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Abstract

Within the past decades advances in neural networks have improved
the performance of a vast area of speech processing applications includ-
ing the articulatory inversion problem which is concerned with estimat-
ing the vocal tract shape in the form of articulators’ position based on
the uttered speech. In spite of these improvements the articulatory in-
version problem still needs improvements in order to be further utilized
for other speech application as a complementary source of information.
Articulatory measurements have been employed in various applications
such as speech synthesis, computer aided pronunciation training and
automatic speech recognition. Measuring articulator movements re-
quires complex procedures and systems, which makes it impossible to
perform measurements outside of labs. There are databases contain-
ing a limited number of speakers which have synchronously recorded
articulator movements and uttered speech.

This thesis explores the articulatory inversion problem within dif-
ferent scenarios where there are mismatches between training data
and test data. These mismatches include speaker mismatches within
a database or across databases, mismatches in the speaking rate of
speakers, and mismatches in the environment where the data are syn-
thetically created by incorporating various noises.

The first part of the thesis focus on incorporating linguistic informa-
tion such as forced aligned phonemic features, attribute features based
on manner and place of articulation, and their combination with the
acoustic features. Furthermore, new architectures are developed based
on the acoustic landmarks theory which tells that abrupt changes in
the speech spectrum are the results of changes in the articulators’ con-
figuration. Later on, transfer learning of articulatory information based
on phonemic features is utilized to generate articulatory trajectories
for the TIMIT database. Phone recognition experiments provide evi-
dence of the effectiveness of the proposed transfer learning approach.
Furthermore, a novel architecture is proposed to estimate articulatory

i



Abstract

trajectories directly from the time domain speech signal by utilizing 1D
convolutional filters. The 1D convolutional layers extract features and
the decimation operators match the sampling rate of acoustic signal
with the articulatory measurements’ sampling rate. The data driven
features extracted by 1D convolutional layers are better able to capture
and compensate the variability resulted by mismatch in the speaking
rates.

In the second part of the thesis the focus is on articulatory in-
version performance in noisy conditions. Synthetically produced noisy
acoustic data are used for this experiment evaluation. Speech enhance-
ment based on deep neural networks prior to the articulatory inversion
trained on clean data, slightly outperforms the articulatory inversion
system trained on multi-condition noisy data. We propose a joint net-
work which performs both speech enhancement and articulatory inver-
sion. The articulatory inversion part of the joint model outperforms the
trained model on multi-condition noisy data in the low signal to noise
ratio range, namely 0, 5 and 10 dB. The estimated articulatory data
are further used to train a word recognition system trained on clean
acoustic and articulatory features for the WSJ dataset. For the noisy
condition, the word error rate of the recognition system trained on
both acoustic and articulatory data is significantly less than the model
trained only on the clean acoustic data.
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Preface

The thesis is submitted to the Norwegian University of Science and Technology
(NTNU) for the partial fulfillment of the requirements for the degree of Doctor of
Philosophy.

The most of the doctoral work has been performed at the Department of Elec-
tronic Systems, NTNU, Trondheim, Norway. The work has been conducted under
the supervision of Professor Torbjørn Svendsen from January 2016 to April 2020.

Professor Sabato Marco Siniscalchi was supervising me during my two months
visiting from October 2019 to December 2019 at the Kore university of Enna, Enna,
Sicily, Italy.

Six peer-reviewed scientific papers are the core of the dissertation which I
have collaborated as the first author. I hope this work inspire others to investigate
the applicability of articulatory data for other speech processing technologies, as
the articulatory system is the common tool among human to produce speech and
communicate.

Trondheim, March 2022
Abdolreza Sabzi Shahrebabaki
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CHAPTER1
Introduction

The human speech production mechanism starts from the lungs, which
pushes the air through the human vocal tract to the acoustic envi-
ronment. The human vocal tract has two main paths for the flow of
air, namely, the oral cavity and the nasal cavity, and several parts,
namely, vocal folds, which handle controlling the air flow, the palate,
the tongue, teeth and lips that constrict the air flow. These parts are
known as articulators. The different activation and constriction levels
of articulators are the actual cause of the different sounds that are
made by humans. For a major part of human sounds, air is conducted
through the oral cavity, except for a few of them known as the nasals,
where the air flows through the nasal cavity. Human speech is the re-
sult of a sequence of articulators’ gestures that are smoothly varying
over time. This sequence produces information in terms of a sequence
of different sounds which carry different information. The smallest lin-
guistic units in speech are known as phonemes. Therefore, the speech
signal has acoustic information and phonemic information, which are
the results of the complex human speech production system.

The problem of going back from the uttered speech to the articula-
tory movements is known as speech inversion or articulatory inversion
(AI). As discussed earlier, the speech signal has acoustic and phone-
mic information, which can be used for the inversion problem. In ap-
plications where only acoustic information is available, e.g., automatic
speech recognition (ASR), the inversion problem is referred as acoustic-
to-articulatory inversion (AAI), and in applications where only textual
information or phonemic information is available, e.g. text to speech
(TTS), and in applications when both phonemic and acoustic infor-
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1. Introduction

mation are available, e.g. computer-aided language learning (CALL)
and computer-assisted pronunciation training (CAPT), the inversion
problem is referred as articulatory inversion (AI).

AAI has been an active area in the speech processing field for the
past few decades. It is a highly nonlinear mapping function or regres-
sion [56, 57], and it suffers from non-uniqueness [36, 50, 56] that means
the same acoustic sound can be produced with more than one unique
articulator configuration.

There are several issues with the current research for the AAI or
AI problem. The conducted research in the literature mainly focuses
on speaker dependent (SD) AAI scenarios, where the system is trained
for one specific speaker, whose articulatory measurements are available,
and evaluated on the same speaker. Speaker independent (SI) scenar-
ios have been investigated in the matched speakers condition, where
training is done for several speakers and tested for one of the speak-
ers in the training set. The available measured articulatory data are
mostly for normal speaking rate and to the best of the author’s knowl-
edge there is only one work where they have investigated articulatory
inversion for different speaking rates (SR) [28]. SR variation is one of
the challenges in the speech processing application, and mismatched
SR between training and evaluation data degrades the performance
of systems. Except for the work in [70], all the researches in the AAI
problem are conducted in clean conditions which is a shortcoming in
terms of applicability of these systems for real-world applications. In
real-world applications, there are conditions which affect the perfor-
mance of the system, e.g., environmental noises, far-field or near-field
microphone recordings, differences in microphone frequency response,
etc.

In this thesis, we have tried to address these issues by suggesting
new architectures and strategies. We used deep neural networks with
novel architectures to improve the AI problem for SI scenarios. For
mismatched SR, we performed the AAI from the time domain signal
with novel fully convolutional layers which outperformed the perfor-
mance of the state-of-the-art methods. At the end, we evaluated the
AAI in presence of noise, and exploited deep neural network-based
speech enhancement prior to the AAI, which significantly improved
the performance for low signal to noise ratios (SNR).
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1.1. Objective of this study

1.1 Objective of this study

The aim of this study is to identify issues that hinders the applica-
bility of articulatory inversion generated information and to propose
techniques for removing or reducing the influence of these issues. Fur-
thermore, to explore and analyze the applicability of estimated artic-
ulatory information in other speech technology applications. As it is
mentioned earlier in this chapter, there are challenges in AAI towards
real-world applications. (i) The first challenge is due to the limited
number of speakers with recorded articulatory data. The mismatch
between test and training speakers reduces the accuracy of the esti-
mated articulatory trajectories. For coping with this shortcoming, new
regression models need to be developed for the speaker independent
AAI systems. (ii) Another source of mismatch is due to the different
recording setups, e.g., different datasets, which causes degradation of
AAI system performance. Tackling this issue can be done with some
information which is not directly related to the acoustic signal, e.g.,
phonemic information. In this way, the speaker and dataset mismatches
can be compensated. (iii) Speaking rate mismatch has a significant ef-
fect on the AAI system performance. The articulators’ movements will
be different for different speaking rate, which can explain the drop
in performance. For tackling this issue, a new regression model with
data driven features would be helpful. (iv) Another challenge in the
AAI problem is mismatch in the acoustic environment. In real-world
scenarios, the environment contains various sources of noise which de-
grades the performance of an AAI system trained on clean data. To
compensate for the effect of noise, enhancement of noisy data would
reduce the performance degradation of AAI system. The proposed ap-
proaches to cope with the possible issues (except SR variability) were
evaluated by conducting several automatic speech recognition (ASR)
experiments.

1.2 Thesis Contributions

In section 3.1, we propose approaches to deal with the issues identified
in 1.1 using linguistic information along with the acoustic features in
Paper A[75] to deal with issue (i). Furthermore, we use the 1D convo-
lutional layers to extract related features with linguistic information
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1. Introduction

from the acoustic signal, for use in scenarios where only acoustic infor-
mation is available , Paper B [78]. Both proposed architectures improve
the AI system performance for SD and SI scenarios.

In section 3.2, the second issue (ii) is improved by transfer learn-
ing of articulatory information in the source domain through phonemic
features, and then using a knowledge distillation-based teacher-student
method to learn the articulatory information from acoustic informa-
tion in the target domain, Paper C [76]. This method is evaluated by
using the estimated articulatory features in an ASR task, which show
learning articulatory features by the proposed method is more infor-
mative than estimating them by AAI system trained on the source
domain.

In section 3.3, the mismatch between speaker rates (iii), is im-
proved by utilizing 1D convolutional layers to extract the features
from time domain speech signal, Paper F [79]. Instead of framing of
speech signal to get the same sampling rate of articulatory data, deci-
mation is used by strided convolution and pooling layers. The pooling
is performed with overlap which results in non-uniform sampling of
extracted features. The proposed method performs like the baseline in
the matched speaking rate scenarios and outperforms the baseline in
the mismatched scenarios.

In section 3.4, to deal with the last issue (iv) which is AAI in pres-
ence of noise, a deep speech enhancement network is employed in Pa-
per D [73]. Earlier research has shown there is no gain by using speech
enhancement based on signal processing methods, as a preprocessing
module to the AAI trained on clean data, and a multi-condition trained
AAI is needed. In our work we justify their claim, and then show that
deep speech enhancement is helpful to improve the performance of AAI
trained on clean data for low signal-to-noise ratios (SNRs). In the next
step, we propose a model which jointly optimize the network parame-
ters to perform both enhancement and inversion tasks , in Paper E[77].
The performance increases significantly for all the SNRs. We evaluate
the performance of estimated articulatory trajectories by conducting
several ASR experiments. The ASR systems trained on both clean
acoustic and articulatory data are performing better in noisy scenar-
ios compared to the systems which are trained on only acoustic data.
The estimated articulatory trajectories from the proposed joint model
improves the WER of ASR experiments compared to the available
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1.2. Thesis Contributions

baselines.

1.2.1 List of publications

All the papers listed below are outcomes of the research work carried
out by the author of this dissertation. This includes 6 published papers.
Paper A: [75] A. S. Shahrebabaki, N. Olfati, A. S. Imran, S. M.

Siniscalchi and T. Svendsen. (2019) "A Phonetic-Level Anal-
ysis of Different Input Features for Articulatory Inversion."
Proc. Interspeech 2019, 3775-3779.

Paper B: [78] A. S. Shahrebabaki, S. M. Siniscalchi, G. Salvi and T.
Svendsen. (2020) "Sequence-to-Sequence Articulatory In-
version Through Time Convolution of Sub-Band Frequency
Signals." Proc. Interspeech 2020, 2882-2886.

Paper C: [76] A. S. Shahrebabaki, N. Olfati, S. M. Siniscalchi, G.
Salvi and T. Svendsen. (2020) "Transfer Learning of Ar-
ticulatory Information Through Phone Information." Proc.
Interspeech 2020, 2877-2881.

Paper D: [73] A. S. Shahrebabaki, S. M. Siniscalchi, G. Salvi and
T. Svendsen. A DNN Based Speech Enhancement Approach
to Noise Robust Acoustic-to-Articulatory Inversion. 2021
IEEE International Symposium on Circuits and Systems
(ISCAS), 2021, pp. 1-5.

Paper E: [77] A. S. Shahrebabaki, G. Salvi , T. Svendsen and S. M.
Siniscalchi. "Acoustic-to-Articulatory Mapping with Joint
Optimization of Deep Speech Enhancement and Articula-
tory Inversion Models." in IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing, vol. 30, pp. 135-147,
2022.

Paper F: [79] A. S. Shahrebabaki, S. M. Siniscalchi and T. Svend-
sen. Raw Speech-to-Articulatory Inversion by Temporal Fil-
tering and Decimation. Proc. Interspeech 2021, pp.1184-
1188.

1.2.2 Papers Not Included in the Thesis

Paper 1: [71] A. S. Shahrebabaki, N. Olfati, A. S. Imran and T.
Svendsen. (2018) "Acoustic Feature Comparison for Differ-
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ent Speaking Rates." In: Kurosu M. (eds) Human-Computer
Interaction. Interaction Technologies. HCI 2018. Lecture
Notes in Computer Science, vol 10903. Springer, Cham.

Paper 2: [72] A. S. Shahrebabaki, N. Olfati, A. S. Imran and T.
Svendsen. "A Comparative Study of Deep Learning Tech-
niques on Frame-Level Speech Data Classification." Cir-
cuits, Systems, and Signal Processing 38, 3501–3520 (2019).

Paper 3: [29] A. S. Imran, V. Haflan, A. S. Shahrebabaki, N. Olfati
and T. Svendsen. "Evaluating Acoustic Feature Maps in
2D-CNN for Speaker Identification." In Proceedings of the
2019 11th International Conference on Machine Learning
and Computing, pp. 211-216. 2019.

Paper 4: [30] A. S. Imran, A. S. Shahrebabaki, N. Olfati and T.
Svendsen. "A Study on the Performance Evaluation of Ma-
chine Learning Models for Phoneme Classification." In Pro-
ceedings of the 2019 11th International Conference on Ma-
chine Learning and Computing, pp. 52-58. 2019.

Paper 5: [74] A. S. Shahrebabaki, N. Olfati, A. S. Imran, M. H.
Johnsen, S. M. Siniscalchi and T. Svendsen, "A Two-Stage
Deep Modeling Approach to Articulatory Inversion," ICASSP
2021 - 2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2021, pp. 6453-
6457, doi: 10.1109/ICASSP39728.2021.9413742.

1.3 Organization of the Thesis

The dissertation is in a paper collection format, which consists of six
technical articles.

In chapter 2, background of articulatory inversion is presented. A
brief description of speech production mechanism is presented, followed
by articulatory phonology. In addition, the measuring techniques for
articulators’ movement are described, and available datasets with the
articulatory measurements are presented. At the end of chapter 2, the
regression techniques for AAI problem are mentioned, and the mostly
used deep learning techniques are presented in more details. Chapter
3, is the collection of papers which are the outcome of this disser-
tation. In section 3.1, the papers which have tried to deal with the
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1.3. Organization of the Thesis

mismatch in speakers (issue (i)), are presented with the main results
and conclusions. In section 3.2, the paper for dealing with issues (i)
and (ii) in a cross-dataset scenarios is presented. The baseline system,
and proposed transfer learning and knowledge distillation approach
are described, and results are evaluated based on ASR system perfor-
mance using articulatory data. In section 3.3, the proposed method for
dealing with issue (iii) is presented. The architecture for extracting fea-
tures from time domain signal is described, and the results for various
scenarios are presented. In section 3.4, the papers which explored AAI
in presence of noise, are presented. The data preparation, preprocess-
ing, and training steps are described in detail. The proposed method
performance is evaluated based on objective metric and ASR perfor-
mance in the form of WER. The last chapter concludes and suggests
potential future directions. Finally, in the second part of the thesis, the
research articles which are the scientific contribution of the dissertation
are presented.
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CHAPTER2
Background

2.1 Speech production

The human speech production mechanism is quiet complex. The whole
mechanism of speech production is controlled by human’s brain. The
production related muscles get constricted, with neural signals from
the brain. Air flows through the glottis by means of lungs and further
through the oral cavity or nasal cavity. The vocal folds affect the flow
of air by vibration when making the voiced sounds, or by being relaxed
having no effect on the airflow when making the unvoiced sounds. The
velum, movements of tongue, teeth and lips filter the air stream and
produce different sounds. Figure 2.1 visualizes the speech production
from the lungs to the vocal tract. From now on, we consider the vocal
tract part of the entire system as the intended articulators to explore.
The speech waveform contains both acoustic and linguistic informa-
tion. Different combinations of articulator gestures result in different
sounds, called phonemes. In the production of each phoneme, articu-
lators play critical, dependent and redundant roles [31]. The critical
articulator plays a vital role in the production of a phone by signifi-
cantly moving from its natural state. The dependent articulator follows
changes that are imposed by movement of the critical articulator, due
to the bio-mechanical correlation between them. The redundant artic-
ulator movement does not affect the phone’s production.

