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Abstract

Vessels operating on the surface of the ocean today are now increasingly equipped with
sensors. This includes GPS, MRU, IMU that monitor the vessel’s motion behavior,
and power, RPM, temperature sensors that monitor the status of components such as
engines and thrusters, and anemometers that provide information about the surrounding
environment. These sensor measurements are obtained in real-time and historical data
is saved in cloud storage. The increased digital capabilities motivate the industry to
increase the automation of the vessel by developing decision support systems, digital
twin, or autonomous ships, which might potentially lead to safer and more efficient ship
operations.

How to use the massive data on ships to gain better insight into ship operations has
always been a key issue, and the data-driven approach is a promising solution. Data-
driven methods, or machine learning methods, have been used broadly across a range of
industries concerned with data-intensive issues. As the ship is gradually turned into a
colossal sensor hub, the massive volume of data can be used with supervised learning to
generate models to support efficient ship operations, or unsupervised learning to provide
key insights about ships.

To provide information to the human ship operator or autonomous ship operating
system, two aspects can be identified: (1) a better understanding of the current status,
such as component’s status, environmental conditions, or operating conditions. (2) a
better forecast on what will happen if a specific action is taken, which can be referred
to as what-if analysis. In such a context, many elements can be involved (localization,
trajectory prediction, etc.). In this dissertation, two important applications are high-
lighted: fault diagnostics and prognostics of components, and the estimation of the sea
state.

Fault diagnostics and prognostics aim to detect and isolate faults on components
or systems, and then predict how the fault will progress and how long it will be until
complete failure. Through these actions, recommendations for maintenance can be pro-
vided. In other words, an ideal maintenance schedule can be devised and failure can
be eliminated. In this way, the vessel can operate safely and efficiently. The sea state
information is of key importance for ship operations, such as motion control, pipeline
laying, and path planning. Wave radar may be an ideal solution for obtaining informa-
tion about surrounding waves, but most ships today do not equip with one. However,
it is also possible to estimate the sea state from the vessel motion responses (especially
motions that are not affected by the controller: roll, pitch, heave, etc.). Thus another
focus of this dissertation is to develop sea state estimation models that use ship motion
responses as inputs. Since both fault diagnostics and prognostics and sea state estima-
tion can be achieved with machine learning, the main objective is to develop data-driven
models for these two applications. Three case studies are conducted to validate the de-
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veloped data-driven models for these two applications, where the first two concerns fault
diagnostics and prognostics (use thruster and engine as an example, respectively), the
last one concerns sea state estimation. Experiments are carried out with data collected
in simulations, in the laboratory, and on the vessel RV Gunnerus operating in the real
world. The results demonstrate the advantages of developing data-driven models to
support ship operations. Additionally, data-driven models can outperform traditional
models in certain scenarios.
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1
Introduction

The maritime industry is undergoing a massive shift as vessels are being monitored due
to the advance in sensor and digital technology. The vessels are transformed into sensor
hubs, whose systems and components are generating data and connecting to the Internet.
It opens up the opportunity to enhance the performance and operation of a vessel by
enabling increased automation and decision support, which can be termed as smart ship
operation. This dissertation mainly focuses on how to make use of data-driven modeling
to provide decision support for vessels, hence enabling the ship to operate in a safer and
more efficient manner.

1.1 Background and motivation

The systems and components of a vessel are now increasingly equipped with sensors
and connected to the internet. The development of digital technology enables the in-
dustry to monitor ships in real-time, while accessing historical data in cloud storage.
These advances motivate the industry, as well as academia, to develop decision support
systems, digital twin [1], automation systems to realize smart ship operation, and even
autonomous vessels [2]. DNV GL has launched a new chapter called digital features and
a smart vessel notation to its world leading-rule for ship classification1. SINTEF Ocean
and Technology Centre for Offshore and Marine (TCOM) in Singapore have developed
a roadmap for smart and autonomous sea transport systems with an emphasis on smart
and autonomous shipping2. In such a context, smart represents the digital capabilities
to enhance vessel performance due to the continuous increase in automation of ship
processes and decision support systems.

Fig. 1.1 presents an illustration of smart ship. The vessel can transfer the data to
a remote control center through a satellite data link. The maritime performance and
monitoring can be integrated into a decision support system for the entire life cycle
of the vessel. A decision support system (DSS) is a computerised information system
which contains domain-specific knowledge and analytical decision models to assist deci-
sion maker by providing information and various alternatives [3]. The decision support
system for the smart ship can be installed onboard for the crew or placed in the re-
mote control center. The system intends to allow the operators to better understand
the vessels. For instance, the operating status of the components such as engine can be
monitored and its fault development trend can be tracked to support optimal mainte-

1New DNV GL rules drive smart ship operation and management, https://www.dnv.com/news/
new-dnv-gl-rules-drive-smart-ship-operation-and-management-188497, Date accessed 12-November-
2021

2A roadmap for smart and autonomous sea transport systems, https://www.sintef.no/en/latest-news/
2020/a-roadmap-for-smart-and-autonomous-sea-transport-systems, Date accessed 12-November-2021

1
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Fleet management Optimal route planning Operation analysis
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Figure 1.1: An illustration of smart ship and decision support system.

nance [4]. The environmental information such as wind, wave, and current can be used
for route planning with low fuel consumption and carbon emissions. A DSS architecture
involves three fundamental components: the database, the model, the user interface [5].
In this dissertation, only the model part is heavily discussed with the focus on using
data-driven methods to develop models for better understanding of the vessel’s status.

Data-driven method is becoming increasingly popular in recent years. It is an em-
pirical modelling method and based on analysing the data about a system, in particular
finding connections between the system’s input and output variables without explicit
knowledge of the physical behaviour of the system [6]. It focuses on computational
intelligence and machine learning (ML). The term machine learning is often used inter-
changeably. For many applications, it can be far easier to train a system by showing the
desired input-output behavior using ML rather than to program it manually [7]. ML
has also been used broadly across a range of industries concerned with data-intensive
issues. As the ship is gradually turned into a colossal sensor hub, the massive volume
of data can be used with ML to provide critical insights and sophisticated models that
enhance decision-making for safe and efficient ship operations.

1.2 Research questions

The focus of this dissertation is concerned with data-driven method for decision supports
of vessels. This prompts the first question of this dissertation:

• What are the fundamental principles to build a data-driven model?

In order to answer this question it is necessary to investigate the principles behind
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machine learning algorithm and how machine learning model is applied on other domains.
ML models, especially for supervised learning, require a large amount of high-quality
labeled data covering the region of interest. Since these kind of methods rely purely on
data, there is a limit of what you can do with the data. The algorithms are the way
to approach this limit. In some cases, a simple algorithm with good data outperforms
an advanced algorithm with bad data. Furthermore, it is necessary to establish what
data-driven methods can and cannot do, thus the following research question is raised:

• What are the limitations come with data-driven methods?

There are always assumptions involved in the ML models. One particular assumption
for most ML algorithms is that the test data, which represents the performance when the
model is deployed into the real world, should be sampled independently and identically
from the same distribution as the training data [8]. This is not always the case in the
maritime domain. Maritime operations usually involve highly complex and uncertain
environments and the system might change over time, where the model trained with
historical experience could fail.

Other limitations include that the learned model could be black-box and not ex-
plainable, the model can easily fit spurious correlation, and performance cannot be
guaranteed at the "long-tail" data [9, 10, 11]. This leads to the next research question:

• How to assess the accuracy and uncertainty of data-driven models?

The ML model is usually evaluated in a train-test-spilt manner with a problem specific
evaluation metric. The results from the test data provide a quantitative measurement
of how this model will perform in the real world. However, as mentioned earlier, there
might be out-of-distribution data when the model is deployed for maritime operations.
Ideally, an ML model should be able to provide not only the predictions but also how
much confidence it has in the predictions. There is extensive research in the literature
on the predictive uncertainty of data-driven models [12, 13, 14].

Building upon the previous research, more practical research questions related to
developing data-driven models for decision support of vessels emerged.

• How might the data-driven method be used to provide decision supports
for vessels?

The decision support for a vessel usually involves two aspects: (1) a better understanding
of the current status, such as component’s status, environmental conditions, or operating
conditions. (2) a better forecast on what will happen if a specific action is taken, which
can be referred as what-if analysis. These two aspects are not necessarily separate since
a better understanding of the current status might also lead to a better forecast. By
exploiting the historical data of ship operation, it is possible to build a data-driven model
for recognize the state of the ship and predict the future through pattern recognition,
time series prediction, etc.

In terms of decision support, there are many elements that may be beneficial to
ships, as shown in Fig. 1.1. This dissertation is limited to the fault diagnostics and
prognostics of component and the estimation of wave information. This leads to the
following two research questions:
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• How to perform fault diagnostics and prognostics on vessel’s component
such as engine using data-driven methods?

• How to estimate the sea state information when the vessel is in operation
using data-driven methods?

To address these two questions it is imperative to investigate how to perform mainte-
nance and how to obtain wave information, in the vessel today. Maintenance operations
on vessel today follow a reactive maintenance or preventive maintenance approach3.
Reactive maintenance is post-failure repair while preventive maintenance involves pre-
defined maintenance intervals. Sensor data is underutilized and no diagnostics or prog-
nostics is involved. For sea state estimation, most vessels are not equipped with a wave
radar, and thus no wave information is available. Although the above two have not
yet been implemented, they constitute an important issue for decision support in smart
ship operations. Recently, there have been some attempts to solve these problems with
data-driven methods [15, 16], which is also the focus of this dissertation.

In recent years, machine learning has developed rapidly, especially in the field of
deep learning. The deep learning methods are representation-learning methods can
model very complex function without manual features, and has produced very promising
results in many fields. It leads to the final research question:

• Can recent advanced machine learning techniques benefit the model
development for the above applications?

1.3 Scope of work

1.3.1 Research objectives

In seeking to answer the above research questions, this dissertation seeks to obtain the
following research objectives (ROs):

√
RO1: Assess the status the internal components of the ship, the main
goal is to develop fault diagnosis and prognostics models using data-
driven method.

The monitoring of the internal components of a ship is a key part to enable a smart
ship. The components in a vessel today are usually inspected at static time intervals,
which are purely based on the experience of the manufacturer or shipowner. The faults
can only be be discovered when the scheduled inspection is performed. By incorporating
fault diagnostics and prognostics, reliability can be improved and redundancy can be
reduced. The development of fault detection and isolation model for thruster is covered
in paper I, while the fault detection and prognostics model for engine is covered in paper
IV and V. However, faulty data might not be easy to collect, which leads to the next
research objective:

3Beyond condition monitoring in the maritime industry, https://www.dnv.com/Publications/
beyond-condition-monitoring-in-the-maritime-industry-12403, Date accessed 12-November-2021
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√
RO2: Develop a fault detection method for maritime components based
on semi-supervised learning.

As mentioned previously, the lack of labeled fault data makes it difficult to use supervised
learning for fault detection. Instead, a large amount of normal operation data can be
collected easily. This necessitates the use of semi-supervised procedure. This approach
builds a model for the classes that correspond to normal behavior by using only normal
data, and then uses the model to identify anomalies in the test set. Paper IV covers the
development and utilization of a semi-supervised approach for fault detection of diesel
engine.

√
RO3: Make the environmental conditions that the ship is currently op-
erating in more accessible using data-driven method.

Environmental conditions, especially sea waves, play an important role in the safe and ef-
ficient operation of ships. The motion responses of a ship reflect the sea state conditions,
and therefore, a ship can be considered as a large wave buoy. From this perspective, a
vessel is essentially equipped with an environmental condition estimation system. The
goal is to create a data-driven model to estimate the sea state based on the ship motion
responses. Papers II, III, and VI explores different data-driven models to build a wave
estimation model using motion responses. In addition to the accuracy, the trust to the
model and the generalization of the model to unseen data is also important since it is
almost impossible to collect enough real-world data. This leads to the next research
objective:

√
RO4: Propose techniques to improve the reliability of the data-driven
models in maritime operations.

The data-driven model are usually black-box and cannot be generalized to unseen data.
A certain degree of interpretability, e.g., how each feature contributes to the prediction,
can provide posthoc validation to examine if the model actually learns some useful
rules. It could be beneficial for the user to trust the model, which is of key importance
in the maritime industry. Due to the complexity and uncertainty of maritime operations,
the model may inevitably encounter out-of-distribution data, which must be carefully
considered. The above two issues are discussed in papers II and III.

1.3.2 Interconnection between the research objectives

The interconnection between the research objectives and the papers published are shown
in Fig. 1.2. In order to satisfy RO1, two case studies are presented, one of which takes
the propeller as an example and the other takes the engine as an example. Paper I
regards the problem of thruster fault isolation as a supervised classification problem,
and uses convolutional neural networks (CNN) to classify faulty thrusters. For diesel
engine, paper IV and V presents a fault detection model and fault prognostics model, re-
spectively. Furthermore, paper IV proposes a fault detection model based on variational
autoencoder (VAE) and long short-term memory (LSTM) for maritime components.
The proposed model uses only normal data for training, as suggested by RO2.
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For RO3, an ensemble model to estimate the wave parameters is proposed in paper
II. The model is subsequently developed in paper III to include a model-based method to
compensate for the unseen data. Papers II and III also tries to accommodate the issues
of interpretability and out-of-distribution data as suggested by RO4. To obtain more
detail information of the ocean wave, a model based on generative adversarial network
(GAN) is proposed in paper VI to estimate the directional wave spectrum. All of the
above forms part of the module that supports smart ship operations.

Research Objectives Publications Topics

RO1:
Assessing the status of the 

internal components of the ship, 
the main goal is to develop fault 

diagnosis and prognostics models 
using data-driven method.

RO3:
Making the environmental 
conditions that the ship is 

currently operating in more 
accessible using data-driven

method.

Paper I

Paper IV

Paper V

Paper II

Paper III

Paper VI

RO2: Develop a fault detection 
method for maritime components 

based on semi-supervised 
learning. 

RO4: 
Propose techniques to increase 
the reliability of the data-driven 

modelling in maritime operations. 

Thruster failure 
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isolation

Engine fault 
detection and 

prognostics 

Wave parameter 
estimation

Directional wave 
spectrum estimation 

Variational 
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Tools for decision 
support in smart 
ship operations

Generative 
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Figure 1.2: Interconnection of published paper in the thesis.

1.4 Contributions of the dissertation

The major contributions of this dissertation are as follows, which is related the research
objective above:

• Present the fundamental framework to use data-driven methods for decision sup-
port to enhance vessel performance. The effectiveness of the methods is shown
through three case studies. It is close related to RO1 and RO3.

• To deal with the difficulty to collect fault data, a data-driven fault detection method
which uses only normal operation data for training is proposed. It is related to
RO1 and RO2.

• Propose a hybrid method to compensate for the out-of-distribution predictions of
data-driven method in sea state estimation. Additionally, method to estimate the
detailed 2D directional wave spectrum is proposed. It is related to RO3 and RO4.

1.5 Structure of the dissertation

This introductory chapter presented the background for the dissertation research, es-
tablishing its main goals and defining the scope of work. The rest of this dissertation
unfolds as follows. Chapter 2 introduces the foundation of applying data-driven method
to support smart ship operation and the experimental platforms that are used to develop
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and test the model. Chapter 3 presents the first case study, which focuses on thruster
failure detection and isolation when the vessel is in dynamical positioning operation.
This chapter is based on paper I. Chapter 4 relates to papers IV and V, and discuss
fault detection as well as fault prognostics for maritime diesel engine. Chapter 5 presents
sea state estimation using ship motion responses. This chapter is based on papers II,
III, and VI. Chapter 6 concludes the dissertation, summarizes the contributions, and
indicates the directions for future works.
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2
Data-driven methods to support smart ship operations

This chapter introduces data-driven methods as a fundamental technology to support
smart ship operations. Fig. 2.1 presents a schematic illustration of applying data-driven
methods for decision support of vessel. The sensor data that monitor each part of the
vessel are stored in a database. The data-driven approaches are then used to explore
the data and build models from these data. The real-time data is fed into the model to
provide decision supports such as sea state estimation, fuel consumption prediction, etc.
Section 2.1 introduces the fundamental of data-driven methods. Section 2.2 presents the
machine learning models that are included in this dissertation. Section 2.3 explains the
experimental platforms and data source that are used to build and validate the models.

Ship hull

Engine

Thruster

GNSS, IMU, MRU, 
etc.

