is considered best practice according to the principle of least privi-
lege to only give the minimum level of access needed at any given time. For ex-
ample doing menial tasks like checking emails and browsing the internet should
not be done while accessing a system as administrator. In modern systems archi-
tecture the role of system administrator should not be used instead, access should
be provided only to the resources a user needs at at given time [47]. In Azure, this
is implemented with RBAC (2.5.2).

2.8.2 Zero trust

One of the modern mainstays of cybersecurity and infrastructure security is the
Zero Trust model. The National institute of standards (NIST) special publication
800-207 provides the following definition: "Zero trust provides a collection of
concepts and ideas designed to minimize uncertainty in enforcing accurate, least
privilege per-request access decisions in information systems and services in the
face of a network viewed as compromised." [48]

This definition says that one should view the network as compromised, and
as such bear that in mind for every decision made when designing the network.
The alternative, assuming a network or system is not compromised, has disastrous
consequences if this assumption is incorrect. This can be exemplified by Ramel’s
retelling of a ransomware attack where the cause of the breach was an adminis-
trator logging in to a compromised system to perform mundane tasks with admin
privileges [47]. The attacker would not have been able to gain admin rights if it
hadn’t been for the unnecessary use of the administrator account.

Zero Trust architecture is described by CISA as fundamentally different from
prior models, and one that will require a holistic change in the way an organisation
thinks about its cybersecurity controls, but also its philosophy and culture around
cybersecurity.

The core concept of a Zero Trust architecture is that security is no longer
perimeter-based, and that there is an implicit assumed threat in any network.
Therefore the security model focuses on data and service protection, and only
providing the minimal level of access to resources and data when, and only when,
that access is needed. Trust and access must always be continually evaluated, and
an attacker won’t have free reign of all resources once inside a network. The model
aims to hinder the unauthorized lateral movement of attackers inside networks
once the perimeter is breached [49].

The same source describes a number of factors that may enable a system to
grant or deny access to a resource. A trust algorithm uses these factors to make a
decision on whether or not it is likely that the request is legitimate, and denies it

Chapter 2: Theory 22

if it is not likely. The trust algorithm can be run multiple times during a session to
continually confirm the legitimacy of the access given to a subject.

Chapter 3

Method

3.1 Chapter outline

To answer the research questions presented in section 1.2.1, we conducted a num-
ber of experiments on two different databases with two different backup solutions
in place for each of them. The goal was to use our findings in the experiments to
get a good overview of security features in Azure, in order to be able to answer
our research questions. The basis for our experiments was three scenarios that
represent different attack vectors that the databases must be secured against.

In the discussion chapter (5), we compare and contrast the different backup
solutions used in the experiments. This is so that we can determine which security
features are worth implementing, how secure they are, and how they impact the
overall backup architecture. This is also used to help answer the research ques-
tions. More general requirements for backup solutions, such as performance and
cost, were also considered. Because of this, a performance test was performed for
each backup solution in order to aid in the comparison.

In this chapter we present the method for our analysis, and describe in detail
how we worked to find the results presented in chapter 4. We start off with de-
scribing the criteria used in our analysis in section 3.2. In section 3.3, we present
the two databases we implemented backup solutions for, and their backup solu-
tions. We then describe how they were deployed in section 3.4.

The scenarios are at the center of our analysis. Their results are based on the
criteria in 3.2, and are performed in the test environments described. The scenar-
ios are described in section 3.5. For each of the three scenarios, several experi-
ments were performed is described in detail. Finally, in section 3.6 we describe
how the performance of the backup solutions were tested.

3.2 Criteria for analysis

The backup solutions we describe in 3.3 were evaluated based on the criteria we
describe in this section. These are important criteria to assess the security of the

23

Chapter 3: Method 24

different backup solutions.

3.2.1 Resistance to ransomware attacks

Since the topic of our thesis was to analyse cloud backup architectures with re-
gards to their resistance to ransomware attacks, resistance to ransomware is the
most important criteria to evaluate backup solutions by. Though this is a measure
that can be hard to quantify, several factors are taken into consideration when
evaluating the ransomware resistance of a backup solution.

Specific properties to keep in mind when evaluating the ransomware resis-
tance of a system are:

• Ability to recover encrypted files.
• Ransomware detection.
• Ability for backup to withstand encryption.
• Ability for backup to withstand deletion.

Each backup solution’s resistance to ransomware was assessed qualitatively.

3.2.2 Ease of use

There is often a trade-off between security and ease of use. Disconnecting a database
server from all networks would essentially render it immune to ransomware at-
tacks over the network, but it would also be incredibly inconvenient. An accept-
able backup solution needs to be secure enough to be able to resist ransomware
attacks, while at the same time being easy to set up, automate and maintain.
Humans are fallible, and if the backup solution is too troublesome to use, the
maintainers might neglect to verify that everything is working correctly. If secu-
rity measures interrupt the operations of those using the services that are being
protected, the users might seek out ways to bypass them.

Each backup solution’s ease of use was assessed qualitatively throughout the
experiments, based on our experience using them. We focused on the ease of
setup, ease of maintenance (regular testing), and ease of recovery in the event of
an attack.

3.2.3 RPO and RTO

Recovery Point Objective (see 2.1.6) and Recovery Time Objective (see 2.1.6) are
two essential parameters to keep in mind when evaluating backup architectures.
It is up to each organization to determine their own required RPO and RTO, based
on cost-benefit analyses and other considerations.

RPO was analyzed by looking at the options provided by each backup solution
with regards to options for specifying the frequency of creating recovery points.
RTO was analyzed by conducting performance tests (see 3.6).

Chapter 3: Method 25

3.2.4 Cost

More secure solutions are generally more expensive. Cloud platforms charge for
the amount of data stored in their services, and that includes backups. While we
can’t decide if a backup solution is too expensive or not, we considered the cost
of the different solutions in our general comparison.

3.3 Backup solutions to analyze

In our analysis we considered each scenario, and created experiments for backup
solutions for two different databases. The two databases were an unmanaged
ClickHouse database running on an Azure VM, and an Azure Database for Post-
greSQL instance, which is a managed database in Azure. This means that each
scenario is analyzed twice; once for each of the two databases. The databases are
detailed in sections 2.6, and 2.7 respectively.

3.3.1 Backup solutions for ClickHouse

Our experiments focused on two backup solutions for ClickHouse. These were
Azure Backup for VMs, a service provided by Azure, and clickhouse-backup, a
third-party tool for backing up ClickHouse databases specifically.

Azure Backup

Azure Backup (see 2.5.1) was chosen as one of the backup solutions to test for
ClickHouse. It provides tools for easily configuring automatic backup for Azure
VMs. Since it backs up entire VMs, and not just the specific database’s data, it can
essentially be used to back up any service running in a VM.

Since Azure Backup stores backed up VMs in Recovery Services vaults (see
2.5.1), all the security features of these newer vaults are available for this backup
solution.

clickhouse-backup

Of all the backup solutions listed in the ClickHouse documentation (see 2.6.2),
clickhouse-backup seemed like the most appropriate one. clickhouse-backup can
back up data locally and remotely, and supports integration with different cloud
providers. One of the supported remote storage solutions is Azure Blob Storage
(see 2.5.7), which is a cheap storage option.

Duplicating Source Data Somewhere Else was ruled out because it requires
the use of a persistent queue, which is not relevant to our case. Filesystem snap-
shots were ruled out because we are not using a filesystem with snapshot func-
tionality. clickhouse-copier was ruled out because it is designed for petabyte-sized
databases [43], which seems overkill for our use case.

Chapter 3: Method 26

3.3.2 Backup solutions for Azure Database for PostgreSQL

For PostgreSQL we also tested two different backup solutions. Azure Backup for
PostgreSQL, and the Point-in-time-restore (PITR) functionality of the Azure database
for PostgreSQL service. These services were able to be used separately or together
as part of a holistic solution.

Azure Backup for PostgreSQL

Azure Backup started supporting PostgreSQL in January 2022. Because it is still
relatively new it is not supported by Recovery Services vaults. Instead, it uses
the older Backup Vaults in Azure. This means that far fewer security features are
supported compared to the Azure Backup solution for VMs. Even so, this solu-
tion supports 10 years of data retention, scheduled and on-demand backups and
backup restoration, either directly to a database or as a file in Azure Blob Storage.

Point-in-time Restore

Point-in-time Restore is a feature of Azure Database for PostgreSQL that allows
restoring the database to any point within the last 35 days, depending on settings.
It is described in more detail in 2.7.3. This provides a lot of flexibility when it
comes to choosing which restore point to restore to.

3.4 Test environments

In this section, we describe how the test environments were deployed and config-
ured in detail.

3.4.1 Illustration of test environment

The test environment is illustrated in Figure 3.1, and shows the databases we used
in our analysis, as well as their backup solutions. The red bordered area shows
where the backups are stored within the architecture. Each scenario will attack
some part of this architecture, and the experiments will show how to recover the
lost data, or otherwise mitigate the risk associated with the attack.

3.4.2 Test environments for ClickHouse

Test environment for non-performance sensitive tests

In order to perform the experiments where performance was not being measured,
we set up a simple test environment. The test environment consisted of a single
Linux VM running Ubuntu 16.04. The VM size selected was "Standard B1s" [50],
which is a general purpose VM with a single vCPU, 1GB of RAM, and a 30GB SSD.
ClickHouse and clickhouse-backup was installed on the VM and configured. In ad-
dition, Azure Backup was set up. A data set of around 700MB (when compressed

Chapter 3: Method 27

Figure 3.1: Illustration of the databases and their backup solutions

by ClickHouse) was used. A detailed overview of how the non-performance critical
test environment was set up is included in the appendix, see A.1.

Test environment for performance tests

For performance tests, a different test environment was used. A more powerful
VM was necessary in order to avoid bottlenecks that could interfere with the per-
formance test results. The VM size selected was "Standard D4s v4" [51]. This is a
general purpose VM with 4 vCPUs and 16GB of RAM. 16GB of RAM is less than
the amount recommended for ClickHouse [52] but greater than the minimum re-
quirement [53]. The reason we chose this VM size was because it was the largest
size available with our Azure subscriptions vCPU quota. This is unfortunate, but
we believe it was sufficient for our tests.

The OS disk size selected was 2048GB, which was enough to leave some
overhead after loading the test data. The uncompressed size on disk of the data
set used was around 5TB. The data set was compressed to a size of 955GB by
ClickHouse. We believe this amount of data should be enough to give a realistic
overview of the performance of each backup solution.

For a detailed overview of how the performance test environment was set up,
see A.2 in the appendix.

Chapter 3: Method 28

3.4.3 Test environment for PostgreSQL

We tested Azure database for PostgreSQL with the GP_Gen5_2-SKU, a general
purpose configuration that is similar to the needs of most businesses. The setup
was done with a PowerShell script for repeatability, and can be seen in appendix
A.15.1. Point-in-time-restore is enabled by default (and can not be disabled.)

Connecting to the PostgreSQL instance was done with pgAdmin 4. This is a
tool used to manage PostgreSQL databases. Another option here would have been
using Azure Data Studio.

We populated the database with data using a script. See appendix A.15.2 for
details.

In order to protect PostgreSQL with Azure Backup, we created a Backup vault
and deployed a backup instance with an accompanying backup policy for the Post-
greSQL server within it. The process is described in detail in appendix A.15.3.

3.5 Scenarios

In order to evaluate the effectiveness of each of the backup solutions, we came up
with three practical scenarios. These are imagined attacks against the databases
or backups, which the backup architecture has to be able to withstand.

These scenarios were used as a basis to create experiments, which are practical
demonstrations of how an attack could be carried out, and how the system would
recover from the attack, or otherwise how the risk of the attack may be mitigated.
The scenarios are also used to provide a meaningful context for discussing each
backup solution’s resistance to ransomware.

3.5.1 Scenario 1: Attacker encrypts database data

This first scenario is perhaps the most central scenario for the project. This is
essentially a basic ransomware attack, where only the data stored on the database
servers are encrypted. This attack is illustrated in figure 3.2.

Conditions

This scenario assumed an attacker has managed to gain access to the database-
server, or the server that configures it. The attacker has also managed to elevate
their privileges enough to delete or encrypt data. The attacker is not necessarily
sophisticated enough to look further into the system, or attempt to counteract the
security controls in place.

Consequences

The worst case consequences of this scenario is complete data loss. Given that the
attackers are using a modern strain of ransomware with sophisticated encryption
schemes, as it is fair to assume, the encrypted data could be completely lost. This

Chapter 3: Method 29

Figure 3.2: Illustration of Scenario 1, a malicious attacker encrypting databases

attack without a plan for data restoration could force the victim organisation to
pay the ransom or risk bankruptcy especially if the data is business-critical.

Risk Mitigation

Recovering from this attack involves restoring the data in the databases from
backup. As the goal of the attack is to ensure the organisation loses access to
their data, and making the ransom the only viable method of recovery, our goal
should be to ensure another method of recovery exists.

In our case, recovery from this scenario involved verifying that the backup
solutions reliably backed up data, and that the data restored from them was the
same as we backed up.

Testing

To test this scenario we encrypted or deleted data in each database. Each of these
has backups that we then restored from. In addition to testing that restoring from
these backups works, we noted significant aspects of the recovery process in order
to better evaluate the non-functional attributes of the backups.

Chapter 3: Method 30

ClickHouse experiment: To test this scenario with ClickHouse, we ran an ex-
periment where we encrypted certain files in /var/lib/clickhouse/. This is the
default storage path for ClickHouse. The files were encrypted using an encryption
tool called ccrypt. The full details of how this experiment was conducted can be
found in section A.5 of the appendix.

A short summary follows here.

The files we encrypted were files that correspond to columns in a database table.
We tried encrypting both a single file and the whole directory containing the files.
The effects the encryption had on the database were observed. Then, the database
was recovered using backups from clickhouse-backup and Azure Backup.

The following files were encrypted:

• /var/lib/clickhouse/store/c28/c283470d-9ab3-4be8-bd81-132274c9f9b0/
all_1_35_2/radio.bin
• /var/lib/clickhouse/store/

(See section 4.1.1 for results.)

PostgreSQL experiments: We find it unlikely that a normal ransomware virus
would be able to encrypt data in a managed PostgreSQL database. It is however
not unlikely that future threat actors target managed cloud services to a greater
degree than is normal now, as more organisations move to the cloud. To test this
scenario we simulated an attack where the tables in the database were dropped,
instead of encrypting them. This gave us an opportunity to test how recovery is
performed with each backup solution.

The first backup method that was tested was Point-in-time restore (PITR). The
table was dropped and then restored with PITR. The experiment is described in
detail in the appendix (A.16).

To test recovery with Azure Backup for PostgreSQL, we once again dropped the
table and started recovery. The Backup vault GUI for Azure Backup for PostgreSQL
was used to restore to a new database from the latest backup available. This is
described in detail in appendix A.17.

(See section 4.2.1 for results.)

3.5.2 Scenario 2: Attacker deletes backups

In a human-operated ransomware attack, it is likely that the attacker would at-
tempt to delete backups before deploying the ransomware itself. Figure 3.3 shows
the attacker deleting the backups in our test environment.

Conditions

The attacker would need access rights at a high enough level to threaten the back-
ups. Whereas in scenario 1 the attacker only needed access to the specific data

Chapter 3: Method 31

Figure 3.3: Illustration of Scenario 2, a malicious attacker deleting backups

they attempted to ransom, the attacker would in this scenario also require ac-
cess to the backup administrator’s Azure account, or an account with equivalent
privileges over the backups.

Consequences

This attack is unlikely to be devastating on its own, but if the attacker is able to
delete or encrypt the data in the databases as well, this could be crippling for an
organisation. The ultimate consequence of such an attack would be total data loss.

Risk Mitigation

Preventing this scenario from even occurring is critical to any backup implementa-
tion. If for example a compromised administrator has access to both the database
and the backup, they become a single point of failure for the whole system.

A number of attacks may be avoided if there are routines to monitor logs and
alerts that may tell the organisation that something is wrong. Even if an attacker
is able to bypass the security features protecting the backups, there ought to still
be someone monitoring any log entries or alerts that this is happening. This would

Chapter 3: Method 32

let the organisation preemptively try to mitigate the attack, and ideally lock the
attackers out of the network.

Even if the backups are deleted, they may still be recoverable. By default Re-
covery service vaults has soft delete (see 2.5.4) enabled, which would allow the
organisation to recover their backups, and then recover their data from them. Note
that Backup vaults do not supports soft delete. Soft delete can also be enabled for
Azure Storage Blobs.

Testing

In order to test this scenario, we attempted to delete backups made with the dif-
ferent backup solutions. After this we attempted to restore them and recover data
from the now undeleted backups. Where that was not possible we also looked into
other security mitigation possibilities.

ClickHouse experiment: For ClickHouse, four experiments were performed.
These all involved destroying backups in different ways.

In the first experiment, local backups made with clickhouse-backup were en-
crypted using the tool ccrypt, and the results were observed. We attempted to list
and restore the encrypted backup using clickhouse backup list and click-
house backup restore respectively. See the appendix (A.6) for full details re-
garding how the experiment was carried out.

Clickhouse-backup has commands for deleting local and remote backups (cli-
ckhouse-backup delete [local/remote]). In the second experiment, backups
made using clickhouse-backup were deleted using these commands. This was
done in order to simulate an attack where the attacker has root access to the
VM, but not to the Azure environment itself. Afterwards, the deleted backups
were recovered by undeleting the Blobs via the Azure CLI, and then restoring
the database with clickhouse-backup restore_remote. See the appendix (A.7)
for the full details.

The third experiment was similar to the second, in that remote backups made
using clickhouse-backup were deleted. This time, they were deleted using the
Azure CLI, in order to simulate an attack where the attack has access to an Azure
Cloud Shell session. Afterwards, the backups were once again recovered by un-
deleting the Blobs using the Azure CLI and then restoring the database with
clickhouse-backup restore_remote. See the appendix (A.8) for the full details.

In the fourth experiment, backups made using Azure Backup were deleted,
and then restored from their soft deleted state. Both deletion and restoration was
performed using the Azure CLI. See the appendix (A.9) for the full details.

(See section 4.1.2 for results.)

PostgreSQL experiments Backups for a managed PostgreSQL database are in-
herently tied to the database, due to its point-in-time restore (PITR) function. To
test this scenario, we therefore deleted the database server instance in an attempt

Chapter 3: Method 33

to delete the backup, and then restored it from PITR. When creating a new man-
aged PostgreSQL Azure Database the option is given to restore from a PITR-point.
This allows the database to be "undeleted" in practice, as long as it is restored
within the restore period. This process is shown in A.18.

As Backup vaults, which Azure Backup for PostgreSQL uses, does not support
soft delete functionality, the experiment for the Azure Backup solution was simply
to delete the backup instance in the Backup vault. After doing so, there was no
option to undelete or restore the backup data.

In addition to restoring the deleted backups, one important risk mitigation
effort would be to ensure that the backup administrator is alerted when backup
data is deleted. Azure backup does not automatically alert the backup adminis-
trator when backup data is deleted from Backup vaults.. Alerts will also have to
be monitored elsewhere than the Backup Center, as no alerts have shown up here
throughout our testing.

We created an Alert Rule that sent an alert each time the "Microsoft.DataPro-
tection/backupVaults/backupInstances/delete" action succeeded within the scope
of the subscription containing the Backup vault. This is the action which deletes
backup instances in backup vaults. This rule was linked to an Action Group that
sent an email to the backup administrator each time the Alert was delivered. This
could also be sent as a phone notification or a text message. This alert rule is
described in detail in appendix A.19.

(See section 4.2.3 for results.)

3.5.3 Scenario 3: Backup administrator compromised

The third scenario assumes a complete compromise of the backup administrator
account. This account has administrator access to the vaults in Azure, or has other
permissions allowing them to modify or delete backups, or change security set-
tings. In the previous scenario we looked at how to mitigate risks associated with
a lost or deleted backup. This time the attacker has access to the backup admin-
istrator account and can disable whatever security settings or delete whichever
resources they wish.

This attack is illustrated in figure 3.4, which shows the backup administrator
account controlled by the malicious actor, as well as the domain which the backup
admin account controls.

Conditions

The condition for this scenario to occur is simply that an attacker has gained access
to the backup administrator account. As discussed in section 2.8.2, this can easily
happen through simple human error, or misuse of administrator accounts when
performing mundane tasks.

Chapter 3: Method 34

Figure 3.4: Illustration of Scenario 3, a malicious attacker compromising backup
admin

Consequences

One of the consequences of this scenario is the permanent loss of all data, given
that the attacker is able to disable soft delete and delete all backups and deploy
ransomware shortly thereafter. Ransomware operators spend weeks trying to fig-
ure out all there is to know about an organization, and if they see an opportunity
to attack both the databases and their backups simultaneously, they are sure to
grab it.

Risk mitigation

There are security features in Azure to prevent a compromised administrator ac-
count from disabling soft-delete and deleting backups. One of them is Multi-user
authorization, as described in 2.5.3. In addition to that feature in particular, well
designed access control in general, based on Role-based access control, and Zero-
trust features such as Just-in-time access can prevent this scenario from resulting
in any major consequences.

Testing

Testing for this scenario involved exploring how much data could be made irrecov-
erable with full access to the backup resources in Azure,

Chapter 3: Method 35

ClickHouse experiments: We performed 3 experiments for this scenario in Click-
house.

In the first experiment, soft delete was disabled for a protected item in Azure
Backup before the item was deleted using the Azure CLI. See the appendix (A.10)
for the full details.

In the second experiment, the entire Recovery Services vault used to store
Azure Backup backups was deleted using a PowerShell script. See the appendix
(A.11) for the full details.

In the third experiment, we once again attempted to run the Recovery Services
vault deletion script, but before doing so, we enabled Multi-user authorization and
observed what happened. See the appendix (A.12.3) for the full details.

(See section 4.1.5 for results.)

PostgreSQL experiments: Since there it is not possible to disable the soft delete
feature of PITR, this scenario is less relevant for PostgreSQL compared to Click-
House. Backup vaults support neither soft delete nor MUA, so this scenario does
not have a direct solution using Azure Backup either.

(See section 4.2.6 for results.)

3.6 Performance testing

In order to determine whether it is realistic that a backup solution is able to re-
cover data within a given RTO, we conducted performance tests for each backup
solution. The performance tests measure how long it takes to restore a database of
a certain size. This is a useful parameter to consider when comparing the different
backup solutions.

3.6.1 Performance tests for ClickHouse

ClickHouse is able to handle large amounts of data, which means a backup solu-
tion for ClickHouse should also be able to. We decided to load ClickHouse with
1TB (compressed) of data, which we believe was enough to get a realistic idea of
the backup solutions’ performance.

For the Azure Backup test, we first prepared the environment by deleting the
VM, listing the available restore points, and then selecting which restore point to
use. A stopwatch was started the moment we initiated the restore job. The stop-
watch was stopped when it was possible to connect to the VM using SSH and run
database queries. The time used by the restore job itself is printed of the command
Restore-AzRecoveryServicesBackupItem. This was noted separately. See A.3 in
the appendix for the full details regarding how the tests were performed.

For clickhouse-backup, the plan was to measure the time it took to create a
new VM with the necessary software, using a stopwatch. Then, the builtin com-
mand time was to be used to measure the time used by the clickhouse-backup
restore_remote. Afterwards, the times were to be summed up to get the total

Chapter 3: Method 36

restore time. However, we experienced errors we were not able to resolve, which
prevented us from carrying out the test. Appendix A.4 contains details about how
the tests were performed, and what went wrong. This is also discussed in chapter
4.

(See section 4.1.8 for results.)

3.6.2 Performance tests for PostgreSQL

The following experiments compared the performance of Azure Database for Post-
greSQL single server when restoring using different methods. A general purpose
single server with 4 vCores and 100 GB of storage was deployed in the same way
as for our other testing, as seen in A.15.1.

We populated the databases with data using a script (see appendix A.15.2).
The script generated 7107MB of data.

Delete server and restore using backup vault

After deleting the data in the database we restored the data to a running PostgreSQL-
instance using previous backups from Azure backup. The goal was measuring the
restore time, and we did this by measuring the time between pressing restore, and
having access to the data again. This was sufficient for a baseline test.

To create a backup vault, a key vault was deployed which the backup vault
linked to for access to the connection string necessary to work with the PostgreSQL
single server.

Delete server and restore using point-in-time restore

A test similar to the previous was performed with point-in-time Restore. PITR
creates a new server from the restore point, which is what was deployed in this
test.

In this test as well we measured the time it took to gain access to the database
after starting the restore-process.

(See section 4.2.7 for results.)

Chapter 4

Results

In this chapter, we present the results of the analysis described in chapter 3. We
present these results separately for ClickHouse and PostgreSQL in order to more
easily look at them holistically here and in the discussion later.

As this project analyzes the different backup solutions qualitatively, the results
are based on our evaluation of how well each experiment highlights the resistance
to ransomware of each backup solution, as well as their ease of use.

4.1 ClickHouse

4.1.1 Scenario 1, experiment 1: Encrypting database files

(See section 3.5.1 for method.)
In this experiment, we encrypted files in our ClickHouse database. After en-

crypting the database files, we expected that either the database would crash en-
tirely, or that database queries would return strange or unreadable output. In-
stead, we observed that the database continued to run, but that certain queries
would fail. Queries that included a column whose corresponding file had been
encrypted would fail, while queries that didn’t would succeed. Encrypting the
/var/lib/clickhouse/store directory made all queries against the cell_towers
table fail. Queries against the system table would succeed, though.

This experiment has given us insights about the threat of ransomware attacks
against ClickHouse. Since ClickHouse is an unmanaged service that runs as a nor-
mal program on a VM, it is possible to encrypt the files used by it. In this regard,
ClickHouse can be vulnerable to ransomware. The backup solutions themselves
do not provide any ways to detect that the data being backed up is encrypted, as
far as we know. However, since queries are likely to fail when all the ClickHouse
data is encrypted, we believe it is possible that the attack would be discovered
quickly, if the database is queried frequently. If this is not the case, though, the
attack might go unnoticed for a long time, resulting in the backups being replaced
by encrypted data over time – depending on the chosen retention time. A possible
way to detect encryption could simply be to regularly test if all columns are query-

37

Chapter 4: Results 38

able. This could be done with a simple SQL query which selects all columns. This
possibility has not been explored by us, so it is hard to say whether it would be
sufficient.

The experiment has also shown us how Azure Backup and clickhouse-backup
can be used to recover files, which gave us useful insights into their ease of use.
Recovery using Azure Backup can be done in two ways, with the Azure CLI or
with the Azure Portal. We used the Azure CLI for these experiments for the sake
of reproducibility. The CLI does have some advantages over the Portal, like the
ability to automate recovery, as well as making it possible to automatically verify
that backups are working as intended. If recovery scripts are prepared in advance,
it is likely faster than using the Portal, as well as reducing the chance of human
errors.

We found recovery using clickhouse-backup to be a bit more involved than
recovery using Azure Backup. In order to prevent the spread of ransomware, we
suggest rebuilding the VM running ClickHouse before recovering the data. Azure
Backup supports replacing the existing VM when recovering, which makes this
easy to do. clickhouse-backup only loads data from the backups into the database.
The VM has to be rebuilt manually, or by using scripts. Then all the software
has to be installed and configured before the backup can be loaded. This is quite
simple, but it could be a time consuming process, unless prepared for with scripts
or Infrastructure as Code-tools.

4.1.2 Scenario 2, experiment 1: Encrypting local backups made with
clickhouse-backup

(See section 3.5.2 for method.)
In this experiment, we encrypted the files corresponding to local backups made

with clickhouse-backup. Encrypting local backups causes visual glitches when try-
ing to list them with clickhouse-backup.
Attempts at recovering from an encrypted local backup causes the following error:
error stat /var/lib/clickhouse/backup/local/metadata: no such file or
directory. clickhouse-client would not start if /var/lib/clickhouse/backup
was encrypted.

In a ransomware attack, it is fair to assume that these backups would be en-
crypted along with other ClickHouse files, given that the ransomware attacks the
/var/lib/clickhouse directory. As long as the remote backups are still working,
recovery should be possible however.

Encryption of local backups could potentially be dangerous if the local backups
are encrypted before they are exported to remote storage. It is difficult to say
whether it is likely that ransomware could encrypt the local backup before it is
exported in this case. It would depend on the sophistication of the attacker that
has managed to gain access to the organisations systems.

As long as the clickhouse-backup create_remote command is used to create
remote backups, we find this unlikely. This command creates a local backup and

Chapter 4: Results 39

exports it immediately to remote storage, which we doubt many attackers would
be able to circumvent.

4.1.3 Scenario 2, experiments 2 and 3: Deleting backups made with
clickhouse-backup

In experiments 2 and 3, we deleted remote backups made with clickhouse-backup.
In experiment 2, we used the clickhouse-backup program itself to delete the back-
ups. In experiment 3, we used the Azure CLI to delete the backups, by deleting
the Blobs the backups were stored in.

The reason we tried two methods of doing the same thing was to explore
different angles of attack. In experiment 2, we assume the attacker has access to
the VM, but not the rest of the system. In experiment 3, we assume the attack has
access to the Azure environment.

Deleting the remote backups was possible from both angles of attack. In both
cases, the backups were retained in a soft deleted state. We were therefore able to
recover the backups by undeleting them. Soft delete has to be explicitly enabled
for Blobs first; it is not enabled by default.

The experiments showed how soft delete can be a useful defense against
backup deletion. Without it the risk of data loss is higher. The process of undelet-
ing before recovery was also quite easy to do, and whilst undeleting increases the
time spent, it is not a complicated step to add to a recovery plan.

4.1.4 Scenario 2, experiment 4: Deleting backups in Recovery Ser-
vices Vaults

This experiment was similar to experiments 2 and 3. In this experiment, backups
made with Azure Backup were deleted using the Azure CLI. Like with Blobs (used
by clickhouse-backup), soft delete prevents the immediate deletion of the backups.
Unlike with Blobs, soft delete is enabled by default for Recovery Services vaults.

Like in experiment 2 and 3, soft delete is a feature that both increases security,
but without increasing complexity.

The deletion of backups in Azure Backup triggered an automatic "Delete Backup
Data" alert from Azure Monitor. Alerts such as these can help an organization de-
tect that they are under attack. Recieving such an alert should mean that the
organisation is able to react much faster to a ransomware attack.

4.1.5 Scenario 3, experiment 1: Disabling soft delete and deleting
backups

(See section 3.5.3 for method.)
In this experiment, we disabled soft delete for Azure Backup and then deleted

the backups. This resulted in immediate deletion of the backups, with no way
of recovering them. While soft delete can be a useful tool for recovering deleted
backups, it is not a silver bullet. Backups made using either backup solution can be

Chapter 4: Results 40

deleted instantly and permanently by first disabling soft delete. This is expected
functionality, as there can be legitimate reasons to delete backups instantly. This
shows that stopping malicious actors from disabling soft delete is crucial.

4.1.6 Scenario 3, experiment 2: Deleting a Recovery Services vault

In this experiment, the Recovery Services vault used for Azure Backup was deleted
using a PowerShell script.

The goal was to see how fast an attacker can delete an RSV, if they have the
right privileges. It turns out that this can be done very quickly. The script only
takes a few minutes to complete and permanently deletes everything in the vault,
with no way to recover it.

In addition to elevated privileges, access to four variables is required:

• The name of vault
• The name of the resource group
• The name of the subscription
• The subscription ID

A "Soft Delete disabled for Vault" alert was fired by Azure Monitor, but by the
time this goes through, it might be to late to do anything about it.

This script can be used to quickly and easily delete all backup data stored in
Azure Backup. A script could also be made for deleting a Storage Blob Container
in a similar manner. In the case where an attacker obtains the necessary privileges,
it seems neither backup solution is able to prevent such an attack without other
protections in place.

While these experiments show that data loss is inevitable if an attacker gains
access to full administrator privileges, it is not a bad thing: Unless such features are
configured and implemented into a system, an administrator account Should be
able to delete their own backups. Protecting against compromised administrator
accounts is however necessary to avoid having a single point of failure for an
entire organisations data.

4.1.7 Scenario 3, experiment 3: Preventing soft delete from being
disabled with MUA

In this experiment, Multi-user authorization (MUA) was enabled for a Recovery
Services vault before attempting to delete it with the script from experiment 2.
With MUA enabled, we were unable to delete it. We were also unable to disable
soft delete for the vault without requesting access from the security administrator.

MUA can prevent this attack as long as the attacker does not have access to
both the backup administrator and the security administrator account. This greatly
reduces the probability that the attacker would be able to threaten an organisa-
tions data even with access to a compromised administrator account. With MUA
enabled, we believe Azure Backup would be quite resistant to backup deletion.

Chapter 4: Results 41

Unfortunately, MUA is not available for Azure Storage Blobs, which means that
this extra layer of security cannot be utilized by clickhouse-backup. The risk can
still be mitigated by ensuring that alerts are being properly monitored, and that
administrator accounts are only used when absolutely necessary.

4.1.8 Performance tests for ClickHouse

(See section 3.6.1 for method.)
The speed of recovery using both Azure Backup and clickhouse-backup was

measured, in order to compare their performance.

Azure Backup

Two successful performance tests were performed. One using the Azure Portal,
and one using the Azure CLI. The time for the restore job itself is noted sepa-
rately. The total time includes the time for us to paste commands, etc.

Test 1 (Azure Portal):

Time (hh:mm:ss)
Restore job: 00:02:10
Total: 00:03:30

Test 2 (Azure CLI):

Time (hh:mm:ss)
Restore job: 00:01:06
Total: 00:06:33

This assumes that an Instant Restore point is available. If this is not the case,
the backup first has to be retrieved from the Recovery Services vault. This can take
several hours, depending on various factors.

Azure Backup supports individual disks up to 32TB [54].

clickhouse-backup

Three unsuccessful attempts were made at recovering from clickhouse-backup.
We were unable to solve the issue. Here is an example of an error that occurred
during a download:

2022/05/12 10:02:43.087969 error one of Download go-routine return
error: one of downloadTableData go-routine return error: handling file:
/all_3441_4218_4/file_time.bin: context deadline exceeded

Because of this, we were unable to do a proper performance test for clickhouse-
backup.

clickhouse-backup’s GitHub page contains a short paragraph about backing
up terabytes of data using clickhouse-backup [55]. They recommend making a
local backup with clickhouse-backup and then using clickhouse-copier (see 2.6.2

Chapter 4: Results 42

to copy the backup to another VM. This might indicate that clickhouse-backup’s
remote storage feature does not scale well enough to be used for several terabyte
large databases.

Despite our struggles, we still believe we were able to get a good overview of
how long recovery could take. Recovery with clickhouse-backup consists of two
steps: Downloading the backup and restoring the database. The first step is deter-
mined by the time it takes to transfer the files from Blob storage to the VM. The
second is determined by how fast the data can be loaded in the database. While
preparing the test environment (A.2), the time it took to make and upload the
backup was measured. If we assume the upload and the download time for the
backups are the same, we essentially know how long it would take to download
the backups. What remains is the restore step. This was measured by restoring the
database from the local backup of the same 1TB data set. Below is a table showing
the theoretical performance of clickhouse-backup with 1TB of data.

Theoretical performance:

Time (hh:mm:ss)
Upload: 03:18:48
Local restore: 00:00:03
Total: 03:18:51

4.1.9 Cost

The cost of both backup solutions can vary greatly based on several factors.
Prices are calculated in the North Europe region and displayed in USD.

Azure Backup cost

The pricing information in this section is based on the pricing details provided by
Microsoft [56].

Azure Backup has a base cost, which is calculated per VM. For instances larger
than 500GB, this cost is $10 for each 500 GB increment + storage consumed. In
addition, a separate amount is charged based on the redundancy tier used (see
2.5.1 for information on redundancy tiers).

Below are two simple calculations assuming that a single 10TB VM will be
backed up, and that the amount of data will not change over time.

Cost of backing up a 10TB VM using LRS:

Cost per month
Base cost $200
Redundancy (LRS) $224
Total $424

Cost of backing up a 10TB VM using GRS:

Chapter 4: Results 43

Cost per month
Base cost $200
Redundancy (GRS) $448
Total $648

The number of Instant Restore points can affect the total cost of Azure Backup.
According to Microsoft, the cost can be calculated with the following formula:
"Snapshot retention period daily churn per VM storage cost per GB". The term
churn refers to percentage of data that is changed each day. The minimum number
of Instant Restore points one can have with Azure Backup is one.

The number of retention points and the length of the retention period also
affect costs. This is dependent on churn, which varies from organization to orga-
nization.

clickhouse-backup cost

Pricing details are based on the pricing for Blob storage in Microsoft’s documen-
tation [57]

clickhouse-backup used in combination with Azure Storage Blobs can provide
a cost effective backup solution. The pricing model is a bit simpler than Azure
Backup’s. Below are two simple calculations for the monthly price of 10TB of data
using different redundancy tiers. The calculations assume that the "hot" storage is
used.

LRS: $0.022× 10000GB = $220 per month.
GRS: $0.037× 10000GB = $370 per month.
Like the calculations for Azure Backup, these calculations assume that data

will not change over time, which is unrealistic in many cases.
clickhouse-backup supports the use of incremental backups. This would make

the cost calculation over time similar to Azure Backup, in that the changes

4.2 PostgreSQL

4.2.1 Scenario 1, experiment 1: Recovery with Point-in-time-Restore

(See section 3.5.1 for method.)
The first experiment of this scenario shows how easy and effective postgres’

PITR-functionality is. We could restore to exactly the point in time we needed to,
regardless of whether a backup had been made at that time. The lost data was
recovered, and we were quickly up and running again, in part due to its ease of
use.

One aspect of the restoration process that is a drawback for ease of use is
the fact that a new database instance had to be deployed which the data could
be restored to. This includes configuration of the new server instance in order to
integrate it with the rest of the architecture, and if there is no procedure, practice,

Chapter 4: Results 44

or plan in order to do this effectively, RTO may increase considerably. RTO will be
looked at more closely when performance testing the backup solutions.

This experiment also shows how highly PITR functionality scores for RPO, as
the organisation can restore to the state of the data only seconds before the data
breach. This is because the feature uses the change-log in the database to track
continuous changes to the data. However, if the breach had long been ongoing
and the database filled with corrupted data, the short retention period may be
detrimental. This is due to the relatively meager 35 days of retention in PITR.
Whether it is likely that encrypted data in this database would not be discovered
is dependent on the data type and the organisation in question.

4.2.2 Scenario 1, experiment 2: Recovery with Azure Backup For Post-
greSQL

Similarly to the previous experiment, this was just as easy to use, and was also
able to meet the requirement of the experiment; restoring the data. Where it falls
short however is in RPO. The latest data, or recent changes to the data can only be
recovered if the latest backup was made after those changes. This could result in
a bigger data loss depending on the time of the attack. Whilst not an uncommon
caveat of any backup solution, it’s relevant to consider how important any change
in data is to the organisation. The fact that Azure Backup data can be stored for up
to ten years in a Backup vault is an advantage however, since long-term storage
may be necessary for compliance.

This scenario shows how well PITR and Azure Backup complement each other
in a holistic implementation. These backup-solutions are compatible, may be used
in parallel, and work in consort. Both recovered the database easily and effectively,
and were reliable in our testing. In this way an organisation can combine the great
RPO of PITR, and still retain long term backups with Azure Backup.

4.2.3 Scenario 2, experiment 1: Deleting database-server and restor-
ing with PITR

(See section 3.5.2 for method.)
This experiment largely yielded the same results as the first experiment in

scenario 1. As recovery with PITR has to be made to a new server instance anyway,
the difference between the two experiments was negligible.

Deleting the database-server does not delete the restore points, and there is
no way of deleting restore points. This means that despite there being no way of
restoring the deleted database or backup, the organisation can still recover their
data through PITR.

Chapter 4: Results 45

4.2.4 Scenario 2, experiment 2: Deleting backup-instance in Backup
vault and attempting undelete

This experiment highlighted some weaknesses of Backup vaults. Azure backup for
PostgreSQL is implemented in Backup vaults, instead of the newer Recovery Ser-
vice vaults, and lacks support for several features that increase security, especially
for this scenario. Soft-delete is a great feature of Recovery Services vault, as our
Clickhouse-experiments showed. This not being a feature of Backup vault makes
PostgreSQL backups far more vulnerable to attacks that target the backup data.

The combination of Azure backup and PITR met the security requirements
of our second scenario. The solution would however have been more robust and
reliable if the PostgreSQL-database had been backed up in a Recovery Service
vault instead of a Backup vault.

4.2.5 Scenario 2, experiment 3: Setting up alerts and deleting backup-
instance

This experiment is not about evaluating the restoration process of either backup
solution, but rather a related security feature. It was discovered in testing the other
experiments, and is a relevant part of our analysis, which is why we included it.

In this experiment we discovered that Azures built in, automatic alerts for
deleted backup data does not work with their PostgreSQL backup solution. The
cause of this is likely that the Alerts are inherently tied to the soft delete function-
ality, and as Backup vault does not support soft delete, they do not support those
alerts either. The fact that the documentation made it appear as if these alerts
were automatic when they were not is something we consider a massive flaw of
either the implementation in Azure, or the documentation.

Setting up manual alerts was an effective counter to this problem, and by the
end of the experiment we were able to maintain needed functionality and get
alerted whenever any backup instance was deleted from a backup vault. After
implementing our own alert-rule for deleted backup instances, we consider our
PostgreSQL backup architecture to be even more resilient, as administrators can
be alerted if an attack is ongoing.

This scores low on ease-of-use however, and we imagine it is far easier to
bypass compared to the built-in solution that worked effectively in our Clickhouse
experiments.

4.2.6 Scenario 3

As discussed earlier in chapter 3.5.3, there were no experiments needed to be
performed here that were not already done for scenario two. There are some
remarks however.

As Backup vault does not support Multi-user authorization there was no need
to attempt to enable it. Consequently, there was no way to limit the capabilities of
a compromised backup admin within the scope of the Backup vault. This means

Chapter 4: Results 46

that a compromised account in this role would all but guarantee the loss of all data
in the vault. Instead of MUA, designing and implementing an access management
design that is based on RBAC and Zero trust proved a worthy replacement. As
learned in chapter 2.8.2, administrator accounts become vulnerable to risk if used
more often than necessary. A large number of permissions in a single account is a
single point of failure. No account should have any permissions beyond the ones
they absolutely need, and administrator accounts should not be used beyond the
tasks they need those privileges for.

Ensuring that the backup admin does not have permissions to delete the database
instance will reduce risk in the system. Whilst not actually being MUA, it will in-
herently require two administrator accounts to be compromised before risk of
data loss, which is more unlikely. Since the backup in Azure Backup is a different
resource in Azure than the database itself, dividing responsibilities in the organi-
sation according to RBAC-methology, and making no admin the single source of
failure accomplishes some of the protection that lies in MUA.

In addition to MUA, other lacking Recovery Service vault features such as soft-
delete and automatic alerts would all be helpful in this implementation. Use of
PITR alongside Backup Vault largely remedied the shortcomings of a lack of soft-
delete feature. Further, our implementation of alert rules in appendix A.19 was
an adequate replacement for the automatic ones in Recovery Service vaults.

Azure supports a lot of fine-grained control over access rules and alerts, and
this scenario showed how much an organisations security can improve with the
correct implementation, despite the latest security features not being available.
Even though Recovery Service vaults would have been nice to have, and would
have made implementation easier and less prone to human error, the lack of that
support does not mean that security is inherently compromised.

4.2.7 Performance tests for PostgreSQL

(See section 3.6.1 for method.)
A Backup vault has the ability to perform a manual full backup at any given

time, which is more effective to restore to than a solution based on a range of dif-
ferential backups. A full backup in a Backup vault was performed with operation
details shown in the appendix (see A.13). The backup instance was then deployed
to a new server, giving a recovery time of 1 minute and 54 seconds.

For PITR we used the Azure REST API to deploy a server with PITR creation
mode, where the goal was to measure the time it takes to have a functioning
database from a given previous state. A database equal in size to the one used
in the backup vault experiment took 31 minutes and 27 seconds to deploy, see
operation details in the appendix (A.14).

There was an expectation of different performance when recovering from
backup vault versus using PITR. Part of this was that PITR recovery requires de-
ploying a new server, which meant we had to count with server creation time as
part of the recovery time. Our expectations were however exceeded in regards to

Chapter 4: Results 47

the efficiency the vault solution exhibited with a stark difference of 29 minutes
and 33 seconds, approximating to 15 times faster recovery using backup vault
compared to PITR.

It is worth noting however that the backup instance in the vault was a recent
full backup, while PITR most likely used transaction logs and differential backups
to reconstruct the database to the specified point in time. Because of this there is a
trade-off that the victim organisation must consider: Do they restore as quickly as
possible to as quickly as possible resume business operations, or do they restore to
the most recent possible recovery point with PITR, but spend much longer doing
so? The difference may be more substantial than in our case if the transaction log
is much longer than in our experiments.

4.2.8 PostgreSQL cost

Similarly to Clickhouses backup solutions the pricing for PostgreSQLs backup solu-
tions vary depending on several factors. The PostgreSQL-service in Azure is priced
depending on performance – the number of virtual cores and memory – as well as
the storage used [56]. The Point-in-time-Restore data is part of this, but charges
an additional amount depending on redundancy tier and storage amount. If the
data changes frequently this extra storage amount will increase.

Azure Backup is priced in a similar manner, with a set price per instance, plus
however much storage is used for the backup – again depending on redundany
tier. Extra fees are also incurred if archived data is deleted early, or retrieved back
to hot storage.

As we did not end up comparing two opposing backup solutions in PostgreSQL,
we chose not to perform a detailed cost analysis, as it would be of little value to
our analysis or thesis.

Chapter 5

Discussion

Our initial thesis topic was to analyze cloud backup architectures with regards
to their resistance to ransomware attacks. In the following discussion, we answer
the research questions we have defined 1.2.1. In order to do this we compare and
evaluate the different backup solutions we tested in regards to the criteria laid out
in the method chapter 3.2.

The research questions were:

Research question 1 What are some best practices for securing backups against
ransomware and other malware, and how can they be implemented in Azure?

Research question 2 Are Azure’s security mechanisms effective against a mod-
ern ransomware attack?

5.1 Discussion of backup solutions for each database

The purpose of discussing and comparing the backup solutions at the core of our
analysis is to identify relevant findings in order to best answer our research ques-
tions.

5.1.1 ClickHouse

Based on our findings, as presented in chapter 4, we will discuss the two backup
solutions we tested for ClickHouse: Azure Backup, and clickhouse-backup. The
former is the solution that we found to be the most secure, reliable, and easy to
use, all in all.

We found clickhouse-backup to be generally more unreliable and complicated
to use in our experience. Unless the organization wishes to back up ClickHouse
data outside of Azure, we do not see much reason to choose clickhouse-backup

48

Chapter 5: Discussion 49

implementation in an Azure environment, as Azure Backup provides more se-
curity features and an easier setup. When we tried to recover 1TB of data with
clickhouse-backup, the restore operation failed, and we were unable to find the
cause. Obscure error messages are not a welcome sight when trying to recover
from a ransomware attack. While we were unable to perform a proper perfor-
mance test, we did get an idea of the potential recovery speed of the solution. If
upload and download speeds are similar, we can expect a recovery time of around
3.3 hours for 1TB of data, which is much slower than Azure Backup’s 3-7 minutes
for the same amount of data. Another downside of clickhouse-backup is the lack
of support for Multi-User authorization, or rather, the lack of support for MUA in
Azure Blob Storage. Hopefully, Microsoft will implement MUA for Blob storage in
the future.

With that being said, the solution was able to withstand two of the three sce-
narios, and with proper monitoring tools and Role-based access control in place
there is nothing to suggest that clickhouse-backup will be an insecure solution. It
has support for many of the same security features as Azure Backup, and it is also
possible to put the backup in a different cloud environment entirely if needed.
Because of the option to use Blob storage, the cost of clickhouse-backup is lower
than that of Azure Backup. This may be a decisive factor in a cost-benefit analysis
of the different alternatives.

The advantages of Azure Backup on the other hand are its ease of use, and its
support for some of the better security features available, like MUA. One of the
features that highlight Azure Backup’s ease of use is the configuration of backup
policies. Azure Backup provides great control over retention, backup frequency
and data redundancy through a graphical user interface. In clickhouse-backup,
configuration is done by editing a YAML file, which is far less intuitive. Another
area where Azure Backup is more intuitive than clickhouse-backup is error mes-
sages. We found that Azure Backup provides clear and understandable error mes-
sages, both in the CLI and in the Portal, when something goes wrong. The big
disadvantage compared to clickhouse-backup is however the price for the service.

Soft delete and Multi-user authorization are two security features that have
proven to be very effective. When used together, as they are designed to be, they
make it practically impossible to lose data without the attacker compromising two
specific administrator accounts – which we find unlikely.

Our experience with restoring from the Azure Backup were also positive. When
Instant Restore points were available, the performance was excellent – and far
more reliable than clickhouse-backup. After our experiences with restoring from
both backup solutions the Azure Backup process was simple, effective and reliable.
Exactly what you want from a backup solution.

While Azure Backup locks the organization in to a single cloud service provider,
and that may have its disadvantages, there are also advantages to using a single
platform. Azure Backup provides central monitoring of backups via the Backup
Center service, which also provides a good overview to ensure compliance and
security. Security should be easy and automatic, and Azure Backup manages to go

Chapter 5: Discussion 50

a long way to get there.
It seems Azure Monitor has a higher degree of integration with Azure Backup

than with Blob storage. After all, Blobs are a general purpose storage solutions,
while Azure Backup is more specific.

5.1.2 PostgreSQL

For PostgreSQL, we are not as focused on comparing alternative backup solutions,
as both Azure Backup for PostgreSQL and Point-in-time Restore can, and should
be, used in combination. These two solutions complemented each other well in
a common architecture. Neither service did everything perfectly, but combining
the great RPO, soft delete, and ease of use of PITR, with the longer retention and
more granular control of Azure backup provided an excellent total package.

The overall process of backing up and restoring a managed PostgreSQL in-
stance in Azure left us impressed with the ease of use and efficiency of the pro-
cesses. Setting up a single server instance of Azure Database for PostgreSQL and
then backing it up in a Backup vault was a quick and intuitive, and with the auto-
matically enabled Point-in-time-Restore (PITR)-feature, restoring to any previous
point in time is easy.

By default, there are no automatic alerts for critical actions performed on
backup data in a Backup vault. This means that if an attacker has managed to
compromise the backup administrator, and then deletes the backup instance, it
is possible no one might know, unless they actively and manually monitor the
Backup Center. Manually enabling alert rules for backup delete actions is critical
when relying on a Backup vault in a production environment. Testing that this
functionality is set up correctly is also important, as our experiments showed that
the alert system is somewhat fiddly in the way that it has to be implemented.

With no soft delete or Multi-user authorization support, a compromised backup
admin can cause great damage to backup instances. Luckily PITR is supported
even if a database instance is deleted. So both restoring to an earlier state, and
undeleting a database instance is possible, as long as one operates within the con-
figured retention time of up to 35 days.

An important security feature that is supported by Backup vaults is RBAC. As
mentioned, the backup administrator becomes a single point of failure for the
Backup instance, so separating the backup administrator from accessing admin-
istrator privileges for the database instance is critical to security. This ensures no
single point of failure for the database data itself, and essentially becomes an air
gap between the database and its backup.

To minimize RTO we recommend restoring from the Backup vault data, as its
restore times generally were much quicker, compared to PITR. However, depend-
ing on the frequency of backups as per the backup policy, it might prove more
effective with regards to RPO to choose a specific PITR-point to restore from.

As discussed in the previous chapter, Backup vaults have less support for the
newer security features in Azure than Recovery Services vaults, and as such fewer

Chapter 5: Discussion 51

security features are available for Azure Backup for PostgreSQL, than in Azure
Backup for VMs. Despite this we found the backup solution we tested to be quite
secure.

While a secure and effective backup architecture can be built for Azure database
for PostgreSQL, there is no denying that Recovery Services vaults are inherently
more secure than Backup vaults. Recovery Services vaults support features such
as MUA, soft delete, and automatic alerts. As long as only Backup vaults support
PostgreSQL servers, they will be secure as long as the overall level of security in the
organisation is high enough. Given that with time, Azure backup for PostgreSQL
support is added to Recovery Services vaults, any organisation should upgrade to
a Recovery Services vault as soon as it becomes available.

5.2 Research questions

The purpose of this project was to answer the research questions from chap-
ter 1.2.1, using our experience with the backup solutions for the two different
databases in Azure to do so.

5.2.1 Research question 1

What are some best practices for securing backups against ransomware and
other malware, and how can they be implemented in Azure? Protecting back-
ups from ransomware is different in the cloud age, than in the time of physical in-
frastructures, but the principles largely remain the same. It is important to protect
against unauthorized access to the backups, and against modifications or deletion.
The CIA triad was described in section 2.1.2, and all three principles are important
for securing backups.

Protecting against unauthorized access is important to ensure both the con-
fidentiality, and integrity of the backups. This can be done outside of cloud plat-
forms with physical barriers separating the servers from unwanted persons. The
use of passwords or other access control mechanisms is also standard practice. In
the cloud age however, everything is available over the internet, and the security
controls must address this.

In Azure unauthorized access is hindered with Role-based access control (see
2.5.2 for details). Through the use of strict permissions and roles for all users, the
system can prevent unauthorized access to specified resources or resource groups.
This means that only a very limited set of people can access the backup data, and
even fewer can perform modifications to it, when implemented properly.

Backups must also be protected from changes to ensure the integrity of the
data. It is essential when a backup is restored to a production system that the data
can be trusted to be the same as when it was backed up. In Azure Backup there
is no way to change backups after they are created. When a backup job runs, it is
allowed to write the backup into storage, but after the backup job is finished, the

Chapter 5: Discussion 52

data is read-only. This ensures that an attacker can not encrypt backups directly,
or tamper with them by any other means than deleting them.

Naturally it follows that backups must also be available to authorized person-
nel in a timely manner. This means that they for example should not be able to
be deleted by unauthorized users. In Azure Backups Recovery Services vaults, this
can be ensured with several features. Soft delete prevents all backup data from
being permanently deleted within 14 days of attempting to delete it. During this
time, it is possible to recover the data by undeleting it. Multi-user authorization
prevents data from being deleted (and soft delete from getting disabled) without
the authorization from another administrator account beyond the backup admin-
istrator.

In summary there are security features for backup solutions in Azure that ad-
dress the follow the best practices of security controls. These secure the confiden-
tiality, integrity, and availability of backup data stored in Azure.

5.2.2 Research question 2

Are Azure’s security mechanisms effective against a modern ransomware at-
tack? Modern ransomware is created by professional threat actors, and the mod-
ern encryption schemes used are not going to be able to be bypassed without the
decryption key. Falling victim to ransomware will require data recovery from some
other source. Human-operated ransomware is also usually preceded by weeks of
reconnaissance, and all the systems the attacker is able to reach will likely be tar-
geted by the ransomware, or otherwise attacked to increase the highest likelihood
of the ransom being paid.

The weakness of off-site backups on systems that are still available over the
internet is that the ransomware very well could target them as well. This is one of
the advantages of Azure Backup – the vaults provide a way to store backup data
in a read-only state, which makes it impossible to modify that data, apart from
deleting it. New backups in Azure Backup do not overwrite existing ones, until the
retention period for the older backups runs out. That means that a compromised
system that is getting backed up cannot tamper with old backups by sending bad
data.

This means that one of the major vulnerabilities of Azure’s backup solutions is
going to come from a compromised backup administrator account. Our scenarios
addressed this, and the backup solutions for each database was able to resist these
scenarios. This indicates a resilience and reliability of the backup solutions which
meets the standards of security that organisations should expect.

Separating privileges, which can help eliminate single points of failure, as well
as lowering the chance of unauthorized access, is crucial. It also lowers the risk
of backups getting deleted or tampered with in some way. We believe Azure’s
implementation of RBAC is effective, based on our tests. Combined with MUA,
RBAC appears to be very secure.

Soft delete was an essential security feature in Azure, and the biggest dis-

Chapter 5: Discussion 53

advantage of this feature is that it is not supported by more services in Azure.
Throughout our analysis it has been one of the most important features to ensure
the availability of backup data. Together with MUA, this made backup data in Re-
covery Services vaults as secure as we could hope for, by preventing data loss even
with a fully compromised backup administrator account.