9
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Vocal folds

Lungs

Oral cavity

Nasal cavity

The birch canoe slid on the smooth planks.

Acoustic information

Linguistic information

Figure 2.1: Articulatory system of human from the lungs to the lips.

2.2 Articulatory phonology, manner and place of
articulation

The articulatory phonetics or articulatory attributes describe the pro-
cess of articulation to make the speech sounds. It describes the speech
sounds in terms of the articulators involved in their production. The
distinctive English speech sounds can be described by the manner of
articulation, place of articulation together with the voicing [33].

Manner of articulation describes the configuration adopted by the
articulators in articulating a sound. For the consonant sounds, there
are five main types [13]:

• Plosives: sounds in whose articulation the airstream is stopped
by a brief closure of two speech organs and then released in a
quick burst.

• Fricatives: sounds in whose articulation two speech organs narrow
the airstream, causing friction to occur as it passes through.

• Affricates: sounds in whose articulation the airstream is stopped
as for a plosive and then released slowly and partially with fric-
tion.

10



2.2. Articulatory phonology, manner and place of articulation

• Nasals: sounds in whose articulation the airstream is diverted
through the nasal cavity as a consequence of the passage through
the oral cavity being blocked by the lowering of the soft palate,
or velum

• Approximants: sounds in whose articulation two speech organs
approach each other and air flows continuously between them
without friction.

For the vowel sounds, there are two main descriptors:
• Tongue height: The height of the closest part of the tongue to the

palate describes the manner of articulation for vowel sounds as,
open when the tongue is low in the mouth, close when the tongue
is high, and when the tongue height is between the low and high
points of the tongue are referred by half-close and half-open.

• Lip posture: The lips can be rounded or spread in various degrees
to produce different vowels.

Place of articulation describes the consonants sounds in terms of
where the constriction is happened in the vocal tract to restrict the
air stream flow. The main types of place of articulation are as follows
[13]:

• Alveolar: sounds made by the contact of tongue to the alveolar
margin right behind the upper front teeth.

• Bilabial: sounds made with both lips by stopping the air stream.
• Dental: sounds made by the tongue tip contact against the upper

front teeth.
• Glottal: sounds made by air stream passing the glottis when the

vocal cords are closed or narrowed.
• Palatal: sounds made by tongue blade contact to the hard palate.
• Palato-alveolar: sounds made by tongue contact to the hard palate

and alveolar margin.
• Post-alveolar: sounds made by tongue contact behind the alveolar

margin.
• Velar: sounds made by tongue back contact to the soft palate.
For the vowel sounds, place of articulation is not very precise as

the vocal tract does not constrict as much as consonant sounds. Due
to that, the place of articulation for vowels describes which part of
tongue is closer to the palate, as follows:
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• Front: sounds made by the tongue tip rising towards the palate.

• Middle: sounds made by the tongue blade rising towards the
palate.

• Back: sounds made by the tongue rare rising towards the palate.

2.3 Articulatory parameters

2.3.1 Physical measurements

There are various methods to measure the articulator movements, X-
ray microbeam (XRMB) [100], electromagnetic articulography (EMA)
[67], and real-time magnetic resonance imaging (rt-MRI).

• In the XRMB method, several gold pellets are placed at differ-
ent articulators in the vocal tract and their movements are pho-
tographed by X-ray to obtain the articulators’ trajectories. In
this method, the pellets are on the midsagittal plane to track
the significant movements of articulators, which are along the
midsagittal and vertical axes. Audio is recorded simultaneously
during the measurements of articulators’ movements.

• EMA is a commonly used technique for measuring the articula-
tors’ movements. In this method, the electromagnetic coils are
placed along the vocal tract in the midsagittal place to measure
movements of the articulators. In addition, there are a few sen-
sors as reference points to correct the head movements. The audio
data is recorded simultaneously with the sensors’ movements.

• Rt-MRI technique was employed in [55] to record high resolution
videos with a low frame rate which results in a low temporal
resolution. The audio signal is recorded during the MRI imaging
which results in noisy speech recordings.

The XRMB and EMA methods has a higher temporal resolution for
the articulators’ movements compared to the rt-MRI method, and the
recorded audio are less noisy in contrast with the rt-MRI.

2.3.1.1 Available EMA databases

There are several available speech corpora with EMA measurements.
They will briefly be described in the following.
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2.3. Articulatory parameters

MOCHA-TIMIT: The Multi-channel Articulatory (MOCHA) database
[102] consists of speech data and EMA data recorded simultane-
ously for one male and one female subject speaking British En-
glish. The EMA sampling rate is 500 Hz, and the speech sampling
frequency is 16 kHz. The speakers were asked to utter 460 English
sentences which cover a wide range of phonological and prosodic
contexts.

MNGU0: The MNGU0 [62] database contains 1,263 utterances spo-
ken by a single British speaker. The database contains paral-
lel EMA data and acoustic data. Each EMA data frame is a
12-dimensional vector. Each dimension corresponds to an x- or
y-coordinate of a coil attached in the midsagittal plane of the
speaker’s articulator and there are 6 coils in total.

USC-TIMIT: The USC-TIMIT database [54] consist of 460 sentences
which were used in the MOCHA-TIMIT database. There are four
speakers available, two female and two male native American
speakers. Three sensors were attached to the tongue tip, midline
and rear. Three other sensors were placed at the lower lip, upper
lip and surface of the lower incisor. Moreover, three reference
sensors were placed to the nasal bridge and behind right and left
ears. The EMA sensors’ sampling rate is 100 Hz and the recorded
trajectories were smoothed by a low-pass filter with bandwidth 20
Hz. The audio signals were recorded with the sampling frequency
of 44.1 kHz and were downsampled to 16 kHz.

HPRC: Haskins production rate comparison (HPRC) database [90]
is also known as IEEE-EMA database. It contains recordings for
eight native American English speakers, four female (F01-F04)
and four male (M01-M04) speakers. There are 720 spoken utter-
ances available in the dataset with both normal and fast speaking
rate where the sentences are taken from the IEEE sentences [63].
For some of the normal speaking rate utterances, there are a
few repetitions available. Speech waveforms are sampled at the
rate of 44.1 kHz, and synchronously EMA recordings are avail-
able at a sampling rate of 100 Hz. EMA recordings are obtained
from eight sensors, which record position of tongue rear (dorsum)
(TR), tongue blade (TB), tongue tip (TT), upper and lower lip
(UL and LL), mouth left (ML), jaw or lower incisors (JAW) and
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jaw left (JAWL). The articulatory measurements are corrected
for head movements and aligned to the occlusal plane in X, Y
and Z directions, corresponding to movements from posterior to
anterior, right to left and inferior to superior, respectively. The
movements along the Y axis carry limited information and we
thus only employed the measured data along X and Z axis.

2.3.2 Types of articulatory features

The EMA data consist of measured movements of various articulators
recorded in the midsagittal plane. These EMA measurements are the
articulators’ movements in three-dimensional space. The movements
range depend on the speaker’s anatomy.

There are other types of articulatory features that are less de-
pendent on speaker anatomy, which can be obtained from the EMA
measurements. The features proposed in [32, 82] and are obtained by
applying several geometrical transformations to the EMA measure-
ments. These features are called tract variables (TV). TVs are rela-
tive measures and suffer less from non-uniqueness [48]. We use nine
TVs, including lip aperture (LA), lip protrusion (LP), jaw angle (JA),
tongue rear constriction degree (TRCD), tongue rear constriction lo-
cation (TRCL). For TB and TT, we similarly calculate TBCD, TBCL,
TTCD and TTCL, as explained below. The geometrical transforma-
tions are defined as follows.

LA[n] =

√(
LLx[n]− ULx[n]

)2

+
(
LLz[n]− ULz[n]

)2

, (2.1)

LP[n] = LLx[n]− median
m∈allutterances

LLx[m]. (2.2)

LA represents the distance between LL and UL sensors. LP is de-
fined as the movement of LL from its median position in the X direc-
tion,

JA[n] =

√(
JAWx[n]− ULx[n]

)2

+
(
JAWz[n]− ULz[n]

)2

, (2.3)

is defined as the distance between the JAW and UL sensors.
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2.4. Speech analysis, speech information representation

For each of the tongue sensors TR, TB and TT, two TVs are de-
fined. Those TV features represent constriction locations (CL), which
are the deviations from median of the corresponding sensor along
the X axis, and the constriction degree (CD), which is the minimum
distance between the corresponding tongue sensors position and the
palate trace. TRCL and TRCD are defined as follows

TRCL[n] = median
m∈allutterances

TRx[m]− TRx[n], (2.4)

TRCD[n] = min
x palate

{√(
TRx[n]− x

)2

+
(
TRz[n]− z

)2}
, (2.5)

The remaining four variables TBCL, TBCD, TTCL and TTCD can be
obtained in a similar way:

TBCL[n] = median
m∈allutterances

TBx[m]− TBx[n], (2.6)

TBCD[n] = min
x palate

{√(
TBx[n]− x

)2

+
(
TBz[n]− z

)2}
, (2.7)

TTCL[n] = median
m∈allutterances

TTx[m]− TTx[n], (2.8)

TTCD[n] = min
x palate

{√(
TTx[n]− x

)2

+
(
TTz[n]− z

)2}
. (2.9)

2.4 Speech analysis, speech information
representation

As it is mentioned in Section 2.1, for the AI task input data, there
are two sources of information available, 1) acoustic information and
2) phonemic information. Different acoustic representations, such as
line spectral frequencies (LSFs) [39], perceptual linear predictive cod-
ing (PLP) [60], Mel-frequency cepstral coefficients (MFCCs)[18] and
filter bank energies (FBEs) from STRAIGHT spectrum [35] have been
employed as the input of the AAI system [75]. Among these features,
MFCCs are reported to perform better compared to other features for
SI-AAI [17, 82]. In this thesis we utilized MFCCs and FBEs as the
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acoustic information. In addition, the phoneme sequence is used as
phonemic information. In the following, we describe briefly both types
of features.

2.4.1 Acoustic representation

The acoustic features are extracted from the windowed time domain
signal. The window length is chosen to satisfy quasi-stationary as-
sumption for using the Fourier transform, and the window shift is cho-
sen based on the sampling rate of the articulatory measurements. The
acoustic features can be calculated from the smoothed magnitude spec-
trum by the STRAIGHT method [35], or directly from the magnitude
spectrum. The average energy of speech in selected frequency bands is
calculated by employing 40 triangular filters which are linearly spaced
on Mel-scale frequency axis. The Log-scaled energies in the overlap-
ping frequency bands are called filter bank energy (FBE) features. For
obtaining cepstral features a discrete cosine transform (DCT) is used.
The low order DCT coefficients (13 coefficients including energy) are
kept as the spectral envelope information. These coefficients are called
Mel frequency cepstral coefficients (MFCCs).

2.4.2 Phonemic representation

In scenarios where transcription of waveforms is available, phonemic
information can be employed. The phonemic information of spoken
utterances is used to force align them with the acoustic features. We
used the Penn phonetics lab forced aligner [108]. The TIMIT database
[14] uses 61 phonemic categories for English, and we folded them onto
39 categories (PHN) based on [43]. Afterwards, each phone is repre-
sented as a one-hot 39-dimensional vector [5]. In this way, the speech
information is represented in form of phones and their duration, which
contains information for articulatory inversion task [5].

2.5 Machine learning for AAI

In the literature, various techniques are applied to the AAI problem.
Codebook search-based method [2] is one of the earliest works for the
AAI problem. They used five articulatory parameters to represent the
articulation of vowels and vowel-like sounds. These five parameters are
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as follows: the maximum constriction place distance to the glottis, the
cross-sectional area of the maximum constriction place, the area of the
mouth opening, the lip protrusion, and the vocal tract length. In their
model, they reduced the articulatory parameters to four by defining the
lip protrusion in terms of an arbitrary function of vocal tract length.
The acoustic space was parameterized by the five formant frequen-
cies, and their bandwidth and their amplitudes. The joint codebook of
acoustic and articulatory parameters was stored in the computer and
the inversion process was done by searching the codebook given the
acoustic information to find the corresponding articulatory parame-
ters. The quality of this inversion method is highly dependent on how
good the articulatory space is covered by the codebook. The codebook
method is also used in the [24], where they used synchronous speech
and EMA measurements for vowels, vowel-to-vowel transition and clo-
sure /g/, to make the codebook. In [57], they made the codebook in a
hierarchical procedure to represent the codebook in terms of hierarchy
of hypercubes. They ensured that the inversion mapping function in
each hypercube can be approximated by linear functions.

Furthermore, statistical methods are employed for the AAI prob-
lem. In [93], a support vector regression (SVR) method was used to
estimate the mapping between contextualized MFCC vectors and EMA
measurements for MOCHA database. They used clustering for reduc-
tion of training size to deal with the training time which increases
by O(3) of the training data amounts. A nearest neighbor algorithm is
used for finding the samples with the minimum distance to the clusters
representatives and use these data samples for training the SVR. This
work was only conducted for one speaker. Furthermore, quantization
of the acoustic space independently from the articulatory space may
result in deficient articulatory space representative due to one-to-many
mapping in AAI problem.

Gaussian mixture models (GMMs) were used in [92], to model the
distribution of joint acoustic and articulatory space by using expectation-
maximization (EM) algorithm [53] for the MOCHA database. For the
regression function, two Gaussian mixture regression (GMR) was used
based on different cost function optimization, the first one is based
on minimum mean squared error (MMSE) estimation [34], and the
second method was based on maximum-likelihood estimation (MLE)
using the dynamic information for having a smooth estimated tra-
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jectory. The MLE-GMR method improved the performance compared
to the MMSE-GMR method. For acoustic space representation Mel-
cepstral coefficients (MCCs) [38] were used. The concatenated MCC
vectors were directly used or compressed by principal component anal-
ysis (PCA) method [101] when the context size was big, to prevent
further difficulties in training the GMMs.

In 2012, in [26] a hidden Markov model (HMM) was used for cross-
speaker AAI. The HMM estimated the articulatory trajectories for a
reference speaker, and it was employed for another speaker by adapting
to the speaker by the voice conversion method from [91].

Moreover, artificial neural network (ANN) based techniques are
widely applied to the AAI problem. In [37], they employed a feed-
forward neural network with four layers to estimate the articulatory
motions from speech waveforms. A year after, [58] employed ANN
for inferring articulatory gestures measured by X-ray microbeam data
from acoustic information. They only used data containing six English
stop consonants and observed that the critical articulators for produc-
tion of consonants are showing higher correlation coefficient compared
to the non-critical articulators.

A mixture density network (MDN) was utilized in [61] to estimate
the articulatory space distribution by using a simple mixture model
distribution on top of a neural network [6]. They used data from one of
the speakers from MOCHA TIMIT dataset to train their MDN system.
The MDN, estimates the conditional probability density function of
articulators, and revealed the similar concept as they observed in [58],
where the critical articulators have very small variance in contrast with
the non-critical articulators. Furthermore, utilizing MDN for the AAI
problem supplied a better performance than the ANN based systems.