Temperature, power, 
fuel rate, etc.

Rudder angle, RPM, 
feedback force, etc.

Anemometer, radar, 
sonar, camera etc.

Sensors

Environment

Data-driven modelling Decision support

Clustering

Outlier 
detection

Unsupervised 
learning

Classification

Regression

Supervised 
learning

Model

Train, 
validation

Real-time

Fault detection, 
isolation, 

prognostics

Sea state 
estimation

Fuel consumption 
prediction

Trajectory 
prediction…

Database

Figure 2.1: Schematic illustration of data-driven methods to support smart ship operation.
The contents in blue background are the focus in this dissertation.

2.1 Fundamental of data-driven methods

Data-driven method is the general term for using data to build models to make accurate
predictions. The term machine learning is often used interchangeably, which refers to
the computational methods that learn through experience. Learning problem refers to
improving a certain performance of a certain task through a certain type of training
experience. The experience is expressed in the format of data and therefore the methods
are data-driven.

Depending on whether labels (or corresponding target values) exist in the training
set, the problem can be divided into two paradigms: supervised learning and unsu-
pervised learning. Another paradigm called reinforcement learning [17], in which the
learning algorithm is interacting with its environment to find the action that maximize
a reward, will not be discussed in this dissertation.
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2.1.1 Supervised learning

Supervised learning methods are the most widely used machine learning methods [18].
Supervised learning usually focus on function approximation problem. Given the train-
ing data set in the form of a collection of (x, y) pairs, the task is to find a function
f so that a prediction y∗ = f(x∗) can be made to a query x∗ based on the training
data. The input x could be a vector or more complex objects, such as images and sensor
signals. The form of the function f depends on the learning algorithms, and therefore
many forms of f exists. Sometimes f is explicitly expressed as a parameterized function
and the parameters are determined by the training data through a optimization process,
while in other cases it is implicit and the form of f as well as its parameters are deter-
mined simultaneously by a search process with tunable hyperparameters. Despite the
difference in the learning algorithms, supervised learning is usually used for the following
tasks:

• Classification: this is the problem of assigning a label to the input x. For exam-
ple, the fault isolation of marine diesel engines can be regarded as a classification
problem, and labels such as air filter fault, turbo fault or bearing fault can be
assigned according to the state of the engine. According to the type of label, there
are binary classification (where y uses one of the two categorical values), multi-
class classification (where y uses one of the K labels), and multi-label classification
(where y is composed of several K labels are assigned at the same time) [7].

• Regression: this is the problem of predicting a value for input x, where the target
y is a continuous value. For instance, fuel consumption prediction and trajectory
prediction consists of predicting the value of fuel consumption and the location of
the vessel, respectively.

• Ranking: the task is to provide a order on a set for input x. For instance, the
recommendation system will return a list of preferred items in order for the user.

2.1.2 Unsupervised learning

Unsupervised learning generally involves the analysis of unlabeled data. Unlike super-
vised learning, unsupervised learning receives a dataset in the form of x and the pattern
in that dataset is discovered based on some assumptions about the structural properties
of the data. Common tasks in unsupervised learning usually involve:

• Clustering: clustering is the problem of finding a partition of data without any
labels to indicate the possible partitions. The data in the same group is usually
called a cluster. Examples of the use of clustering methods include the analysis of
the ship’s trajectory pattern [19] and the partition of the operating conditions of
the diesel engines onboard [15].

• Dimensional reduction or manifold learning: the task is to transform an
initial representation of objects into a lower-dimensional representation. The data
can be assumed to lie on a low-dimensional manifold and the manifold is identified
from data. A common example is to perform feature reduction for supervised
learning.
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• Novelty and outlier detection: both of these methods are used for anomaly
detection, where the objective is to detect abnormal or unusual observations in the
dataset. These methods can be used for data-driven fault detection.

2.2 Recent applications of machine learning for ship operations

This subsection will briefly introduce the state-of-the-art applications of machine learn-
ing for decision supports in ship operations.

• Trajectory prediction: Trajectory prediction is often formulated as an autore-
gressive time series forecasting problem, and time series forecasting models are
often used. Long short-term memory (LSTM) networks are the de facto choice for
many researchers. Tang et al. [20] used an LSTM that was trained on AIS data
collected at a port to predict ship location 20 minutes later. Skulstad et al. [21]
used an LSTM to predict the position of a vessel during a dynamic positioning
operation when the GPS signal is lost..

• Prediction of power or fuel consumption: The power or fuel consumption
prediction is usually formulated as a regression problem. Inputs to such models
usually involve ship speed, draft, environmental conditions, etc. Models employed
range from simple linear regression models to complex deep neural networks [22].
The models obtained from data-driven methods can then be easily used for route
planning [23, 24].

• Condition monitoring of machinery system: Condition monitoring is close
related to fault diagnostics and prognostics. Fault diagnostics is formulated as a
classification or regression problem by taking the time series sensor measurement
as input. Tan et al. [25] compared several multi-label classification algorithms to
classify different fault types of the electric propulsion system. Xu et al. [26] fused
three different machine learning models for wear diagnosis of marine diesel en-
gine. Fault prognostics is about to predict the remaining useful life for predictive
maintenance. To the best of my knowledge, it is not well investigated for vessels
since run-to-failure data is hard to collect. Nonetheless, the problem can be formu-
lated as a regression problem and artificial neural network [27] or recurrent neural
network [28] can be used.

• Ocean wave estimation and forecasting: Waves are generated by complex
interaction of wind with the ocean and is stochastic. Wave estimation is per-
formed by using the time series ship motion data to estimate the current wave
condition. Cheng et al. [29] divided the sea state conditions into several predefined
categories and used neural network to perform the classification. Wave forecasting
using machine learning is often referred to as time series forecasting. Neural net-
works, random forests, and recurrent neural networks are typical choice for such
applications [30, 31].

From a broader view, the above applications aim to provide essential or extra infor-
mation for the ship operators. The contributions of this dissertation mainly lie in the
last two parts.
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2.3 Machine learning models used in this dissertation

In the literature, a variety of machine learning algorithms have been developed to cover
the various data and problem types that are manifested in different machine learning
problems [32]. A machine learning model can be viewed as a search process in a large
number of possible function spaces to find a function that optimizes performance metric
through the training experience. Different machine learning models vary greatly, but
they are mainly reflected in two aspects. One is the way they represent the function, e.g.,
mathematical function, decision tree, and neural network. The other is the optimization
algorithms to search through the space of functions, e.g., gradient descent in neural
networks, the spilt rule in decision tree. Here, only the machine learning models used in
this dissertation to support smart ship operations are introduced.

2.3.1 k nearest neighbor

K nearest neighbor (kNN) is the most fundamental and simple supervised learning meth-
ods that has been used extensively in the machine learning literature. It was developed
in 1951 in an unpublished report from the need to perform discriminant analysis when
parametric estimates of probability densities are difficult to determine. Later it was
formal introduced and some of the properties such as the error rates were presented [33].
Since then, a long line of research has been carried out, including distance weighted ap-
proaches [34], fuzzy learning methods [35], and soft computing methods [36]. Moreover,
improvements by distance function, neighborhood size, and class probability estimation
are widely investigated. Today, kNN is often used as a benchmark for more complex
learning algorithm and sometimes it still fares better than many more powerful classi-
fiers. A recent review of kNN can be found in [37].

kNN is a lazy learner that it stores the training data set ((x1, y1), ..., (xn, yn)) and
predicts a testing point based on a fixed number k of its closest neighbors in the feature
space of the training data set. It is originally used for classification but it can be easily
modified for regression. For a novel test point x, kNN regression computes the mean
of the function values of its k-nearest neighbors. A distance-based version kNN is used
here, where the k-nearest neighbors are weighted by the inverse of their distance:

fkNN(x) =
1

k

∑

i∈Nk(x)

1
d(x,xi)∑

i∈Nk(x)
1

d(x,xi)

yi (2.1)

where set Nk(x) containing the indices of the k-nearest neighbors of x. d(x, xi) =√
|x− xi|2 is Euclidean distance.

2.3.2 Support vector machine

Support vector machine (SVM) is first introduced by Boser, Guyon, and Vapnik in
1992 [38]. It is theoretically motivated from the statistically learning theory since the
1960 [39]. Support vector machine constructs hyperplanes to seperate data in a high
dimensional space with maximum margin since it assumes that the maximum-margin
hyperplanes are most robust. To create nonlinear classifier, kernel trick is applied. Later,
soft-margin was proposed [40] and the soft-margin SVM is an example for empirical risk
minimization. It soon became popular since its success in handwritten digit recogni-
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tion. Extensions for multi-class classification [41], clustering [42], regression [43] were
proposed. Today it is less popular but it still remains as a fundamental algorithm for
kernel learning.

In this dissertation, the variant for regression that called support vector regression
(SVR) is used. Due to the cost function that ignores any training data close to the
model prediction, it depends only on a subset of the training data. The basic idea of
SVR is to fit a function f(x) = ⟨w, x⟩ + b onto a training data set. The weights vector
w, b can be obtained by solving the optimization problem:

min
w,b

1

2
||x||2 + C

n∑

i=1

(ξi − ξ∗i )

s.t. − ϵ− ξ∗i ≤ ⟨w, xi⟩+ b− yi ≤ ϵ+ ξi

ξi, ξ
∗
i ≥ 0

(2.2)

where ξ and ξ∗ are slack variables representing the deviation from a predefined gap with
hyperparameter ϵ. The hyperparameter C denotes the strength of the regularization
which is inversely proportional to C. Solving this problem requires the application of
the Lagrangian multiplier technique, which by itself leads to a dual optimization problem:

min
α,β

1

2

n∑

i,j=1

(αi − βi)(αj − βj)κ(xi, xj)

+ ϵ

n∑

i=1

(αi + βi)−
n∑

i=1

yi(αi + βi)

s.t. 0 ≤ αi, βi ≤ C

(2.3)

where κ(xi, xj) is a kernel function which is used to account for nonlinearities. For
the kernel function, radial basis function (RBF) kernel is used, which is expressed as
κ(xi, xj) = exp(−γ||xi − xj||2). γ is a hyperparameter in the RBF kernel. The details
of SVR and the solving process for its dual optimization problem can be refer to [44].

2.3.3 Gradient boost decision tree

Gradient boosting is a machine learning technique that generates a prediction model
in the form of an ensemble of weak prediction model such as decision trees. The idea
of gradient boosting originated from the boosting algorithm Adaboost [45]. Later it
was formulated as gradient descent with a special loss function to increase the perfor-
mance [46] and this regression technique is named as gradient boost machine. Apart
from theoretical research, scalable system such as XGBoost [47] and LightGBM [48]
were developed for ease of use. In recent years, it has gained a lot of attention as the
algorithm of choice for many machine learning competition winning teams.

Gradient boost decision tree (GBDT) is an ensemble model using gradient boost
technique with decision trees as base learners. The prediction of the GBDT is the sum
of M trees:
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ŷi =
M∑

t=1

ft(xi) (2.4)

In t iteration, a tree model ft(·) is generated by minimizing the following function:

Obj(t) =
n∑

i=1

l(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft)

≃
n∑

i=1

[gift(xi) +
1

2
hif

2
t (xi)] + Ω(ft) + constant

(2.5)

where l(·, ·) denotes the loss function, mean square error is usually used for regression
problem. Ω(·) is a regularization term for decision tree. The objective function can
be approximated by second-order Taylor expansion, where gi = ∂ŷ(t−1)l(yi, ŷ

(t−1)) and
hi = ∂2

ŷ(t−1)l(yi, ŷ
(t−1)).

2.3.4 Gaussian process regression

A Gaussian Process (GP) is a probability distribution over functions and inference tak-
ing place directly in the space of functions. GP regression originated in geostatistics in
1967 and is known as kriging [49]. It was introduced to the machine learning community
from the inspiration to construct GP from neural networks [12]. Since GP is a nonpara-
metric and interpretable Bayesian model, it was soon applied to learn forward or inverse
dynamics of robotic systems. Later modifications were mainly to improve its scalability
and handle sparse data [50]. The advantage of GP is that it provides a well-calibrated
uncertainty of the prediction.

We assume either exact or independent normally distributed measurement errors,
i.e. the evaluation of y(x) at point x satisfies:

y(x)|f(x) ∼ N (µ(x), σ2(x)) (2.6)

where σ2 is a known function describing the variance of the measurement errors and
µ(x) is the mean.

GP is characterized by a mean function m(x) and a covariance kernel function
κ(x, x′). Given the training set at n points with input as x1:n ≜ {x1, x2, · · · , xn} and
target as y1:n ≜ {y1, y2, · · · , yn}, the posterior can be obtained by combining these
observed values with prior:

µ(x) = m(x) + κ(x, x1:n)[κ(x1:n, x1:n) + σ2
nI]

−1(y1:n −m(x1:n))

σ2(x) = κ(x, x)− κ(x, x1:n)[κ(x1:n, x1:n) + σ2
nI]

−1κ(x1:n, x)
(2.7)

where σ2
n is a additive noise level. The µ(x) can be viewed as the prediction of the

function value, while the σ2 is a measure of uncertainty of the prediction. Usually a
constant mean function m(x) = 0 is used and the rational quadratic kernel is used:
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κ(x, x′) =

(
1 +

(x− x′)2

2αl2

)−α

(2.8)

where α and l are parameters of the kernel. These parameters are obtained by maxi-
mizing the log marginal likelihood.

2.3.5 Artificial neural network

An artificial neural network (ANN) is based on a collection of connected units called ar-
tificial neurons. The neurons are connected and a neuron receives a signal then processes
it. Neurons have weights that adjusts as learning proceeds. The first ANN was invented
in 1958 called the perceptron [51]. Later in 1965 a network with many layers was pub-
lished. The general method of automatic differentiation [52] was proposed in 1970s and
was soon used for practical training of artificial neural networks by back-propagation.
Only recently did GPUs make backpropagation for deep neural networks efficient, and
it is now the foundation of deep learning [53]. Three types of ANN architectures are
introduced as follows.

Variational autoencoder

The variational autoencoder (VAE) [54] is the artificial neural network architecture in-
troduced in 2013 rooted in the variational inference methodology [55]. The model is a
generative model that encode the data of interest into a low-dimensional latent distribu-
tion, which enables deep unsupervised representation learning. It has a strong impact
on the machine learning community and has been applied widely to signal processing
problems such as image and speech synthesis. There are many extensions, e.g., to model
sequential data, modeling sequential data [56], forcing disentangle representations [57],
and forcing deterministic constrained representations of data [58].

VAE shares similar architectural affinity with the autoencoder (AE). The VAE re-
places an AE’s latent representation z of given data x with stochastic variables, as
shown in Fig. 2.2. The encoder qϕ(z|x) approximates the true posterior and the decoder
pθ(x|z) represents the likelihood of the complex process of data generation that results
in the data x from z. The encoder and decoder are modeled in the structure of the
neural network which is parametrized by ϕ and θ, respectively. The VAE optimizes the
parameters, ϕ and θ, by maximizing the lower bound of the log-likelihood.

Lvae = −DKL

(
qϕ(z|x)||pθ(z)

)
+ Eqϕ(z|x)[log pθ(x|z)]

≤ log p(x)
(2.9)

where DKL is the Kullback-Leibler (KL) divergence. Minimizing DKL between the
approximated posterior qϕ(z|x) and the prior pθ(z) of the latent variable regularizes the
latent space. The common choice of the prior distribution pθ(z) is a standard Gaussian
distribution N (0, 1) [54].

Convolutional neural network

A convolutional neural network (CNN) is a class of artificial neural network, based on
the shared-weight architecture of the convolution kernels or filters that slide along input
features and provide translation equivariant responses known as feature maps. The
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Figure 2.2: A simple illustration of a VAE.

first architecture of CNN was proposed in the 1980s and was called neocognition [59].
The two basic layers in CNN: the convolutional layer, and the downsampling layer were
introduced. Inspired by the above work, the fist modern CNN was proposed in 1990s and
back-propagation is used to learn the convolutional kernel weights [60]. Around 2012 a
CNN called AlexNet [61] achieved state-of-the-art performance for image classification in
the ImageNet challenge. Soon, CNNs rapidly gained popularity and found applications
in image and video recognition, language processing, and time series modeling.