On the other hand, it is noticeable that the features in cloud platforms are
under constant development. Protecting backup data in Backup vaults (used by
Azure Backup for PostgreSQL), compared to Recovery Services vaults (used by
Azure Backup for VMs) is more difficult. The addition of new features may intro-
duce bugs or security flaws, which puts the customer at risk. The customer has
to trust that the cloud provider will fix such vulnerabilities. Part of the responsi-
bility of ensuring security is shifted from the administrators to the cloud services
providers, which has both advantages and disadvantages.

In total it is our evaluation that Azure’s security mechanisms do protect against
modern ransomware attacks, but some more than others. Azure Backup supports
many different services and supports a number of different workloads, but the
security features supported for each service varies. In the case of Azure Backup
for VMs, we believe it is sufficient to prevent modern ransomware attacks, if MUA
is configured. Azure Backup for PostgreSQL is still lacking some features like MUA,
making it less resilient against ransomware. The existence of Point-in-time restore
mitigates the shortcomings of Azure Backup in this specific instance, though. In
general, Azure provides the tools needed to protect against a modern ransomware
attack, and in the case of services that use Recovery Services vaults, it does most
of this right out of the box.

5.3 Future work/Limitations

This thesis explored several different technologies that all could have been ex-
plored in much more depth if we had chosen to do so. As we limited the scope of
the thesis to a less detailed view of each of the databases backup possibilities, we
list some of the areas we chose not to explore further.

PostgreSQL Infrastructure Double encryption effect: Future research could
measure whether there is a noticable difference with and without the use of in-
frasctructure double encryption feature when creating the PostgreSQL-server in-
stance. To avoid expected margin of error the database should be scaled up to 40
GB, and ought to be coupled with more thorough performance tests to evaluate
how different features affect performance

PostgreSQL Flexible server, being burstable effect on restore time It is also
possible to test out whether having a burstable flexible server affects restore time
where adding to vCores when restoring will decrease the restoration time com-
pared to operating on the normal amount used in a general purpose single server.

Chapter 5: Discussion 54

This should also use scaled up databases (40 GB),

More backup solutions for ClickHouse There were a number of backup solu-
tions for clickhouse that we chose to not explore beyond the theory. Limiting the
number of technologies we had to explore was necassary, but future work could
explore a wider range of backup solutions.

Successful performance test for clickhouse-backup Whilst initially within the
scope of this thesis, we were unsuccessful in performing a performance test for
clickhouse-backup. As such, we are not sure how this compares to the performance
of Azure backup.

Multi-cloud backup using clickhouse-backup One of the advantages of clickhouse-
backup was that the data could be stored wherever you choose. The potential ad-
vantages of using clickhouse-backup to store backup data in a different cloud en-
vironment should be explored in future. A multi-cloud backup solution in general
is something this thesis did not explore, but something that would be interesting.

Remote Backup for PostgreSQL Look into the possibilities the pg_dump tool
provides when it comes to having an air-gapped remote backup instance, in addi-
tion to the backup architecture used in our experiments.

Chapter 6

Conclusion

6.1 Summary

In our thesis we asked two research questions. What are some best practices for
securing backups against ransomware and other malware, how can they be imple-
mented in Azure, and are these security mechanisms effective against a modern
ransomware attack?

We have described the threat that modern ransomware poses, and some ways
in which the security of a backup architecture can be breached. Based on this, we
showed how a backup architecture in the cloud was likely to be attacked with three
different scenarios. These scenarios each had a number of experiments which ex-
amined the capabilities of the different backup solutions. On a larger scale these
experiments provided insight into what some best practices for securing backups
against ransomware could be in Azure.

The backup solutions we analyzed secured an unmanaged ClickHouse database
running in an Azure VM, and a managed PostgreSQL database hosted in Azure.
Our analysis was largely focused on a qualitative analysis of the security features
available for these backup solutions, as well as requirements like cost, perfor-
mance and ease-of-use. Our findings showed that Azure is a platform in continu-
ous development with many services further in their development lifecycle than
others. This was evident when comparing the backup solutions available for each
of the databases where the effectiveness of the security mechanisms varied con-
siderably.

One of our main takeaways was the importance of features such as multi-user
authorization in conjunction with role-based access control to ensure elimination
of single points of failure, or soft delete-functionality to hinder data loss due to
unauthorized deletions. Where these features were missing, workarounds could
be designed to achieve some degree of the same security. Our results show that
Azure’s security mechanisms are effective against a modern ransomware attack,
given that they are implemented correctly.

55

Chapter 6: Conclusion 56

6.2 Future developments

Security features are constantly in development, as shown in this thesis. The same
is true for malware development. Malicious actors are always exploring new ways
to exploit vulnerabilities and attempt to profit. The ransomware of today is the
way it is because our architectures are designed with traditional server technology,
and when that changes, so will the malware.

We can’t predict the future, but as the world moves towards managed services
hosted on cloud platforms, malware will follow. The same security principles will
remain true, but the implementation differs. While it was hard for us to see how
ransomware could attack a managed database, malicious actors are without a
doubt exploring how to threaten those services as well.

Future work in this field must keep working to ensure security before malicious
actors have a chance to profit.

6.3 Greater context

This thesis only looks at a small section of the security controls that an organisation
need to implement in order to keep their data secure. We described backups as the
last line of defense, and that means they should hopefully never be needed, and
the guard should not be lowered even if a secure backup solution is implemented.
Other security controls must ensure that.

These security controls include the culture in the organisation, to make sure
that employees and personnel maintain a security-focused mindset at all times.
As explored in this thesis, human error is a major vulnerability, and much of that
can be lowered by working with the people that use the systems every day.

Another important aspect is the other security controls in place. In addition to
secure backups, the data in production systems must remain secure as well. The
computer systems of an organisation are still targets of attacks even if they neither
have sensitive data nor access to backups.

Secure backup solutions are important, but they are not the whole picture.
This thesis considers only one part of the puzzle, one link in the chain. Malicious
actors will no doubt stretch the chain to look for the weakest link. The entire
system must therefore be secure.

Bibliography

[1] N. A. Hassan, “Ransomware Overview,” en, in Ransomware Revealed: A
Beginner’s Guide to Protecting and Recovering from Ransomware Attacks,
N. A. Hassan, Ed., Berkeley, CA: Apress, 2019, pp. 3–28, ISBN: 978-1-4842-
4255-1. DOI: 10.1007/978-1-4842-4255-1_1. [Online]. Available: https:
//doi.org/10.1007/978-1-4842-4255-1_1 (visited on 02/09/2022).

[2] K. Waddell, The Computer Virus That Haunted Early AIDS Researchers,
en, Section: Technology, May 2016. [Online]. Available: https://www.
theatlantic.com/technology/archive/2016/05/the-computer-virus-
that-haunted-early-aids-researchers/481965/ (visited on 05/15/2022).

[3] Threat Intelligence Report: Ransomware Threat Actors & Victims. [Online].
Available: https : / / abnormalsecurity . com / resources / ransomware -
victims-threat-actors (visited on 03/01/2022).

[4] T. Seals, 2021: The Evolution of Ransomware. [Online]. Available: https:
//media.threatpost.com/wp-content/uploads/sites/103/2021/04/
19080601/0354039421fd7c82eb4e1b4a7c90f98e.pdf (visited on 05/02/2022).

[5] F. Richter, Amazon Leads $180-Billion Cloud Market, en, Feb. 2022. [On-
line]. Available: https://www.statista.com/chart/18819/worldwide-
market-share-of-leading-cloud-infrastructure-service-providers/
(visited on 05/12/2022).

[6] P. Hofmann and D. Woods, “Cloud Computing: The Limits of Public Clouds
for Business Applications,” IEEE Internet Computing, vol. 14, no. 6, pp. 90–
93, Nov. 2010, Conference Name: IEEE Internet Computing, ISSN: 1941-
0131. DOI: 10.1109/MIC.2010.136.

[7] tfitzmac, Azure Resource Manager overview - Azure Resource Manager,
en-us. [Online]. Available: https://docs.microsoft.com/en-us/azure/
azure-resource-manager/management/overview (visited on 05/14/2022).

[8] S. Laan, IT infrastructure architecture: infrastructure building blocks and
concepts, eng, Third edition. Morrisville, NC: Lulu Press Inc, 2017, ISBN:
978-1-326-91297-0.

[9] Singh, Understanding RPO and RTO, en-US, Oct. 2021. [Online]. Available:
https://www.druva.com/blog/understanding-rpo-and-rto/ (visited
on 05/20/2022).

57

https://doi.org/10.1007/978-1-4842-4255-1_1
https://doi.org/10.1007/978-1-4842-4255-1_1
https://doi.org/10.1007/978-1-4842-4255-1_1
https://www.theatlantic.com/technology/archive/2016/05/the-computer-virus-that-haunted-early-aids-researchers/481965/
https://www.theatlantic.com/technology/archive/2016/05/the-computer-virus-that-haunted-early-aids-researchers/481965/
https://www.theatlantic.com/technology/archive/2016/05/the-computer-virus-that-haunted-early-aids-researchers/481965/
https://abnormalsecurity.com/resources/ransomware-victims-threat-actors
https://abnormalsecurity.com/resources/ransomware-victims-threat-actors
https://media.threatpost.com/wp-content/uploads/sites/103/2021/04/19080601/0354039421fd7c82eb4e1b4a7c90f98e.pdf
https://media.threatpost.com/wp-content/uploads/sites/103/2021/04/19080601/0354039421fd7c82eb4e1b4a7c90f98e.pdf
https://media.threatpost.com/wp-content/uploads/sites/103/2021/04/19080601/0354039421fd7c82eb4e1b4a7c90f98e.pdf
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://doi.org/10.1109/MIC.2010.136
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview
https://www.druva.com/blog/understanding-rpo-and-rto/

Bibliography 58

[10] New Cybereason Ransomware Study Reveals True Cost to Business, en.
[Online]. Available: https://www.cybereason.com/press/new-cybereason-
ransomware-study-reveals-true-cost-to-business (visited on 05/14/2022).

[11] Å. H. Stemland, Cyberkriminelle følger pengene: Vekst i ulovlig kryptoutvin-
ning, Aug. 2021. [Online]. Available: https://www.digi.no/artikler/
cyberkriminelle-folger-pengene-vekst-i-ulovlig-kryptoutvinning/
511561 (visited on 03/01/2022).

[12] The New Ransomware Threat: Triple Extortion, en-US, May 2021. [On-
line]. Available: https://blog.checkpoint.com/2021/05/12/the-new-
ransomware-threat-triple-extortion/ (visited on 03/02/2022).

[13] C. Stupp, “Energy Tech Firm Hit in Ransomware Attack,” en-US, Wall Street
Journal, May 2021, ISSN: 0099-9660. [Online]. Available: https://www.
wsj.com/articles/energy-tech-firm-hit-in-ransomware-attack-
11620764034 (visited on 05/14/2022).

[14] I. Thomas, The State of Ransomware Attacks: Energy Industry | Blog, en,
Aug. 2021. [Online]. Available: https://ironscales.com/blog/ransomware-
in-energy-industry/ (visited on 05/14/2022).

[15] Stortinget utsatt for IT-angrep, no, Pressemelding, Mar. 2021. [Online].
Available: https://www.stortinget.no/no/Hva-skjer-pa-Stortinget/
Nyhetsarkiv/Pressemeldingsarkiv/2020- 2021/stortinget- utsatt-
for-it-angrep/ (visited on 02/22/2022).

[16] Human-Operated Ransomware, en-US. [Online]. Available: https://www.
checkpoint.com/cyber-hub/threat-prevention/ransomware/human-
operated-ransomware/ (visited on 05/20/2022).

[17] R. Ploszek, P. Švec, and P. Debnár, “Analysis of encryption schemes in mod-
ern ransomware,” Rad Hrvatske akademije znanosti i umjetnosti Matem-
atičke znanosti, vol. 25(60), pp. 1–13, 2021, ISSN: 1845-4100. DOI: 10.
21857/mnlqgc58gy. [Online]. Available: http://dizbi.hazu.hr/a/?pr=
i&id=2342255 (visited on 05/12/2022).

[18] M. J. S. May 29 and 2020, Top Ransomware Attack Vectors: RDP, Drive-By,
Phishing, en. [Online]. Available: https://www.bankinfosecurity.com/
top-ransomware-attack-vectors-rdp-drive-by-phishing-a-14353
(visited on 02/28/2022).

[19] Remote Desktop Protocol (RDP) attack analysis, en-US. [Online]. Avail-
able: https://www.darktrace.com/en/blog/remote-desktop-protocol-
rdp-attack-analysis (visited on 03/01/2022).

[20] K. Morris, Infrastructure as code: dynamic systems for the cloud age, eng,
Second edition. Beijing Boston Farnham Sebastopol Tokyo: O’Reilly, 2020,
ISBN: 978-1-09-811467-1.

https://www.cybereason.com/press/new-cybereason-ransomware-study-reveals-true-cost-to-business
https://www.cybereason.com/press/new-cybereason-ransomware-study-reveals-true-cost-to-business
https://www.digi.no/artikler/cyberkriminelle-folger-pengene-vekst-i-ulovlig-kryptoutvinning/511561
https://www.digi.no/artikler/cyberkriminelle-folger-pengene-vekst-i-ulovlig-kryptoutvinning/511561
https://www.digi.no/artikler/cyberkriminelle-folger-pengene-vekst-i-ulovlig-kryptoutvinning/511561
https://blog.checkpoint.com/2021/05/12/the-new-ransomware-threat-triple-extortion/
https://blog.checkpoint.com/2021/05/12/the-new-ransomware-threat-triple-extortion/
https://www.wsj.com/articles/energy-tech-firm-hit-in-ransomware-attack-11620764034
https://www.wsj.com/articles/energy-tech-firm-hit-in-ransomware-attack-11620764034
https://www.wsj.com/articles/energy-tech-firm-hit-in-ransomware-attack-11620764034
https://ironscales.com/blog/ransomware-in-energy-industry/
https://ironscales.com/blog/ransomware-in-energy-industry/
https://www.stortinget.no/no/Hva-skjer-pa-Stortinget/Nyhetsarkiv/Pressemeldingsarkiv/2020-2021/stortinget-utsatt-for-it-angrep/
https://www.stortinget.no/no/Hva-skjer-pa-Stortinget/Nyhetsarkiv/Pressemeldingsarkiv/2020-2021/stortinget-utsatt-for-it-angrep/
https://www.stortinget.no/no/Hva-skjer-pa-Stortinget/Nyhetsarkiv/Pressemeldingsarkiv/2020-2021/stortinget-utsatt-for-it-angrep/
https://www.checkpoint.com/cyber-hub/threat-prevention/ransomware/human-operated-ransomware/
https://www.checkpoint.com/cyber-hub/threat-prevention/ransomware/human-operated-ransomware/
https://www.checkpoint.com/cyber-hub/threat-prevention/ransomware/human-operated-ransomware/
https://doi.org/10.21857/mnlqgc58gy
https://doi.org/10.21857/mnlqgc58gy
http://dizbi.hazu.hr/a/?pr=i&id=2342255
http://dizbi.hazu.hr/a/?pr=i&id=2342255
https://www.bankinfosecurity.com/top-ransomware-attack-vectors-rdp-drive-by-phishing-a-14353
https://www.bankinfosecurity.com/top-ransomware-attack-vectors-rdp-drive-by-phishing-a-14353
https://www.darktrace.com/en/blog/remote-desktop-protocol-rdp-attack-analysis
https://www.darktrace.com/en/blog/remote-desktop-protocol-rdp-attack-analysis

Bibliography 59

[21] Types of Backup: Full, Differential & Incremental Backup, en-US, Apr. 2021.
[Online]. Available: https://parablu.com/demystifying-data-backups-
types-of-backups/ (visited on 05/20/2022).

[22] Types of Backup: Full, Differential, and Incremental, en-US, Mar. 2020.
[Online]. Available: https://spanning.com/blog/types-of-backup-
understanding-full-differential-incremental-backup/ (visited on
05/20/2022).

[23] Incremental backups on Microsoft Azure Backup: Save on long term storage
| Azure-blogger og -oppdateringer | Microsoft Azure, nb. [Online]. Avail-
able: https://azure.microsoft.com/nb-no/blog/microsoft-azure-
backup-save-on-long-term-storage/ (visited on 04/19/2022).

[24] v-amallick, What is Azure Backup? - Azure Backup, en-us. [Online]. Avail-
able: https://docs.microsoft.com/en- us/azure/backup/backup-
overview (visited on 04/17/2022).

[25] Generally available: Azure PostgreSQL backup with long term retention |
Azure updates | Microsoft Azure, en. [Online]. Available: https://azure.
microsoft.com/en-gb/updates/azure-postgresql-backup-with-long-
term-retention-generally-available/ (visited on 04/17/2022).

[26] TerryLanfear, Azure backup and restore plan to protect against ransomware,
en-us. [Online]. Available: https://docs.microsoft.com/en-us/azure/
security/fundamentals/backup-plan-to-protect-against-ransomware
(visited on 02/22/2022).

[27] v-amallick, FAQ - Protect backups from Ransomware with Azure Backup -
Azure Backup, en-us. [Online]. Available: https://docs.microsoft.com/
en-us/azure/backup/protect-backups-from-ransomware-faq (visited
on 05/15/2022).

[28] v-amallick, Manage Backups with Azure role-based access control - Azure
Backup, en-us. [Online]. Available: https://docs.microsoft.com/en-
us/azure/backup/backup-rbac-rs-vault (visited on 02/23/2022).

[29] v-amallick, Architecture Overview - Azure Backup, en-us. [Online]. Avail-
able: https://docs.microsoft.com/en- us/azure/backup/backup-
architecture (visited on 04/17/2022).

[30] v-amallick, Overview of security features - Azure Backup, en-us. [Online].
Available: https://docs.microsoft.com/en-us/azure/backup/security-
overview (visited on 02/22/2022).

[31] A. Somendra, Upgrade classic Backup and Site Recovery vaults to ARM
Recovery Services vaults, en, May 2017. [Online]. Available: https://
azure.microsoft.com/en- gb/blog/upgrade- classic- backup- and-
siterecovery-vault-to-arm-recovery-services-vault/ (visited on
05/12/2022).

https://parablu.com/demystifying-data-backups-types-of-backups/
https://parablu.com/demystifying-data-backups-types-of-backups/
https://spanning.com/blog/types-of-backup-understanding-full-differential-incremental-backup/
https://spanning.com/blog/types-of-backup-understanding-full-differential-incremental-backup/
https://azure.microsoft.com/nb-no/blog/microsoft-azure-backup-save-on-long-term-storage/
https://azure.microsoft.com/nb-no/blog/microsoft-azure-backup-save-on-long-term-storage/
https://docs.microsoft.com/en-us/azure/backup/backup-overview
https://docs.microsoft.com/en-us/azure/backup/backup-overview
https://azure.microsoft.com/en-gb/updates/azure-postgresql-backup-with-long-term-retention-generally-available/
https://azure.microsoft.com/en-gb/updates/azure-postgresql-backup-with-long-term-retention-generally-available/
https://azure.microsoft.com/en-gb/updates/azure-postgresql-backup-with-long-term-retention-generally-available/
https://docs.microsoft.com/en-us/azure/security/fundamentals/backup-plan-to-protect-against-ransomware
https://docs.microsoft.com/en-us/azure/security/fundamentals/backup-plan-to-protect-against-ransomware
https://docs.microsoft.com/en-us/azure/backup/protect-backups-from-ransomware-faq
https://docs.microsoft.com/en-us/azure/backup/protect-backups-from-ransomware-faq
https://docs.microsoft.com/en-us/azure/backup/backup-rbac-rs-vault
https://docs.microsoft.com/en-us/azure/backup/backup-rbac-rs-vault
https://docs.microsoft.com/en-us/azure/backup/backup-architecture
https://docs.microsoft.com/en-us/azure/backup/backup-architecture
https://docs.microsoft.com/en-us/azure/backup/security-overview
https://docs.microsoft.com/en-us/azure/backup/security-overview
https://azure.microsoft.com/en-gb/blog/upgrade-classic-backup-and-siterecovery-vault-to-arm-recovery-services-vault/
https://azure.microsoft.com/en-gb/blog/upgrade-classic-backup-and-siterecovery-vault-to-arm-recovery-services-vault/
https://azure.microsoft.com/en-gb/blog/upgrade-classic-backup-and-siterecovery-vault-to-arm-recovery-services-vault/

Bibliography 60

[32] Overview of Backup vaults - Azure Backup | Microsoft Docs. [Online].
Available: https://docs.microsoft.com/en-us/azure/backup/backup-
vault-overview (visited on 05/12/2022).

[33] tamram, Data redundancy - Azure Storage, en-us. [Online]. Available: https:
/ / docs . microsoft . com / en - us / azure / storage / common / storage -
redundancy (visited on 04/02/2022).

[34] R. Modi, Azure for architects: implementing cloud design, DevOps, con-
tainers, IoT, and serverless solutions on your public cloud, eng, Second
edition. Birmingham Mumbai: Packt, 2019, ISBN: 978-1-78961-450-3.

[35] V. C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin, R. Miller, and K.
Scarfone, “Guide to Attribute Based Access Control (ABAC) Definition and
Considerations,” en, National Institute of Standards and Technology, Tech.
Rep. NIST SP 800-162, Jan. 2014, NIST SP 800–162. DOI: 10.6028/NIST.
SP.800-162. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-162.pdf (visited on 05/20/2022).

[36] Protect Critical Backup Operations with Multi-User Authorization for Azure
Backup - CHARBEL NEMNOM - MVP | MCT | CCSP - Cloud & Cyber-
Security, en-us, Section: Microsoft Azure, Oct. 2021. [Online]. Available:
https://charbelnemnom.com/multi-user-authorization-for-azure-
backup/ (visited on 03/21/2022).

[37] v-amallick, Soft delete for Azure Backup - Azure Backup, en-us. [Online].
Available: https://docs.microsoft.com/en-us/azure/backup/backup-
azure-security-feature-cloud (visited on 02/22/2022).

[38] v-amallick, Monitoring and reporting solutions for Azure Backup - Azure
Backup, en-us. [Online]. Available: https://docs.microsoft.com/en-us/
azure/backup/monitoring-and-alerts-overview (visited on 05/12/2022).

[39] nishanil, Infrastructure as code, en-us. [Online]. Available: https://docs.
microsoft.com/en-us/dotnet/architecture/cloud-native/infrastructure-
as-code (visited on 05/19/2022).

[40] tamram, Introduction to Blob (object) storage - Azure Storage, en-us. [On-
line]. Available: https://docs.microsoft.com/en-us/azure/storage/
blobs/storage-blobs-introduction (visited on 05/19/2022).

[41] tamram, Soft delete for blobs - Azure Storage, en-us. [Online]. Available:
https://docs.microsoft.com/en- us/azure/storage/blobs/soft-
delete-blob-overview (visited on 05/20/2022).

[42] What Is ClickHouse? | ClickHouse Docs, en. [Online]. Available: https:
//clickhouse.com/docs/en/intro/ (visited on 05/19/2022).

[43] Data Backup | ClickHouse Documentation, en. [Online]. Available: https:
//clickhouse.com/docs/en/operations/backup/ (visited on 03/22/2022).

[44] Azure Samples, en. [Online]. Available: https://github.com/Azure-
Samples (visited on 02/10/2022).

https://docs.microsoft.com/en-us/azure/backup/backup-vault-overview
https://docs.microsoft.com/en-us/azure/backup/backup-vault-overview
https://docs.microsoft.com/en-us/azure/storage/common/storage-redundancy
https://docs.microsoft.com/en-us/azure/storage/common/storage-redundancy
https://docs.microsoft.com/en-us/azure/storage/common/storage-redundancy
https://doi.org/10.6028/NIST.SP.800-162
https://doi.org/10.6028/NIST.SP.800-162
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-162.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-162.pdf
https://charbelnemnom.com/multi-user-authorization-for-azure-backup/
https://charbelnemnom.com/multi-user-authorization-for-azure-backup/
https://docs.microsoft.com/en-us/azure/backup/backup-azure-security-feature-cloud
https://docs.microsoft.com/en-us/azure/backup/backup-azure-security-feature-cloud
https://docs.microsoft.com/en-us/azure/backup/monitoring-and-alerts-overview
https://docs.microsoft.com/en-us/azure/backup/monitoring-and-alerts-overview
https://docs.microsoft.com/en-us/dotnet/architecture/cloud-native/infrastructure-as-code
https://docs.microsoft.com/en-us/dotnet/architecture/cloud-native/infrastructure-as-code
https://docs.microsoft.com/en-us/dotnet/architecture/cloud-native/infrastructure-as-code
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/en-us/azure/storage/blobs/soft-delete-blob-overview
https://docs.microsoft.com/en-us/azure/storage/blobs/soft-delete-blob-overview
https://clickhouse.com/docs/en/intro/
https://clickhouse.com/docs/en/intro/
https://clickhouse.com/docs/en/operations/backup/
https://clickhouse.com/docs/en/operations/backup/
https://github.com/Azure-Samples
https://github.com/Azure-Samples

Bibliography 61

[45] v-amallick, Overview of Recovery Services vaults - Azure Backup, en-us.
[Online]. Available: https://docs.microsoft.com/en-us/azure/backup/
backup-azure-recovery-services-vault-overview (visited on 05/12/2022).

[46] Key Vault | Microsoft Azure, en. [Online]. Available: https://azure.
microsoft.com/en-us/services/key-vault/ (visited on 05/19/2022).

[47] B. D. Ramel and 11/16/2021, Anatomy of a Ransomware Attack: Immutable
Cloud Blob to the Rescue! -, en-US. [Online]. Available: https://virtualizationreview.
com/articles/2021/11/16/ransomware-attack.aspx (visited on 03/09/2022).

[48] Cybersecurity and Infrastructure Security Agency and Cybersecurity Divi-
sion, “CISA Zero Trust Maturity Model,” en, p. 19, 2021.

[49] S. Rose, O. Borchert, S. Mitchell, and S. Connelly, “Zero Trust Architecture,”
en, National Institute of Standards and Technology, Tech. Rep., Aug. 2020.
DOI: 10.6028/NIST.SP.800-207. [Online]. Available: https://nvlpubs.
nist.gov/nistpubs/SpecialPublications/NIST.SP.800-207.pdf (vis-
ited on 03/09/2022).

[50] rishabv90, B-series burstable - Azure Virtual Machines, en-us. [Online].
Available: https://docs.microsoft.com/en-us/azure/virtual-machines/
sizes-b-series-burstable (visited on 05/19/2022).

[51] andysports8, Dv4 and Dsv4-series - Azure Virtual Machines, en-us. [On-
line]. Available: https://docs.microsoft.com/en-us/azure/virtual-
machines/dv4-dsv4-series (visited on 05/11/2022).

[52] Usage Recommendations | ClickHouse Docs, en. [Online]. Available: https:
//clickhouse.com/docs/en/operations/tips/ (visited on 04/27/2022).

[53] Requirements | ClickHouse Docs, en. [Online]. Available: https://clickhouse.
com/docs/en/operations/requirements/ (visited on 05/11/2022).

[54] v-amallick, Azure Backup support matrix - Azure Backup, en-us. [Online].
Available: https://docs.microsoft.com/en-us/azure/backup/backup-
support-matrix (visited on 05/18/2022).

[55] A. Akulov, Clickhouse-backup, original-date: 2018-09-26T15:00:57Z, May
2022. [Online]. Available: https://github.com/AlexAkulov/clickhouse-
backup/blob/0a19cd2b354b3b1fc94af4992d8c8499f5c1d9c9/Examples.
md (visited on 05/15/2022).

[56] Pricing - Cloud Backup | Microsoft Azure, en. [Online]. Available: https:
//azure.microsoft.com/en-us/pricing/details/backup/ (visited on
05/15/2022).

[57] Azure Storage Blobs Pricing | Microsoft Azure, en. [Online]. Available:
https://azure.microsoft.com/en- us/pricing/details/storage/
blobs/ (visited on 05/15/2022).

[58] Installation | ClickHouse Docs, en. [Online]. Available: https://clickhouse.
com/docs/en/getting-started/install/ (visited on 05/02/2022).

https://docs.microsoft.com/en-us/azure/backup/backup-azure-recovery-services-vault-overview
https://docs.microsoft.com/en-us/azure/backup/backup-azure-recovery-services-vault-overview
https://azure.microsoft.com/en-us/services/key-vault/
https://azure.microsoft.com/en-us/services/key-vault/
https://virtualizationreview.com/articles/2021/11/16/ransomware-attack.aspx
https://virtualizationreview.com/articles/2021/11/16/ransomware-attack.aspx
https://doi.org/10.6028/NIST.SP.800-207
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-207.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-207.pdf
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-b-series-burstable
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-b-series-burstable
https://docs.microsoft.com/en-us/azure/virtual-machines/dv4-dsv4-series
https://docs.microsoft.com/en-us/azure/virtual-machines/dv4-dsv4-series
https://clickhouse.com/docs/en/operations/tips/
https://clickhouse.com/docs/en/operations/tips/
https://clickhouse.com/docs/en/operations/requirements/
https://clickhouse.com/docs/en/operations/requirements/
https://docs.microsoft.com/en-us/azure/backup/backup-support-matrix
https://docs.microsoft.com/en-us/azure/backup/backup-support-matrix
https://github.com/AlexAkulov/clickhouse-backup/blob/0a19cd2b354b3b1fc94af4992d8c8499f5c1d9c9/Examples.md
https://github.com/AlexAkulov/clickhouse-backup/blob/0a19cd2b354b3b1fc94af4992d8c8499f5c1d9c9/Examples.md
https://github.com/AlexAkulov/clickhouse-backup/blob/0a19cd2b354b3b1fc94af4992d8c8499f5c1d9c9/Examples.md
https://azure.microsoft.com/en-us/pricing/details/backup/
https://azure.microsoft.com/en-us/pricing/details/backup/
https://azure.microsoft.com/en-us/pricing/details/storage/blobs/
https://azure.microsoft.com/en-us/pricing/details/storage/blobs/
https://clickhouse.com/docs/en/getting-started/install/
https://clickhouse.com/docs/en/getting-started/install/

Bibliography 62

[59] Cell Towers | ClickHouse Docs, en. [Online]. Available: https://clickhouse.
com/docs/en/getting-started/example-datasets/cell-towers/ (vis-
ited on 05/02/2022).

[60] A. Akulov, Clickhouse-backup, original-date: 2018-09-26T15:00:57Z, Apr.
2022. [Online]. Available: https://github.com/AlexAkulov/clickhouse-
backup (visited on 05/02/2022).

[61] stevenmatthew, Quickstart: Upload, download, and list blobs - Azure CLI -
Azure Storage, en-us. [Online]. Available: https://docs.microsoft.com/
en-us/azure/storage/blobs/storage-quickstart-blobs-cli (visited
on 05/02/2022).

[62] v-amallick, Quickstart - Back up a VM with Azure CLI - Azure Backup, en-
us. [Online]. Available: https://docs.microsoft.com/en-us/azure/
backup/quick-backup-vm-cli (visited on 05/02/2022).

[63] Parts | ClickHouse Docs, en. [Online]. Available: https://clickhouse.
com/docs/en/operations/system-tables/parts/ (visited on 04/28/2022).

[64] v-amallick, Back up Azure Database for PostgreSQL - Azure Backup, en-
us. [Online]. Available: https://docs.microsoft.com/en-us/azure/
backup/backup-azure-database-postgresql (visited on 01/20/2022).

[65] v-amallick, Script Sample - Delete a Recovery Services vault - Azure Backup,
en-us. [Online]. Available: https://docs.microsoft.com/en-us/azure/
backup/scripts/delete-recovery-services-vault (visited on 05/08/2022).

https://clickhouse.com/docs/en/getting-started/example-datasets/cell-towers/
https://clickhouse.com/docs/en/getting-started/example-datasets/cell-towers/
https://github.com/AlexAkulov/clickhouse-backup
https://github.com/AlexAkulov/clickhouse-backup
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-cli
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-cli
https://docs.microsoft.com/en-us/azure/backup/quick-backup-vm-cli
https://docs.microsoft.com/en-us/azure/backup/quick-backup-vm-cli
https://clickhouse.com/docs/en/operations/system-tables/parts/
https://clickhouse.com/docs/en/operations/system-tables/parts/
https://docs.microsoft.com/en-us/azure/backup/backup-azure-database-postgresql
https://docs.microsoft.com/en-us/azure/backup/backup-azure-database-postgresql
https://docs.microsoft.com/en-us/azure/backup/scripts/delete-recovery-services-vault
https://docs.microsoft.com/en-us/azure/backup/scripts/delete-recovery-services-vault

Appendix A

Experiment Data

This section contains details about how experiments related to the analysis were
performed, as well as results.

63

Chapter A: Experiment Data 64

A.1 Setup of test environment for ClickHouse experiments

This section contains documentation for how our ClickHouse test environment
was set up in accordance with the specifications listed in the Method chapter (see
3.4.2). This test environment was used for tests that were not performance sensi-
tive.

Most commands were run in the Azure Cloud Shell. Instead of using the bash
environment for the Azure CLI, we used the PowerShell environment. Backticks
(‘) are therefore used instead of backslashes (\) to escape newlines.

A.1.1 Declare variables

The following variables were declared to make scripts more reusable:

$AzCloudUser = "torstein" # Name of Azure user used for CLI
commands,→

$RGName = "testRG" # Name of resource group
$CHName = "clickhouseVM" # Name of VM running ClickHouse
$SSHKey = "mySSHKey" # Name of SSH key used to connect

to VM,→

$SSHPath = "/home/$AzCloudUser/.ssh/$SSHKey.pub" # Path of SSH
keys in Azure Cloud Shell storage,→

$SAName = "chbksa" # Name of storage account used by
clickhouse-backup,→

$ContainerName = "chbkcontainer" # Name of container storing
clickhouse-backup data,→

$StagingSAName = "stagingchsa" # Name of storage account used for
Azure Backup staging,→

$SASExpDate = "2022-05-05" # Expiry date of SAS token used by
clickhouse-backup,→

$location = "eastus" # Location of Azure resources
$RSVName = "myRSV" # Name of Recovery Services Vault
$subscription = "4b48eb85-91f3-4902-b74b-e84641fb6785" #

Subscription ID,→

$PolicyName = "DefaultPolicy" # Policy to be used by Azure Backup

These variables were loaded the other (non-performance) experiments as well.

A.1.2 Generate SSH keys

In order to connect to the VM via SSH, SSH keys needed to be generated.

az sshkey create --name $SSHKey --resource-group $RGName

Output:

Chapter A: Experiment Data 65

No public key is provided. A key pair is being generated for you.
Private key is saved to "/home/torstein/.ssh/1650965634_7008111".
Public key is saved to "/home/torstein/.ssh/1650965634_7008111.pub".

{
"id": "/subscriptions/4b48eb85-91f3-4902-b74b-e84641fb6785/resour ⌋

ceGroups/TESTRG/providers/Microsoft.Compute/sshPublicKeys/myS ⌋
SHKey",

,→

,→

"location": "eastus",
"name": "mySSHKey",
"publicKey": "ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABgQC4N1FPh8lylHa ⌋

F1Y2BpTCNNYkO\r\nJ0aaMLSklwBzdA4MrLY0vqnIhJY1QzB7NC3tOxOAqEZV ⌋
QjqiOiFQRZu0ifV91odi\r\njwuEOWCWia8Wix0AKpxPlFIcUbWE4auf6KOSA ⌋
AuoTCuXp3H29H+tGtuy/l1ZjBJb\r\nazxFz32j9uwEjVLtkYiYtSPxtnhuTn ⌋
N6l5wkI36mxni6dQsTKQNTck4bmkU+BmSI\r\nQ4k5YXfhxV0UTqYL5WeVzVD ⌋
TJnBrDFu8fClio/kcbhCn+w6B2yWfNFuvLmOlpIA6\r\nVZm4MaWpD9mp25J9 ⌋
YDcJ/Y5MewuNW7QqVNQDKfTrWXKz+blkKQ9DVzXvF63myNtQ\r\niMJdzLTvA ⌋
bgTL0zXPw111r5x8KKHW0nCehWtKvHk2xh2sOcdSVSDu4uZN6eacAPC\r\n4I ⌋
i3rJ3QgjL1IxRTITBJ/oZAFxxFZCtPbPYF9pD2iURzibAvLkp5BhLwk954So8 ⌋
G\r\nMzRvVUnM7gtaVNL4UxCYHMbvibwkXaNtu2ZWjGU=
generated-by-azure\r\n",

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

"resourceGroup": "TESTRG",
"tags": null,
"type": null

}

The keys were then renamed:

cd ~/.ssh
mv ./1650965634_7008111 $SSHKey
mv ./1650965634_7008111.pub ($SSHKey + ".pub")

These files were then copied to a local machine in order to be able to access
virtual machines using SSH.

A.1.3 Set up a resource group

az group create --name $RGName --location $location

Output:

{
"id": "/subscriptions/4b48eb85-91f3-4902-b74b-e84641fb6785/resour ⌋

ceGroups/testRG",,→

"location": "eastus",
"managedBy": null,

Chapter A: Experiment Data 66

"name": "testRG",
"properties": {

"provisioningState": "Succeeded"
},
"tags": null,
"type": "Microsoft.Resources/resourceGroups"

}

A.1.4 Set up a VM

Create an Ubuntu VM:

az vm create `
--resource-group $RGName `
--name $CHName `
--image Canonical:UbuntuServer:16.04-LTS:16.04.202109280 `
--admin-username azureuser `
--size Standard_B1s `
--ssh-key-values $SSHPath `
--public-ip-sku Standard

Output:

{
"fqdns": "",
"id": "/subscriptions/4b48eb85-91f3-4902-b74b-e84641fb6785/resour ⌋

ceGroups/testRG/providers/Microsoft.Compute/virtualMachines/c ⌋
lickhouseVM",

,→

,→

"location": "eastus",
"macAddress": "00-0D-3A-4F-38-61",
"powerState": "VM running",
"privateIpAddress": "10.0.0.4",
"publicIpAddress": "20.127.83.11",
"resourceGroup": "testRG",
"zones": ""

}

A.1.5 Install ClickHouse

Commands to install ClickHouse were copied from the installation guide in the
ClickHouse documentation [58].

sudo apt-get install -y apt-transport-https ca-certificates dirmngr
sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv

8919F6BD2B48D754,→

Chapter A: Experiment Data 67

echo "deb https://packages.clickhouse.com/deb stable main" | sudo
tee \,→

/etc/apt/sources.list.d/clickhouse.list
sudo apt-get update

sudo apt-get install -y clickhouse-server clickhouse-client

sudo service clickhouse-server start

The commands were run as azureuser on the ClickHouse VM. The ClickHouse
default user password was left empty.

Upon running clickhouse-client, which is used to interact with the database,
the following warnings were printed:

* Linux transparent hugepage are set to "always".
* Linux threads max count is too low.
* Available memory at server startup is too low (2GiB).
* Maximum number of threads is lower than 30000. There could be

problems with handling a lot of simultaneous queries.,→

This is caused by the VM having quite weak hardware. The dataset we used
was small enough, and the queries we ran were simple enough, for this now to be
an issue.

A.1.6 Load test data

A simple set of test data was retrieved from the ClickHouse website [59]. The
data set contains cell tower data and is around 700MB. Since this data set is not
intended for use in performance sensitive tests, we determined that it was suffi-
ciently large.

The data was loaded by following the instructions in the documentation.
Load test data:

Download dataset
wget https://datasets.clickhouse.com/cell_towers.csv.xz

Decompress dataset
xz -d cell_towers.csv.xz

Load data into clickhouse
clickhouse-client --query \
"CREATE TABLE cell_towers_two
(

radio Enum8('' = 0, 'CDMA' = 1, 'GSM' = 2, 'LTE' = 3, 'NR' = 4,
'UMTS' = 5),,→

mcc UInt16,

Chapter A: Experiment Data 68

net UInt16,
area UInt16,
cell UInt64,
unit Int16,
lon Float64,
lat Float64,
range UInt32,
samples UInt32,
changeable UInt8,
created DateTime,
updated DateTime,
averageSignal UInt8

)
ENGINE = MergeTree ORDER BY (radio, mcc, net, created);"

Load test data into database
clickhouse-client --query "INSERT INTO cell_towers FORMAT

CSVWithNames" < cell_towers.csv,→

A.1.7 Run test queries

The following test queries were run from clickhouse-client to verify that the
data was loaded correctly. The results were compared with the results listed in the
documentation [59].

The outputs of queries are shown in comments under the SQL statements. The
TabSeparated format is used because the default output format contains Unicode
characters that are difficult to display when using LATEX.

Test query 1:

SELECT
radio,
count() AS c

FROM cell_towers
GROUP BY radio
ORDER BY c DESC
FORMAT TabSeparated

-- Query id: 067359b9-2a3b-4683-9e85-74a50cd93719
--
-- UMTS 20686487
-- LTE 12101148
-- GSM 9931312
-- CDMA 556344
-- NR 867

Chapter A: Experiment Data 69

--
-- 10 rows in set. Elapsed: 0.205 sec. Processed 43.28 million

rows, 86.55 MB (211.56 million rows/s., 423.12 MB/s.),→

Test query 2:

SELECT
mcc,
count()

FROM cell_towers
GROUP BY mcc
ORDER BY count() DESC
LIMIT 10
FORMAT TabSeparated

-- Query id: 6f1c8ef2-f866-48d5-b521-abde9d34a65c
--
-- 310 5024650
-- 262 2622423
-- 250 1953176
-- 208 1891187
-- 724 1836150
-- 404 1729151
-- 234 1618924
-- 510 1353998
-- 440 1343355
-- 311 1332798
--
-- 10 rows in set. Elapsed: 0.397 sec. Processed 43.28 million

rows, 86.55 MB (108.92 million rows/s., 217.84 MB/s.),→

The results of both queries matched the results in the documentation.

A.1.8 Install clickhouse-backup

The most recent (as of 2022-05-02) clickhouse-backup binary was downloaded
from clickhouse-backup’s GitHub page [60].

Download archive containing binary
wget https://github.com/AlexAkulov/clickhouse-backup/releases/downl ⌋

oad/v1.3.2/clickhouse-backup-linux-amd64.tar.gz,→

Decompress archive
tar -zxvf clickhouse-backup-linux-amd64.tar.gz

Move binary to home directory

Chapter A: Experiment Data 70

mv build/linux/amd64/clickhouse-backup ~

Cleanup
rmdir -p build/linux/amd64
rm clickhouse-backup-linux-amd64.tar.gz

A.1.9 Set up Azure Blob storage for use with clickhouse-backup

clickhouse-backup can store remote backups in Azure Blob Storage. This re-
quires an Azure Storage Account and a Storage Container, which we created by
following the instructions in the Azure documentation [61]

Create a storage account

Create storage account:

az storage account create `
--name $SAName `
--resource-group $RGName `
--location eastus `
--sku Standard_LRS `
--encryption-services blob

Output:

{
"accessTier": "Hot",
"allowBlobPublicAccess": true,
"allowCrossTenantReplication": null,
"allowSharedKeyAccess": null,
"allowedCopyScope": null,
"azureFilesIdentityBasedAuthentication": null,
"blobRestoreStatus": null,
"creationTime": "2022-04-30T10:14:26.700057+00:00",
"customDomain": null,
"defaultToOAuthAuthentication": null,
"dnsEndpointType": null,
"enableHttpsTrafficOnly": true,
"enableNfsV3": null,
"encryption": {

"encryptionIdentity": null,
"keySource": "Microsoft.Storage",
"keyVaultProperties": null,
"requireInfrastructureEncryption": null,
"services": {

"blob": {

Chapter A: Experiment Data 71

"enabled": true,
"keyType": "Account",
"lastEnabledTime": "2022-04-30T10:14:26.825032+00:00"

},
"file": {

"enabled": true,
"keyType": "Account",
"lastEnabledTime": "2022-04-30T10:14:26.825032+00:00"

},
"queue": null,
"table": null

}
},
"extendedLocation": null,
"failoverInProgress": null,
"geoReplicationStats": null,
"id": "/subscriptions/4b48eb85-91f3-4902-b74b-e84641fb6785/resour ⌋

ceGroups/testRG/providers/Microsoft.Storage/storageAccounts/c ⌋
hbksa",

,→

,→

"identity": null,
"immutableStorageWithVersioning": null,
"isHnsEnabled": null,
"isLocalUserEnabled": null,
"isSftpEnabled": null,
"keyCreationTime": {

"key1": "2022-04-30T10:14:26.825032+00:00",
"key2": "2022-04-30T10:14:26.825032+00:00"

},
"keyPolicy": null,
"kind": "StorageV2",
"largeFileSharesState": null,
"lastGeoFailoverTime": null,
"location": "eastus",
"minimumTlsVersion": "TLS1_0",
"name": "chbksa",
"networkRuleSet": {

"bypass": "AzureServices",
"defaultAction": "Allow",
"ipRules": [],
"resourceAccessRules": null,
"virtualNetworkRules": []

},
"primaryEndpoints": {

"blob": "https://chbksa.blob.core.windows.net/",

Chapter A: Experiment Data 72

"dfs": "https://chbksa.dfs.core.windows.net/",
"file": "https://chbksa.file.core.windows.net/",
"internetEndpoints": null,
"microsoftEndpoints": null,
"queue": "https://chbksa.queue.core.windows.net/",
"table": "https://chbksa.table.core.windows.net/",
"web": "https://chbksa.z13.web.core.windows.net/"

},
"primaryLocation": "eastus",
"privateEndpointConnections": [],
"provisioningState": "Succeeded",
"publicNetworkAccess": null,
"resourceGroup": "testRG",
"routingPreference": null,
"sasPolicy": null,
"secondaryEndpoints": null,
"secondaryLocation": null,
"sku": {

"name": "Standard_LRS",
"tier": "Standard"

},
"statusOfPrimary": "available",
"statusOfSecondary": null,
"storageAccountSkuConversionStatus": null,
"tags": {},
"type": "Microsoft.Storage/storageAccounts"

}

Create a storage container

Create storage container:

az storage container create `
--account-name $SAName `
--name $ContainerName `
--auth-mode login

Output:

{
"created": true

}

A.1.10 Enable soft delete for Blob container

Enable soft delete for Blob container:

Chapter A: Experiment Data 73

az storage account blob-service-properties update `
--enable-container-delete-retention true `
--container-delete-retention-days 7 `
--account-name $SAName `
--resource-group $RGName

Output:

{
"automaticSnapshotPolicyEnabled": null,
"changeFeed": null,
"containerDeleteRetentionPolicy": {

"allowPermanentDelete": null,
"days": 7,
"enabled": true

},
"cors": {

"corsRules": []
},
"defaultServiceVersion": null,
"deleteRetentionPolicy": {

"allowPermanentDelete": false,
"days": null,
"enabled": false

},
"id": "/subscriptions/4b48eb85-91f3-4902-b74b-e84641fb6785/resour ⌋

ceGroups/testRG/providers/Microsoft.Storage/storageAccounts/c ⌋
hbksa/blobServices/default",

,→

,→

"isVersioningEnabled": null,
"lastAccessTimeTrackingPolicy": null,
"name": "default",
"resourceGroup": "testRG",
"restorePolicy": null,
"sku": null,
"type": "Microsoft.Storage/storageAccounts/blobServices"

}

A.1.11 Configure clickhouse-backup to use Blob storage

Generate clickkhouse-backup configuration file

A configuration file for clickhouse-backupwas generated with sudo ./clickhouse-
backup default-config > config.yaml

general:
remote_storage: none

Chapter A: Experiment Data 74

max_file_size: 0
disable_progress_bar: true
backups_to_keep_local: 0
backups_to_keep_remote: 0
log_level: info
allow_empty_backups: false
download_concurrency: 1
upload_concurrency: 1
restore_schema_on_cluster: ""
upload_by_part: true
download_by_part: true

clickhouse:
username: default
password: ""
host: localhost
port: 9000
disk_mapping: {}
skip_tables:
- system.*
- INFORMATION_SCHEMA.*
- information_schema.*
timeout: 5m
freeze_by_part: false
secure: false
skip_verify: false
sync_replicated_tables: false
log_sql_queries: true
config_dir: /etc/clickhouse-server/
restart_command: systemctl restart clickhouse-server
ignore_not_exists_error_during_freeze: true
tls_key: ""
tls_cert: ""
tls_ca: ""
debug: false

s3:
access_key: ""
secret_key: ""
bucket: ""
endpoint: ""
region: us-east-1
acl: private
assume_role_arn: ""
force_path_style: false
path: ""

Chapter A: Experiment Data 75

disable_ssl: false
compression_level: 1
compression_format: tar
sse: ""
disable_cert_verification: false
storage_class: STANDARD
concurrency: 1
part_size: 0
max_parts_count: 10000
debug: false

gcs:
credentials_file: ""
credentials_json: ""
bucket: ""
path: ""
compression_level: 1
compression_format: tar
debug: false
endpoint: ""

cos:
url: ""
timeout: 2m
secret_id: ""
secret_key: ""
path: ""
compression_format: tar
compression_level: 1
debug: false

api:
listen: localhost:7171
enable_metrics: true
enable_pprof: false
username: ""
password: ""
secure: false
certificate_file: ""
private_key_file: ""
create_integration_tables: false
allow_parallel: false

ftp:
address: ""
timeout: 2m
username: ""
password: ""

Chapter A: Experiment Data 76

tls: false
path: ""
compression_format: tar
compression_level: 1
concurrency: 1
debug: false

sftp:
address: ""
port: 22
username: ""
password: ""
key: ""
path: ""
compression_format: tar
compression_level: 1
concurrency: 1
debug: false

azblob:
endpoint_suffix: core.windows.net
account_name: ""
account_key: ""
sas: ""
use_managed_identity: false
container: ""
path: ""
compression_level: 1
compression_format: tar
sse_key: ""
buffer_size: 0
buffer_count: 3
max_parts_count: 0

Get necessary config details

In order to configure clickhouse-backup for use with Azure Storage Blobs, we
need an access key and a SAS token.

1. Get access key for storage account

az storage account keys list `
--resource-group $RGName `
--account-name $SAName

Output:

[
{

Chapter A: Experiment Data 77

"creationTime": "2022-04-30T10:14:26.825032+00:00",
"keyName": "key1",
"permissions": "FULL",
"value": "NdbW07WlHBf5zcpMXundwkP88Ie2SO1Ad+84VD8moaUg1ihI ⌋

eRR7cEdy4FXIgHRvIQwPIMc7eD2q+ASt6EqxWg==",→

},
{

"creationTime": "2022-04-30T10:14:26.825032+00:00",
"keyName": "key2",
"permissions": "FULL",
"value": "vs33au0M52gdtKdhqeOiC0vBGRRqO1qUtvQk0Eg2c4TVIFHE ⌋

TmWR7taS8w2ZU5mEAPzYS4ySWBXY+AStcBusiQ==",→

}
]

2. Get SAS token for container

az storage container generate-sas `
--account-name $SAName `
--name $ContainerName `
--permissions acdlrw `
--expiry $SASExpDate `
--auth-mode login `
--as-user

Output:

"se=2022-05-05&sp=racwdl&sv=2021-04-10&sr=c&skoid=d404139d-e15 ⌋
6-421c-9450-19e9734a8141&sktid=09a10672-822f-4467-a5ba-5bb ⌋
375967c05&skt=2022-04-30T10%3A32%3A05Z&ske=2022-05-05T00%3 ⌋
A00%3A00Z&sks=b&skv=2021-04-10&sig=CoeOsK63ZSnuqUqn%2Bv2Zg ⌋
E9/sELwp/Hinxj6abW9qfo%3D"

,→

,→

,→

,→

Modify configuration file to make it work with Blob storage

Some general settings were modified:

• remote_storage was set to azblob (from none).
• max_parts_count was set to 1 (from 0).
• disable_progress_bar was set to false (from true).