By advancing in deep neural networks (DNN), [96] employed re-
stricted Boltzmann machine (RBM) to train a deep belief network by
stacking RBMs, from the acoustic features. They used the DBN as the
pre-trained model and fine-tuned it to the articulatory data by adding
output layer to back propagate the error between the measured and
estimated articulators’ positions. They improved the performance of
the AAI task for MNGU0 dataset, by using the DNN compared to the
earlier work where MDN was used.

Later, [47] utilized a deep recurrent neural network (RNN) which
can learn the required context information by itself in contrast with the
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fixed context window in DNN-based AAI models. They implemented a
deep bidirectional long short-term memory (DBLSTM) and a deep re-
current mixture density network (DRMDN) to tackle the AAI problem.
Their results on the MNGU0 dataset showed a significant improvement
over the DNN-based baseline system, for both proposed architectures.

Later, RNN-based AAI system was implemented by [104] as a hier-
archical estimation of phoneme sequence and articulatory parameters
on a Mandarin Chinese AAI dataset. In the hierarchy, the first net-
work was performing a monophone based phoneme recognition, and
bottleneck features from this phone recognizer network were utilized
in the second network for estimation of articulatory measurements.
They found systems using phone sequence information in a hierarchi-
cal structure provide better estimation of articulatory trajectories.

In the following, we focus on the different deep neural architecture
which are employed for AAI, in the literature and this work.

2.5.1 Feed-forward deep neural network

In this section a feed-forward DNN based AAI approach (DNN-AAI)
will be described. This approach showed a significant improvement in
AAI performance compared to the earlier regression methods [40, 50,
103]. DNNs approximate a mapping function between the input and
output data. Considering a non-linear activation function e.g., Sigmoid
function, rectified linear unit (ReLU] [22], the relationship between
input and output data, will be a non-linear estimator. This makes the
DNN a powerful tool for the AAI mapping which is highly non-linear
as we mentioned in chapter 1. Another advantage of employing DNN
is the ability of functioning with high dimensional data as input and
mapping them to a different dimension as the output, e.g., in contrast
with the Gaussian mixture model regression (GMR) which needs a
preprocessing dimension reduction for large input vector sizes [92].

Figure 2.2 shows a DDN-AAI system where the input is a temporal
context of the acoustic data and the output is articulatory data.

Considering a wide temporal context when estimating the articu-
latory movements is useful, as the co-articulation effect often extends
beyond the phoneme level. By considering the acoustic feature for the
nth frame as X[n], the corresponding augmented vector Xaai containing
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Figure 2.2: Block diagram of a DNN-AAI system.

the X[n] and its context is given as:

Xaai[n] =
[
X[n− 2×Maai]

T , . . . , X[n− 2]T , X[n]T ,

X[n+ 2]T , . . . , X[n+ 2×Maai]
T
]T

, (2.10)

where Maai denotes the number of left and right context frames which
are added to X[n]. Let Y [n] be the nth vector of the articulatory es-
timates, then the regression for a DNN with L hidden layer can be
written as:

Ŷ [n] = fL+1

(
W 1

L+1
⊤
fL

(
W 1

L
⊤
. . .

(
f1
(
W 1

1
⊤
Xaai

))))
, (2.11)

where (fi,W
1
i ), (i = 1, . . . , L+ 1) are respectively the activation func-

tion of ith layer and the matrix of weights between (i−1)th and ith layer
by considering the input layer as 0th layer. For the task of regression
because of having both positive and negative values, gL should be the
linear activation function or tanh if the absolute values of normalized
articulatory data is less than one. All weight matrices are optimized
during training by gradient based techniques with the back propaga-
tion algorithm [64] to minimize mean square error (MSE) between the
estimated value Ŷ [n] and the ground-truth value Y [n]. The estimated
articulatory parameters Ŷ [n] in this way are noisy and not smooth
due to the one-to-one mapping of the DNN. For having a smooth es-
timation, the Ŷ [n]s need to be low-pass filtered for which we chose a
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second order Butterworth filter to have a smooth estimation which is
the physical nature of the articulators.

2.5.2 Recurrent deep neural network

In this section a recurrent neural network (RNN) approach will be pre-
sented, as RNN has demonstrated better results compared to DNNs
[47, 104] because the temporal dynamic behavior is better captured
through the memory elements of those recurrent architectures. Recur-
rent neural networks RNN have been utilized in many speech technol-
ogy areas including speech recognition [21], language modeling [49],
and articulatory inversion [47, 104, 109]. They are able to estimate
any output samples from dynamical systems [66], conditioned on their
previous samples. Having a non-causal condition by access to both
past and future input samples, we can employ a bidirectional RNN to
use the past samples within the forward layer and the future samples
within the backward layer as shown in Figure. 2.4. Diamonds show the
merge strategy of forward and backward layers output which can be
summation and concatenation. Long short-term memory (LSTM) is a
variant of RNN with a specific memory cell architecture for updating
the hidden layers. In Figure. 2.3 a single LSTM memory cell is depicted
where xt and ht are input and hidden vector, it, ft, ct and ot are the
input gate, forget gate, cell vector and output gate, respectively. The
operation of this memory cell is formulated as follows:

, 𝑥𝑡  

𝑖𝑡  𝑓𝑡  

𝑐𝑡  

𝑜𝑡  

ℎ𝑡  
𝑔𝑐  𝑔𝑜  

ℎ𝑡−1 

Figure 2.3: A long short term memory cell

it = σ
(
Wixxt +Wihht−1 +Wicct−1 + bi

)
(2.12)
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ft = σ
(
Wfxxt +Wfhht−1 +Wfcct−1 + bf

)
(2.13)

ct = ft ◦ ct−1 + it ◦ gc
(
Wcxxt +Wchht−1 + bc) (2.14)

ot = σ
(
Woxxt +Wohht−1 +Wocct−1 + bo

)
(2.15)

ht = ot ◦ go(ct) (2.16)

The σ denotes the sigmoid function, gc and go are the activation
functions which are usually chosen as tanh, b is the bias vector for each
gate (bf is the forget gate bias vector). W denotes weight matrices
where different subscripts show the connection between input/output
and gates, for example, Wix is the weight matrix between input vector
and input gate. The operator ◦ indicates element-wise multiplication. A
bidirectional long short-term memory (BLSTM) is realizable by using
the LSTM memory cells (dotted ovals) in the forward and backward
layer as shown in Figure. 2.4.

Output layer

Input layer

Forward layer

Backward layer

t-1 t t+1 t+2

Figure 2.4: A bidirectional RNN.

2.5.3 1D convolutional neural network

The convolutional neural networks (CNNs) have been widely utilized in
various domains, for one dimensional signals, as well as multi-dimensional
signals. The kernel (filter) shape is defining the spatial dimension that
convolution is performing on, e.g. a convolutional kernel with shape
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1D filter

Input sequence

Output sequence

dot 
product

Figure 2.5: 1D convolutional layer with kernel size 3. The arrows show which
samples are used in the convolution. The solid arrows from input show sam-
ples for dilation rate equal to 1, and dashed arrows show the samples for the
dilation rate equal to 2.

M× 1 (M is filter length) is performing convolution along one dimen-
sion (1D-CNN), and a convolutional kernel with shape M×N (M and
N are filter length in each axis) is performing a convolution in two di-
mensional (2D-CNN) space. The 1D convolutional filters are employed
mostly for sequences, and they perceive the local features to obtain
the global information of the whole input sequence. The convolutional
filters can be applied to their input sequence with different strides and
dilation rates. The stride value is describing the shift in filter over the
input sequence, and it maximum value is the filter length to not miss
any input samples in the convolution operation. Strides bigger than one
result on down-sampled output sequence. The dilation rate defines the
steps between input sequence samples with which filter coefficients are
multiplied to form the convolution operation. Figure 2.5 demonstrate
a 1D convolutional layer.

2.5.4 Temporal convolutional neural network

Temporal convolutional network (TCN) [4] is an specific form of CNN
for sequential data. It utilizes the causal convolutional layers over the
input sequence which means only information from past is used and
the convolution at time t uses only samples from time t or earlier. The
kernel size and dilation rate are very important to choose based on the
input sequence length. The receptive field of TCN should be designed
to cover the required length of input sequence. The receptive field de-
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Output
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Hidden 
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Figure 2.6: Stacking of 1D causal convolutional layers to build a TCN with
kernel size 2, dilation rates [1, 2, 4, 8]. The lines with arrows show which
samples are used in the convolution to estimate the output sample. The
dashed lines are showing the estimation procedure for previous and future
output samples.

pends on the kernel length, dilation rates and stacking of TCN layers
on top of each other. Figure 2.6 demonstrate one layer of TCN with
kernel size of 2, dilation rates [1, 2, 4, 8] which has the receptive field
of 16 samples. The dilation rate is chosen to increase exponentially
which enables network to have large receptive field with only few hid-
den layers. In this way, the network is computationally efficient while
preserving the input resolution.

2.5.5 Transfer learning

Transfer learning is a machine learning technique to reuse a model
trained on one task, on a second related task [19]. It tries to transfer
the knowledge from the source domain to the target domain where the
latter domain suffers from insufficient data or lack of some informa-
tion. As deep learning approaches become dominant learning meth-
ods, transfer learning is extensively utilized in deep learning context
by reusing the trained network in the target domain. This technique
tends to work if the network input features are general which means
features are suitable to both source and target tasks or domains. It
is an important mechanism in deep learning to deal with insufficient
data or lack of some information in the available data, and common
steps to perform are as follows:
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• Source model selection: Selecting a pretrained model from the
source domain or task. The source domain mostly contains lots
of training samples which makes the model suitable for general
use.

• Reusing model: The selected pretrained model can be used
directly as it is, or some parts of the model are used for the
target task.

• Model tuning: In case of data scarcity and limited data, it is
possible to fine tune the transferred model with the data in the
target domain or task.

2.6 Performance measurements

To measure the performance of the AAI methods, the root mean
squared error (RMSE) and the Pearson’s correlation coefficient (PCC)
metrics are used. The RMSE calculates the deviation between the es-
timated and the ground truth articulatory features as formulated in
2.17, and the lower RMSE shows a better performing inversion system.

RMSE =

√
1

N

∑

i

(
y(i)− ŷ(i)

)2
, (2.17)

where y(i) and ŷ(i) are the ground truth and estimated articulatory
features of the ith frame, respectively.

The PCC measure is the normalised cross-correlation between the
estimated and ground truth trajectories, and reports the similarity
between these trajectories. The PCC value is in range [-1, 1], and the
higher PCC shows a better inversion system. The PCC measure is
defined as:

PCC =

∑
i(y(i)− ȳ)(ŷ(i)− ¯̂y)√∑

i

(
y(i)− ȳ

)2∑
i

(
ŷ(i)− ¯̂y

)2 , (2.18)

where ȳ, and ˆ̄y are mean values of y(i), and ŷ(i).
The range of articulatory measurements can be different among dif-

ferent speakers, therefore, the PCC is better measure than the RMSE,
to evaluate the speaker independent inversion system performance.

25



2. Background

2.7 Application of AAI

Acoustic-to-articulatory inversion could be useful to understand the
speech production mechanism. Also, the estimated articulatory fea-
tures can be integrated and utilized in many important speech pro-
cessing applications. For example, utilizing the estimated articulatory
features together with the acoustic features improved the performance
of automatic speech recognition (ASR) systems [51, 52, 87]. Augment-
ing the articulatory features with acoustic features improved the per-
formance of dysarthric speech recognition systems [105]. Employing
the estimated articulatory features improved the classification accu-
racy of depression severity level estimation [69]. Articulatory features
can be employed to improve the quality of speech synthesis models
[45, 46]. Utilizing the AAI in speech therapy systems, computer aided
pronunciation training (CAPT) systems [26] and computer aided lan-
guage learning (CALL) systems [3] would be useful by providing visual
feedback of the articulators’ positions from the acoustic signal.
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CHAPTER3
Contributions of the thesis

In this chapter, the contributions of thesis for the AAI problem are de-
scribed briefly. Section 3.1 describes the new architecture and utilized
features, for the AAI problem, which are proposed in Paper A [75] and
Paper B [78]. In section 3.2, a new transfer learning approach for AAI
task is developed and its performance was evaluated in an ASR task
for the TIMIT database, which is taken from Paper C [76]. The effect
of speaking rate variability on AAI problem is evaluated on section 3.3,
and the proposed time domain architecture based on work from Paper
F [79] is described. In section 3.4, AAI in noisy condition is explored
and results for our proposed method from Paper D [73] and Paper E
[77] are presented.

3.1 Deep architecture for acoustic/phonemic
articulatory inversion

The AAI task has been explored for several decades from different per-
spective, e.g., by using various features and regression techniques, as
mentioned in chapter 2, to predict articulatory information. In this sec-
tion, first, we utilize acoustic and linguistic information for performing
AI. Then, a new architecture is proposed to extract information from
acoustic features based on acoustic landmark theory [84–86], which ex-
plains that significant changes in the articulatory configuration result
in the abrupt changes in the speech spectrum.
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Figure 3.1: Deep neural architectures which have mostly used in the AAI
systems.

3.1.1 Exploring linguistic features together with acoustic
features for the AI

In the following, the effect of employing linguistic information in the
form of PHNs (see Section 2.4.2) and attribute features AFs, which
are PHN features projected to the manner and place of an articulation
feature space (see Table 3.1), separately and together with the acous-
tic features, are analyzed. First, we describe the AFs for the TIMIT
phoneme sets, and provide their activation in terms of manner and
place of articulation. Then, explore where these features are performing
better than the others, and what will be the performance of combining
them.

3.1.1.1 Articulatory attribute representation

The articulatory phonetics or articulatory attribute features (AF) de-
scribe the process of articulation to make the speech sounds. It de-
scribes the speech sounds in terms of the articulators involved in their
production, as we described them in Section 2.2. The distinctive En-
glish speech sounds can be described by the manner of articulation,
place of articulation together with the voicing [33].

In Paper A, we used the TIMIT phone set for English data. This
phone set was folded from 61 categories to 39 phones as in [44]. With
the reduced phone set, a mapping was used to describe the phone ac-
cording to their phonological features or articulatory attributes. The
mapping is depicted in Table 3.1. The description considers 22 at-
tributes, comprising manner and place of articulation for both vowel
and consonant categories [80], and voicing. The attribute features are
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3.1. Deep architecture for acoustic/phonemic articulatory inversion

binary, and more than one attribute feature is often active at the same
time. These features are more language universal [41] compared to the
phonetic representations. However, as mentioned in [89], this mapping
is not theoretically accurate, both due to using binary features, and
because of the mapping of vowels, and consonants into a common
linguistic space, in spite of their differing definition of place of articu-
lation.

We setup an experiment to investigate the performance of acoustic
and linguistic features in estimation of articulatory features, in terms
of the RMSE, for different manner of articulation groups. We trained
inversion models with FBE, PHN, AF, and their pairwise combination
to estimate the articulatory trajectories, and then calculate the RMSE
error between the ground-truth and estimated articulatory trajecto-
ries within segments of speech based on their manner of articulation.
Figure. 3.2 depicts the RMSE for different input features and their
combination, for different manner of articulation groups. It can be ob-
served that the acoustic features (FBEs) perform better for the vowel
and approximant compared to the stand-alone PHNs and AFs. It can
be interpreted as being the high dynamics in the vowels which cannot
be modeled by one-hot encoded vectors in case of PHNs and several
activated binary features for the case of AFs. The RMSE for the frica-
tives, nasals and stop sounds are better estimated by PHN and AF
features in comparison with the FBEs. Combination of FBEs with ei-
ther PHNs or AFs improves the performance of the inversion systems
in all cases.

Vowel Fricative Nasal Stop Approximant
1.4

1.6

1.8

2.0

2.2

2.4 FBE PHN AF FBE+PHN FBE+AF PHN+AF

Figure 3.2: Average RMSE for manner of articulation from estimated tra-
jectory by different input features.
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Table 3.1: TIMIT phoneme list in terms of attribute features. The mapping
is adapted from [44].