CNN is widely used for image when a 2D convolutional kernel is used. In this
dissertation, the 1D convolutional kernel is considered since we focus on time series
data. Suppose that f is a convolutional filter with kernel size s and T is a multi-variate
time series with channel number m, the discrete 1D convolutional operation is defined
as:

z[i] =
m∑

k=1

s∑

j=1

fk[j] ∗ Tk[i+ j − 1] + b (2.10)

where i denotes the ith element of result and b is bias. The convolutional filter with size
s will move along the time axis with stride length r and repeat the operation as shown
in (2.10). Depending on the filter, the convolution is capable of extracting insightful
information from the original time series. The weight in the convolutional filter f and
bias b can be learned through the back-propagation algorithm.

Long short-term memory

Long short-term memory (LSTM) is a type of recurrent neural networks (RNN), which
is also a class of artificial neural networks. The RNN was brought up in 1986 to use
the internal state to process variable length of inputs for sequential modelling. In 1997,
LSTM was introduced to accommodate long-term gradient vanishing or exploding in
RNNs when trained with back-propagation [62]. Then LSTM started to outperform
traditional models in certain speech applications. Today, LSTM has been widely applied
in language and speech modelling such as machine translation and soeecg recognition.

The LSTM introduces a memory cell that regulates the information flow in and out
of the cell. As shown in Fig. 2.3, the memory cell consists of three non-linear gating units
that protect and regulate the cell state. The introduction of these gating units enable
easy information flow along the entire chain, therefore, the gradient vanish problem can
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Figure 2.3: Schematic illustration of a LSTM cell.

be eliminated and it is able to learn long term dependencies. For each element in the
input sequence, the LSTM computes the following function:

it = σ(Wiixt + bii +Whiht−1 + bhi)

ft = σ(Wifxi + bif +Whfht−1 + bhf )

gt = tanh(Wigxi + big +Whght−1 + bhg)

ot = σ(Wioxt + bio +Whoht−1 + bho)

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh(ct)

(2.11)

Where ht is the hidden state at time t, ct is the cell state at time t, xt is the input at
time t, ht−1 and ct−1 is the hidden state and cell state at time t− 1, respectively. it, ft,
gt, ot are the input, forget, cell and output gates, respectively. σ is the sigmoid function,
where σ(x) = 1/(1 + e−x). ⊙ is the Hadamard product. W and b are the weights and
bias in the LSTM cell.

2.4 Experimental platforms and data collection

This dissertation focus on two aspects for decision supports of vessels: fault diagnostics
and prognostics, and sea state estimation. For fault diagnostics and prognostics, two
components are used as case studies: thruster and engine. In order to verify the effec-
tiveness of the data-driven approach, both simulation and real-world data were used.
This section introduces the experimental platform and data collection procedure.

2.4.1 Thruster failure data

The thruster failure data is collected from OSC simulator1. The simulator features a
simulated environment in which a user may manipulate the wind, waves, and ocean
current to mimic environmental conditions. A multi-purpose offshore vessel is selected.
This offshore vessel is equipped with 4 tunnel thrusters and 2 main thrusters as presented

1OSC AS, https://osc.no/, Date accessed 3-January-2022
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in Fig. 2.4. Three different typical sea states are simulated as shown in Table 2.1.
The wind, wave, and current will come from the same direction. The direction of the
environmental disturbances (α in Fig. 2.4) is incremented at an interval of 60 degrees
from 0 to 360 degrees, relative to the vessel frame.

Figure 2.4: Thruster configuration.

Table 2.1: Descriptions of sea states.

Beaufort scale Wind velocity (m/s) Wave height (m) Current velocity (m/s)

Gentle breeze 4 1 0.2
Fresh breeze 8 2 0.2
Strong breeze 12 3 0.2

The dynamic positioning (DP) operation is simulated and the desired position is
set to (0, 0). Thrusters are randomly disabled in various environmental conditions to
simulate thruster failure. The resulting dataset is shown in Fig. 2.5. ‘Normal’ denotes
no thruster failures and ‘Thruster 1’ represents failure in thruster 1. In total, around
43 hours was simulated whereof 58% without thruster failure. The dataset is relatively
unbalanced. Three control signals including the surge, sway, and yaw forces together
with the 6 degrees of freedom motion data of the vessel were extracted. The data was
extracted at a sampling rate of 10Hz.

Normal 58%

Thruster 1

7%
Thruster 2

8%

Thruster 37%

Thruster 4
7%

Thruster 5

7%

Thruster 6

7%

Time (minutes)
1502
188
199
178
173
171
171

Figure 2.5: Thruster failure distribution of the dataset.

In order to provide a more realistic scenario, noise was added to the measured
position and velocity. The position measurements are subjected to a combination of
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white noise, a bias and a Gauss-Markov process as presented in [63]. The angular and
linear velocity received only a constant bias and white noise [64].

2.4.2 Engine data

Fault data collection

The data for engine fault detection is collected from a diesel engine operated on Nor-
wegian University of Science and Technology’s research vessel Gunnerus. Gunnerus is
equipped with the latest technology for a variety of research activities within biology,
technology, geology, archaeology, oceanography and fisheries research. The diesel electric
system of Gunnerus is used to generate electric power which is supplied to the power grid
for operating the vessel. The data from an entire month of November 2019 are collected.
During these periods, the vessel has been sent out for several purposes such as sea trial,
maneuvering courses, etc. No specific fault for the engine was found in this period. The
time interval when the vessel is in operation is filtered out. A total of 10 days of vessel
operating time were obtained, averaging approximately 6 hours per day. Table 2.2 lists
the sensor measurement related to the diesel engine from the logging system. The sensor
data is collected at a sampling rate of 1 Hz.

Table 2.2: Descriptions of 9 sensors included in the logging system.

Index Sensor Unit
1 Boost Pressure bar
2 Engine Speed RPM
3 Engine Exhaust Gas Temperature 1 ◦C
4 Engine Exhaust Gas Temperature 2 ◦C
5 Fuel Rate liter/min
6 Lube Oil Pressure bar
7 Lube oil Temperature ◦C
8 Engine Power kW
9 Cooling Water Temperature ◦C

On 21th, November 2019, a fault on this diesel engine was introduced. The air filter
clogging fault was simulated using a cloth winding tape, as shown in Fig. 2.6. The left
subgraph in Fig. 2.6 shows the diesel engine onboard and the right subgraph presents
that the air filter is clogged with the tape. The outer surface of the air filter of the
diesel engine is wrapped with a cloth winding tape. In this way, the heat dissipation
and exhaust capacity of the air filter are reduced. Note that the fault introduced can be
categorized as an abrupt fault.

The 10 days of collected data is divided into the following three parts: (1) a test
set containing 2 days of data: the day when the fault was introduced and a random
normal operation day; (2) a validation set containing data for 1 of the remaining 8 days;
(3) a training set containing the data for the remaining 7 days. The training set and
validation set are used in the training phase of the model. The test set is used to show
the efficacy of the model.
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Air Filter

Air Filter Clogging

Figure 2.6: Diesel engine operated in the NTNU’s research vessel. The air filter is manually
clogged for a period of time.

Figure 2.7: The marine diesel engine included in the hybrid power lab.

Run-to-failure data collection

A hybrid power lab, which is designed to research ship autonomy, is used to collect the
run-to-failure data sets for fault prognostics. The lab is established by the Department
of Ocean Operations and Civil Engineering at the Norwegian University of Science and
Technology in Aalesund. The lab includes a marine diesel engine, a marine battery
system, and a marine automation system to control the process. To simulate load
alterations in the system, the produced power is supplied back to the power grid. The
diesel engine is shown in Fig. 2.7.

Two engine load profiles have been used during the data collection process. The
profiles aim to replicate two different environmental conditions the autonomous ferry
may encounter during a ferry crossing on the west coast of Norway. First, the engine
runs in normal condition. Then, two typical and independent fault-types associated with
the marines diesel engine were provoked gradually in both profiles to obtain degradation
data. The first fault-type is clogging of the air filter, while the second fault-type is
a malfunction of the turbocharger. The data collection process was terminated when
the engine reached operational failure. That is, a time after the fault-types were 100%
provoked and the engine loses its operational ability.

Profile 2 is subjected to different engine loads, and hence, it will be used as the
test set. However, the degradation in the test set should end sometime before failure
in order to verify that the model is able to predict the RUL. Accordingly, a random
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Table 2.3: The four original run-to-failure data sets collected from the marine diesel engine.

Data set Profile Usage dft Last RUL target Time steps
Air filter 1 Train/val 1,660 0 2,346
Turbo 1 Train/val 1,347 0 2,346

Air filter 2 Test 1,483 106 2,240
Turbo 2 Test 1,347 490 1,856

interval of time steps is removed in both the air filter fault and the turbo fault in profile
2. Table 2.3 summarizes the data sets used. All data sets include 47 input features, e.g.,
engine load, engine speed, flow, pressure, and temperature measurements.

2.4.3 Wave estimation using ship motion

Data collection for wave parameters estimation

The ship motion data is collected through log files created by a data acquisition system
onboard the RV Gunnerus. For all measurements in the data set, a sampling rate of 1 Hz
was observed. To ensure the ship is in a nearly stationary condition, the maneuvering
data that the vessel is cruising with a constant speed and constant heading is obtained.
The cruising speed of the vessel is about 10 knots. Three sensor measurements related
to the vessel motion were obtained: sway velocity, roll, pitch, and heave. These measure-
ments are responsible for estimating the sea state. Two additional variables longitude
and latitude are obtained, which is for matching the target sea state into the motion
responses.

The sea state information is collected from the weather forecast system provided by
the Norwegian Meteorological Institute. Since the vessel is only operating in the west
coastal region of Norway, the coastal data is used. The coastal wave data is obtained by
a numerical wave model which is run on an 800-meter grid with ECMWF and AROME
atmospheric force. Three sea state characteristics are considered: Significant wave height
Hs, mean wave direction Dm and mean wave period Tm.

Fig. 2.8 shows the contour plot of the significant wave height in the coastal region
of middle Norway on a specific day. The two sea state characteristics are then matched
to the ship motion data through position information. Specifically, the longitude and
latitude corresponded to the ship motion data are used to query the nearest sea state
information. The process is done by utilizing a ball tree with the Haversine distance.

Simulation data for wave spectrum estimation

For wave spectrum estimation, the wave spectrum-ship motion pairs are essential. These
pairs are generated from simulation. In the simulations, a double-peak wave spec-
trum [65] is adopted since it covers a wide range of possible spectrum shapes and it
models both the wind waves and the swell waves. The directional wave spectrum is
given by:
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Figure 2.8: Sea State information in the middle Norway at 12:00, 13th, June, 2018 reported by
the Norwegian Meteorological Institute.
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where Hs is the significant wave height, θm is the mean wave direction and ωm is the
model angular frequency. s and λ are two shape parameters. Γ demotes the Gamma
function. The function A(s) is defined as:

A(s) =
22s−1Γ2(s+ 1)

πΓ(2s+ 1)
(2.13)

Note that the above wave spectrum model Eg(ω, θ) is only used to generate the
simulation data for this study and will not be used in our estimation network model.
NTNU’s research vessel R/V Gunnerus is used as the example vessel. The complex-
valued response amplitude operators (RAOs) of the vessel are obtained from ShipX [66].
The ship motion cross-spectra is then calculated as:

Sij(ω) =

∫ π

−π

Φi(ω, θ)Φj(ω, θ)Eg(ω, θ)dθ (2.14)

where Φ(ω, θ) is the complex-value transfer function and Φ(ω, θ) is its complex conjugate.
Three corresponding ship motions, sway velocity, pitch, heave, are used. This results

in 9 power spectra (6 real part and 3 imaginary part). The used wave spectrum con-
sists of 10 parameters [Hs,1, ωm,1, θm,1, s1, λ1, Hs,2, ωm,2, θm,2, s2, λ2]. These parameters
are sampled randomly to generate 1000 different wave spectrum and its corresponding
ship motion.

2.5 Chapter summary

This chapter introduces the fundamentals of data-driven methods. The machine learning
models and data sources that are used in this dissertation are also briefly introduced.
It is worth noting that the data collected in these three case studies are time-series
data and nearly stationary: 1) the ship motion data in dynamical position operation
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and moving straight with constant speed is stable unless the wave conditions change
suddenly; 2) the measurement from the engine is also stable and only depends on the
operating conditions. The data also comes from the same data acquisition system and
therefore the nature of data is quite similar.

Table. 2.4 shows how models and data sources are contained in different chapters.
Chapter 3 presents thruster failure detection and isolation, which uses data in Section
2.3.1. Chapter 4 illustrate engine fault detection and prognostics, covering the data in
Sections 2.3.2. Chapter 5 demonstrates case studies on sea state estimation, the data in
Sections 2.3.3 are used. These three case studies form the main part of this dissertation,
with the main goal to implement data-driven approaches to support vessel operations.

Table 2.4: Interconnection of the model and data source contained in different Chapters.

Data
Model kNN SVR GBDT GP CNN VAE LSTM

Section 2.3.1 Chapter 3
Section 2.3.2 Chapter 4
Section 2.3.3 Chapter 5
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3
Case study: Thruster failure detection and isolation

This chapter presents research results from paper I. Thrusters are the main propulsion
units used to position a modern vessel. To mitigate the effects of thruster failures in
dynamic positioning (DP) operation, vessels today with DP classes 2 and 3 [67] have
been equipped with redundant thrusters. Once a thruster failure is correctly located, a
warning can be sent to a crewmember or a high-level controller and the over-actuated
vessel can still maintain its position or perform certain tasks if proper reallocation of
the desired thrust is initiated.

If the thruster failure causes insufficient driving power of the vessels to compensate
environmental effects, drift-offs will occur. In such a case, ship motion is correlated to
the thruster failure event. Therefore the motion data can be used inversely to pinpoint
the failed thruster.

In this chapter, the thruster failure detection and isolation (FDI) is treated as a
time series classification problem. This chapter is not concerned with the failure modes
in a thruster (such as failed gears or seals) but rather intends to locate which thruster
has failed in a broader range. A convolutional neural network (CNN) is developed for
thruster FDI of a dynamically positioned offshore vessel. The control signals and logged
ship motions are used as input to the network. The output is the estimated thruster
condition of the vessel.

3.1 Methodology

Fig. 3.1 shows a detailed diagram of the proposed method. The model is trained with
historical data which also contains scenarios where thrusters are failing. Then it is
deployed and provides predictions as new data comes in. Finally, the fault detection
and isolation results are confirmed by feeding the network’s predictions into a fault
detection module.

Figure 3.1: Block diagram of the proposed method for thruster FDI.

25



CHAPTER 3. CASE STUDY: THRUSTER FAILURE DETECTION AND ISOLATION

Unlike the offline training step, a fault detection module is introduced on the online
detection step. A fault is first isolated when its corresponding probability exceeds 0.6.
Then a 3/5 principle [68] is applied. As five new data points come in, the sliding
window will move forward five times and provide five successive predictions. Only when
more than three predictions indicate the same faulty thruster can we confirm the fault
identification. Otherwise, it will be considered to be in normal condition. The fault
predictor is expected to ensure robustness and eliminate accidental errors.

3.1.1 Network architecture

The detail network architecture is shown in Fig. 3.2. The sensor data is used as input to
the model while the conditions of the thrusters are given as outputs. The convolutional
layer includes three operations:

s = Conv(x)
s = BN(s)

s = ReLU(s)
(3.1)

where x is the input; Conv represents the convolutional operation and it contains the
learnable weight; BN denotes the batch normalization [69] layer which helps to accelerate
the training process; ReLu [70] is the activation function.

Max pooling layers are used after the first two convolutional layers. Global average
pooling (GAP) is applied after the final convolutional layer instead of a fully connected
layer, which largely reduces the number of weights. Finally, a softmax layer is employed
to produce the probability of each class. The convolution layer is fulfilled by three 1-D
kernels with the sizes {9, 7, 3} and the output channels {128, 256, 128}, respectively.

Deep Learning 
Model

Sensors data

Normal
Thruster 1
Thruster 2

.

.

.

Thruster 6

.

.

.

Figure 3.2: The proposed network architecture for thruster FDI.

3.1.2 Focal loss function

To train the network, the focal loss function [11] is used here instead of the cross-entropy
loss function to address the problem of the imbalanced dataset. The focal loss function
can be expressed as follows:
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loss =
n∑

i=1

−pi(1− p̂i)
γ log(p̂i) (3.2)

where p̂i is the predicted probability value for class i and pi is the true probability for
that class, n denotes the class number, and γ is a tunable parameter. When γ = 0, this
function degrades to the cross-entropy loss function. The term (1− p̂i)

γ diminishes the
loss assigned to well-classified examples and increases the loss for mis-classified exam-
ples. By modulating the cross-entropy loss towards the hard examples, the focal loss is
addressed for class imbalance.