The necessary azblob details were also filled in.
Modified version of config.yaml:

general:
remote_storage: azblob
max_file_size: 0
disable_progress_bar: false
backups_to_keep_local: 0

Chapter A: Experiment Data 78

backups_to_keep_remote: 0
log_level: info
allow_empty_backups: false
download_concurrency: 1
upload_concurrency: 1
restore_schema_on_cluster: ""
upload_by_part: true
download_by_part: true

clickhouse:
username: default
password: ""
host: localhost
port: 9000
disk_mapping: {}
skip_tables:
- system.*
- INFORMATION_SCHEMA.*
- information_schema.*
timeout: 5m
freeze_by_part: false
secure: false
skip_verify: false
sync_replicated_tables: false
log_sql_queries: true
config_dir: /etc/clickhouse-server/
restart_command: systemctl restart clickhouse-server
ignore_not_exists_error_during_freeze: true
tls_key: ""
tls_cert: ""
tls_ca: ""
debug: false

s3:
access_key: ""
secret_key: ""
bucket: ""
endpoint: ""
region: us-east-1
acl: private
assume_role_arn: ""
force_path_style: false
path: ""
disable_ssl: false
compression_level: 1
compression_format: tar

Chapter A: Experiment Data 79

sse: ""
disable_cert_verification: false
storage_class: STANDARD
concurrency: 1
part_size: 0
max_parts_count: 10000
debug: false

gcs:
credentials_file: ""
credentials_json: ""
bucket: ""
path: ""
compression_level: 1
compression_format: tar
debug: false
endpoint: ""

cos:
url: ""
timeout: 2m
secret_id: ""
secret_key: ""
path: ""
compression_format: tar
compression_level: 1
debug: false

api:
listen: localhost:7171
enable_metrics: true
enable_pprof: false
username: ""
password: ""
secure: false
certificate_file: ""
private_key_file: ""
create_integration_tables: false
allow_parallel: false

ftp:
address: ""
timeout: 2m
username: ""
password: ""
tls: false
path: ""
compression_format: tar

Chapter A: Experiment Data 80

compression_level: 1
concurrency: 1
debug: false

sftp:
address: ""
port: 22
username: ""
password: ""
key: ""
path: ""
compression_format: tar
compression_level: 1
concurrency: 1
debug: false

azblob:
endpoint_suffix: core.windows.net
account_name: "chbksa"
account_key: "NdbW07WlHBf5zcpMXundwkP88Ie2SO1Ad+84VD8moaUg1ihIeRR ⌋

7cEdy4FXIgHRvIQwPIMc7eD2q+ASt6EqxWg==",→

sas: "?sv=2020-08-04&ss=bfqt&srt=c&sp=rwdlacupitfx&se=2022-05-02T ⌋
14:36:42Z&st=2022-05-02T06:36:42Z&spr=https&sig=ONxr9dN3ayvlq ⌋
1fwk4b516u%2F9X1ZjVNamV88yeeYksU%3D"

,→

,→

use_managed_identity: false
container: "chbkcontainer"
path: "https://chbksa.blob.core.windows.net/chbkcontainer"
compression_level: 1
compression_format: tar
sse_key: ""
buffer_size: 0
buffer_count: 3
max_parts_count: 1

Perform local backup

Create a local backup:

sudo ./clickhouse-backup create

2022/05/02 09:34:00.837899 info SELECT name, engine FROM
system.databases WHERE name NOT IN ('system',
'INFORMATION_SCHEMA', 'information_schema')

,→

,→

2022/05/02 09:34:00.844477 info SHOW CREATE DATABASE `default`
2022/05/02 09:34:00.849781 info SELECT count() FROM

system.settings WHERE name =
'show_table_uuid_in_table_create_query_if_not_nil'

,→

,→

Chapter A: Experiment Data 81

2022/05/02 09:34:00.861793 info SELECT name FROM
system.databases WHERE engine IN ('MySQL','PostgreSQL'),→

2022/05/02 09:34:00.867246 info
SELECT
countIf(name='data_path')

is_data_path_present,,→

countIf(name='data_paths')
is_data_paths_present,,→

countIf(name='uuid') is_uuid_present,
countIf(name='create_table_query')

is_create_table_query_present,,→

countIf(name='total_bytes')
is_total_bytes_present,→

FROM system.columns WHERE database='system' AND
table='tables',→

#
2022/05/02 09:34:00.881984 info SELECT database, name, engine ,

data_paths , uuid , create_table_query , coalesce(total_bytes,
0) AS total_bytes FROM system.tables WHERE is_temporary = 0
SETTINGS show_table_uuid_in_table_create_query_if_not_nil=1

,→

,→

,→

2022/05/02 09:34:00.911828 info SELECT value FROM
`system`.`build_options` where name='VERSION_INTEGER',→

2022/05/02 09:34:00.920436 info SELECT * FROM system.disks;
2022/05/02 09:34:00.929018 info ALTER TABLE

`default`.`cell_towers` FREEZE WITH NAME
'671596e8b89e4fc4bc4b69c4992011d4';

,→

,→

2022/05/02 09:34:01.002079 info done
backup=2022-05-02T09-34-00 operation=create
table=default.cell_towers

,→

,→

2022/05/02 09:34:01.002456 info SELECT value FROM
`system`.`build_options` where name='VERSION_DESCRIBE',→

2022/05/02 09:34:01.008365 info done
backup=2022-05-02T09-34-00 duration=173ms operation=create,→

List local backups:

sudo ./clickhouse-backup list

2022/05/02 09:36:01.867327 info SELECT value FROM
`system`.`build_options` where name='VERSION_INTEGER',→

2022/05/02 09:36:01.871571 info SELECT * FROM system.disks;
2022-05-02T09-34-00 1.07GiB 02/05/2022 09:34:01 local

Perform remote backup

Create a remote backup:

Chapter A: Experiment Data 82

sudo ./clickhouse-backup create_remote --config config.yaml

2022/05/02 09:48:18.613252 info SELECT name, engine FROM
system.databases WHERE name NOT IN ('system',
'INFORMATION_SCHEMA', 'information_schema')

,→

,→

2022/05/02 09:48:18.616953 info SHOW CREATE DATABASE `default`
2022/05/02 09:48:18.619861 info SELECT count() FROM

system.settings WHERE name =
'show_table_uuid_in_table_create_query_if_not_nil'

,→

,→

2022/05/02 09:48:18.622844 info SELECT name FROM
system.databases WHERE engine IN ('MySQL','PostgreSQL'),→

2022/05/02 09:48:18.625686 info
SELECT
countIf(name='data_path')

is_data_path_present,,→

countIf(name='data_paths')
is_data_paths_present,,→

countIf(name='uuid') is_uuid_present,
countIf(name='create_table_query')

is_create_table_query_present,,→

countIf(name='total_bytes')
is_total_bytes_present,→

FROM system.columns WHERE database='system' AND
table='tables',→

#
2022/05/02 09:48:18.633230 info SELECT database, name, engine ,

data_paths , uuid , create_table_query , coalesce(total_bytes,
0) AS total_bytes FROM system.tables WHERE is_temporary = 0
SETTINGS show_table_uuid_in_table_create_query_if_not_nil=1

,→

,→

,→

2022/05/02 09:48:18.642818 info SELECT value FROM
`system`.`build_options` where name='VERSION_INTEGER',→

2022/05/02 09:48:18.648335 info SELECT * FROM system.disks;
2022/05/02 09:48:18.652902 info ALTER TABLE

`default`.`cell_towers` FREEZE WITH NAME
'005688e38c3e41dfa2da8d275e7d3c2b';

,→

,→

2022/05/02 09:48:18.736020 info done
backup=2022-05-02T09-48-18 operation=create
table=default.cell_towers

,→

,→

2022/05/02 09:48:18.736333 info SELECT value FROM
`system`.`build_options` where name='VERSION_DESCRIBE',→

2022/05/02 09:48:18.741265 info done
backup=2022-05-02T09-48-18 duration=132ms operation=create,→

2022/05/02 09:48:18.747950 info SELECT value FROM
`system`.`build_options` where name='VERSION_INTEGER',→

Chapter A: Experiment Data 83

2022/05/02 09:48:18.752206 info SELECT * FROM system.disks;
2022/05/02 09:48:18.758250 info SELECT max(toInt64(bytes_on_disk

* 1.02)) AS max_file_size FROM system.parts,→

2022/05/02 09:48:39.787095 info done
backup=2022-05-02T09-48-18 duration=20.971s operation=upload
size=1.07GiB table=default.cell_towers

,→

,→

2022/05/02 09:48:39.804194 info done
backup=2022-05-02T09-48-18 duration=21.063s operation=upload
size=1.07GiB

,→

,→

List remote backups:

sudo ./clickhouse-backup list remote --config config.yaml

2022/05/02 09:53:50.813272 info SELECT max(toInt64(bytes_on_disk
* 1.02)) AS max_file_size FROM system.parts,→

2022-05-02T09-48-18 1.07GiB 02/05/2022 09:48:39 remote
tar,→

The backup was also visible in the Azure Portal.

A.1.12 Set up Azure Backup

Azure Backup was set up to back up the ClickHouse VM. Commands are mostly
based on instructions from the Azure Documentation [62]

Create a Recovery Services vault

az backup vault create --location $location --name $RSVName
--resource-group $RGName,→

Output:

{
"etag": "W/\"datetime'2022-05-02T12%3A34%3A13.452294Z'\"",
"id": "/subscriptions/4b48eb85-91f3-4902-b74b-e84641fb6785/resour ⌋

ceGroups/testRG/providers/Microsoft.RecoveryServices/vaults/m ⌋
yRSV",

,→

,→

"identity": null,
"location": "eastus",
"name": "myRSV",
"properties": {

"encryption": null,
"privateEndpointConnections": null,
"privateEndpointStateForBackup": "None",
"privateEndpointStateForSiteRecovery": "None",
"provisioningState": "Succeeded",

Chapter A: Experiment Data 84

"upgradeDetails": null
},
"resourceGroup": "testRG",
"sku": {

"name": "Standard",
"tier": null

},
"systemData": null,
"tags": null,
"type": "Microsoft.RecoveryServices/vaults"

}

Disable geo-redundancy

To save on costs, we disabled geo-redundant storage.

az backup vault backup-properties set --backup-storage-redundancy
LocallyRedundant --name $RSVName --resource-group $RGName
--subscription $subscription

,→

,→

Output:

{
"eTag": null,
"id": "/subscriptions/4b48eb85-91f3-4902-b74b-e84641fb6785/resour ⌋

ceGroups/testRG/providers/Microsoft.RecoveryServices/vaults/m ⌋
yRSV/backupstorageconfig/vaultstorageconfig",

,→

,→

"location": null,
"name": "vaultstorageconfig",
"properties": {

"crossRegionRestoreFlag": false,
"dedupState": "Disabled",
"storageModelType": "LocallyRedundant",
"storageType": "LocallyRedundant",
"storageTypeState": "Unlocked",
"xcoolState": "Disabled"

},
"resourceGroup": "testRG",
"tags": null,
"type": "Microsoft.RecoveryServices/vaults/backupstorageconfig"

}

Decide which backup policy to use

We determined that the default policy is sufficient for our experiments. The policy
is listed below.

Chapter A: Experiment Data 85

az backup policy show -g $RGName -v $RSVName -n DefaultPolicy

Output:

{
"eTag": null,
"id": "/subscriptions/4b48eb85-91f3-4902-b74b-e84641fb6785/resour ⌋

ceGroups/testRG/providers/Microsoft.RecoveryServices/vaults/m ⌋
yRSV/backupPolicies/DefaultPolicy",

,→

,→

"location": null,
"name": "DefaultPolicy",
"properties": {

"backupManagementType": "AzureIaasVM",
"instantRpDetails": {

"azureBackupRgNamePrefix": null,
"azureBackupRgNameSuffix": null

},
"instantRpRetentionRangeInDays": 2,
"policyType": null,
"protectedItemsCount": 0,
"resourceGuardOperationRequests": null,
"retentionPolicy": {

"dailySchedule": {
"retentionDuration": {

"count": 30,
"durationType": "Days"

},
"retentionTimes": [

"2022-05-02T20:00:00+00:00"
]

},
"monthlySchedule": null,
"retentionPolicyType": "LongTermRetentionPolicy",
"weeklySchedule": null,
"yearlySchedule": null

},
"schedulePolicy": {

"hourlySchedule": null,
"schedulePolicyType": "SimpleSchedulePolicy",
"scheduleRunDays": null,
"scheduleRunFrequency": "Daily",
"scheduleRunTimes": [

"2022-05-02T20:00:00+00:00"
],
"scheduleWeeklyFrequency": 0

Chapter A: Experiment Data 86

},
"timeZone": "UTC"

},
"resourceGroup": "testRG",
"tags": null,
"type": "Microsoft.RecoveryServices/vaults/backupPolicies"

}

Enable backup for the VM

az backup protection enable-for-vm `
--resource-group $RGName `
--vault-name $RSVName `
--vm $CHName `
--policy-name $PolicyName

Output:

{
"eTag": null,
"id": "/subscriptions/4b48eb85-91f3-4902-b74b-e84641fb6785/resour ⌋

ceGroups/testRG/providers/Microsoft.RecoveryServices/vaults/m ⌋
yRSV/backupJobs/a09a2633-ec57-43c5-b121-b48d19cd936a",

,→

,→

"location": null,
"name": "a09a2633-ec57-43c5-b121-b48d19cd936a",
"properties": {

"actionsInfo": null,
"activityId": "62452fde-ca14-11ec-a1e3-0a580af43d64",
"backupManagementType": "AzureIaasVM",
"containerName": "iaasvmcontainerv2;testrg;clickhousevm",
"duration": "0:00:30.954373",
"endTime": "2022-05-02T12:36:20.005999+00:00",
"entityFriendlyName": "clickhousevm",
"errorDetails": null,
"extendedInfo": {

"dynamicErrorMessage": null,
"estimatedRemainingDuration": null,
"internalPropertyBag": null,
"progressPercentage": null,
"propertyBag": {

"Policy Name": "DefaultPolicy",
"VM Name": "clickhousevm"

},
"tasksList": []

},

Chapter A: Experiment Data 87

"isUserTriggered": null,
"jobType": "AzureIaaSVMJob",
"operation": "ConfigureBackup",
"startTime": "2022-05-02T12:35:49.051626+00:00",
"status": "Completed",
"virtualMachineVersion": "Compute"

},
"resourceGroup": "testRG",
"tags": null,
"type": "Microsoft.RecoveryServices/vaults/backupJobs"

}

Make a backup of the ClickHouse VM

In order to trigger a backup job instantly, we ran the following:

az backup protection backup-now `
--resource-group $RGName `
--vault-name $RSVName `
--container-name $CHName `
--item-name $CHName `
--backup-management-type AzureIaaSVM `
--retain-until 06-05-2022

Output:

{
"eTag": null,
"id": "/subscriptions/4b48eb85-91f3-4902-b74b-e84641fb6785/resour ⌋

ceGroups/testRG/providers/Microsoft.RecoveryServices/vaults/m ⌋
yRSV/backupJobs/d52437c1-3ad2-4312-98a7-a75b4eea6e7e",

,→

,→

"location": null,
"name": "d52437c1-3ad2-4312-98a7-a75b4eea6e7e",
"properties": {

"actionsInfo": [
"1"

],
"activityId": "950770e4-ca14-11ec-a745-0a580af43d64",
"backupManagementType": "AzureIaasVM",
"containerName": "iaasvmcontainerv2;testrg;clickhousevm",
"duration": "0:00:01.836772",
"endTime": null,
"entityFriendlyName": "clickhousevm",
"errorDetails": null,
"extendedInfo": {

"dynamicErrorMessage": null,

Chapter A: Experiment Data 88

"estimatedRemainingDuration": null,
"internalPropertyBag": {

"IsInstantRpJob": "True"
},
"progressPercentage": null,
"propertyBag": {

"Recovery Point Expiry Time in UTC": "5/6/2022 12:00:00 AM",
"VM Name": "clickhousevm"

},
"tasksList": [

{
"duration": "0:00:00",
"endTime": null,
"instanceId": null,
"progressPercentage": null,
"startTime": null,
"status": "InProgress",
"taskExecutionDetails": null,
"taskId": "Take Snapshot"

},
{

"duration": "0:00:00",
"endTime": null,
"instanceId": null,
"progressPercentage": null,
"startTime": null,
"status": "NotStarted",
"taskExecutionDetails": null,
"taskId": "Transfer data to vault"

}
]

},
"isUserTriggered": null,
"jobType": "AzureIaaSVMJob",
"operation": "Backup",
"startTime": "2022-05-02T12:37:10.978974+00:00",
"status": "InProgress",
"virtualMachineVersion": "Compute"

},
"resourceGroup": "testRG",
"tags": null,
"type": "Microsoft.RecoveryServices/vaults/backupJobs"

}

Chapter A: Experiment Data 89

A.2 Test environment for ClickHouse performance tests

Azure CLI commands were run in the Azure Cloud Shell (PowerShell).
Bash commands (the commands run on the VM) were run as azureuser (the

default user) in /home/azureuser, unless specified otherwise.
SQL queries were run in clickhouse-client.
The VM used had the following specifications:

• 16 GB of RAM
• 4 vCPUs
• 2048GB SSD
• Ubuntu 16.04

The procedure for setting the environment up is generally the same as for the
normal test environment (see [cref]).

A.2.1 Declare variables

The following variables were declared to make scripts more reusable. They are
mostly the same as the normal test environment, except having “perf” (perfor-
mance) prefixed.

$AzCloudUser = "torstein" # Name of Azure user used for CLI
commands,→

$RGName = "perfRG" # Name of resource group
$CHName = "perfClickhouseVM" # Name of VM running ClickHouse
$SSHKey = "mySSHKey" # Name of SSH key used to connect

to VM,→

$SSHPath = "/home/$AzCloudUser/.ssh/$SSHKey.pub" # Path of SSH
keys in Azure Cloud Shell storage,→

$SAName = "perfchbksa" # Name of storage account used
by clickhouse-backup,→

$ContainerName = "chbkperfcontainer" # Name of container storing
clickhouse-backup data,→

$StagingSAName = "perfstagingchsa" # Name of storage account used
for Azure Backup staging,→

$SASExpDate = "2022-05-18" # Expiry date of SAS token used by
clickhouse-backup,→

$location = "eastus" # Location of Azure resources
$RSVName = "perfRSV" # Name of Recovery Services Vault
$subscription = "4b48eb85-91f3-4902-b74b-e84641fb6785" #

Subscription ID,→

$PolicyName = "DefaultPolicy" # Policy to be used by Azure Backup

A.2.2 Set up a resource group

Create resource group:

Chapter A: Experiment Data 90

az group create --name $RGName --location $location

Output:

{
"id": "/subscriptions/4b48eb85-91f3-4902-b74b-e84641fb6785/resour ⌋

ceGroups/perfRG",,→

"location": "eastus",
"managedBy": null,
"name": "perfRG",
"properties": {

"provisioningState": "Succeeded"
},
"tags": null,
"type": "Microsoft.Resources/resourceGroups"

}

A.2.3 Set up a VM

Create an Ubuntu VM:

az vm create `
--resource-group $RGName `
--name $CHName `
--image Canonical:UbuntuServer:16.04-LTS:16.04.202109280 `
--admin-username azureuser `
--size Standard_D4s_v4 `
--os-disk-size-gb 2048 `
--ssh-key-values $SSHPath `
--public-ip-sku Standard

Output:

{
"fqdns": "",
"id": "/subscriptions/4b48eb85-91f3-4902-b74b-e84641fb6785/resour ⌋

ceGroups/perfRG/providers/Microsoft.Compute/virtualMachines/p ⌋
erfClickhouseVM",

,→

,→

"location": "eastus",
"macAddress": "00-22-48-25-AA-BE",
"powerState": "VM running",
"privateIpAddress": "10.0.0.4",
"publicIpAddress": "20.237.81.139",
"resourceGroup": "perfRG",
"zones": ""

}

Chapter A: Experiment Data 91

A.2.4 Install ClickHouse

Commands to install ClickHouse were copied from the installation guide in the
ClickHouse documentation [InstallationClickHouseDocs]. The ClickHouse default
user password was left empty.

sudo apt-get install -y apt-transport-https ca-certificates dirmngr
sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv

8919F6BD2B48D754,→

echo "deb https://packages.clickhouse.com/deb stable main" | sudo
tee \,→

/etc/apt/sources.list.d/clickhouse.list
sudo apt-get update

sudo apt-get install -y clickhouse-server clickhouse-client

sudo service clickhouse-server start

A.2.5 Load test data

Followed instructions at [https://ghe.clickhouse.tech/]
The compressed size was 200GB when loaded in the database. The dataset

was therefore loaded 5 times into different tables in ClickHouse, in order to fill
the database with 1TB of compressed data.

Commands were run on the VM.
Install tool for decompression:

sudo apt install pixz

Download compressed dataset:

wget https://datasets.clickhouse.com/github_events_v2.native.xz

Create five tables for the data in clickhouse-client:

CREATE TABLE github_events1
(

file_time DateTime,
event_type Enum('CommitCommentEvent' = 1, 'CreateEvent' = 2,

'DeleteEvent' = 3, 'ForkEvent' = 4,,→

'GollumEvent' = 5, 'IssueCommentEvent' = 6,
'IssuesEvent' = 7, 'MemberEvent' = 8,,→

'PublicEvent' = 9, 'PullRequestEvent' = 10,
'PullRequestReviewCommentEvent' = 11,,→

'PushEvent' = 12, 'ReleaseEvent' = 13,
'SponsorshipEvent' = 14, 'WatchEvent' = 15,,→

https://ghe.clickhouse.tech/

Chapter A: Experiment Data 92

'GistEvent' = 16, 'FollowEvent' = 17,
'DownloadEvent' = 18,
'PullRequestReviewEvent' = 19,

,→

,→

'ForkApplyEvent' = 20, 'Event' = 21,
'TeamAddEvent' = 22),,→

actor_login LowCardinality(String),
repo_name LowCardinality(String),
created_at DateTime,
updated_at DateTime,
action Enum('none' = 0, 'created' = 1, 'added' = 2, 'edited' =

3, 'deleted' = 4, 'opened' = 5, 'closed' = 6, 'reopened' =
7, 'assigned' = 8, 'unassigned' = 9,

,→

,→

'labeled' = 10, 'unlabeled' = 11,
'review_requested' = 12,
'review_request_removed' = 13, 'synchronize' =
14, 'started' = 15, 'published' = 16, 'update'
= 17, 'create' = 18, 'fork' = 19, 'merged' =
20),

,→

,→

,→

,→

,→

comment_id UInt64,
body String,
path String,
position Int32,
line Int32,
ref LowCardinality(String),
ref_type Enum('none' = 0, 'branch' = 1, 'tag' = 2, 'repository'

= 3, 'unknown' = 4),,→

creator_user_login LowCardinality(String),
number UInt32,
title String,
labels Array(LowCardinality(String)),
state Enum('none' = 0, 'open' = 1, 'closed' = 2),
locked UInt8,
assignee LowCardinality(String),
assignees Array(LowCardinality(String)),
comments UInt32,
author_association Enum('NONE' = 0, 'CONTRIBUTOR' = 1, 'OWNER'

= 2, 'COLLABORATOR' = 3, 'MEMBER' = 4, 'MANNEQUIN' = 5),,→

closed_at DateTime,
merged_at DateTime,
merge_commit_sha String,
requested_reviewers Array(LowCardinality(String)),
requested_teams Array(LowCardinality(String)),
head_ref LowCardinality(String),
head_sha String,

Chapter A: Experiment Data 93

base_ref LowCardinality(String),
base_sha String,
merged UInt8,
mergeable UInt8,
rebaseable UInt8,
mergeable_state Enum('unknown' = 0, 'dirty' = 1, 'clean' = 2,

'unstable' = 3, 'draft' = 4),,→

merged_by LowCardinality(String),
review_comments UInt32,
maintainer_can_modify UInt8,
commits UInt32,
additions UInt32,
deletions UInt32,
changed_files UInt32,
diff_hunk String,
original_position UInt32,
commit_id String,
original_commit_id String,
push_size UInt32,
push_distinct_size UInt32,
member_login LowCardinality(String),
release_tag_name String,
release_name String,
review_state Enum('none' = 0, 'approved' = 1,

'changes_requested' = 2, 'commented' = 3, 'dismissed' = 4,
'pending' = 5)

,→

,→

)
ENGINE = MergeTree
ORDER BY (event_type, repo_name, created_at)

CREATE TABLE github_events2
(

file_time DateTime,
event_type Enum('CommitCommentEvent' = 1, 'CreateEvent' = 2,

'DeleteEvent' = 3, 'ForkEvent' = 4,,→

'GollumEvent' = 5, 'IssueCommentEvent' = 6,
'IssuesEvent' = 7, 'MemberEvent' = 8,,→

'PublicEvent' = 9, 'PullRequestEvent' = 10,
'PullRequestReviewCommentEvent' = 11,,→

'PushEvent' = 12, 'ReleaseEvent' = 13,
'SponsorshipEvent' = 14, 'WatchEvent' = 15,,→

'GistEvent' = 16, 'FollowEvent' = 17,
'DownloadEvent' = 18,
'PullRequestReviewEvent' = 19,

,→

,→

Chapter A: Experiment Data 94

'ForkApplyEvent' = 20, 'Event' = 21,
'TeamAddEvent' = 22),,→

actor_login LowCardinality(String),
repo_name LowCardinality(String),
created_at DateTime,
updated_at DateTime,
action Enum('none' = 0, 'created' = 1, 'added' = 2, 'edited' =

3, 'deleted' = 4, 'opened' = 5, 'closed' = 6, 'reopened' =
7, 'assigned' = 8, 'unassigned' = 9,

,→

,→

'labeled' = 10, 'unlabeled' = 11,
'review_requested' = 12,
'review_request_removed' = 13, 'synchronize' =
14, 'started' = 15, 'published' = 16, 'update'
= 17, 'create' = 18, 'fork' = 19, 'merged' =
20),

,→

,→

,→

,→

,→

comment_id UInt64,
body String,
path String,
position Int32,
line Int32,
ref LowCardinality(String),
ref_type Enum('none' = 0, 'branch' = 1, 'tag' = 2, 'repository'

= 3, 'unknown' = 4),,→

creator_user_login LowCardinality(String),
number UInt32,
title String,
labels Array(LowCardinality(String)),
state Enum('none' = 0, 'open' = 1, 'closed' = 2),
locked UInt8,
assignee LowCardinality(String),
assignees Array(LowCardinality(String)),
comments UInt32,
author_association Enum('NONE' = 0, 'CONTRIBUTOR' = 1, 'OWNER'

= 2, 'COLLABORATOR' = 3, 'MEMBER' = 4, 'MANNEQUIN' = 5),,→

closed_at DateTime,
merged_at DateTime,
merge_commit_sha String,
requested_reviewers Array(LowCardinality(String)),
requested_teams Array(LowCardinality(String)),
head_ref LowCardinality(String),
head_sha String,
base_ref LowCardinality(String),
base_sha String,
merged UInt8,

Chapter A: Experiment Data 95

mergeable UInt8,
rebaseable UInt8,
mergeable_state Enum('unknown' = 0, 'dirty' = 1, 'clean' = 2,

'unstable' = 3, 'draft' = 4),,→

merged_by LowCardinality(String),
review_comments UInt32,
maintainer_can_modify UInt8,
commits UInt32,
additions UInt32,
deletions UInt32,
changed_files UInt32,
diff_hunk String,
original_position UInt32,
commit_id String,
original_commit_id String,
push_size UInt32,
push_distinct_size UInt32,
member_login LowCardinality(String),
release_tag_name String,
release_name String,
review_state Enum('none' = 0, 'approved' = 1,

'changes_requested' = 2, 'commented' = 3, 'dismissed' = 4,
'pending' = 5)

,→

,→

)
ENGINE = MergeTree
ORDER BY (event_type, repo_name, created_at)

CREATE TABLE github_events3
(

file_time DateTime,
event_type Enum('CommitCommentEvent' = 1, 'CreateEvent' = 2,

'DeleteEvent' = 3, 'ForkEvent' = 4,,→

'GollumEvent' = 5, 'IssueCommentEvent' = 6,
'IssuesEvent' = 7, 'MemberEvent' = 8,,→

'PublicEvent' = 9, 'PullRequestEvent' = 10,
'PullRequestReviewCommentEvent' = 11,,→

'PushEvent' = 12, 'ReleaseEvent' = 13,
'SponsorshipEvent' = 14, 'WatchEvent' = 15,,→

'GistEvent' = 16, 'FollowEvent' = 17,
'DownloadEvent' = 18,
'PullRequestReviewEvent' = 19,

,→

,→

'ForkApplyEvent' = 20, 'Event' = 21,
'TeamAddEvent' = 22),,→

actor_login LowCardinality(String),

Chapter A: Experiment Data 96

repo_name LowCardinality(String),
created_at DateTime,
updated_at DateTime,
action Enum('none' = 0, 'created' = 1, 'added' = 2, 'edited' =

3, 'deleted' = 4, 'opened' = 5, 'closed' = 6, 'reopened' =
7, 'assigned' = 8, 'unassigned' = 9,

,→

,→

'labeled' = 10, 'unlabeled' = 11,
'review_requested' = 12,
'review_request_removed' = 13, 'synchronize' =
14, 'started' = 15, 'published' = 16, 'update'
= 17, 'create' = 18, 'fork' = 19, 'merged' =
20),

,→

,→

,→

,→

,→

comment_id UInt64,
body String,
path String,
position Int32,
line Int32,
ref LowCardinality(String),
ref_type Enum('none' = 0, 'branch' = 1, 'tag' = 2, 'repository'

= 3, 'unknown' = 4),,→

creator_user_login LowCardinality(String),
number UInt32,
title String,
labels Array(LowCardinality(String)),
state Enum('none' = 0, 'open' = 1, 'closed' = 2),
locked UInt8,
assignee LowCardinality(String),
assignees Array(LowCardinality(String)),
comments UInt32,
author_association Enum('NONE' = 0, 'CONTRIBUTOR' = 1, 'OWNER'

= 2, 'COLLABORATOR' = 3, 'MEMBER' = 4, 'MANNEQUIN' = 5),,→

closed_at DateTime,
merged_at DateTime,
merge_commit_sha String,
requested_reviewers Array(LowCardinality(String)),
requested_teams Array(LowCardinality(String)),
head_ref LowCardinality(String),
head_sha String,
base_ref LowCardinality(String),
base_sha String,
merged UInt8,
mergeable UInt8,
rebaseable UInt8,

Chapter A: Experiment Data 97

mergeable_state Enum('unknown' = 0, 'dirty' = 1, 'clean' = 2,
'unstable' = 3, 'draft' = 4),,→

merged_by LowCardinality(String),
review_comments UInt32,
maintainer_can_modify UInt8,
commits UInt32,
additions UInt32,
deletions UInt32,
changed_files UInt32,
diff_hunk String,
original_position UInt32,
commit_id String,
original_commit_id String,
push_size UInt32,
push_distinct_size UInt32,
member_login LowCardinality(String),
release_tag_name String,
release_name String,
review_state Enum('none' = 0, 'approved' = 1,

'changes_requested' = 2, 'commented' = 3, 'dismissed' = 4,
'pending' = 5)

,→

,→

)
ENGINE = MergeTree
ORDER BY (event_type, repo_name, created_at)

CREATE TABLE github_events4
(

file_time DateTime,
event_type Enum('CommitCommentEvent' = 1, 'CreateEvent' = 2,

'DeleteEvent' = 3, 'ForkEvent' = 4,,→

'GollumEvent' = 5, 'IssueCommentEvent' = 6,
'IssuesEvent' = 7, 'MemberEvent' = 8,,→

'PublicEvent' = 9, 'PullRequestEvent' = 10,
'PullRequestReviewCommentEvent' = 11,,→

'PushEvent' = 12, 'ReleaseEvent' = 13,
'SponsorshipEvent' = 14, 'WatchEvent' = 15,,→

'GistEvent' = 16, 'FollowEvent' = 17,
'DownloadEvent' = 18,
'PullRequestReviewEvent' = 19,

,→

,→

'ForkApplyEvent' = 20, 'Event' = 21,
'TeamAddEvent' = 22),,→

actor_login LowCardinality(String),
repo_name LowCardinality(String),
created_at DateTime,

Chapter A: Experiment Data 98

updated_at DateTime,
action Enum('none' = 0, 'created' = 1, 'added' = 2, 'edited' =

3, 'deleted' = 4, 'opened' = 5, 'closed' = 6, 'reopened' =
7, 'assigned' = 8, 'unassigned' = 9,

,→

,→

'labeled' = 10, 'unlabeled' = 11,
'review_requested' = 12,
'review_request_removed' = 13, 'synchronize' =
14, 'started' = 15, 'published' = 16, 'update'
= 17, 'create' = 18, 'fork' = 19, 'merged' =
20),

,→

,→

,→

,→

,→

comment_id UInt64,
body String,
path String,
position Int32,
line Int32,
ref LowCardinality(String),
ref_type Enum('none' = 0, 'branch' = 1, 'tag' = 2, 'repository'

= 3, 'unknown' = 4),,→

creator_user_login LowCardinality(String),
number UInt32,
title String,
labels Array(LowCardinality(String)),
state Enum('none' = 0, 'open' = 1, 'closed' = 2),
locked UInt8,
assignee LowCardinality(String),
assignees Array(LowCardinality(String)),
comments UInt32,
author_association Enum('NONE' = 0, 'CONTRIBUTOR' = 1, 'OWNER'

= 2, 'COLLABORATOR' = 3, 'MEMBER' = 4, 'MANNEQUIN' = 5),,→

closed_at DateTime,
merged_at DateTime,
merge_commit_sha String,
requested_reviewers Array(LowCardinality(String)),
requested_teams Array(LowCardinality(String)),
head_ref LowCardinality(String),
head_sha String,
base_ref LowCardinality(String),
base_sha String,
merged UInt8,
mergeable UInt8,
rebaseable UInt8,
mergeable_state Enum('unknown' = 0, 'dirty' = 1, 'clean' = 2,

'unstable' = 3, 'draft' = 4),,→

merged_by LowCardinality(String),

Chapter A: Experiment Data 99

review_comments UInt32,
maintainer_can_modify UInt8,
commits UInt32,
additions UInt32,
deletions UInt32,
changed_files UInt32,
diff_hunk String,
original_position UInt32,
commit_id String,
original_commit_id String,
push_size UInt32,
push_distinct_size UInt32,
member_login LowCardinality(String),
release_tag_name String,
release_name String,
review_state Enum('none' = 0, 'approved' = 1,

'changes_requested' = 2, 'commented' = 3, 'dismissed' = 4,
'pending' = 5)

,→

,→

)
ENGINE = MergeTree
ORDER BY (event_type, repo_name, created_at)

CREATE TABLE github_events5
(

file_time DateTime,
event_type Enum('CommitCommentEvent' = 1, 'CreateEvent' = 2,

'DeleteEvent' = 3, 'ForkEvent' = 4,,→

'GollumEvent' = 5, 'IssueCommentEvent' = 6,
'IssuesEvent' = 7, 'MemberEvent' = 8,,→

'PublicEvent' = 9, 'PullRequestEvent' = 10,
'PullRequestReviewCommentEvent' = 11,,→

'PushEvent' = 12, 'ReleaseEvent' = 13,
'SponsorshipEvent' = 14, 'WatchEvent' = 15,,→

'GistEvent' = 16, 'FollowEvent' = 17,
'DownloadEvent' = 18,
'PullRequestReviewEvent' = 19,

,→

,→

'ForkApplyEvent' = 20, 'Event' = 21,
'TeamAddEvent' = 22),,→

actor_login LowCardinality(String),
repo_name LowCardinality(String),
created_at DateTime,
updated_at DateTime,

Chapter A: Experiment Data 100

action Enum('none' = 0, 'created' = 1, 'added' = 2, 'edited' =
3, 'deleted' = 4, 'opened' = 5, 'closed' = 6, 'reopened' =
7, 'assigned' = 8, 'unassigned' = 9,

,→

,→

'labeled' = 10, 'unlabeled' = 11,
'review_requested' = 12,
'review_request_removed' = 13, 'synchronize' =
14, 'started' = 15, 'published' = 16, 'update'
= 17, 'create' = 18, 'fork' = 19, 'merged' =
20),

,→

,→

,→

,→

,→

comment_id UInt64,
body String,
path String,
position Int32,
line Int32,
ref LowCardinality(String),
ref_type Enum('none' = 0, 'branch' = 1, 'tag' = 2, 'repository'

= 3, 'unknown' = 4),,→

creator_user_login LowCardinality(String),
number UInt32,
title String,
labels Array(LowCardinality(String)),
state Enum('none' = 0, 'open' = 1, 'closed' = 2),
locked UInt8,
assignee LowCardinality(String),
assignees Array(LowCardinality(String)),
comments UInt32,
author_association Enum('NONE' = 0, 'CONTRIBUTOR' = 1, 'OWNER'

= 2, 'COLLABORATOR' = 3, 'MEMBER' = 4, 'MANNEQUIN' = 5),,→

closed_at DateTime,
merged_at DateTime,
merge_commit_sha String,
requested_reviewers Array(LowCardinality(String)),
requested_teams Array(LowCardinality(String)),
head_ref LowCardinality(String),
head_sha String,
base_ref LowCardinality(String),
base_sha String,
merged UInt8,
mergeable UInt8,
rebaseable UInt8,
mergeable_state Enum('unknown' = 0, 'dirty' = 1, 'clean' = 2,

'unstable' = 3, 'draft' = 4),,→

merged_by LowCardinality(String),
review_comments UInt32,

Chapter A: Experiment Data 101

maintainer_can_modify UInt8,
commits UInt32,
additions UInt32,
deletions UInt32,
changed_files UInt32,
diff_hunk String,
original_position UInt32,
commit_id String,
original_commit_id String,
push_size UInt32,
push_distinct_size UInt32,
member_login LowCardinality(String),
release_tag_name String,
release_name String,
review_state Enum('none' = 0, 'approved' = 1,

'changes_requested' = 2, 'commented' = 3, 'dismissed' = 4,
'pending' = 5)

,→

,→

)
ENGINE = MergeTree
ORDER BY (event_type, repo_name, created_at)

Show the tables:

SHOW TABLES
FORMAT TabSeparated

-- Query id: 4b7e02e7-4afa-4440-be42-c10481fa0732
--
-- github_events1
-- github_events2
-- github_events3
-- github_events4
-- github_events5
--
-- 5 rows in set. Elapsed: 0.002 sec.

Insert data into tables

pixz -d < github_events_v2.native.xz | clickhouse-client --query
"INSERT INTO github_events1 FORMAT Native",→

pixz -d < github_events_v2.native.xz | clickhouse-client --query
"INSERT INTO github_events2 FORMAT Native",→

pixz -d < github_events_v2.native.xz | clickhouse-client --query
"INSERT INTO github_events3 FORMAT Native",→

pixz -d < github_events_v2.native.xz | clickhouse-client --query
"INSERT INTO github_events4 FORMAT Native",→

Chapter A: Experiment Data 102

pixz -d < github_events_v2.native.xz | clickhouse-client --query
"INSERT INTO github_events5 FORMAT Native",→

Each command took around 3 hours. They were left to run overnight in a
screen session. Everything appears to have worked fine.

A.2.6 Verify data ATTACH

To verify that the data, we ran a query created by the Altinity Knowledge Base to
view the size of tables in ClickHouse [DatabaseSizeTable]. See figure [@fig:tablesizes]
for the results. There is a slight difference in the exact size of each table. Despite
this, the number of rows in each table is exactly the same. We believe this has
to do with minor “decisions” ClickHouse made when loading the data. The part
count is for example not the same for all tables. The total amount of (compressed)
data is 955GB (890GiB), which should be sufficient for our performance tests. Un-
compressed, the data would be around 5.5TB (5TiB).

Get size of tables in ClickHouse:

SELECT
database,
table,
formatReadableSize(sum(data_compressed_bytes) AS size) AS

compressed,,→

formatReadableSize(sum(data_uncompressed_bytes) AS usize) AS
uncompressed,,→

round(usize / size, 2) AS compr_rate,
sum(rows) AS rows,
count() AS part_count

FROM system.parts
WHERE (active = 1) AND (database LIKE '%') AND (table LIKE '%')
GROUP BY

database,
table

ORDER BY size DESC

Size of database tables after loading test data:

Chapter A: Experiment Data 103

A.2.7 Install clickhouse-backup

The most recent (as of 2022-05-09) clickhouse-backup binary was downloaded
from clickhouse-backup’s GitHub page [60].

Download archive containing binary
wget https://github.com/AlexAkulov/clickhouse-backup/releases/downl ⌋

oad/v1.3.2/clickhouse-backup-linux-amd64.tar.gz,→

Decompress archive
tar -zxvf clickhouse-backup-linux-amd64.tar.gz

Move binary to home directory
mv build/linux/amd64/clickhouse-backup ~

Cleanup
rmdir -p build/linux/amd64
rm clickhouse-backup-linux-amd64.tar.gz

A.2.8 Set up Azure Blob storage for use with clickhouse-backup

Commands run from the Azure Cloud Shell

Create a storage account

az storage account create `
--name $SAName `
--resource-group $RGName `
--location eastus `
--sku Standard_LRS `
--encryption-services blob

Output:

{
"accessTier": "Hot",
"allowBlobPublicAccess": true,
"allowCrossTenantReplication": null,
"allowSharedKeyAccess": null,
"allowedCopyScope": null,
"azureFilesIdentityBasedAuthentication": null,
"blobRestoreStatus": null,
"creationTime": "2022-05-10T09:55:00.481299+00:00",
"customDomain": null,
"defaultToOAuthAuthentication": null,
"dnsEndpointType": null,

Chapter A: Experiment Data 104

"enableHttpsTrafficOnly": true,
"enableNfsV3": null,
"encryption": {

"encryptionIdentity": null,
"keySource": "Microsoft.Storage",
"keyVaultProperties": null,
"requireInfrastructureEncryption": null,
"services": {

"blob": {
"enabled": true,
"keyType": "Account",
"lastEnabledTime": "2022-05-10T09:55:00.606291+00:00"

},
"file": {

"enabled": true,
"keyType": "Account",
"lastEnabledTime": "2022-05-10T09:55:00.606291+00:00"

},
"queue": null,
"table": null

}
},
"extendedLocation": null,
"failoverInProgress": null,
"geoReplicationStats": null,
"id": "/subscriptions/4b48eb85-91f3-4902-b74b-e84641fb6785/resour ⌋

ceGroups/perfRG/providers/Microsoft.Storage/storageAccounts/p ⌋
erfchbksa",

,→

,→

"identity": null,
"immutableStorageWithVersioning": null,
"isHnsEnabled": null,
"isLocalUserEnabled": null,
"isSftpEnabled": null,
"keyCreationTime": {

"key1": "2022-05-10T09:55:00.606291+00:00",
"key2": "2022-05-10T09:55:00.606291+00:00"

},
"keyPolicy": null,
"kind": "StorageV2",
"largeFileSharesState": null,
"lastGeoFailoverTime": null,
"location": "eastus",
"minimumTlsVersion": "TLS1_0",
"name": "perfchbksa",

Chapter A: Experiment Data 105

"networkRuleSet": {
"bypass": "AzureServices",
"defaultAction": "Allow",
"ipRules": [],
"resourceAccessRules": null,
"virtualNetworkRules": []

},
"primaryEndpoints": {

"blob": "https://perfchbksa.blob.core.windows.net/",
"dfs": "https://perfchbksa.dfs.core.windows.net/",
"file": "https://perfchbksa.file.core.windows.net/",
"internetEndpoints": null,
"microsoftEndpoints": null,
"queue": "https://perfchbksa.queue.core.windows.net/",
"table": "https://perfchbksa.table.core.windows.net/",
"web": "https://perfchbksa.z13.web.core.windows.net/"

},
"primaryLocation": "eastus",
"privateEndpointConnections": [],
"provisioningState": "Succeeded",
"publicNetworkAccess": null,
"resourceGroup": "perfRG",
"routingPreference": null,
"sasPolicy": null,
"secondaryEndpoints": null,
"secondaryLocation": null,
"sku": {

"name": "Standard_LRS",
"tier": "Standard"

},
"statusOfPrimary": "available",
"statusOfSecondary": null,
"storageAccountSkuConversionStatus": null,
"tags": {},
"type": "Microsoft.Storage/storageAccounts"

}

Create a storage container

az storage container create `
--account-name $SAName `
--name $ContainerName `
--auth-mode login

Output:

Chapter A: Experiment Data 106

{
"created": true

}

Enable soft delete for Blobs and Blob container

Enable soft delete for Blob container:

az storage account blob-service-properties update `
--enable-container-delete-retention true `
--container-delete-retention-days 7 `
--account-name $SAName `
--resource-group $RGName

Output:

{
"automaticSnapshotPolicyEnabled": null,
"changeFeed": null,
"containerDeleteRetentionPolicy": {

"allowPermanentDelete": null,
"days": 7,
"enabled": true

},
"cors": {

"corsRules": []
},
"defaultServiceVersion": null,
"deleteRetentionPolicy": {

"allowPermanentDelete": false,
"days": null,
"enabled": false

},
"id": "/subscriptions/4b48eb85-91f3-4902-b74b-e84641fb6785/resour ⌋

ceGroups/perfRG/providers/Microsoft.Storage/storageAccounts/p ⌋
erfchbksa/blobServices/default",

,→

,→

"isVersioningEnabled": null,
"lastAccessTimeTrackingPolicy": null,
"name": "default",
"resourceGroup": "perfRG",
"restorePolicy": null,
"sku": null,
"type": "Microsoft.Storage/storageAccounts/blobServices"

}

Enable soft delete for all Blobs:

Chapter A: Experiment Data 107

az storage account blob-service-properties update --account-name
$SAName `,→

--resource-group $RGName `
--enable-delete-retention true `
--delete-retention-days 7

Output:

{
"automaticSnapshotPolicyEnabled": null,
"changeFeed": null,
"containerDeleteRetentionPolicy": {

"allowPermanentDelete": null,
"days": 7,
"enabled": true

},
"cors": {

"corsRules": []
},
"defaultServiceVersion": null,
"deleteRetentionPolicy": {

"allowPermanentDelete": null,
"days": 7,
"enabled": true

},
"id": "/subscriptions/4b48eb85-91f3-4902-b74b-e84641fb6785/resour ⌋

ceGroups/perfRG/providers/Microsoft.Storage/storageAccounts/p ⌋
erfchbksa/blobServices/default",

,→

,→

"isVersioningEnabled": null,
"lastAccessTimeTrackingPolicy": null,
"name": "default",
"resourceGroup": "perfRG",
"restorePolicy": null,
"sku": null,
"type": "Microsoft.Storage/storageAccounts/blobServices"

}

A.2.9 Configure clickhouse-backup to use Blob storage

Get necessary config details

The configuration details needed to configure clickhouse-backup were retrieved
and copied into the configuration file.

Commands were run from the Azure Cloud Shell.

1. Get access key for storage account Get storage account keys:

Chapter A: Experiment Data 108

az storage account keys list `
--resource-group $RGName `
--account-name $SAName

Output:

[
{

"creationTime": "2022-05-10T09:55:00.606291+00:00",
"keyName": "key1",
"permissions": "FULL",
"value": "EIhee0y3zertAVbAa7cRAhYQ/2Oui25vdr6DoL05qkA+CfZZ ⌋

pFMlabzJFPtJG8Xdc735PAbA8w8r+AStl89ieA==",→

},
{

"creationTime": "2022-05-10T09:55:00.606291+00:00",
"keyName": "key2",
"permissions": "FULL",
"value": "4Rm6943iYttVqjLBE/csYCa7rnS02xQKjAPW7C/sScZ189My ⌋

20+/Opl0HmOql1CLnL53x5NYzB/5+AStAqv2kw==",→

}
]

key1 was copied.
2. Get SAS token for container Generate SAS token

az storage container generate-sas `
--account-name $SAName `
--name $ContainerName `
--permissions acdlrw `
--expiry $SASExpDate `
--auth-mode login `
--as-user

Output:

"se=2022-05-18&sp=racwdl&sv=2021-04-10&sr=c&skoid=d404139d-e15 ⌋
6-421c-9450-19e9734a8141&sktid=09a10672-822f-4467-a5ba-5bb ⌋
375967c05&skt=2022-05-11T07%3A01%3A18Z&ske=2022-05-18T00%3 ⌋
A00%3A00Z&sks=b&skv=2021-04-10&sig=GgFsZifUWr0r71gCZaD9Pbx ⌋
RXrybhWS09Hpb2scfsKg%3D"

,→

,→

,→

,→

Configure clickhouse-backup to use Blob storage

The configuration file from the non-performance test environment was copied and
modified to use the new account key and SAS token. account_name, container
and path was also modified. It was saved as /home/azureuser/config.yaml on
the ClickHouse VM.

Chapter A: Experiment Data 109

general:
remote_storage: azblob
max_file_size: 0
disable_progress_bar: false
backups_to_keep_local: 0
backups_to_keep_remote: 0
log_level: info
allow_empty_backups: false
download_concurrency: 1
upload_concurrency: 1
restore_schema_on_cluster: ""
upload_by_part: true
download_by_part: true

clickhouse:
username: default
password: ""
host: localhost
port: 9000
disk_mapping: {}
skip_tables:
- system.*
- INFORMATION_SCHEMA.*
- information_schema.*
timeout: 5m
freeze_by_part: false
secure: false
skip_verify: false
sync_replicated_tables: false
log_sql_queries: true
config_dir: /etc/clickhouse-server/
restart_command: systemctl restart clickhouse-server
ignore_not_exists_error_during_freeze: true
tls_key: ""
tls_cert: ""
tls_ca: ""
debug: false

s3:
access_key: ""
secret_key: ""
bucket: ""
endpoint: ""
region: us-east-1
acl: private
assume_role_arn: ""

Chapter A: Experiment Data 110

force_path_style: false
path: ""
disable_ssl: false
compression_level: 1
compression_format: tar
sse: ""
disable_cert_verification: false
storage_class: STANDARD
concurrency: 1
part_size: 0
max_parts_count: 10000
debug: false

gcs:
credentials_file: ""
credentials_json: ""
bucket: ""
path: ""
compression_level: 1
compression_format: tar
debug: false
endpoint: ""

cos:
url: ""
timeout: 2m
secret_id: ""
secret_key: ""
path: ""
compression_format: tar
compression_level: 1
debug: false

api:
listen: localhost:7171
enable_metrics: true
enable_pprof: false
username: ""
password: ""
secure: false
certificate_file: ""
private_key_file: ""
create_integration_tables: false
allow_parallel: false

ftp:
address: ""
timeout: 2m

Chapter A: Experiment Data 111

username: ""
password: ""
tls: false
path: ""
compression_format: tar
compression_level: 1
concurrency: 1
debug: false

sftp:
address: ""
port: 22
username: ""
password: ""
key: ""
path: ""
compression_format: tar
compression_level: 1
concurrency: 1
debug: false

azblob:
endpoint_suffix: core.windows.net
account_name: "perfchbksa"
account_key: "EIhee0y3zertAVbAa7cRAhYQ/2Oui25vdr6DoL05qkA+CfZZpFM ⌋

labzJFPtJG8Xdc735PAbA8w8r+AStl89ieA==",→

sas: "se=2022-05-18&sp=racwdl&sv=2021-04-10&sr=c&skoid=d404139d-e ⌋
156-421c-9450-19e9734a8141&sktid=09a10672-822f-4467-a5ba-5bb3 ⌋
75967c05&skt=2022-05-11T07%3A01%3A18Z&ske=2022-05-18T00%3A00% ⌋
3A00Z&sks=b&skv=2021-04-10&sig=GgFsZifUWr0r71gCZaD9PbxRXrybhW ⌋
S09Hpb2scfsKg%3D"

,→

,→

,→

,→

use_managed_identity: false
container: "chbkperfcontainer"
path: "https://perfchbksa.blob.core.windows.net/chbkperfcontainer"
compression_level: 1
compression_format: tar
sse_key: ""
buffer_size: 0
buffer_count: 3
max_parts_count: 1

Perform remote backup

Commands were run in bash on the ClickHouse VM.
While the time to make backups was not one of the criteria we decided to

focus on, we measured the time anyway. The time was measured using the builtin

Chapter A: Experiment Data 112

bash tool time. In order to avoid timing sudo the commands were run as root.
Create a remote backup:

time ./clickhouse-backup create_remote --config config.yaml

Time to make a full backup with clickhouse-backup:

real 198m48.369s
user 14m17.555s
sys 12m38.432s

List remote backups:

./clickhouse-backup list remote --config config.yaml
2022/05/11 10:59:53.978855 info SELECT max(toInt64(bytes_on_disk

* 1.02)) AS max_file_size FROM system.parts,→

2022-05-11T07-25-16 895.29GiB 11/05/2022 10:44:05 remote
tar,→

895GiB is roughly equal to 961GB, which seems correct based on the table
sizes.

A.2.10 Set up Azure Backup

Create a Recovery Services vault

az backup vault create --location $location --name $RSVName
--resource-group $RGName,→

Output:

{
"etag": "W/\"datetime'2022-05-10T09%3A58%3A14.2637541Z'\"",
"id": "/subscriptions/4b48eb85-91f3-4902-b74b-e84641fb6785/resour ⌋

ceGroups/perfRG/providers/Microsoft.RecoveryServices/vaults/p ⌋
erfRSV",

,→

,→

"identity": null,
"location": "eastus",
"name": "perfRSV",
"properties": {

"encryption": null,
"privateEndpointConnections": null,
"privateEndpointStateForBackup": "None",
"privateEndpointStateForSiteRecovery": "None",
"provisioningState": "Succeeded",
"upgradeDetails": null

},
"resourceGroup": "perfRG",

Chapter A: Experiment Data 113

"sku": {
"name": "Standard",
"tier": null

},
"systemData": null,
"tags": null,
"type": "Microsoft.RecoveryServices/vaults"

}

Disable geo-redundancy

az backup vault backup-properties set --backup-storage-redundancy
LocallyRedundant --name $RSVName --resource-group $RGName
--subscription $subscription

,→

,→

Output:

{
"eTag": null,
"id": "/subscriptions/4b48eb85-91f3-4902-b74b-e84641fb6785/resour ⌋

ceGroups/perfRG/providers/Microsoft.RecoveryServices/vaults/p ⌋
erfRSV/backupstorageconfig/vaultstorageconfig",

,→

,→

"location": null,
"name": "vaultstorageconfig",
"properties": {

"crossRegionRestoreFlag": false,
"dedupState": "Disabled",
"storageModelType": "LocallyRedundant",
"storageType": "LocallyRedundant",
"storageTypeState": "Unlocked",
"xcoolState": "Disabled"

},
"resourceGroup": "perfRG",
"tags": null,
"type": "Microsoft.RecoveryServices/vaults/backupstorageconfig"

}

Enable backup for the VM

az backup protection enable-for-vm `
--resource-group $RGName `
--vault-name $RSVName `
--vm $CHName `
--policy-name $PolicyName

Output:

Chapter A: Experiment Data 114

{
"eTag": null,
"id": "/subscriptions/4b48eb85-91f3-4902-b74b-e84641fb6785/resour ⌋

ceGroups/perfRG/providers/Microsoft.RecoveryServices/vaults/p ⌋
erfRSV/backupJobs/e17cce76-2b1e-47e4-a47d-07672d5400cc",

,→

,→

"location": null,
"name": "e17cce76-2b1e-47e4-a47d-07672d5400cc",
"properties": {

"actionsInfo": null,
"activityId": "529e46da-d11a-11ec-aebb-0a580af40666",
"backupManagementType": "AzureIaasVM",
"containerName": "iaasvmcontainerv2;perfrg;perfclickhousevm",
"duration": "0:00:30.947098",
"endTime": "2022-05-11T11:06:30.280573+00:00",
"entityFriendlyName": "perfclickhousevm",
"errorDetails": null,
"extendedInfo": {

"dynamicErrorMessage": null,
"estimatedRemainingDuration": null,
"internalPropertyBag": null,
"progressPercentage": null,
"propertyBag": {

"Policy Name": "DefaultPolicy",
"VM Name": "perfclickhousevm"

},
"tasksList": []

},
"isUserTriggered": null,
"jobType": "AzureIaaSVMJob",
"operation": "ConfigureBackup",
"startTime": "2022-05-11T11:05:59.333474+00:00",
"status": "Completed",
"virtualMachineVersion": "Compute"

},
"resourceGroup": "perfRG",
"tags": null,
"type": "Microsoft.RecoveryServices/vaults/backupJobs"

}

Make a backup of the ClickHouse VM

Instantly trigger a backup job:

az backup protection backup-now `
--resource-group $RGName `

Chapter A: Experiment Data 115

--vault-name $RSVName `
--container-name $CHName `
--item-name $CHName `
--backup-management-type AzureIaaSVM `
--retain-until 18-05-2022

Output:

{
"eTag": null,
"id": "/subscriptions/4b48eb85-91f3-4902-b74b-e84641fb6785/resour ⌋

ceGroups/perfRG/providers/Microsoft.RecoveryServices/vaults/p ⌋
erfRSV/backupJobs/07a1a270-885a-4210-b7bf-c51f2dcacdad",

,→

,→

"location": null,
"name": "07a1a270-885a-4210-b7bf-c51f2dcacdad",
"properties": {

"actionsInfo": [
"1"

],
"activityId": "bb5f9db8-d11a-11ec-8215-0a580af40666",
"backupManagementType": "AzureIaasVM",
"containerName": "iaasvmcontainerv2;perfrg;perfclickhousevm",
"duration": "0:00:01.278993",
"endTime": null,
"entityFriendlyName": "perfclickhousevm",
"errorDetails": null,
"extendedInfo": {

"dynamicErrorMessage": null,
"estimatedRemainingDuration": null,
"internalPropertyBag": {

"IsInstantRpJob": "True"
},
"progressPercentage": null,
"propertyBag": {

"Recovery Point Expiry Time in UTC": "5/18/2022 12:00:00
AM",,→

"VM Name": "perfclickhousevm"
},
"tasksList": [

{
"duration": "0:00:00",
"endTime": null,
"instanceId": null,
"progressPercentage": null,
"startTime": null,

Chapter A: Experiment Data 116

"status": "InProgress",
"taskExecutionDetails": null,
"taskId": "Take Snapshot"

},
{

"duration": "0:00:00",
"endTime": null,
"instanceId": null,
"progressPercentage": null,
"startTime": null,
"status": "NotStarted",
"taskExecutionDetails": null,
"taskId": "Transfer data to vault"

}
]

},
"isUserTriggered": null,
"jobType": "AzureIaaSVMJob",
"operation": "Backup",
"startTime": "2022-05-11T11:08:52.010975+00:00",
"status": "InProgress",
"virtualMachineVersion": "Compute"

},
"resourceGroup": "perfRG",
"tags": null,
"type": "Microsoft.RecoveryServices/vaults/backupJobs"

}

Create a storage account for staging

A storage account is needed to stage recoveries from Azure Backup.
Create storage account:

az storage account create `
--name $StagingSAName `
--resource-group $RGName `
--location eastus `
--sku Standard_LRS

{
"accessTier": "Hot",
"allowBlobPublicAccess": true,
"allowCrossTenantReplication": null,
"allowSharedKeyAccess": null,
"allowedCopyScope": null,

Chapter A: Experiment Data 117

"azureFilesIdentityBasedAuthentication": null,
"blobRestoreStatus": null,
"creationTime": "2022-05-12T06:35:41.131490+00:00",
"customDomain": null,
"defaultToOAuthAuthentication": null,
"dnsEndpointType": null,
"enableHttpsTrafficOnly": true,
"enableNfsV3": null,
"encryption": {

"encryptionIdentity": null,
"keySource": "Microsoft.Storage",
"keyVaultProperties": null,
"requireInfrastructureEncryption": null,
"services": {

"blob": {
"enabled": true,
"keyType": "Account",
"lastEnabledTime": "2022-05-12T06:35:41.272095+00:00"

},
"file": {

"enabled": true,
"keyType": "Account",
"lastEnabledTime": "2022-05-12T06:35:41.272095+00:00"

},
"queue": null,
"table": null

}
},
"extendedLocation": null,
"failoverInProgress": null,
"geoReplicationStats": null,
"id": "/subscriptions/4b48eb85-91f3-4902-b74b-e84641fb6785/resour ⌋

ceGroups/perfRG/providers/Microsoft.Storage/storageAccounts/p ⌋
erfstagingchsa",

,→

,→

"identity": null,
"immutableStorageWithVersioning": null,
"isHnsEnabled": null,
"isLocalUserEnabled": null,
"isSftpEnabled": null,
"keyCreationTime": {

"key1": "2022-05-12T06:35:41.256500+00:00",
"key2": "2022-05-12T06:35:41.256500+00:00"

},
"keyPolicy": null,

Chapter A: Experiment Data 118

"kind": "StorageV2",
"largeFileSharesState": null,
"lastGeoFailoverTime": null,
"location": "eastus",
"minimumTlsVersion": "TLS1_0",
"name": "perfstagingchsa",
"networkRuleSet": {

"bypass": "AzureServices",
"defaultAction": "Allow",
"ipRules": [],
"resourceAccessRules": null,
"virtualNetworkRules": []

},
"primaryEndpoints": {

"blob": "https://perfstagingchsa.blob.core.windows.net/",
"dfs": "https://perfstagingchsa.dfs.core.windows.net/",
"file": "https://perfstagingchsa.file.core.windows.net/",
"internetEndpoints": null,
"microsoftEndpoints": null,
"queue": "https://perfstagingchsa.queue.core.windows.net/",
"table": "https://perfstagingchsa.table.core.windows.net/",
"web": "https://perfstagingchsa.z13.web.core.windows.net/"

},
"primaryLocation": "eastus",
"privateEndpointConnections": [],
"provisioningState": "Succeeded",
"publicNetworkAccess": null,
"resourceGroup": "perfRG",
"routingPreference": null,
"sasPolicy": null,
"secondaryEndpoints": null,
"secondaryLocation": null,
"sku": {

"name": "Standard_LRS",
"tier": "Standard"

},
"statusOfPrimary": "available",
"statusOfSecondary": null,
"storageAccountSkuConversionStatus": null,
"tags": {},
"type": "Microsoft.Storage/storageAccounts"

}

Chapter A: Experiment Data 119

A.3 Azure Backup performance tests

Four attempts were made at recovering the VM with Azure Backup. The first two
failed, presumably because something was wrong with the restore point used.