Attribute Phonemes

Manner

Vowel

Fricative
Nasal
Stop
Approximant

iy ih eh ey ae aa aw ay ah ao
oy ow uh uw er
jh ch s sh z zh f th v dh hh
m n ng
b d g p t k dx
w y l r

Place

Coronal
High

Dental
Glottal
Labial
Low
Mid
Retroflex
Velar

d l n s t z
ch ih iy jh sh uh uw y ow
g k ng
dh th
hh
b f m p v w
aa ae aw ay oy
ah eh ey ow
er r
g k ng

Others

Anterior

Back
Continuant

Round
Tense

Voiced

Silence

b d dh f l m n p
s t th v z way aa ah ao aw ow oy uh uw g k
aa ae ah ao aw ow oy uh uw g k
aa ae ah ao aw ay dh eh er r ey l f ih iy
oy ow s sh th uh uw v w y z
aw ow uw ao uh v y oy r w
aa ae ao aw ay ey iy ow oy uw ch s
sh f th p t k hh
aa ae ah aw ay ao b d dh eh er ey g ih
iy jh l m n ng ow oy r uh uw v w y z
sil
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3.1. Deep architecture for acoustic/phonemic articulatory inversion

3.1.2 1D-CNN feature extraction for the AAI

In the previous section, we employed the one-hot encoded vector for the
phonemic features, and binary valued feature vectors for the attribute
features for the AI task. The AI models trained by phonemic and
attribute features were performing similar to the AAI models trained
with FBEs. These binary feature vectors provide the required informa-
tion for the estimation of articulators’ position, with nearly similar per-
formance to the AAI system utilizing FBEs. By inspecting the binary
feature sequences, one can infer that they contain information with
respect to the phoneme’s left and right context, change of phonemes
and duration of the activated phoneme. The change of phonemes in the
sequence is very important as it is stated in the [84–86] and is known
by the acoustic landmark theory. The acoustic landmark theory has
discovered that major changes in the articulators’ gestures will lead to
abrupt changes in the speech spectrum. Considering the observations
and the acoustic landmark theory motivated us to find a solution for
sensing the changes in energy in speech spectrum. We employed 1-D
convolutional layers which are mostly known as feature extraction lay-
ers from sequences and widely used in many speech applications, e.g.,
ASR [1, 59], speech synthesis [97], and machine translation [42]. This
is the first time, to the best of the authors’ knowledge, that 1-D convo-
lutional layers on the features are employed in the AAI task. Here we
employ convolutional layers along the time axis: we consider the output
of the filter-bank in each of the frequency bands as a one-dimensional
data stream and apply the filters on it. These filters’ outputs are then
linearly combined and represent new feature maps. The computations
are formulated as:

ycnn
i,j = bj +

Li−1∑

k=1

Fi ∗ ycnn
i−1,k, (3.1)

where, ∗ shows the convolution operation of weights Fi in convolu-
tional layer i with the feature maps ycnn

i−1,k from the previous layer
i − 1. A bias bj is added to the result of the convolution, to calcu-
late the new feature map ycnn

i,j for the jth channel feature map. Zero
padding is used to guarantee that the input sequence (acoustic space)
and output sequence (articulatory space) have the same length. The
1D-CNN layers are used and concatenated along the channel axis as de-
picted in Figure. 3.3. The filter length is different in each of the CNN
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Figure 3.3: Layer-wise feature representation by 1D convolutional layers for
the AAI task. The 1 × 1, 1 × 3, and . . . , are representing the convolution
kernel shape.

layers which provides more information about adjacent frames with
different resolutions along the time axis. The convolutional layers play
a key role by high-passing or low-passing different frequency bands.
Different filters are sensing significant energy changes in different fre-
quency bands of the speech spectrum, which may indicate a phone
transition. The convolutional layer with longer kernels tries to capture
more temporal information and filter out undesired temporal variabili-
ties. After the convolutional layers, two BLSTM layers are employed to
capture dynamical information and estimate smoothly varying articu-
lator trajectories. As we described previously, 1D-CNN layers extract
new features from the FBEs. These feature maps are weighted sums of
sub-band signals which have been processed by filters with different fre-
quency responses. Figure. 3.4 shows an example of FBEs, and network
activations through the 1D-CNN model. We can see some channel acti-
vations match phonemic segments in the first layer. Going to the next
layers, the filter outputs become sparser, and activations become more
intense within the phoneme boundaries. For justifying our claim about
channel output activations during the phonemic segments, we picked
some channels output from the first layer by using correlation analysis
with PHN and AF features as the reference patterns. This analysis
provided a better insight for choosing the corresponding filter outputs
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3.2. Transfer learning of AAI

Figure 3.4: FBE features for utterance “The birch canoe slid on the smooth
planks.”and the resulted convolutional feature maps for the 1st, 2nd and 3rd layers.

with regards to PHN and AF features with higher correlation. As an
example, we have chosen attribute fricative and the phoneme /3/.The
corresponding filters’ output which are chosen after doing correlation
analysis are depicted in Figure. 3.5. We can see that these filters out-
puts have high energies when the chosen attribute and phoneme are
active. Therefore, we can claim these 1D-CNN layers are extracting
linguistic information from FBEs. This is in line with our expectation
of sensing the significant energy changes at the phone transition. Fur-
thermore, we can see for the second CNN layer compared to the first
CNN layer, we have less activation outside the ground truth activation
times of the chosen attribute and phoneme.

3.2 Transfer learning of AAI

AI has been studied for a long time and has developed by employing dif-
ferent regression models to improve its performance in terms of RMSE
and PCC as objective measures. Unfortunately, speech databases with
simultaneous articulatory measurements are few, limited in size, and
with a small number of speakers. The small number of speakers im-
plies that the available data can only give sparse representations of
the articulatory and acoustic spaces. Thus, the possibility of employ-
ing trained AI models in other applications will be limited. For better
understanding of the problem, the different features in the AI task are
defined as follows: the acoustic features, x ∈ Rn, the articulatory fea-
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0

1

Fricative

0 1 2 2.65Time (sec)
0

1
/ /

Ground truth 1st CNN output 2nd CNN output

Figure 3.5: AF feature for fricative and PHN features for phoneme /3/ ( )
and channel output from the 1st 1D-CNN layer ( ) and 2nd 1D-CNN layer (

).

tures, y ∈ Rm, and the phone features, p ∈ Bl, where R is the field
of real numbers, and B is the Boolean field. As the acoustic space is
continuous, there should be enough data to cover the whole acoustic
space and speaker variabilities, otherwise, the trained acoustic space
is not generalized well enough to be used with a new set of speakers.
By having access to the transcription information, it is possible to use
the linguistic information for transfer of the articulatory information
which are a limited number of vectors taken from a discrete space. In
this way, the different speaker’s variability reduces to the phone dura-
tion. This approach is only applicable for the tasks where the text is
available. In cases where the transcription is not available, a possible
suggestion is to transfer the knowledge through the linguistic features
and then employing a teacher-student approach for distillation of ar-
ticulatory data to the models which have only acoustic information
and do not have the articulatory measurements. In this way the artic-
ulatory data are transferred in a less variable space and can then be
employed for the other speech related tasks. Several experiments are
done to evaluate the estimated articulatory trajectories for the base-
line and the proposed teacher-student model. For performing transfer
learning of articulatory information, the HPRC database is used as
the source for articulatory information, and the TIMIT database is
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3.2. Transfer learning of AAI

employed to check the performance of transferred articulatory knowl-
edge. The TIMIT database is well known in the speech processing field,
and it contains manually labeled acoustic data. We have studied three
ways to estimate articulatory features for the TIMIT dataset:

• using an AAI system trained on HPRC data (fAAI-base),

• using a phonemic-to-articulatory (PAI) system trained on HPRC
data (fPAI),

• teacher-student approach to train an AAI model (fAAI-stud) for
the TIMIT data by using the provided features from the fPAI

model.

fAAI-base is considered as the baseline system, and the proposed sys-
tem fAAI-stud is referred to as student system. In the following sections
these three approaches are described briefly, and afterwards, the per-
formance of the baseline and student systems are evaluated from two
perspectives: (i) Speech production mechanism, and (ii) performance
in ASR task by comparing phone error rate (PER).

3.2.1 Articulatory estimation for TIMIT by using the
fAAI-base

For the baseline system, an AAI model is trained based on the HPRC
corpus with MFCCs as the input, and tract variables (TVs) as the
output. The MFCC feature vectors are extracted from the windowed
signals with frame length of 25ms and frame shift of 10ms (corre-
sponds to the 100 Hz frequency rate of articulatory measurements).
Five stacked 1-D convolutional layers of kernel size [1,3,5,7,9] are em-
ployed to extract the features from the MFCC features’ sequence. Af-
terwards, the extracted features are passed through two BLSTM layers
with 128 memory cells on each forward and backward directions. Fi-
nally, the recurrent layers output is fed to a 1D convolutional layer to
project the extracted information from temporal dynamics of utter-
ances to the output and estimate the TVs. The sequence-to-sequence
based mapping is employed to get smooth varying trajectories, obvi-
ating the need for lowpass filtering the estimates. After the training of
the AAI model is done, the trained AAI model is employed to estimate
the TVs for the TIMIT utterances.
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Figure 3.6: Block diagram of the proposed transfer learning method from
the HPRC to the TIMIT database, and knowledge distillations from phone-
mic features to acoustic features through articulatory space. Dashed arrows
correspond to no training.

3.2.2 Articulatory estimation for TIMIT by using the fPAI

For training the PAI, the time aligned phonemic features are used as
the input to the model, and the output targets are the TVs. The input
is directly fed to two BLSTM layers with 128 memory cells in each for-
ward and backward direction. The output of the second BLSTM layer
is then passed to a 1-D convolutional layer to project the extracted
information to the output.

3.2.3 Teacher-student technique for training the fAAI-stud

In sections 3.2.1 and 3.2.2, we have obtained two models to estimate
the articulatory features. As it is described in Section 3.2, the PAI
model will have a better performance compared to the AAI model in
the speaker mismatched conditions. The drawback of the PAI model is
its applicability where no transcription is available. A teacher-student
model is employed to deal with this shortcoming, as it is depicted in
Figure. 3.6. A fPAI model is trained based on data from HPRC dataset.
The fPAI model is used as the teacher model to estimate the TVs for
the TIMIT dataset from the time-aligned phones. The estimated TVs
from the fPAI are used as the target for fAAI-stud model which uses the
acoustic features as the input.
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3.2. Transfer learning of AAI

3.2.4 Experimental results

In the previous Sections, three ways for estimating the articulatory
features for the TIMIT data are suggested. TIMIT does not have si-
multaneous articulatory measurements, and accordingly a comparison
of the trajectory estimates with the ground truth is not possible. We
resort to inspection of the trajectories and to assessment of the ef-
fectiveness of the estimated TVs in phone recognition experiments to
examine the quality of the trajectory estimates. An example of esti-
mated trajectories is shown in Figure 3.7. It can be observed (inside
the solid ellipses) in Figure 3.7, that for production of the stop sound
/p/, the LA is decreasing and LP is increasing, vowel /æ/ has wider
LA or JA than vowels /eI/ or /oU/, which is in line with dropping of
the jaw in production of vowel /æ/ while the jaw is slightly open in
/eI/ or closed in /oU/. Furthermore, it can be observed that at the end
of the utterance (inside the dashed ellipses), the values of the fAAI-base

estimation do not decrease or increase for lip separation or protrusion,
respectively, when the stop sound /p/ is present, and it is expected to
have lowest values for the LA compared to the other phones in this
sequence of phones. We can see the fAAI-base estimation of the LA for
/l/ is less than the estimated value for /p/ which is wrong because
for production of /p/ lips are closed and for production of /l/ lips are
separated. That implies the fAAI-base model does not provide correct
information with respect to speech production constraints.

For comparing the performance of the fAAI-base and fAAI-stud mod-
els, an ASR system has been utilized. The ASR model is an end-to-end
phone recognizer [99] from the ESPnet toolkit [98]. The phone recog-
nizer is an RNN encoder-decoder realized by BLSTM layers, combined
with hybrid connectionist temporal classification (CTC) [20] and at-
tention mechanism [7] for the end-to-end training and decoding steps
in ASR. The phone recognizer architecture is as follows: the encoder
has four layers of BLSTM with 320 cells, the decoder has one layer
of LSTM with 300 cells, location-aware attention mechanism with 10
convolution filters of length 100, and the CTC and attention losses are
equally weighted by 0.5. We used a predefined portion of the TIMIT
for training which consists of all the SX and SI sentences from 462
speakers. The sentences from the remaining 168 speakers are meant
for development and testing purposes.

Several experiments were conducted to gain insights on the role
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Figure 3.7: TV trajectories from fPAI, fAAI-base, and fAAI-stud for utterance
“She slipped and sprained her ankle on the steep slope.”

of the TV estimates in speech recognition. In the initial experiment,
the phone recognizer was trained on static 23-dimensional FBEs, (x),
only. In the second experiment, dynamic features were added to x and
denoted as (x,∆x,∆2x). The phone recognizers based on acoustic fea-
tures only serve as baseline systems. The PER for different input fea-
tures is reported in Table 3.2. yAAI-stud combined with x, significantly
improves the recognition accuracy, and reduce the PER by 6.7% ab-
solute on the test set. Interestingly, a slightly better PER, +0.2%, is
obtained by replacing the 52-dimensional dynamic acoustic features
(∆x,∆2x) with the 9-dimensional yAAI-stud. Moreover, employing the
yAAI-stud obtains better performance than the yAAI-base. The combina-
tion of yAAI-stud with x,∆x,∆2x reduces the PER by 0.6%.

In conclusion, the proposed teacher-student approach for training
fAAI-stud, is performing better compared to the fAAI-base in both eval-
uations. The reason can be interpreted as the acoustic space repre-
sentation for the fAAI-stud being more generalizable in contrast to the
fAAI-base, due to the fact that for the latter model training there are
only eight speakers available while in the training step of fAAI-stud 462
speakers are employed.
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3.3. AAI from speech waveforms

Table 3.2: PER for acoustic features and their combinations with the esti-
mated TVs from fAAI-stud and fPAI. D denotes feature dimensionality.

feature type D Dev PER Test PER

x 26 25.6% 27.9%
x, yAAI-base 35 20.9% 23.3%
x, yAAI-stud 35 19.6% 21.2%
x, ∆x, ∆2x 78 19.8% 21.4%
x, ∆x, ∆2x, yAAI-base 87 19.8% 22.8%
x, ∆x, ∆2x, yAAI-stud 87 19.1% 20.8%

3.3 AAI from speech waveforms

The feature representation of the speech signal has a critical effect
on the performance of related applications. In the AAI task, hand-
crafted features like, line spectral frequencies (LSF) [62, 96], log Mel
filter bank energies (FBE) [75, 78], Mel frequency cepstral coefficients
(MFCC) [27, 77, 104], etc. are commonly employed, to represent the
acoustic space. The LSF features represent the parametric modelling
of the speech spectrum, FBEs and MFCCs are representing speech sig-
nal energy in frequency sub-bands inspired by properties of the human
auditory system. We will use the term “hand-crafted features” to con-
trast features where significant parameters for their computation are
based on scientific knowledge and experimental best practice from fea-
tures whose definition and computation are purely data driven. These
hand-crafted features are extracted from the windowed signal (frame)
which is necessary for applying the Fourier transform. Furthermore,
the frame rate in AAI experimental research is constrained by the
articulatory sampling rate. Choosing a fixed frame length and frame
shift is not the optimal choice for semi-periodic and non-periodic parts
of the speech signal [88]. In addition, using fixed filterbanks for fea-
ture extraction is not the optimal choice, as argued in various speech
applications [12, 65, 68].