3.2 Experimental results

The collected data is split 70%-30% for training and testing. Each input measurement
in the training set is normalized with z-score normalization and the corresponding nor-
malization statistics are applied to the test set.

Since this problem is transformed into a multi-class classification problem, three
widely used metrics for multi-class classification are used in this chapter to qualify the
performance of the model: Macro-Precision (Pmacro), Macro-Recall (Rmacro), and Macro-
F1 (F1macro).

3.2.1 Evaluation on different environmental conditions

Fig. 3.3 shows the normalized confusion matrix under different sea state levels, where
N denotes the label ‘normal’ and 1 is the label ‘thruster 1 failure’, etc. It is apparent
that it is easy to confuse thruster 1 and 2 but they have an extremely small probability
of being classified as other thruster failures. The phenomenon is much more obvious for
thruster 3 and 4. The reason might be that they are located close to each other and
thus they provide similar functionality for the vessel.

N 1 2 3 4 5 6
Predicted…label

N
1

2
3

4
5

6
T
ru
e…

la
be
l

0.983 0.001 0.004 0.001 0.001 0.005 0.006

0.002 0.984 0.014 0.000 0.000 0.000 0.000

0.011 0.016 0.973 0.000 0.000 0.000 0.000

0.018 0.000 0.000 0.950 0.027 0.005 0.000

0.013 0.000 0.000 0.049 0.937 0.000 0.000

0.123 0.005 0.000 0.000 0.000 0.870 0.002

0.020 0.000 0.000 0.000 0.000 0.005 0.975

(a)

N 1 2 3 4 5 6
Predicted…label

N
1

2
3

4
5

6
T
ru
e…

la
be
l

0.981 0.002 0.004 0.001 0.002 0.007 0.004

0.005 0.967 0.028 0.000 0.000 0.000 0.000

0.044 0.035 0.921 0.000 0.000 0.000 0.000

0.046 0.000 0.000 0.919 0.035 0.000 0.000

0.007 0.000 0.000 0.038 0.955 0.000 0.000

0.059 0.000 0.000 0.000 0.000 0.939 0.002

0.048 0.000 0.000 0.000 0.005 0.000 0.947

(b)

N 1 2 3 4 5 6
Predicted…label

N
1

2
3

4
5

6
T
ru
e…

la
be
l

0.980 0.001 0.004 0.002 0.004 0.006 0.003

0.010 0.963 0.020 0.000 0.000 0.002 0.005

0.033 0.052 0.915 0.000 0.000 0.000 0.000

0.062 0.000 0.000 0.884 0.046 0.007 0.000

0.017 0.000 0.000 0.025 0.958 0.000 0.000

0.055 0.000 0.000 0.000 0.000 0.945 0.000

0.078 0.000 0.000 0.000 0.000 0.003 0.920

(c)

Figure 3.3: Confusion matrix under different sea states: (a) Gentle breeze, (b) Fresh breeze,
and (c) Strong breeze.

In Fig. 2.4, the six directions of environmental disturbances are further merged into
three groups since they are axis-symmetric. Direction 1 is angle of 30◦ and 330◦, direction
2 is angle of 90◦ and 270◦, and direction 3 is 150◦ and 210◦. Fig. 3.4 shows the confusion
matrix for the different directions and Table 3.2 summarizes the results. For direction
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Table 3.1: Evaluation of thruster FDI on different sea states.

Window size Pmacro Rmacro F1macro

Gentle breeze 0.96 0.95 0.96
Fresh breeze 0.95 0.95 0.95
Strong breeze 0.95 0.94 0.94

2, thrusters 5 and 6 have a high probability of being mis-classified as normal, but the
other thrusters do not. For directions 1 and 3, thrusters 1, 2, 3, and 4 have a higher
probability of being mis-classified as normal than for direction 2. The reason might be
that tunnel thrusters play more significant parts when environmental disturbances come
from direction 2.
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Figure 3.4: Confusion matrix under different direction of environmental disturbances: (a)
Direction 1, (b) Direction 2, and (c) Direction 3.

Table 3.2: Evaluation of thruster FDI on different direction of environmental disturbances.

Window size Pmacro Rmacro F1macro

Direction 1: α = 30/330◦ 0.96 0.95 0.95
Direction 2: α = 90/270◦ 0.95 0.94 0.94
Direction 3: α = 150/210◦ 0.95 0.95 0.95

3.2.2 Baseline comparison

Two different types of methods are compared here, namely the feature-based method
and the end-to-end method (deep learning model). The feature-based method requires
data pre-processing while the end-to-end method can work with raw sensor data directly.

For the feature-based method, features are extracted manually from the data. For
each sensor, six time domain features and eight frequency features from fast Fourier
transform (FFT) and power spectral density (PSD) are extracted. This results in 126
features in total. Down-sampling is performed to reduce the data with label "normal"
to almost the same amount as the faulty data. Three different algorithms are used to
train a classifier: Logistic regression (LR), Support vector machine (SVM), and Ran-
dom forest (RF). For the end-to-end method, three models are compared: Multilayer
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perceptron (MLP), Long short term memory (LSTM), and Fully convolutional neural
network (FCN) [71].

Table 3.3 presents the performance for different methods. End-to-end methods
outperform the feature-based method. Even though it is expected to achieve better
results in feature-based methods with a more sophisticated feature extraction process or
down-sampling approach, it will be highly time-consuming and laborious. The advantage
of end-to-end methods is that they can achieve competitive results without a careful
feature extraction process. Moreover, LSTM, FCN and the proposed neural network
clearly outperform MLP in this case. The proposed network has a slight advantage
over FCN and LSTM. The comparison also shows that the focal loss can improve the
performance of the network.

Table 3.3: Comparison of different methods in terms of thruster FDI.

Types Methods Pmacro Rmacro F1macro

Feature-based
LR 0.32 0.43 0.35

SVM 0.56 0.68 0.60
RF 0.71 0.83 0.75

End-to-end

MLP 0.70 0.81 0.72
LSTM 0.91 0.91 0.91

FCN [71] 0.93 0.92 0.93
Proposed NN (w/o focal loss) 0.93 0.92 0.92

Proposed NN (focal loss) 0.95 0.94 0.95

3.2.3 Online detection

Fig. 3.5, Fig. 3.6 and Fig. 3.7 present the detection and isolation of thruster fault under
gentle, fresh and strong breezes, respectively in the online detection setting. The red
dashed line indicates the ground truth of the moment when thruster 1 has failed. The
background in red represents that the thruster 1 failure is detected while the background
in green denotes that the thruster 2 failure is detected. Without the predictor, the
result is simply the highest probability of the predicted class. Only the probabilities of
normal condition, the thruster 1 failure and the thruster 2 failure are presented since
the probabilities of thrusters 3, 4, 5, 6 failure are relatively low in these cases. Table 3.4
summarizes the detection time and corresponding delays for the three cases. The fault
can be detected under fresh and strong breezes but has a 9s delay in the gentle breeze. It
should be noted that it does not represent the accuracy but a possible prediction delay
under different environmental conditions.

Table 3.4: Summary of the online prediction cases.

Ground truth time (s) Failure detection time (s) Detection delay (s)
Gentle breeze 144.7 153.6 8.9
Fresh breeze 144.9 145.5 0.6
Strong breeze 159.2 160.2 1.0

3.3 Chapter summary

This chapter uses thruster failure detection and isolation as an example. A deep CNN
is proposed to detect and isolate potential thruster failures for DP vessels based on the
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Figure 3.5: FDI under gentle breeze: (a) w/o fault predictor, and (b) w fault predictor.
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Figure 3.6: FDI under fresh breeze: (a) w/o fault predictor, and (b) w fault predictor.
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Figure 3.7: FDI under strong breeze: (a) w/o fault predictor, and (b) w fault predictor.

control signals and corresponded ship motion. The problem is transformed into a time se-
ries classification problem and the model is trained with historical data set that contains
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normal and fault data. Results from the simulation cases show that the proposed model
is able to distinguish thruster failure under various environmental conditions with up to
95% accuracy. An online detection scheme is also presented to improve the robustness.

Findings suggest that when sufficient normal and fault data are available, the data-
driven approach provides good performance for detecting and isolating thruster failure
in DP ships without any vessel-dependent model.

31





4
Case study: Engine fault detection and prognostics

This chapter presents research results from papers IV and V. Maintenance is the key to
ensuring the safe and efficient operation of marine vessels. Currently, reactive mainte-
nance and preventive maintenance are two main approaches used onboard [72]. These
approaches are either cost-intensive or labor-intensive. Recently, attention has shifted to
prognostics and health management (PHM), which has the greatest promise for manag-
ing maintenance operations to achieve zero-downtime performance [73]. PHM systems
aim to perform fault detection, fault isolation, fault identification, and remaining useful
life prediction using available sensor measurements. In this way, an ideal maintenance
schedule can be developed by continuously monitoring the status of the components and
the evolution of their failures, which will considerably enhance operational availability
and reliability as well as system safety. This chapter uses the diesel engine as an example,
with the focus on developing fault detection and prognostics models for PHM.

4.1 Fault detection using LSTM-VAE

Fault detection or anomaly detection is the fundamental part of any PHM system. It
focuses on identifying when the current execution differs from typical successful experi-
ences. Model-based and data-driven methods are two paradigms depending on whether
a physical model is used. In the data-driven methods, the semi-supervised anomaly de-
tection method uses only normal data for training [74]. Therefore, it is widely applicable
for maritime components since recording anomalous data is costly or even dangerous in
comparison to normal data [75].

In this section, the LSTM-VAE for anomaly detection for maritime components is
introduced. The structure of our proposed LSTM-VAE is different from the seq2seq
model in [76] but similar to [77]. This structure allows us to consider long term depen-
dencies of time series data and perform online predictions naturally.

4.1.1 Long-short term memory based variational autoencoder

The schematic illustration of the LSTM-VAE is shown in Fig. 4.1. LSTM-VAE is a
combination of VAE and LSTM. Specifically, the LSTM as in eq.(2.11) is used to model
the encoder qϕ(z|x) and decoder pθ(x|z) in eq.(2.9).

The VAE assumes that data streams are i.i.d. in time. To introduce temporal
dependency for this model, we replace the feed-forward network in a VAE to LSTM.
Fig. 4.1 shows the LSTM-VAE structure that is unrolled in time. Given a multivariate
input xt at time t, the encoder LSTM output the hidden state ht utilizing xt, ht−1, ct−1.
Then ht is feed into two linear modules to estimate the mean µt and log-variance log σz

of the posterior p(zt|xt). A random sample zt from p(zt|xt) feeds into the decoder LSTM
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Figure 4.1: Illustration of the LSTM-VAE anomaly detector unrolled in time. Note that FC
is fully connected layer. The FC in encoder have Relu activation while FC in decoder have
identity activation. LSTM uses tanh activation. η is the fault detection threshold.

and then a final linear module outputs the reconstructed input x̂t. The parameters ϕ for
encoder and θ for decoder can be obtained by minimizing the loss function as follows:

Loss =
T∑

t=1

[DKL

(
qϕ(zt|xt)||pθ(zt)

)
+MSE(xt, x̂t)] (4.1)

where MSE denotes mean square error, T is the length of the sequences. A standard
normal distribution N (0, 1) is used as the prior pθ(zt) of the latent space. Note that
eq.(4.1) is only variation of eq.(2.9) since a multivariate Gaussian distribution can be
assumed for continuous data and therefore maximizing the log-likelihood in eq.(2.9)
equals minimizing the MSE in eq.(4.1).

4.1.2 Online anomaly detection with reconstruction probability

In autoencoders, reconstruction error is usually used as the anomaly score. Since VAE
is stochastic in nature, the variability of the latent space can be taken into account.
We use the reconstruction probability as the anomaly score for the proposed LSTM-
VAE. The reconstruction probability is the Monte Carlo estimate of the log-likelihood
Eqϕ(z|x)[log pθ(x|z)] in (2.9), which can be calculated by a number of samples drawn from
the latent variable distribution. Therefore the variability of the latent variable space
can be taken into account, which extends its expressive power since normal data and
anomaly data might share the same mean value but have different variability [78].

However, the Monte Carlo estimate requires sampling from the latent space and
then forward the samples to the decoder to calculate the reconstruction probability. We
implemented it in a different way by making use of a batch prediction, i.e., replicate
the input by the number of samples and then perform the forward pass through the
whole network. Algorithm 1 shows the pseudo-code for the online detection process
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using reconstruction probability.

Algorithm 1 Online anomaly detection algorithm in terms of reconstruction probability

Input: xt ∈ RD, st−1, n
Output: pθ(xt|x̂t), st

ϕ, θ ← load the trained LSTM-VAE model, the ϕ, θ is obtained using the loss function in
eq.(4.1)
xt ← get current multi-sensor data
st−1 ← get the state of LSTM from previous time step
xt ← Normalize(xt)
xt ← Batch(xt, n)
x̂t, st ← fϕ,θ(xt, st−1), refer to eq.(2.11)
µ, σ ← Statistics(x̂t)
pθ(x|x̂) = p(x|µ, σ)
return log pθ(x|x̂), st

4.1.3 Experimental results

Two performance evaluation metrics, time to detect and detection stability factor [79],
are used in this paper to evaluate the performance of proposed method. Time to detect
(TTD) is defined as the period of time from the beginning of a fault injection to the
moment of the first detection signal occurs. Detection stability factor (DSF) is the level
of stability of the detection signal measured as a percentage of the sum of duration of
fault detection signals to the total time elapsed after fault injection.

To evaluate the performance of the proposed method, we implemented 6 baseline
methods: (1) iForest: An isolation forest based detector with standard normalization.
(2) iForest (MRN): An isolation forest based detector with multi-regime normalization
(MRN). (3) AE: An autoencoder based detector with standard normalization. (4) AE
(MRN): An autoencoder based detector with multi-regime normalization. (5) VAE: A
variational autoencoder based detector with standard normalization. (6) VAE (MRN):
A variational autoencoder based detector with multi-regime normalization.

Qualitative results

Fig. 4.2 shows the qualitative comparison of our proposed LSTM-VAE with the baselines
method. The left subgraphs are from the day where a fault is introduced while the right
subgraphs are from the normal operation test day. The period where the air filter
clogging fault is introduced is marked with red background.

From the left first three subgraphs, the fault can be only detected when the multi-
regime normalization is used. The right four subgraphs show the anomaly score for
one normal operation day. The scores are therefore relatively low. The LSTM-VAE
applies directly to the standard normalized data, which makes the method easy to scale
to a complex system. Generally, lots of sensors are equipped in a maritime system and
complex operation conditions are involved. Performing multi-regime normalization is
unrealistic in most scenarios. From the left fourth and fifth subgraphs in Fig. 4.2, it
is shown that the reconstruction probability provides a more noticeable change than
reconstruction error.
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Figure 4.2: Visualization of the anomaly scores over time in the test set. The left five sub
graphs are the anomaly score from the day where a fault is introduced. The right five sub
graphs show the anomaly score from the normal operation test day. The red background on
the graphs represents the ground truth of the fault.
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Table 4.1: Comparison of different methods for engine fault detection.

Method ω TTD ↓ DSF ↑

iForest (MRN)

39 163 0.553
59 175 0.564
79 178 0.565
99 182 0.565

AE (MRN)

39 77 0.755
59 78 0.781
79 78 0.781
99 79 0.781

VAE (MRN)

39 76 0.757
59 80 0.749
79 83 0.783
99 84 0.785

LSTM-VAE (Reconstruction Error)

39 75 0.782
59 77 0.782
79 80 0.784
99 83 0.782

LSTM-VAE (Log Reconstruction Probability)

39 60 0.774
59 65 0.786
79 66 0.791
99 72 0.791

Quantitative results

Table 4.1 summarizes the performance of different methods in terms of TTD and DSF.
Only the results of the Iforest, AE, and VAE with the multi-regime normalization is
shown since these models with standard normalization fail to detect the fault. It is
shown that the AE, VAE, and LSTM-VAE performs better than the iForest in our case.
The AE, VAE and LSTM-VAE shows a similar performance with TTD around 80 seconds
and DSF around 0.78. For the LSTM-VAE, it is shown that using log reconstruction
probability as anomaly score provides lower TTD as well as higher DSF than using
reconstruction error. With log reconstruction probability, the LSTM-VAE can achieve
TTD as 60 seconds and DSF as 0.791.