The two last attempts used a different restore point. The time spent was mea-
sured using a stopwatch. Measurements were started the moment the restore job
was started and stopped when it was possible to SSH to the VM and query the
database.

Azure measures the time taken by the restore job itself. This is noted separately.
The total time is influenced by how fast we were able to paste commands into the
CLI. The restore job time is probably the most interesting time.

Recovery using Azure Portal:

Time (hours:minutes:seconds)
Restore job: 00:02:10
Total: 00:03:30

Recovery using Azure CLI:

Time (hours:minutes:seconds)
Restore job: 00:01:06
Total: 00:06:33

A.3.1 Recovery with Azure Backup via CLI (failed first attempt)

Delete VM

There are not enough vCPUs available in the quota, which means the VM has to
be deleted before recovery can happen.

az vm delete --name $CHName --resource-group $RGName --yes

Preparation

Prepare environment and retrieve restore points

Get RSV and set context
$RSV = Get-AzRecoveryServicesVault -Name $RSVName

-ResourceGroupName $RGName,→

Set-AzRecoveryServicesVaultContext -Vault $RSV

Select VM
$namedContainer = Get-AzRecoveryServicesBackupContainer

-ContainerType "AzureVM" -Status "Registered" -FriendlyName
$CHName -VaultId $RSV.ID

,→

,→

$backupitem = Get-AzRecoveryServicesBackupItem -Container
$namedContainer -WorkloadType "AzureVM" -VaultId $RSV.ID,→

Chapter A: Experiment Data 120

Get start and end date
$startDate = (Get-Date).AddDays(-7)
$endDate = Get-Date

Store recovery points in variable
$rp = Get-AzRecoveryServicesBackupRecoveryPoint -Item $backupitem

-StartDate $startdate.ToUniversalTime() -EndDate
$enddate.ToUniversalTime() -VaultId $RSV.ID

,→

,→

List contents of $rp:

$rp
RecoveryPointId RecoveryPointType RecoveryPointTime

ContainerName ContainerType,→

--------------- ----------------- -----------------
------------- -------------,→

15649757922643 FileSystemConsist... 5/11/2022 7:44:53 PM
iaasvmcontainerv2;perfrg;perfclickh... AzureVM,→

12290901249728 FileSystemConsist... 5/11/2022 11:09:00 AM
iaasvmcontainerv2;perfrg;perfclickh... AzureVM,→

12290901249728 is the point that was triggered manually when Azure Backup
was set up (see A.2). The point is stored in $rp[1].

Create restore job

Start restore job:

Select recovery point
$RecPoint = $rp[1]

Create a restore job for the backup item
$restorejob = Restore-AzRecoveryServicesBackupItem -RecoveryPoint

$RecPoint -StorageAccountName $StagingSAName
-StorageAccountResourceGroupName $RGName
-TargetResourceGroupName $RGName -VaultId $RSV.ID

,→

,→

,→

Wait for the restore job to complete
Wait-AzRecoveryServicesBackupJob -Job $restorejob -Timeout 43200
WorkloadName Operation Status

StartTime EndTime JobID,→

------------ --------- ------
--------- ------- -----,→

perfclickhousevm Restore Completed
5/12/2022 7:13:45 AM 5/12/2022 7:14:51 AM
30d32412-e718-4dde-a52e-c48444364cf3

,→

,→

Chapter A: Experiment Data 121

Get details of the restore job
$restorejob = Get-AzRecoveryServicesBackupJob -Job $restorejob

-VaultId $RSV.ID,→

$details = Get-AzRecoveryServicesBackupJobDetail -Job $restorejob
-VaultId $RSV.ID,→

Contents of $details.Properties:

$details.Properties

Key Value
--- -----
Job Type Recover disks
Target VM Name vmName
Target Storage Account Name perfstagingchsa
Recovery point time 5/11/2022 11:09:00 AM
Config Blob Name config-perfclickhousevm-30d32412-e718-

4dde-a52e-c48444364cf3.json,→

Config Blob Container Name
perfclickhousevm-8726c9fbe67e4ca4a5ff7e06238eac29,→

Config Blob Uri https://perfstagingchsa.blob.core.win ⌋
dows.net/perfclickhousevm-8726c9fbe67e4ca4a5ff7e06238eac29/conf ⌋
ig-perfclickhousevm-30d32412-e718-4dde-a52e-c48444364cf3.json

,→

,→

Target resource group perfRG
Template Blob Uri https://perfstagingchsa.blob.core.win ⌋

dows.net/perfclickhousevm-8726c9fbe67e4ca4a5ff7e06238eac29/azur ⌋
edeploy30d32412-e718-4dde-a52e-c48444364cf3.json

,→

,→

Save details:

$properties = $details.properties
$storageAccountName = $properties["Target Storage Account Name"]
$containerName = $properties["Config Blob Container Name"]
$templateBlobURI = $properties["Template Blob Uri"]

Deploy VM

Deploy VM:

Template name was copied from the last part of "Template Blob Uri"
$templateName =

"azuredeploy30d32412-e718-4dde-a52e-c48444364cf3.json",→

Set the storage account
Set-AzCurrentStorageAccount -Name $storageAccountName

-ResourceGroupName $RGName,→

Chapter A: Experiment Data 122

Generate SAS token
$templateBlobFullURI = New-AzStorageBlobSASToken -Container

$containerName -Blob $templateName -Permission r -FullUri,→

Deploy VM (VirtualMachineName had to be specified interactively)
New-AzResourceGroupDeployment -Name $CHName -ResourceGroupName

$RGName -TemplateUri $templateBlobFullURI,→

#DeploymentName : perfClickhouseVM
#ResourceGroupName : perfRG
#ProvisioningState : Succeeded
#Timestamp : 5/12/2022 7:20:25 AM
#Mode : Incremental
#TemplateLink :
Uri : https://perfstagingchsa.blob.core.window ⌋

s.net/perfclickhousevm-8726c9fbe67e4ca4a5ff7e06238eac29/azurede ⌋
ploy30d32412-e718-4dde-a52e-c48444364cf3.json?sv=2021-04-10&se= ⌋
2022-05-12T08%3A19%3A11Z&sr=b&sp=r

,→

,→

,→

&sig=5Uzo66b%2B1I9IvrpVokKaqHtJiBCx0ZEl6r8SIyM0XGc%3D
ContentVersion : 1.0.0.0
#
#Parameters :
Name Type Value
============================= =========================

==========,→

virtualMachineName String
"perfClickhouseVM",→

virtualNetwork String
"perfClickhouseVMVNET",→

virtualNetworkResourceGroup String "perfRG"
subnet String

"perfClickhouseVMSubnet",→

osDiskName String
"perfClickhouseVMOSDisk",→

networkInterfacePrefixName String
"perfClickhouseVMRestoredNIC",→

publicIpAddressName String
"perfClickhouseVMRestoredip",→

#
#Outputs :
#DeploymentDebugLogLevel :

Chapter A: Experiment Data 123

Trouble connecting to the VM

clickhouse-client would not start at first. The VM was therefore restarted. After
this, SSH would time out repeatedly. The VM was restarted again, but SSH still
did not work. Azure’s SSH “Connection troubleshoot” in the Azure Portal was
attempted, but it would also hang for a long time.

Another attempt at recovering the data was attempted with the Azure Portal.
The recovery appears to have succeeded. The same problems with clickhouse-
client not starting, and SSH timing out still appeared, though. Maybe the restore
point was broken in some way.

We decided to abort the attempt at recovering with Azure Backup for now.
Instead, we decided to try to recover with clickhouse-backup instead, and then
make a new restore point in Azure Backup to recover from.

A.3.2 Recovery with Azure Backup (failed second attempt)

We tried to recover from Azure Backup once again. Output was omitted for brevity,
except for when waiting for the restore job, as that output contains information
about the time the restore job took.

Delete VM

az vm delete --name $CHName --resource-group $RGName --yes

Get restore point

Get RSV and set context
$RSV = Get-AzRecoveryServicesVault -Name $RSVName

-ResourceGroupName $RGName,→

Set-AzRecoveryServicesVaultContext -Vault $RSV

Select VM
$namedContainer = Get-AzRecoveryServicesBackupContainer

-ContainerType "AzureVM" -Status "Registered" -FriendlyName
$CHName -VaultId $RSV.ID

,→

,→

$backupitem = Get-AzRecoveryServicesBackupItem -Container
$namedContainer -WorkloadType "AzureVM" -VaultId $RSV.ID,→

Get start and end date
$startDate = (Get-Date).AddDays(-7)
$endDate = Get-Date

Store recovery points in variable

Chapter A: Experiment Data 124

$rp = Get-AzRecoveryServicesBackupRecoveryPoint -Item $backupitem
-StartDate $startdate.ToUniversalTime() -EndDate
$enddate.ToUniversalTime() -VaultId $RSV.ID

,→

,→

Restore

Start restore job:

Select recovery point
$RecPoint = $rp[1]

Create a restore job for the backup item
$restorejob = Restore-AzRecoveryServicesBackupItem -RecoveryPoint

$RecPoint -StorageAccountName $StagingSAName
-StorageAccountResourceGroupName $RGName
-TargetResourceGroupName $RGName -VaultId $RSV.ID

,→

,→

,→

Wait for the restore job to complete
Wait-AzRecoveryServicesBackupJob -Job $restorejob -Timeout 43200
WorkloadName Operation Status

StartTime EndTime JobID,→

------------ --------- ------
--------- ------- -----,→

perfclickhousevm Restore Completed
5/12/2022 11:30:24 AM 5/12/2022 11:31:34 AM
2940f1d3-b57f-4428-9b1b-066e116a1389

,→

,→

Get details of the restore job
$restorejob = Get-AzRecoveryServicesBackupJob -Job $restorejob

-VaultId $RSV.ID,→

$details = Get-AzRecoveryServicesBackupJobDetail -Job $restorejob
-VaultId $RSV.ID,→

Save details:

$properties = $details.properties
$storageAccountName = $properties["Target Storage Account Name"]
$containerName = $properties["Config Blob Container Name"]
$templateBlobURI = $properties["Template Blob Uri"]

Deploy VM (failed)

Deploy VM:

Template name was copied from the last part of "Template Blob Uri"
$templateName =

"azuredeploy2940f1d3-b57f-4428-9b1b-066e116a1389.json",→

Chapter A: Experiment Data 125

Set the storage account
Set-AzCurrentStorageAccount -Name $storageAccountName

-ResourceGroupName $RGName,→

Generate SAS token
$templateBlobFullURI = New-AzStorageBlobSASToken -Container

$containerName -Blob $templateName -Permission r -FullUri,→

Deploy VM (VirtualMachineName had to be specified interactively)
New-AzResourceGroupDeployment -Name $CHName -ResourceGroupName

$RGName -TemplateUri $templateBlobFullURI,→

New-AzResourceGroupDeployment: 11:34:35 AM - The deployment
'perfClickhouseVM' failed with error(s). Showing 1 out of 1
error(s).

,→

,→

Status Message: Resource /subscriptions/4b48eb85-91f3-4902-b74b-e ⌋
84641fb6785/resourceGroups/perfRG/providers/Microsoft.Network/n ⌋
etworkInterfaces/perfClickhouseVMRestoredNIC5324890b7fe44a77ae9 ⌋
def7a461b6e81/ipConfigurations/c0dbf1d5514749ec849957897d9405d1
is referencing public IP address /subscriptions/4b48eb85-91f3-4 ⌋
902-b74b-e84641fb6785/resourceGroups/perfRG/providers/Microsoft ⌋
.Network/publicIPAddresses/perfClickhouseVMRestoredip that is
already allocated to resource
/subscriptions/4b48eb85-91f3-4902-b74b-e84641fb6785/resourceGro ⌋
ups/perfRG/providers/Microsoft.Network/networkInterfaces/perfCl ⌋
ickhouseVMRestoredNICb9bd95260138425bab106f324a42acbc/ipConfigu ⌋
rations/7ba12bb4efcf444d9f08dd1aff9a1cc6. (Code:
PublicIPAddressInUse)

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

CorrelationId: 2677f822-ff57-4405-8600-c96b2eb802b4
#
DeploymentName : perfClickhouseVM
ResourceGroupName : perfRG
ProvisioningState : Failed
Timestamp : 5/12/2022 11:34:30 AM
Mode : Incremental
TemplateLink :
Uri :

https://perfstagingchsa.blob.core.windows.net/perfclickhousevm- ⌋
b52ea1d968e04fc68ea92dea4d441451/azuredeploy2940f1d3-b57f-4428- ⌋
9b1b-066e116a1389.json?sv=2

,→

,→

,→

021-04-10&se=2022-05-12T12%3A33%3A08Z&s ⌋
r=b&sp=r&sig=ELTwTiFCjOc3kLiTipWd0cElPgJcGFidk8EXxJxaYfU%3D,→

ContentVersion : 1.0.0.0
#

Chapter A: Experiment Data 126

Parameters :
Name Type

Value,→

=============================
========================= ==========,→

virtualMachineName String
"perfClickhouseVM",→

virtualNetwork String
"perfClickhouseVMVNET",→

virtualNetworkResourceGroup String
"perfRG",→

subnet String
"perfClickhouseVMSubnet",→

osDiskName String
"perfClickhouseVMOSDisk",→

networkInterfacePrefixName String
"perfClickhouseVMRestoredNIC",→

publicIpAddressName String
"perfClickhouseVMRestoredip",→

#
Outputs :

The deployment failed because the IP address was consider to already be in
use. The Azure Portal seems to be able to deal with these kinds of conflicts better,
so we tried to deploy using the Portal.

Deploy VM using the Azure Portal

We decided to try to restore the VM using the Azure Portal, instead of the CLI.
Restoring the VM using the Azure Portal:

Chapter A: Experiment Data 127

According to the Azure Portal, the duration of the restore was 2 minutes and
15 seconds.

Details for the restore job:

Connect to VM and verify recovery

At first clickhouse-client would not start. Several attempt were made at start-
ing or restarting the ClickHouse server with sudo systemctl [start/restart]
clickhouse-server.service.

We attempted to reboot the VM. After that, we experienced the same problem
as earlier, where SSH would not connect.

After a lot of troubleshooting, we gave up.

Chapter A: Experiment Data 128

A.3.3 Recovery with Azure Backup via Portal (successful third at-
tempt)

The VM was first deleted using the Azure Portal.
The VM was then restored from a different restore point (one that was auto-

matically created on the same day, but later).
Restoring the VM:

The duration was 2 minutes, 10 seconds:

We were able to connect to the VM immediately. clickhouse-client would
not start on the first boot. The server was rebooted. After this, clickhouse-client
started like normal. It took 1 minutes and 20 seconds to get clickhouse-client
up and running after the restore job. The total time for the entire restoration was
3 minutes and 30 seconds.

Listing the table sizes:

Chapter A: Experiment Data 129

SELECT
database,
table,
formatReadableSize(sum(data_compressed_bytes) AS size) AS

compressed,,→

formatReadableSize(sum(data_uncompressed_bytes) AS usize) AS
uncompressed,,→

round(usize / size, 2) AS compr_rate,
sum(rows) AS rows,
count() AS part_count

FROM system.parts
WHERE (active = 1) AND (database LIKE '%') AND (table LIKE '%')
GROUP BY

database,
table

ORDER BY size DESC

Result:

Everything appears to be in order.

A.3.4 Recovery with Azure Backup via CLI (successful fourth attempt)

We decided to try to recover the VM via the CLI one last time, this time using the
same restore point as we did in the successful attempt where we used the Azure
Portal.

The restore job itself took 1 minute and 6 seconds. The total time was 6 min-
utes and 33 seconds.

Preparation

Delete VM:

az vm delete --name $CHName --resource-group $RGName --yes

Prepare environment and retrieve restore points

Chapter A: Experiment Data 130

Get RSV and set context
$RSV = Get-AzRecoveryServicesVault -Name $RSVName

-ResourceGroupName $RGName,→

Set-AzRecoveryServicesVaultContext -Vault $RSV

Select VM
$namedContainer = Get-AzRecoveryServicesBackupContainer

-ContainerType "AzureVM" -Status "Registered" -FriendlyName
$CHName -VaultId $RSV.ID

,→

,→

$backupitem = Get-AzRecoveryServicesBackupItem -Container
$namedContainer -WorkloadType "AzureVM" -VaultId $RSV.ID,→

Get start and end date
$startDate = (Get-Date).AddDays(-7)
$endDate = Get-Date

Store recovery points in variable
$rp = Get-AzRecoveryServicesBackupRecoveryPoint -Item $backupitem

-StartDate $startdate.ToUniversalTime() -EndDate
$enddate.ToUniversalTime() -VaultId $RSV.ID

,→

,→

List contents of $rp:

$rp
RecoveryPointId RecoveryPointType RecoveryPointTime

ContainerName ContainerType,→

--------------- ----------------- -----------------
------------- -------------,→

15649757922643 FileSystemConsist... 5/11/2022 7:44:53 PM
iaasvmcontainerv2;perfrg;perfclickh... AzureVM,→

12290901249728 FileSystemConsist... 5/11/2022 11:09:00 AM
iaasvmcontainerv2;perfrg;perfclickh... AzureVM,→

Since we were able to restore the VM using $rp[0] (15649757922643), when
using the Azure Portal, we decided to try using it with the CLI as well.

Create restore job

A stopwatch was started the moment the restore job was initiated.

Select recovery point
$RecPoint = $rp[0]

Create a restore job for the backup item

Chapter A: Experiment Data 131

$restorejob = Restore-AzRecoveryServicesBackupItem -RecoveryPoint
$RecPoint -StorageAccountName $StagingSAName
-StorageAccountResourceGroupName $RGName
-TargetResourceGroupName $RGName -VaultId $RSV.ID

,→

,→

,→

Wait for the restore job to complete
Wait-AzRecoveryServicesBackupJob -Job $restorejob -Timeout 43200
WorkloadName Operation Status

StartTime EndTime JobID,→

------------ --------- ------
--------- ------- -----,→

perfclickhousevm Restore Completed
5/12/2022 1:29:59 PM 5/12/2022 1:31:05 PM
17882329-4b0f-416f-8080-bbfd7a32f81b

,→

,→

Get details of the restore job
$restorejob = Get-AzRecoveryServicesBackupJob -Job $restorejob

-VaultId $RSV.ID,→

$details = Get-AzRecoveryServicesBackupJobDetail -Job $restorejob
-VaultId $RSV.ID,→

The restore job lasted from 1:29:59 PM to 1:31:05 PM, which means the du-
ration was 1 minute and 6 seconds.

Save details:

$properties = $details.properties
$storageAccountName = $properties["Target Storage Account Name"]
$containerName = $properties["Config Blob Container Name"]
$templateBlobURI = $properties["Template Blob Uri"]

Deploy VM

Generate SAS:

Template name was copied from the last part of "Template Blob Uri"
$templateName =

"azuredeploy17882329-4b0f-416f-8080-bbfd7a32f81b.json",→

Set the storage account
Set-AzCurrentStorageAccount -Name $storageAccountName

-ResourceGroupName $RGName,→

Generate SAS token
$templateBlobFullURI = New-AzStorageBlobSASToken -Container

$containerName -Blob $templateName -Permission r -FullUri,→

Chapter A: Experiment Data 132

Deploy VM:

Deploy VM (VirtualMachineName had to be specified interactively)
New-AzResourceGroupDeployment -Name $CHName -ResourceGroupName

$RGName -TemplateUri $templateBlobFullURI,→

#DeploymentName : perfClickhouseVM
#ResourceGroupName : perfRG
#ProvisioningState : Succeeded
#Timestamp : 5/12/2022 1:38:51 PM
#Mode : Incremental
#TemplateLink :
Uri :

https://perfstagingchsa.blob.core.windows.net/perfclickhousevm- ⌋
0411d36fae58488d809caa803c51a60a/azuredeploy17882329-4b0f-416f- ⌋
8080-bbfd7a32f81b.json?sv=2

,→

,→

,→

021-04-10&se=2022-05-12T14%3A36%3A06Z&sr ⌋
=b&sp=r&sig=xIXTM%2FIAZW40zO5nv%2BRFcB4MJrNeAhaLbYWo4oMHKz0%3D,→

ContentVersion : 1.0.0.0
#
#Parameters :
Name Type

Value,→

=============================
========================= ==========,→

virtualMachineName String
"perfClickhouseVM",→

virtualNetwork String
"perfClickhouseVMVNET",→

virtualNetworkResourceGroup String
"perfRG",→

subnet String
"perfClickhouseVMSubnet",→

osDiskName String
"perfClickhouseVMOSDisk",→

networkInterfacePrefixName String
"perfClickhouseVMRestoredNIC",→

publicIpAddressName String
"perfClickhouseVMRestoredip",→

#
#Outputs :
#DeploymentDebugLogLevel :

Chapter A: Experiment Data 133

Verify that the recovery was successful

We were able to connect to the VM with SSH after 4 minutes and 49 seconds.
clickhouse-client would not start on the first boot. The VM was restarted. After
this, clickhouse-client started properly and we were able to query the database.
The total time was 6 minutes and 33 seconds.

Listing the table sizes:

SELECT
database,
table,
formatReadableSize(sum(data_compressed_bytes) AS size) AS

compressed,,→

formatReadableSize(sum(data_uncompressed_bytes) AS usize) AS
uncompressed,,→

round(usize / size, 2) AS compr_rate,
sum(rows) AS rows,
count() AS part_count

FROM system.parts
WHERE (active = 1) AND (database LIKE '%') AND (table LIKE '%')
GROUP BY

database,
table

ORDER BY size DESC

Result:

It appears that the recovery was successful!

A.4 clickhouse-backup performance test

While backing up and uploading a backup to remote storage seemed to work fine
(see A.2), we were unable to actually recover from the backup. Several attempts
were made at restoring from or downloading the remote backups. All were un-
successful. Errors occured during the download phase of the recovery.

An attempt was made to back up up a single table, upload it to remote storage
and then restore from it. This attempt was successful, but only used a tiny amount

Chapter A: Experiment Data 134

of data. This, and the fact that we were able to list remote backups, indicates that
the configuration/connection to the remote storage itself was probably fine.

Unfortunately, we were not able to perform a proper performance test of
clickhouse-backup with 1TB of data.

A.4.1 Recovery with clickhouse-backup (first set of attempts)

Rebuild VM

Delete VM:

Delete the VM
az vm delete --name $CHName --resource-group $RGName --yes

Get all resources in resource group
$resources = az resource list --resource-group $RGName |

ConvertFrom-Json -AsHashtable,→

Fetch only the ids of resources with names containing
"Clickhouse".,→

$filtered = foreach($r in $resources) {
Write-Output $r["id"] | grep Clickhouse

}

Delete the resources
$filtered | % {Remove-AzResource -ResourceId $_ -Force}
$filtered | % {Remove-AzResource -ResourceId $_ -Force}

Create VM:

az vm create `
--resource-group $RGName `
--name $CHName `
--image Canonical:UbuntuServer:16.04-LTS:16.04.202109280 `
--admin-username azureuser `
--size Standard_D4s_v4 `
--os-disk-size-gb 2048 `
--ssh-key-values $SSHPath `
--public-ip-sku Standard

Install ClickHouse:

sudo apt-get install -y apt-transport-https ca-certificates dirmngr
sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv

8919F6BD2B48D754,→

Chapter A: Experiment Data 135

echo "deb https://packages.clickhouse.com/deb stable main" | sudo
tee \,→

/etc/apt/sources.list.d/clickhouse.list
sudo apt-get update

sudo apt-get install -y clickhouse-server clickhouse-client

sudo clickhouse start
sudo service clickhouse-server start

Install clickhouse-backup:

Download archive containing binary
wget https://github.com/AlexAkulov/clickhouse-backup/releases/downl ⌋

oad/v1.3.2/clickhouse-backup-linux-amd64.tar.gz,→

Decompress archive
tar -zxvf clickhouse-backup-linux-amd64.tar.gz

Move binary to home directory
mv build/linux/amd64/clickhouse-backup ~

Cleanup
rmdir -p build/linux/amd64
rm clickhouse-backup-linux-amd64.tar.gz

config.yaml was copied from the test environment (see A.2).
config.yaml:

general:
remote_storage: azblob
max_file_size: 0
disable_progress_bar: false
backups_to_keep_local: 0
backups_to_keep_remote: 0
log_level: info
allow_empty_backups: false
download_concurrency: 1
upload_concurrency: 1
restore_schema_on_cluster: ""
upload_by_part: true
download_by_part: true

clickhouse:
username: default
password: ""
host: localhost

Chapter A: Experiment Data 136

port: 9000
disk_mapping: {}
skip_tables:
- system.*
- INFORMATION_SCHEMA.*
- information_schema.*
timeout: 5m
freeze_by_part: false
secure: false
skip_verify: false
sync_replicated_tables: false
log_sql_queries: true
config_dir: /etc/clickhouse-server/
restart_command: systemctl restart clickhouse-server
ignore_not_exists_error_during_freeze: true
tls_key: ""
tls_cert: ""
tls_ca: ""
debug: false

s3:
access_key: ""
secret_key: ""
bucket: ""
endpoint: ""
region: us-east-1
acl: private
assume_role_arn: ""
force_path_style: false
path: ""
disable_ssl: false
compression_level: 1
compression_format: tar
sse: ""
disable_cert_verification: false
storage_class: STANDARD
concurrency: 1
part_size: 0
max_parts_count: 10000
debug: false

gcs:
credentials_file: ""
credentials_json: ""
bucket: ""
path: ""

Chapter A: Experiment Data 137

compression_level: 1
compression_format: tar
debug: false
endpoint: ""

cos:
url: ""
timeout: 2m
secret_id: ""
secret_key: ""
path: ""
compression_format: tar
compression_level: 1
debug: false

api:
listen: localhost:7171
enable_metrics: true
enable_pprof: false
username: ""
password: ""
secure: false
certificate_file: ""
private_key_file: ""
create_integration_tables: false
allow_parallel: false

ftp:
address: ""
timeout: 2m
username: ""
password: ""
tls: false
path: ""
compression_format: tar
compression_level: 1
concurrency: 1
debug: false

sftp:
address: ""
port: 22
username: ""
password: ""
key: ""
path: ""
compression_format: tar
compression_level: 1

Chapter A: Experiment Data 138

concurrency: 1
debug: false

azblob:
endpoint_suffix: core.windows.net
account_name: "perfchbksa"
account_key: "EIhee0y3zertAVbAa7cRAhYQ/2Oui25vdr6DoL05qkA+CfZZpFM ⌋

labzJFPtJG8Xdc735PAbA8w8r+AStl89ieA==",→

sas: "se=2022-05-18&sp=racwdl&sv=2021-04-10&sr=c&skoid=d404139d-e ⌋
156-421c-9450-19e9734a8141&sktid=09a10672-822f-4467-a5ba-5bb3 ⌋
75967c05&skt=2022-05-11T07%3A01%3A18Z&ske=2022-05-18T00%3A00% ⌋
3A00Z&sks=b&skv=2021-04-10&sig=GgFsZifUWr0r71gCZaD9PbxRXrybhW ⌋
S09Hpb2scfsKg%3D"

,→

,→

,→

,→

use_managed_identity: false
container: "chbkperfcontainer"
path: "https://perfchbksa.blob.core.windows.net/chbkperfcontainer"
compression_level: 1
compression_format: tar
sse_key: ""
buffer_size: 0
buffer_count: 3
max_parts_count: 1

Try to restore from remote backup

Bash commands were performed as root in /home/azureuser. SQL statements
were performed in clickhouse-client.

Showing the tables in the database (no tables):

SHOW TABLES

-- Query id: e41781d1-477e-4d48-be0c-73e3b5f26eaa
--
-- Ok.
--
-- 0 rows in set. Elapsed: 0.002 sec.

Listing remote backups:

./clickhouse-backup list remote --config ./config.yaml
2022/05/12 09:39:48.379024 info SELECT max(toInt64(bytes_on_disk

* 1.02)) AS max_file_size FROM system.parts,→

2022-05-11T07-25-16 895.29GiB 11/05/2022 10:44:05 remote
tar,→

Restoring from the remote backup:

Chapter A: Experiment Data 139

time ./clickhouse-backup restore_remote 2022-05-11T07-25-16
--config ./config.yaml,→

2022/05/12 09:48:21.324699 info SELECT value FROM
`system`.`build_options` where name='VERSION_INTEGER',→

2022/05/12 09:48:21.326557 info SELECT * FROM system.disks;
2022/05/12 09:48:21.332100 info SELECT max(toInt64(bytes_on_disk

* 1.02)) AS max_file_size FROM system.parts,→

2022/05/12 09:48:21.459701 info done
backup=2022-05-11T07-25-16 duration=54ms operation=download
size=3.36KiB table_metadata=default.github_events1

,→

,→

2022/05/12 09:48:21.507383 info done
backup=2022-05-11T07-25-16 duration=48ms operation=download
size=3.32KiB table_metadata=default.github_events2

,→

,→

2022/05/12 09:48:21.512022 info done
backup=2022-05-11T07-25-16 duration=5ms operation=download
size=3.36KiB table_metadata=default.github_events3

,→

,→

2022/05/12 09:48:21.516128 info done
backup=2022-05-11T07-25-16 duration=4ms operation=download
size=3.32KiB table_metadata=default.github_events4

,→

,→

2022/05/12 09:48:21.520984 info done
backup=2022-05-11T07-25-16 duration=5ms operation=download
size=3.28KiB table_metadata=default.github_events5

,→

,→

2022/05/12 09:49:21.524887 error can't acquire semaphore during
downloadTableData: context canceled---------] 57.67% 59s,→

2022/05/12 09:49:21.642779 error can't acquire semaphore during
Download: context canceled backup=2022-05-11T07-25-16
operation=download

,→

,→

2022/05/12 09:50:21.672318 error can't acquire semaphore during
downloadTableData: context canceled---------] 8.04% 59s,→

2022/05/12 09:50:21.770237 error one of Download go-routine
return error: one of downloadTableData go-routine return error:
handling file: /all_3441_4218_4/file_time.bin: context deadline
exceeded

,→

,→

,→

#
real 2m0.461s
user 0m10.068s
sys 0m14.108s

The restoration failed.

Try to download remote backup

Since clickhouse-backup restore_remote failed, we tried to instead download
the backup first, and then restore afterwards. This also failed with the same error.

Chapter A: Experiment Data 140

time ./clickhouse-backup download 2022-05-11T07-25-16 --config
./config.yaml,→

2022/05/12 10:00:42.788222 info SELECT value FROM
`system`.`build_options` where name='VERSION_INTEGER',→

2022/05/12 10:00:42.790756 info SELECT * FROM system.disks;
2022/05/12 10:00:42.797256 info SELECT max(toInt64(bytes_on_disk

* 1.02)) AS max_file_size FROM system.parts,→

2022/05/12 10:00:42.846572 info done
backup=2022-05-11T07-25-16 duration=5ms operation=download
size=3.36KiB table_metadata=default.github_events1

,→

,→

2022/05/12 10:00:42.853218 info done
backup=2022-05-11T07-25-16 duration=7ms operation=download
size=3.32KiB table_metadata=default.github_events2

,→

,→

2022/05/12 10:00:42.857772 info done
backup=2022-05-11T07-25-16 duration=4ms operation=download
size=3.36KiB table_metadata=default.github_events3

,→

,→

2022/05/12 10:00:42.864379 info done
backup=2022-05-11T07-25-16 duration=7ms operation=download
size=3.32KiB table_metadata=default.github_events4

,→

,→

2022/05/12 10:00:42.869284 info done
backup=2022-05-11T07-25-16 duration=5ms operation=download
size=3.28KiB table_metadata=default.github_events5

,→

,→

2022/05/12 10:01:42.873871 error can't acquire semaphore during
downloadTableData: context canceled---------] 63.84% 59s,→

2022/05/12 10:01:42.966195 error can't acquire semaphore during
Download: context canceled backup=2022-05-11T07-25-16
operation=download

,→

,→

2022/05/12 10:02:43.002110 error can't acquire semaphore during
downloadTableData: context canceled---------] 8.08% 59s,→

2022/05/12 10:02:43.087969 error one of Download go-routine
return error: one of downloadTableData go-routine return error:
handling file: /all_3441_4218_4/file_time.bin: context deadline
exceeded

,→

,→

,→

#
real 2m0.314s
user 0m10.550s
sys 0m12.509s

Rebuild VM again

The VM was once again rebuilt, in the same way as in Rebuild VM.

Chapter A: Experiment Data 141

Download remote backup again (third attempt)

Tried to download the remote backup again, like in Try to download remote
backup, but it failed once again.

A.4.2 Recovery with clickhouse-backup (second set of attempts)

We had another go at restoring from the remote clickhouse-backup backups.
Downloading/restoring from remote backups failed once again, and we were not
sure what to do about it.

We made an attempt at uploading a very small backup to remote storage and
then recovering from it. This worked fine.

Finally, we made an attempt at recovering from the local version of the remote
backup. This worked well. The restoration took only 2.687 seconds.

Restore VM

The VM was restored via Azure Backup. This process is the same as in [cref].

Drop tables

Make it possible to drop tables (had to be run between drop table statements):

sudo touch '/var/lib/clickhouse/flags/force_drop_table' && sudo
chmod 666 '/var/lib/clickhouse/flags/force_drop_table',→

DROP TABLE github_events1
DROP TABLE github_events2
DROP TABLE github_events3
DROP TABLE github_events4
DROP TABLE github_events5

Download backup

Commands were performed as root.
List remote backups:

./clickhouse-backup list remote --config config.yaml
2022/05/14 10:00:29.509778 info SELECT max(toInt64(bytes_on_disk

* 1.02)) AS max_file_size FROM system.parts,→

2022-05-11T07-25-16 895.29GiB 11/05/2022 10:44:05 remote
tar,→

Drop

./clickhouse-backup delete local 2022-05-11T07-25-16

Restore from remote backup:

Chapter A: Experiment Data 142

time ./clickhouse-backup restore_remote 2022-05-11T07-25-16
--config config.yaml,→

2022/05/14 10:04:26.068449 info SELECT value FROM
`system`.`build_options` where name='VERSION_INTEGER',→

2022/05/14 10:04:26.071514 info SELECT * FROM system.disks;
2022/05/14 10:04:26.078712 info SELECT max(toInt64(bytes_on_disk

* 1.02)) AS max_file_size FROM system.parts,→

2022/05/14 10:04:26.202816 info done
backup=2022-05-11T07-25-16 duration=54ms operation=download
size=3.36KiB table_metadata=default.github_events1

,→

,→

2022/05/14 10:04:26.207742 info done
backup=2022-05-11T07-25-16 duration=5ms operation=download
size=3.32KiB table_metadata=default.github_events2

,→

,→

2022/05/14 10:04:26.220053 info done
backup=2022-05-11T07-25-16 duration=12ms operation=download
size=3.36KiB table_metadata=default.github_events3

,→

,→

2022/05/14 10:04:26.225487 info done
backup=2022-05-11T07-25-16 duration=5ms operation=download
size=3.32KiB table_metadata=default.github_events4

,→

,→

2022/05/14 10:04:26.230170 info done
backup=2022-05-11T07-25-16 duration=5ms operation=download
size=3.28KiB table_metadata=default.github_events5

,→

,→

2022/05/14 10:05:26.234385 error can't acquire semaphore during
downloadTableData: context canceled---------] 66.83% 59s,→

2022/05/14 10:05:26.314936 error can't acquire semaphore during
Download: context canceled backup=2022-05-11T07-25-16
operation=download

,→

,→

2022/05/14 10:06:26.354581 error can't acquire semaphore during
downloadTableData: context canceled---------] 9.17% 59s,→

2022/05/14 10:06:26.452971 error one of Download go-routine
return error: one of downloadTableData go-routine return error:
handling file: /all_3441_4218_4/merge_commit_sha.bin: context
deadline exceeded

,→

,→

,→

#
real 2m0.400s
user 0m11.283s
sys 0m14.051s

Test with a smaller amount of data (not measuring performance)

We did a test where we backup up and recovered a small amount of data, to prove
that the configuration was valid.

Create empty table:

CREATE TABLE github_events1

Chapter A: Experiment Data 143

(
file_time DateTime,
event_type Enum('CommitCommentEvent' = 1, 'CreateEvent' = 2,

'DeleteEvent' = 3, 'ForkEvent' = 4,,→

'GollumEvent' = 5, 'IssueCommentEvent' = 6,
'IssuesEvent' = 7, 'MemberEvent' = 8,,→

'PublicEvent' = 9, 'PullRequestEvent' = 10,
'PullRequestReviewCommentEvent' = 11,,→

'PushEvent' = 12, 'ReleaseEvent' = 13,
'SponsorshipEvent' = 14, 'WatchEvent' = 15,,→

'GistEvent' = 16, 'FollowEvent' = 17,
'DownloadEvent' = 18,
'PullRequestReviewEvent' = 19,

,→

,→

'ForkApplyEvent' = 20, 'Event' = 21,
'TeamAddEvent' = 22),,→

actor_login LowCardinality(String),
repo_name LowCardinality(String),
created_at DateTime,
updated_at DateTime,
action Enum('none' = 0, 'created' = 1, 'added' = 2, 'edited' =

3, 'deleted' = 4, 'opened' = 5, 'closed' = 6, 'reopened' =
7, 'assigned' = 8, 'unassigned' = 9,

,→

,→

'labeled' = 10, 'unlabeled' = 11,
'review_requested' = 12,
'review_request_removed' = 13, 'synchronize' =
14, 'started' = 15, 'published' = 16, 'update'
= 17, 'create' = 18, 'fork' = 19, 'merged' =
20),

,→

,→

,→

,→

,→

comment_id UInt64,
body String,
path String,
position Int32,
line Int32,
ref LowCardinality(String),
ref_type Enum('none' = 0, 'branch' = 1, 'tag' = 2, 'repository'

= 3, 'unknown' = 4),,→

creator_user_login LowCardinality(String),
number UInt32,
title String,
labels Array(LowCardinality(String)),
state Enum('none' = 0, 'open' = 1, 'closed' = 2),
locked UInt8,
assignee LowCardinality(String),
assignees Array(LowCardinality(String)),

Chapter A: Experiment Data 144

comments UInt32,
author_association Enum('NONE' = 0, 'CONTRIBUTOR' = 1, 'OWNER'

= 2, 'COLLABORATOR' = 3, 'MEMBER' = 4, 'MANNEQUIN' = 5),,→

closed_at DateTime,
merged_at DateTime,
merge_commit_sha String,
requested_reviewers Array(LowCardinality(String)),
requested_teams Array(LowCardinality(String)),
head_ref LowCardinality(String),
head_sha String,
base_ref LowCardinality(String),
base_sha String,
merged UInt8,
mergeable UInt8,
rebaseable UInt8,
mergeable_state Enum('unknown' = 0, 'dirty' = 1, 'clean' = 2,

'unstable' = 3, 'draft' = 4),,→

merged_by LowCardinality(String),
review_comments UInt32,
maintainer_can_modify UInt8,
commits UInt32,
additions UInt32,
deletions UInt32,
changed_files UInt32,
diff_hunk String,
original_position UInt32,
commit_id String,
original_commit_id String,
push_size UInt32,
push_distinct_size UInt32,
member_login LowCardinality(String),
release_tag_name String,
release_name String,
review_state Enum('none' = 0, 'approved' = 1,

'changes_requested' = 2, 'commented' = 3, 'dismissed' = 4,
'pending' = 5)

,→

,→

)
ENGINE = MergeTree
ORDER BY (event_type, repo_name, created_at)

Create local backup:

./clickhouse-backup create
2022/05/14 10:12:59.474330 info SELECT name, engine FROM

system.databases WHERE name NOT IN ('system', 'INFORMATION_SCHE,→

Chapter A: Experiment Data 145

MA', 'information_schema')
2022/05/14 10:12:59.477846 info SHOW CREATE DATABASE `default`
2022/05/14 10:12:59.481048 info SELECT count() FROM

system.settings WHERE name =
'show_table_uuid_in_table_create_query_

,→

,→

if_not_nil'
2022/05/14 10:12:59.483473 info SELECT name FROM

system.databases WHERE engine IN ('MySQL','PostgreSQL'),→

2022/05/14 10:12:59.485660 info
SELECT
countIf(name='data_path')

is_data_path_present,,→

countIf(name='data_paths')
is_data_paths_present,,→

countIf(name='uuid') is_uuid_present,
countIf(name='create_table_query')

is_create_table_query_present,,→

countIf(name='total_bytes')
is_total_bytes_present,→

FROM system.columns WHERE database='system' AND
table='tables',→

#
2022/05/14 10:12:59.488383 info SELECT database, name, engine ,

data_paths , uuid , create_table_query , coalesce(total_,→

bytes, 0) AS total_bytes FROM system.tables WHERE is_temporary
= 0 SETTINGS show_table_uuid_in_table_create_query_if_no,→

t_nil=1
2022/05/14 10:12:59.496461 info SELECT sum(bytes_on_disk) as

size FROM system.parts WHERE database='default' AND table=',→

github_events1' GROUP BY database, table
2022/05/14 10:12:59.502336 info SELECT value FROM

`system`.`build_options` where name='VERSION_INTEGER',→

2022/05/14 10:12:59.505121 info SELECT * FROM system.disks;
2022/05/14 10:12:59.508045 info ALTER TABLE

`default`.`github_events1` FREEZE WITH NAME
'b380781a01ec426e8493f83f940e7f5

,→

,→

8';
2022/05/14 10:12:59.624218 info done

backup=2022-05-14T10-12-59 operation=create table=default.gith,→

ub_events1

List backup:

./clickhouse-backup list

Chapter A: Experiment Data 146

2022/05/14 10:13:19.784137 info SELECT value FROM
`system`.`build_options` where name='VERSION_INTEGER',→

2022/05/14 10:13:19.787608 info SELECT * FROM system.disks;
2022-05-14T10-12-59 2.81KiB 14/05/2022 10:12:59 local

Upload backup to remote storage:

./clickhouse-backup upload 2022-05-14T10-12-59 -c config.yaml

Delete local backup:

./clickhouse-backup delete local 2022-05-14T10-12-59
2022/05/14 10:18:24.470651 info SELECT value FROM

`system`.`build_options` where name='VERSION_INTEGER',→

2022/05/14 10:18:24.472547 info SELECT * FROM system.disks;
2022/05/14 10:18:24.476090 info done

backup=2022-05-14T10-12-59 duration=8ms location=local
operation=delete

,→

,→

Drop the table:

DROP TABLE github_events1

Restore from remote backup:

./clickhouse-backup restore_remote 2022-05-14T10-12-59 -c
config.yaml,→

2022/05/14 10:20:05.358861 info SELECT value FROM
`system`.`build_options` where name='VERSION_INTEGER',→

2022/05/14 10:20:05.360724 info SELECT * FROM system.disks;
2022/05/14 10:20:05.368823 info SELECT max(toInt64(bytes_on_disk

* 1.02)) AS max_file_size FROM system.parts,→

2022/05/14 10:20:05.425455 info done
backup=2022-05-14T10-12-59 duration=5ms operation=download
size=2.81KiB table_metadata=default.github_events1

,→

,→

2022/05/14 10:20:05.425540 info done
diff_parts=0 duration=0s operation=downloadDiffParts,→

2022/05/14 10:20:05.425578 info done
backup=2022-05-14T10-12-59 duration=0s operation=download_data
size=0B table=default.github_events1

,→

,→

2022/05/14 10:20:05.433103 info done
backup=2022-05-14T10-12-59 duration=70ms operation=download
size=2.81KiB

,→

,→

2022/05/14 10:20:05.436457 info SELECT value FROM
`system`.`build_options` where name='VERSION_INTEGER',→

2022/05/14 10:20:05.439819 info SELECT * FROM system.disks;
2022/05/14 10:20:05.442308 info CREATE DATABASE IF NOT EXISTS

default,→

Chapter A: Experiment Data 147

ENGINE = Atomic
2022/05/14 10:20:05.443762 info SELECT engine FROM

system.databases WHERE name = 'default',→

2022/05/14 10:20:05.447623 info DROP TABLE IF EXISTS
`default`.`github_events1` NO DELAY,→

2022/05/14 10:20:05.451154 info CREATE DATABASE IF NOT EXISTS
`default`,→

Chapter A: Experiment Data 148

2022/05/14 10:20:05.452970 info CREATE TABLE
default.github_events1 UUID
'8742d240-9dc9-4a43-89d0-f06e9eac0b61' (`file_time` DateTime,
`event_type` Enum8('CommitCommentEvent' = 1, 'CreateEvent' = 2,
'DeleteEvent' = 3, 'ForkEvent' = 4, 'GollumEvent' = 5,
'IssueCommentEvent' = 6, 'IssuesEvent' = 7, 'MemberEvent' = 8,
'PublicEvent' = 9, 'PullRequestEvent' = 10,
'PullRequestReviewCommentEvent' = 11, 'PushEvent' = 12,
'ReleaseEvent' = 13, 'SponsorshipEvent' = 14, 'WatchEvent' =
15, 'GistEvent' = 16, 'FollowEvent' = 17, 'DownloadEvent' = 18,
'PullRequestReviewEvent' = 19, 'ForkApplyEvent' = 20, 'Event' =
21, 'TeamAddEvent' = 22), `actor_login` LowCardinality(String),
`repo_name` LowCardinality(String), `created_at` DateTime,
`updated_at` DateTime, `action` Enum8('none' = 0, 'created' =
1, 'added' = 2, 'edited' = 3, 'deleted' = 4, 'opened' = 5,
'closed' = 6, 'reopened' = 7, 'assigned' = 8, 'unassigned' = 9,
'labeled' = 10, 'unlabeled' = 11, 'review_requested' = 12,
'review_request_removed' = 13, 'synchronize' = 14, 'started' =
15, 'published' = 16, 'update' = 17, 'create' = 18, 'fork' =
19, 'merged' = 20), `comment_id` UInt64, `body` String, `path`
String, `position` Int32, `line` Int32, `ref`
LowCardinality(String), `ref_type` Enum8('none' = 0, 'branch' =
1, 'tag' = 2, 'repository' = 3, 'unknown' = 4),
`creator_user_login` LowCardinality(String), `number` UInt32,
`title` String, `labels` Array(LowCardinality(String)), `state`
Enum8('none' = 0, 'open' = 1, 'closed' = 2), `locked` UInt8,
`assignee` LowCardinality(String), `assignees`
Array(LowCardinality(String)), `comments` UInt32,
`author_association` Enum8('NONE' = 0, 'CONTRIBUTOR' = 1,
'OWNER' = 2, 'COLLABORATOR' = 3, 'MEMBER' = 4, 'MANNEQUIN' =
5), `closed_at` DateTime, `merged_at` DateTime,
`merge_commit_sha` String, `requested_reviewers`
Array(LowCardinality(String)), `requested_teams`
Array(LowCardinality(String)), `head_ref`
LowCardinality(String), `head_sha` String, `base_ref`
LowCardinality(String), `base_sha` String, `merged` UInt8,
`mergeable` UInt8, `rebaseable` UInt8, `mergeable_state`
Enum8('unknown' = 0, 'dirty' = 1, 'clean' = 2, 'unstable' = 3,
'draft' = 4), `merged_by` LowCardinality(String),
`review_comments` UInt32, `maintainer_can_modify` UInt8,
`commits` UInt32, `additions` UInt32, `deletions` UInt32,
`changed_files` UInt32, `diff_hunk` String, `original_position`
UInt32, `commit_id` String, `original_commit_id` String,
`push_size` UInt32, `push_distinct_size` UInt32, `member_login`
LowCardinality(String), `release_tag_name` String,
`release_name` String, `review_state` Enum8('none' = 0,
'approved' = 1, 'changes_requested' = 2, 'commented' = 3,
'dismissed' = 4, 'pending' = 5)) ENGINE = MergeTree ORDER BY
(event_type, repo_name, created_at) SETTINGS index_granularity
= 8192

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

Chapter A: Experiment Data 149

2022/05/14 10:20:05.527062 info SELECT count() FROM
system.settings WHERE name =
'show_table_uuid_in_table_create_query_if_not_nil'

,→

,→

2022/05/14 10:20:05.544058 info SELECT name FROM
system.databases WHERE engine IN ('MySQL','PostgreSQL'),→

2022/05/14 10:20:05.546963 info
SELECT
countIf(name='data_path')

is_data_path_present,,→

countIf(name='data_paths')
is_data_paths_present,,→

countIf(name='uuid') is_uuid_present,
countIf(name='create_table_query')

is_create_table_query_present,,→

countIf(name='total_bytes')
is_total_bytes_present,→

FROM system.columns WHERE database='system' AND
table='tables',→

#
2022/05/14 10:20:05.568889 info SELECT database, name, engine ,

data_paths , uuid , create_table_query , coalesce(total_bytes,
0) AS total_bytes FROM system.tables WHERE is_temporary = 0
SETTINGS show_table_uuid_in_table_create_query_if_not_nil=1

,→

,→

,→

2022/05/14 10:20:05.578972 info SELECT sum(bytes_on_disk) as
size FROM system.parts WHERE database='default' AND
table='github_events1' GROUP BY database, table

,→

,→

2022/05/14 10:20:05.582682 info done
backup=2022-05-14T10-12-59 operation=restore
table=default.github_events1

,→

,→

2022/05/14 10:20:05.582734 info done
backup=2022-05-14T10-12-59 duration=59ms operation=restore,→

2022/05/14 10:20:05.582763 info done
backup=2022-05-14T10-12-59 operation=restore,→

Attempt to restore from local backups

The VM was restored with Azure Backup, in order to recover the local backup.
The restore was timed with time. It took 2.687 seconds.

./clickhouse-backup list
2022/05/14 10:47:31.108857 info SELECT value FROM

`system`.`build_options` where name='VERSION_INTEGER',→

2022/05/14 10:47:31.112370 info SELECT * FROM system.disks;
2022-05-11T07-25-16 895.28GiB 11/05/2022 07:25:17 local

Chapter A: Experiment Data 150

In clickhouse-client, all tables were dropped:

DROP TABLE github_events1
DROP TABLE github_events2
DROP TABLE github_events3
DROP TABLE github_events4
DROP TABLE github_events5

Before each drop table statement, the following command had to be run in
bash:

sudo touch '/var/lib/clickhouse/flags/force_drop_table' && sudo
chmod 666 '/var/lib/clickhouse/flags/force_drop_table',→

Show tables:

SHOW TABLES

-- Query id: d104549f-c266-498a-a1c2-07dc85f9ea0e
--
-- Ok.
--
-- 0 rows in set. Elapsed: 0.002 sec.

ClickHouse was restarted with clickhouse restart before restoring from
backup.