The hand-crafted features have been utilized in different scenarios,
like speaker dependent or speaker independent AAI. MFCC features
have shown better performance in the case of speaker independent sys-
tems [17], which could be explained by the knowledge of how they are
extracted. The discrete cosine transform (DCT) is compressing the in-
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formation of FBEs to the low order cepstral features and by liftering
of higher order cepstral features, the detailed information with respect
to the speakers are removed from these features, which makes it works
better for speaker independent AAI systems. However, the AAI system
performance degrades significantly for mismatched speaking rate, i.e.
the test speaking rate is faster or slower than the training speaking
rate [81]. The reason behind the degradation in performance could be
described by more variability, both acoustically and articulatory, in
fast speaking rate compared to the normal speaking rate. The convo-
lutional neural networks have shown their capability of dealing with
the variability in the input data when they are utilized as feature ex-
tractor layers. This property of convolutional layers motivates us to
employ them for extracting features from raw speech signal.

In this section, we will investigate the AAI system performance for
mismatched speaking rate and utilize the 1D convolutional layers as
feature extractor from the time domain speech (or raw speech) signal.

3.3.1 Articulatory estimation from time domain signal

In previous work in the AAI field, the frame rate was chosen to make
the feature vectors rate match the articulatory sampling rate, e.g., a
frame rate of 10 ms will result in feature vectors rate of 100 Hz to
match the sampling rate of articulatory measurements. After fram-
ing the speech signal either hand-crafted features, e.g., MFCC or data
driven features were extracted and utilized for AAI problem. For ex-
tracting the data driven features, 1D-convolutional and pooling layers
were utilized in [27] to extract features from the speech frames. Fig-
ure 3.8 demonstrates three different architectures for the AAI problem.
The top green part is presenting the AAI systems which utilize BLSTM
layers on top of hand-crafted features to estimate the articulatory fea-
tures. The yellow rectangle in the middle of Figure 3.8 is presenting
the 1D-convolutional architecture which is applied to the windowed
raw speech signal. The bottom blue rectangle is our proposed method
which utilizes 1D-convolutional layers on the time domain speech se-
quence and decimates the signal to the articulatory space sampling
rate. Afterwards, a temporal convolutional network (TCN) is applied
to the extracted features by the 1D-convolutional and decimation lay-
ers, to estimate the required dynamic information from speech features
and use them for articulatory feature estimation. In the proposed archi-
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Figure 3.8: The sequence-to-sequence AAI systems, employing (top) hand-
crafted features, (middle) extracted features from speech frames by 1D-CNN,
(bottom) extracted features from the whole speech sequence by 1D-CNN and
decimation layers.

tecture, the pooling layers have overlaps which provide a non-uniform
sampling and preserve the required information for estimation of ar-
ticulatory trajectories. The TCN extract the dynamic information of
extracted features through dilated convolutions which cover the whole
sequence. The output of the TCN module is fed to a time distributed
dense layer for estimation of articulatory trajectories.

3.3.2 Experiments and results

For assessing the proposed architecture performance, three baselines
were chosen from state-of-the-art methods. The first and second base-
line systems uses hand-crafted features MFCCs and FBEs, respectively.
We will refer to them by base1 and base2. The system which applied
the 1D convolutional layers on the windowed speech signal will be re-
ferred by base3.

All the experiments are done in SI scenarios, where test speak-
ers are in both matched and mismatched conditions. In the matched
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speaker condition, the AAI system is trained with training data from
all of speakers and evaluated based on the same speakers’ test data.
In the mismatched speaker condition, the leave-one-speaker-out cross
validation (LOSO) is used, where each of the available speakers are
in turn kept as the test speaker, and the rest of speakers are used for
training the AAI system. Furthermore, the matched and mismatched
speaking rate conditions are evaluated for the baselines and the pro-
posed method. The AAI systems performance is evaluated by the PCC
measure. The results are reported in Table 3.3.

3.3.2.1 Matched speaking rate

As mentioned earlier in this chapter, the AAI systems are trained and
evaluated for the matched speaking rate. In this way, we evaluate the
systems’ performance with respect to the speaker variability for each of
the normal and fast SRs. Table 3.3 shows the proposed method achieves
the best performance among all systems. For normal SR and matched
speakers, the proposed method performs better compared to the base-
lines. In the mismatched speaker condition, the proposed method has
reached an average PCC=0.72, better than any of the baselines. For the
fast SR, the proposed and base1 systems have the best performance
in matched speaker condition with average PCC=0.79, and in the mis-
matched speaker condition, the proposed system is outperforming the
baseline systems. It is worth mentioning, that the base1 system which
utilize the MFCC features outperforms significantly the base2 system
with the FBE features in the mismatched speaker condition. This su-
perior performance of MFCCs over the FBEs can be explained by the
DCT operation followed by liftering of higher order cepstral coefficients
which contain spectral details of speech spectrum. The first convolu-
tional layer filters in the proposed method and in the base3 system
are acting as filterbanks for extracting information from the raw wave-
form. The frequency response of the convolutional filters in the base3
system is depicted in Figure 3.9(a). The center frequencies of the filters
are sorted along the frequency axis. The filters’ center frequencies are
spanned linearly up to 1 kHz, and for frequencies higher than 1 kHz up
to 4 kHz, the filters’ center frequencies are spanned non-linearly. The
frequencies higher than 4 kHz are attenuated in the base3 system. The
center frequencies of the first layer of 1D convolutional filters in our
proposed method are depicted in Figure 3.9(b). The center frequencies
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3.3. AAI from speech waveforms

Table 3.3: The average PCC for different systems in the matched speaking
rate condition. Spk cond indicates whether the speakers in the training and
testing sets are matched or mismatched.

Proposed base1 base2 base3
Spk cond train-SR

matched N 0.84 0.83 0.80 0.81
mismatched N 0.72 0.7 0.66 0.7

matched F 0.79 0.79 0.73 0.78
mismatched F 0.66 0.64 0.58 0.62

NO. Parameters 377,827 544,009 1,585,033 873,481

are linearly spanned up to 3 kHz, and from 3 kHz up to 6 kHz the
center frequencies are spanned non-linearly along frequency axis. The
preservation of frequency components higher than 4 kHz is useful in
the estimation of high frequency sounds, e.g., fricatives.
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Figure 3.9: Frequency response of first layer of convolutional layers for ex-
tracting information from raw speech waveform.

3.3.2.2 Mismatched speaking rate

Different speaking rates affect the articulators’ movements and char-
acteristics of the produced speech signal. We have assessed the AAI
system in the mismatched SR conditions. The proposed method per-
forms better for the scenario where systems are trained on normal
SR and tested on the fast SR, in both the matched and mismatched
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Table 3.4: The average PCC for different systems in the mismatched speak-
ing rate condition. Spk cond indicates whether the speakers in the training
and testing sets are matched or mismatched.

Proposed base1 base2 base3
Spk cond train-SR

matched N 0.76 0.71 0.70 0.73
mismatched N 0.65 0.52 0.56 0.61

matched F 0.78 0.78 0.73 0.78
mismatched F 0.68 0.67 0.64 0.66

speaker condition. base1 has the poorest performance compared to
the other systems trained on normal SR, even compared to base2. It
could be explained by the conclusion of [72], where FBEs compared to
MFCCs, have shown a better phoneme recognition rate for scenarios
with mismatch in SR and speakers. It should be recalled from the inves-
tigations in sections 3.1 and 3.2 that phonemic information is relevant
for prediction of articulators’ movements.

In the scenarios where systems are trained on fast SR, and tested on
normal SR, the proposed method, base1 and base3 systems perform
the same. The results are reported in Table 3.4. The systems trained
with the fast SR and tested on normal SR (PCC=0.78) have shown a
better performance compared to its counterpart. The fast SR contains
more co-articulation in comparison with normal SR, therefore in the
mismatched SR, the systems trained with fast SR perform better than
the systems trained on normal SR.

3.4 Robust AAI

Most AAI systems are trained and evaluated in clean conditions (AAI-
C), but what will be the performance drop of the AAI-C in noisy con-
ditions? This evaluation will provide some insight into the real-world
applicability of the AAI models. To the best of our knowledge, AAI in
the presence of noise is only investigated in [70], where they proposed
to train AAI system with multi-condition noisy data for dealing with
noisy conditions. In this section, the AAI system performance is inves-
tigated in the presence of noise. In order to evaluate the noise effect,
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three main procedures are considered. The first procedure is training
a multi-condition AAI model (AAI-MC), the second approach is to
perform speech enhancement (SE) prior to the existing AAI-C model,
and the third approach is joint training of AAI and DNN-based SE
(DNN-SE). The feed-forward DNN architecture is utilized for both
AAI and DNN-SE models. The reason behind choosing a feed-forward
architecture is due to its satisfactory performance, ease of implemen-
tation, and considering that we want to assess the systems in noisy
condition and do not want to propose a new architecture. The multi-
condition noisy data for the experiments are created by adding noises
from the AURORA 2 corpus which are commonly used for realistic
noisy scenarios to clean speech files. In the first set of experiments,
the performance of the AAI-C model in presence of noise is evaluated.
Then we train an AAI-MC model to assess the performance gain over
the AAI-C model in multi-condition noisy data. In the second set of
experiments the SE is used as the preprocessing stage for suppress-
ing noise from speech and then using the enhanced speech through
the AAI-C model to observe if enhancement is useful and results in
an improved inversion performance. Based on the results reported in
[70], the MSE based SE [11] as a preprocessing step is not helpful for
AAI task. We reevaluate their findings using a DSP-oriented MMSE
approach [8] which we denote DSP-SE. Then, we use a DNN based
SE method [106], denoted DNN-SE, as a preprocessing step prior to
the AAI-C system. We utilize DNN-SE as it has shown its strength in
comparison to DSP-SE methods [106]. In the last set of experiments, a
joint DNN-SE and AAI system is proposed and evaluated to deal with
multi-condition noisy data. The performance of the inversion systems
is evaluated based on the PCC measure. Furthermore, the inverted
articulatory features are used in a transfer learning framework for an
end-to-end ASR system based on the WSJ dataset in multi-condition
noisy environment to evaluating their contribution for ASR in terms
of word error rate (WER).

3.4.1 Speech enhancement prior to the AAI

Speech enhancement (SE) has been widely used in different applica-
tions of speech processing, e.g., [10, 16, 95]. The SE could be employed
as a preprocessing system on the noisy data prior to the main appli-
cation which is trained with the clean data. As it is mentioned in 3.4,
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we employed two well-known approaches from the literature. The first
method is an improved MMSE based SE from [8] which is based on
estimation of noise spectrum which is assumed to be slower varying
than the speech spectrum. We refer to this digital signal processing
method by DSP-SE. The DSP-SE can be applied to a noisy signal
without having knowledge of the noise condition because it is working
based on noise and speech statistics. The second approach is based on
DNN regression between noisy and clean speech [107]. In the DNN-
SE method, various noisy signals at different SNR levels are mapped
to their clean counterpart based on trained nonlinear function. This
method needs to be trained with several noise types and noise levels to
make it a generally applicable tool to use. In the following we briefly
describe the DSP-SE and DNN-SE methods.

3.4.1.1 DSP-SE method

For the DSP-SE method, a MMSE based SE is used which utilizes
the improved minima-controlled recursive averaging (IMCRA) [8] for
estimation of noise. The SE method uses the optimally-modified log
spectral amplitude (OM-LSA) speech estimator, which utilizes a gain
function based on the geometric mean of two gain functions related to
speech presence and absence. The enhanced power spectrum of speech
is estimated by applying the gain function to the noisy speech power
spectrum. For estimation of speech presence and absence, this algo-
rithm uses an improved noise estimator version of [9], which combines
time-varying recursive averaging with minima-controlled estimation of
the a priori speech absence probability. The time-varying recursive
averaging is a technique for noise power spectrum estimation. It re-
cursively averages the past power spectral values of noisy signal using
a time-varying frequency dependent smoothing parameter that is ad-
justed by probability of speech presence in sub-bands. The speech pres-
ence probability estimation is controlled by minima values of smoothed
power spectrum of noisy signal. The noisy speech power spectrum over
its local minima within a fixed temporal window provides the speech
presence probability. The probabilities are estimated for each frame
and each sub-band. The IMCRA contains two iterations of smoothing
and minima tracking. The first iteration is performing a rough voice
activity detection, and in the second iteration, smoothing removes sig-
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nificant speech components which makes the minimum tracking robust
during the speech activity.

3.4.1.2 DNN-SE method

For performing speech enhancement based on DNN (DNN-SE), a feed-
forward architecture is utilized based on the work in [106, 107]. The
DNN-SE system contains ReLU activation function [22] as the non-
linearity for hidden layers, and linear activation function for the out-
put layer. The DNN-SE network finds a nonlinear regression between
the input noisy signal, and the clean speech signal as the output, in
the training step. The non-linear blocks allow the network to better
handle the non-linear relation between the noisy and clean signal, as
mentioned in [106]. Most SE algorithms perform short-time Fourier
transform (STFT) analysis on the noisy signal and enhance only the
magnitude spectrum and keep the phase spectrum unchanged. We fol-
low that approach. The DNN-SE input features are Log power spectra
(LPSs) which are normalized by global mean and variance.

As the dynamic information in speech signal is very important,
we take it into account by considering contextual information of Mse

previous and future frames around the current frame, as the input for
DNN-SE:

Sse[n] =
[
S[n−Mse]

T , . . . , S[n]T , . . . , S[n+Mse]
T
]
, (3.2)

where the Sse is the contextualized LPS of the noisy signal as the input
vector. To deal with the non-stationary property of noises, the context
information for the DNN-SE (Mse) is chosen to be shorter compared
to the required context information for the DNN-AAI system (Maai).

Several choices are possible for the output of DNN-SE system. In
a single-task approach the clean LPSs can be used, or in a multi-task
approach the clean MFCCs are used in addition to the clean LPSs.
Fig. 3.10 shows a sketch of DNN-SE system with multiple output tasks.
In the multi-task case, the back propagated loss from the MFCC output
acts as a regularizer and would prevent the model from being overfitted
to the training LPSs. Moreover, the MFCC output acts as a constraint
for the enhanced LPSs to be better predicted [107]. Although MFCC
features can be generated from the LPS output, utilizing the MFCCs
output by the DNN as a second task in a multi-task case gives us the
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Figure 3.10: DNN based SE system with 120 ms context of noisy LPSs, and
clean LPSs and MFCCs as the output.

opportunity of combining the SE and AAI systems to a system that is
jointly trained, instead of two separately trained systems.

3.4.2 Joint training of DNN-SE and AAI system

In Sections 2.4.1 and 3.4.1.2, DNN-AAI and DNN-SE systems for in-
version and enhancement tasks are described respectively, where the
DNN-SE module is employed in a pre-processing step before the tar-
get AAI task to be accomplished with the DNN-AAI system. Since
these two systems are separately trained and sequentially applied to
the input noisy data, it is possible to connect them together and train
a single network which performs both SE and AAI tasks jointly.

The joint system is trained with the optimization of MSE loss for
LPSs, MFCCs, and TVs. However, the fusion of those two systems into
one is challenging, because of different temporal contexts used to build
the two systems independently. As it is mentioned in Section 3.4.1.2,
the DNN-SE input context size Mse is smaller than the Maai. In a joint
architecture, the required frames for building the AAI input need to
be fed to the DNN-SE module. This issue is being solved by using
a sequence of Sses according to the required frame time instances for
performing the AAI task. The sequence Sjoint is built as follows:

Sjoint[n] =
[
Sse[n− 2×Maai]

T , . . . , Sse[n− 2]T , Sse[n]
T ,

Sse[n+ 2]T , . . . , Sse[n+ 2×Maai]
T
]
. (3.3)
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Figure 3.11: Network structure of joint training of SE and AAI systems

In this way, the DNN-SE module generates the required frames for
making the vector Xaai[n]. During training step in the forward path,
the input sequence is mapped to the output in the SE part of joint
network, and the loss is only calculated for the Sse[n] and back propa-
gated through the network to update the weights. This is illustrated in
Fig. 3.11 where the LPS and MFCC tasks are considered for the cur-
rent time n. The SE part of joint network is estimating the required
MFCCs for the AAI task from the input Sjoint. Further, the estimated
sequence of MFCCs is concatenated and fed to the AAI part of network
for estimating TVs. The joint architecture performs an AAI task from
the enhanced MFCCs which could improve the performance compared
to separately applying SE and performing inversion by the AAI-C sys-
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tem.