4.2 Fault prognostics using LSTM networks

Fault prognostics is the key action of a PHM system since the prognostics algorithm aims
to estimate the available time before an anomalous component suffers an operational
failure. Such estimations are normally referred to as the remaining useful life (RUL)
and used to devise an ideal maintenance schedule.

In this section, the feasibility of using data-driven fault prognostics for marine diesel
engine is investigated. First, run-to-failure data of engine is collected. Then the RUL
targets can be constructed and then aligned with the sensor measurements. Finally a
RUL predictor can be built by utilizing machine learning regression techniques.

37



CHAPTER 4. CASE STUDY: ENGINE FAULT DETECTION AND PROGNOSTICS

4.2.1 RUL targets construction

The piece-wise linear (PwL) degradation model is widely used to label the RUL targets.
In the original PwL model, all engines utilize the same initial RUL values. Since the
engines might follow different degradation pattern, an improved PwL model as presented
in [80] is used.

Fig. 4.3 depicts the improved PwL model. An anomaly detector is used to detect the
time step where the fault is initially provoked. Then the RUL targets are constructed
based on the PwL model: constant RUL targets before the fault time step and linearly
degraded RUL targets after the fault time step. Consequently, the last RUL target=0.
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Figure 4.3: Illustration of the improved piece-wise linear degradation model.

4.2.2 Data augmentation

In real-world applications, however, run-to-failure data might be more time-consuming
and difficult to acquire. In such a context, data augmentation techniques could be used
to alleviate this problem. First, random white Gaussian noise is added to each sensor
measurement in the original training set with a random signal-to-noise ratio between 70
and 90%. Next, following [81], a random interval of time steps are removed after dft to
also include some time-series that will end some time prior to failure.

4.2.3 Network architecture

Following the recent RUL prediction research [82], LSTMs and feed-forward neural net-
works (FNNs) are used as the main building blocks in this paper. The LSTM layers are
used to learn temporal and long-term dependencies within the features of degradation
data. The FNN layers are then used to map all extracted features before a dropout layer
is used to reduce overfitting. Dropout [83] randomly drops units of the dropout layer
during training. This forces the model to learn to construct generalized representations
of the input data. The last layer consists of a fully connected output layer with one unit.
This layer handles error calculations and perform RUL predictions. The mean squared
error is utilized as the loss function.

The proposed network architecture can be seen in Fig. 4.4. Two layers of LSTM
and two layers of FNN are used, with skip-connection on last layer of LSTM and FNN,
respectively. The skip connections in the model use element-wise addition to combine
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Figure 4.4: Network architecture for RUL predictions.

4.2.4 Experimental results

Baseline comparison

The model used here is compared with the model proposed in the literature to validate
the approach. Table 4.2 presents the RMSE and SCORE with different approaches.
For a fair comparison, the same RUL targets construction procedure is used. All the
approaches are tested when trained on augmented data sets. For the approach with
CNN, a sliding window is necessary. The window size from 20 to 80 is tested, Table 4.2
provides the best results within the window size. It is shown that the model used in this
paper provides the smallest RMSE and SCORE when compared with other approaches.

Table 4.2: Comparison with different approaches for engine RUL predictions.

Approach RMSE SCORE
CNN+FNN [84] 96.26 40.32
LSTM+FNN [85] 285.09 67.63

RBM+LSTM+FNN [86] 120.54 128.70
LSTM+FNN+SC 85.76 9.92

(a) (b)

Figure 4.5: The prediction results on the air filter fault and the turbo fault in the test set.

Effect of data augmentation

Fig. 4.5 compares the RUL predictions on both the air filter fault and the turbo fault in
the test set when the model is trained on augmented data sets and the original training
set. The RUL predictions are more noisy when no augmented data is used. In addition,
when the model is trained on the augmented data set, the RUL prediction is close to
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the RUL target not only at the end of the engine’s life, but also at the early stage of
degradation. It proves the advantage of using the data augmentation technique.

4.3 Chapter summary

This chapter uses diesel engines on ships as an example. Two application scenarios are
considered:

• A long-short term memory based variational autoencoder (LSTM-VAE) is proposed
for fault detection. The encoder and decoder of VAE are implemented with LSTM
to introduce temporal dependencies. The log reconstruction probability can be used
as the anomaly score. This model follow the semi-supervised anomaly detection
setting that only requires no fault data for training. From the experiment on a
maritime diesel engine operating in the real world, it is showed that the LSTM-
VAE can accurately detect the air filter clogging fault and it outperforms several
baseline methods.

• a LSTM network is used for fault prognostics. Run-to-failure data of two fault-
types in two different engine load profiles is collected in the lab. Data augmentation
technique is used to augment the training data. Experimental results show that
the model provides accurate remaining useful life predictions for two different fault
types: air filter and turbo fault. It suggests that the proposed model has high
generalization power towards different engine load profiles.

Fault detection and fault prognostics are essential components of optimal mainte-
nance. The model presented in this chapter can be used to implement engine fault
detection and prognostics to support smart ship operations.
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5
Case study: Sea state estimation

The sea state refers to the general condition of the ocean with respect to wind waves
and swell at a certain location in oceanography. A sea state is usually characterized by
statistical parameters, e.g., significant wave height, average wave frequency, and peak
frequency [87].

Nowadays, the majority of marine vessels are equipped with sensors that measure
the ship motions in 6 degrees of freedom. The motion responses reflect the sea state
conditions and therefore a ship can be considered as a large wave buoy. From this
perspective, a vessel is essentially equipped with an environmental condition estimation
system [88]. Estimating the sea state based on the ship motion responses is of interest
and has been investigated in the literature. In this chapter, the sea state estimation
from ship motion responses is treated as a supervised learning problem. This chapter is
based on the research results from papers II, III, and VI.

5.1 An ensemble model to estimate the wave parameters

In this section, a data-driven model is proposed to estimate the sea state based on ship
motion responses. Features are generated by means of statistical, temporal, spectral,
and wavelet analysis. The features are then used to predict the sea state information
with machine learning models.

5.1.1 Multi-domain feature construction

Considering a signal is a discrete time series data (x1, x2, . . . , xn) with length n, four
broad categories of features are constructed to describe sea state pattern.

Domain-knowledge features Two basic features are extracted. speed : the for-
ward speed is important for estimating wave characteristics due to the Doppler shift [89],
diff_angle : the difference between course angle and heading angle during ship maneu-
vering.

Statistical features Seven basic statistical features are extracted from each DOF
measurement. Six standard features of the signal including maximum, minimum, mean,
variance, skew, and kurtosis are considered. Additionally, the q quantile information of
the signal is extracted, which is the value greater than q of the ordered values from the
signal. The variable q is selected as 0.2, 0.4, 0.6, and 0.8.

Temporal features Firstly five temporal features are considered, which include:
absolute sum of change (

∑n−1
i=1 |xi+1 − xi|), absolute energy (

∑n
i=1 x

2
i ), mean second

derivative center ( 1
2(n−2)

∑n−2
i=1

1
2
(xi+2 − 2xi+1 + xi)), zero cross (the number of the sig-

nal crossings zero), longest strike above mean (the length of the longest consecutive
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subsequence in a signal that is largest than its mean).
Two advanced temporal features are also extracted: Sample entropy and Autocor-

relation.
Welch spectral features Welch method is an approach to transform a signal

from the time domain to the frequency domain and estimate the power of a signal at
different frequencies. After the signal is transformed into frequency domain, four basic
spectral features including max power spectrum, fundamental frequency, max frequency,
and median frequency are extracted. Additionally, five features related to the shape of
the spectrum [90] is also extracted: centroid, variation, spread, skewness, kurtosis.

Wavelet features The wavelet transform is a time-frequency analysis method
which can analyze a signal with multi-scales both in time and frequency domain. The
wavelet transform is used to split a signal into different frequency sub-bands. The
Daubechies wavelet of order 1 (db1) is selected as the basis function and the decompo-
sition level is five. In total five approximation components and five detail components
are obtained. For each components, the mean, variance, median, skewness, kurtosis,
absolute energy, absolute sum of changes, and zero cross are extracted.

5.1.2 Minimum-redundancy maximum-relevance (mRMR) feature selection

In order to select salient features from the constructed multi-domain features, mRMR [91]
feature selection framework is utilized. The mRMR criterion is a filter feature selection
method which can effectively reduce the redundant features while keeping the relevant
features for the model. The mRMR criterion can be expressed as:

fmRMR(xi) = I(y, xi)−
1

|S|
∑

x∈S

I(xs, xi) (5.1)

where the function I(·, ·) denotes the mutual information. |S| is the size of the feature
set and xs ∈ S is one feature out of the feature set.

5.1.3 Ensemble model

Three machine learning models are ensemble using voting method, which is simply av-
eraging the predictions from the three models. Tree-based model (GBDT), kernel-based
model (SVR) and distance-based model (kNN) are used here to ensure the diversity of
sub-models, which also influences the ensemble performance.

5.1.4 Experimental results

The mean absolute error (MAE) is used as the evaluation metric. 5-fold cross-validation
is performed to avoid possible selection bias on splitting the dataset.

To evaluate the performance of the proposed method, four baselines model are
also implemented: (1) Random Guess: a simple model that makes the predictions by
randomly drawing from the training data distribution. (2) Linear Regression with Elastic
Net regularization (EN): a regularized linear regression method that linearly combines
the l1 and l2 penalties, the hyperparameter for l1 and l2 are tuned. (3) Multilayer
Perceptron (MLP): a class of feedforward artificial neural network, ReLU is used as
the activation function and Adam is used as the optimizer. The learning rate and the
weight for l2 regularization are tuned. (4) Random Forest (RF): an ensemble model that
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uses the decision trees as base learners and bagging to improve the performance. The
maximum depth, the minimum number of samples required to be at a leaf node, number
of features to consider when looking for the best split are tuned.

In addition, an end-to-end model SeaStateNet [92] is implemented. Since the model
is originally designed for classification, the output nodes in the last layer are changed
to three and the loss function is changed to mean square error in order to adapt to the
dataset.

Table 5.1 reports the MAE of the models, evaluated through the 5-fold cross-
validation. The results are presented in mean ± std format. For the feature-based
approaches, GBDT consistently outperforms the other approaches. The high MAEs of
the EN model suggest that the sea state characteristics are better captured using nonlin-
ear relationships. The ensemble model consists of GBDT, kNN, and SVR outperforms
any individual models. The end-to-end approach SeaStateNet outperform the ensemble
model in Dm but have a slightly higher MAE in Hs and Tp. The reason might be that
the mean wave direction is not so sensitive to the constructed features. Besides, the
errors for Hs and Tp are in an acceptable range, while the error for Dm is relatively high
even though it is clearly better than the random guess. The reason might be that most
of the time the vessel is operating near the coast and the mean wave direction from the
weather forecast system is not so accurate in this region.

Table 5.1: The MAE values of the different methods for wave paramters estimations

Model Wave Characteristics
Hs (m) Dm (◦) Tp (s)

EN 0.484± 0.027 77.59± 3.32 2.032± 0.172

MLP 0.431± 0.045 71.84± 6.50 1.851± 0.119

RF 0.378± 0.024 64.34± 4.62 1.686± 0.116

kNN 0.359± 0.025 60.02± 3.58 1.655± 0.095

SVR 0.361± 0.024 60.96± 2.58 1.649± 0.100

GBDT 0.337± 0.027 59.28± 2.26 1.607± 0.096

SeaStateNet 0.348± 0.019 53.82± 3.09 1.659± 0.178

Our ensmble 0.334± 0.030 57.72± 1.30 1.528± 0.084

5.2 Incorporating model-based method to estimate the wave parameters

Machine learning methods often require an extensive amount of training data and they
only perform well when the training and testing data are sampled independently and
identically from the same distribution [8]. The vessel is usually operated in the same
route for a specific period, the historical data collected in the real world, therefore,
contains limited number of sea state and can not cover the entire range of possible sea
states. When the vessel is deployed into a new route or experience a new sea state, the
machine learning model trained with historical data is likely to fail. A failing on the sea
state estimation might cause severely operational and financial costs.

To overcome this shortcoming, the feasibility of the hybrid approach for sea state
estimation using ship motion responses will be investigated. The ML model estimates the
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current sea state with predictive uncertainty, while, in parallel, the wave buoy analogy
method provides the estimation results using the same ship motion responses. The
estimation results from both methods are then fused together.

5.2.1 Methodology

Fig. 5.1 shows the schematic illustration of the proposed hybrid method. Historical data
containing ship motion and corresponding sea state information is collected to train a
machine learning model. The machine learning pipeline consists of feature extraction,
feature selection, and model training. The Gaussian process is chosen since it not only
provides predictions but also uncertainty. The wave buoy analogy (WBA) method builds
on a comparison between measurements of response spectrum and calculated ones. By
minimizing the discrepancy between the measured and calculated spectrum, the sea
state is determined. Then the uncertainty-aware confusion module receives the sea state
estimation results from these two methods. The WBA estimation results are used to
compensate for the ML results according to its uncertainty. In this way, the hybrid
estimation results are the combination of the estimation results made by the ML model
and the WBA method.
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Minimize error
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Figure 5.1: Schematic illustration of the proposed hybrid approach. The upper rectangle is the
ML model and the lower rectangle is the model-based method.

The WBA method will not be detailed described in this section since it is not the
focus of the dissertation. For the ML model, the same feature construction and selection
procedures as Section 5.1 is used. Only the learning model is changed to Gaussian process
since it can represent the predictive uncertainty naturally.

Uncertainty-aware fusion

As shown in Fig. 5.2, the estimation results from the machine learning model and
the wave buoy analogy method are assumed to follow a distribution as P (y|ML) and
P (y|WBA), respectively. Since P (y|ML) and P (y|WBA) are independent, the final re-
sult can be obtained through eq.(5.2). In this way, the hybrid estimation results would
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move towards the WBA results if the uncertainty of the ML results are high.

P (y|ML,WBA) = P (y|ML) · P (y|WBA) (5.2)

The P (y|ML) follows a Gaussian distribution with mean µML and variance σ2
ML,

which can be obtained through Gaussian process model. For the wave buoy analogy
method, the uncertainty is not easy to measure directly, a Gaussian distribution is also
assumed for P (y|WBA) with mean µWBA and variance σ2

WBA. Then the final estimation
result is:

yML,WBA = µML +
σ2
ML(µWBA − µML)

σ2
ML + σ2

WBA

(5.3)

Here σ2
WBA is a parameter which can be tuned to adjust the final results towards

ML or WBA results.

ML estimation results with low uncertainty ML estimation results with high uncertainty

Hybrid
ML
WBA

Figure 5.2: Illustration of the uncertainty-aware fusion.

5.2.2 Experimental results

Fig. 5.3a shows the significant wave height for each sample, where MET stands for
the “actual" value from the Norwegian Meteorological Institute. Fig. 5.3b presents the
same graph for the mean wave period. The value of σ2

WBA are selected as 0.5 and 3.5
for significant wave height and mean wave period, respectively. The GP model provides
fairly accurate results in terms of the significant wave height. For the mean wave period,
the predictions are mostly distributed in the range of 5s to 8s, therefore it provides
relatively bad results for low and high wave periods. Similar results are observed for the
WBA method and the SeaStateNet model. The reason might be that the vessel itself is
a filter and its motions are only sensitive in a specific range of the wave frequency. The
hybrid model predictions are the GP model predictions corrected by the WBA method.
As shown in Fig. 5.3a, the GP model predictions with high uncertainty are corrected,
which can be easily observed for samples 17, 51, and 52. The GP predictions and hybrid
predictions in Fig. 5.3b is quite similar since we put a relatively large σ2

WBA. The reason
is that the results from WBA for the mean wave period are relatively less accurate
compared with the significant wave height.

Table. 5.2 summarized the overall performance in terms of MAE. The GP model
performs better than the SeaStateNet model. The reason might be that our data is
limited. It is shown that the GP predictions provide an overall low error when comparing
with the WBA method. The hybrid method reduces the MAE in terms of significant wave
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Figure 5.3: Wave estimation by different approaches: (a) significant wave height; (b) mean
wave period.

height by about 10% when comparing with the GP method. For the mean wave period,
the hybrid method gives a similar error with the GP method. From the experiment,
the hybrid method can reduce the estimation errors by correcting the high uncertainty
GP predictions with the WBA predictions. Compared with the rest of the models, the
hybrid model has the smallest error.