Measure time to restore from local backup:

time ./clickhouse-backup restore 2022-05-11T07-25-16
2022/05/14 11:03:48.480915 info SELECT value FROM

`system`.`build_options` where name='VERSION_INTEGER',→

2022/05/14 11:03:48.484637 info SELECT * FROM system.disks;
2022/05/14 11:03:48.490860 info CREATE DATABASE IF NOT EXISTS

default,→

ENGINE = Atomic
2022/05/14 11:03:48.492717 info SELECT engine FROM

system.databases WHERE name = 'default',→

2022/05/14 11:03:48.495213 info DROP TABLE IF EXISTS
`default`.`github_events1` NO DELAY,→

2022/05/14 11:03:48.496391 info SELECT engine FROM
system.databases WHERE name = 'default',→

2022/05/14 11:03:48.499202 info DROP TABLE IF EXISTS
`default`.`github_events2` NO DELAY,→

2022/05/14 11:03:48.504034 info SELECT engine FROM
system.databases WHERE name = 'default',→

2022/05/14 11:03:48.509525 info DROP TABLE IF EXISTS
`default`.`github_events3` NO DELAY,→

Chapter A: Experiment Data 151

2022/05/14 11:03:48.510781 info SELECT engine FROM
system.databases WHERE name = 'default',→

2022/05/14 11:03:48.515357 info DROP TABLE IF EXISTS
`default`.`github_events4` NO DELAY,→

2022/05/14 11:03:48.516841 info SELECT engine FROM
system.databases WHERE name = 'default',→

2022/05/14 11:03:48.519688 info DROP TABLE IF EXISTS
`default`.`github_events5` NO DELAY,→

2022/05/14 11:03:48.522352 info CREATE DATABASE IF NOT EXISTS
`default`,→

Chapter A: Experiment Data 152

2022/05/14 11:03:48.523692 info CREATE TABLE
default.github_events1 UUID
'1711c114-1286-4a0b-8f9a-11fbc6d35b89' (`file_time` DateTime,
`event_type` Enum8('CommitCommentEvent' = 1, 'CreateEvent' = 2,
'DeleteEvent' = 3, 'ForkEvent' = 4, 'GollumEvent' = 5,
'IssueCommentEvent' = 6, 'IssuesEvent' = 7, 'MemberEvent' = 8,
'PublicEvent' = 9, 'PullRequestEvent' = 10,
'PullRequestReviewCommentEvent' = 11, 'PushEvent' = 12,
'ReleaseEvent' = 13, 'SponsorshipEvent' = 14, 'WatchEvent' =
15, 'GistEvent' = 16, 'FollowEvent' = 17, 'DownloadEvent' = 18,
'PullRequestReviewEvent' = 19, 'ForkApplyEvent' = 20, 'Event' =
21, 'TeamAddEvent' = 22), `actor_login` LowCardinality(String),
`repo_name` LowCardinality(String), `created_at` DateTime,
`updated_at` DateTime, `action` Enum8('none' = 0, 'created' =
1, 'added' = 2, 'edited' = 3, 'deleted' = 4, 'opened' = 5,
'closed' = 6, 'reopened' = 7, 'assigned' = 8, 'unassigned' = 9,
'labeled' = 10, 'unlabeled' = 11, 'review_requested' = 12,
'review_request_removed' = 13, 'synchronize' = 14, 'started' =
15, 'published' = 16, 'update' = 17, 'create' = 18, 'fork' =
19, 'merged' = 20), `comment_id` UInt64, `body` String, `path`
String, `position` Int32, `line` Int32, `ref`
LowCardinality(String), `ref_type` Enum8('none' = 0, 'branch' =
1, 'tag' = 2, 'repository' = 3, 'unknown' = 4),
`creator_user_login` LowCardinality(String), `number` UInt32,
`title` String, `labels` Array(LowCardinality(String)), `state`
Enum8('none' = 0, 'open' = 1, 'closed' = 2), `locked` UInt8,
`assignee` LowCardinality(String), `assignees`
Array(LowCardinality(String)), `comments` UInt32,
`author_association` Enum8('NONE' = 0, 'CONTRIBUTOR' = 1,
'OWNER' = 2, 'COLLABORATOR' = 3, 'MEMBER' = 4, 'MANNEQUIN' =
5), `closed_at` DateTime, `merged_at` DateTime,
`merge_commit_sha` String, `requested_reviewers`
Array(LowCardinality(String)), `requested_teams`
Array(LowCardinality(String)), `head_ref`
LowCardinality(String), `head_sha` String, `base_ref`
LowCardinality(String), `base_sha` String, `merged` UInt8,
`mergeable` UInt8, `rebaseable` UInt8, `mergeable_state`
Enum8('unknown' = 0, 'dirty' = 1, 'clean' = 2, 'unstable' = 3,
'draft' = 4), `merged_by` LowCardinality(String),
`review_comments` UInt32, `maintainer_can_modify` UInt8,
`commits` UInt32, `additions` UInt32, `deletions` UInt32,
`changed_files` UInt32, `diff_hunk` String, `original_position`
UInt32, `commit_id` String, `original_commit_id` String,
`push_size` UInt32, `push_distinct_size` UInt32, `member_login`
LowCardinality(String), `release_tag_name` String,
`release_name` String, `review_state` Enum8('none' = 0,
'approved' = 1, 'changes_requested' = 2, 'commented' = 3,
'dismissed' = 4, 'pending' = 5)) ENGINE = MergeTree ORDER BY
(event_type, repo_name, created_at) SETTINGS index_granularity
= 8192

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

Chapter A: Experiment Data 153

2022/05/14 11:03:48.529620 warn can't create table
'default.github_events1': code: 57, message: Directory for
table data store/171/1711c114-1286-4a0b-8f9a-11fbc6d35b89/
already exists, will try again backup=2022-05-11T07-25-16
operation=restore

,→

,→

,→

,→

2022/05/14 11:03:48.529647 info CREATE DATABASE IF NOT EXISTS
`default`,→

Chapter A: Experiment Data 154

2022/05/14 11:03:48.531904 info CREATE TABLE
default.github_events2 UUID
'1991bd38-adaf-4691-aa49-c04b27f61485' (`file_time` DateTime,
`event_type` Enum8('CommitCommentEvent' = 1, 'CreateEvent' = 2,
'DeleteEvent' = 3, 'ForkEvent' = 4, 'GollumEvent' = 5,
'IssueCommentEvent' = 6, 'IssuesEvent' = 7, 'MemberEvent' = 8,
'PublicEvent' = 9, 'PullRequestEvent' = 10,
'PullRequestReviewCommentEvent' = 11, 'PushEvent' = 12,
'ReleaseEvent' = 13, 'SponsorshipEvent' = 14, 'WatchEvent' =
15, 'GistEvent' = 16, 'FollowEvent' = 17, 'DownloadEvent' = 18,
'PullRequestReviewEvent' = 19, 'ForkApplyEvent' = 20, 'Event' =
21, 'TeamAddEvent' = 22), `actor_login` LowCardinality(String),
`repo_name` LowCardinality(String), `created_at` DateTime,
`updated_at` DateTime, `action` Enum8('none' = 0, 'created' =
1, 'added' = 2, 'edited' = 3, 'deleted' = 4, 'opened' = 5,
'closed' = 6, 'reopened' = 7, 'assigned' = 8, 'unassigned' = 9,
'labeled' = 10, 'unlabeled' = 11, 'review_requested' = 12,
'review_request_removed' = 13, 'synchronize' = 14, 'started' =
15, 'published' = 16, 'update' = 17, 'create' = 18, 'fork' =
19, 'merged' = 20), `comment_id` UInt64, `body` String, `path`
String, `position` Int32, `line` Int32, `ref`
LowCardinality(String), `ref_type` Enum8('none' = 0, 'branch' =
1, 'tag' = 2, 'repository' = 3, 'unknown' = 4),
`creator_user_login` LowCardinality(String), `number` UInt32,
`title` String, `labels` Array(LowCardinality(String)), `state`
Enum8('none' = 0, 'open' = 1, 'closed' = 2), `locked` UInt8,
`assignee` LowCardinality(String), `assignees`
Array(LowCardinality(String)), `comments` UInt32,
`author_association` Enum8('NONE' = 0, 'CONTRIBUTOR' = 1,
'OWNER' = 2, 'COLLABORATOR' = 3, 'MEMBER' = 4, 'MANNEQUIN' =
5), `closed_at` DateTime, `merged_at` DateTime,
`merge_commit_sha` String, `requested_reviewers`
Array(LowCardinality(String)), `requested_teams`
Array(LowCardinality(String)), `head_ref`
LowCardinality(String), `head_sha` String, `base_ref`
LowCardinality(String), `base_sha` String, `merged` UInt8,
`mergeable` UInt8, `rebaseable` UInt8, `mergeable_state`
Enum8('unknown' = 0, 'dirty' = 1, 'clean' = 2, 'unstable' = 3,
'draft' = 4), `merged_by` LowCardinality(String),
`review_comments` UInt32, `maintainer_can_modify` UInt8,
`commits` UInt32, `additions` UInt32, `deletions` UInt32,
`changed_files` UInt32, `diff_hunk` String, `original_position`
UInt32, `commit_id` String, `original_commit_id` String,
`push_size` UInt32, `push_distinct_size` UInt32, `member_login`
LowCardinality(String), `release_tag_name` String,
`release_name` String, `review_state` Enum8('none' = 0,
'approved' = 1, 'changes_requested' = 2, 'commented' = 3,
'dismissed' = 4, 'pending' = 5)) ENGINE = MergeTree ORDER BY
(event_type, repo_name, created_at) SETTINGS index_granularity
= 8192

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

Chapter A: Experiment Data 155

2022/05/14 11:03:48.535293 warn can't create table
'default.github_events2': code: 57, message: Directory for
table data store/199/1991bd38-adaf-4691-aa49-c04b27f61485/
already exists, will try again backup=2022-05-11T07-25-16
operation=restore

,→

,→

,→

,→

2022/05/14 11:03:48.535317 info CREATE DATABASE IF NOT EXISTS
`default`,→

Chapter A: Experiment Data 156

2022/05/14 11:03:48.537514 info CREATE TABLE
default.github_events3 UUID
'c403ed92-213a-4245-b98b-408d6fed9377' (`file_time` DateTime,
`event_type` Enum8('CommitCommentEvent' = 1, 'CreateEvent' = 2,
'DeleteEvent' = 3, 'ForkEvent' = 4, 'GollumEvent' = 5,
'IssueCommentEvent' = 6, 'IssuesEvent' = 7, 'MemberEvent' = 8,
'PublicEvent' = 9, 'PullRequestEvent' = 10,
'PullRequestReviewCommentEvent' = 11, 'PushEvent' = 12,
'ReleaseEvent' = 13, 'SponsorshipEvent' = 14, 'WatchEvent' =
15, 'GistEvent' = 16, 'FollowEvent' = 17, 'DownloadEvent' = 18,
'PullRequestReviewEvent' = 19, 'ForkApplyEvent' = 20, 'Event' =
21, 'TeamAddEvent' = 22), `actor_login` LowCardinality(String),
`repo_name` LowCardinality(String), `created_at` DateTime,
`updated_at` DateTime, `action` Enum8('none' = 0, 'created' =
1, 'added' = 2, 'edited' = 3, 'deleted' = 4, 'opened' = 5,
'closed' = 6, 'reopened' = 7, 'assigned' = 8, 'unassigned' = 9,
'labeled' = 10, 'unlabeled' = 11, 'review_requested' = 12,
'review_request_removed' = 13, 'synchronize' = 14, 'started' =
15, 'published' = 16, 'update' = 17, 'create' = 18, 'fork' =
19, 'merged' = 20), `comment_id` UInt64, `body` String, `path`
String, `position` Int32, `line` Int32, `ref`
LowCardinality(String), `ref_type` Enum8('none' = 0, 'branch' =
1, 'tag' = 2, 'repository' = 3, 'unknown' = 4),
`creator_user_login` LowCardinality(String), `number` UInt32,
`title` String, `labels` Array(LowCardinality(String)), `state`
Enum8('none' = 0, 'open' = 1, 'closed' = 2), `locked` UInt8,
`assignee` LowCardinality(String), `assignees`
Array(LowCardinality(String)), `comments` UInt32,
`author_association` Enum8('NONE' = 0, 'CONTRIBUTOR' = 1,
'OWNER' = 2, 'COLLABORATOR' = 3, 'MEMBER' = 4, 'MANNEQUIN' =
5), `closed_at` DateTime, `merged_at` DateTime,
`merge_commit_sha` String, `requested_reviewers`
Array(LowCardinality(String)), `requested_teams`
Array(LowCardinality(String)), `head_ref`
LowCardinality(String), `head_sha` String, `base_ref`
LowCardinality(String), `base_sha` String, `merged` UInt8,
`mergeable` UInt8, `rebaseable` UInt8, `mergeable_state`
Enum8('unknown' = 0, 'dirty' = 1, 'clean' = 2, 'unstable' = 3,
'draft' = 4), `merged_by` LowCardinality(String),
`review_comments` UInt32, `maintainer_can_modify` UInt8,
`commits` UInt32, `additions` UInt32, `deletions` UInt32,
`changed_files` UInt32, `diff_hunk` String, `original_position`
UInt32, `commit_id` String, `original_commit_id` String,
`push_size` UInt32, `push_distinct_size` UInt32, `member_login`
LowCardinality(String), `release_tag_name` String,
`release_name` String, `review_state` Enum8('none' = 0,
'approved' = 1, 'changes_requested' = 2, 'commented' = 3,
'dismissed' = 4, 'pending' = 5)) ENGINE = MergeTree ORDER BY
(event_type, repo_name, created_at) SETTINGS index_granularity
= 8192

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

Chapter A: Experiment Data 157

2022/05/14 11:03:48.541332 warn can't create table
'default.github_events3': code: 57, message: Directory for
table data store/c40/c403ed92-213a-4245-b98b-408d6fed9377/
already exists, will try again backup=2022-05-11T07-25-16
operation=restore

,→

,→

,→

,→

2022/05/14 11:03:48.541354 info CREATE DATABASE IF NOT EXISTS
`default`,→

Chapter A: Experiment Data 158

2022/05/14 11:03:48.543374 info CREATE TABLE
default.github_events4 UUID
'6e6a4e02-a9fa-42ad-a0ce-af77e49a2aee' (`file_time` DateTime,
`event_type` Enum8('CommitCommentEvent' = 1, 'CreateEvent' = 2,
'DeleteEvent' = 3, 'ForkEvent' = 4, 'GollumEvent' = 5,
'IssueCommentEvent' = 6, 'IssuesEvent' = 7, 'MemberEvent' = 8,
'PublicEvent' = 9, 'PullRequestEvent' = 10,
'PullRequestReviewCommentEvent' = 11, 'PushEvent' = 12,
'ReleaseEvent' = 13, 'SponsorshipEvent' = 14, 'WatchEvent' =
15, 'GistEvent' = 16, 'FollowEvent' = 17, 'DownloadEvent' = 18,
'PullRequestReviewEvent' = 19, 'ForkApplyEvent' = 20, 'Event' =
21, 'TeamAddEvent' = 22), `actor_login` LowCardinality(String),
`repo_name` LowCardinality(String), `created_at` DateTime,
`updated_at` DateTime, `action` Enum8('none' = 0, 'created' =
1, 'added' = 2, 'edited' = 3, 'deleted' = 4, 'opened' = 5,
'closed' = 6, 'reopened' = 7, 'assigned' = 8, 'unassigned' = 9,
'labeled' = 10, 'unlabeled' = 11, 'review_requested' = 12,
'review_request_removed' = 13, 'synchronize' = 14, 'started' =
15, 'published' = 16, 'update' = 17, 'create' = 18, 'fork' =
19, 'merged' = 20), `comment_id` UInt64, `body` String, `path`
String, `position` Int32, `line` Int32, `ref`
LowCardinality(String), `ref_type` Enum8('none' = 0, 'branch' =
1, 'tag' = 2, 'repository' = 3, 'unknown' = 4),
`creator_user_login` LowCardinality(String), `number` UInt32,
`title` String, `labels` Array(LowCardinality(String)), `state`
Enum8('none' = 0, 'open' = 1, 'closed' = 2), `locked` UInt8,
`assignee` LowCardinality(String), `assignees`
Array(LowCardinality(String)), `comments` UInt32,
`author_association` Enum8('NONE' = 0, 'CONTRIBUTOR' = 1,
'OWNER' = 2, 'COLLABORATOR' = 3, 'MEMBER' = 4, 'MANNEQUIN' =
5), `closed_at` DateTime, `merged_at` DateTime,
`merge_commit_sha` String, `requested_reviewers`
Array(LowCardinality(String)), `requested_teams`
Array(LowCardinality(String)), `head_ref`
LowCardinality(String), `head_sha` String, `base_ref`
LowCardinality(String), `base_sha` String, `merged` UInt8,
`mergeable` UInt8, `rebaseable` UInt8, `mergeable_state`
Enum8('unknown' = 0, 'dirty' = 1, 'clean' = 2, 'unstable' = 3,
'draft' = 4), `merged_by` LowCardinality(String),
`review_comments` UInt32, `maintainer_can_modify` UInt8,
`commits` UInt32, `additions` UInt32, `deletions` UInt32,
`changed_files` UInt32, `diff_hunk` String, `original_position`
UInt32, `commit_id` String, `original_commit_id` String,
`push_size` UInt32, `push_distinct_size` UInt32, `member_login`
LowCardinality(String), `release_tag_name` String,
`release_name` String, `review_state` Enum8('none' = 0,
'approved' = 1, 'changes_requested' = 2, 'commented' = 3,
'dismissed' = 4, 'pending' = 5)) ENGINE = MergeTree ORDER BY
(event_type, repo_name, created_at) SETTINGS index_granularity
= 8192

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

Chapter A: Experiment Data 159

2022/05/14 11:03:48.546649 warn can't create table
'default.github_events4': code: 57, message: Directory for
table data store/6e6/6e6a4e02-a9fa-42ad-a0ce-af77e49a2aee/
already exists, will try again backup=2022-05-11T07-25-16
operation=restore

,→

,→

,→

,→

2022/05/14 11:03:48.546680 info CREATE DATABASE IF NOT EXISTS
`default`,→

Chapter A: Experiment Data 160

2022/05/14 11:03:48.548692 info CREATE TABLE
default.github_events5 UUID
'697e13ba-37ac-44ac-a7fc-01b0081b4670' (`file_time` DateTime,
`event_type` Enum8('CommitCommentEvent' = 1, 'CreateEvent' = 2,
'DeleteEvent' = 3, 'ForkEvent' = 4, 'GollumEvent' = 5,
'IssueCommentEvent' = 6, 'IssuesEvent' = 7, 'MemberEvent' = 8,
'PublicEvent' = 9, 'PullRequestEvent' = 10,
'PullRequestReviewCommentEvent' = 11, 'PushEvent' = 12,
'ReleaseEvent' = 13, 'SponsorshipEvent' = 14, 'WatchEvent' =
15, 'GistEvent' = 16, 'FollowEvent' = 17, 'DownloadEvent' = 18,
'PullRequestReviewEvent' = 19, 'ForkApplyEvent' = 20, 'Event' =
21, 'TeamAddEvent' = 22), `actor_login` LowCardinality(String),
`repo_name` LowCardinality(String), `created_at` DateTime,
`updated_at` DateTime, `action` Enum8('none' = 0, 'created' =
1, 'added' = 2, 'edited' = 3, 'deleted' = 4, 'opened' = 5,
'closed' = 6, 'reopened' = 7, 'assigned' = 8, 'unassigned' = 9,
'labeled' = 10, 'unlabeled' = 11, 'review_requested' = 12,
'review_request_removed' = 13, 'synchronize' = 14, 'started' =
15, 'published' = 16, 'update' = 17, 'create' = 18, 'fork' =
19, 'merged' = 20), `comment_id` UInt64, `body` String, `path`
String, `position` Int32, `line` Int32, `ref`
LowCardinality(String), `ref_type` Enum8('none' = 0, 'branch' =
1, 'tag' = 2, 'repository' = 3, 'unknown' = 4),
`creator_user_login` LowCardinality(String), `number` UInt32,
`title` String, `labels` Array(LowCardinality(String)), `state`
Enum8('none' = 0, 'open' = 1, 'closed' = 2), `locked` UInt8,
`assignee` LowCardinality(String), `assignees`
Array(LowCardinality(String)), `comments` UInt32,
`author_association` Enum8('NONE' = 0, 'CONTRIBUTOR' = 1,
'OWNER' = 2, 'COLLABORATOR' = 3, 'MEMBER' = 4, 'MANNEQUIN' =
5), `closed_at` DateTime, `merged_at` DateTime,
`merge_commit_sha` String, `requested_reviewers`
Array(LowCardinality(String)), `requested_teams`
Array(LowCardinality(String)), `head_ref`
LowCardinality(String), `head_sha` String, `base_ref`
LowCardinality(String), `base_sha` String, `merged` UInt8,
`mergeable` UInt8, `rebaseable` UInt8, `mergeable_state`
Enum8('unknown' = 0, 'dirty' = 1, 'clean' = 2, 'unstable' = 3,
'draft' = 4), `merged_by` LowCardinality(String),
`review_comments` UInt32, `maintainer_can_modify` UInt8,
`commits` UInt32, `additions` UInt32, `deletions` UInt32,
`changed_files` UInt32, `diff_hunk` String, `original_position`
UInt32, `commit_id` String, `original_commit_id` String,
`push_size` UInt32, `push_distinct_size` UInt32, `member_login`
LowCardinality(String), `release_tag_name` String,
`release_name` String, `review_state` Enum8('none' = 0,
'approved' = 1, 'changes_requested' = 2, 'commented' = 3,
'dismissed' = 4, 'pending' = 5)) ENGINE = MergeTree ORDER BY
(event_type, repo_name, created_at) SETTINGS index_granularity
= 8192

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

Chapter A: Experiment Data 161

2022/05/14 11:03:48.552764 error can't create table
`default`.`github_events5`: code: 57, message: Directory for
table data store/697/697e13ba-37ac-44ac-a7fc-01b0081b4670/
already exists after 5 times, please check your schema
dependencies

,→

,→

,→

,→

#
real 0m0.089s
user 0m0.092s
sys 0m0.022s

The restore fails because some directories apparently already exist. The VM
was restarted.

New attempt at restoring from a local backup:

time ./clickhouse-backup restore 2022-05-11T07-25-16
2022/05/14 11:08:27.188612 info SELECT value FROM

`system`.`build_options` where name='VERSION_INTEGER',→

2022/05/14 11:08:27.191239 info SELECT * FROM system.disks;
2022/05/14 11:08:27.193861 info CREATE DATABASE IF NOT EXISTS

default,→

ENGINE = Atomic
2022/05/14 11:08:27.195504 info SELECT engine FROM

system.databases WHERE name = 'default',→

2022/05/14 11:08:27.198077 info DROP TABLE IF EXISTS
`default`.`github_events1` NO DELAY,→

2022/05/14 11:08:27.200105 info SELECT engine FROM
system.databases WHERE name = 'default',→

2022/05/14 11:08:27.203430 info DROP TABLE IF EXISTS
`default`.`github_events2` NO DELAY,→

2022/05/14 11:08:27.205062 info SELECT engine FROM
system.databases WHERE name = 'default',→

2022/05/14 11:08:27.207140 info DROP TABLE IF EXISTS
`default`.`github_events3` NO DELAY,→

2022/05/14 11:08:27.209092 info SELECT engine FROM
system.databases WHERE name = 'default',→

2022/05/14 11:08:27.211382 info DROP TABLE IF EXISTS
`default`.`github_events4` NO DELAY,→

2022/05/14 11:08:27.212707 info SELECT engine FROM
system.databases WHERE name = 'default',→

2022/05/14 11:08:27.215804 info DROP TABLE IF EXISTS
`default`.`github_events5` NO DELAY,→

2022/05/14 11:08:27.217320 info CREATE DATABASE IF NOT EXISTS
`default`,→

Chapter A: Experiment Data 162

2022/05/14 11:08:27.219084 info CREATE TABLE
default.github_events1 UUID
'1711c114-1286-4a0b-8f9a-11fbc6d35b89' (`file_time` DateTime,
`event_type` Enum8('CommitCommentEvent' = 1, 'CreateEvent' = 2,
'DeleteEvent' = 3, 'ForkEvent' = 4, 'GollumEvent' = 5,
'IssueCommentEvent' = 6, 'IssuesEvent' = 7, 'MemberEvent' = 8,
'PublicEvent' = 9, 'PullRequestEvent' = 10,
'PullRequestReviewCommentEvent' = 11, 'PushEvent' = 12,
'ReleaseEvent' = 13, 'SponsorshipEvent' = 14, 'WatchEvent' =
15, 'GistEvent' = 16, 'FollowEvent' = 17, 'DownloadEvent' = 18,
'PullRequestReviewEvent' = 19, 'ForkApplyEvent' = 20, 'Event' =
21, 'TeamAddEvent' = 22), `actor_login` LowCardinality(String),
`repo_name` LowCardinality(String), `created_at` DateTime,
`updated_at` DateTime, `action` Enum8('none' = 0, 'created' =
1, 'added' = 2, 'edited' = 3, 'deleted' = 4, 'opened' = 5,
'closed' = 6, 'reopened' = 7, 'assigned' = 8, 'unassigned' = 9,
'labeled' = 10, 'unlabeled' = 11, 'review_requested' = 12,
'review_request_removed' = 13, 'synchronize' = 14, 'started' =
15, 'published' = 16, 'update' = 17, 'create' = 18, 'fork' =
19, 'merged' = 20), `comment_id` UInt64, `body` String, `path`
String, `position` Int32, `line` Int32, `ref`
LowCardinality(String), `ref_type` Enum8('none' = 0, 'branch' =
1, 'tag' = 2, 'repository' = 3, 'unknown' = 4),
`creator_user_login` LowCardinality(String), `number` UInt32,
`title` String, `labels` Array(LowCardinality(String)), `state`
Enum8('none' = 0, 'open' = 1, 'closed' = 2), `locked` UInt8,
`assignee` LowCardinality(String), `assignees`
Array(LowCardinality(String)), `comments` UInt32,
`author_association` Enum8('NONE' = 0, 'CONTRIBUTOR' = 1,
'OWNER' = 2, 'COLLABORATOR' = 3, 'MEMBER' = 4, 'MANNEQUIN' =
5), `closed_at` DateTime, `merged_at` DateTime,
`merge_commit_sha` String, `requested_reviewers`
Array(LowCardinality(String)), `requested_teams`
Array(LowCardinality(String)), `head_ref`
LowCardinality(String), `head_sha` String, `base_ref`
LowCardinality(String), `base_sha` String, `merged` UInt8,
`mergeable` UInt8, `rebaseable` UInt8, `mergeable_state`
Enum8('unknown' = 0, 'dirty' = 1, 'clean' = 2, 'unstable' = 3,
'draft' = 4), `merged_by` LowCardinality(String),
`review_comments` UInt32, `maintainer_can_modify` UInt8,
`commits` UInt32, `additions` UInt32, `deletions` UInt32,
`changed_files` UInt32, `diff_hunk` String, `original_position`
UInt32, `commit_id` String, `original_commit_id` String,
`push_size` UInt32, `push_distinct_size` UInt32, `member_login`
LowCardinality(String), `release_tag_name` String,
`release_name` String, `review_state` Enum8('none' = 0,
'approved' = 1, 'changes_requested' = 2, 'commented' = 3,
'dismissed' = 4, 'pending' = 5)) ENGINE = MergeTree ORDER BY
(event_type, repo_name, created_at) SETTINGS index_granularity
= 8192

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

Chapter A: Experiment Data 163

2022/05/14 11:08:27.234314 info CREATE DATABASE IF NOT EXISTS
`default`,→

Chapter A: Experiment Data 164

2022/05/14 11:08:27.236603 info CREATE TABLE
default.github_events2 UUID
'1991bd38-adaf-4691-aa49-c04b27f61485' (`file_time` DateTime,
`event_type` Enum8('CommitCommentEvent' = 1, 'CreateEvent' = 2,
'DeleteEvent' = 3, 'ForkEvent' = 4, 'GollumEvent' = 5,
'IssueCommentEvent' = 6, 'IssuesEvent' = 7, 'MemberEvent' = 8,
'PublicEvent' = 9, 'PullRequestEvent' = 10,
'PullRequestReviewCommentEvent' = 11, 'PushEvent' = 12,
'ReleaseEvent' = 13, 'SponsorshipEvent' = 14, 'WatchEvent' =
15, 'GistEvent' = 16, 'FollowEvent' = 17, 'DownloadEvent' = 18,
'PullRequestReviewEvent' = 19, 'ForkApplyEvent' = 20, 'Event' =
21, 'TeamAddEvent' = 22), `actor_login` LowCardinality(String),
`repo_name` LowCardinality(String), `created_at` DateTime,
`updated_at` DateTime, `action` Enum8('none' = 0, 'created' =
1, 'added' = 2, 'edited' = 3, 'deleted' = 4, 'opened' = 5,
'closed' = 6, 'reopened' = 7, 'assigned' = 8, 'unassigned' = 9,
'labeled' = 10, 'unlabeled' = 11, 'review_requested' = 12,
'review_request_removed' = 13, 'synchronize' = 14, 'started' =
15, 'published' = 16, 'update' = 17, 'create' = 18, 'fork' =
19, 'merged' = 20), `comment_id` UInt64, `body` String, `path`
String, `position` Int32, `line` Int32, `ref`
LowCardinality(String), `ref_type` Enum8('none' = 0, 'branch' =
1, 'tag' = 2, 'repository' = 3, 'unknown' = 4),
`creator_user_login` LowCardinality(String), `number` UInt32,
`title` String, `labels` Array(LowCardinality(String)), `state`
Enum8('none' = 0, 'open' = 1, 'closed' = 2), `locked` UInt8,
`assignee` LowCardinality(String), `assignees`
Array(LowCardinality(String)), `comments` UInt32,
`author_association` Enum8('NONE' = 0, 'CONTRIBUTOR' = 1,
'OWNER' = 2, 'COLLABORATOR' = 3, 'MEMBER' = 4, 'MANNEQUIN' =
5), `closed_at` DateTime, `merged_at` DateTime,
`merge_commit_sha` String, `requested_reviewers`
Array(LowCardinality(String)), `requested_teams`
Array(LowCardinality(String)), `head_ref`
LowCardinality(String), `head_sha` String, `base_ref`
LowCardinality(String), `base_sha` String, `merged` UInt8,
`mergeable` UInt8, `rebaseable` UInt8, `mergeable_state`
Enum8('unknown' = 0, 'dirty' = 1, 'clean' = 2, 'unstable' = 3,
'draft' = 4), `merged_by` LowCardinality(String),
`review_comments` UInt32, `maintainer_can_modify` UInt8,
`commits` UInt32, `additions` UInt32, `deletions` UInt32,
`changed_files` UInt32, `diff_hunk` String, `original_position`
UInt32, `commit_id` String, `original_commit_id` String,
`push_size` UInt32, `push_distinct_size` UInt32, `member_login`
LowCardinality(String), `release_tag_name` String,
`release_name` String, `review_state` Enum8('none' = 0,
'approved' = 1, 'changes_requested' = 2, 'commented' = 3,
'dismissed' = 4, 'pending' = 5)) ENGINE = MergeTree ORDER BY
(event_type, repo_name, created_at) SETTINGS index_granularity
= 8192

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

Chapter A: Experiment Data 165

2022/05/14 11:08:27.241784 info CREATE DATABASE IF NOT EXISTS
`default`,→

Chapter A: Experiment Data 166

2022/05/14 11:08:27.243580 info CREATE TABLE
default.github_events3 UUID
'c403ed92-213a-4245-b98b-408d6fed9377' (`file_time` DateTime,
`event_type` Enum8('CommitCommentEvent' = 1, 'CreateEvent' = 2,
'DeleteEvent' = 3, 'ForkEvent' = 4, 'GollumEvent' = 5,
'IssueCommentEvent' = 6, 'IssuesEvent' = 7, 'MemberEvent' = 8,
'PublicEvent' = 9, 'PullRequestEvent' = 10,
'PullRequestReviewCommentEvent' = 11, 'PushEvent' = 12,
'ReleaseEvent' = 13, 'SponsorshipEvent' = 14, 'WatchEvent' =
15, 'GistEvent' = 16, 'FollowEvent' = 17, 'DownloadEvent' = 18,
'PullRequestReviewEvent' = 19, 'ForkApplyEvent' = 20, 'Event' =
21, 'TeamAddEvent' = 22), `actor_login` LowCardinality(String),
`repo_name` LowCardinality(String), `created_at` DateTime,
`updated_at` DateTime, `action` Enum8('none' = 0, 'created' =
1, 'added' = 2, 'edited' = 3, 'deleted' = 4, 'opened' = 5,
'closed' = 6, 'reopened' = 7, 'assigned' = 8, 'unassigned' = 9,
'labeled' = 10, 'unlabeled' = 11, 'review_requested' = 12,
'review_request_removed' = 13, 'synchronize' = 14, 'started' =
15, 'published' = 16, 'update' = 17, 'create' = 18, 'fork' =
19, 'merged' = 20), `comment_id` UInt64, `body` String, `path`
String, `position` Int32, `line` Int32, `ref`
LowCardinality(String), `ref_type` Enum8('none' = 0, 'branch' =
1, 'tag' = 2, 'repository' = 3, 'unknown' = 4),
`creator_user_login` LowCardinality(String), `number` UInt32,
`title` String, `labels` Array(LowCardinality(String)), `state`
Enum8('none' = 0, 'open' = 1, 'closed' = 2), `locked` UInt8,
`assignee` LowCardinality(String), `assignees`
Array(LowCardinality(String)), `comments` UInt32,
`author_association` Enum8('NONE' = 0, 'CONTRIBUTOR' = 1,
'OWNER' = 2, 'COLLABORATOR' = 3, 'MEMBER' = 4, 'MANNEQUIN' =
5), `closed_at` DateTime, `merged_at` DateTime,
`merge_commit_sha` String, `requested_reviewers`
Array(LowCardinality(String)), `requested_teams`
Array(LowCardinality(String)), `head_ref`
LowCardinality(String), `head_sha` String, `base_ref`
LowCardinality(String), `base_sha` String, `merged` UInt8,
`mergeable` UInt8, `rebaseable` UInt8, `mergeable_state`
Enum8('unknown' = 0, 'dirty' = 1, 'clean' = 2, 'unstable' = 3,
'draft' = 4), `merged_by` LowCardinality(String),
`review_comments` UInt32, `maintainer_can_modify` UInt8,
`commits` UInt32, `additions` UInt32, `deletions` UInt32,
`changed_files` UInt32, `diff_hunk` String, `original_position`
UInt32, `commit_id` String, `original_commit_id` String,
`push_size` UInt32, `push_distinct_size` UInt32, `member_login`
LowCardinality(String), `release_tag_name` String,
`release_name` String, `review_state` Enum8('none' = 0,
'approved' = 1, 'changes_requested' = 2, 'commented' = 3,
'dismissed' = 4, 'pending' = 5)) ENGINE = MergeTree ORDER BY
(event_type, repo_name, created_at) SETTINGS index_granularity
= 8192

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

Chapter A: Experiment Data 167

2022/05/14 11:08:27.247996 info CREATE DATABASE IF NOT EXISTS
`default`,→

Chapter A: Experiment Data 168

2022/05/14 11:08:27.249709 info CREATE TABLE
default.github_events4 UUID
'6e6a4e02-a9fa-42ad-a0ce-af77e49a2aee' (`file_time` DateTime,
`event_type` Enum8('CommitCommentEvent' = 1, 'CreateEvent' = 2,
'DeleteEvent' = 3, 'ForkEvent' = 4, 'GollumEvent' = 5,
'IssueCommentEvent' = 6, 'IssuesEvent' = 7, 'MemberEvent' = 8,
'PublicEvent' = 9, 'PullRequestEvent' = 10,
'PullRequestReviewCommentEvent' = 11, 'PushEvent' = 12,
'ReleaseEvent' = 13, 'SponsorshipEvent' = 14, 'WatchEvent' =
15, 'GistEvent' = 16, 'FollowEvent' = 17, 'DownloadEvent' = 18,
'PullRequestReviewEvent' = 19, 'ForkApplyEvent' = 20, 'Event' =
21, 'TeamAddEvent' = 22), `actor_login` LowCardinality(String),
`repo_name` LowCardinality(String), `created_at` DateTime,
`updated_at` DateTime, `action` Enum8('none' = 0, 'created' =
1, 'added' = 2, 'edited' = 3, 'deleted' = 4, 'opened' = 5,
'closed' = 6, 'reopened' = 7, 'assigned' = 8, 'unassigned' = 9,
'labeled' = 10, 'unlabeled' = 11, 'review_requested' = 12,
'review_request_removed' = 13, 'synchronize' = 14, 'started' =
15, 'published' = 16, 'update' = 17, 'create' = 18, 'fork' =
19, 'merged' = 20), `comment_id` UInt64, `body` String, `path`
String, `position` Int32, `line` Int32, `ref`
LowCardinality(String), `ref_type` Enum8('none' = 0, 'branch' =
1, 'tag' = 2, 'repository' = 3, 'unknown' = 4),
`creator_user_login` LowCardinality(String), `number` UInt32,
`title` String, `labels` Array(LowCardinality(String)), `state`
Enum8('none' = 0, 'open' = 1, 'closed' = 2), `locked` UInt8,
`assignee` LowCardinality(String), `assignees`
Array(LowCardinality(String)), `comments` UInt32,
`author_association` Enum8('NONE' = 0, 'CONTRIBUTOR' = 1,
'OWNER' = 2, 'COLLABORATOR' = 3, 'MEMBER' = 4, 'MANNEQUIN' =
5), `closed_at` DateTime, `merged_at` DateTime,
`merge_commit_sha` String, `requested_reviewers`
Array(LowCardinality(String)), `requested_teams`
Array(LowCardinality(String)), `head_ref`
LowCardinality(String), `head_sha` String, `base_ref`
LowCardinality(String), `base_sha` String, `merged` UInt8,
`mergeable` UInt8, `rebaseable` UInt8, `mergeable_state`
Enum8('unknown' = 0, 'dirty' = 1, 'clean' = 2, 'unstable' = 3,
'draft' = 4), `merged_by` LowCardinality(String),
`review_comments` UInt32, `maintainer_can_modify` UInt8,
`commits` UInt32, `additions` UInt32, `deletions` UInt32,
`changed_files` UInt32, `diff_hunk` String, `original_position`
UInt32, `commit_id` String, `original_commit_id` String,
`push_size` UInt32, `push_distinct_size` UInt32, `member_login`
LowCardinality(String), `release_tag_name` String,
`release_name` String, `review_state` Enum8('none' = 0,
'approved' = 1, 'changes_requested' = 2, 'commented' = 3,
'dismissed' = 4, 'pending' = 5)) ENGINE = MergeTree ORDER BY
(event_type, repo_name, created_at) SETTINGS index_granularity
= 8192

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

Chapter A: Experiment Data 169

2022/05/14 11:08:27.254263 info CREATE DATABASE IF NOT EXISTS
`default`,→

Chapter A: Experiment Data 170

2022/05/14 11:08:27.256082 info CREATE TABLE
default.github_events5 UUID
'697e13ba-37ac-44ac-a7fc-01b0081b4670' (`file_time` DateTime,
`event_type` Enum8('CommitCommentEvent' = 1, 'CreateEvent' = 2,
'DeleteEvent' = 3, 'ForkEvent' = 4, 'GollumEvent' = 5,
'IssueCommentEvent' = 6, 'IssuesEvent' = 7, 'MemberEvent' = 8,
'PublicEvent' = 9, 'PullRequestEvent' = 10,
'PullRequestReviewCommentEvent' = 11, 'PushEvent' = 12,
'ReleaseEvent' = 13, 'SponsorshipEvent' = 14, 'WatchEvent' =
15, 'GistEvent' = 16, 'FollowEvent' = 17, 'DownloadEvent' = 18,
'PullRequestReviewEvent' = 19, 'ForkApplyEvent' = 20, 'Event' =
21, 'TeamAddEvent' = 22), `actor_login` LowCardinality(String),
`repo_name` LowCardinality(String), `created_at` DateTime,
`updated_at` DateTime, `action` Enum8('none' = 0, 'created' =
1, 'added' = 2, 'edited' = 3, 'deleted' = 4, 'opened' = 5,
'closed' = 6, 'reopened' = 7, 'assigned' = 8, 'unassigned' = 9,
'labeled' = 10, 'unlabeled' = 11, 'review_requested' = 12,
'review_request_removed' = 13, 'synchronize' = 14, 'started' =
15, 'published' = 16, 'update' = 17, 'create' = 18, 'fork' =
19, 'merged' = 20), `comment_id` UInt64, `body` String, `path`
String, `position` Int32, `line` Int32, `ref`
LowCardinality(String), `ref_type` Enum8('none' = 0, 'branch' =
1, 'tag' = 2, 'repository' = 3, 'unknown' = 4),
`creator_user_login` LowCardinality(String), `number` UInt32,
`title` String, `labels` Array(LowCardinality(String)), `state`
Enum8('none' = 0, 'open' = 1, 'closed' = 2), `locked` UInt8,
`assignee` LowCardinality(String), `assignees`
Array(LowCardinality(String)), `comments` UInt32,
`author_association` Enum8('NONE' = 0, 'CONTRIBUTOR' = 1,
'OWNER' = 2, 'COLLABORATOR' = 3, 'MEMBER' = 4, 'MANNEQUIN' =
5), `closed_at` DateTime, `merged_at` DateTime,
`merge_commit_sha` String, `requested_reviewers`
Array(LowCardinality(String)), `requested_teams`
Array(LowCardinality(String)), `head_ref`
LowCardinality(String), `head_sha` String, `base_ref`
LowCardinality(String), `base_sha` String, `merged` UInt8,
`mergeable` UInt8, `rebaseable` UInt8, `mergeable_state`
Enum8('unknown' = 0, 'dirty' = 1, 'clean' = 2, 'unstable' = 3,
'draft' = 4), `merged_by` LowCardinality(String),
`review_comments` UInt32, `maintainer_can_modify` UInt8,
`commits` UInt32, `additions` UInt32, `deletions` UInt32,
`changed_files` UInt32, `diff_hunk` String, `original_position`
UInt32, `commit_id` String, `original_commit_id` String,
`push_size` UInt32, `push_distinct_size` UInt32, `member_login`
LowCardinality(String), `release_tag_name` String,
`release_name` String, `review_state` Enum8('none' = 0,
'approved' = 1, 'changes_requested' = 2, 'commented' = 3,
'dismissed' = 4, 'pending' = 5)) ENGINE = MergeTree ORDER BY
(event_type, repo_name, created_at) SETTINGS index_granularity
= 8192

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

Chapter A: Experiment Data 171

2022/05/14 11:08:27.262311 info SELECT count() FROM
system.settings WHERE name =
'show_table_uuid_in_table_create_query_if_not_nil'

,→

,→

2022/05/14 11:08:27.265255 info SELECT name FROM
system.databases WHERE engine IN ('MySQL','PostgreSQL'),→

2022/05/14 11:08:27.267740 info
SELECT
countIf(name='data_path')

is_data_path_present,,→

countIf(name='data_paths')
is_data_paths_present,,→

countIf(name='uuid') is_uuid_present,
countIf(name='create_table_query')

is_create_table_query_present,,→

countIf(name='total_bytes')
is_total_bytes_present,→

FROM system.columns WHERE database='system' AND
table='tables',→

#
2022/05/14 11:08:27.271152 info SELECT database, name, engine ,

data_paths , uuid , create_table_query , coalesce(total_bytes,
0) AS total_bytes FROM system.tables WHERE is_temporary = 0
SETTINGS show_table_uuid_in_table_create_query_if_not_nil=1

,→

,→

,→

2022/05/14 11:08:27.279692 info SELECT sum(bytes_on_disk) as
size FROM system.parts WHERE database='default' AND
table='github_events1' GROUP BY database, table

,→

,→

2022/05/14 11:08:27.282537 info SELECT sum(bytes_on_disk) as
size FROM system.parts WHERE database='default' AND
table='github_events2' GROUP BY database, table

,→

,→

2022/05/14 11:08:27.285404 info SELECT sum(bytes_on_disk) as
size FROM system.parts WHERE database='default' AND
table='github_events3' GROUP BY database, table

,→

,→

2022/05/14 11:08:27.288135 info SELECT sum(bytes_on_disk) as
size FROM system.parts WHERE database='default' AND
table='github_events4' GROUP BY database, table

,→

,→

2022/05/14 11:08:27.309797 info SELECT sum(bytes_on_disk) as
size FROM system.parts WHERE database='default' AND
table='github_events5' GROUP BY database, table

,→

,→

2022/05/14 11:08:27.336982 info ALTER TABLE
`default`.`github_events1` ATTACH PART 'all_1610_2464_4',→

2022/05/14 11:08:27.350624 info ALTER TABLE
`default`.`github_events1` ATTACH PART 'all_1_673_4',→

2022/05/14 11:08:27.384390 info ALTER TABLE
`default`.`github_events1` ATTACH PART 'all_2465_3440_4',→

Chapter A: Experiment Data 172

2022/05/14 11:08:27.396689 info ALTER TABLE
`default`.`github_events1` ATTACH PART 'all_3441_4218_4',→

2022/05/14 11:08:28.992399 info ALTER TABLE
`default`.`github_events1` ATTACH PART 'all_4219_5004_4',→

2022/05/14 11:08:29.030771 info ALTER TABLE
`default`.`github_events1` ATTACH PART 'all_5005_5175_3',→

2022/05/14 11:08:29.040817 info ALTER TABLE
`default`.`github_events1` ATTACH PART 'all_5176_5206_2',→

2022/05/14 11:08:29.045172 info ALTER TABLE
`default`.`github_events1` ATTACH PART 'all_5207_5213_1',→

2022/05/14 11:08:29.049166 info ALTER TABLE
`default`.`github_events1` ATTACH PART 'all_5214_5219_1',→

2022/05/14 11:08:29.052533 info ALTER TABLE
`default`.`github_events1` ATTACH PART 'all_5220_5225_1',→

2022/05/14 11:08:29.056002 info ALTER TABLE
`default`.`github_events1` ATTACH PART 'all_5226_5231_1',→

2022/05/14 11:08:29.059550 info ALTER TABLE
`default`.`github_events1` ATTACH PART 'all_674_1609_4',→

2022/05/14 11:08:29.075561 info done
backup=2022-05-11T07-25-16 operation=restore
table=default.github_events1

,→

,→

2022/05/14 11:08:29.096382 info ALTER TABLE
`default`.`github_events2` ATTACH PART 'all_1612_2460_4',→

2022/05/14 11:08:29.110102 info ALTER TABLE
`default`.`github_events2` ATTACH PART 'all_1_700_4',→

2022/05/14 11:08:29.141549 info ALTER TABLE
`default`.`github_events2` ATTACH PART 'all_2461_3426_4',→

2022/05/14 11:08:29.154434 info ALTER TABLE
`default`.`github_events2` ATTACH PART 'all_3427_4340_4',→

2022/05/14 11:08:29.197997 info ALTER TABLE
`default`.`github_events2` ATTACH PART 'all_4341_5037_4',→

2022/05/14 11:08:29.232228 info ALTER TABLE
`default`.`github_events2` ATTACH PART 'all_5038_5070_2',→

2022/05/14 11:08:29.237555 info ALTER TABLE
`default`.`github_events2` ATTACH PART 'all_5071_5223_3',→

2022/05/14 11:08:29.246467 info ALTER TABLE
`default`.`github_events2` ATTACH PART 'all_5224_5229_1',→

2022/05/14 11:08:29.250524 info ALTER TABLE
`default`.`github_events2` ATTACH PART 'all_5230_5230_0',→

2022/05/14 11:08:29.254688 info ALTER TABLE
`default`.`github_events2` ATTACH PART 'all_5231_5231_0',→

2022/05/14 11:08:29.258458 info ALTER TABLE
`default`.`github_events2` ATTACH PART 'all_701_1611_4',→

Chapter A: Experiment Data 173

2022/05/14 11:08:29.273429 info done
backup=2022-05-11T07-25-16 operation=restore
table=default.github_events2

,→

,→

2022/05/14 11:08:29.297371 info ALTER TABLE
`default`.`github_events3` ATTACH PART 'all_1600_2557_4',→

2022/05/14 11:08:29.311401 info ALTER TABLE
`default`.`github_events3` ATTACH PART 'all_1_722_4',→

2022/05/14 11:08:29.342883 info ALTER TABLE
`default`.`github_events3` ATTACH PART 'all_2558_3428_4',→

2022/05/14 11:08:29.355298 info ALTER TABLE
`default`.`github_events3` ATTACH PART 'all_3429_4208_4',→

2022/05/14 11:08:29.392131 info ALTER TABLE
`default`.`github_events3` ATTACH PART 'all_4209_5023_4',→

2022/05/14 11:08:29.432268 info ALTER TABLE
`default`.`github_events3` ATTACH PART 'all_5024_5204_3',→

2022/05/14 11:08:29.444730 info ALTER TABLE
`default`.`github_events3` ATTACH PART 'all_5205_5212_1',→

2022/05/14 11:08:29.449364 info ALTER TABLE
`default`.`github_events3` ATTACH PART 'all_5213_5218_1',→

2022/05/14 11:08:29.453913 info ALTER TABLE
`default`.`github_events3` ATTACH PART 'all_5219_5224_1',→

2022/05/14 11:08:29.457986 info ALTER TABLE
`default`.`github_events3` ATTACH PART 'all_5225_5230_1',→

2022/05/14 11:08:29.461761 info ALTER TABLE
`default`.`github_events3` ATTACH PART 'all_5231_5231_0',→

2022/05/14 11:08:29.464290 info ALTER TABLE
`default`.`github_events3` ATTACH PART 'all_723_1599_4',→

2022/05/14 11:08:29.479531 info done
backup=2022-05-11T07-25-16 operation=restore
table=default.github_events3

,→

,→

2022/05/14 11:08:29.500687 info ALTER TABLE
`default`.`github_events4` ATTACH PART 'all_1899_2864_4',→

2022/05/14 11:08:29.512288 info ALTER TABLE
`default`.`github_events4` ATTACH PART 'all_1_1898_5',→

2022/05/14 11:08:29.559629 info ALTER TABLE
`default`.`github_events4` ATTACH PART 'all_2865_4197_5',→

2022/05/14 11:08:29.598962 info ALTER TABLE
`default`.`github_events4` ATTACH PART 'all_4198_5026_4',→

2022/05/14 11:08:29.636805 info ALTER TABLE
`default`.`github_events4` ATTACH PART 'all_5027_5197_3',→

2022/05/14 11:08:29.648912 info ALTER TABLE
`default`.`github_events4` ATTACH PART 'all_5198_5204_1',→

2022/05/14 11:08:29.652660 info ALTER TABLE
`default`.`github_events4` ATTACH PART 'all_5205_5212_1',→

Chapter A: Experiment Data 174

2022/05/14 11:08:29.658078 info ALTER TABLE
`default`.`github_events4` ATTACH PART 'all_5213_5218_1',→

2022/05/14 11:08:29.660785 info ALTER TABLE
`default`.`github_events4` ATTACH PART 'all_5219_5224_1',→

2022/05/14 11:08:29.664747 info ALTER TABLE
`default`.`github_events4` ATTACH PART 'all_5225_5230_1',→

2022/05/14 11:08:29.668866 info ALTER TABLE
`default`.`github_events4` ATTACH PART 'all_5231_5231_0',→

2022/05/14 11:08:29.673154 info done
backup=2022-05-11T07-25-16 operation=restore
table=default.github_events4

,→

,→

2022/05/14 11:08:29.692356 info ALTER TABLE
`default`.`github_events5` ATTACH PART 'all_1761_2815_4',→

2022/05/14 11:08:29.705300 info ALTER TABLE
`default`.`github_events5` ATTACH PART 'all_1_686_4',→

2022/05/14 11:08:29.735563 info ALTER TABLE
`default`.`github_events5` ATTACH PART 'all_2816_4010_5',→

2022/05/14 11:08:29.768306 info ALTER TABLE
`default`.`github_events5` ATTACH PART 'all_4011_4912_4',→

2022/05/14 11:08:29.810721 info ALTER TABLE
`default`.`github_events5` ATTACH PART 'all_4913_4982_3',→

2022/05/14 11:08:29.819110 info ALTER TABLE
`default`.`github_events5` ATTACH PART 'all_4983_5150_3',→

2022/05/14 11:08:29.829574 info ALTER TABLE
`default`.`github_events5` ATTACH PART 'all_5151_5184_2',→

2022/05/14 11:08:29.834708 info ALTER TABLE
`default`.`github_events5` ATTACH PART 'all_5185_5230_2',→

2022/05/14 11:08:29.839591 info ALTER TABLE
`default`.`github_events5` ATTACH PART 'all_5231_5231_0',→

2022/05/14 11:08:29.843270 info ALTER TABLE
`default`.`github_events5` ATTACH PART 'all_687_1760_4',→

2022/05/14 11:08:29.860576 info done
backup=2022-05-11T07-25-16 operation=restore
table=default.github_events5

,→

,→

2022/05/14 11:08:29.860615 info done
backup=2022-05-11T07-25-16 duration=2.6s operation=restore,→

2022/05/14 11:08:29.860642 info done
backup=2022-05-11T07-25-16 operation=restore,→

#
real 0m2.687s
user 0m0.339s
sys 0m0.191s

The restoration appears to be successful. It took 2.687s
Verify table sizes:

Chapter A: Experiment Data 175

SELECT
database,
table,
formatReadableSize(sum(data_compressed_bytes) AS size) AS

compressed,,→

formatReadableSize(sum(data_uncompressed_bytes) AS usize) AS
uncompressed,,→

round(usize / size, 2) AS compr_rate,
sum(rows) AS rows,
count() AS part_count

FROM system.parts
WHERE (active = 1) AND (database LIKE '%') AND (table LIKE '%')
GROUP BY

database,
table

ORDER BY size DESC

Output (correct):

New attempt at downloading

Delete local backup:

./clickhouse-backup delete local 2022-05-11T07-25-16
2022/05/14 11:14:26.277665 info SELECT value FROM

`system`.`build_options` where name='VERSION_INTEGER',→

2022/05/14 11:14:26.280677 info SELECT * FROM system.disks;
2022/05/14 11:14:26.327285 info done

backup=2022-05-11T07-25-16 duration=52ms location=local
operation=delete

,→

,→

List remote backups

./clickhouse-backup list remote --config config.yaml
2022/05/14 11:15:16.688656 info SELECT max(toInt64(bytes_on_disk

* 1.02)) AS max_file_size FROM system.parts,→

Chapter A: Experiment Data 176

2022-05-11T07-25-16 895.29GiB 11/05/2022 10:44:05 remote
tar,→

2022-05-14T10-12-59 2.81KiB 14/05/2022 10:13:31 remote
tar,→

Downloading the remote backup failed once again:

time ./clickhouse-backup download 2022-05-11T07-25-16 --config
config.yaml,→

2022/05/14 11:16:23.426432 info SELECT value FROM
`system`.`build_options` where name='VERSION_INTEGER',→

2022/05/14 11:16:23.428319 info SELECT * FROM system.disks;
2022/05/14 11:16:23.433846 info SELECT max(toInt64(bytes_on_disk

* 1.02)) AS max_file_size FROM system.parts,→

2022/05/14 11:16:23.506743 info done
backup=2022-05-11T07-25-16 duration=16ms operation=download
size=3.36KiB table_metadata=default.github_events1

,→

,→

2022/05/14 11:16:23.512251 info done
backup=2022-05-11T07-25-16 duration=5ms operation=download
size=3.32KiB table_metadata=default.github_events2

,→

,→

2022/05/14 11:16:23.517891 info done
backup=2022-05-11T07-25-16 duration=6ms operation=download
size=3.36KiB table_metadata=default.github_events3

,→

,→

2022/05/14 11:16:23.522455 info done
backup=2022-05-11T07-25-16 duration=5ms operation=download
size=3.32KiB table_metadata=default.github_events4

,→

,→

2022/05/14 11:16:23.527403 info done
backup=2022-05-11T07-25-16 duration=5ms operation=download
size=3.28KiB table_metadata=default.github_events5

,→

,→

2022/05/14 11:17:23.532041 error can't acquire semaphore during
downloadTableData: context canceled---------] 70.38% 59s,→

2022/05/14 11:17:23.697884 error can't acquire semaphore during
Download: context canceled backup=2022-05-11T07-25-16
operation=download

,→

,→

2022/05/14 11:18:23.730339 error can't acquire semaphore during
downloadTableData: context canceled---------] 9.31% 59s,→

2022/05/14 11:18:23.914406 error one of Download go-routine
return error: one of downloadTableData go-routine return error:
handling file: /all_3441_4218_4/push_distinct_size.bin: context
deadline exceeded

,→

,→

,→

#
real 2m0.504s
user 0m11.834s
sys 0m16.363s

Chapter A: Experiment Data 177

A.5 Encrypt ClickHouse and recover from backup

In this experiment, we install ccrypt (an encryption tool) in order to encrypt
database files and observe the results. Afterwards, we recover the VM using clickhouse-
backup and Azure Backup respectively. We attempted to encrypt a single file, as
well as an entire directory.

This experiment has two main objectives. One is to encrypt data files used by
ClickHouse and observe the results. How will database queries be affected? Is it
possible to detect a ransomware that encrypts ClickHouse’s data files? The other
objective is to recover the database after the files have been encrypted. The goal
is to learn how to configure and use both clickhouse-backup and Azure Backup,
as well as evaluating their usability.

A.5.1 Procedure

Files were encrypted by using the tool ccryptwith an empty passphrase (example:
ccrypt -e filename).

SQL queries were run as azureuser (the default, non-root user) via clickhouse-
client.

Bash commands were also run as azureuser. Commands were run in /home/
azureuser unless specified otherwise.

The output of commands and queries are shown in comments (# for bash
and PowerShell, -- for SQL) beneath the command or query. Comments used to
explain what a command does are placed above the command. The variables from
A.1 need to be declared in order for many commands to work.

A.5.2 Determine which files to encrypt

Before we could encrypt files, we had to find out which files to encrypt.
In order to find out where table data is stored, the path to the cell_towers

table was fetched from system.parts, which, as the name suggests, contains the
parts of a database table (when using the MergeTree database engine). A descrip-
ton of system.parts can be found in the ClickHouse documentation. [63]

Query to fetch path of the cell_towers table:

SELECT
table,
disk_name,
path

FROM system.parts
WHERE table = 'cell_towers'
FORMAT TabSeparated

-- cell_towers default /var/lib/clickhouse/store/c28/c283470d-9 ⌋
ab3-4be8-bd81-132274c9f9b0/all_1_35_2/,→

Chapter A: Experiment Data 178

-- cell_towers default /var/lib/clickhouse/store/c28/c283470d-9 ⌋
ab3-4be8-bd81-132274c9f9b0/all_36_41_1/,→

-- cell_towers default /var/lib/clickhouse/store/c28/c283470d-9 ⌋
ab3-4be8-bd81-132274c9f9b0/all_42_42_0/,→

We navigated to the first path listed and printed the contents of the directory
(performed as root):

cd /var/lib/clickhouse/store/c28/c283470d-9ab3-4be8-bd81-132274c9f9 ⌋
b0/all_1_35_2/,→

ls

area.bin cell.mrk2 count.txt
lat.mrk2 net.bin range.bin unit.mrk2,→

area.mrk2 changeable.bin created.bin
lon.bin net.mrk2 range.mrk2 updated.bin,→

averageSignal.bin changeable.mrk2 created.mrk2
lon.mrk2 primary.idx samples.bin updated.mrk2,→

averageSignal.mrk2 checksums.txt
default_compression_codec.txt mcc.bin radio.bin.cpt
samples.mrk2

,→

,→

cell.bin columns.txt lat.bin
mcc.mrk2 radio.mrk2 unit.bin,→

In order to determine which files corresponded to columns in the table, we
used DESCRIBE TABLE to display the columns.