3.4.3 Experimental setups and results

The goal of this work is to evaluate the AAI performance in multi-
condition noisy data. The purpose of this evaluation is to utilize the
AAI system for real world applications. In the following we describe the
datasets we used in this work and various scenarios and experiments
for the evaluation of AAI system in presence of noise.

3.4.3.1 Synthetic multi-condition data

For synthetically making noisy data, two datasets are employed. The
data which is used for training the AAI systems are corrupted by noises
from AURORA 2 dataset [23]. In one of the experiments for training
the DNN-SE system, the noises from the Nonspeech dataset [25] are
employed to have mismatched in noise scenarios. The simulated noise
level is from 0 dB to 20 dB with 5 dB steps. In the following we briefly
describe the noise datasets.

• AURORA 2 - AURORA 2 [23] is a speech corpus covering eight
different noise types that are recorded in various places, namely,
airport, crowd of people (babble), car, exhibition hall, restaurant,
street, subway, and train station. Audio recordings contain sta-
tionary and non-stationary segments and are sampled at a rate
of 8 kHz.

• Nonspeech dataset - The Nonspeech dataset [25], which contains
100 different environmental noises, is recorded with a 20 kHz
sampling rate.

3.4.3.2 AAI in presence of noise

After preparation of multi-condition data, we evaluate the performance
of AAI-C and AAI-MC models. The AAI-C model is trained based on
clean data from HPRC dataset, and multi-condition noisy data is used
to train an AAI-MC model. All the reported PCC scores are from per-
forming leave-one-speaker-out cross-validation (LOSO) to incorporate
each of the eight available speakers of the HPRC dataset in the test
phase. Finally, the PCC is averaged among all eight speakers.
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Figure 3.12: Average PCC for multi-condition data with respect to different
SNR levels. The box plots represent the minimum, first quartile, median,
third quartile, and the maximum of average PCC values.
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Figure 3.13: Average PCC for multi-condition data on AAI-C and AAI-MC
models, with respect to different noise types.

In the first set of experiments the performance of the AAI system
in presence of noise is evaluated. The averaged PCC scores for different
SNR levels are depicted in Figure 3.12. The AAI-MC system is per-
forming better than the AAI-C model in all of the SNR levels. AAI-MC
performs slightly better than the AAI-C for the clean data, which can
be explained by having more data and better extracted representations
of acoustic space by the network. As is expected, both systems obtain
lower PCC scores for the lower SNR levels. Also, the AAI-MC system
performs almost the same for SNR ≥ 15 dB, and clean data.
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The averaged PCC scores for different noise types are depicted in
Figure 3.13 for AAI-C and AAI-MC systems. It can be observed that
’exhibition’ and ’subway’ noises have the greatest negative effects on
AAI accuracy and cause a significant performance drop. in contrast,
’car’ and ’train’ noises have minor negative effects on the final AAI
accuracy.

3.4.3.3 AAI performance for enhanced speech

The DNN-SE architecture is the same as [106], three hidden layers with
1024 hidden nodes, ReLU activation function, and the output layer ac-
tivation is linear. A drop-out [83] rate of 10% was used in each hidden
layer to contrast over-fitting. LPSs and MFCCs are extracted for 20
ms frame length with 10 ms frame shift. The LPSs of Mse=5 previous
and future frames are concatenated and fed to the DNN-SE system.
The MFCCs of Maai=8 Three different scenarios have been utilized
for training the DNN-SE module. The first scenario (DNN-SE1) is for
matched speakers, noise types and SNRs. In the second scenario (DNN-
SE2) noise types and SNRs are in matched condition, and speakers are
in mismatched condition. In the first and second scenarios, for train-
ing data, the HPRC downsampled to 8 kHz dataset is used for speech
material and AURORA 2 for noises. In the third scenario (DNN-SE3)
speakers, noise types and SNRs are in mismatched condition. Here we
use an 8 kHz version of the TIMIT and Nonspeech datasets are used for
training data speech material and noises, respectively. The test data
in all of the scenarios are the same: the speech data is from an 8 kHz
version of the HPRC dataset and noises are from AURORA 2. For the
AAI task we have utilized the AAI-C, AAI-MC and the joint model.
The enhanced speech is used as input to the AAI-C system and multi-
condition speech data is directly fed to AAI-MC and the joint model.
The results are reported in Table 3.5. First, we notice from Table 3.5
that AAI-C tested on data enhanced by DNN-SE performs better than
AAI-MC tested on multi-condition data. It should be mentioned that
the AAI-C and DNN-SE3 systems are independently trained on dif-
ferent data. Therefore, having a DNN-SE as a preprocessing module
allows to use an off-the-shelf AAI-C system avoiding training a new
system from scratch. The DSP-SE coupled with AAI-C has a contrary
behaviour: instead of improving performance, it degrades the perfor-
mance of inversion system compared to using the noisy data directly.
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Table 3.5: Performance of SI-AAI systems trained on clean and multi-
condition data and tested on clean, multi-condition and enhanced data.

Test data Enhancement AAI-C AAI-MC Joint

Clean None 0.705 0.710 0.707
Multi-Cond None 0.595 0.665 0.698
Multi-Cond DSP-SE 0.568 — —
Multi-Cond DNN-SE1-MT 0.699 — —
Multi-Cond DNN-SE1-ST 0.689 — —
Multi-Cond DNN-SE2-MT 0.670 — —
Multi-Cond DNN-SE2-ST 0.662 — —
Multi-Cond DNN-SE3-MT 0.678 — —

The result is in line with [70]. Signal distortions introduced by DSP-SE
could be the explanation, e.g. musical noise [94]. From Table 3.5, we
notice the joint model performance is the best for multi-condition noisy
data, as expected. It is due to the joint training of SE and AAI mod-
ules where the AAI part of network is being trained for the enhanced
data.

3.4.4 ASR in noisy condition

For evaluating the proposed AAI model in presence of noise, we con-
ducted several experiments on automatic speech recognition (ASR) for
a continuous word recognition task. The WSJ0 [15] database is used
in this task. The “dev93” part of WSJ0 corpus is used for training the
ASR system and evaluation is carried out on the “eval92” part. Two
ASR systems are trained based on an end-to-end architecture, the first
one uses only acoustic features as the input (System 1), the second one
utilizes both acoustic and articulatory features from the AAI system,
as the input for ASR system (System 2). The end-to-end ASR system
is based on the end-to-end ESPnet recognizer [98], which leverages
both connectionist temporal classification (CTC) loss function, and an
attention mechanism [99]. The word error rate (WER) is calculated
as the evaluation metric for comparing these two ASR systems. The
8 kHz noisy version of WSJ0 data is synthetically made by adding
noises from AURORA 2 at 0 and 10 dB SNRs. FBEs are utilized as
the acoustic features, and TVs are used as the articulatory features.
TVs are estimated by utilizing AAI-MC, joint and DNN-SE3 together
with AAI-C systems. System 1 provides lower and upper bounds for
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Table 3.6: WER for the "eval92" part of WSJ database for the two mentioned
ASR systems.

Test Condition System 1 System 2

Clean FBEs 5.3 —-
Clean FBEs + TV (AAI-MC) —- 5.5
Clean FBEs + TV (DNN-SE+AAI-C) —- 5.4
Clean FBEs + TV (Joint) —- 5.4
Enh Clean FBEs 6.1 —-

10 dB FBEs 49.4 —-
10 dB FBEs + TV (AAI-MC) —- 22.6
10 dB FBEs + TV (DNN-SE+AAI-C) —- 19.8
10 dB FBEs + TV (Joint) —- 19.1
Enh 10 dB FBEs 42.3 —-

0 dB FBEs 78.2 —-
0 dB FBEs + TV (AAI-MC) —- 57.8
0 dB FBEs + TV (DNN-SE+AAI-C) —- 51.4
0 dB FBEs + TV (Joint) —- 49.8
Enh 0 dB FBEs 68.4 —-

WER, when we are evaluating on the clean and multi-condition data,
respectively. System 2 determines the effect of articulatory information
in the ASR task. The results of the ASR experiments are reported in
Table 3.6. We can observe that the performance of System 1 is signif-
icantly degraded in the presence of noise, while System 2 suffers less
from noise compared to System 1. The results allow us to argue the key
role of articulatory information in the ASR task for noisy conditions.
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CHAPTER4
Conclusion and Future work

4.1 Conclusion

The thesis aimed to research articulatory inversion (AI) and utilize the
estimated articulatory information for the automatic speech recogni-
tion (ASR) problem. The primary work was to improve the perfor-
mance of AI systems by using new architectures and linguistic infor-
mation. In this way, the performance of AI system improved to better
deal with speaker variabilities in mismatched speaker scenarios. The
proposed architecture was designed to sense the significant temporal
changes in the speech spectrum which result from the articulators’
movements, based on acoustic landmarks theory. The linguistic infor-
mation was employed together with acoustic features to improve the
performance of AI where contextual information is available. Using the
linguistic information in terms of attribute features (manner and place
of articulation) could be useful for cross language AI. In addition,
the linguistic features have less variability compared to the acoustic
features, and we showed they are a better representation for transfer
learning of the articulatory data to TIMIT dataset for performing ASR
in clean condition.

We propose a novel architecture by utilizing the 1D convolutional
filters in the time domain instead of using hand-crafted features. The
proposed approach slightly outperformed hand-crafted features in the
matched speaking rate (SR) condition, and significantly in the mis-
matched SR condition. As we know, SR is another variability in speech
which causes significant drop in performance for many speech pro-
cessing applications, including AI. In this way, the proposed approach
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would be a better candidate for estimation of articulatory data that
can be utilized in other applications.

At the last part, we explored the AI performance in the presence
of noise which is another variability for speech due to the different en-
vironments in real world scenarios. We employed a feed-forward deep
neural network to perform speech enhancement (SE) and utilized that
as a preprocessing step for the AAI. The AI using enhanced speech
performed slightly better than training a multi-condition AI. This mi-
nor improvement motivated us to perform joint training of SE and
AI within a multi-task approach. Due to the difference in required
temporal context of SE and AI modules, the architecture design was
challenging. To overcome this challenge the flow of data to the network
was modified to provide both tasks with the required temporal span of
frames. The joint model performed as good as the AI network trained
on clean data, even for low signal to noise ratios.

4.2 Future work

The articulatory inversion problem still needs more investigation due
to the limited amount of available data compared to other speech tasks.
By advancements in the deep learning techniques and approaches, uti-
lizing generative models could be helpful to produce more data. In a
more specific way, a conditional generative adversarial network could
be a proper way to combine different datasets with articulatory data
and generate more articulatory features. Utilizing attribute features in
the form of manner and place of articulation would be an interesting
approach for cross-language AI, and making the AI system universal
to assess the speech production mechanism.

In the applications like pronunciation training where the transcrip-
tion is available, training separate AI systems based on acoustic and
forced aligned linguistic information could shed some lights on how to
provide better feedback to second language learners to properly correct
their mispronunciations.
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Abstract
The challenge of articulatory inversion is to determine the tem-
poral movement of the articulators from the speech waveform,
or from acoustic-phonetic knowledge, e.g. derived from infor-
mation about the linguistic content of the utterance. The actual
position of the articulators is typically obtained from measured
data, in our case position measurements obtained using EMA
(Electromagnetic articulography). In this paper, we investigate
the impact on articulatory inversion problem by using features
derived from the acoustic waveform relative to using linguis-
tic features related to the time aligned phone sequence of the
utterance. Filterbank energies (FBE) are used as acoustic fea-
tures, while phoneme identities and (binary) phonetic attributes
are used as linguistic features. Experiments are performed on
a speech corpus with synchronously recorded EMA measure-
ments and employing a bidirectional long short-term memory
(BLSTM) that estimates the articulators’ position. Acoustic
FBE features performed better for vowel sounds. Phonetic fea-
tures attained better results for nasal and fricative sounds except
for /h/. Further improvements were obtained by combining FBE
and linguistic features, which led to an average relative RMSE
reduction of 9.8%, and a 3% relative improvement of the Pear-
son correlation coefficient.
Index Terms: Articulatory inversion, language learning, bidi-
rectional long short term memory, Attributes, HPRC database

1. Introduction
Acoustic to articulatory inversion (AAI) is a challenging prob-
lem due to the many-to-one mapping in which different ar-
ticulator positions may produce a similar sound. This many-
to-one mapping makes AAI a highly non-linear problem. In
AAI, the objective is to estimate the vocal tract shape, which
is estimated by the articulator positions based on the uttered
speech. AAI can be useful in many speech-based applications,
in particular, speech synthesis [1], automatic speech recogni-
tion (ASR) [2, 3, 4] and second language learning [5, 6]. Over
the years, researchers have addressed this problem employing
various machine learning techniques including codebooks [7],
Gaussian mixture models (GMM) [8], hidden Markov models
(HMM) [9], mixture density networks [10], deep neural net-
works (DNNs) [11, 12, 13], and deep recurrent neural networks
(RNNs) [14, 15, 16].

Exploiting RNNs for the AAI task has demonstrated better
results compared to DNNs [14, 16] because the temporal dy-
namic behavior is better captured through the memory elements
of those recurrent architectures. Acoustic features are com-
monly employed at the input of the AAI system [7, 8, 9, 10] ,
but linguistic features have been successfully used in recent
years either as stand-along features [17], or together with acous-

tic features [15]. Moreover, representing the linguistic features
in a bottleneck form extracted from a phone classifier has been
used in [16]. Although leveraging knowledge from linguistic
content together with acoustic features has proven to improve
AAI systems, a deeper analysis explaining why redundant in-
formation makes the system perform better is missing. We
think that gaining a better understanding about such a perfor-
mance improvement would be helpful for some specific tasks,
where the linguistic features are available from the text, e.g.
language learning. This motivates us to compare state-of-the-
art methods in [16, 17] and carry out additional analyses on
the acoustic and linguistic features within phoneme boundaries
which later can be employed in pronunciation scoring. That
is, we focus on the evaluation in time intervals concerning a
single phoneme instead of analyzing the whole EMA trajec-
tory for the uttered speech. The rest of the paper is structured
as follows. Section 2 presents Deep BLSTM recurrent neural
networks. Section 3 describes the “Haskins Production Rate
Comparison database”(HPRC) [18]. The database, feature rep-
resentation, and the performance measurements undertaken in
this study, followed by results in Section 4. Finally, Section 5
concludes the paper.

2. Deep BLSTM recurrent neural network
Recurrent neural networks (RNN) have been utilized in many
speech technology areas including speech recognition [19], lan-
guage modeling [20], and articulatory inversion [14, 15, 16].
They are able to estimate any output samples from dynamical
systems [21], conditioned on their previous samples. Having
a non-causal condition by access to both past and future input
samples, we can employ a bidirectional RNN to use the past
samples within the forward layer and the future samples within
the backward layer as it is shown in Fig. 1. Diamonds show the
merge strategy of forward and backward layers output which
can be summation, concatenation, and etc. LSTM is a variant
of RNN with a specific memory cell architecture for updating
the hidden layers. This memory cell is formulated as follows

Output layer

Input layer

Forward layer

Backward layer

t-1 t t+1 t+2

Figure 1: A bidirectional RNN.
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it = σ
(
Wixxt +Wihht−1 +Wicct−1 + bi

)
(1)

ft = σ
(
Wfxxt +Wfhht−1 +Wfcct−1 + bf

)
(2)

ct = ft ◦ ct−1 + it ◦ gc
(
Wcxxt +Wchht−1 + bc) (3)

ot = σ
(
Woxxt +Wohht−1 +Wocct−1 + bo

)
(4)

ht = ot ◦ go(ct) (5)

where xt and ht are input and hidden vector, it, ft, ct and ot
are the input gate, forget gate, cell vector and output gate, re-
spectively. The σ is sigmoid function, gc and go are the acti-
vation function which is usually chosen as tanh, b shows the
bias vector for each gate (bf is the forget gate bias vector) and
weight matrices W with different subscripts which show the
connection between input/output with gates, for example, Wix

is the input gate-input weight matrix. The operator ◦ shows the
element-wise multiplication. A bidirectional LSTM (BLSTM)
is realizable by using the LSTM memory cells (dotted ovals) in
the forward and backward layer as shown in Fig. 1.