Table 5.2: MAE of different sea state estimation method

Sea State SeaStateNet WBA GP Hybrid (GP+WBA)
Hs(m) 0.392 0.316 0.268 0.248
Tm(s) 1.758 1.998 1.533 1.529

5.3 Directional wave spectrum estimation

The above two sections aim to estimate the integrated wave parameters. The integrated
wave parameters are a summary expression of the wave spectrum. Ideally, a 2D direc-
tional wave spectrum could be estimated to fully describe the sea state. In addition,
the 2D directional wave spectrum is fundamental for operational safety analysis such as
extreme value analysis.

In such a context, this section aims to build a machine learning model for estimating
the 2D directional wave spectrum using ship motion responses.

5.3.1 Methodology

The proposed method consists of two separate networks, as outlined in Figure 5.4. The
inputs are the cross spectrum of the ship motion. The cross spectrum is normalized and
then fed into the estimation network to be converted into a 2D wave spectrum. The
discrimination network takes a 2D wave spectrum as input and distinguishes whether it is
generated from the estimation network or is the actual wave spectrum. In the training
phase, the estimation network tries to generate a realistic wave spectrum while the
discrimination network tries to distinguish it. In this way, the two networks are improved
together and the high-order statistics of the output wave spectrum are penalized to force
the estimation network to provide continuous and realistic results. At inference time,
the discrimination network is omitted, and the estimation network is used to output the
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Figure 5.4: Schematic illustration of the proposed model for 2D directional wave spectrum
estimation using ship motion responses.

estimated 2D wave spectrum from ship motion responses.

Adversarial training

A hybrid loss which is a weighted sum of two terms is used. The first is the mean square
error that encourages the estimation model to predict the wave spectrum. The second
loss term is based on the adversarial convolutional network. This loss term is large if
the adversarial network can discriminate the output of the estimation network from the
actual wave spectrum. The aim of the adversarial term is to penalize mismatches in the
high-order spectral power value statistics, e.g., the power value of wave spectrum should
be smooth in the near region, which is not accessible by the mean square loss function.

Given a training ship motion responses x and a corresponding wave spectrum y,
the estimator E and the discriminator D would be competed in a two-player min-max
optimization routine:

Min
E

Max
D
L(E,D) = Lmse (E(x), y)− λ[Lbce(D(y), 1) + Lbce(D(E(x)), 0)] (5.4)

where Lmse is the mean square loss, Lmse(ẑ, z) = |ẑ−z|2. Lbce is the binary cross-entropy
loss, Lbce(ẑ, z) = −z log ẑ − (1 − z) log(1 − ẑ). λ is a hyperparameter to balance these
two different losses.

The training of the estimation model minimizes the mean square error loss while
at the same time trying to fool the discriminator model. The objective function of the
estimation model is:

LE = Lmse (E(x), y)− λLbce(D(E(x)), 0) (5.5)

In practice, the term −Lbce(D(x,E(x)), 0) is replaced by +Lbce(D(x,E(x)), 1) [93].
This means that the probability that the adversarial model predicts the estimated wave

47



CHAPTER 5. CASE STUDY: SEA STATE ESTIMATION

spectrum to be the actual one is maximized, instead of minimizing the probability that
the adversarial model predicts the estimated wave spectrum to be synthetic.

For the adversarial model, only the binary classification loss is related. Therefore,
training the adversarial model is equal to minimizing the following objective function:

LD = Lbce(D(y), 1) + Lbce(D(E(x)), 0) (5.6)
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Figure 5.5: Examples of contour plots of the estimated directional wave spectrum based on
perfect motion spectrum.

5.3.2 Experimental results

In this part, the performance of the proposed method will be evaluated. Two baseline
models are implemented for comparison:

• Bayesian wave buoy analogy method: This method is a model-based method
for directional wave spectrum estimation using ship motion responses. The wave
spectrum is represented in a discrete frequency-directional domain. The funda-
mental idea is to minimize the difference between the measured and the calculated
spectrum. However, this forms an ill-posed inverse problem, and therefore smooth
prior is introduced to solve the problem in the Bayesian framework. In this paper,
a two hyperparameters method [94] is used. The two hyperparameters are respon-
sible for the smooth prior of wave spectrum in the discrete frequency and discrete
direction, respectively. Details of this method is described in [94].
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• Neural network model without adversarial training: This model is the
estimation network proposed in this paper. The discriminator network is neglected
by setting the hyperparameter λ as 0. This model is implemented to show the
effect of adversarial training.

In the following, the Bayesian wave buoy analogy method is denoted as “WBA”, the
neural network model without adversarial training is denoted as “Proposed w/o AT”, and
the proposed neural network model with adversarial training is denoted as “Proposed w
AT”.

Figure 5.5 presents the estimated directional wave spectrum from three random
samples in the test set. The colors of values larger than the color bar upper limits remain
the same as that of the upper limit. It is shown that the Bayesian WBA method provides
a similar shape of the spectrum as the actual ones but the values are less accurate. The
reason is that the performance of this method depends on the two hyperparameters and
the initial guess of the wave spectrum. Several combinations of hyperparameters and
initial guesses are used to yield the best-estimated spectrum. For the neural network
model, the model without adversarial training clearly presents spurious lines in the wave
spectrum. Even though the shape of the estimated wave spectrum is similar to the actual
wave spectrum, it has high total wave energy. The model with adversarial training better
enforces the spatial consistency of the wave spectrum. It also smooths and strengthens
the high energy density area of the wave spectrum.

Table 5.3: MAE of different methods on the test set for 2D wave spectrum estimation

Methods Pixel Integrated wave parameters
Hs(m) Tm(s) Dm(◦) σs

WBA 0.033 0.606 0.573 12.88 0.234
Proposed w/o AT 0.043 1.265 0.952 18.80 0.353
Proposed w AT 0.018 0.239 0.361 13.95 0.153

Table 5.3 summarizes the overall performance in terms of MAE. The pixel error
represents the error in the 2D wave spectrum. Four integrated wave parameters are
also examined: significant wave height Hs, mean wave direction Dm, mean wave period
Tm, and directional spreading parameter σs. Compared with the neural network model
without adversarial training, the error of the WBA method in terms of pixel-level and
integrated wave parameters is relatively low. By incorporating adversarial training, these
errors are reduced significantly. In this comparison, our model with adversarial training
has the smallest error.

Generalization to JONSWAP-type wave spectrum

In this part, the generalization ability of the model is evaluated with the JONSWAP-
type wave spectrum. The JONSWAP type spectrum has a more pronounced peak in
the spectrum than the Pierson-Moskowitz (PM) type wave spectrum. The JONSWAP
wave spectrum and the Torsethaugen wave spectrum (a double peak JONSWAP-type
spectrum) are used to generate two extra test sets with 100 samples, respectively. The
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Figure 5.6: Examples of contour plots of the estimated directional wave spectrum for
JONSWAP-type wave spectrum.
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Figure 5.7: MAE of the integrated wave parameters for the JONSWAP and Torsethaugen wave
spectrum.

trained model is then used to estimate the 2D wave spectrum. Figure 5.6 shows the esti-
mated 2D wave spectrum from two examples in the two extra test sets, respectively. The
proposed model presents a less narrow spectrum than the actual one, which might be due
to the Pierson-Moskowitz type wave spectrum used in the training data. Nonetheless,
the proposed model still provides a reasonable estimate.

Figure 5.7 summarizes the MAE of Hs, Tm, Dm, σ for the JONSWAP and Torsethau-
gen wave spectrum. The proposed model achieves the lowest deviation among these three
methods. It demonstrates that the proposed model successfully captures the relation
between ship motion and wave spectrum, therefore, it is able to estimate the type of
wave spectrum not present in the training data.

Robustness to noisy ship motion measurements

In this section, the effect of cross spectrum analysis and the noises in ship motion
on the estimated results will be evaluated. The cross spectrum analysis in this paper
is performed through the Welch method. White noise is added and four different SNR
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Figure 5.8: MAE of the integrated wave parameters for the motion responses under different
SNR levels.

levels, 10, 5, 2, 1, are investigated. For simplification, the time series ship motion without
noise added is denoted as “SNR=+∞”. In “SNR=+∞”, only the effect of cross spectrum
analysis is included. Figure 5.8 compares the MAE of integrated wave parameters in
WBA and the proposed model under different SNR levels. The proposed model is less
sensitive to noise than the WBA. The WBA method shows low error in Dm while the
proposed model has low error in Hs, Tm and σ.

5.4 Chapter summary

This chapter aims to estimate the sea state condition from ship motion responses. The
data-driven methods are used, where three aspects are considered:

• The problem is treated as a regression problem and three integrated wave pa-
rameters are considered. Statistical, temporal, spectral, and wavelet features are
extracted from the ship motion data. An ensemble model is then built. Experi-
mental results from real-world operation data show that the model can estimate
the significant wave height and mean wave period with high accuracy.

• To improve the performance of wave parameters estimation when the data is far
away from the training set, a hybrid model consisting of model-based and data-
driven models is proposed. The data-driven model provides not only the estima-
tion results but also the uncertainty of the estimation results. The model-based
approach then compensates for the results of the data-driven approach based on
uncertainty. A substantial decrease in the mean absolute error was observed for
the significant wave height from the experimental results.

• To estimate directional wave spectrum, an estimation network and discriminant
network based on convolutional neural networks are proposed. The high-order
inconsistencies of the wave spectrum from the estimation network are penalized by
the estimation network, thereby forcing the estimation network to produce accurate
and realistic results. Simulation studies show that the proposed model guarantees
the smoothness of the wave spectrum and provides accurate estimation results.

The sea state conditions are of key importance for ship operation. The methods
developed in this chapter might improve the accuracy of sea state estimation from motion
responses.
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6
Conclusion and further work

This dissertation has proposed and discussed the use of data-driven methods for deci-
sion supports in smart ship operations. It has presented research findings concerning
three case studies for developing data-driven models for decision support of vessels. All
contributions in this dissertation aim to enhance vessel performance and further aid
autonomous vessels. The data-driven method is not a new technology, but it has been
developed rapidly in recent years due to the enhancement of computing power and the
increase of data resources. The work presented here hopes to promote the adoption of
data-driven methods in the maritime domain.

6.1 Summary of contributions

Assessing the status of the internal components of the ship as stated in RO1 is one of
the key goals of this dissertation. The solution is to develop data-driven fault diagnosis
and prognostics models. Deep neural networks including convolutional neural network
and long short-term memory are extremely powerful and easy to use since it requires
less manual feature extraction process. The fault detection and isolation problem can be
formulated as a binary or multi-class classification problem if sufficient fault or failure
data is available. However, the fault data might be difficult to collect as stated in
RO2. Since normal data is easy to collect, the outlier/anomaly detection technique can
be used to construct a fault detection model (fault isolation cannot be achieved). In
this dissertation, a fault detection method that makes use of the above technique and
further considers temporal dependencies is developed and verified on a maritime diesel
engine. As stated in RO3, another goal of this dissertation is to make the environmental
conditions that the ship is currently operating in more accessible. The task is then to use
ship motion responses to estimate the sea state information. The problem is formulated
as a regression problem. It is also shown that incorporating prior knowledge can benefit
the data-driven method, which could increase its accuracy as well as reliability, as stated
in RO4.

The main contributions of this dissertation are as follows:

• Present the fundamentals to use data-driven methods for decision support to en-
hance vessel performance. The effectiveness of the methods is shown through three
different case studies.

• Propose a data-driven fault detection method for maritime components. The
method uses only normal operation data for training.

• Propose a data-driven model to estimate the detailed 2D directional wave spectrum
from ship motion responses.
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• Present methods to account for the predictive uncertainty of data-driven method
and techniques to compensate its prediction to increase the reliability.

6.2 Summary of publications

The summary of publications are as follow:
Paper I presents a deep convolutional neural network to detect and isolate potential

thruster failures for DP vessels based on the control signals and logged ship motion data.
The model is trained with the historical data set that contains normal and fault data.
The focal loss is used to handle the unbalanced dataset since the amount of normal
operation data is much larger than that of fault data. The method is validated in a
simulated environment and can detect and isolate the failure with high accuracy.

Paper II presents a data-driven model for performing real-time onboard wave pa-
rameters estimation using ship motion responses for vessels. Features from multi-domain
such as statistical, temporal, spectral, and wavelet analysis are constructed from time-
series ship motion data. The model is an ensemble from three diverse models: tree-based
model (GBDT), kernel-based model (SVR), and distance-based model (kNN). Data col-
lected from real-world scenarios show that the method can provide relatively accurate
results in terms of significant wave height and peak period.

Paper III builds on the approach presented in paper II. This paper uses the Gaussian
process to construct the model, which can account for the predictive uncertainty natu-
rally. The estimated results from the model-based wave buoy analogy method are used
to compensate for the prediction according to the uncertainty. The proposed method
aims to reduce the possibility of failure in the ML model when the encountered sea state
is not in the training set.

Paper IV proposes a long-short term memory based variational autoencoder (LSTM-
VAE) for anomaly detection for maritime systems. The encoder and decoder of VAE
are implemented with LSTM to introduce temporal dependencies. This method en-
ables feasible and robust detection without further assumptions on data. The proposed
method follows the semi-supervised framework that only the data in normal operation
is necessary for training. Experiment on a maritime diesel engine operating in the real
world shows that the LSTM-VAE can accurately detect the air filter clogging fault.

Paper V presents an LSTM network for fault prognostics of the marine diesel engine.
Run-to-failure data of two fault-types in two different engine load profiles are collected
in a hybrid engine lab. Data augmentation technique is used to augment the training
data. The optimal network architecture is obtained. Experimental results show that the
model provides accurate remaining useful life predictions for two different fault types.

Paper VI is a continuation of the works presented in paper II and III. Paper II
and III formulate the sea state estimation problem as a regression problem, and only
integrated wave parameters can be obtained. This paper focuses on 2D directional
wave spectrum estimation. An estimation network and discriminant network based on
convolutional neural networks are built together. The high-order inconsistencies of the
wave spectrum from the estimation network are penalized by the estimation network.
Simulation studies show that the proposed model guarantees the smoothness of the wave
spectrum and provides accurate estimation results.
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CHAPTER 6. CONCLUSION AND FURTHER WORK

6.3 Future work

This thesis has mainly focused on two aspects for decision support of vessels: fault
diagnostics and prognostics, and sea state estimation. These are all achieved by data-
driven methods despite different kinds of models being used. The below bullet points
provide suggestions for how the presented research may be extended.

• In general, the models used in this dissertation are trained with historical data
and then deployed. The lifetime of the modern vessel is about 25 to 30 years.
During this period, the vessel can continuously collect data and an automatic label
pipeline can be built. The performance of machine learning models can be improved
when more data is available. In a research perspective, incremental learning [95],
continual learning, or lifelong learning [96] are suggestions for future research. This
is extremely important for neural networks because catastrophic forgetting [97]
can occur when training an already trained neural network with a new dataset.
Deployed machine learning models can improve themselves over time as the ship
operates.

• The goal of the proposed data-driven model is to facilitate decision support or au-
tomation of ship operations. When the input data is far from the training set, the
model may fail. This is important for critical operational scenarios. Confidence in-
tervals for the model predictions should be provided so that the operator can better
judge whether to accept the model predictions. Therefore out-of-distribution detec-
tion or model uncertainty [14] can be further investigated. Additionally, the model
may need to provide transparent explanations of how it makes such predictions in
order to gain the trust of the operator. This includes building an explainable ML
model at the beginning or techniques for visualizing and interpreting the predic-
tions of a black-box model [98]. Future research and development might explore
them.

• The prior knowledge of the vessel might be used to incorporate with the data-
driven method to provide more accurate predictions. For the sea state estimation,
data covering the entire range of sea states is almost impossible to collect in the
real world. The prior knowledge, including the mathematical model of the vessel
and the expert knowledge, can be used to ease the problem. How to organically
combine prior knowledge and data-driven method might be investigated in the
future. This will also benefit the development of the digital twin since it makes use
of data-information models as well as mathematical models.