DESCRIBE TABLE cell_towers
FORMAT TabSeparated

-- radio Enum8(\'\' = 0, \'CDMA\' = 1, \'GSM\' = 2, \'LTE\' = 3,
\'NR\' = 4, \'UMTS\' = 5),→

-- mcc UInt16
-- net UInt16
-- area UInt16
-- cell UInt64
-- unit Int16
-- lon Float64
-- lat Float64
-- range UInt32
-- samples UInt32
-- changeable UInt8
-- created DateTime
-- updated DateTime
-- averageSignal UInt8

Chapter A: Experiment Data 179

Some of the column names displayed matched the names of files in the di-
rectory. We made an educated guess that .bin files are the actual data files. A
quick Google search indicates that .mrk2 files are related to the indexing of the
database.

We decided to encrypt the file radio.bin, since the radio column is used in
one of the test queries we will use.

A.5.3 Install ccrypt

sudo apt install ccrypt

A.5.4 Perform test queries

In order to see how encryption would affect the database, we first performed two
test queries and noted the results. The queries are the same as the ones used in
the A.1.

Test query 1:

SELECT
radio,
count() AS c

FROM cell_towers
GROUP BY radio
ORDER BY c DESC
FORMAT TabSeparated

-- UMTS 20686487
-- LTE 12101148
-- GSM 9931312
-- CDMA 556344
-- NR 867

Test query 2:

SELECT
mcc,
count()

FROM cell_towers
GROUP BY mcc
ORDER BY count() DESC
LIMIT 10
FORMAT TabSeparated

-- 310 5024650
-- 262 2622423
-- 250 1953176

Chapter A: Experiment Data 180

-- 208 1891187
-- 724 1836150
-- 404 1729151
-- 234 1618924
-- 510 1353998
-- 440 1343355
-- 311 1332798

A.5.5 Encrypt file and repeat test queries

Navigate to directory and encrypt radio.bin (performed as root):

cd /var/lib/clickhouse/store/c28/c283470d-9ab3-4be8-bd81-132274c9f9 ⌋
b0/all_1_35_2,→

ccrypt -e radio.bin

The test queries from earlier were repeated in clickhouse-client. The first
test query, which selects data from the radio table fails, because the file ra-
dio.bin, which contains a part of the table used for the query, is encrypted.

Query using radio, which fails because radio.bin is encrypted:

SELECT
radio,
count() AS c

FROM cell_towers
GROUP BY radio
ORDER BY c DESC
FORMAT TabSeparated

-- Received exception from server (version 22.4.3):
-- Code: 107. DB::Exception: Received from localhost:9000.

DB::Exception: Cannot open file /var/lib/clickhouse/store/c28/c ⌋
283470d-9ab3-4be8-bd81-132274c9f9b0/all_1_35_2/radio.bin,
errno: 2, strerror: No such file or directory: While executing
MergeTreeInOrder. (FILE_DOESNT_EXIST)

,→

,→

,→

,→

The other test query, which does not use the radio table succeeds:

SELECT
mcc,
count()

FROM cell_towers
GROUP BY mcc
ORDER BY count() DESC
LIMIT 10
FORMAT TabSeparated

Chapter A: Experiment Data 181

-- 310 5024650
-- 262 2622423
-- 250 1953176
-- 208 1891187
-- 724 1836150
-- 404 1729151
-- 234 1618924
-- 510 1353998
-- 440 1343355
-- 311 1332798

A.5.6 Decrypt file and repeat test query

The file radio.bin.cpt (the encrypted version of radio.bin) was decrypted with
ccrypt -d radio.bin.cpt, and the test queries were repeated. After decrypting
the file, both queries succeeded.

First test query repeated after radio.bin.cpt was decrypted:

SELECT
radio,
count() AS c

FROM cell_towers
GROUP BY radio
ORDER BY c DESC
FORMAT TabSeparated

-- UMTS 20686487
-- LTE 12101148
-- GSM 9931312
-- CDMA 556344
-- NR 867

Second test query repeated after radio.bin.cpt was decrypted:

SELECT
mcc,
count()

FROM cell_towers
GROUP BY mcc
ORDER BY count() DESC
LIMIT 10
FORMAT TabSeparated

-- 310 5024650
-- 262 2622423

Chapter A: Experiment Data 182

-- 250 1953176
-- 208 1891187
-- 724 1836150
-- 404 1729151
-- 234 1618924
-- 510 1353998
-- 440 1343355
-- 311 1332798

A.5.7 Encrypt all files in /var/lib/clickhouse/store and repeat test
queries

In order to simulate a ransomware attack where the attacker doesn’t encrypt spe-
cific files one-by-one, but instead encrypts the entire data directory automatically,
we encrypted the directory which stores the data parts for (non-system) Click-
House tables.

Files in the directory /var/lib/clickhouse/store, were encrypted recursively
(-r) using ccrypt. The -f (force) flag makes ccrypt encrypt write-protected files
without asking for confirmation.

Encrypting store (performed as root):

ccrypt -erf store

-- Enter encryption key:
-- Enter encryption key: (repeat)
-- ccrypt: store/063/0638116a-3105-483f-a2e5-55287d4eaa27/202204_22 ⌋

95_2350_15: No such file or
directory

,→

,→

-- ccrypt: store/063/0638116a-3105-483f-a2e5-55287d4eaa27/202204_23 ⌋
55_2355_0: No such file or
directory

,→

,→

-- ccrypt: store/063/0638116a-3105-483f-a2e5-55287d4eaa27/202204_23 ⌋
51_2351_0: No such file or
directory

,→

,→

-- ccrypt: store/11f/11fafbd1-2c3f-4621-a574-b4f7b5594988/202204_27 ⌋
94_2794_0: No such file or
directory

,→

,→

-- ccrypt: store/11f/11fafbd1-2c3f-4621-a574-b4f7b5594988/202204_21 ⌋
40_2793_477: No such file or
directory

,→

,→

The contents of one of the encryted directories (performed as root):

ls -l /var/lib/clickhouse/store/c28/c283470d-9ab3-4be8-bd81-132274c ⌋
9f9b0/all_1_35_2,→

Chapter A: Experiment Data 183

Result:
total 918640
-rw-r----- 1 clickhouse clickhouse 41208741 Apr 26 13:09

area.bin.cpt,→

-rw-r----- 1 clickhouse clickhouse 107576 Apr 26 13:09
area.mrk2.cpt,→

-rw-r----- 1 clickhouse clickhouse 163548 Apr 26 13:09
averageSignal.bin.cpt,→

-rw-r----- 1 clickhouse clickhouse 107576 Apr 26 13:09
averageSignal.mrk2.cpt,→

-rw-r----- 1 clickhouse clickhouse 157679630 Apr 26 13:09
cell.bin.cpt,→

-rw-r----- 1 clickhouse clickhouse 107576 Apr 26 13:09
cell.mrk2.cpt,→

-rw-r----- 1 clickhouse clickhouse 163548 Apr 26 13:09
changeable.bin.cpt,→

-rw-r----- 1 clickhouse clickhouse 107576 Apr 26 13:09
changeable.mrk2.cpt,→

-rw-r----- 1 clickhouse clickhouse 1183 Apr 26 13:09
checksums.txt.cpt,→

-rw-r----- 1 clickhouse clickhouse 354 Apr 26 13:09
columns.txt.cpt,→

-rw-r----- 1 clickhouse clickhouse 40 Apr 26 13:09
count.txt.cpt,→

-rw-r----- 1 clickhouse clickhouse 65728056 Apr 26 13:09
created.bin.cpt,→

-rw-r----- 1 clickhouse clickhouse 107576 Apr 26 13:09
created.mrk2.cpt,→

-rw-r----- 1 clickhouse clickhouse 42 Apr 26 13:09
default_compression_codec.txt.cpt,→

-rw-r----- 1 clickhouse clickhouse 224774675 Apr 26 13:09
lat.bin.cpt,→

-rw-r----- 1 clickhouse clickhouse 107576 Apr 26 13:09
lat.mrk2.cpt,→

-rw-r----- 1 clickhouse clickhouse 227815661 Apr 26 13:09
lon.bin.cpt,→

-rw-r----- 1 clickhouse clickhouse 107576 Apr 26 13:09
lon.mrk2.cpt,→

-rw-r----- 1 clickhouse clickhouse 331043 Apr 26 13:09
mcc.bin.cpt,→

-rw-r----- 1 clickhouse clickhouse 107576 Apr 26 13:09
mcc.mrk2.cpt,→

-rw-r----- 1 clickhouse clickhouse 345344 Apr 26 13:09
net.bin.cpt,→

Chapter A: Experiment Data 184

-rw-r----- 1 clickhouse clickhouse 107576 Apr 26 13:09
net.mrk2.cpt,→

-rw-r----- 1 clickhouse clickhouse 40361 Apr 26 13:09
primary.idx.cpt,→

-rw-r----- 1 clickhouse clickhouse 163563 Apr 26 13:09
radio.bin.cpt,→

-rw-r----- 1 clickhouse clickhouse 107576 Apr 26 13:09
radio.mrk2.cpt,→

-rw-r----- 1 clickhouse clickhouse 41566798 Apr 26 13:09
range.bin.cpt,→

-rw-r----- 1 clickhouse clickhouse 107576 Apr 26 13:09
range.mrk2.cpt,→

-rw-r----- 1 clickhouse clickhouse 66713118 Apr 26 13:09
samples.bin.cpt,→

-rw-r----- 1 clickhouse clickhouse 107576 Apr 26 13:09
samples.mrk2.cpt,→

-rw-r----- 1 clickhouse clickhouse 1331731 Apr 26 13:09
unit.bin.cpt,→

-rw-r----- 1 clickhouse clickhouse 107576 Apr 26 13:09
unit.mrk2.cpt,→

-rw-r----- 1 clickhouse clickhouse 110977534 Apr 26 13:09
updated.bin.cpt,→

-rw-r----- 1 clickhouse clickhouse 107576 Apr 26 13:09
updated.mrk2.cpt,→

Then the test queries were repeated.
Test query 1 fails:

SELECT
mcc,
count()

FROM cell_towers
GROUP BY mcc
ORDER BY count() DESC
LIMIT 10
FORMAT TabSeparated

-- Query id: 6d32968b-85bb-4059-9119-ae76a84b8c13
--
-- 0 rows in set. Elapsed: 0.023 sec.
--
-- Received exception from server (version 22.4.3):

Chapter A: Experiment Data 185

-- Code: 107. DB::Exception: Received from localhost:9000.
DB::Exception: Cannot open file /var/lib/clickhouse/store/c28/c ⌋
283470d-9ab3-4be8-bd81-132274c9f9b0/all_1_35_2/mcc.bin, errno:
2, strerror: No such file or directory: While executing
MergeTreeInOrder. (FILE_DOESNT_EXIST)

,→

,→

,→

,→

Test query 2 also fails:

SELECT
radio,
count() AS c

FROM cell_towers
GROUP BY radio
ORDER BY c DESC
FORMAT TabSeparated

-- Query id: 8c913fd5-b0db-4cc2-b176-f389886c3bce
--
-- 0 rows in set. Elapsed: 0.003 sec.
--
-- Received exception from server (version 22.4.3):
-- Code: 107. DB::Exception: Received from localhost:9000.

DB::Exception: Cannot open file /var/lib/clickhouse/store/c28/c ⌋
283470d-9ab3-4be8-bd81-132274c9f9b0/all_1_35_2/radio.bin,
errno: 2, strerror: No such file or directory: While executing
MergeTreeInOrder. (FILE_DOESNT_EXIST)

,→

,→

,→

,→

Selecting all columns fails:

SELECT *
FROM cell_towers
LIMIT 10

-- Query id: 7a96d377-2f5b-4439-96d6-eb554b21fea7
--
-- 0 rows in set. Elapsed: 0.003 sec.
--
-- Received exception from server (version 22.4.3):
-- Code: 107. DB::Exception: Received from localhost:9000.

DB::Exception: Cannot open file /var/lib/clickhouse/store/c28/c ⌋
283470d-9ab3-4be8-bd81-132274c9f9b0/all_1_35_2/radio.bin,
errno: 2, strerror: No such file or directory: While executing
MergeTreeInOrder. (FILE_DOESNT_EXIST)

,→

,→

,→

,→

Selecting any single column seems to fail:

SELECT updated
FROM cell_towers

Chapter A: Experiment Data 186

LIMIT 10

-- Query id: c983d27d-144d-4296-adb3-ade5ebba3777
--
--
-- 0 rows in set. Elapsed: 0.002 sec.
--
-- Received exception from server (version 22.4.3):
-- Code: 107. DB::Exception: Received from localhost:9000.

DB::Exception: Cannot open file /var/lib/clickhouse/store/c28/c ⌋
283470d-9ab3-4be8-bd81-132274c9f9b0/all_1_35_2/updated.bin,
errno: 2, strerror: No such file or directory: While executing
MergeTreeInOrder. (FILE_DOESNT_EXIST)

,→

,→

,→

,→

A.5.8 Rebuild VM and try to recover

Delete VM

Script to delete the VM and accociated resources (run in Azure Cloud Shell):

Delete the VM
az vm delete --name $CHName --resource-group $RGName --yes

Get all resources in resource group
$resources = az resource list --resource-group $RGName |

ConvertFrom-Json -AsHashtable,→

Fetch only the ids of resources with names containing
"clickhouse".,→

The VM was named "clickhouseVM", which is why this works.
If the VM had a different name, we would have to grep for

something else.,→

$filtered = foreach($r in $resources) {
Write-Output $r["id"] | grep clickhouse

}

Delete the resources
$filtered | % {Remove-AzResource -ResourceId $_ -Force}
$filtered | % {Remove-AzResource -ResourceId $_ -Force}

The last command had to be run twice, because some resources could not be
deleted while other resources depended on them. Repeating the command had
the effect of deleting “child” resources first, so that “parent” resources could be
deleted.

Chapter A: Experiment Data 187

Set up VM according to test environment setup

Outputs were skipped for the sake of brevity. Everything went as planned.
Create VM (run from cloud shell):

az vm create `
--resource-group $RGName `
--name $CHName `
--image Canonical:UbuntuServer:16.04-LTS:16.04.202109280 `
--admin-username azureuser `
--size Standard_B1s `
--ssh-key-values $SSHPath `
--public-ip-sku Standard

Install clickhouse (run from bash in VM):

sudo apt-get install -y apt-transport-https ca-certificates dirmngr
sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv

8919F6BD2B48D754,→

echo "deb https://packages.clickhouse.com/deb stable main" | sudo
tee \,→

/etc/apt/sources.list.d/clickhouse.list
sudo apt-get update

sudo apt-get install -y clickhouse-server clickhouse-client

sudo service clickhouse-server start

Install clickhouse-backup (run from bash in VM):

Download archive containing binary
wget https://github.com/AlexAkulov/clickhouse-backup/releases/downl ⌋

oad/v1.3.2/clickhouse-backup-linux-amd64.tar.gz,→

Decompress archive
tar -zxvf clickhouse-backup-linux-amd64.tar.gz

Move binary to home directory
mv build/linux/amd64/clickhouse-backup ~

Cleanup
rmdir -p build/linux/amd64
rm clickhouse-backup-linux-amd64.tar.gz

The clickhouse-backup config file was copied from the test environment
setup (see A.1) and saved as ~/config.yaml.

Chapter A: Experiment Data 188

Restore from remote backup

Commands were run from bash on the VM.
List remote backups:

sudo ./clickhouse-backup list remote --config config.yaml

2022/05/03 10:38:55.223041 info SELECT max(toInt64(bytes_on_disk
* 1.02)) AS max_file_size FROM system.parts,→

2022-05-02T09-48-18 1.07GiB 02/05/2022 09:48:39 remote
tar,→

Restore from the remote backup:

sudo ./clickhouse-backup restore_remote 2022-05-02T09-48-18
--config config.yaml,→

2022/05/03 10:40:28.403253 info SELECT value FROM
`system`.`build_options` where name='VERSION_INTEGER',→

2022/05/03 10:40:28.407883 info SELECT * FROM system.disks;
2022/05/03 10:40:28.422520 info SELECT max(toInt64(bytes_on_disk

* 1.02)) AS max_file_size FROM system.parts,→

2022/05/03 10:40:28.512501 info done
backup=2022-05-02T09-48-18 duration=10ms operation=download
size=765B table_metadata=default.cell_towers

,→

,→

2022/05/03 10:40:48.487522 info done
diff_parts=0 duration=0s operation=downloadDiffParts=========== ⌋
=== ⌋
===] 100.00%
15s

,→

,→

,→

,→

2022/05/03 10:40:49.252289 info done
backup=2022-05-02T09-48-18 duration=20.739s
operation=download_data size=1.07GiB table=default.cell_towers

,→

,→

2022/05/03 10:40:49.269557 info done
backup=2022-05-02T09-48-18 duration=20.855s operation=download
size=1.07GiB

,→

,→

2022/05/03 10:40:49.326168 info SELECT value FROM
`system`.`build_options` where name='VERSION_INTEGER',→

2022/05/03 10:40:49.420143 info SELECT * FROM system.disks;
2022/05/03 10:40:49.429084 info CREATE DATABASE IF NOT EXISTS

default,→

ENGINE = Atomic
2022/05/03 10:40:49.437031 info SELECT engine FROM

system.databases WHERE name = 'default',→

2022/05/03 10:40:49.440420 info DROP TABLE IF EXISTS
`default`.`cell_towers` NO DELAY,→

Chapter A: Experiment Data 189

2022/05/03 10:40:49.444862 info CREATE DATABASE IF NOT EXISTS
`default`,→

2022/05/03 10:40:49.448408 info CREATE TABLE default.cell_towers
UUID 'f9b9b44f-3af6-4bf5-9458-9ef6a81a3519' (`radio` Enum8('' =
0, 'CDMA' = 1, 'GSM' = 2, 'LTE' = 3, 'NR' = 4, 'UMTS' = 5),
`mcc` UInt16, `net` UInt16, `area` UInt16, `cell` UInt64,
`unit` Int16, `lon` Float64, `lat` Float64, `range` UInt32,
`samples` UInt32, `changeable` UInt8, `created` DateTime,
`updated` DateTime, `averageSignal` UInt8) ENGINE = MergeTree
ORDER BY (radio, mcc, net, created) SETTINGS index_granularity
= 8192

,→

,→

,→

,→

,→

,→

,→

,→

2022/05/03 10:40:49.498743 info SELECT count() FROM
system.settings WHERE name =
'show_table_uuid_in_table_create_query_if_not_nil'

,→

,→

2022/05/03 10:40:49.519183 info SELECT name FROM
system.databases WHERE engine IN ('MySQL','PostgreSQL'),→

2022/05/03 10:40:49.533985 info
SELECT
countIf(name='data_path')

is_data_path_present,,→

countIf(name='data_paths')
is_data_paths_present,,→

countIf(name='uuid') is_uuid_present,
countIf(name='create_table_query')

is_create_table_query_present,,→

countIf(name='total_bytes')
is_total_bytes_present,→

FROM system.columns WHERE database='system' AND
table='tables',→

#
2022/05/03 10:40:49.545657 info SELECT database, name, engine ,

data_paths , uuid , create_table_query , coalesce(total_bytes,
0) AS total_bytes FROM system.tables WHERE is_temporary = 0
SETTINGS show_table_uuid_in_table_create_query_if_not_nil=1

,→

,→

,→

2022/05/03 10:40:49.566479 info SELECT sum(bytes_on_disk) as
size FROM system.parts WHERE database='default' AND
table='cell_towers' GROUP BY database, table

,→

,→

2022/05/03 10:40:49.578319 info ALTER TABLE
`default`.`cell_towers` ATTACH PART 'all_1_35_2',→

2022/05/03 10:40:49.589570 info ALTER TABLE
`default`.`cell_towers` ATTACH PART 'all_36_41_1',→

2022/05/03 10:40:49.596540 info ALTER TABLE
`default`.`cell_towers` ATTACH PART 'all_42_42_0',→

Chapter A: Experiment Data 190

2022/05/03 10:40:49.601181 info done
backup=2022-05-02T09-48-18 operation=restore
table=default.cell_towers

,→

,→

2022/05/03 10:40:49.601380 info done
backup=2022-05-02T09-48-18 duration=109ms operation=restore,→

2022/05/03 10:40:49.601555 info done
backup=2022-05-02T09-48-18 operation=restore,→

Repeat test queries

Test queries were run from clickhouse-backup and compared with earlier results
to se if they were valid. Both queries returned valid results, indicating that the
recovery was successful.

At first, performance was very poor. Sometimes the queries would time out
because they took too long (more than 300 seconds). After restarting the VM,
queries were as fast as usual (0.072s and 0.2s respectively).

Test query 1:

SELECT
radio,
count() AS c

FROM cell_towers
GROUP BY radio
ORDER BY c DESC
FORMAT TabSeparated

-- Query id: fea063fa-98e6-4a99-b373-4f51d99be3c1
--
-- UMTS 20686487
-- LTE 12101148
-- GSM 9931312
-- CDMA 556344
-- NR 867

Test query 2:

SELECT
mcc,
count()

FROM cell_towers
GROUP BY mcc
ORDER BY count() DESC
LIMIT 10
FORMAT TabSeparated

-- Query id: e4cd8484-7d4e-4e97-b78f-5373ed61c2b2

Chapter A: Experiment Data 191

--
-- 310 5024650
-- 262 2622423
-- 250 1953176
-- 208 1891187
-- 724 1836150
-- 404 1729151
-- 234 1618924
-- 510 1353998
-- 440 1343355
-- 311 1332798

A.5.9 Repeat encryption and recover database with Azure Backup

Encrypt store directory

Run as root in bash on the VM:

ccrypt -erf /var/lib/clickhouse/store

Delete VM

Deleting the VM:

az vm delete --name $CHName --resource-group $RGName --yes

When using Azure Backup via the Azure Portal to recover a VM, a virtual
network and a subnet have to be provided. We assume the same holds true for
recovering via the Azure CLI, even though no commands seem to be asking for
the aforementioned resources (at least not directly). This is why we only deleted
the VM, and not related resources like network cards and IP adresses as well.

Create a Storage Account

In order to recover the VM, a storage account is required for staging the recovery.
Creating a storage account:

az storage account create `
--name $StagingSAName `
--resource-group $RGName `
--location eastus `
--sku Standard_LRS

Output:

{
"accessTier": "Hot",
"allowBlobPublicAccess": true,

Chapter A: Experiment Data 192

"allowCrossTenantReplication": null,
"allowSharedKeyAccess": null,
"allowedCopyScope": null,
"azureFilesIdentityBasedAuthentication": null,
"blobRestoreStatus": null,
"creationTime": "2022-05-04T07:11:01.403417+00:00",
"customDomain": null,
"defaultToOAuthAuthentication": null,
"dnsEndpointType": null,
"enableHttpsTrafficOnly": true,
"enableNfsV3": null,
"encryption": {

"encryptionIdentity": null,
"keySource": "Microsoft.Storage",
"keyVaultProperties": null,
"requireInfrastructureEncryption": null,
"services": {

"blob": {
"enabled": true,
"keyType": "Account",
"lastEnabledTime": "2022-05-04T07:11:01.528489+00:00"

},
"file": {

"enabled": true,
"keyType": "Account",
"lastEnabledTime": "2022-05-04T07:11:01.528489+00:00"

},
"queue": null,
"table": null

}
},
"extendedLocation": null,
"failoverInProgress": null,
"geoReplicationStats": null,
"id": "/subscriptions/4b48eb85-91f3-4902-b74b-e84641fb6785/resour ⌋

ceGroups/testRG/providers/Microsoft.Storage/storageAccounts/s ⌋
tagingchsa",

,→

,→

"identity": null,
"immutableStorageWithVersioning": null,
"isHnsEnabled": null,
"isLocalUserEnabled": null,
"isSftpEnabled": null,
"keyCreationTime": {

"key1": "2022-05-04T07:11:01.528489+00:00",

Chapter A: Experiment Data 193

"key2": "2022-05-04T07:11:01.528489+00:00"
},
"keyPolicy": null,
"kind": "StorageV2",
"largeFileSharesState": null,
"lastGeoFailoverTime": null,
"location": "eastus",
"minimumTlsVersion": "TLS1_0",
"name": "stagingchsa",
"networkRuleSet": {

"bypass": "AzureServices",
"defaultAction": "Allow",
"ipRules": [],
"resourceAccessRules": null,
"virtualNetworkRules": []

},
"primaryEndpoints": {

"blob": "https://stagingchsa.blob.core.windows.net/",
"dfs": "https://stagingchsa.dfs.core.windows.net/",
"file": "https://stagingchsa.file.core.windows.net/",
"internetEndpoints": null,
"microsoftEndpoints": null,
"queue": "https://stagingchsa.queue.core.windows.net/",
"table": "https://stagingchsa.table.core.windows.net/",
"web": "https://stagingchsa.z13.web.core.windows.net/"

},
"primaryLocation": "eastus",
"privateEndpointConnections": [],
"provisioningState": "Succeeded",
"publicNetworkAccess": null,
"resourceGroup": "testRG",
"routingPreference": null,
"sasPolicy": null,
"secondaryEndpoints": null,
"secondaryLocation": null,
"sku": {

"name": "Standard_LRS",
"tier": "Standard"

},
"statusOfPrimary": "available",
"statusOfSecondary": null,
"storageAccountSkuConversionStatus": null,
"tags": {},
"type": "Microsoft.Storage/storageAccounts"

Chapter A: Experiment Data 194

}

Recover from Azure Backup

The VM was recovered by modifying instructions in the documentation [64] to
suit our use case. Many steps, like creating a Recovery Services vault, had already
been performed and were thus skipped. The commands we performed to recover
the VM are listed below. The process consists of retrieving information used to
list relevant recovery points. Then, a restore job is started in order to recover the
VHD. When the restore job is finished, it produces a template which is then used
to deploy a new VM.

Initial setup:

Get RSV and set context
$RSV = Get-AzRecoveryServicesVault -Name $RSVName

-ResourceGroupName $RGName,→

Set-AzRecoveryServicesVaultContext -Vault $RSV

Select VM
$namedContainer = Get-AzRecoveryServicesBackupContainer

-ContainerType "AzureVM" -Status "Registered" -FriendlyName
$CHName -VaultId $RSV.ID

,→

,→

$backupitem = Get-AzRecoveryServicesBackupItem -Container
$namedContainer -WorkloadType "AzureVM" -VaultId $RSV.ID,→

Get start and end date
$startDate = (Get-Date).AddDays(-7)
$endDate = Get-Date

Store recovery points in variable
$rp = Get-AzRecoveryServicesBackupRecoveryPoint -Item $backupitem

-StartDate $startdate.ToUniversalTime() -EndDate
$enddate.ToUniversalTime() -VaultId $RSV.ID

,→

,→

Show contents of rp:

$rp

RecoveryPointId RecoveryPointType RecoveryPointTime
ContainerName ContainerType,→

--------------- ----------------- -----------------
------------- -------------,→

201217219254041 CrashConsistent 5/4/2022 9:30:41 AM
iaasvmcontainerv2;testrg;clickhouse... AzureVM,→

208189198246820 CrashConsistent 5/2/2022 10:35:59 PM
iaasvmcontainerv2;testrg;clickhouse... AzureVM,→

Chapter A: Experiment Data 195

210069911701143 CrashConsistent 5/2/2022 12:37:15 PM
iaasvmcontainerv2;testrg;clickhouse... AzureVM,→

The recovery point $rp[1] (208189198246820) is the one that was triggered
manually earlier (see A.1). It was chosen to be used for recovery.

A restore job was started:

Select recovery point
$RecPoint = $rp[1]

Create a restore job for the backup item
$restorejob = Restore-AzRecoveryServicesBackupItem -RecoveryPoint

$RecPoint -StorageAccountName $StagingSAName
-StorageAccountResourceGroupName $RGName
-TargetResourceGroupName $RGName -VaultId $RSV.ID

,→

,→

,→

Wait for the restore job to complete
Wait-AzRecoveryServicesBackupJob -Job $restorejob -Timeout 43200

Get details of the restore job
$restorejob = Get-AzRecoveryServicesBackupJob -Job $restorejob

-VaultId $RSV.ID,→

$details = Get-AzRecoveryServicesBackupJobDetail -Job $restorejob
-VaultId $RSV.ID,→

Print details
$details
WorkloadName Operation Status

StartTime EndTime JobID,→

------------ --------- ------
--------- ------- -----,→

clickhousevm Restore Completed
5/4/2022 9:30:38 AM 5/4/2022 9:51:17 AM
3019de90-58c6-4f40-9157-cd53c7546223

,→

,→

We then declared some variables based on the details, to be used for future
commands:

$properties = $details.properties
$storageAccountName = $properties["Target Storage Account Name"]
$containerName = $properties["Config Blob Container Name"]
$templateBlobURI = $properties["Template Blob Uri"]

The contents of $properties:

Key Value
--- -----

Chapter A: Experiment Data 196

Job Type Recover disks
Target VM Name vmName
Target Storage Account Name stagingchsa
Recovery point time 5/2/2022 10:35:59 PM
Config Blob Name

config-clickhousevm-19ee2306-41c2-49bf-896f-40aa8172d2ea.json,→

Config Blob Container Name
clickhousevm-0edd1295169343bda63beb53c8781b85,→

Config Blob Uri https://stagingchsa.blob.core.windows.n ⌋
et/clickhousevm-0edd1295169343bda63beb53c8781b85/config-clickho ⌋
usevm-19ee2306-41c2-49bf-896f-40aa8172d2ea.j...

,→

,→

Target resource group testRG
Template Blob Uri https://stagingchsa.blob.core.windows.n ⌋

et/clickhousevm-0edd1295169343bda63beb53c8781b85/azuredeploy19e ⌋
e2306-41c2-49bf-896f-40aa8172d2ea.json

,→

,→

Deploying the VM from the template:

Template name was copied from the "Template Blob Uri"
$templateName =

"azuredeploy19ee2306-41c2-49bf-896f-40aa8172d2ea.json",→

Set the storage account
Set-AzCurrentStorageAccount -Name $storageAccountName

-ResourceGroupName $RGName,→

Generate SAS token
$templateBlobFullURI = New-AzStorageBlobSASToken -Container

$containerName -Blob $templateName -Permission r -FullUri,→

Deploy VM (VirtualMachineName had to be specified interactively)
New-AzResourceGroupDeployment -Name $CHName -ResourceGroupName

$RGName -TemplateUri $templateBlobFullURI,→

Output from the New-AzResourceGroupDeployment (The VirtualMachineName
had to be supplied via user input, indentation was adjusted for readability):

cmdlet New-AzResourceGroupDeployment at command pipeline position 1
Supply values for the following parameters:
(Type !? for Help.)
VirtualMachineName: clickhouseVM

DeploymentName : clickhouseVM
ResourceGroupName : testRG
ProvisioningState : Succeeded
Timestamp : 5/4/2022 11:50:42 AM

Chapter A: Experiment Data 197

Mode : Incremental
TemplateLink :
Uri : https://stagingchsa.blob.core.windows.net/clickhou ⌋

sevm-0edd1295169343bda63beb53c8781b85/azuredeploy19ee2306-41c2- ⌋
49bf-896f-40aa8172d

,→

,→

2ea.json?sv=2021-04-10&se=2022-05-04T12%3A46%3A51Z&sr=b&sp=r&sig=Le ⌋
%2BGX1JoU%2FSivJi9EpXyk0bPHAXxBsww%2BxY7SpGsP9k%3D,→

ContentVersion : 1.0.0.0
Parameters :
Name Type Value
============================= ========================= ==========
virtualMachineName String

"clickhouseVM",→

virtualNetwork String
"clickhouseVMVNET",→

virtualNetworkResourceGroup String "testRG"
subnet String

"clickhouseVMSubnet",→

osDiskName String
"clickhouseVMOSDisk",→

networkInterfacePrefixName String
"clickhouseVMRestoredNIC",→

publicIpAddressName String
"clickhouseVMRestoredip",→

Outputs :
DeploymentDebugLogLevel :

Repeat test queries

The test queries were repeated in clickhouse-client. Both were successful and
reasonably fast.

Test query 1:

SELECT
radio,
count() AS c

FROM cell_towers
GROUP BY radio
ORDER BY c DESC
FORMAT TabSeparated

-- Query id: fa3847f4-e564-4c8b-b2be-e85e2d4db87e
--
-- UMTS 20686487

Chapter A: Experiment Data 198

-- LTE 12101148
-- GSM 9931312
-- CDMA 556344
-- NR 867
--
-- 5 rows in set. Elapsed: 0.094 sec. Processed 43.28 million rows,

43.28 MB (462.68 million rows/s., 462.68 MB/s.),→

Test query 2:

SELECT
mcc,
count()

FROM cell_towers
GROUP BY mcc
ORDER BY count() DESC
LIMIT 10
FORMAT TabSeparated

-- Query id: f944c5ad-937c-45fa-a9f1-d173d12f7dbc
--
-- 310 5024650
-- 262 2622423
-- 250 1953176
-- 208 1891187
-- 724 1836150
-- 404 1729151
-- 234 1618924
-- 510 1353998
-- 440 1343355
-- 311 1332798
--
-- 10 rows in set. Elapsed: 0.392 sec. Processed 43.28 million

rows, 86.55 MB (110.54 million rows/s., 221.07 MB/s.),→

A.6 Encrypt local backups

In this experiment, we encrypted local backups made with clickhouse-backup
and observed the results.

A.6.1 Create and encrypt a local backup

A local backup was created:

Chapter A: Experiment Data 199

sudo ./clickhouse-backup create
2022/05/06 13:33:41.900950 info SELECT name, engine FROM

system.databases WHERE name NOT IN ('system',
'INFORMATION_SCHEMA', 'information_schema')

,→

,→

2022/05/06 13:33:41.910260 info SHOW CREATE DATABASE `default`
2022/05/06 13:33:41.922356 info SELECT count() FROM

system.settings WHERE name =
'show_table_uuid_in_table_create_query_if_not_nil'

,→

,→

2022/05/06 13:33:41.928718 info SELECT name FROM
system.databases WHERE engine IN ('MySQL','PostgreSQL'),→

2022/05/06 13:33:41.934157 info
SELECT
countIf(name='data_path')

is_data_path_present,,→

countIf(name='data_paths')
is_data_paths_present,,→

countIf(name='uuid') is_uuid_present,
countIf(name='create_table_query')

is_create_table_query_present,,→

countIf(name='total_bytes')
is_total_bytes_present,→

FROM system.columns WHERE database='system' AND
table='tables',→

#
2022/05/06 13:33:41.945031 info SELECT database, name, engine ,

data_paths , uuid , create_table_query , coalesce(total_bytes,
0) AS total_bytes FROM system.tables WHERE is_temporary = 0
SETTINGS show_table_uuid_in_table_create_query_if_not_nil=1

,→

,→

,→

2022/05/06 13:33:41.969735 info SELECT value FROM
`system`.`build_options` where name='VERSION_INTEGER',→

2022/05/06 13:33:41.975802 info SELECT * FROM system.disks;
2022/05/06 13:33:41.981654 info ALTER TABLE

`default`.`cell_towers` FREEZE WITH NAME
'46510daab8304f1bb845cc0a3378dc81';

,→

,→

2022/05/06 13:33:42.094131 info done
backup=2022-05-06T13-33-41 operation=create
table=default.cell_towers

,→

,→

2022/05/06 13:33:42.094551 info SELECT value FROM
`system`.`build_options` where name='VERSION_DESCRIBE',→

2022/05/06 13:33:42.103890 info done
backup=2022-05-06T13-33-41 duration=206ms operation=create,→

The backup directory was encrypted (as root) with an empty passphrase (out-
put truncated):

ccrypt -erf /var/lib/clickhouse/backup

Chapter A: Experiment Data 200

Enter encryption key:
Enter encryption key: (repeat)
ccrypt: warning: backup/2022-05-06T13-33-41/shadow/default/cell_t ⌋

owers/default/all_36_41_1/updated.mrk2 has 2
links

,→

,→

ccrypt: warning: backup/2022-05-06T13-33-41/shadow/default/cell_t ⌋
owers/default/all_36_41_1/lon.bin has 2
links

,→

,→

ccrypt: warning: backup/2022-05-06T13-33-41/shadow/default/cell_t ⌋
owers/default/all_36_41_1/checksums.txt has 2
links

,→

,→

ccrypt: warning: backup/2022-05-06T13-33-41/shadow/default/cell_t ⌋
owers/default/all_36_41_1/default_compression_codec.txt has 2
links

,→

,→

ccrypt: warning: backup/2022-05-06T13-33-41/shadow/default/cell_t ⌋
owers/default/all_36_41_1/radio.bin has 2
links

,→

,→

ccrypt: warning: backup/2022-05-06T13-33-41/shadow/default/cell_t ⌋
owers/default/all_36_41_1/count.txt has 2
links

,→

,→

ccrypt: warning: backup/2022-05-06T13-33-41/shadow/default/cell_t ⌋
owers/default/all_36_41_1/range.bin has 2
links

,→

,→

ccrypt: warning: backup/2022-05-06T13-33-41/shadow/default/cell_t ⌋
owers/default/all_36_41_1/area.bin has 2
links

,→

,→

ccrypt: warning: backup/2022-05-06T13-33-41/shadow/default/cell_t ⌋
owers/default/all_36_41_1/lon.mrk2 has 2
links

,→

,→

ccrypt: warning: backup/2022-05-06T13-33-41/shadow/default/cell_t ⌋
owers/default/all_36_41_1/primary.idx has 2
links

,→

,→

ccrypt: warning: backup/2022-05-06T13-33-41/shadow/default/cell_t ⌋
owers/default/all_36_41_1/mcc.mrk2 has 2
links

,→

,→

ccrypt: warning: backup/2022-05-06T13-33-41/shadow/default/cell_t ⌋
owers/default/all_36_41_1/columns.txt has 2
links

,→

,→

ccrypt: warning: backup/2022-05-06T13-33-41/shadow/default/cell_t ⌋
owers/default/all_36_41_1/created.bin has 2
links

,→

,→

Listing backups via clickhouse-backup:

./clickhouse-backup list

Chapter A: Experiment Data 201

2022/05/06 13:39:10.487501 info SELECT value FROM
`system`.`build_options` where name='VERSION_INTEGER',→

2022/05/06 13:39:10.601852 info SELECT * FROM system.disks;
2022-05-06T13-33-41 ??? 06/05/2022 13:37:27 local

Trying to restore from the encrypted backup:

./clickhouse-backup restore local 2022-05-06T13-33-41
2022/05/06 13:40:23.945646 info SELECT value FROM

`system`.`build_options` where name='VERSION_INTEGER',→

2022/05/06 13:40:23.950380 info SELECT * FROM system.disks;
2022/05/06 13:40:23.956845 error stat

/var/lib/clickhouse/backup/local/metadata: no such file or
directory

,→

,→

We also discovered that the clickhouse-client would not start while /var/
lib/clickhouse/backup was encrypted.

A.7 Delete backups via clickhouse-backup

In this experiment, local and remote backups were deleted using clickhouse-
backup. Attempts were then made to recover the deleted remote files by undelet-
ing them using the Azure CLI. The first attempt failed, because soft delete had not
been enabled correctly. Soft delete was then enabled for blobs, and the experiment
was repeated.

A.7.1 Preparation

The following variables were declared:

$AccKey = "NdbW07WlHBf5zcpMXundwkP88Ie2SO1Ad+84VD8moaUg1ihIeRR7cEdy ⌋
4FXIgHRvIQwPIMc7eD2q+ASt6EqxWg==" # Storage Account Access
Key

,→

,→

$StorageAccount = Get-AzStorageAccount | Where-Object {
$_.StorageAccountName -eq $SAName} # clickhouse-backup storage
account

,→

,→

A.7.2 Delete local backups

Listing local backups:

sudo ./clickhouse-backup list
2022/05/06 06:20:48.820972 info SELECT value FROM

`system`.`build_options` where name='VERSION_INTEGER',→

2022/05/06 06:20:48.830191 info SELECT * FROM system.disks;
2022-05-02T09-34-00 1.07GiB 02/05/2022 09:34:01 local

Chapter A: Experiment Data 202

2022-05-02T09-48-03 1.07GiB 02/05/2022 09:48:03 local
2022-05-02T09-48-18 1.07GiB 02/05/2022 09:48:18 local

Deleting all the local backups:

sudo ./clickhouse-backup delete local 2022-05-02T09-34-00
2022/05/06 06:51:05.560887 info SELECT value FROM

`system`.`build_options` where name='VERSION_INTEGER',→

2022/05/06 06:51:05.567336 info SELECT * FROM system.disks;
2022/05/06 06:51:05.585788 info done

backup=2022-05-02T09-34-00 duration=29ms location=local
operation=delete

,→

,→

sudo ./clickhouse-backup delete local 2022-05-02T09-48-03
2022/05/06 06:51:05.630403 info SELECT value FROM

`system`.`build_options` where name='VERSION_INTEGER',→

2022/05/06 06:51:05.635599 info SELECT * FROM system.disks;
2022/05/06 06:51:05.645033 info done

backup=2022-05-02T09-48-03 duration=18ms location=local
operation=delete

,→

,→

sudo ./clickhouse-backup delete local 2022-05-02T09-48-18
2022/05/06 06:51:05.677436 info SELECT value FROM

`system`.`build_options` where name='VERSION_INTEGER',→

2022/05/06 06:51:05.683594 info SELECT * FROM system.disks;
2022/05/06 06:51:05.696499 info done

backup=2022-05-02T09-48-18 duration=23ms location=local
operation=delete

,→

,→

Trying to list the backups (no results):

sudo ./clickhouse-backup list
2022/05/06 06:52:09.307718 info SELECT value FROM

`system`.`build_options` where name='VERSION_INTEGER',→

2022/05/06 06:52:09.313018 info SELECT * FROM system.disks;

A.7.3 Delete remote backups via clickhouse-backup and restore via
Azure CLI (first attempt)

Create remote backup

Creating a remote backup:

sudo ./clickhouse-backup create_remote --config config.yaml
2022/05/06 12:08:24.906957 info SELECT name, engine FROM

system.databases WHERE name NOT IN ('system',
'INFORMATION_SCHEMA', 'information_schema')

,→

,→

Chapter A: Experiment Data 203

2022/05/06 12:08:24.916734 info SHOW CREATE DATABASE `default`
2022/05/06 12:08:24.928118 info SELECT count() FROM

system.settings WHERE name =
'show_table_uuid_in_table_create_query_if_not_nil'

,→

,→

2022/05/06 12:08:24.934948 info SELECT name FROM
system.databases WHERE engine IN ('MySQL','PostgreSQL'),→

2022/05/06 12:08:24.940334 info
SELECT
countIf(name='data_path')

is_data_path_present,,→

countIf(name='data_paths')
is_data_paths_present,,→

countIf(name='uuid') is_uuid_present,
countIf(name='create_table_query')

is_create_table_query_present,,→

countIf(name='total_bytes')
is_total_bytes_present,→

FROM system.columns WHERE database='system' AND
table='tables',→

#
2022/05/06 12:08:24.947893 info SELECT database, name, engine ,

data_paths , uuid , create_table_query , coalesce(total_bytes,
0) AS total_bytes FROM system.tables WHERE is_temporary = 0
SETTINGS show_table_uuid_in_table_create_query_if_not_nil=1

,→

,→

,→

2022/05/06 12:08:24.984565 info SELECT value FROM
`system`.`build_options` where name='VERSION_INTEGER',→

2022/05/06 12:08:24.991468 info SELECT * FROM system.disks;
2022/05/06 12:08:24.996567 info ALTER TABLE

`default`.`cell_towers` FREEZE WITH NAME
'247d916bc61f4c05af26280ad8f3be9f';

,→

,→

2022/05/06 12:08:25.032979 info done
backup=2022-05-06T12-08-24 operation=create
table=default.cell_towers

,→

,→

2022/05/06 12:08:25.034527 info SELECT value FROM
`system`.`build_options` where name='VERSION_DESCRIBE',→

2022/05/06 12:08:25.041405 info done
backup=2022-05-06T12-08-24 duration=142ms operation=create,→

2022/05/06 12:08:25.047661 info SELECT value FROM
`system`.`build_options` where name='VERSION_INTEGER',→

2022/05/06 12:08:25.051625 info SELECT * FROM system.disks;
2022/05/06 12:08:25.059594 info SELECT max(toInt64(bytes_on_disk

* 1.02)) AS max_file_size FROM system.parts,→

Chapter A: Experiment Data 204

2022/05/06 12:10:21.914725 info done
backup=2022-05-06T12-08-24 duration=1m56.772s operation=upload
size=1.07GiB table=default.cell_towers

,→

,→

2022/05/06 12:10:21.932113 info done
backup=2022-05-06T12-08-24 duration=1m56.89s operation=upload
size=1.07GiB

,→

,→

Listing remote backups:

sudo ./clickhouse-backup list remote --config config.yaml
2022/05/06 12:13:23.147970 info SELECT max(toInt64(bytes_on_disk

* 1.02)) AS max_file_size FROM system.parts,→

2022-05-06T12-08-24 1.07GiB 06/05/2022 12:10:21 remote
tar,→

Delete remote backup

Deleting remote backups:

sudo ./clickhouse-backup delete remote 2022-05-06T12-08-24 --config
config.yaml,→

2022/05/06 12:15:02.656213 info SELECT max(toInt64(bytes_on_disk
* 1.02)) AS max_file_size FROM system.parts,→

2022/05/06 12:15:02.777130 info done
backup=2022-05-06T12-08-24 duration=124ms location=remote
operation=delete

,→

,→

Trying to list remote backups (no result):

sudo ./clickhouse-backup list remote --config config.yaml
2022/05/06 12:15:19.106515 info SELECT max(toInt64(bytes_on_disk

* 1.02)) AS max_file_size FROM system.parts,→

Undelete remote backups via Azure CLI

Trying to list remote backups (blobs) via the Azure Cloud Shell (including deleted
blobs):

az storage blob list --account-name $SAName --container-name
$ContainerName --account-key $AccKey --include d,→

The result was an empty array ([]). The container was still visible in the Azure
Portal, though.

It appears that clickhouse-backup bypasses container soft delete in a sense,
by deleting the contents of the container, but not the container itself. Thus, the
container (and the backups) cannot be undeleted, since it was never deleted in
the first place. To verify this, the container was deleted via the Azure Portal and
then undeleted.

Chapter A: Experiment Data 205

A.7.4 Enable soft delete for blobs

Since the previous attempt at recovering remote clickhouse-backups via soft
delete failed, because we used the “wrong” type of soft delete, we decided to try
again. This time, we enabled soft delete for the blobs themselves.

Enable soft delete for Blobs:

az storage account blob-service-properties update --account-name
$SAName `,→

--resource-group $RGName `
--enable-delete-retention true `
--delete-retention-days 7

{
"automaticSnapshotPolicyEnabled": null,
"changeFeed": null,
"containerDeleteRetentionPolicy": {

"allowPermanentDelete": null,
"days": 7,
"enabled": true

},
"cors": {

"corsRules": []
},
"defaultServiceVersion": null,
"deleteRetentionPolicy": {

"allowPermanentDelete": null,
"days": 7,
"enabled": true

},
"id": "/subscriptions/4b48eb85-91f3-4902-b74b-e84641fb6785/resour ⌋

ceGroups/testRG/providers/Microsoft.Storage/storageAccounts/c ⌋
hbksa/blobServices/default",

,→

,→

"isVersioningEnabled": null,
"lastAccessTimeTrackingPolicy": null,
"name": "default",
"resourceGroup": "testRG",
"restorePolicy": null,
"sku": null,
"type": "Microsoft.Storage/storageAccounts/blobServices"

}

Chapter A: Experiment Data 206

A.7.5 Delete remote backups via clickhouse-backup and restore via
Azure CLI (second attempt)

Create remote backup

A remote backup was created:

sudo ./clickhouse-backup create_remote --config config.yaml
2022/05/06 12:41:19.110753 info SELECT name, engine FROM

system.databases WHERE name NOT IN ('system',
'INFORMATION_SCHEMA', 'information_schema')

,→

,→

2022/05/06 12:41:19.185348 info SHOW CREATE DATABASE `default`
2022/05/06 12:41:19.192509 info SELECT count() FROM

system.settings WHERE name =
'show_table_uuid_in_table_create_query_if_not_nil'

,→

,→

2022/05/06 12:41:19.199675 info SELECT name FROM
system.databases WHERE engine IN ('MySQL','PostgreSQL'),→

2022/05/06 12:41:19.205297 info
SELECT
countIf(name='data_path')

is_data_path_present,,→

countIf(name='data_paths')
is_data_paths_present,,→

countIf(name='uuid') is_uuid_present,
countIf(name='create_table_query')

is_create_table_query_present,,→

countIf(name='total_bytes')
is_total_bytes_present,→

FROM system.columns WHERE database='system' AND
table='tables',→

#
2022/05/06 12:41:19.212594 info SELECT database, name, engine ,

data_paths , uuid , create_table_query , coalesce(total_bytes,
0) AS total_bytes FROM system.tables WHERE is_temporary = 0
SETTINGS show_table_uuid_in_table_create_query_if_not_nil=1

,→

,→

,→

2022/05/06 12:41:19.231869 info SELECT value FROM
`system`.`build_options` where name='VERSION_INTEGER',→

2022/05/06 12:41:19.237796 info SELECT * FROM system.disks;
2022/05/06 12:41:19.243268 info ALTER TABLE

`default`.`cell_towers` FREEZE WITH NAME
'8fac6ff911f04cf68521c2d87f778dd7';

,→

,→

2022/05/06 12:41:19.320599 info done
backup=2022-05-06T12-41-19 operation=create
table=default.cell_towers

,→

,→

2022/05/06 12:41:19.321056 info SELECT value FROM
`system`.`build_options` where name='VERSION_DESCRIBE',→

Chapter A: Experiment Data 207

2022/05/06 12:41:19.330933 info done
backup=2022-05-06T12-41-19 duration=227ms operation=create,→

2022/05/06 12:41:19.338082 info SELECT value FROM
`system`.`build_options` where name='VERSION_INTEGER',→

2022/05/06 12:41:19.342402 info SELECT * FROM system.disks;
2022/05/06 12:41:19.350151 info SELECT max(toInt64(bytes_on_disk

* 1.02)) AS max_file_size FROM system.parts,→

2022/05/06 12:41:40.804639 info done
backup=2022-05-06T12-41-19 duration=21.379s operation=upload
size=1.07GiB table=default.cell_towers

,→

,→

2022/05/06 12:41:40.822260 info done
backup=2022-05-06T12-41-19 duration=21.491s operation=upload
size=1.07GiB

,→

,→

Listing the remote backup:

sudo ./clickhouse-backup list remote --config config.yaml
2022/05/06 12:43:35.718005 info SELECT max(toInt64(bytes_on_disk

* 1.02)) AS max_file_size FROM system.parts,→

2022-05-06T12-41-19 1.07GiB 06/05/2022 12:41:40 remote
tar,→

Delete remote backup

Deleting the remote backup:

sudo ./clickhouse-backup delete remote 2022-05-06T12-41-19 --config
config.yaml,→

2022/05/06 12:44:26.871214 info SELECT max(toInt64(bytes_on_disk
* 1.02)) AS max_file_size FROM system.parts,→

2022/05/06 12:44:26.977566 info done
backup=2022-05-06T12-41-19 duration=110ms location=remote
operation=delete

,→

,→

Listing the remote backup (no result):

sudo ./clickhouse-backup list remote --config config.yaml
2022/05/06 12:44:54.497519 info SELECT max(toInt64(bytes_on_disk

* 1.02)) AS max_file_size FROM system.parts,→

Listing the deleted blobs in the Azure CLI:

az storage blob list --account-name $SAName --container-name
$ContainerName --account-key $AccKey --include d,→

Output (notice that deleted is true for the blobs):

Chapter A: Experiment Data 208

[
{

"container": "chbkcontainer",
"content": "",
"deleted": true,
"encryptedMetadata": null,
"encryptionKeySha256": null,
"encryptionScope": null,
"hasLegalHold": null,
"hasVersionsOnly": null,
"immutabilityPolicy": {

"expiryTime": null,
"policyMode": null

},
"isAppendBlobSealed": null,
"isCurrentVersion": null,
"lastAccessedOn": null,
"metadata": {},
"name": "https:/chbksa.blob.core.windows.net/chbkcontainer/2022-

05-06T12-41-19/metadata.json",,→

"objectReplicationDestinationPolicy": null,
"objectReplicationSourceProperties": [],
"properties": {

"appendBlobCommittedBlockCount": null,
"blobTier": "Hot",
"blobTierChangeTime": null,
"blobTierInferred": true,
"blobType": "BlockBlob",
"contentLength": 518,
"contentRange": null,
"contentSettings": {

"cacheControl": null,
"contentDisposition": null,
"contentEncoding": null,
"contentLanguage": null,
"contentMd5": null,
"contentType": "application/octet-stream"

},
"copy": {

"completionTime": null,
"destinationSnapshot": null,
"id": null,
"incrementalCopy": null,
"progress": null,

Chapter A: Experiment Data 209

"source": null,
"status": null,
"statusDescription": null

},
"creationTime": "2022-05-06T12:41:40+00:00",
"deletedTime": "2022-05-07T12:27:14+00:00",
"etag": "0x8DA2F5DC4E522F7",
"lastModified": "2022-05-06T12:41:40+00:00",
"lease": {

"duration": null,
"state": null,
"status": null

},
"pageBlobSequenceNumber": null,
"pageRanges": null,
"rehydrationStatus": null,
"remainingRetentionDays": 6,
"serverEncrypted": true

},
"rehydratePriority": null,
"requestServerEncrypted": null,
"snapshot": null,
"tagCount": null,
"tags": null,
"versionId": null

},
{

"container": "chbkcontainer",
"content": "",
"deleted": true,
"encryptedMetadata": null,
"encryptionKeySha256": null,
"encryptionScope": null,
"hasLegalHold": null,
"hasVersionsOnly": null,
"immutabilityPolicy": {

"expiryTime": null,
"policyMode": null

},
"isAppendBlobSealed": null,
"isCurrentVersion": null,
"lastAccessedOn": null,
"metadata": {},

Chapter A: Experiment Data 210

"name": "https:/chbksa.blob.core.windows.net/chbkcontainer/2022-
05-06T12-41-19/metadata/default/cell_towers.json",,→

"objectReplicationDestinationPolicy": null,
"objectReplicationSourceProperties": [],
"properties": {

"appendBlobCommittedBlockCount": null,
"blobTier": "Hot",
"blobTierChangeTime": null,
"blobTierInferred": true,
"blobType": "BlockBlob",
"contentLength": 888,
"contentRange": null,
"contentSettings": {

"cacheControl": null,
"contentDisposition": null,
"contentEncoding": null,
"contentLanguage": null,
"contentMd5": null,
"contentType": "application/octet-stream"

},
"copy": {

"completionTime": null,
"destinationSnapshot": null,
"id": null,
"incrementalCopy": null,
"progress": null,
"source": null,
"status": null,
"statusDescription": null

},
"creationTime": "2022-05-06T12:41:40+00:00",
"deletedTime": "2022-05-07T12:27:14+00:00",
"etag": "0x8DA2F5DC4E23D31",
"lastModified": "2022-05-06T12:41:40+00:00",
"lease": {

"duration": null,
"state": null,
"status": null

},
"pageBlobSequenceNumber": null,
"pageRanges": null,
"rehydrationStatus": null,
"remainingRetentionDays": 6,
"serverEncrypted": true

Chapter A: Experiment Data 211

},
"rehydratePriority": null,
"requestServerEncrypted": null,
"snapshot": null,
"tagCount": null,
"tags": null,
"versionId": null

},
{

"container": "chbkcontainer",
"content": "",
"deleted": true,
"encryptedMetadata": null,
"encryptionKeySha256": null,
"encryptionScope": null,
"hasLegalHold": null,
"hasVersionsOnly": null,
"immutabilityPolicy": {

"expiryTime": null,
"policyMode": null

},
"isAppendBlobSealed": null,
"isCurrentVersion": null,
"lastAccessedOn": null,
"metadata": {},
"name": "https:/chbksa.blob.core.windows.net/chbkcontainer/2022-