3. Experimental Setup
3.1. EMA database

There exists several techniques to measure the articulatory
movements, e.g. MRI, microbeam x-ray, and electromagnetic
articulography (EMA). Among them, EMA is the most widely
used technique to simultaneously capture the speech and artic-
ulatory data. MOCHA-TIMIT [22], MNGU0 [23], and USC-
TIMIT [24] are speech corpora which contain EMA data. An-
other such database is “Haskins Production Rate Compari-
son”(HPRC) [18]. This database contains EMA readings from
eight native American English speakers, four male and four fe-
male. This database has 720 recorded sentences at normal and
fast Speaking Rate (SR), respectively. Some of the sentences
are uttered two times in the normal SR by each speaker. Ta-
ble 2 shows the amount of data for different SR, where “N1”,
“N2”, and “F1”represent the normal SR, repetition of some of
the sentences with the normal SR, and fast SR respectively.
The sampling rate of the recorded audio files is 44.1 KHz and
the EMA recordings are sampled at 100 Hz. The EMA read-
ings are obtained from the sensors placed in different loca-
tions of the mouth, tongue, and jaw. Precisely, eight sensors
are used in this case which are placed on tongue rear/dorsum
(TR), tongue blade (TB), tongue tip (TT), upper lip (UL), lower
lip (LL), mouth left (ML), lower incisors/jaw (JAW), and jaw
left (JAWL). The EMA readings of the articulatory movements
from these carefully placed sensors is measured in the midsagit-
tal plane in X, Y, and Z directions. The X-direction denotes the
movement of the articulators from posterior to anterior, the Y
denotes the right to left movement, while the Z denotes the in-
ferior to superior articulatory movements. In this paper, we used
six reading locations of X and Z direction, i.e., TR, TB, TT, UL,
LL, and JAW. In other databases mentioned above these six lo-
cations are mostly used, while the Y direction is omitted as the
contribution of right to left movement does not contribute much
under normal continuous speech.

3.2. Input representation.

3.2.1. Acoustic representation

The acoustic features are extracted from audio downsampled to
16 KHz, using 25 ms frame length and 10 ms frame shift. The

resulting features have a 100 Hz sampling rate, the same as the
articulatory features. The acoustic features are calculated from
smoothed spectrum by the STRAIGHT method [25] with 40
filters which are linearly spaced on Mel-scale frequency axis.
The energies in the overlapping frequency bands are called fil-
ter bank energy (FBE) features. The extracted feature frame
is concatenated with the M previous and future time for each
frame as the network input.

3.2.2. Phonetic representation

Spoken utterances have been labeled with the Penn phonetics
lab forced aligner [26]. There are 61 phonetic categories which
are folded onto 39 categories [27] for TIMIT database [28]
which are depicted in the first row of Table 1. Each phoneme is
represented as a one-hot 39-dimensional vector [17].

3.2.3. Attribute representation

With the reduced phoneme set from 61 to 39, we use a map-
ping from phoneme to their phonological features known as at-
tributes which are depicted in Table 1. We consider 22 attributes
in this study, comprising manner and place of articulation for
both vowel and consonant categories [29]. The attribute features
are binary and more than one attribute feature is often active at
the same time. These features are more language universal [30]
compared to the phonetic representations.

3.3. Performance measurements

To measure the performance of the AAI methods, root mean
squared error (RMSE) and Pearson’s correlation coefficient
(PCC) are chosen. The first criterion reports the deviation and
the latter measures the similarity between estimated and the
ground-truth trajectories. These measures are defined as:

RMSE =

√
1

N

∑

i

(
y(i)− ŷ(i)

)2
, (6)

PCC =

∑
i(y(i)− ȳ)(ŷ(i)− ¯̂y)√∑

i

(
y(i)− ȳ

)2 ∑
i

(
ŷ(i)− ¯̂y

)2 , (7)

where y(i) and ŷ(i) are the ground-truth and estimated EMA
value of the ith frame respectively and ȳ and ˆ̄y are mean values
of y(i) and ŷ(i). All results are based on training on the N1
subset and test on the N2 subset. 5% of the training data is used
as the validation data which is used to stop training, to prevent
the network from getting over-fitted to the training data.
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Figure 2: Network structure for the articulatory inversion sys-
tem

3.4. Deep neural network architecture

The block diagram of the network architecture is shown in Fig.
2. It contains a feature selector module that selects among the
input features to either output them individually or combine
them two by two. The output of the feature selector goes to
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Table 1: American-English phonemes and associated attributes in terms of manner and place of articulations

A æ 2 aU aI b Ù d D R E 3 eI f g h I i Ã k l m n N oU oI p Õ s S t T U u v w j z sil
Vowel 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0
Fricative 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 1 0
Nasal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Stop 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
Approx 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0
High 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0
Coronal 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0
Dental 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
Glottal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Labial 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0
Low 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Mid 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Retroflex 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Velar 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Voiced 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 0 1 0 0 0 0 1 1 1 1 1 1 0
Round 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 1 1 1 1 0 0
Tense 1 1 0 1 1 0 1 0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 1 0 0 0 0 0
Anterior 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0
Back 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0
Continuant 1 1 1 1 1 0 0 0 1 0 1 1 1 1 0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0
Vocalic 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 1 0 0
Silence 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 2: Available amount of data for different speaking rates
for the HPRC database.

Speaking rate NO. utterances Amount of data
N1 5756 ∼ 244 (minutes)
N2 1379 ∼ 55 (minutes)
F1 5735 ∼ 173 (minutes)

the next module, namely the temporal window for input frames.
It takes M past and future frames and feeds this temporal con-
text window to the BLSTM layers consisting of 128 cells in both
forward and backward directions. M = 15 is used for this work
which is resulted from some primary experiments. Sigmoid and
tanh activation functions are used for the recurrent layers. At
last, a fully connected network with the linear activation is used
to map the BLSTM outputs to the articulator positions. The im-
plementations used Keras [31] with TensorFlow backend [32].

4. Results
In this section, we evaluate the performance of different inputs
to the AAI system. For having a fair comparison between dif-
ferent features, we used the same architecture for both state-
of-the-art methods [16, 17] introduced in 3.4. However, feed-
ing inputs directly to the BLSTM, instead of having several
fully connected layers prior to BLSTM performs slightly bet-
ter. We used the bottleneck features proposed in [16] but we
got same performance as phonetic features. We argue that the
reason is that the phonetic features are already a parsimonious
representation of the input speech capturing information simi-
lar to that captured by bottlenecks. The experiments are done
speaker dependently. The same context window of 15 past and
future frames is used for all input features. Tables 4 and 5 show
the PCC and RMSE results for each speaker, considering the
acoustic (FBE), phonetic (Phn) and attribute (AF) features in
the first three columns, and the combined features in the sec-
ond three columns (FBE+Phn, FBE+AF, Phn+AF). Comparing
the results, we observe that attribute features give worse results
than the phonetic features for all speakers. The RMSE results
of 4 show that combining features improve performance rela-
tive to stand-alone features. The RMSE improvement is in the
range of 0.1 mm to 0.15 mm. Similarly, the PCC improvement
for each speaker after combining the features is in the range of
0.01 to 0.03, as shown in table 5.

Table 3: Average RMSE for phoneme

FBE Phn AF FBE+Phn FBE+AF Phn+AF
/A/ 2.05 2.16 2.31 1.87 1.89 2.16
/æ/ 1.96 2.21 2.22 1.83 1.88 2.17
/2/ 1.94 1.99 2.01 1.77 1.78 1.98
/aU/ 2.04 2.21 2.32 1.80 1.86 2.21
/aI/ 2.00 2.15 2.32 1.83 1.83 2.15
/E/ 1.88 1.94 1.95 1.74 1.74 1.96
/3/ 1.87 1.9 1.91 1.71 1.72 1.88
/eI/ 1.71 1.82 1.83 1.62 1.63 1.83
/I/ 1.83 1.81 1.85 1.65 1.66 1.81
/i/ 1.76 1.71 1.72 1.59 1.58 1.69
/oU/ 2.06 2.00 2.05 1.79 1.77 2.02
/OI/ 1.99 2.15 2.7 1.82 1.81 2.13
/U/ 1.89 1.87 1.91 1.64 1.70 1.94
/u/ 1.84 1.82 1.84 1.66 1.66 1.79
/Ù/ 1.68 1.66 1.67 1.56 1.56 1.66
/D/ 1.96 1.86 1.86 1.75 1.76 1.86
/f/ 1.84 1.80 1.82 1.65 1.66 1.77
/h/ 2.05 2.26 2.27 1.85 1.92 2.28
/Ã/ 1.67 1.64 1.68 1.57 1.55 1.67
/s/ 1.61 1.57 1.59 1.48 1.49 1.57
/S/ 1.61 1.63 1.60 1.49 1.48 1.59
/T/ 1.97 1.75 1.78 1.63 1.64 1.75
/v/ 2.06 1.89 1.90 1.72 1.74 1.86
/z/ 1.66 1.61 1.61 1.51 1.52 1.58
/m/ 2.06 1.95 1.98 1.80 1.82 1.94
/n/ 1.97 1.89 1.92 1.73 1.73 1.88
/N/ 2.13 1.90 1.92 1.75 1.75 1.9
/b/ 1.89 1.90 1.90 1.75 1.72 1.87
/d/ 1.91 1.92 1.93 1.72 1.74 1.89
/R/ – – – – – –
/g/ 2.04 1.85 1.88 1.70 1.72 1.84
/k/ 1.97 1.97 1.99 1.76 1.75 1.94
/p/ 2.01 1.96 2.03 1.72 1.74 1.94
/t/ 1.91 1.94 1.96 1.72 1.73 1.91
/l/ 1.87 1.85 1.87 1.69 1.68 1.82
/Õ/ 1.95 2.09 2.09 1.82 1.83 2.09
/w/ 2.02 1.98 2.02 1.79 1.82 1.98
/j/ 1.77 1.74 1.82 1.61 1.58 1.72
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Figure 3: Average RMSE for manner of articulation from esti-
mated trajectory by different input features

To gain a better understanding of the performance of each
input feature, RMSE results for all phones averaged over all
speakers and articulator positions is calculated for the input fea-
tures investigated. This is depicted in table 3. A compact form
of table 3 in terms of five phonetic classes is represented in
Fig. 3. These phonetic classes are “vowel”, “fricative”, “nasal”,
“stop”and “approximant”. We can conclude that FBE works
better in case of vowels for stand-alone input features. By a
deeper inspection on the results in Table 3, we can say FBE
works better for phones where the place of articulation is low
(/A/, /æ/, /aU/, /aI/ and /OI/), whilst Phn works better in the case
of high (/I/, /i/, /U/ and /u/). For all fricatives except /h/, Phn and
AF perform better than FBE according to the Fig. 3 and Table 3.
Phn and AF features are also better for nasals. In case of stops,
all of the features are performing more or less the same except
/g/ in which Phn is superior to FBE by 0.19 mm in RMSE.

Table 4: RMSE for different input features.

Spk. FBE Phn AF FBE+Phn FBE+AF Phn+AF
F1 1.356 1.365 1.405 1.196 1.221 1.352
F2 1.601 1.631 1.663 1.449 1.451 1.632
F3 1.308 1.302 1.320 1.201 1.202 1.293
F4 1.469 1.601 1.625 1.308 1.329 1.585
M1 1.208 1.158 1.173 1.074 1.073 1.151
M2 1.667 1.715 1.745 1.536 1.530 1.707
M3 1.565 1.539 1.566 1.426 1.441 1.523
M4 1.259 1.235 1.264 1.124 1.128 1.231
Avg. 1.429 1.443 1.470 1.289 1.296 1.434

Table 5: PCC for different input features.

Spk. FBE Phn AF FBE+Phn FBE+AF Phn+AF
F1 0.918 0.921 0.915 0.937 0.936 0.921
F2 0.848 0.850 0.845 0.879 0.878 0.852
F3 0.821 0.830 0.826 0.850 0.850 0.834
F4 0.901 0.894 0.890 0.922 0.920 0.895
M1 0.869 0.883 0.880 0.897 0.896 0.886
M2 0.860 0.855 0.850 0.880 0.880 0.856
M3 0.821 0.831 0.823 0.850 0.847 0.834
M4 0.832 0.846 0.839 0.863 0.865 0.845
Avg. 0.859 0.864 0.858 0.885 0.884 0.865

Moreover, RMSE for each of the articulator positions is cal-
culated by different input features and shown in Table 6. By
comparing different individual features we can see there are
0.01 to 0.05 mm differences in RMSE. In the combined input
features, combination of FBE and phonetic features gives a bet-
ter performance in most of cases. Moreover, there is not a big

difference (less than 0.01 mm RMSE) between combining FBE
with phonetic and attribute features, which are more universal
among languages and the network architecture would not need
any changes for using it in transfer learning for new languages.

Table 6: Performance of AAI system in terms of RMSE.

FBE Phn AF FBE+Phn FBE+AF Phn+AF
TDx 1.539 1.568 1.596 1.426 1.424 1.555
TDz 1.904 1.868 1.941 1.667 1.680 1.861
TBx 1.729 1.759 1.788 1.563 1.564 1.742
TBz 1.864 1.928 2.005 1.690 1.699 1.916
TTx 1.851 1.878 1.896 1.665 1.662 1.857
TTz 1.922 1.966 1.989 1.711 1.715 1.959
ULx 0.715 0.722 0.727 0.665 0.668 0.718
ULz 1.214 1.288 1.297 1.129 1.138 1.279
LLx 0.863 0.822 0.844 0.794 0.802 0.821
LLz 0.817 0.750 0.754 0.726 0.727 0.747
JAWx 1.010 0.999 1.016 0.910 0.920 0.992
JAWz 1.725 1.772 1.794 1.527 1.552 1.765

5. Conclusions
The problem of acoustic to articulatory inversion is addressed
in this paper for different input feature types for a two-hidden
layer BLSTM with 128 cells in each of its forward and back-
ward layers. FBE features are chosen as the acoustic features
and phonetic and attribute features are selected as the linguis-
tic features. The experiments are conducted on a multi-speaker
database which will be useful for further investigations on the
speaker independent AAI systems. RMSE and PCC are com-
puted for both stand-alone and combined features. Phonetic fea-
tures have better capability of modelling vowels where the place
of articulation is high whilst the vowels with the low place of
articulation are better modelled by FBE features. Attribute fea-
tures combined with acoustic features improve the articulatory
inversion performance and will be helpful for transfer learning
in case of new languages. Future works will focus on the jointly
training of speakers and try building up a speaker independent
framework by using linguistic features as the initial estimates.
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Abstract
We propose a new acoustic-to-articulatory inversion (AAI)
sequence-to-sequence neural architecture, where spectral sub-
bands are independently processed in time by 1-dimensional
(1-D) convolutional filters of different sizes. The learned fea-
tures maps are then combined and processed by a recurrent
block with bi-directional long short-term memory (BLSTM)
gates for preserving the smoothly varying nature of the articu-
latory trajectories. Our experimental evidence shows that, on a
speaker dependent AAI task, in spite of the reduced number of
parameters, our model demonstrates better root mean squared
error (RMSE) and Pearson’s correlation coefficient (PCC) than
a both a BLSTM model and an FC-BLSTM model where the
first stages are fully connected layers. In particular, the average
RMSE goes from 1.401 when feeding the filterbank features di-
rectly into the BLSTM, to 1.328 with the FC-BLSTM model,
and to 1.216 with the proposed method. Similarly, the average
PCC increases from 0.859 to 0.877, and 0.895, respectively. On
a speaker independent AAI task, we show that our convolutional
features outperform the original filterbank features, and can be
combined with phonetic features bringing independent informa-
tion to the solution of the problem. To the best of the authors’
knowledge, we report the best results on the given task and data.
Index Terms: Acoustic-to-articulatory inversion, deep learn-
ing, sequence-to-sequence neural models, 1-D convolution.