• A decision support interface can be designed to communicate information to vessel
operators, whether onboard or at a remote control center. This will be an important
step towards the availability of methods that will benefit ship operations. It could
also facilitate continual or lifelong learning of the deployed models.
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A B S T R A C T

The external environmental conditions around a vessel are essential for efficient and safe
ship operation, among which the sea state is of key importance. Considering the ship as a
large wave buoy, the sea state can be estimated from motion responses without extra sensors
installed. This is a challenging task since the relationships between the waves and the ship
motions are hard to describe accurately. Machine learning approaches can learn these mapping
without an explicit model, which is promising for sea state estimation. Current machine learning
approaches represent the sea state as a set of categories or a number of wave parameters
while neglecting the 2D wave spectrum. This paper proposes a sea state estimation network
that estimates the 2D wave spectrum along with a discrimination network. The discrimination
network can detect and correct high-order inconsistencies of the spectrum. Simulation studies
are performed to show that the proposed method can provide wave spectrum estimation with
high accuracy.

1. Introduction

Environmental conditions are of key importance for efficient and safe ship operations. The external wave conditions are one of
the crucial factors affecting the dynamics of a vessel. The continuous sea state information around a ship are valuable for providing
onboard decision supports and operational guidance, including takeoff and landing of helicopters, crane operations. By incorporating
knowledge about sea states, the safety of the operations can be increased and even more efficient. Therefore, in-situ sea state
estimation is important for any type of decision support and system with high level of autonomy.

In oceanography, the general condition of the ocean with respect to wind waves and swell at a certain location is referred to
as the sea state. The waves are stochastic with time and it is almost impossible to evaluate on a wave-by-wave basis in the time
domain [1]. The ocean waves are considered to be a stochastic process and their statistical properties can be evaluated in the
frequency domain. Specifically, the potential and kinematic energies of stochastic waves are represented by the wave spectrum.

Nowadays, the primary tool for collecting accurate ocean wave statistics is floating wave buoys. However, They are not practical
for a vessel in maneuvering operation since they are fixed at a specific location. Meteorological satellite can also provide wave
statistics, but the resolution is often poor. The x-band wave radar provides in-situ wave spectrum, but it is expensive to install,
requires frequent calibration [2], and is yet only equipped on a limited number of vessels. Similar to the wave buoy, the motion
responses of a vessel reflect the sea state conditions and therefore a vessel can also be considered as a large wave buoy. The majority
of marine vessels today are equipped with sufficient sensors that measure the ship motion in 6 degrees of freedom. Therefore, a
vessel is essentially equipped with an environmental condition estimation system [3].
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Estimating the sea state based on ship motions has been a topic of interest in the literature. This task is challenging due to the
operation of the vessel, as well as the inaccurate relationship between waves and the ship motions. Ship responses, in principle,
are non-linearly related to wave excitation. Previous methods usually rely on the response amplitude operators (RAOs) to relate
the waves and the ship motions. RAOs are usually calculated by linearizing the results from strip theory or computational fluid
dynamics and therefore only valid for light and moderate sea states [4]. In addition, RAOs might need to be tuned with real-world
data. Another possible solution is to treat the task as a supervised machine learning problem. The fundamental idea is to learn the
mapping from measured ship motion responses to the actual sea state from historical data. The advantage of data-driven methods
is that it does not require specific knowledge of the vessels to discover the pattern between ship motions and sea states.

Sea state estimation with ship motion responses based on machine learning approaches is usually regarded as a classification
or regression task. The sea state is predefined as multiple categories [5] or represented by several integrated wave parameters [6],
e.g., significant wave height and peak period. Pre-defining the sea state categories might be problematic since it is difficult to use
limited categories to cover all possible sea states. The resolution of the estimation results might also be too low for practical use. The
integrated wave parameters are a summary expression of the wave spectrum. These two methods, either classification or regression,
only provide limited information on the sea state. Ideally, a 2D directional wave spectrum could be estimated to fully describe
the sea state. In addition, the 2D directional wave spectrum is fundamental for operational safety analysis such as extreme value
analysis.

In such a context, this work aims to build a machine learning model for estimating the 2D directional wave spectrum using
ship motion responses. The proposed model follows the generative adversarial networks [7] architecture. Two separate deep
convolutional neural networks, an estimation network, and a discrimination network are established. The estimation network uses
the ship motion as input and estimates 2D wave spectrum. The discrimination network tries to classify the 2D wave spectrum as real
or fake. In this way, an adaptive loss is learned and unrealistic wave spectrum will not be tolerated. Simulation studies show that
the proposed method can provide estimates of wave spectrum based on ship motions. To the best of our knowledge, it is the first
time that an adversarial network is used in sea state estimation. The main contributions of this paper are highlighted as follows:

• A novel model is developed to estimate the 2D directional wave spectrum using the measured ship motion responses. It can
estimate a wide range of sea state conditions.

• Extensive simulation studies are performed to validate the proposed method and comparison with model-based method is
made.

• The proposed model performs well in estimating different types of spectra and is robust regarding noisy measurements.
The remainder of this paper is organized as follows: A literature review on sea state estimation using ship motion responses is

given in Section 2. The proposed adversarial neural network is introduced in Section 3. The experimental setup and experiment are
discussed in Section 4. Section 5 concludes the paper.

2. Literature review

Estimating the sea state information based on the motion responses has been investigated in the literature. Previous works differ
in whether the estimation problem is formulated in the frequency domain or time domain. In the frequency domain solution, the
time series motion responses are first transformed into the frequency domain through fast Fourier transform or autocorrelation
analysis. The RAOs are used to relate the wave spectrum to the motion spectrum. To obtain the wave spectrum, the fundamental
idea is to minimize the difference between the measured ship spectrum and the calculated ship spectrum [8]. A wave spectra,
e.g., JONSWAP, Bretschneider with the 𝑐𝑜𝑠2𝑠 spreading model, can be assumed. In this way, a nonlinear optimization process is
formed, the wave parameters in the hypothetical wave spectrum can be obtained through optimization techniques [6,9]. This method
is computationally intensive and may not converge since the objective function is nonlinear and non-convex. A non-parametric
approach, in which the wave spectrum is represented in a discrete frequency-directional domain, can also be applied. The problem
is an ill-posed problem and therefore different kinds of prior are used, e.g., the smoothness of wave spectrum [10,11] and the
sparsity of wave spectrum [11]. These methods can be extended to ships with forward speed by incorporating the Doppler shift
function [10]. The effectiveness of this method is shown with a container ship [12].

For the time domain solution, the focus is on real-time sea state updates obtained from continuous response measurements. A
framework based on the Kalman filter is established [13,14], in which an irregular wave represented as a number of regular waves.
In the Kalman filter framework, the amplitude and frequency of the regular waves are treated as states. The waves are considered
constant between two discrete time intervals. A similar second-order nonlinear observer is developed to estimate the frequency of
wave [15]. In addition, the optimization can be performed directly in the time domain [16]. However, the latter two approaches
can only estimate a single sinusoid wave.

The above methods are model-based approaches that require a model to relate the wave and the ship motion. Machine learning is
another solution that learns that mapping from measured ship motion responses to the sea state. The sea states are usually predefined
into various categories [5,17] or represented as several integrated wave parameters [18,19] depending on whether this task is
formulated as a classification task or a regression task. Various machine learning models, e.g., multi-layer perceptron, Gaussian
process, deep learning models, have been utilized. However, these methods cannot provide a detailed 2D wave spectrum that is
usually required in practical applications. [20] estimated the 2D wave spectrum using convolutional neural network. The problem
is still considered as a regression problem. They estimated 8 parameters of the Ochi–Hubble-type spectrum from the neural network,
and then reconstructed the 2D wave spectrum. In this paper, no specific form of wave spectrum is assumed. The focus of this paper
is to bridge the gap by developing a machine learning model that estimates the 2D wave spectrum directly without assuming the
structure of wave spectrum.
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Fig. 1. Schematic illustration of the proposed model for 2D directional wave spectrum estimation using ship motion responses.

3. Methodology

The proposed method consists of two separate networks, as outlined in Fig. 1. The inputs are the cross spectrum of the ship
motion. The cross spectrum is normalized and then fed into the estimation network to be converted into a 2D wave spectrum.
In this paper, no specific form of wave spectrum is assumed, and the output 2D wave spectrum from the estimation network is
represented as a 36 by 100 matrix. In other words, there are 36 discrete directions and 100 discrete frequencies. The discrimination
network takes a 2D wave spectrum as input and distinguishes whether it is generated from the estimation network or is the actual
wave spectrum. In the training phase, the estimation network tries to generate a realistic wave spectrum while the discrimination
network tries to distinguish it. In this way, the two networks are improved together and the high-order statistics of the output
wave spectrum are penalized to force the estimation network to provide continuous and realistic results. At inference time, the
discrimination network is omitted, and the estimation network is used to output the estimated 2D wave spectrum from ship motion
responses.

3.1. Channel-wise normalization

Since the input for the proposed network is the cross-spectrum of the ship motion, the cross-spectrum is assigned into different
channels to form multi-channel 1D inputs. The inputs are then normalized to the range [0, 1] with respect to its channel. Specifically,
each channel (each component of the cross-spectrum) maintains its statistics and it is normalized individually.

3.2. Data augmentation with noise

Data augmentation is a technique for improving the robustness and training of neural networks. The idea is to simulate various
expected variations in the datasets by manipulating the training samples. Since the inputs for the proposed estimation network is a
spectral representation of the motion responses, the augmented spectral signal is formulated as follow:

𝑃𝑛 = 𝑃 + 𝑃 ⊙ 𝛼

𝛼 ∼  (0, 𝜎2)
𝜎 ∼  (0, 0.1)

(1)

where 𝑃𝑛 and 𝑃 are the augmented and original spectrum, respectively. ⊙ is the element-wise Hadamard product.  denotes the
normal distribution while  denotes the uniform distribution. In this approach, the original spectrum is augmented randomly in
each training epoch since the noise level 𝜎2 is drawn from a distribution. The noise added also depends on the value of the spectrum.
Fig. 2 shows two examples of the augmented spectrum.

3.3. Network architectures

Estimation network. The proposed estimation network follows an encoder–decoder structure. In the network, the input is passed
through a series of 1D convolution layers that progressively downsample, to a bottleneck layer, then the process is reversed, and
upsampling is achieved by a series of transposed 2D convolution layers. In this way, the network takes the 1D data as inputs and
outputs a 2D wave spectrum. The network uses modules in the form of convolution-BatchNorm-ReLu. The ResNet block [21] is used
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Fig. 2. Examples of augmentation on the spectral inputs.

in this network since it provides better performance in many applications. For the output layers, the Sigmoid activation function is
applied.

Discrimination network. The discrimination network follows a convolutional neural network structure, in which the modules
in the form of convolution-BatchNorm-LeakyReLu are used. The LeakyReLu activation function is used since it can stabilize the
training [22].

Details of the architectures of the estimation network and discrimination network are presented in Appendix.

3.4. Adversarial training

A hybrid loss which is a weighted sum of two terms is used. The first is the mean square error that encourages the estimation
model to predict the wave spectrum. The second loss term is based on the adversarial convolutional network. This loss term is large
if the adversarial network can discriminate the output of the estimation network from the actual wave spectrum. The aim of the
adversarial term is to penalize mismatches in the high-order spectral power value statistics, e.g., the power value of wave spectrum
should be smooth in the near region, which is not accessible by the mean square loss function.

Given a training ship motion responses 𝑥 and a corresponding wave spectrum 𝑦, the estimator 𝐸 and the discriminator 𝐷 would
be competed in a two-player min–max optimization routine:

Min
𝐸
Max
𝐷

(𝐸,𝐷) = 𝑚𝑠𝑒 (𝐸(𝑥), 𝑦) − 𝜆[𝑏𝑐𝑒(𝐷(𝑦), 1) + 𝑏𝑐𝑒(𝐷(𝐸(𝑥)), 0)] (2)

where 𝑚𝑠𝑒 is the mean square loss, 𝑚𝑠𝑒(𝑧̂, 𝑧) = |𝑧̂ − 𝑧|2. 𝑏𝑐𝑒 is the binary cross-entropy loss, 𝑏𝑐𝑒(𝑧̂, 𝑧) = −𝑧 log 𝑧̂− (1 − 𝑧) log(1 − 𝑧̂).
𝜆 is a hyperparameter to balance these two different losses.

The training of the estimation model minimizes the mean square error loss while at the same time trying to fool the discriminator
model. The objective function of the estimation model is:

𝐸 = 𝑚𝑠𝑒 (𝐸(𝑥), 𝑦) − 𝜆𝑏𝑐𝑒(𝐷(𝐸(𝑥)), 0) (3)

In practice, the term −𝑏𝑐𝑒(𝐷(𝑥,𝐸(𝑥)), 0) is replaced by +𝑏𝑐𝑒(𝐷(𝑥,𝐸(𝑥)), 1) [7]. This means that the probability that the
adversarial model predicts the estimated wave spectrum to be the actual one is maximized, instead of minimizing the probability
that the adversarial model predicts the estimated wave spectrum to be synthetic.

For the adversarial model, only the binary classification loss is related. Therefore, training the adversarial model is equal to
minimizing the following objective function:

𝐷 = 𝑏𝑐𝑒(𝐷(𝑦), 1) + 𝑏𝑐𝑒(𝐷(𝐸(𝑥)), 0) (4)

3.5. Implementation details

The proposed model is implemented in Pytorch. To optimize the proposed network, we alternate between one gradient descent
step on 𝐸, then one step on 𝐷. The Adam solver [23] with minibatch is used to minimize the objective function for 𝐸 and 𝐷. The
minibatch size is set as 256 in the training procedure. For the estimation network 𝐸, a learning rate of 1×10−4 with 𝑙2 regularization
term of 1×10−3 is used. For the discriminating network 𝐷, a learning rate of 1×10−5 with 𝑙2 regularization term of 1×10−3 is used.
The hyperparameter 𝜆 is set as 0.01 to balance the losses.

4. Experimental setup

4.1. Data

The wave spectrum-ship motion pairs are generated from simulations. In the simulations, a double-peak wave spectrum [24]
is adopted since it covers a wide range of possible spectrum shapes and it models both the wind waves and the swell waves. The
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Table 1
Sampling range for the wave spectrum parameters (𝑖 = 1, 2).
𝐻𝑠,𝑖 𝜔𝑚,𝑖 𝜃𝑚,𝑖 𝑠 𝜆𝑖
[0.5, 4] [(1/8)𝜋, (2/5)𝜋] [0, 2𝜋] [1, 26] [0.8, 1.5]

directional wave spectrum is given by:

𝐸𝑔(𝜔, 𝜃) =
1
4

2∑
𝑖=1

(
((4𝜆𝑖 + 1)∕4)𝜔4

𝑚,𝑖

)𝜆𝑖

𝛤 (𝜆𝑖)
𝐻2

𝑠,𝑖

𝜔4𝜆𝑖+1
𝐴(𝑠𝑖) × cos2𝑠𝑖 (

𝜃 − 𝜃𝑚,𝑖
2

) exp[−
4𝜆𝑖 + 1

4
(
𝜔𝑚,𝑖

𝜔
)4] (5)

where 𝐻𝑠 is the significant wave height, 𝜃𝑚 is the mean wave direction and 𝜔𝑚 is the model angular frequency. 𝑠 and 𝜆 are two
shape parameters. 𝛤 denotes the Gamma function. The function 𝐴(𝑠) is defined as:

𝐴(𝑠) = 22𝑠−1𝛤 2(𝑠 + 1)
𝜋𝛤 (2𝑠 + 1)

(6)

Note that the above wave spectrum model 𝐸𝑔(𝜔, 𝜃) is only used to generate the simulation data for this study and will not be
used in our estimation network model. NTNU’s research vessel R/V Gunnerus with a length between perpendiculars of 28.9 m, a
breadth of 9.6 m, and a draught of 2.7 m is used as the example vessel [25]. The complex-valued response amplitude operators
(RAOs) of the vessel are obtained from ShipX [26]. The ship motion cross-spectra is then calculated as:

𝑆𝑖𝑗 (𝜔) = ∫
𝜋

−𝜋
𝛷𝑖(𝜔, 𝜃)𝛷𝑗 (𝜔, 𝜃)𝐸𝑔(𝜔, 𝜃)𝑑𝜃 (7)

where 𝛷(𝜔, 𝜃) is the complex-value transfer function and 𝛷(𝜔, 𝜃) is its complex conjugate.
In this study, the wave spectrum is discretized into a 36 × 100 grid after generating from Eq. (5), where 36 different headings

with interval of 10◦ and 100 angular frequencies from 0.2 rad∕s to 3 rad∕s is considered. It is equal to the output wave spectrum shape
from our estimation network, and therefore validation can be easily performed. Three corresponding ship motions, sway velocity,
pitch, heave, are used. This results in 9 power spectra (6 real part and 3 imaginary part) and therefore the size of response spectrum
is 9 × 100. The used wave spectrum consists of 10 parameters [𝐻𝑠,1, 𝜔𝑚,1, 𝜃𝑚,1, 𝑠1, 𝜆1,𝐻𝑠,2, 𝜔𝑚,2, 𝜃𝑚,2, 𝑠2, 𝜆2]. These parameters are
sampled randomly to generate 1000 different wave spectrum, the sampling range is described in Table 1. Note that 𝑠 is an integer.
The corresponding ship motion cross spectrum is then calculated, forming a dataset with 1000 wave spectrum-ship motion pairs.
The dataset is then divided into 500 as training set and the rest 500 as test set. The reason why 500 samples are used in the test
set is because these samples can cover the wave space of interest.