05-06T12-41-19/shadow/default/cell_towers/default_all_1_35_ ⌋
2.tar",

,→

,→

"objectReplicationDestinationPolicy": null,
"objectReplicationSourceProperties": [],
"properties": {

"appendBlobCommittedBlockCount": null,
"blobTier": "Hot",
"blobTierChangeTime": null,
"blobTierInferred": true,
"blobType": "BlockBlob",
"contentLength": 940539392,
"contentRange": null,
"contentSettings": {

"cacheControl": null,
"contentDisposition": null,
"contentEncoding": null,
"contentLanguage": null,
"contentMd5": null,

Chapter A: Experiment Data 212

"contentType": "application/octet-stream"
},
"copy": {

"completionTime": null,
"destinationSnapshot": null,
"id": null,
"incrementalCopy": null,
"progress": null,
"source": null,
"status": null,
"statusDescription": null

},
"creationTime": "2022-05-06T12:41:36+00:00",
"deletedTime": "2022-05-07T12:27:14+00:00",
"etag": "0x8DA2F5DC241DE8B",
"lastModified": "2022-05-06T12:41:36+00:00",
"lease": {

"duration": null,
"state": null,
"status": null

},
"pageBlobSequenceNumber": null,
"pageRanges": null,
"rehydrationStatus": null,
"remainingRetentionDays": 6,
"serverEncrypted": true

},
"rehydratePriority": null,
"requestServerEncrypted": null,
"snapshot": null,
"tagCount": null,
"tags": null,
"versionId": null

},
{

"container": "chbkcontainer",
"content": "",
"deleted": true,
"encryptedMetadata": null,
"encryptionKeySha256": null,
"encryptionScope": null,
"hasLegalHold": null,
"hasVersionsOnly": null,
"immutabilityPolicy": {

Chapter A: Experiment Data 213

"expiryTime": null,
"policyMode": null

},
"isAppendBlobSealed": null,
"isCurrentVersion": null,
"lastAccessedOn": null,
"metadata": {},
"name": "https:/chbksa.blob.core.windows.net/chbkcontainer/2022-

05-06T12-41-19/shadow/default/cell_towers/default_all_36_41 ⌋
_1.tar",

,→

,→

"objectReplicationDestinationPolicy": null,
"objectReplicationSourceProperties": [],
"properties": {

"appendBlobCommittedBlockCount": null,
"blobTier": "Hot",
"blobTierChangeTime": null,
"blobTierInferred": true,
"blobType": "BlockBlob",
"contentLength": 201757696,
"contentRange": null,
"contentSettings": {

"cacheControl": null,
"contentDisposition": null,
"contentEncoding": null,
"contentLanguage": null,
"contentMd5": null,
"contentType": "application/octet-stream"

},
"copy": {

"completionTime": null,
"destinationSnapshot": null,
"id": null,
"incrementalCopy": null,
"progress": null,
"source": null,
"status": null,
"statusDescription": null

},
"creationTime": "2022-05-06T12:41:40+00:00",
"deletedTime": "2022-05-07T12:27:14+00:00",
"etag": "0x8DA2F5DC4B0D44C",
"lastModified": "2022-05-06T12:41:40+00:00",
"lease": {

"duration": null,

Chapter A: Experiment Data 214

"state": null,
"status": null

},
"pageBlobSequenceNumber": null,
"pageRanges": null,
"rehydrationStatus": null,
"remainingRetentionDays": 6,
"serverEncrypted": true

},
"rehydratePriority": null,
"requestServerEncrypted": null,
"snapshot": null,
"tagCount": null,
"tags": null,
"versionId": null

},
{

"container": "chbkcontainer",
"content": "",
"deleted": true,
"encryptedMetadata": null,
"encryptionKeySha256": null,
"encryptionScope": null,
"hasLegalHold": null,
"hasVersionsOnly": null,
"immutabilityPolicy": {

"expiryTime": null,
"policyMode": null

},
"isAppendBlobSealed": null,
"isCurrentVersion": null,
"lastAccessedOn": null,
"metadata": {},
"name": "https:/chbksa.blob.core.windows.net/chbkcontainer/2022-

05-06T12-41-19/shadow/default/cell_towers/default_all_42_42 ⌋
_0.tar",

,→

,→

"objectReplicationDestinationPolicy": null,
"objectReplicationSourceProperties": [],
"properties": {

"appendBlobCommittedBlockCount": null,
"blobTier": "Hot",
"blobTierChangeTime": null,
"blobTierInferred": true,
"blobType": "BlockBlob",

Chapter A: Experiment Data 215

"contentLength": 8671232,
"contentRange": null,
"contentSettings": {

"cacheControl": null,
"contentDisposition": null,
"contentEncoding": null,
"contentLanguage": null,
"contentMd5": null,
"contentType": "application/octet-stream"

},
"copy": {

"completionTime": null,
"destinationSnapshot": null,
"id": null,
"incrementalCopy": null,
"progress": null,
"source": null,
"status": null,
"statusDescription": null

},
"creationTime": "2022-05-06T12:41:40+00:00",
"deletedTime": "2022-05-07T12:27:14+00:00",
"etag": "0x8DA2F5DC4DEE251",
"lastModified": "2022-05-06T12:41:40+00:00",
"lease": {

"duration": null,
"state": null,
"status": null

},
"pageBlobSequenceNumber": null,
"pageRanges": null,
"rehydrationStatus": null,
"remainingRetentionDays": 6,
"serverEncrypted": true

},
"rehydratePriority": null,
"requestServerEncrypted": null,
"snapshot": null,
"tagCount": null,
"tags": null,
"versionId": null

}
]

Chapter A: Experiment Data 216

Undelete remote backups via Azure CLI

Undeleting the deleted backups:

List all blobs and retrieve deleted blobs from list
$Blobs = az storage blob list --account-name $SAName

--container-name $ContainerName --account-key $AccKey --include
d | ConvertFrom-Json -AsHashtable

,→

,→

$DeletedBlobs = $($Blobs | Where-Object { $_.deleted })

Undelete deleted blobs
foreach($Blob in $DeletedBlobs) {

az storage blob undelete --container-name $ContainerName --name
$Blob.name --account-key $AccKey --account-name $SAName,→

}

Output:

{
"undeleted": null

}
{

"undeleted": null
}
{

"undeleted": null
}
{

"undeleted": null
}
{

"undeleted": null
}

Verify results

Listing the Blobs in the Azure Cloud Shell:

az storage blob list --account-name $SAName --container-name
$ContainerName --account-key $AccKey --include d,→

Output (notice that deleted is null):

[
{

"container": "chbkcontainer",
"content": "",

Chapter A: Experiment Data 217

"deleted": null,
"encryptedMetadata": null,
"encryptionKeySha256": null,
"encryptionScope": null,
"hasLegalHold": null,
"hasVersionsOnly": null,
"immutabilityPolicy": {

"expiryTime": null,
"policyMode": null

},
"isAppendBlobSealed": null,
"isCurrentVersion": null,
"lastAccessedOn": null,
"metadata": {},
"name": "https:/chbksa.blob.core.windows.net/chbkcontainer/2022-

05-06T12-41-19/metadata.json",,→

"objectReplicationDestinationPolicy": null,
"objectReplicationSourceProperties": [],
"properties": {

"appendBlobCommittedBlockCount": null,
"blobTier": "Hot",
"blobTierChangeTime": null,
"blobTierInferred": true,
"blobType": "BlockBlob",
"contentLength": 518,
"contentRange": null,
"contentSettings": {

"cacheControl": null,
"contentDisposition": null,
"contentEncoding": null,
"contentLanguage": null,
"contentMd5": null,
"contentType": "application/octet-stream"

},
"copy": {

"completionTime": null,
"destinationSnapshot": null,
"id": null,
"incrementalCopy": null,
"progress": null,
"source": null,
"status": null,
"statusDescription": null

},

Chapter A: Experiment Data 218

"creationTime": "2022-05-06T12:41:40+00:00",
"deletedTime": null,
"etag": "0x8DA2F5DC4E522F7",
"lastModified": "2022-05-06T12:41:40+00:00",
"lease": {

"duration": null,
"state": "available",
"status": "unlocked"

},
"pageBlobSequenceNumber": null,
"pageRanges": null,
"rehydrationStatus": null,
"remainingRetentionDays": null,
"serverEncrypted": true

},
"rehydratePriority": null,
"requestServerEncrypted": null,
"snapshot": null,
"tagCount": null,
"tags": null,
"versionId": null

},
{

"container": "chbkcontainer",
"content": "",
"deleted": null,
"encryptedMetadata": null,
"encryptionKeySha256": null,
"encryptionScope": null,
"hasLegalHold": null,
"hasVersionsOnly": null,
"immutabilityPolicy": {

"expiryTime": null,
"policyMode": null

},
"isAppendBlobSealed": null,
"isCurrentVersion": null,
"lastAccessedOn": null,
"metadata": {},
"name": "https:/chbksa.blob.core.windows.net/chbkcontainer/2022-

05-06T12-41-19/metadata/default/cell_towers.json",,→

"objectReplicationDestinationPolicy": null,
"objectReplicationSourceProperties": [],
"properties": {

Chapter A: Experiment Data 219

"appendBlobCommittedBlockCount": null,
"blobTier": "Hot",
"blobTierChangeTime": null,
"blobTierInferred": true,
"blobType": "BlockBlob",
"contentLength": 888,
"contentRange": null,
"contentSettings": {

"cacheControl": null,
"contentDisposition": null,
"contentEncoding": null,
"contentLanguage": null,
"contentMd5": null,
"contentType": "application/octet-stream"

},
"copy": {

"completionTime": null,
"destinationSnapshot": null,
"id": null,
"incrementalCopy": null,
"progress": null,
"source": null,
"status": null,
"statusDescription": null

},
"creationTime": "2022-05-06T12:41:40+00:00",
"deletedTime": null,
"etag": "0x8DA2F5DC4E23D31",
"lastModified": "2022-05-06T12:41:40+00:00",
"lease": {

"duration": null,
"state": "available",
"status": "unlocked"

},
"pageBlobSequenceNumber": null,
"pageRanges": null,
"rehydrationStatus": null,
"remainingRetentionDays": null,
"serverEncrypted": true

},
"rehydratePriority": null,
"requestServerEncrypted": null,
"snapshot": null,
"tagCount": null,

Chapter A: Experiment Data 220

"tags": null,
"versionId": null

},
{

"container": "chbkcontainer",
"content": "",
"deleted": null,
"encryptedMetadata": null,
"encryptionKeySha256": null,
"encryptionScope": null,
"hasLegalHold": null,
"hasVersionsOnly": null,
"immutabilityPolicy": {

"expiryTime": null,
"policyMode": null

},
"isAppendBlobSealed": null,
"isCurrentVersion": null,
"lastAccessedOn": null,
"metadata": {},
"name": "https:/chbksa.blob.core.windows.net/chbkcontainer/2022-

05-06T12-41-19/shadow/default/cell_towers/default_all_1_35_ ⌋
2.tar",

,→

,→

"objectReplicationDestinationPolicy": null,
"objectReplicationSourceProperties": [],
"properties": {

"appendBlobCommittedBlockCount": null,
"blobTier": "Hot",
"blobTierChangeTime": null,
"blobTierInferred": true,
"blobType": "BlockBlob",
"contentLength": 940539392,
"contentRange": null,
"contentSettings": {

"cacheControl": null,
"contentDisposition": null,
"contentEncoding": null,
"contentLanguage": null,
"contentMd5": null,
"contentType": "application/octet-stream"

},
"copy": {

"completionTime": null,
"destinationSnapshot": null,

Chapter A: Experiment Data 221

"id": null,
"incrementalCopy": null,
"progress": null,
"source": null,
"status": null,
"statusDescription": null

},
"creationTime": "2022-05-06T12:41:36+00:00",
"deletedTime": null,
"etag": "0x8DA2F5DC241DE8B",
"lastModified": "2022-05-06T12:41:36+00:00",
"lease": {

"duration": null,
"state": "available",
"status": "unlocked"

},
"pageBlobSequenceNumber": null,
"pageRanges": null,
"rehydrationStatus": null,
"remainingRetentionDays": null,
"serverEncrypted": true

},
"rehydratePriority": null,
"requestServerEncrypted": null,
"snapshot": null,
"tagCount": null,
"tags": null,
"versionId": null

},
{

"container": "chbkcontainer",
"content": "",
"deleted": null,
"encryptedMetadata": null,
"encryptionKeySha256": null,
"encryptionScope": null,
"hasLegalHold": null,
"hasVersionsOnly": null,
"immutabilityPolicy": {

"expiryTime": null,
"policyMode": null

},
"isAppendBlobSealed": null,
"isCurrentVersion": null,

Chapter A: Experiment Data 222

"lastAccessedOn": null,
"metadata": {},
"name": "https:/chbksa.blob.core.windows.net/chbkcontainer/2022-

05-06T12-41-19/shadow/default/cell_towers/default_all_36_41 ⌋
_1.tar",

,→

,→

"objectReplicationDestinationPolicy": null,
"objectReplicationSourceProperties": [],
"properties": {

"appendBlobCommittedBlockCount": null,
"blobTier": "Hot",
"blobTierChangeTime": null,
"blobTierInferred": true,
"blobType": "BlockBlob",
"contentLength": 201757696,
"contentRange": null,
"contentSettings": {

"cacheControl": null,
"contentDisposition": null,
"contentEncoding": null,
"contentLanguage": null,
"contentMd5": null,
"contentType": "application/octet-stream"

},
"copy": {

"completionTime": null,
"destinationSnapshot": null,
"id": null,
"incrementalCopy": null,
"progress": null,
"source": null,
"status": null,
"statusDescription": null

},
"creationTime": "2022-05-06T12:41:40+00:00",
"deletedTime": null,
"etag": "0x8DA2F5DC4B0D44C",
"lastModified": "2022-05-06T12:41:40+00:00",
"lease": {

"duration": null,
"state": "available",
"status": "unlocked"

},
"pageBlobSequenceNumber": null,
"pageRanges": null,

Chapter A: Experiment Data 223

"rehydrationStatus": null,
"remainingRetentionDays": null,
"serverEncrypted": true

},
"rehydratePriority": null,
"requestServerEncrypted": null,
"snapshot": null,
"tagCount": null,
"tags": null,
"versionId": null

},
{

"container": "chbkcontainer",
"content": "",
"deleted": null,
"encryptedMetadata": null,
"encryptionKeySha256": null,
"encryptionScope": null,
"hasLegalHold": null,
"hasVersionsOnly": null,
"immutabilityPolicy": {

"expiryTime": null,
"policyMode": null

},
"isAppendBlobSealed": null,
"isCurrentVersion": null,
"lastAccessedOn": null,
"metadata": {},
"name": "https:/chbksa.blob.core.windows.net/chbkcontainer/2022-

05-06T12-41-19/shadow/default/cell_towers/default_all_42_42 ⌋
_0.tar",

,→

,→

"objectReplicationDestinationPolicy": null,
"objectReplicationSourceProperties": [],
"properties": {

"appendBlobCommittedBlockCount": null,
"blobTier": "Hot",
"blobTierChangeTime": null,
"blobTierInferred": true,
"blobType": "BlockBlob",
"contentLength": 8671232,
"contentRange": null,
"contentSettings": {

"cacheControl": null,
"contentDisposition": null,

Chapter A: Experiment Data 224

"contentEncoding": null,
"contentLanguage": null,
"contentMd5": null,
"contentType": "application/octet-stream"

},
"copy": {

"completionTime": null,
"destinationSnapshot": null,
"id": null,
"incrementalCopy": null,
"progress": null,
"source": null,
"status": null,
"statusDescription": null

},
"creationTime": "2022-05-06T12:41:40+00:00",
"deletedTime": null,
"etag": "0x8DA2F5DC4DEE251",
"lastModified": "2022-05-06T12:41:40+00:00",
"lease": {

"duration": null,
"state": "available",
"status": "unlocked"

},
"pageBlobSequenceNumber": null,
"pageRanges": null,
"rehydrationStatus": null,
"remainingRetentionDays": null,
"serverEncrypted": true

},
"rehydratePriority": null,
"requestServerEncrypted": null,
"snapshot": null,
"tagCount": null,
"tags": null,
"versionId": null

}
]

Listing undeleted Blobs in clickhouse-backup:

sudo ./clickhouse-backup list remote --config config.yaml
2022/05/07 12:26:27.136458 info SELECT max(toInt64(bytes_on_disk

* 1.02)) AS max_file_size FROM system.parts,→

Chapter A: Experiment Data 225

2022-05-06T12-41-19 1.07GiB 06/05/2022 12:41:40 remote
tar,→

Restoring the database from the undeleted remote backup:

sudo ./clickhouse-backup restore_remote 2022-05-06T12-41-19
--config config.yaml,→

2022/05/07 12:30:32.003711 info SELECT value FROM
`system`.`build_options` where name='VERSION_INTEGER',→

2022/05/07 12:30:32.007101 info SELECT * FROM system.disks;
2022/05/07 12:30:32.018499 info SELECT max(toInt64(bytes_on_disk

* 1.02)) AS max_file_size FROM system.parts,→

2022/05/07 12:30:32.094614 info done
backup=2022-05-06T12-41-19 duration=7ms operation=download
size=765B table_metadata=default.cell_towers

,→

,→

2022/05/07 12:30:51.137543 info done
diff_parts=0 duration=0s operation=downloadDiffParts100.00% 0s,→

2022/05/07 12:30:51.137700 info done
backup=2022-05-06T12-41-19 duration=19.043s
operation=download_data size=1.07GiB table=default.cell_towers

,→

,→

2022/05/07 12:30:51.146800 info done
backup=2022-05-06T12-41-19 duration=19.135s operation=download
size=1.07GiB

,→

,→

2022/05/07 12:30:52.193726 info SELECT value FROM
`system`.`build_options` where name='VERSION_INTEGER',→

2022/05/07 12:30:53.438041 info SELECT * FROM system.disks;
2022/05/07 12:30:53.441231 info CREATE DATABASE IF NOT EXISTS

default,→

ENGINE = Atomic
2022/05/07 12:30:53.458792 info SELECT engine FROM

system.databases WHERE name = 'default',→

2022/05/07 12:30:53.483831 info DROP TABLE IF EXISTS
`default`.`cell_towers` NO DELAY,→

2022/05/07 12:30:53.509936 info CREATE DATABASE IF NOT EXISTS
`default`,→

2022/05/07 12:30:53.517094 info CREATE TABLE default.cell_towers
UUID 'f9b9b44f-3af6-4bf5-9458-9ef6a81a3519' (`radio` Enum8('' =
0, 'CDMA' = 1, 'GSM' = 2, 'LTE' = 3, 'NR' = 4, 'UMTS' = 5),
`mcc` UInt16, `net` UInt16, `area` UInt16, `cell` UInt64,
`unit` Int16, `lon` Float64, `lat` Float64, `range` UInt32,
`samples` UInt32, `changeable` UInt8, `created` DateTime,
`updated` DateTime, `averageSignal` UInt8) ENGINE = MergeTree
ORDER BY (radio, mcc, net, created) SETTINGS index_granularity
= 8192

,→

,→

,→

,→

,→

,→

,→

,→

Chapter A: Experiment Data 226

2022/05/07 12:30:53.764502 info SELECT count() FROM
system.settings WHERE name =
'show_table_uuid_in_table_create_query_if_not_nil'

,→

,→

2022/05/07 12:30:53.771475 info SELECT name FROM
system.databases WHERE engine IN ('MySQL','PostgreSQL'),→

2022/05/07 12:30:53.780565 info
SELECT
countIf(name='data_path')

is_data_path_present,,→

countIf(name='data_paths')
is_data_paths_present,,→

countIf(name='uuid') is_uuid_present,
countIf(name='create_table_query')

is_create_table_query_present,,→

countIf(name='total_bytes')
is_total_bytes_present,→

FROM system.columns WHERE database='system' AND
table='tables',→

#
2022/05/07 12:30:53.791797 info SELECT database, name, engine ,

data_paths , uuid , create_table_query , coalesce(total_bytes,
0) AS total_bytes FROM system.tables WHERE is_temporary = 0
SETTINGS show_table_uuid_in_table_create_query_if_not_nil=1

,→

,→

,→

2022/05/07 12:30:53.816765 info SELECT sum(bytes_on_disk) as
size FROM system.parts WHERE database='default' AND
table='cell_towers' GROUP BY database, table

,→

,→

2022/05/07 12:30:53.832002 info ALTER TABLE
`default`.`cell_towers` ATTACH PART 'all_1_35_2',→

2022/05/07 12:30:53.844536 info ALTER TABLE
`default`.`cell_towers` ATTACH PART 'all_36_41_1',→

2022/05/07 12:30:53.849068 info ALTER TABLE
`default`.`cell_towers` ATTACH PART 'all_42_42_0',→

2022/05/07 12:30:53.852548 info done
backup=2022-05-06T12-41-19 operation=restore
table=default.cell_towers

,→

,→

2022/05/07 12:30:53.852691 info done
backup=2022-05-06T12-41-19 duration=94ms operation=restore,→

2022/05/07 12:30:53.852822 info done
backup=2022-05-06T12-41-19 operation=restore,→

The test queries were repeated in clickhouse-client. The queries were hang-
ing at first, so the VM was restarted. Both were successful.

Test query 1:

SELECT
radio,

Chapter A: Experiment Data 227

count() AS c
FROM cell_towers
GROUP BY radio
ORDER BY c DESC
FORMAT TabSeparated

-- Query id: 4d363e44-943b-47c0-b926-abd323e4dd59
--
-- UMTS 20686487
-- LTE 12101148
-- GSM 9931312
-- CDMA 556344
-- NR 867
--
-- 5 rows in set. Elapsed: 0.055 sec. Processed 43.28 million rows,

43.28 MB (781.15 million rows/s., 781.15 MB/s.),→

Test query 2:

SELECT
mcc,
count()

FROM cell_towers
GROUP BY mcc
ORDER BY count() DESC
LIMIT 10
FORMAT TabSeparated

-- Query id: ca9261f1-bb07-44f1-b83d-c95aab614203
--
-- 310 5024650
-- 262 2622423
-- 250 1953176
-- 208 1891187
-- 724 1836150
-- 404 1729151
-- 234 1618924
-- 510 1353998
-- 440 1343355
-- 311 1332798
--
-- 10 rows in set. Elapsed: 0.197 sec. Processed 43.28 million

rows, 86.55 MB (220.03 million rows/s., 440.05 MB/s.),→

Chapter A: Experiment Data 228

A.8 Delete backups stored in Azure blob storage via Azure
CLI

This experiment is similar to the previous one (A.7), except that the blobs were
deleted via the Azure CLI, instead of using clickhouse-backup. Afterwards, the
Blobs were restored.

A.8.1 Preparation

The following variables were declared:

$AccKey = "NdbW07WlHBf5zcpMXundwkP88Ie2SO1Ad+84VD8moaUg1ihIeRR7cEdy ⌋
4FXIgHRvIQwPIMc7eD2q+ASt6EqxWg==" # Storage Account Access
Key

,→

,→

$StorageAccount = Get-AzStorageAccount | Where-Object {
$_.StorageAccountName -eq $SAName} # clickhouse-backup storage
account

,→

,→

A.8.2 Delete the blobs

Listing the blobs in Azure Cloud Shell:

az storage blob list --account-name $SAName --container-name
$ContainerName --account-key $AccKey | ConvertFrom-Json
-AsHashtable | % {$_.name}

,→

,→

https:/chbksa.blob.core.windows.net/chbkcontainer/2022-05-06T12-4 ⌋
1-19/metadata.json,→

https:/chbksa.blob.core.windows.net/chbkcontainer/2022-05-06T12-4 ⌋
1-19/metadata/default/cell_towers.json,→

https:/chbksa.blob.core.windows.net/chbkcontainer/2022-05-06T12-4 ⌋
1-19/shadow/default/cell_towers/default_all_1_35_2.tar,→

https:/chbksa.blob.core.windows.net/chbkcontainer/2022-05-06T12-4 ⌋
1-19/shadow/default/cell_towers/default_all_36_41_1.tar,→

https:/chbksa.blob.core.windows.net/chbkcontainer/2022-05-06T12-4 ⌋
1-19/shadow/default/cell_towers/default_all_42_42_0.tar,→

Deleting the blobs:

Store the list of blob names in a variable
$BlobNames = az storage blob list --account-name $SAName

--container-name $ContainerName --account-key $AccKey |
ConvertFrom-Json -AsHashtable | % {$_.name}

,→

,→

foreach($name in $BlobNames) {
echo "Deleting $name"

Chapter A: Experiment Data 229

az storage blob delete --account-name $SAName --account-key
$AccKey --container-name $ContainerName --name $name,→

}
Deleting https:/chbksa.blob.core.windows.net/chbkcontainer/2022-0 ⌋

5-06T12-41-19/metadata.json,→

Deleting https:/chbksa.blob.core.windows.net/chbkcontainer/2022-0 ⌋
5-06T12-41-19/metadata/default/cell_towers.json,→

Deleting https:/chbksa.blob.core.windows.net/chbkcontainer/2022-0 ⌋
5-06T12-41-19/shadow/default/cell_towers/default_all_1_35_2.tar,→

Deleting https:/chbksa.blob.core.windows.net/chbkcontainer/2022-0 ⌋
5-06T12-41-19/shadow/default/cell_towers/default_all_36_41_1.tar,→

Deleting https:/chbksa.blob.core.windows.net/chbkcontainer/2022-0 ⌋
5-06T12-41-19/shadow/default/cell_towers/default_all_42_42_0.tar,→

After this, the blobs were no longer visible in the Azure portal (unless “Show
deleted blobs” was enabled). We decided to also verify this via clickhouse-backup.

Trying to list the blobs via clickhouse-backup (no result):

sudo ./clickhouse-backup list remote --config config.yaml
2022/05/07 12:54:09.423781 info SELECT max(toInt64(bytes_on_disk

* 1.02)) AS max_file_size FROM system.parts,→

A.8.3 Restore the blobs

The process for restoring blobs is the same as in section A.7.5.
Script to undelete deleted blobs:

List all blobs and retrieve deleted blobs from list
$Blobs = az storage blob list --account-name $SAName

--container-name $ContainerName --account-key $AccKey --include
d | ConvertFrom-Json -AsHashtable

,→

,→

$DeletedBlobs = $($Blobs | Where-Object { $_.deleted })

Undelete deleted blobs
foreach($Blob in $DeletedBlobs) {

az storage blob undelete --container-name $ContainerName --name
$Blob.name --account-key $AccKey --account-name $SAName,→

}

Listing the blobs:

az storage blob list --account-name $SAName --container-name
$ContainerName --account-key $AccKey | ConvertFrom-Json
-AsHashtable | % {$_.name}

,→

,→

https:/chbksa.blob.core.windows.net/chbkcontainer/2022-05-06T12-4 ⌋
1-19/metadata.json,→

Chapter A: Experiment Data 230

https:/chbksa.blob.core.windows.net/chbkcontainer/2022-05-06T12-4 ⌋
1-19/metadata/default/cell_towers.json,→

https:/chbksa.blob.core.windows.net/chbkcontainer/2022-05-06T12-4 ⌋
1-19/shadow/default/cell_towers/default_all_1_35_2.tar,→

https:/chbksa.blob.core.windows.net/chbkcontainer/2022-05-06T12-4 ⌋
1-19/shadow/default/cell_towers/default_all_36_41_1.tar,→

https:/chbksa.blob.core.windows.net/chbkcontainer/2022-05-06T12-4 ⌋
1-19/shadow/default/cell_towers/default_all_42_42_0.tar,→

A.9 Delete backups in Azure Backup

In this experiment, backups were stopped for the ClickHouse VM, and the backups
were deleted. Then the backups were restored from their soft deleted state, and
the backups were resumed.

A.9.1 Delete Azure Backups via CLI

Get the IDs of all backup items:

$itemIds = az backup item list --resource-group $RGName
--vault-name $RSVName | ConvertFrom-Json -AsHashtable | %
{$_["id"]}

,→

,→

Disable protection for and delete all backup items:

foreach($id in $itemIds) {
az backup protection disable --backup-management-type

AzureIaasVM --delete-backup-data true --ids $id,→

}

Output:

Are you sure you want to perform this operation? (y/n): y
{

"eTag": null,
"id": "/subscriptions/4b48eb85-91f3-4902-b74b-e84641fb6785/resour ⌋

ceGroups/testRG/providers/Microsoft.RecoveryServices/vaults/m ⌋
yRSV/backupJobs/bd6f9157-f5d1-4f67-9435-69737c6ab221",

,→

,→

"location": null,
"name": "bd6f9157-f5d1-4f67-9435-69737c6ab221",
"properties": {

"actionsInfo": null,
"activityId": "4054af82-cd28-11ec-8904-0a580af40e30",
"backupManagementType": "AzureIaasVM",
"containerName": "iaasvmcontainerv2;testrg;clickhousevm",
"duration": "0:00:11.138772",

Chapter A: Experiment Data 231

"endTime": "2022-05-06T10:35:45.276307+00:00",
"entityFriendlyName": "clickhouseVM",
"errorDetails": null,
"extendedInfo": {

"dynamicErrorMessage": null,
"estimatedRemainingDuration": null,
"internalPropertyBag": null,
"progressPercentage": null,
"propertyBag": {

"Number of Recovery Points": "4",
"VM Name": "clickhouseVM"

},
"tasksList": []

},
"isUserTriggered": null,
"jobType": "AzureIaaSVMJob",
"operation": "DeleteBackupData",
"startTime": "2022-05-06T10:35:34.137536+00:00",
"status": "Completed",
"virtualMachineVersion": "Compute"

},
"resourceGroup": "testRG",
"tags": null,
"type": "Microsoft.RecoveryServices/vaults/backupJobs"

}

This triggered an alert from Azure Monitor (“Delete Backup Data” alert).
Listing the backup items:

az backup item list --resource-group $RGName --vault-name $RSVName

Output:

[
{

"eTag": null,
"id": "/subscriptions/4b48eb85-91f3-4902-b74b-e84641fb6785/reso ⌋

urceGroups/testRG/providers/Microsoft.RecoveryServices/vaul ⌋
ts/myRSV/backupFabrics/Azure/protectionContainers/IaasVMCon ⌋
tainer;iaasvmcontainerv2;testrg;clickhousevm/protectedItems ⌋
/VM;iaasvmcontainerv2;testrg;clickhousevm",

,→

,→

,→

,→

"location": null,
"name": "VM;iaasvmcontainerv2;testrg;clickhousevm",
"properties": {

"backupManagementType": "AzureIaasVM",
"backupSetName": null,

Chapter A: Experiment Data 232

"containerName": "iaasvmcontainerv2;testrg;clickhousevm",
"createMode": null,
"deferredDeleteTimeInUtc": "2022-05-06T10:35:34.137536+00:00",
"deferredDeleteTimeRemaining": "13.23:48:44.6226505",
"extendedInfo": null,
"extendedProperties": {

"diskExclusionProperties": null,
"linuxVmApplicationName": ""

},
"friendlyName": "clickhouseVM",
"healthDetails": [

{
"code": 400239,
"message": "Backup pre-check status of this virtual

machine is OK.",,→

"recommendations": [],
"title": "IaasVmHealthGreenDefault"

}
],
"healthStatus": "Passed",
"isArchiveEnabled": false,
"isDeferredDeleteScheduleUpcoming": null,
"isRehydrate": null,
"isScheduledForDeferredDelete": true,
"kpisHealths": {

"BackupOperationStatusKPI": {
"resourceHealthDetails": [

{
"code": 0,
"message": "",
"recommendations": [],
"title": "Success"

}
],
"resourceHealthStatus": "Healthy"

},
"RestoreOperationStatusKPI": {

"resourceHealthDetails": [
{

"code": 0,
"message": "",
"recommendations": [],
"title": "Success"

}

Chapter A: Experiment Data 233

],
"resourceHealthStatus": "Healthy"

}
},
"lastBackupStatus": "Completed",
"lastBackupTime": "2022-05-05T22:41:02.855511+00:00",
"lastRecoveryPoint": "2022-05-05T22:41:06.408480+00:00",
"policyId": "",
"policyName": "",
"protectedItemDataId": "123146170808998",
"protectedItemType": "Microsoft.Compute/virtualMachines",
"protectionState": "ProtectionStopped",
"protectionStatus": "Healthy",
"resourceGuardOperationRequests": null,
"sourceResourceId": "/subscriptions/4b48eb85-91f3-4902-b74b-e ⌋

84641fb6785/resourceGroups/testRG/providers/Microsoft.Com ⌋
pute/virtualMachines/clickhouseVM",

,→

,→

"virtualMachineId": "/subscriptions/4b48eb85-91f3-4902-b74b-e ⌋
84641fb6785/resourceGroups/testRG/providers/Microsoft.Com ⌋
pute/virtualMachines/clickhouseVM",

,→

,→

"workloadType": "VM"
},
"resourceGroup": "testRG",
"tags": null,
"type": "Microsoft.RecoveryServices/vaults/backupFabrics/protec ⌋

tionContainers/protectedItems",→

}
]

Notice that in the above list of backup items protectionState is set to Pro-
tectionStopped, but the backup item still exists. Because of soft delete, it will be
retained for 14 days before being permanently deleted.

A.9.2 Undelete soft deleted backup items

Undelete the backup item (the script assumes there is only one backup item in the
vault, and that it is deleted):

Store the deleted backup
$DeletedBackup = az backup item list --resource-group $RGName

--vault-name $RSVName | ConvertFrom-Json -AsHashtable,→

Store the container
$Container = az backup container list --resource-group $RGName

--vault-name $RSVName --backup-management-type AzureIaasVM |
ConvertFrom-Json -AsHashtable

,→

,→

Chapter A: Experiment Data 234

Undelete the deleted backup
az backup protection undelete --container-name $Container.name

--item-name $DeletedBackup.name --resource-group $RGName
--vault-name $RSVName --backup-management-type AzureIaasVM
--workload-type VM

,→

,→

,→

Output:

{
"eTag": null,
"id": "/subscriptions/4b48eb85-91f3-4902-b74b-e84641fb6785/resour ⌋

ceGroups/testRG/providers/Microsoft.RecoveryServices/vaults/m ⌋
yRSV/backupJobs/5b7ed38c-051b-419e-9257-5a709bd17d91",

,→

,→

"location": null,
"name": "5b7ed38c-051b-419e-9257-5a709bd17d91",
"properties": {

"actionsInfo": null,
"activityId": "13481c16-ceba-11ec-8f9e-0a580af44d46",
"backupManagementType": "AzureIaasVM",
"containerName": "iaasvmcontainerv2;testrg;clickhousevm",
"duration": "0:00:11.188451",
"endTime": "2022-05-08T10:32:05.635967+00:00",
"entityFriendlyName": "clickhouseVM",
"errorDetails": null,
"extendedInfo": {

"dynamicErrorMessage": null,
"estimatedRemainingDuration": null,
"internalPropertyBag": null,
"progressPercentage": null,
"propertyBag": {

"Undelete flag": "True",
"VM Name": "clickhouseVM"

},
"tasksList": []

},
"isUserTriggered": null,
"jobType": "AzureIaaSVMJob",
"operation": "Undelete",
"startTime": "2022-05-08T10:31:54.447516+00:00",
"status": "Completed",
"virtualMachineVersion": "Compute"

},
"resourceGroup": "testRG",
"tags": null,

Chapter A: Experiment Data 235

"type": "Microsoft.RecoveryServices/vaults/backupJobs"
}

A.9.3 Re-enable backup

In order to delete the backup, backup had to be disabled for the VM. Now it is
time to re-enable backup for the VM.

Enable backup for VM (script assumes there is one VM):

Get the backup items
$itemId = az backup item list --resource-group $RGName --vault-name

$RSVName | ConvertFrom-Json -AsHashtable | % {$_["id"]},→

Resume backup protection
az backup protection resume --policy-name $PolicyName --ids $itemId

Output:

{
"eTag": null,
"id": "/subscriptions/4b48eb85-91f3-4902-b74b-e84641fb6785/resour ⌋

ceGroups/testRG/providers/Microsoft.RecoveryServices/vaults/m ⌋
yRSV/backupJobs/5b12880d-3229-4fb6-82b8-273cbfee84e1",

,→

,→

"location": null,
"name": "5b12880d-3229-4fb6-82b8-273cbfee84e1",
"properties": {

"actionsInfo": null,
"activityId": "f8984456-cebc-11ec-bebc-0a580af44d46",
"backupManagementType": "AzureIaasVM",
"containerName": "iaasvmcontainerv2;testrg;clickhousevm",
"duration": "0:00:11.105737",
"endTime": "2022-05-08T10:52:50.612509+00:00",
"entityFriendlyName": "clickhouseVM",
"errorDetails": null,
"extendedInfo": {

"dynamicErrorMessage": null,
"estimatedRemainingDuration": null,
"internalPropertyBag": null,
"progressPercentage": null,
"propertyBag": {

"Policy Name": "DefaultPolicy",
"VM Name": "clickhouseVM"

},
"tasksList": []

},
"isUserTriggered": null,

Chapter A: Experiment Data 236

"jobType": "AzureIaaSVMJob",
"operation": "ConfigureBackup",
"startTime": "2022-05-08T10:52:39.506772+00:00",
"status": "Completed",
"virtualMachineVersion": "Compute"

},
"resourceGroup": "testRG",
"tags": null,
"type": "Microsoft.RecoveryServices/vaults/backupJobs"

}

Verifying the results:

az backup item list --resource-group $RGName --vault-name $RSVName

Output:

[
{

"eTag": null,
"id": "/subscriptions/4b48eb85-91f3-4902-b74b-e84641fb6785/reso ⌋

urceGroups/testRG/providers/Microsoft.RecoveryServices/vaul ⌋
ts/myRSV/backupFabrics/Azure/protectionContainers/IaasVMCon ⌋
tainer;iaasvmcontainerv2;testrg;clickhousevm/protectedItems ⌋
/VM;iaasvmcontainerv2;testrg;clickhousevm",

,→

,→

,→

,→

"location": null,
"name": "VM;iaasvmcontainerv2;testrg;clickhousevm",
"properties": {

"backupManagementType": "AzureIaasVM",
"backupSetName": null,
"containerName": "iaasvmcontainerv2;testrg;clickhousevm",
"createMode": null,
"deferredDeleteTimeInUtc": null,
"deferredDeleteTimeRemaining": null,
"extendedInfo": null,
"extendedProperties": {

"diskExclusionProperties": null,
"linuxVmApplicationName": ""

},
"friendlyName": "clickhouseVM",
"healthDetails": [

{
"code": 400239,
"message": "Backup pre-check status of this virtual

machine is OK.",,→

"recommendations": [],

Chapter A: Experiment Data 237

"title": "IaasVmHealthGreenDefault"
}

],
"healthStatus": "Passed",
"isArchiveEnabled": false,
"isDeferredDeleteScheduleUpcoming": null,
"isRehydrate": null,
"isScheduledForDeferredDelete": null,
"kpisHealths": {

"BackupOperationStatusKPI": {
"resourceHealthDetails": [

{
"code": 0,
"message": "",
"recommendations": [],
"title": "Success"

}
],
"resourceHealthStatus": "Healthy"

},
"RestoreOperationStatusKPI": {

"resourceHealthDetails": [
{

"code": 0,
"message": "",
"recommendations": [],
"title": "Success"

}
],
"resourceHealthStatus": "Healthy"

}
},
"lastBackupStatus": "Completed",
"lastBackupTime": "2022-05-05T22:41:02.855511+00:00",
"lastRecoveryPoint": "2022-05-05T22:41:06.408480+00:00",
"policyId": "/subscriptions/4b48eb85-91f3-4902-b74b-e84641fb6 ⌋

785/resourceGroups/testRG/providers/Microsoft.RecoverySer ⌋
vices/vaults/myRSV/backupPolicies/DefaultPolicy",

,→

,→

"policyName": "DefaultPolicy",
"protectedItemDataId": "123146170808998",
"protectedItemType": "Microsoft.Compute/virtualMachines",
"protectionState": "Protected",
"protectionStatus": "Healthy",
"resourceGuardOperationRequests": null,

Chapter A: Experiment Data 238

"sourceResourceId": "/subscriptions/4b48eb85-91f3-4902-b74b-e ⌋
84641fb6785/resourceGroups/testRG/providers/Microsoft.Com ⌋
pute/virtualMachines/clickhouseVM",

,→

,→

"virtualMachineId": "/subscriptions/4b48eb85-91f3-4902-b74b-e ⌋
84641fb6785/resourceGroups/testRG/providers/Microsoft.Com ⌋
pute/virtualMachines/clickhouseVM",

,→

,→

"workloadType": "VM"
},
"resourceGroup": "testRG",
"tags": null,
"type": "Microsoft.RecoveryServices/vaults/backupFabrics/protec ⌋

tionContainers/protectedItems",→

}
]

protectionState is Protected and protectionStatus is Healthy. This was
also verified in the Azure Portal.

A.10 Disable soft delete and delete backups

In this experiment, soft delete is disabled before deleting backup items. This makes
it impossible to recover the deleted backups by undeleting them.

A.10.1 Disable soft delete

Disabling soft delete for the RSV:

Get RSV
$RSV = Get-AzRecoveryServicesVault -Name $RSVName

-ResourceGroupName $RGName,→

Set-AzRecoveryServicesVaultProperty -VaultId $RSV.ID
-SoftDeleteFeatureState Disable,→

StorageModelType :
StorageType :
StorageTypeState :
EnhancedSecurityState : Enabled
SoftDeleteFeatureState : Disabled
ResourceGuardOperationRequests :
IsSoftDeleteFeatureStateEditable : True

A.10.2 Disable protection and delete backup items

Disabling protection and deleting all backup itemes in vault:

Chapter A: Experiment Data 239

List backup items
$itemIds = az backup item list --resource-group $RGName

--vault-name $RSVName | ConvertFrom-Json -AsHashtable | %
{$_["id"]}

,→

,→

Delete each item
foreach($id in $itemIds) {

az backup protection disable --backup-management-type
AzureIaasVM --delete-backup-data true --ids $id,→

}

Are you sure you want to perform this operation? (y/n): y

Output:

{
"eTag": null,
"id": "/subscriptions/4b48eb85-91f3-4902-b74b-e84641fb6785/resour ⌋

ceGroups/testRG/providers/Microsoft.RecoveryServices/vaults/m ⌋
yRSV/backupJobs/e3489fcc-c117-45c1-98e4-1f26521d7486",

,→

,→

"location": null,
"name": "e3489fcc-c117-45c1-98e4-1f26521d7486",
"properties": {

"actionsInfo": null,
"activityId": "9a528994-cec4-11ec-b1cb-0a580af44d46",
"backupManagementType": "AzureIaasVM",
"containerName": "iaasvmcontainerv2;testrg;clickhousevm",
"duration": "0:01:51.796137",
"endTime": "2022-05-08T11:49:08.863143+00:00",
"entityFriendlyName": "clickhouseVM",
"errorDetails": null,
"extendedInfo": {

"dynamicErrorMessage": null,
"estimatedRemainingDuration": null,
"internalPropertyBag": null,
"progressPercentage": null,
"propertyBag": {

"Number of Recovery Points": "4",
"VM Name": "clickhouseVM"

},
"tasksList": []

},
"isUserTriggered": null,
"jobType": "AzureIaaSVMJob",
"operation": "DeleteBackupData",

Chapter A: Experiment Data 240

"startTime": "2022-05-08T11:47:17.067006+00:00",
"status": "Completed",
"virtualMachineVersion": "Compute"

},
"resourceGroup": "testRG",
"tags": null,
"type": "Microsoft.RecoveryServices/vaults/backupJobs"

}

A.10.3 Verify deletion

Listing all backups in vault:

az backup item list --resource-group $RGName --vault-name $RSVName
[]

The result is an empty array, meaning there are no backup items to list.
The backup item was also gone when viewed from the Azure Portal.

A.11 Delete Recovery Services vault

Microsoft provides a script to delete an entire Recovery Services vault. The script
turns off soft delete and deletes all backup items. Backup items in a soft deleted
state are first undeleted and then deleted again. In this experiment, we try to run
the script, in order to delete the RSV.

A.11.1 Make a backup in the RSV

Since our backups were deleted in the previous experiment, backup protection for
the ClickHouse VM had to be re-enabled.

Enabling backup protection for the VM:

az backup protection enable-for-vm `
--resource-group $RGName `
--vault-name $RSVName `
--vm $CHName `
--policy-name $PolicyName

Output:

{
"eTag": null,
"id": "/subscriptions/4b48eb85-91f3-4902-b74b-e84641fb6785/resour ⌋

ceGroups/testRG/providers/Microsoft.RecoveryServices/vaults/m ⌋
yRSV/backupJobs/f1c62078-9756-4407-b97f-8dad9124d6e3",

,→

,→

"location": null,

Chapter A: Experiment Data 241

"name": "f1c62078-9756-4407-b97f-8dad9124d6e3",
"properties": {

"actionsInfo": null,
"activityId": "c7b7513a-cece-11ec-a490-0a580af4687d",
"backupManagementType": "AzureIaasVM",
"containerName": "iaasvmcontainerv2;testrg;clickhousevm",
"duration": "0:00:31.147828",
"endTime": "2022-05-08T13:00:51.346337+00:00",
"entityFriendlyName": "clickhousevm",
"errorDetails": null,
"extendedInfo": {

"dynamicErrorMessage": null,
"estimatedRemainingDuration": null,
"internalPropertyBag": null,
"progressPercentage": null,
"propertyBag": {

"Policy Name": "DefaultPolicy",
"VM Name": "clickhousevm"

},
"tasksList": []

},
"isUserTriggered": null,
"jobType": "AzureIaaSVMJob",
"operation": "ConfigureBackup",
"startTime": "2022-05-08T13:00:20.198509+00:00",
"status": "Completed",
"virtualMachineVersion": "Compute"

},
"resourceGroup": "testRG",
"tags": null,
"type": "Microsoft.RecoveryServices/vaults/backupJobs"

}

Trigger a backup job immediately:

az backup protection backup-now `
--resource-group $RGName `
--vault-name $RSVName `
--container-name $CHName `
--item-name $CHName `
--backup-management-type AzureIaaSVM `
--retain-until 12-05-2022

Output:

{
"eTag": null,

Chapter A: Experiment Data 242

"id": "/subscriptions/4b48eb85-91f3-4902-b74b-e84641fb6785/resour ⌋
ceGroups/testRG/providers/Microsoft.RecoveryServices/vaults/m ⌋
yRSV/backupJobs/5dcacb3b-0c69-4849-a239-5b5bf935cb08",

,→

,→

"location": null,
"name": "5dcacb3b-0c69-4849-a239-5b5bf935cb08",
"properties": {

"actionsInfo": [
"1"

],
"activityId": "ee140e7c-cece-11ec-aa04-0a580af4687d",
"backupManagementType": "AzureIaasVM",
"containerName": "iaasvmcontainerv2;testrg;clickhousevm",
"duration": "0:00:01.551140",
"endTime": null,
"entityFriendlyName": "clickhousevm",
"errorDetails": null,
"extendedInfo": {

"dynamicErrorMessage": null,
"estimatedRemainingDuration": null,
"internalPropertyBag": {

"IsInstantRpJob": "True"
},
"progressPercentage": null,
"propertyBag": {

"Recovery Point Expiry Time in UTC": "5/12/2022 12:00:00
AM",,→

"VM Name": "clickhousevm"
},
"tasksList": [

{
"duration": "0:00:00",
"endTime": null,
"instanceId": null,
"progressPercentage": null,
"startTime": null,
"status": "InProgress",
"taskExecutionDetails": null,
"taskId": "Take Snapshot"

},
{

"duration": "0:00:00",
"endTime": null,
"instanceId": null,
"progressPercentage": null,

Chapter A: Experiment Data 243

"startTime": null,
"status": "NotStarted",
"taskExecutionDetails": null,
"taskId": "Transfer data to vault"

}
]

},
"isUserTriggered": null,
"jobType": "AzureIaaSVMJob",
"operation": "Backup",
"startTime": "2022-05-08T13:01:11.106429+00:00",
"status": "InProgress",
"virtualMachineVersion": "Compute"

},
"resourceGroup": "testRG",
"tags": null,
"type": "Microsoft.RecoveryServices/vaults/backupJobs"

}

List backups

az backup item list --resource-group $RGName --vault-name $RSVName

Output:

[
{

"eTag": null,
"id": "/subscriptions/4b48eb85-91f3-4902-b74b-e84641fb6785/reso ⌋

urceGroups/testRG/providers/Microsoft.RecoveryServices/vaul ⌋
ts/myRSV/backupFabrics/Azure/protectionContainers/IaasVMCon ⌋
tainer;iaasvmcontainerv2;testrg;clickhousevm/protectedItems ⌋
/VM;iaasvmcontainerv2;testrg;clickhousevm",

,→

,→

,→

,→

"location": null,
"name": "VM;iaasvmcontainerv2;testrg;clickhousevm",
"properties": {

"backupManagementType": "AzureIaasVM",
"backupSetName": null,
"containerName": "iaasvmcontainerv2;testrg;clickhousevm",
"createMode": null,
"deferredDeleteTimeInUtc": null,
"deferredDeleteTimeRemaining": null,
"extendedInfo": null,
"extendedProperties": null,
"friendlyName": "clickhouseVM",
"healthDetails": null,

Chapter A: Experiment Data 244

"healthStatus": "Passed",
"isArchiveEnabled": false,
"isDeferredDeleteScheduleUpcoming": null,
"isRehydrate": null,
"isScheduledForDeferredDelete": null,
"kpisHealths": {},
"lastBackupStatus": "",
"lastBackupTime": "2001-01-01T00:00:00+00:00",
"lastRecoveryPoint": "2022-05-08T13:01:15.411726+00:00",
"policyId": "/subscriptions/4b48eb85-91f3-4902-b74b-e84641fb6 ⌋

785/resourceGroups/testRG/providers/Microsoft.RecoverySer ⌋
vices/vaults/myRSV/backupPolicies/DefaultPolicy",

,→

,→

"policyName": "DefaultPolicy",
"protectedItemDataId": "123146169525886",
"protectedItemType": "Microsoft.Compute/virtualMachines",
"protectionState": "Protected",
"protectionStatus": "Healthy",
"resourceGuardOperationRequests": null,
"sourceResourceId": "/subscriptions/4b48eb85-91f3-4902-b74b-e ⌋

84641fb6785/resourceGroups/testRG/providers/Microsoft.Com ⌋
pute/virtualMachines/clickhouseVM",

,→

,→

"virtualMachineId": "/subscriptions/4b48eb85-91f3-4902-b74b-e ⌋
84641fb6785/resourceGroups/testRG/providers/Microsoft.Com ⌋
pute/virtualMachines/clickhouseVM",

,→

,→

"workloadType": "VM"
},
"resourceGroup": "testRG",
"tags": null,
"type": "Microsoft.RecoveryServices/vaults/backupFabrics/protec ⌋

tionContainers/protectedItems",→

}
]

A.11.2 Download script

The following script was copied from the Microsoft documentation and saved as
delete-rsv.ps1 in the home directory in the Azure Cloud Shell [65]. The four
variables at the start of the script were modified to work with our test environ-
ment. In addition, the first line (Connect-AzAccount) was commented out, be-
cause the script was run directly in the Cloud Shell, and thus did not need to be
authenticated.

The script was run by executing ./delete-rsv.ps1.
Script to delete RSV:

Connect-AzAccount

Chapter A: Experiment Data 245

$VaultName = $RSVName #enter vault name
$Subscription = "Azure for Students" #enter Subscription name
$ResourceGroup = $RGName #enter Resource group name
$SubscriptionId = $subscription #enter Subscription ID

Select-AzSubscription $Subscription
$VaultToDelete = Get-AzRecoveryServicesVault -Name $VaultName

-ResourceGroupName $ResourceGroup,→

Set-AzRecoveryServicesAsrVaultContext -Vault $VaultToDelete

Set-AzRecoveryServicesVaultProperty -Vault $VaultToDelete.ID
-SoftDeleteFeatureState Disable #disable soft delete,→

Write-Host "Soft delete disabled for the vault" $VaultName
$containerSoftDelete = Get-AzRecoveryServicesBackupItem

-BackupManagementType AzureVM -WorkloadType AzureVM -VaultId
$VaultToDelete.ID | Where-Object {$_.DeleteState -eq
"ToBeDeleted"} #fetch backup items in soft delete state

,→

,→

,→

foreach ($softitem in $containerSoftDelete)
{

Undo-AzRecoveryServicesBackupItemDeletion -Item $softitem
-VaultId $VaultToDelete.ID -Force #undelete items in soft
delete state

,→

,→

}
#Invoking API to disable enhanced security
$azProfile = [Microsoft.Azure.Commands.Common.Authentication.Abstra ⌋

ctions.AzureRmProfileProvider]::Instance.Profile,→

$profileClient = New-Object -TypeName
Microsoft.Azure.Commands.ResourceManager.Common.RMProfileClient
-ArgumentList ($azProfile)

,→

,→

$accesstoken = Get-AzAccessToken
$token = $accesstoken.Token
$authHeader = @{

'Content-Type'='application/json'
'Authorization'='Bearer ' + $token

}
$body = @{properties=@{enhancedSecurityState= "Disabled"}}
$restUri = 'https://management.azure.com/subscriptions/'+$Subscript ⌋

ionId+'/resourcegroups/'+$ResourceGroup+'/providers/Microsoft.R ⌋
ecoveryServices/vaults/'+$VaultName+'/backupconfig/vaultconfig? ⌋
api-version=2019-05-13' #Replace "management.azure.com" with
"management.usgovcloudapi.net" if your subscription is in USGov.