4.2. Time series generation

Ship motions, in principle, are measured in the time domain. To generate time series of ship motions under a specific wave
spectrum, we follow the procedure in [27]. The time-domain ship motion response 𝑅(𝑡) can be expressed as follow:

𝑅(𝑡) =
𝑁∑
𝑛=1

𝑀∑
𝑚=1

𝑎𝑚𝑛|𝛷(𝜔𝑚, 𝜃𝑛)| cos
(
𝜔𝑚 + 𝜖𝑚𝑛

)

𝑎𝑚𝑛 =
√
2𝐸(𝜔𝑚, 𝜃𝑛)𝛥𝜔𝑚𝛥𝜃𝑛

𝜖𝑚𝑛 = arctan
(
ℑ[𝛷(𝜔𝑚, 𝜃𝑛)]
ℜ[𝛷(𝜔𝑚, 𝜃𝑛)]

)
(8)

where 𝑀 is the discrete number of wave frequencies and 𝑁 is the discrete number of headings. 𝜙 denotes the complex transfer
function and 𝐸 is the wave spectrum. 𝛥𝜔𝑚 and 𝛥𝜃𝑛 are the increments of the discrete wave frequencies and the discrete headings.
It is noteworthy that for an equidistant frequency discretization, the time series response 𝑅(𝑡) will repeat itself after a period of
2𝜋∕𝛥𝜔. A simple way to handle this problem is to use non-equidistant frequency discretization:

𝜔𝑖+1 = 𝜔𝑖 + 𝑐 ⋅ 𝑝𝑖 (9)

where 𝑐 is a small factor and it is chosen as 0.01 while 𝑝𝑖 is a stochastic variable with values between 0 and 1. We generate 1800 s
long time series responses for sway velocity, pitch, and heave.

To simulate the noisy measurements, Gaussian white noise is then added to the time series motion response. The signal-to-noise
ratio (SNR) is used in this study to measure the noise level. The SNR is defined in Eq. (10), where 𝜎𝑠𝑖𝑔𝑛𝑎𝑙 and 𝜎𝑛𝑜𝑖𝑠𝑒 is the standard
deviation of the measured motion response and noise, respectively.

𝑆𝑁𝑅 =
𝜎2𝑠𝑖𝑔𝑛𝑎𝑙
𝜎2𝑛𝑜𝑖𝑠𝑒

(10)
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Fig. 3. Distribution of the integrated wave parameters in the generated dataset.

Fig. 4. A sample from the generated dataset. The left upper graph is the 2D wave spectrum and its integrated wave parameters. The right upper graphs are
the cross spectrum of motion responses. The lower three graphs are the time series data of these three ship motions.

4.3. Integrated wave parameters

The overall outcome of the proposed model is given by a directional wave spectrum 𝐸(𝜔, 𝜃). For comparison, the integrated
wave parameters are then evaluated. The spectral moment of order 𝑛 is defined as [28]:

𝑚𝑛 = ∬ 𝜔𝑛𝐸(𝜔, 𝜃)𝑑𝜔𝑑𝜃 (11)

Thus, the significant wave height 𝐻𝑠 and the mean wave period 𝑇𝑚 can be calculated as follows:

𝐻𝑠 = 4
√
𝑚0

𝑇𝑚 = 𝑚−1∕𝑚0
(12)

The mean wave direction 𝐷𝑚 and the mean directional spread 𝜎𝑠 is given by:

𝐷𝑚 = arctan(𝑑∕𝑐)

𝜎𝑠 =
(
2 − 2

𝑚0

√
𝑑2 + 𝑐2

)0.5 (13)

where 𝑑 and 𝑐 are defined as:

𝑑 = ∬ 𝐸(𝜔, 𝜃) sin 𝜃𝑑𝜔𝑑𝜃

𝑐 = ∬ 𝐸(𝜔, 𝜃) cos 𝜃𝑑𝜔𝑑𝜃
(14)
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Table 2
MAE of different methods on the test set.
Methods Pixel Integrated wave parameters

𝐻𝑠 (m) 𝑇𝑚 (s) 𝐷𝑚 (◦) 𝜎𝑠
WBA 0.033 0.606 0.573 12.88 0.234
Proposed w/o AT 0.043 1.265 0.952 18.80 0.353
Proposed w AT 0.018 0.239 0.361 13.95 0.153

The mean directional spread 𝜎𝑠 is a parameter representing the spread of the spectrum. Specifically, 𝜎𝑠 decreases as the shape
parameter 𝑠 increase in the cos2s spreading function. The smaller the 𝜎𝑠, the directional spread is broader. The wave spreads equally
in all directions when 𝜎𝑠 is close to 1.4.

4.4. Description on the generated data

Fig. 3 shows the distribution of the integrated wave parameters of the generated dataset. The significant wave height 𝐻𝑠 ranges
from around 0.7 m to 5.3 m. The mean wave period 𝑇𝑚 is around 2 s to 14 s while the mean directional spread 𝜎𝑠 is around 0.2 to
1.4. The mean wave direction 𝐷𝑚 is distributed uniformly from 0◦ to 360◦. This dataset covers a wide range of sea states that the
vessel might encounter in the real world.

Fig. 4 presents a sample from the dataset. The sea state is described as a 2D wave spectrum. The integrated wave parameters 𝐻𝑠,
𝑇𝑚, 𝐷𝑚, 𝜎𝑠 are the summation of the 2D wave spectrum. The cross spectrum of motion responses as well as the time series of the
ship motion is presented. In the cross spectrum, the subscripts 1, 2, 3 denotes sway velocity, pitch, heave, respectively. The cross
spectrum of motion responses will be used as the input and the target is to estimate the 2D wave spectrum.

4.5. Evaluation metrics

To evaluate and compare the performance of the proposed model, the mean absolute error (MAE) is used:

𝑀𝐴𝐸 = 1
𝑘

𝑘∑
𝑖=1

|𝑦̂𝑖 − 𝑦𝑖| (15)

where 𝑘 is the number of samples, 𝑦̂ and 𝑦 is the estimated and actual value, respectively. In this paper, the MAE of the
discrete wave spectrum and the MAE of the integrated wave parameters are evaluated. For abbreviation, the MAE of the wave
spectrum is referred to as the pixel error in the rest of the paper. For mean wave direction, Eq. (15) is modified into 𝑀𝐴𝐸 =
1
𝑘
∑𝑘

𝑖=1 min
(|𝑦̂𝑖 − 𝑦𝑖|, 360 − |𝑦̂𝑖 − 𝑦𝑖|

)
to consider that 0◦ and 360◦ are the same.

5. Experimental results

In this section, the performance of the proposed method will be evaluated. Two baseline models are implemented for comparison:

• Bayesian wave buoy analogy method: This method is a model-based method for directional wave spectrum estimation using
ship motion responses. The wave spectrum is represented in a discrete frequency-directional domain. The fundamental idea
is to minimize the difference between the measured and the calculated spectrum. However, this forms an ill-posed inverse
problem, and therefore smooth prior is introduced to solve the problem in the Bayesian framework. In this paper, a two
hyperparameters method [29] is used. The two hyperparameters are responsible for the smooth prior of wave spectrum in the
discrete frequency and discrete direction, respectively. Details of this method is described in [29].

• Neural network model without adversarial training: This model is the estimation network proposed in this paper. The
discriminator network is neglected by setting the hyperparameter 𝜆 as 0. This model is implemented to show the effect of
adversarial training.

In the following, the Bayesian wave buoy analogy method is denoted as ‘‘WBA’’, the neural network model without adversarial
training is denoted as ‘‘Proposed w/o AT’’, and the proposed neural network model with adversarial training is denoted as ‘‘Proposed
w AT’’.

5.1. Experiment with perfect response spectrum

In this part, the perfect measured response cross spectrum is used for validation. Fig. 5 presents the estimated directional wave
spectrum from three random samples in the test set. The colors of values larger than the color bar upper limits remain the same
as that of the upper limit. It is shown that the Bayesian WBA method provides a similar shape of the spectrum as the actual ones
but the values are less accurate. The reason is that the performance of this method depends on the two hyperparameters and the
initial guess of the wave spectrum. In this paper, several combinations of hyperparameters and initial guesses are used to yield the
best-estimated spectrum. For the neural network model, the model without adversarial training clearly presents spurious lines in
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Fig. 5. Examples of contour plots of the estimated directional wave spectrum based on perfect motion spectrum.

Fig. 6. Actual and estimated integrated wave parameters for perfect response spectrum.

the wave spectrum. Even though the shape of the estimated wave spectrum is similar to the actual wave spectrum, it has high total
wave energy. The model with adversarial training better enforces the spatial consistency of the wave spectrum. It also smooths and
strengthens the high energy density area of the wave spectrum.

Table 2 summarizes the overall performance in terms of MAE. Compared with the neural network model without adversarial
training, the error of the WBA method in terms of pixel-level and integrated wave parameters is relatively low. By incorporating
adversarial training, these errors are reduced significantly. In this comparison, our model with adversarial training has the smallest
error.

Fig. 6 shows the correlation between the actual and estimated integrated wave parameters of the test data. The black line denotes
that the estimated parameter is equal to the actual one. It is observed that both methods provides relatively accurate results. The
WBA tends to provide lower estimated 𝐻𝑠 than the actual one and it is not that accurate for 𝜎. The proposed method with adversarial
training provides more accurate estimation in terms of 𝐻𝑠 and 𝜎. However, the proposed network have low variability in terms of
estimating 𝑇𝑚 and 𝐷𝑚 for most samples, some of which are quite different from actual estimates.
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Fig. 7. Examples of contour plots of the estimated directional wave spectrum for JONSWAP-type wave spectrum.

Fig. 8. MAE of the integrated wave parameters for the JONSWAP and Torsethaugen wave spectrum.

Fig. 9. Actual and estimated integrated wave parameters for JONSWAP and Torsethaugen spectrum (proposed w AT).

5.2. Generalization to JONSWAP-type wave spectrum

As presented in Section 4.1, the training data is generated through a double Pierson–Moskowitz type wave spectrum. This type
of spectrum might not cover the possible wave spectrum. Therefore, the zero-shot learning ability of this model to other types of
wave spectrum is investigated.

In this part, the generalization ability of the model is evaluated with the JONSWAP-type wave spectrum. The JONSWAP type
spectrum has a more pronounced peak in the spectrum than the Pierson–Moskowitz (PM) type wave spectrum. The JONSWAP wave
spectrum and the Torsethaugen wave spectrum (a double peak JONSWAP-type spectrum) are used to generate two extra test sets
with 100 samples, respectively. The trained model is then used to estimate the 2D wave spectrum. Fig. 7 shows the estimated 2D
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Fig. 10. Examples of contour plots of the estimated directional wave spectrum with different SNR levels.

Fig. 11. MAE of the integrated wave parameters for the motion responses under different SNR levels.

wave spectrum from two examples in the two extra test sets, respectively. The proposed model presents a less narrow spectrum
than the actual one, which might be due to the Pierson–Moskowitz type wave spectrum used in the training data. Nonetheless, the
proposed model still provides a reasonable estimate.

Fig. 8 summarizes the MAE of 𝐻𝑠, 𝑇𝑚, 𝐷𝑚, 𝜎 for the JONSWAP and Torsethaugen wave spectrum. The proposed model achieves
the lowest deviation among these three methods. It demonstrates that the proposed model successfully captures the relation between
ship motion and wave spectrum, therefore, it is able to estimate the type of wave spectrum not present in the training data.

Fig. 9 shows that correlation of actual and estimated integrated wave parameters from JONSWAP and Torsethaugen wave
spectrum. It is shown than the proposed model provides accurate estimation in terms of 𝐻𝑠, 𝑇𝑚, and 𝐷𝑚 for both wave spectrum.
However, the model gives higher 𝜎 than the actual one. The reason might be that for the training data samples a broader range of
directional spreading functions than the test data here. Specifically, the 𝑠 parameter in the cos2s spreading function is sampled in
the range of [1, 26] for the training data while [5, 26] for the JONSWAP-type spectrum, which results in a smaller range of 𝜎. The
model cannot adjust to the distribution shift since it is in zero-shot setting.

5.3. Effect of noisy ship motion measurement

Ship motions are measured in the time domain. In order to use the proposed approach, the ship motion in the time domain
must be transformed into the frequency domain through cross spectrum analysis. The cross spectrum analysis typically is performed
through fast Fourier transform or multivariate autoregressive modeling, which would inevitably introduce a certain deviation from
the actual motion response spectrum. In addition, noise in the measured ship motion would introduce a certain degree of error. In
this section, the effect of cross spectrum analysis and the noises in ship motion on the estimated results will be evaluated. The cross
spectrum analysis in this paper is performed through the Welch method. White noise is added and four different SNR levels, 10, 5,
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Fig. A.1. Architectures of the estimation and discrimination network.

2, 1, are investigated. For simplification, the time series ship motion without noise added is denoted as ‘‘SNR=+∞’’. In ‘‘SNR=+∞’’,
only the effect of cross spectrum analysis is included.

Fig. 10 presents an example of an estimated 2D wave spectrum under different SNR levels. From the estimates for the perfect
response spectrum and SNR=+∞, the power value and spectral shape are changed due to the cross spectrum analysis. As the SNR
level decreases, the quality of the estimates, usually but not definitely, also decreases. In general, the estimated 2D wave spectrum
is relatively close to the actual wave spectrum.

Fig. 11 compares the MAE of integrated wave parameters in WBA and the proposed model under different SNR levels. The
proposed model is less sensitive to noise than the WBA. The WBA method shows low error in 𝐷𝑚 while the proposed model has low
error in 𝐻𝑠, 𝑇𝑚 and 𝜎.

6. Conclusion

Estimating the sea state based on the measured ship motion response is a complicated and arduous task. Previous machine
learning approaches cannot capture the directional wave spectrum. This paper presents an estimation network and discriminant
network based on convolutional neural networks. The high-order inconsistencies of the wave spectrum from the estimation network
are penalized by the estimation network, thereby forcing the estimation network to produce accurate and realistic results. Simulation
studies show that the proposed model guarantees the smoothness of the wave spectrum and provides accurate estimation results. The
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generalizability of the method is demonstrated by estimating the JONSWAP-type spectrum that is not in the training set. Comparison
with the model-based Bayesian WBA approach indicates that the proposed model is more robust to measurement noises.

Nonetheless, the proposed method suffers from the typical drawback of the machine learning model, e.g., a large amount of
data is required. The necessity of collecting wave spectrum makes it even harder to collect in real-world scenarios. In addition, the
training of adversarial networks might be unstable and requires careful tuning. Future works will focus on transferring the model
trained in simulated environments to the real world, as well as including the vessels with advancing speeds.
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Appendix. Network architectures

The estimation network and discrimination network architectures used in this case are detailed in Fig. A.1(a) and Fig. A.1(b),
respectively. Convolutional layers are denoted as ‘‘Conv’’ while transposed convolutional layers are denoted as ‘‘TranConv’’. The
right of the figure suggests the signal dimension in terms of ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑙𝑒𝑛𝑔𝑡ℎ × 𝑐ℎ𝑎𝑛𝑛𝑒𝑙. For instance, the inputs for the estimation
network are 9 components of the 1D motion spectrum (1 × 100 × 9) and the output is the 2D wave spectrum (36 × 100 × 1).
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