,→

,→

,→

,→

$response = Invoke-RestMethod -Uri $restUri -Headers $authHeader
-Body ($body | ConvertTo-JSON -Depth 9) -Method PATCH,→

Chapter A: Experiment Data 246

#Fetch all protected items and servers
$backupItemsVM = Get-AzRecoveryServicesBackupItem

-BackupManagementType AzureVM -WorkloadType AzureVM -VaultId
$VaultToDelete.ID

,→

,→

$backupItemsSQL = Get-AzRecoveryServicesBackupItem
-BackupManagementType AzureWorkload -WorkloadType MSSQL
-VaultId $VaultToDelete.ID

,→

,→

$backupItemsAFS = Get-AzRecoveryServicesBackupItem
-BackupManagementType AzureStorage -WorkloadType AzureFiles
-VaultId $VaultToDelete.ID

,→

,→

$backupItemsSAP = Get-AzRecoveryServicesBackupItem
-BackupManagementType AzureWorkload -WorkloadType
SAPHanaDatabase -VaultId $VaultToDelete.ID

,→

,→

$backupContainersSQL = Get-AzRecoveryServicesBackupContainer
-ContainerType AzureVMAppContainer -Status Registered -VaultId
$VaultToDelete.ID | Where-Object {$_.ExtendedInfo.WorkloadType
-eq "SQL"}

,→

,→

,→

$protectableItemsSQL = Get-AzRecoveryServicesBackupProtectableItem
-WorkloadType MSSQL -VaultId $VaultToDelete.ID | Where-Object
{$_.IsAutoProtected -eq $true}

,→

,→

$backupContainersSAP = Get-AzRecoveryServicesBackupContainer
-ContainerType AzureVMAppContainer -Status Registered -VaultId
$VaultToDelete.ID | Where-Object {$_.ExtendedInfo.WorkloadType
-eq "SAPHana"}

,→

,→

,→

$StorageAccounts = Get-AzRecoveryServicesBackupContainer
-ContainerType AzureStorage -Status Registered -VaultId
$VaultToDelete.ID

,→

,→

$backupServersMARS = Get-AzRecoveryServicesBackupContainer
-ContainerType "Windows" -BackupManagementType MAB -VaultId
$VaultToDelete.ID

,→

,→

$backupServersMABS = Get-AzRecoveryServicesBackupManagementServer
-VaultId $VaultToDelete.ID| Where-Object {
$_.BackupManagementType -eq "AzureBackupServer" }

,→

,→

$backupServersDPM = Get-AzRecoveryServicesBackupManagementServer
-VaultId $VaultToDelete.ID | Where-Object {
$_.BackupManagementType-eq "SCDPM" }

,→

,→

$pvtendpoints = Get-AzPrivateEndpointConnection
-PrivateLinkResourceId $VaultToDelete.ID,→

foreach($item in $backupItemsVM)
{

Chapter A: Experiment Data 247

Disable-AzRecoveryServicesBackupProtection -Item $item
-VaultId $VaultToDelete.ID -RemoveRecoveryPoints -Force
#stop backup and delete Azure VM backup items

,→

,→

}
Write-Host "Disabled and deleted Azure VM backup items"

foreach($item in $backupItemsSQL)
{

Disable-AzRecoveryServicesBackupProtection -Item $item
-VaultId $VaultToDelete.ID -RemoveRecoveryPoints -Force
#stop backup and delete SQL Server in Azure VM backup
items

,→

,→

,→

}
Write-Host "Disabled and deleted SQL Server backup items"

foreach($item in $protectableItems)
{

Disable-AzRecoveryServicesBackupAutoProtection
-BackupManagementType AzureWorkload -WorkloadType MSSQL
-InputItem $item -VaultId $VaultToDelete.ID #disable
auto-protection for SQL

,→

,→

,→

}
Write-Host "Disabled auto-protection and deleted SQL protectable

items",→

foreach($item in $backupContainersSQL)
{

Unregister-AzRecoveryServicesBackupContainer -Container
$item -Force -VaultId $VaultToDelete.ID #unregister SQL
Server in Azure VM protected server

,→

,→

}
Write-Host "Deleted SQL Servers in Azure VM containers"

foreach($item in $backupItemsSAP)
{

Disable-AzRecoveryServicesBackupProtection -Item $item
-VaultId $VaultToDelete.ID -RemoveRecoveryPoints -Force
#stop backup and delete SAP HANA in Azure VM backup
items

,→

,→

,→

}
Write-Host "Disabled and deleted SAP HANA backup items"

foreach($item in $backupContainersSAP)
{

Chapter A: Experiment Data 248

Unregister-AzRecoveryServicesBackupContainer -Container
$item -Force -VaultId $VaultToDelete.ID #unregister SAP
HANA in Azure VM protected server

,→

,→

}
Write-Host "Deleted SAP HANA in Azure VM containers"

foreach($item in $backupItemsAFS)
{

Disable-AzRecoveryServicesBackupProtection -Item $item
-VaultId $VaultToDelete.ID -RemoveRecoveryPoints -Force
#stop backup and delete Azure File Shares backup items

,→

,→

}
Write-Host "Disabled and deleted Azure File Share backups"

foreach($item in $StorageAccounts)
{

Unregister-AzRecoveryServicesBackupContainer -container
$item -Force -VaultId $VaultToDelete.ID #unregister
storage accounts

,→

,→

}
Write-Host "Unregistered Storage Accounts"

foreach($item in $backupServersMARS)
{

Unregister-AzRecoveryServicesBackupContainer -Container
$item -Force -VaultId $VaultToDelete.ID #unregister
MARS servers and delete corresponding backup items

,→

,→

}
Write-Host "Deleted MARS Servers"

foreach($item in $backupServersMABS)
{

Unregister-AzRecoveryServicesBackupManagementServer
-AzureRmBackupManagementServer $item -VaultId
$VaultToDelete.ID #unregister MABS servers and
delete corresponding backup items

,→

,→

,→

}
Write-Host "Deleted MAB Servers"

foreach($item in $backupServersDPM)
{

Chapter A: Experiment Data 249

Unregister-AzRecoveryServicesBackupManagementServer
-AzureRmBackupManagementServer $item -VaultId
$VaultToDelete.ID #unregister DPM servers and
delete corresponding backup items

,→

,→

,→

}
Write-Host "Deleted DPM Servers"

#Deletion of ASR Items

$fabricObjects = Get-AzRecoveryServicesAsrFabric
if ($null -ne $fabricObjects) {

First DisableDR all VMs.
foreach ($fabricObject in $fabricObjects) {

$containerObjects =
Get-AzRecoveryServicesAsrProtectionContainer
-Fabric $fabricObject

,→

,→

foreach ($containerObject in $containerObjects) {
$protectedItems = Get-AzRecoveryServicesAsr ⌋

ReplicationProtectedItem
-ProtectionContainer $containerObject

,→

,→

DisableDR all protected items
foreach ($protectedItem in $protectedItems)

{,→

Write-Host "Triggering
DisableDR(Purge) for item:"
$protectedItem.Name

,→

,→

Remove-AzRecoveryServicesAsrReplica ⌋
tionProtectedItem -InputObject
$protectedItem -Force

,→

,→

Write-Host "DisableDR(Purge)
completed",→

}

$containerMappings = Get-AzRecoveryServices ⌋
AsrProtectionContainerMapping
`

,→

,→

-ProtectionContainer
$containerObject,→

Remove all Container Mappings
foreach ($containerMapping in

$containerMappings) {,→

Write-Host "Triggering Remove
Container Mapping: "
$containerMapping.Name

,→

,→

Chapter A: Experiment Data 250

Remove-AzRecoveryServicesAsrProtect ⌋
ionContainerMapping
-ProtectionContainerMapping
$containerMapping -Force

,→

,→

,→

Write-Host "Removed Container
Mapping.",→

}
}
$NetworkObjects = Get-AzRecoveryServicesAsrNetwork

-Fabric $fabricObject,→

foreach ($networkObject in $NetworkObjects)
{

#Get the PrimaryNetwork
$PrimaryNetwork =

Get-AzRecoveryServicesAsrNetwork
-Fabric $fabricObject -FriendlyName
$networkObject

,→

,→

,→

$NetworkMappings =
Get-AzRecoveryServicesAsrNetworkMapping
-Network $PrimaryNetwork

,→

,→

foreach ($networkMappingObject in
$NetworkMappings),→

{
#Get the Neetwork Mappings
$NetworkMapping = Get-AzRecoverySer ⌋

vicesAsrNetworkMapping -Name
$networkMappingObject.Name
-Network $PrimaryNetwork

,→

,→

,→

Remove-AzRecoveryServicesAsrNetwork ⌋
Mapping -InputObject
$NetworkMapping

,→

,→

}
}
Remove Fabric
Write-Host "Triggering Remove Fabric:"

$fabricObject.FriendlyName,→

Remove-AzRecoveryServicesAsrFabric -InputObject
$fabricObject -Force,→

Write-Host "Removed Fabric."
}

}

foreach($item in $pvtendpoints)
{

Chapter A: Experiment Data 251

$penamesplit = $item.Name.Split(".")
$pename = $penamesplit[0]
Remove-AzPrivateEndpointConnection -ResourceId

$item.PrivateEndpoint.Id -Force #remove private
endpoint connections

,→

,→

Remove-AzPrivateEndpoint -Name $pename
-ResourceGroupName $ResourceGroup -Force
#remove private endpoints

,→

,→

}
Write-Host "Removed Private Endpoints"

#Recheck ASR items in vault
$fabricCount = 0
$ASRProtectedItems = 0
$ASRPolicyMappings = 0
$fabricObjects = Get-AzRecoveryServicesAsrFabric
if ($null -ne $fabricObjects) {

foreach ($fabricObject in $fabricObjects) {
$containerObjects =

Get-AzRecoveryServicesAsrProtectionContainer
-Fabric $fabricObject

,→

,→

foreach ($containerObject in $containerObjects) {
$protectedItems = Get-AzRecoveryServicesAsr ⌋

ReplicationProtectedItem
-ProtectionContainer $containerObject

,→

,→

foreach ($protectedItem in $protectedItems)
{,→

$ASRProtectedItems++
}
$containerMappings = Get-AzRecoveryServices ⌋

AsrProtectionContainerMapping
`

,→

,→

-ProtectionContainer
$containerObject,→

foreach ($containerMapping in
$containerMappings) {,→

$ASRPolicyMappings++
}

}
$fabricCount++

}
}
#Recheck presence of backup items in vault

Chapter A: Experiment Data 252

$backupItemsVMFin = Get-AzRecoveryServicesBackupItem
-BackupManagementType AzureVM -WorkloadType AzureVM -VaultId
$VaultToDelete.ID

,→

,→

$backupItemsSQLFin = Get-AzRecoveryServicesBackupItem
-BackupManagementType AzureWorkload -WorkloadType MSSQL
-VaultId $VaultToDelete.ID

,→

,→

$backupContainersSQLFin = Get-AzRecoveryServicesBackupContainer
-ContainerType AzureVMAppContainer -Status Registered -VaultId
$VaultToDelete.ID | Where-Object {$_.ExtendedInfo.WorkloadType
-eq "SQL"}

,→

,→

,→

$protectableItemsSQLFin =
Get-AzRecoveryServicesBackupProtectableItem -WorkloadType MSSQL
-VaultId $VaultToDelete.ID | Where-Object {$_.IsAutoProtected
-eq $true}

,→

,→

,→

$backupItemsSAPFin = Get-AzRecoveryServicesBackupItem
-BackupManagementType AzureWorkload -WorkloadType
SAPHanaDatabase -VaultId $VaultToDelete.ID

,→

,→

$backupContainersSAPFin = Get-AzRecoveryServicesBackupContainer
-ContainerType AzureVMAppContainer -Status Registered -VaultId
$VaultToDelete.ID | Where-Object {$_.ExtendedInfo.WorkloadType
-eq "SAPHana"}

,→

,→

,→

$backupItemsAFSFin = Get-AzRecoveryServicesBackupItem
-BackupManagementType AzureStorage -WorkloadType AzureFiles
-VaultId $VaultToDelete.ID

,→

,→

$StorageAccountsFin = Get-AzRecoveryServicesBackupContainer
-ContainerType AzureStorage -Status Registered -VaultId
$VaultToDelete.ID

,→

,→

$backupServersMARSFin = Get-AzRecoveryServicesBackupContainer
-ContainerType "Windows" -BackupManagementType MAB -VaultId
$VaultToDelete.ID

,→

,→

$backupServersMABSFin =
Get-AzRecoveryServicesBackupManagementServer -VaultId
$VaultToDelete.ID| Where-Object { $_.BackupManagementType -eq
"AzureBackupServer" }

,→

,→

,→

$backupServersDPMFin = Get-AzRecoveryServicesBackupManagementServer
-VaultId $VaultToDelete.ID | Where-Object {
$_.BackupManagementType-eq "SCDPM" }

,→

,→

$pvtendpointsFin = Get-AzPrivateEndpointConnection
-PrivateLinkResourceId $VaultToDelete.ID,→

Chapter A: Experiment Data 253

Write-Host "Number of backup items left in the vault and which need
to be deleted:" $backupItemsVMFin.count "Azure VMs"
$backupItemsSQLFin.count "SQL Server Backup Items"
$backupContainersSQLFin.count "SQL Server Backup Containers"
$protectableItemsSQLFin.count "SQL Server Instances"
$backupItemsSAPFin.count "SAP HANA backup items"
$backupContainersSAPFin.count "SAP HANA Backup Containers"
$backupItemsAFSFin.count "Azure File Shares"
$StorageAccountsFin.count "Storage Accounts"
$backupServersMARSFin.count "MARS Servers"
$backupServersMABSFin.count "MAB Servers"
$backupServersDPMFin.count "DPM Servers" $pvtendpointsFin.count
"Private endpoints"

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

Write-Host "Number of ASR items left in the vault and which need to
be deleted:" $ASRProtectedItems "ASR protected items"
$ASRPolicyMappings "ASR policy mappings" $fabricCount "ASR
Fabrics" $pvtendpointsFin.count "Private endpoints. Warning:
This script will only remove the replication configuration from
Azure Site Recovery and not from the source. Please cleanup the
source manually. Visit
https://go.microsoft.com/fwlink/?linkid=2182781 to learn more"

,→

,→

,→

,→

,→

,→

,→

Remove-AzRecoveryServicesVault -Vault $VaultToDelete
#Finish

Running the script:

./delete-rsv.ps1
Name Account

SubscriptionName
Environment

TenantId

,→

,→

,→

---- -------

,→

,→

,→

Azure for Students (4b48eb85-91f3-4902-... MSI@50342
Azure for Students

AzureCloud
09a10672-822f-4467-a5ba-5bb375967c05

,→

,→

,→

#
ResourceName : myRSV
ResourceGroupName : testRG
ResourceNamespace : Microsoft.RecoveryServices
ResouceType : vaults
#

Chapter A: Experiment Data 254

#
StorageModelType :
StorageType :
StorageTypeState :
EnhancedSecurityState : Enabled
SoftDeleteFeatureState : Disabled
ResourceGuardOperationRequests :
IsSoftDeleteFeatureStateEditable : True
#
Soft delete disabled for the vault myRSV
Invoke-RestMethod: /home/torstein/delete-rsv.ps1:30
Line |
30 | $response = Invoke-RestMethod -Uri $restUri -Headers

$authHeader -Bod ...,→

|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~,→

# | {"error":{"code":"InvalidSubscriptionId","message":"The
provided subscription identifier 'Azure for Students' is
malformed or invalid."}}

,→

,→

#
#
# DynamicErrorMessage :
# Properties : {[VM Name, clickhouseVM], [Number of

Recovery Points, 1]},→

# SubTasks : {}
# VmVersion : Compute
# IsCancellable : False
# IsRetriable : False
# ErrorDetails :
# ActivityId : 7640f777-a528-43a7-b618-fea2ad3b0a52
# JobId : 88685b46-5b5f-477a-a755-9632751dac21
# Operation : DeleteBackupData
# Status : Completed
# WorkloadName : clickhouseVM
# StartTime : 5/8/2022 1:22:27 PM
# EndTime : 5/8/2022 1:24:19 PM
# Duration : 00:01:51.8479521
# BackupManagementType : AzureVM
#
# Disabled and deleted Azure VM backup items
# Disabled and deleted SQL Server backup items
# Disabled auto-protection and deleted SQL protectable items
# Deleted SQL Servers in Azure VM containers
# Disabled and deleted SAP HANA backup items



Chapter A: Experiment Data 255

# Deleted SAP HANA in Azure VM containers
# Disabled and deleted Azure File Share backups
# Unregistered Storage Accounts
# Deleted MARS Servers
# Deleted MAB Servers
# Deleted DPM Servers
# Removed Private Endpoints
# Number of backup items left in the vault and which need to be

deleted: 0 Azure VMs 0 SQL Server Backup Items 0 SQL Server
Backup Containers 0 SQL Server Instances 0 SAP HANA backup
items 0 SAP HANA Backup Containers 0 Azure File Shares 0
Storage Accounts 0 MARS Servers 0 MAB Servers 0 DPM Servers 0
Private endpoints

,→

,→

,→

,→

,→

# Number of ASR items left in the vault and which need to be
deleted: 0 ASR protected items 0 ASR policy mappings 0 ASR
Fabrics 0 Private endpoints. Warning: This script will only
remove the replication configuration from Azure Site Recovery
and not from the source. Please cleanup the source manually.
Visit https://go.microsoft.com/fwlink/?linkid=2182781 to learn
more

,→

,→

,→

,→

,→

,→

#
# Response : Vault has been deleted

It seems one of the lines in the script failed. This does not appear to have
affected the deletion of the vault, though.

A “Soft Delete disabled for Vault” alert was fired by Azure Monitor.

A.11.3 Verify deletion

Trying to list backup items:

az backup item list --resource-group $RGName --vault-name $RSVName
# (ResourceNotFound) The Resource

'Microsoft.RecoveryServices/vaults/myRSV' under resource group
'testRG' was not found. For more details please go to
https://aka.ms/ARMResourceNotFoundFix

,→

,→

,→

# Code: ResourceNotFound
# Message: The Resource 'Microsoft.RecoveryServices/vaults/myRSV'

under resource group 'testRG' was not found. For more details
please go to https://aka.ms/ARMResourceNotFoundFix

,→

,→

The vault is completely gone!



Chapter A: Experiment Data 256

A.12 Applying MUA to vault and attempting deletion

A.12.1 Creating a resource guard

In order to enable Multi User Authentication, a resource guard must be created
in a different subscription or directory than the backup vault, but they must be in
the same region.

In a different Azure subscription than the one containing the Revocery Services
vault, the security admin creates a resource guard. This can be done with the
following command in powershell:

New-AzResource -Location "North Europe" -ResourceName "BackupRG"
-ResourceType "Microsoft.DataProtection/resourceGuards"
-ResourceGroupName "bProject"

,→

,→

which gives the following output:

Name : BackupRG
ResourceId : /subscriptions/c29c75c2-44ed-4c7e-a49f-12ebe976 ⌋

37dd/resourceGroups/bProject/providers/Microsoft.DataProtection ⌋
/resourceGuards/BackupRG

,→

,→

ResourceName : BackupRG
ResourceType : Microsoft.DataProtection/resourceGuards
ResourceGroupName : bProject
Location : northeurope
SubscriptionId : c29c75c2-44ed-4c7e-a49f-12ebe97637dd
Properties : @{provisioningState=Succeeded;

resourceGuardOperations=System.Object[];
vaultCriticalOperationExclusionList=System.Object[];

,→

,→

allowAutoApprovals=True}

By default the resource guard has all protected operations enabled by default,
but the security admin can choose to disable some protections. Disable soft delete
and Remove MUA protection cannot be disabled. See the following image for how
this looks in the Azure GUI.



Chapter A: Experiment Data 257

A.12.2 Assigning reader role to backup admin

The next step is to assign the reader role on the Resource Guard to the backup
administrator account. In the GUI we can do this through the Access control(IAM)-
blads. In the following images we add the reader role on the Resource guard to
the user that acts as the backup admin in this example.



Chapter A: Experiment Data 258

After the reader role has been granted, the backup administrator can choose to
protect any Recovery Service vault with multi-user authorization. To do this they
must choose which resource guard to protect it with, which is why the reader role
is required. If they do, any protected operation, such as disabling soft-delete or
turning MUA off again, should fail as they do not have the necessary permissions
on the resource guard.

A.12.3 Applying MUA to vault

We created a Recovery Services vault, added a resource guard and attempted to
disable soft delete.

Create a Recovery Services vault Since the RSV was deleted in the last exper-
iment, we made a new one.

Create RSV:

az backup vault create --location $location --name $RSVName
--resource-group $RGName,→

Output:

{
"etag": "W/\"datetime'2022-05-13T13%3A13%3A28.4632743Z'\"",
"id": "/subscriptions/4b48eb85-91f3-4902-b74b-e84641fb6785/resour ⌋

ceGroups/testRG/providers/Microsoft.RecoveryServices/vaults/m ⌋
yRSV",

,→

,→

"identity": null,
"location": "eastus",
"name": "myRSV",
"properties": {

"encryption": null,
"privateEndpointConnections": null,
"privateEndpointStateForBackup": "None",
"privateEndpointStateForSiteRecovery": "None",
"provisioningState": "Succeeded",
"upgradeDetails": null

},



Chapter A: Experiment Data 259

"resourceGroup": "testRG",
"sku": {

"name": "Standard",
"tier": null

},
"systemData": null,
"tags": null,
"type": "Microsoft.RecoveryServices/vaults"

}

Add resource guard Press update MUA settings:

Select resource guard:

Save settings:



Chapter A: Experiment Data 260

A.12.4 Testing protected action

Try to disable soft delete via Azure CLI An attempt was made at disabling soft
delete via the Azure CLI. The request failed with a generic “BadRequest” status
code, presumably because of MUA.

# Get RSV
$RSV = Get-AzRecoveryServicesVault -Name $RSVName

-ResourceGroupName $RGName,→

# Disable soft delete
Set-AzRecoveryServicesVaultProperty -VaultId $RSV.ID

-SoftDeleteFeatureState Disable,→

# Set-AzRecoveryServicesVaultProperty: One or more errors occurred.
(Operation returned an invalid status code 'BadRequest'),→

Try to disable soft delete via Azure Portal We attempted to disable soft delete
via the Azure Portal.

Disabling soft delete for the vault:



Chapter A: Experiment Data 261

An error appeared in the notifications:



Chapter A: Experiment Data 262

Try to run RSV deletion script The script from [cref] was run once again. It
appears it was able to delete the vault. We believe this is because the vault is
empty. We attempted a second time with a vault containing backup data.

Output from script:

Name Account
SubscriptionName Environment

TenantId
,→

,→

---- -------
---------------- -----------

--------
,→

,→

Azure for Students (4b48eb85-91f3-4902-... MSI@50342
Azure for Students AzureCloud

09a10672-822f-4467-a5ba-5bb3759...
,→

,→

ResourceName : myRSV
ResourceGroupName : testRG
ResourceNamespace : Microsoft.RecoveryServices
ResouceType : vaults

Set-AzRecoveryServicesVaultProperty:
/home/torstein/delete-rsv.ps1:12,→

Line |
12 | Set-AzRecoveryServicesVaultProperty -Vault

$VaultToDelete.ID -SoftDel ...,→

| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ⌋
~~~~~~~~~~,→

| One or more errors occurred. (Operation returned an invalid
status code 'BadRequest'),→

Soft delete disabled for the vault myRSV
Invoke-RestMethod: /home/torstein/delete-rsv.ps1:30
Line |

30 | $response = Invoke-RestMethod -Uri $restUri -Headers
$authHeader -Bod ...,→

|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~,→

| {"error":{"code":"InvalidSubscriptionId","message":"The
provided subscription identifier 'Azure for Students' is
malformed or invalid."}}

,→

,→

Disabled and deleted Azure VM backup items
Disabled and deleted SQL Server backup items
Disabled auto-protection and deleted SQL protectable items
Deleted SQL Servers in Azure VM containers



Chapter A: Experiment Data 263

Disabled and deleted SAP HANA backup items
Deleted SAP HANA in Azure VM containers
Disabled and deleted Azure File Share backups
Unregistered Storage Accounts
Deleted MARS Servers
Deleted MAB Servers
Deleted DPM Servers
Removed Private Endpoints
Number of backup items left in the vault and which need to be

deleted: 0 Azure VMs 0 SQL Server Backup Items 0 SQL Server
Backup Containers 0 SQL Server Instances 0 SAP HANA backup
items 0 SAP HANA Backup Containers 0 Azure File Shares 0
Storage Accounts 0 MARS Servers 0 MAB Servers 0 DPM Servers 0
Private endpoints

,→

,→

,→

,→

,→

Number of ASR items left in the vault and which need to be deleted:
0 ASR protected items 0 ASR policy mappings 0 ASR Fabrics 0
Private endpoints. Warning: This script will only remove the
replication configuration from Azure Site Recovery and not from
the source. Please cleanup the source manually. Visit
https://go.microsoft.com/fwlink/?linkid=2182781 to learn more

,→

,→

,→

,→

,→

Response : Vault has been deleted

List RSVs:

az backup vault list

[
{

"etag": "W/\"datetime'2022-05-10T09%3A58%3A14.2637541Z'\"",
"id": "/subscriptions/4b48eb85-91f3-4902-b74b-e84641fb6785/reso ⌋

urceGroups/perfRG/providers/Microsoft.RecoveryServices/vaul ⌋
ts/perfRSV",

,→

,→

"identity": null,
"location": "eastus",
"name": "perfRSV",
"properties": {

"encryption": null,
"privateEndpointConnections": null,
"privateEndpointStateForBackup": "None",
"privateEndpointStateForSiteRecovery": "None",
"provisioningState": "Succeeded",
"upgradeDetails": null

},
"resourceGroup": "perfRG",



Chapter A: Experiment Data 264

"sku": {
"name": "Standard",
"tier": null

},
"systemData": null,
"tags": null,
"type": "Microsoft.RecoveryServices/vaults"

}
]

“myRSV” is not present in the list.

create new RSV and back up an item Create RSV:

az backup vault create --location $location --name $RSVName
--resource-group $RGName,→

Back up VM:

az backup protection enable-for-vm `
--resource-group $RGName `
--vault-name $RSVName `
--vm $CHName `
--policy-name $PolicyName

Add resource guard The same procedure was followed as in Add resource guard.

Try to run RSV deletion script The script was run once again. This time, we got
a few more errors. The script still claims that soft delete was disabled, and that
VMs were deleted, but this appears not to be the case.

Output from script:

Name Account
SubscriptionName Environment

TenantId
,→

,→

---- -------
---------------- -----------

--------
,→

,→

Azure for Students (4b48eb85-91f3-4902-... MSI@50342
Azure for Students AzureCloud

09a10672-822f-4467-a5ba-5bb3759...
,→

,→

ResourceName : myRSV
ResourceGroupName : testRG
ResourceNamespace : Microsoft.RecoveryServices



Chapter A: Experiment Data 265

ResouceType : vaults

Set-AzRecoveryServicesVaultProperty:
/home/torstein/delete-rsv.ps1:12,→

Line |
12 | Set-AzRecoveryServicesVaultProperty -Vault

$VaultToDelete.ID -SoftDel ...,→

| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ⌋
~~~~~~~~~~,→

| One or more errors occurred. (Operation returned an invalid
status code 'BadRequest'),→

Soft delete disabled for the vault myRSV
Invoke-RestMethod: /home/torstein/delete-rsv.ps1:30
Line |

30 | $response = Invoke-RestMethod -Uri $restUri -Headers
$authHeader -Bod ...,→

|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~,→

| {"error":{"code":"InvalidSubscriptionId","message":"The
provided subscription identifier 'Azure for Students' is
malformed or invalid."}}

,→

,→

Disable-AzRecoveryServicesBackupProtection:
/home/torstein/delete-rsv.ps1:49,→

Line |
49 | Disable-AzRecoveryServicesBackupProtection -Item

$item -Vault ...,→

| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ⌋
~~~~~~~~~~,→

| Unlock privilege access is needed to delete the
ResourceGuard proxy,→

Disabled and deleted Azure VM backup items
Disabled and deleted SQL Server backup items
Disabled auto-protection and deleted SQL protectable items
Deleted SQL Servers in Azure VM containers
Disabled and deleted SAP HANA backup items
Deleted SAP HANA in Azure VM containers
Disabled and deleted Azure File Share backups
Unregistered Storage Accounts
Deleted MARS Servers
Deleted MAB Servers
Deleted DPM Servers

Chapter A: Experiment Data 266

Removed Private Endpoints
Number of backup items left in the vault and which need to be

deleted: 1 Azure VMs 0 SQL Server Backup Items 0 SQL Server
Backup Containers 0 SQL Server Instances 0 SAP HANA backup
items 0 SAP HANA Backup Containers 0 Azure File Shares 0
Storage Accounts 0 MARS Servers 0 MAB Servers 0 DPM Servers 0
Private endpoints

,→

,→

,→

,→

,→

Number of ASR items left in the vault and which need to be deleted:
0 ASR protected items 0 ASR policy mappings 0 ASR Fabrics 0
Private endpoints. Warning: This script will only remove the
replication configuration from Azure Site Recovery and not from
the source. Please cleanup the source manually. Visit
https://go.microsoft.com/fwlink/?linkid=2182781 to learn more

,→

,→

,→

,→

,→

Remove-AzRecoveryServicesVault: /home/torstein/delete-rsv.ps1:204
Line |
204 | Remove-AzRecoveryServicesVault -Vault $VaultToDelete

| ~~
| Operation failed. ClientRequestId:

9e041d38-0531-4dbb-8db8-63ec5f59f341-2022-05-13
13:41:03Z-P One or more errors occurred. (Recovery
Services Vault cannot

,→

,→

,→

| be deleted as there are existing resources within the vault.
: clickhouseVM. Please ensure all containers have been

unregistered from the vault and all
,→

,→

| private endpoints associated with the vault have been
deleted, and retry operation. For more details, see
https://aka.ms/AB-AA4ecq5)

,→

,→

List RSVs:

az backup vault list

Output:

[
{

"etag": "W/\"datetime'2022-05-10T09%3A58%3A14.2637541Z'\"",
"id": "/subscriptions/4b48eb85-91f3-4902-b74b-e84641fb6785/reso ⌋

urceGroups/perfRG/providers/Microsoft.RecoveryServices/vaul ⌋
ts/perfRSV",

,→

,→

"identity": null,
"location": "eastus",
"name": "perfRSV",
"properties": {

"encryption": null,
"privateEndpointConnections": null,

Chapter A: Experiment Data 267

"privateEndpointStateForBackup": "None",
"privateEndpointStateForSiteRecovery": "None",
"provisioningState": "Succeeded",
"upgradeDetails": null

},
"resourceGroup": "perfRG",
"sku": {

"name": "Standard",
"tier": null

},
"systemData": null,
"tags": null,
"type": "Microsoft.RecoveryServices/vaults"

},
{

"etag": "W/\"datetime'2022-05-13T13%3A39%3A48.7614362Z'\"",
"id": "/subscriptions/4b48eb85-91f3-4902-b74b-e84641fb6785/reso ⌋

urceGroups/testRG/providers/Microsoft.RecoveryServices/vaul ⌋
ts/myRSV",

,→

,→

"identity": null,
"location": "eastus",
"name": "myRSV",
"properties": {

"encryption": null,
"privateEndpointConnections": null,
"privateEndpointStateForBackup": "None",
"privateEndpointStateForSiteRecovery": "None",
"provisioningState": "Succeeded",
"upgradeDetails": null

},
"resourceGroup": "testRG",
"sku": {

"name": "Standard",
"tier": null

},
"systemData": null,
"tags": null,
"type": "Microsoft.RecoveryServices/vaults"

}
]

The vault (“myRSV”) is still present. In other words the backup administrator
was not permitted to delete the vault as long as that involved performing protected
actions.

Chapter A: Experiment Data 268

A.12.5 Permitting protected actions

In order to allow for protected actions to be performed on select occasions the
reader role will not be sufficient. In order for a backup admin to perform protected
actions within a resource guard’s scope, they need the contributor-role on that
resource guard. In order to to harness the security benefits of just-in-time access
and multi user authorization, this can be configured with Azure Active Directory
(Azure AD) Privileged Identity Management (PIM).

The end goal is for the backup admin to be able to raise a request for the
contributor role on the resource guard, and temporarily be permitted to perform
protected actions.

In PIM, the security admin must create an eligible assignment for the backup
admin as contributor. In short, allowing for the backup admin to request the nec-
essary access.

In Azure AD privileged identity management we navigate to the resource
guard as shown, navigate within it, and click on assignments:

From here we add a new assignment, select the contributor role and our

Chapter A: Experiment Data 269

backup admin. THe security admin can choose to grant the assignent for a limitied
amount of time, and from here set some settings for maximum duration, and the
requirement of a justification before granting the assigned role. By selecting the
assignemnt as "elligable", instead of "active", the backup admin must request to
have the assigned role activated for them each time they need it. This must then
be approved for the amount of time needed until it is automatically revoked.

Chapter A: Experiment Data 270

Chapter A: Experiment Data 271

Request access to contributor role Requesting access to the contributor role:

Chapter A: Experiment Data 272

Sending request:

From the security administrators POV, A request has been recieived in the PIM-
service:

Chapter A: Experiment Data 273

The request is activated by security admin as shown:

An email was received by the backup admin when the request was accepted:

Chapter A: Experiment Data 274

Try to disable soft delete Soft delete was successfully disabled for the vault:

Chapter A: Experiment Data 275

A.13 Restore from a backup vault

{
"authorization": {

"action": "Microsoft.DataProtection/backupVaults/backupInsta ⌋
nces/restore/action",,→

"scope": "/subscriptions/3d440288-2774-4e29-b3d7-0b9efe86bba ⌋
7/resourceGroups/bachelor119/providers/Microsoft.DataPro ⌋
tection/backupVaults/bachelor119-performance-backup/back ⌋
upInstances/bachelor119-performance-postgres-748e4aca-e5 ⌋
3b-4e15-9fe2-665e67d8c03e"

,→

,→

,→

,→

},
"caller": "omerj@ntnu.no",
"channels": "Operation",

Chapter A: Experiment Data 276

"claims": {
"aud": "https://management.core.windows.net/",
"iss": "https://sts.windows.net/09a10672-822f-4467-a5ba-5bb3 ⌋

75967c05/",,→

"iat": "1651736576",
"nbf": "1651736576",
"exp": "1651741076",
"http://schemas.microsoft.com/claims/authnclassreference":

"1",,→

"aio": "AVQAq/8TAAAABL3Z7ULGAW1yexY77bzlzAyhUVgZSwf0iL4jELLf ⌋
gqEExxjWaqv/V018J4GhfqQcZV9PkxbGEDAvPyhTqxWWhMQVZu9S5OlQ ⌋
B4Ev2uHhnTE=",

,→

,→

"http://schemas.microsoft.com/claims/authnmethodsreferences" ⌋
:
"pwd,mfa",

,→

,→

"appid": "c44b4083-3bb0-49c1-b47d-974e53cbdf3c",
"appidacr": "2",
"http://schemas.xmlsoap.org/ws/2005/05/identity/claims/surna ⌋

me":
"Jonuzi",

,→

,→

"http://schemas.xmlsoap.org/ws/2005/05/identity/claims/given ⌋
name":
"Omer",

,→

,→

Chapter A: Experiment Data 277

"groups": "8d15c301-2022-4dc2-9550-f36dbdffee7c,61846c99-b2a ⌋
e-4898-a10c-2ddd7b4a013f,091bd972-9447-4208-b3cc-8a1959a ⌋
dd436,0107c21a-8a63-4b21-87a0-86a12547fd12,94fefe97-5b83-
47a6-a829-01b4add29fe3,5f73363b-e2f9-4001-a71d-b6230f44a ⌋
293,3ef57554-d71c-41a1-a080-701c2320082c,e1adf917-cdb3-4 ⌋
2cc-8425-79ffe844a86d,498ce0ed-e83d-413e-b529-bde0346ccd ⌋
f1,a7f6818e-774d-4e09-994f-77fbe6ff7925,aad00940-a490-41 ⌋
c1-8a0c-9b0be5e7a390,be17024f-57a2-4729-a575-75d7d7b63e1 ⌋
4,c497c5c3-4e26-4e2a-8a12-10e0d43288a1,0e414658-efef-480 ⌋
4-a1c4-8a7f668a9e43,7f27023d-8163-41e9-9d11-1cab1ade4d6e ⌋
,12e6cbdf-815f-478f-8f9d-3c87b6adc5a9,ab6b0bdb-d48d-4c80-
bc61-7fca517eb7cf,37309702-9021-40ba-a2d8-3446dca747f2,e ⌋
1b09d79-d205-4bbe-9d5f-d79df23d5b56,027504c5-23ce-42ae-8 ⌋
aaa-1c4c2df10ead,43a6e580-ca1f-4f8b-b63a-9b1a3e49b72b,46 ⌋
bc9091-e862-4633-bc54-cbf1473fffe9,01fad63f-0f80-4da7-b9 ⌋
2a-9bf43062d9c3,2433ef53-9c20-4a85-9c8d-136a4375435d,3a8 ⌋
06c10-8ef6-4f00-a9ba-b78faee326a4,587174cf-9b08-44e9-8af ⌋
5-4d7ac74fa880,9e090282-49ce-4467-94f9-5a85e99c92cf,37db ⌋
b3c1-c5f7-4c80-a14a-d622c3775824,0ef51352-b5eb-4cac-a483-
a9fa6e536129,8370354f-3451-40b2-9abf-a43e7e62d23d,8103e7 ⌋
2f-5acd-4ce9-8c5e-a3af7ba98b36,e29fd27b-746d-4aab-b817-c ⌋
bc96fc07606,b9e3e345-c7a4-4b86-a1fc-e5b77a8ee6a1,a4295b3 ⌋
f-f9c4-4253-a57a-f42e6ff1a163,9b319622-144f-4573-8a12-a7 ⌋
4b6404ca15,b3df6df0-e4ac-44ca-b0c4-27219aaf7e33,6bac6c57-
8c80-4639-9691-0ce756fda9ea,a9bafff9-b09e-4124-9d74-482f ⌋
4d653c4b,5fa55196-5b42-4d47-8599-a724a00435ab,fd780d1e-8 ⌋
cb6-40b2-80cf-acb411f89833,b47da984-e1de-43cc-9149-8fcca ⌋
0b24340,42d87878-08fe-42f4-9eaa-cd82f1ffc733",

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

"ipaddr": "129.241.230.99",
"name": "Omer Jonuzi",
"http://schemas.microsoft.com/identity/claims/objectidentifi ⌋

er":
"3f0b9f76-5dd0-4f4f-85d3-affbe3572a01",

,→

,→

"onprem_sid":
"S-1-5-21-3959417778-1711865379-3952174976-358665",,→

"puid": "100320005758FB15",
"rh":

"0.AQkAcgahCS-CZ0SluluzdZZ8BUZIf3kAutdPukPawfj2MBMJAAM.",,→

"http://schemas.microsoft.com/identity/claims/scope":
"user_impersonation",,→

"http://schemas.xmlsoap.org/ws/2005/05/identity/claims/namei ⌋
dentifier":
"i8uDlYJMGSSdVydTjF8rE7LP1tEpil787X1xYh8H-5I",

,→

,→

Chapter A: Experiment Data 278

"http://schemas.microsoft.com/identity/claims/tenantid":
"09a10672-822f-4467-a5ba-5bb375967c05",,→

"http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name" ⌋
:
"omerj@ntnu.no",

,→

,→

"http://schemas.xmlsoap.org/ws/2005/05/identity/claims/upn":
"omerj@ntnu.no",,→

"uti": "PTjw6g14Z06dvf2WnkwtAA",
"ver": "1.0",
"xms_tcdt": "1363351898"

},
"correlationId": "0c1c8dd6-246f-412d-9b2a-90baab4b1a1c",
"description": "",
"eventDataId": "f714efa3-701c-4673-bcb2-17bcca133cea",
"eventName": {

"value": "EndRequest",
"localizedValue": "End request"

},
"category": {

"value": "Administrative",
"localizedValue": "Administrative"

},
"eventTimestamp": "2022-05-05T08:07:26.1105832Z",
"id": "/subscriptions/3d440288-2774-4e29-b3d7-0b9efe86bba7/resou ⌋

rceGroups/bachelor119/providers/Microsoft.DataProtection/bac ⌋
kupVaults/bachelor119-performance-backup/backupInstances/bac ⌋
helor119-performance-postgres-748e4aca-e53b-4e15-9fe2-665e67 ⌋
d8c03e/events/f714efa3-701c-4673-bcb2-17bcca133cea/ticks/637 ⌋
873348461105832",

,→

,→

,→

,→

,→

"level": "Informational",
"operationId": "c52e2132-8420-446d-b0b8-d7cd42eb2d2e",
"operationName": {

"value": "Microsoft.DataProtection/backupVaults/backupInstan ⌋
ces/restore/action",,→

"localizedValue": "Restore Backup Instance"
},
"resourceGroupName": "bachelor119",
"resourceProviderName": {

"value": "Microsoft.DataProtection",
"localizedValue": "Microsoft.DataProtection"

},
"resourceType": {

"value":
"Microsoft.DataProtection/backupVaults/backupInstances",,→

Chapter A: Experiment Data 279

"localizedValue":
"Microsoft.DataProtection/backupVaults/backupInstances",→

},
"resourceId": "/subscriptions/3d440288-2774-4e29-b3d7-0b9efe86bb ⌋

a7/resourceGroups/bachelor119/providers/Microsoft.DataProtec ⌋
tion/backupVaults/bachelor119-performance-backup/backupInsta ⌋
nces/bachelor119-performance-postgres-748e4aca-e53b-4e15-9fe ⌋
2-665e67d8c03e",

,→

,→

,→

,→

"status": {
"value": "Succeeded",
"localizedValue": "Succeeded"

},
"subStatus": {

"value": "",
"localizedValue": ""

},
"submissionTimestamp": "2022-05-05T08:09:10.1063319Z",
"subscriptionId": "3d440288-2774-4e29-b3d7-0b9efe86bba7",
"tenantId": "09a10672-822f-4467-a5ba-5bb375967c05",
"properties": {

"eventCategory": "Administrative",
"entity": "/subscriptions/3d440288-2774-4e29-b3d7-0b9efe86bb ⌋

a7/resourceGroups/bachelor119/providers/Microsoft.DataPr ⌋
otection/backupVaults/bachelor119-performance-backup/bac ⌋
kupInstances/bachelor119-performance-postgres-748e4aca-e ⌋
53b-4e15-9fe2-665e67d8c03e",

,→

,→

,→

,→

"message": "Microsoft.DataProtection/backupVaults/backupInst ⌋
ances/restore/action",,→

"hierarchy": "09a10672-822f-4467-a5ba-5bb375967c05/3d440288- ⌋
2774-4e29-b3d7-0b9efe86bba7",→

},
"relatedEvents": []

}

Chapter A: Experiment Data 280

A.14 Postgres: PITR with REST API performance test

Figure A.1: PITR deploys the database in a newly created server

A.15 Setup of test environment for PostgreSQL experi-
ments

A.15.1 Creating test environment for PostgreSQL

The PostgreSQL instance was
The Powershell script below is the template for our test environment on the

Chapter A: Experiment Data 281

Azure Database for PostgreSQL Single Server.

$Password = Read-Host -Prompt 'Please enter your password' -AsSecureString
$RGName = "myresourcegroup"

az group create --name $RGName --location northeurope

New-AzPostgreSqlServer `
-Name bachelorgroup119postgrestest1 `
-ResourceGroupName $RGName `
-Sku GP_Gen5_2 `
-GeoRedundantBackup Enabled `
-Location northeurope `
-AdministratorUsername myadmin `
-AdministratorLoginPassword $Password

A.15.2 Data population

The script below was used to populate the database.

import psycopg2
Connection string information
host = "bachelor119-performance.postgres.database.azure.com"
dbname = "postgres"
user = "bachelor119@bachelor119-performance"
password = "performance-test1"
sslmode = "require"
Connection string constructed
conn_string = "host={0} user={1} dbname={2} password={3}

sslmode={4}".format(host, user, dbname, password, sslmode),→

conn = psycopg2.connect(conn_string)
cursor = conn.cursor()
Check for duplicate tables
cursor.execute("DROP TABLE IF EXISTS inventory;")
Create table
cursor.execute("CREATE TABLE inventory (id serial PRIMARY KEY, one

BIGINT, two BIGINT, three BIGINT);"),→

Insert some data into the table
cursor.execute("INSERT INTO inventory (one, two, three) SELECT

generate_series(1, 90000000), generate_series(1, 90000000),
generate_series(1, 90000000);")

,→

,→

Resolve connection
conn.commit()
cursor.close()
conn.close()

Chapter A: Experiment Data 282

A.15.3 Postgres: Azure backup setup

In order to back up a postgres server with Azure Backup the first step is to click the
"Backup"-option on top of the "Backup instances"-blade inside the Backup Vault.

In the following wizard each organisation must select the options that suit
their needs, but importantly it requires the creation of a backup policy. In our
example the policy backs up weekly and retains backups for three months.

Additionally when backing up managed postgres servers, we can select which
databases to back up. Here we have chosen the standard postgres-database inside
the instance, but had we had others we could have chosen them as well.

When selecting the database we must also give the secret that is required to

Chapter A: Experiment Data 283

connect to the database. This can be given as an object i a key vault, as we have
done here:

This secret is simply the connection string from the database instance.

Finally we have the option to review our options, and if we are happy with
these we can create the backup instance.

Immediately after creation the backup instance have not started a backup, and
it will not back up the database until we tell it to, or the policy determines that it
shall. As shown no backups are completed:

Chapter A: Experiment Data 284

If we press "back up now" and let it run to completion, we have one completed
backup however:

A.16 Postgres: Restoring from PITR

In this experiment we simluated data loss in a postgres database and restored the
data with Point-in-time-Restore.

Given that an attacker encrypts data files in a database in a ransomware at-
tack, we assume complete data loss in the database. This can be simulated with a
database (consisting of a single table) being dropped. This is because the security

Chapter A: Experiment Data 285

measures designed to mitigate such an attack work the same regardless of the
state of the database.

Figure A.2: The size of the inventory table

Figure A.3: Dropping the table

Figure A.4: The size of the inventory table after dropped table

The first security measure is also the simplest solution Azure provides for post-
gres databases: Point-in-time Restore (PITR). Though there are multiple ways to
back up our database.

A point-in-time restore allows the database to be reverted back to a previous
state where data has not been tampered with. The user specifies a point in time at
which a copy of the database is made and used in the creation of a new managed
database server. Such an operation is demonstrated in the following deployment
of a restoration database.

Chapter A: Experiment Data 286

Figure A.5: The restore operation took 31 minutes 27 seconds to complete

This way one can recover to the most updated version of the database possible
while removing all remnants of malicious activity.

The policy for backup retention is dependent on the size of the server. Since
we have a 7-day retention period set on the server and the server is no more than 4
TB the backup storage will retain 2 full backups, as well differential backups along
with transaction logs from the point of the last full backup. Further information
about how server size affects backup and restore policy can be found in the Azure
docs for PostgreSQL single server.

A.17 Postgres: Protecting with Azure Backup

A.17.1 Restoring from Azure Backup

The data in our database when performing this test is simply 10000 lines of auto-
generated code as shown previously. The result of a "SELECT *"-query is as follows:

Chapter A: Experiment Data 287

To simulate data loss, we lose some data by dropping table inventory. The
same query now returns an error:

In order to restore from our backup in Azure Backup, we press the "restore"-
button on top of the blade. This gives us the following wizard:

As shown, we are given the option between restoring files or as a database
to a server. In this example we choose to restore as a new database on the same
server as before. We name this new database "postgres-restored." The same query
as before can now be shown on the restored database:

Chapter A: Experiment Data 288

After restoration we can see the successful job in the backup vault:

Chapter A: Experiment Data 289

A.18 Postgres: Deleting database and restoring from PITR

Figure A.6: JSON output of the delete operation

However, this is a form of soft delete since the Azure backup ensures that it is
possible to redeploy the server after deletion within the retention period of said
server. In addition, when creating the server the property of "createMode" can be
set to "PointInTimeRestore". This can be done through the REST API endpoint for
creating servers, where the resource ID of the deleted server has to be included in
the request body. The resource ID of the deleted server can be found in the JSON
file of the delete operation that should be stored in the Azure portal activity log.
Below we demonstrate the recovery of the server. This way we establish that a
server that was encrypted and then deleted still has the ability to fully recover to
an operational pre-encryption state.

Chapter A: Experiment Data 290

Figure A.7: Summary of the API call

Figure A.8: Server created and database restored

Chapter A: Experiment Data 291

A.19 Postgres: Enabling alerts for Backup vault instance
deletion

The following template shows how an alert for deleted backup instances can be
created. Worth noting that the only supported scope is for the whole subscription,
and not a single resource group or Backup vault.

{
"$schema": "https://schema.management.azure.com/schemas/2019-04 ⌋

-01/deploymentTemplate.json#",,→

"contentVersion": "1.0.0.0",
"parameters": {

"activityLogAlerts_Deleted_backup_name": {
"defaultValue": "Deleted backup",
"type": "String"

},
"actiongroups_backup_deletion_notification_externalid": {

"defaultValue": "/subscriptions/c29c75c2-44ed-4c7e-a49f ⌋
-12ebe97637dd/resourceGroups/aasmunhs/providers/mic ⌋
rosoft.insights/actiongroups/backup deletion
notification",

,→

,→

,→

"type": "String"
}

},
"variables": {},
"resources": [

{
"type": "microsoft.insights/activityLogAlerts",
"apiVersion": "2020-10-01",
"name": "[parameters('activityLogAlerts_Deleted_backup_ ⌋

name')]",,→

"location": "Global",
"properties": {

"scopes": [
"/subscriptions/c29c75c2-44ed-4c7e-a49f-12ebe97 ⌋

637dd",→

],
"condition": {

"allOf": [
{

"field": "category",
"equals": "Administrative"

},
{

Chapter A: Experiment Data 292

"field": "operationName",
"equals": "Microsoft.DataProtection/bac ⌋

kupVaults/backupInstances/delete",→

},
{

"field": "level",
"containsAny": [

"informational"
]

},
{

"field": "status",
"containsAny": [

"succeeded"
]

}
]

},
"actions": {

"actionGroups": [
{

"actionGroupId":
"[parameters('actiongroups_backup_d ⌋
eletion_notification_externalid')]",

,→

,→

"webhookProperties": {}
}

]
},
"enabled": true

}
}

]
}

As shown, notification type can be modified in the action group:

Chapter A: Experiment Data 293

When deleting a postgres-backup instance the following email was sent:

Azure Monitor alert 'Deleted backup' was activated for 'bachelor119 ⌋
-psql-postgres-restored-748229ab-ebae-4836-baf5-87bb4150b08c'
at May 9, 2022 22:36 UTC

,→

,→

You’re receiving this notification as a member of the BACKUP DELET
action group because an Azure Monitor alert was
activated.

,→

,→

Activity log alert Deleted backup
Time May 9, 2022 22:36 UTC
Category Administrative
Operation name Microsoft.DataProtection/backupVaults/backupI ⌋

nstances/delete,→

Correlation ID 74d31364-31cb-497a-8c8a-359a81d5b843
Level Informational
Resource ID /subscriptions/c29c75c2-44ed-4c7e-a49f-12ebe9763 ⌋

7dd/resourceGroups/bProject/providers/Microsoft.DataProtection/ ⌋
backupVaults/bVault-bachelor119/backupInstances/bachelor119-psq ⌋
l-postgres-restored-748229ab-ebae-4836-baf5-87bb4150b08c

,→

,→

,→

Caller aasmunhs@ntnu.no

Properties {"eventCategory":"Administrative","entity":"/subs ⌋
criptions/c29c75c2-44ed-4c7e-a49f-12ebe97637dd/resourceGroups/b ⌋
Project/providers/Microsoft.DataProtection/backupVaults/bVault- ⌋
bachelor119/backupInstances/bachelor119-psql-postgres-restored- ⌋
748229ab-ebae-4836-baf5-87bb4150b08c","message":"Microsoft.Data ⌋
Protection/backupVaults/backupInstances/delete","hierarchy":"09 ⌋
a10672-822f-4467-a5ba-5bb375967c05/c29c75c2-44ed-4c7e-a49f-12eb ⌋
e97637dd"}

,→

,→

,→

,→

,→

,→

,→

N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

fo
rm

as
jo

ns
te

kn
ol

og
i o

g
el

ek
tr

ot
ek

ni
kk

In
st

itu
tt

 fo
r d

at
at

ek
no

lo
gi

 o
g

in
fo

rm
at

ik
k

Torstein Martinsheimen Egge
Åsmund Hunderi Stemland
Omer Jonuzi

Cloud Backup Architectures Resistant
to Ransomware
Attacks

Bacheloroppgave i Digital infrastruktur og cybersikkerhet
Veileder: Helge Hafting
Medveileder: Gleb Sizov
Mai 2022

Ba
ch

el
or
op

pg
av

e

	Abstract
	Sammendrag
	Contents
	Figures
	Glossary
	Preface
	Introduction
	Background
	Thesis Topic
	Research questions
	Partner organisation

	Thesis outline
	Scope and delimitation

	Theory
	Definitions and concepts
	Public cloud
	CIA-triad
	Ransomware
	Databases
	Cryptography concepts
	RPO and RTO

	Ransomware
	Definition
	Ransomware trends
	Ransomware gangs
	How ransomware works

	The anatomy of an attack
	Attacks against backups

	Backup
	Types of backup
	Database backup

	The Azure cloud platform
	Azure Backup
	Role based access control (RBAC)
	Multi-User Authorization (MUA)
	Soft delete
	Azure Monitor
	Interacting with Azure
	Azure Blob Storage

	ClickHouse
	Introduction to ClickHouse
	Backup solutions for ClickHouse
	Backup solutions for ClickHouse in Azure

	PostgreSQL
	Introduction to PostgreSQL
	Backup solutions for PostgreSQL
	Backup solutions for PostgreSQL in Azure

	Security Best Practices
	Principle of least privilege
	Zero trust

	Method
	Chapter outline
	Criteria for analysis
	Resistance to ransomware attacks
	Ease of use
	RPO and RTO
	Cost

	Backup solutions to analyze
	Backup solutions for ClickHouse
	Backup solutions for Azure Database for PostgreSQL

	Test environments
	Illustration of test environment
	Test environments for ClickHouse
	Test environment for PostgreSQL

	Scenarios
	Scenario 1: Attacker encrypts database data
	Scenario 2: Attacker deletes backups
	Scenario 3: Backup administrator compromised

	Performance testing
	Performance tests for ClickHouse
	Performance tests for PostgreSQL

	Results
	ClickHouse
	Scenario 1, experiment 1: Encrypting database files
	Scenario 2, experiment 1: Encrypting local backups made with clickhouse-backup
	Scenario 2, experiments 2 and 3: Deleting backups made with clickhouse-backup
	Scenario 2, experiment 4: Deleting backups in Recovery Services Vaults
	Scenario 3, experiment 1: Disabling soft delete and deleting backups
	Scenario 3, experiment 2: Deleting a Recovery Services vault
	Scenario 3, experiment 3: Preventing soft delete from being disabled with MUA
	Performance tests for ClickHouse
	Cost

	PostgreSQL
	Scenario 1, experiment 1: Recovery with Point-in-time-Restore
	Scenario 1, experiment 2: Recovery with Azure Backup For PostgreSQL
	Scenario 2, experiment 1: Deleting database-server and restoring with PITR
	Scenario 2, experiment 2: Deleting backup-instance in Backup vault and attempting undelete
	Scenario 2, experiment 3: Setting up alerts and deleting backup-instance
	Scenario 3
	Performance tests for PostgreSQL
	PostgreSQL cost

	Discussion
	Discussion of backup solutions for each database
	ClickHouse
	PostgreSQL

	Research questions
	Research question 1
	Research question 2

	Future work/Limitations

	Conclusion
	Summary
	Future developments
	Greater context

	Bibliography
	Experiment Data
	Setup of test environment for ClickHouse experiments
	Declare variables
	Generate SSH keys
	Set up a resource group
	Set up a VM
	Install ClickHouse
	Load test data
	Run test queries
	Install clickhouse-backup
	Set up Azure Blob storage for use with clickhouse-backup
	Enable soft delete for Blob container
	Configure clickhouse-backup to use Blob storage
	Set up Azure Backup

	Test environment for ClickHouse performance tests
	Declare variables
	Set up a resource group
	Set up a VM
	Install ClickHouse
	Load test data
	Verify dataATTACH
	Install clickhouse-backup
	Set up Azure Blob storage for use with clickhouse-backup
	Configure clickhouse-backup to use Blob storage
	Set up Azure Backup

	Azure Backup performance tests
	Recovery with Azure Backup via CLI (failed first attempt)
	Recovery with Azure Backup (failed second attempt)
	Recovery with Azure Backup via Portal (successful third attempt)
	Recovery with Azure Backup via CLI (successful fourth attempt)

	clickhouse-backup performance test
	Recovery with clickhouse-backup (first set of attempts)
	Recovery with clickhouse-backup (second set of attempts)

	Encrypt ClickHouse and recover from backup
	Procedure
	Determine which files to encrypt
	Install ccrypt
	Perform test queries
	Encrypt file and repeat test queries
	Decrypt file and repeat test query
	Encrypt all files in /var/lib/clickhouse/store and repeat test queries
	Rebuild VM and try to recover
	Repeat encryption and recover database with Azure Backup

	Encrypt local backups
	Create and encrypt a local backup

	Delete backups via clickhouse-backup
	Preparation
	Delete local backups
	Delete remote backups via clickhouse-backup and restore via Azure CLI (first attempt)
	Enable soft delete for blobs
	Delete remote backups via clickhouse-backup and restore via Azure CLI (second attempt)

	Delete backups stored in Azure blob storage via Azure CLI
	Preparation
	Delete the blobs
	Restore the blobs

	Delete backups in Azure Backup
	Delete Azure Backups via CLI
	Undelete soft deleted backup items
	Re-enable backup

	Disable soft delete and delete backups
	Disable soft delete
	Disable protection and delete backup items
	Verify deletion

	Delete Recovery Services vault
	Make a backup in the RSV
	Download script
	Verify deletion

	Applying MUA to vault and attempting deletion
	Creating a resource guard
	Assigning reader role to backup admin
	Applying MUA to vault
	Testing protected action
	Permitting protected actions

	Restore from a backup vault
	Postgres: PITR with REST API performance test
	Setup of test environment for PostgreSQL experiments
	Creating test environment for PostgreSQL
	Data population
	Postgres: Azure backup setup

	Postgres: Restoring from PITR
	Postgres: Protecting with Azure Backup
	Restoring from Azure Backup

	Postgres: Deleting database and restoring from PITR
	Postgres: Enabling alerts for Backup vault instance deletion