1. Introduction
The acoustic to articulatory inversion (AAI) problem is about
estimating the vocal tract shape in the form of articulator posi-
tions based on the uttered speech. The actual articulatory po-
sitions can be obtained from speakers through different tech-
niques, such as MRI [1], X-ray microbeam [2], and electro-
magnetic articulography (EMA) [3]. In recent years, AAI has
attracted increasing attention because of its suitability in dif-
ferent applications, namely speech synthesis [4, 5], second lan-
guage learning [6, 7], and automatic speech recognition (ASR)
[8]. In a companion paper submitted to this conference [9], we
show that AAI is beneficial for the continuous phone recogni-
tion task. Unfortunately, this inversion problem is highly non-
linear and non-unique [10, 11], which means that different artic-
ulator configurations can produce the same sound. In addition
coarticulation [12], i.e. the impact of adjacent phonemes on the
articulators’ movement, makes the AAI problem harder.

Different machine learning techniques and various input
representations have been proposed to address the AAI task.
For example, search of joint acoustic and articulatory space
codebooks [13], Gaussian mixture models (GMMs) [14], hid-
den Markov models (HMMs) [7], mixture density networks

(MDNs) [15], deep neural networks (DNNs) [16], and recur-
rent neural networks (RNNs) [17, 18]. It is reported to obtain
better accuracy than the DNN-based solution proposed in [16]
exploiting an RNN-based AAI approach [19]. This result was
mainly due to the better capability at capturing temporal dy-
namics that the RNN has through its memory elements. Differ-
ent acoustic representations, such as line spectral frequencies
(LSF), Mel-frequency cepstral coefficients (MFCC) and filter-
bank energies (FBE) have also been employed as input of the
AAI system [17, 18]. Linguistic features have also been proven
useful when used as stand-alone input features [20], or together
with acoustic features [21, 18]. Such linguistic features are for
example: phonemic (PHN) and attribute (AF) features [18].
Those features can be estimated by using a phone recognizer
[22] or, a forced phone aligner [18] whenever we have access to
the transcription of the uttered speech, e.g. in language learning
or speech synthesis applications.

Although LSTM-based RNNs are promising for tackling
the AAI task, the AAI accuracy could be further improved by
exploiting ad-hoc connectionist components that can help re-
move redundant information in the speech signal. In fact, there
exist many sources of information in the speech acoustic sig-
nal, which are not all relevant for the target task. Deep learn-
ing methods can reduce the effects of that irrelevant informa-
tion leveraging upon large amounts of training material and pa-
rameters; however, lack of ad-hoc corpora providing an appro-
priate amount of data is a peculiar curse of the AAI problem.
Therefore, the use of connectionist blocks that can better ex-
ploit the intrinsic characteristic of the speech signal could be
beneficial to improve AAI results. We know that the vocal tract
movements encode the linguistic message, and the speech sig-
nal reflects these movements. Non-linguistic components in the
speech signal have a rate of change that lies outside the typ-
ical rate of the change of the vocal tract. 1-D convolutional
connectionist components can intrinsically be more robust to
the speech variability by suppressing spectral components that
change more slowly or quickly than the typical range of change
of the speech signal. Furthermore, convolutional components
offer the advantage to reduce the amount of connectionist pa-
rameters with respect to fully connected components, which im-
plies that a smaller amount of data can be sufficient to learn the
1-D convolutional filters. Bi-directional recurrent components
with LSTM gates can instead be used to capture temporal re-
lationships and better estimate the articulatory parameters. In
this work, we thus propose 1-D convolutional layers prior to the
BLSTM-based recurrent blocks to project FBE features to a new
space to deal with lack of data and temporal variability. More-
over, the scarcity of relevant speaker specific data makes build-



ing speaker dependent (SD) systems challenging, and the per-
formance typically drops significantly when moving to speaker
independent (SI) systems, where data from the test speaker is
not used in the training stage of the neural architecture. To over-
come the drop in performance caused by data scarcity in the SI
configuration, we proposed to combine the feature maps from
1-D convolutions and phonetic features.

The rest of paper is organized as follows. We describe the
proposed AAI approach in Section 2. The experimental setup is
given in Section 3, where the “Haskins Production Rate Com-
parison database ”(HPRC) [23], input features and output pa-
rameters, and network parameters are presented. The experi-
mental results are discussed in Section 3. Section 5 concludes
our work.

2. Proposed method
In this work, we propose a new AAI approach, where spectral
sub-bands are independently processed in time by 1-D convo-
lutional filters of different sizes. The learned features maps
are then combined and processed by an RNN with BLSTM
gates for preserving the smoothly varying nature of the articu-
latory trajectories. We use mel filterbank energies as features in
the present work to have a higher resolution for low frequency
bands.

1-D convolutional layers are mostly known as the feature
extraction layers from sequences and widely used in many
speech applications, e.g. ASR [24, 25], speech synthesis [26],
and machine translation [27]. This is the first time, to the best
of the authors’ knowledge, that 1-D convolutional layers on the
features are employed in the AAI task. Here we employ convo-
lutional layers along the time axis: we consider the output of the
filterbank in each of the frequency bands as a one dimensional
data stream and apply the filters on it. These filters’ outputs are
then linearly combined and represent new feature maps. The
computations are formulated as:

ycnn
i,j = bj +

Li−1∑

k=1

Fi ∗ ycnn
i−1,k, (1)

where, ∗ shows the convolution operation of weights Fi in con-
volutional layer i with the feature maps ycnn

i−1,k from the previ-
ous layer i − 1. A bias bj is added to the result of the convo-
lution, to calculate the new feature map ycnn

i,j for the jth chan-
nel feature map. Zero padding is used to guarantee that the
input sequence (acoustic space) and output sequence (articula-
tory space) have the same length. The 1D-CNN layers are used
and concatenated along the channel axis as depicted in Fig. 1.
The filter length is different in each of the CNN layers which
provides more information about adjacent frames with different
resolutions along the time axis. The first convolutional layer
plays an important role by high-passing or low-passing differ-
ent frequency bands. In our architecture, this layer has the goal
of sensing significant energy changes in the speech spectrum,
which may indicate a phone transition. It is built of first or-
der FIR filters in the form b0 + m0z

−1, where b0 is a bias and
m0 a multiplicative factor. These can be either low-pass filters
when b0 and m0 have the same sign, or high-pass, otherwise.
The next convolutional layers tries to capture more temporal in-
formation and filter out undesired temporal variabilities. After
those convolutional layers, two BLSTM layers are employed
to capture dynamical information and estimate smoothly vary-
ing articulator trajectories. Further analysis with regards to the
extracted feature maps and their representation is presented in
Section 4.
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Figure 1: Architecture of our proposed AAI method.

3. Experimental Setup
3.1. Database

The EMA method is one of the most used techniques for record-
ing of articulatory data which also allows for simultaneous
recording of the speech. One of the available databases is
the “Haskins Production Rate Comparison”(HPRC) [23], which
covers material from eight native American English speakers,
namely four female (F1-F4), and four male (M1-M4) speak-
ers. There are 720 sentences available in this database with the
normal and fast Speaking Rate (SR). For some of the normal
speaking utterances, there are repetitions available.

Speech waveforms are sampled at rate of 44.1 KHz, and
the synchronously recorded EMA data are sampled at 100 Hz.
EMA data are measured from eight sensors capturing informa-
tion about the tongue rear or dorsum (TR), tongue blade (TB),
tongue tip (TT), upper and lower lip (UL and LL), mouth left
(ML), jaw or lower incisors (JAW) and jaw left (JAWL). The ar-
ticulatory movements are measured in the midsagittal plane in
X, Y and Z direction, which denote movements of articulators
from posterior to anterior, right to left and inferior to superior,
respectively. In this work, we used the X and Z directions of
TR, TB, TT, UL, LL and JAW for the speaker dependent AAI.
In case of SI modeling, we employed nine tract variables (TV)
[28] which are obtained by geometric transformations on EMA
measurements. Those TV are Lip Aperture (LA), Lip Protru-
sion (LP), Jaw Angle (JA), Tongue Rear Constriction Degree
(TRCD), Tongue Rear Constriction Location (TRCL). In a sim-
ilar way for TB and TT we have TBCD, TBCL, TTCD and
TTCL, respectively.

3.2. Input representation

In our experiments, acoustic features are extracted from a down-
sampled waveform at 16 KHz using an analysis window of
length 25ms with frame shift of 10ms, yielding a frame rate
that matches the EMA recordings. Acoustic features are calcu-
lated from 40 filters, which are linearly spaced on the Mel-scale
frequency axis. Energies in the overlapping frequency bands
are called filterbank energy (FBE) features. Phonetic (PHN)
features are extracted by the Penn phonetics lab forced aligner
[29]. Each PHN feature is represented as one-hot 39 dimen-
sional vector [18], and the attribute features (AF) are directly
mapped from PHN features as in [18].

3.3. Neural parameters & settings

We compare three different neural architectures. In the first and
most simple configuration, referred to as BLSTM, the unpro-
cessed filterbank energies are directly fed at the input of the
neural architecture, which is BLSTM-based RNN. Two fully
connected layers are introduced between the FBEs and the
BLSTM-based RNN in the second configuration, referred to as
FC-BLSTM. The third configuration, 1D-CNN-BLSTM, is our
proposal, and 1-D convolutional filters are employed between



the FBEs and the BLSTM-based RNN. In all cases 2 BLSTM
layers with 128 cells for each of the forward and backward lay-
ers are used. Sigmoid and tanh activation functions are used for
the recurrent layers[18]. The output layer has 12 nodes, cor-
responding to the EMA dimension with linear activation func-
tion. In FC-BLSTM the first two layers are fully connected with
512 nodes with ReLU activation functions. In the 1D-CNN-
BLSTM, 5 convolutional layers are used for feature extraction
with the filter size of [1, 3, 5, 7, 9], respectively for each layer
with ReLU non-linearity. The channel number for each of the
convolutional layers are kept the same as Li = 128. A batch
size of 5 is used.

The experimental material is chosen from the subsets “N1”
and “N2”, which have the normal speaking rate. The training
data consist of 576 sentences, validation and test data each con-
tains 72 sentences. The data splitting for the HPRC database
is as in [30]. Experiments were performed in an utterance by
utterance fashion, which requires that all of the utterances are
zero padded to 4 sec in the feature domain for ease of training
implementation. The same strategy was applied to mean nor-
malized EMA utterances in order to obtain 4 sec duration. The
Adam optimizer [31] is chosen for training the network. Keras
[32] with TensorFlow backend [33] were used to train all of the
neural networks. An early stopping patience of 10 iterations
has been employed by checking the validation loss function to
prevent over-fitting to the training data.

3.4. Performance measures

To measure the accuracy of the AAI approach, root mean
squared error (RMSE) and Pearson’s correlation coefficient
(PCC) are chosen. The first criterion reports the mean devi-
ation between estimated and the ground-truth trajectories, and
the latter measures the similarity of the two trajectories. The
measures are defined as follows:

RMSE =

√
1

N
ΣN

i=1

(
y(i)− ŷ(i)

)2
, (2)

PCC =

∑N
i=1(y(i)− ȳ)(ŷ(i)− ¯̂y)√∑N

i=1

(
y(i)− ȳ

)2∑N
i=1

(
ŷ(i)− ¯̂y

)2 , (3)

where y(i) and ŷ(i) are the ground-truth and estimated EMA
values of the ith frame, respectively; ȳ and ˆ̄y are mean values
of y(i) and ŷ(i).

4. Experimental Results
In this section, we compare and contrast the three architectures
described in Section 3.3. We also present additional analysis to
gain a better understanding of the proposed approach.

4.1. Performance evaluation for acoustic features

For each of the three methods, we conduct 20 simulations in
order to eliminate the effect of random initialization of the net-
work parameters. Table 1 shows RMSE values, and we can
observe that the proposed method outperforms both baseline
approaches by almost 0.1 and 0.2 mm RMSE. A t-test shows
that the reduction in RMSE with respect to both baselines is
significant with p-values less than 0.05. The proposed method
outperforms FC-BLSTM with lower number of parameters, as
it can be observed by comparing the number of parameters re-
ported in the table. Finally, PCC scores, related to the similarity
between trajectories, are given in Table 2 and show a similar
trend to that observed for RMSE.

Table 1: RMSE for various baselines and proposed method for
different speakers for AAI system.

Neural Architecture & No.Parameters
Speaker BLSTM FC-BLSTM 1D-CNN-BLSTM

571657 1748233 1585033
F1 1.363 1.226 1.090
F2 1.588 1.546 1.380
F3 1.296 1.231 1.160
F4 1.355 1.309 1.200
M1 1.211 1.133 1.053
M2 1.645 1.550 1.435
M3 1.523 1.479 1.368
M4 1.228 1.154 1.048
Avg. 1.401 1.328 1.216

Table 2: PCC for various baselines and proposed method for
different speakers for AAI system.

Neural Architecture & No.Parameters
Speaker BLSTM FC-BLSTM 1D-CNN-BLSTM

571657 1748233 1585033
F1 0.917 0.932 0.945
F2 0.852 0.858 0.887
F3 0.827 0.841 0.861
F4 0.916 0.921 0.933
M1 0.865 0.887 0.902
M2 0.861 0.880 0.893
M3 0.816 0.841 0.860
M4 0.825 0.856 0.875
Avg. 0.859 0.877 0.895

4.2. Feature extraction layers analysis

As we discussed in Section 2, 1D-CNN extract new features
from FBEs. These feature maps are weighted sums of sub-band
signals which have been processed by filters with different fre-
quency responses. Fig. 2 shows an example of FBEs, and net-
work activations through the 1D-CNN model. We can see some
channel activations match phonemic segments in the first layer.
Going to the next layers, the filter outputs become sparser and
activations become more intense within the phoneme bound-
aries. For justifying our claim about channel output activations
during the phonemic segments, we picked some channels out-
put from the first layer by using correlation analysis with PHN
and AF features as the reference patterns. This analysis pro-
vided a better insight for choosing the corresponding filter out-
puts with regards to PHN and AF features with higher corre-
lation. As an example, we have chosen attribute fricative and
phoneme /3/ which are depicted in Fig. 3. The corresponding
filters’ output which are chosen after doing correlation analy-
sis are depicted in Fig. 3. We can see that these filters outputs
have high energies when the chosen attribute and phoneme are
active. Therefore, we can say these 1D-CNN layers are extract-
ing the linguistic information from FBEs. This is inline with
our expectation of sensing the significant energy changes at the
phone transition. Furthermore, we can see for the second CNN
layer compared to the first CNN layer, we have less activation
outside the ground truth activation times of the chosen attribute
and phoneme. By comparing the results for the SD experiment
using i) the proposed architecture, and (ii) the BLSTM model
that uses PHN features along with FBEs, from Fig. 4, it can be
observed, the proposed architecture’s better performance could
be explained by its inherent capability of 1D-CNN layers at ex-



Figure 2: FBE features for utterance “The birch canoe slid on the smooth planks.” and the resulted convolutional feature maps for the
1st, 2nd and 3rd layers.

tracting speaker dependent information not available in one-hot
encoded PHN features.
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Figure 3: AF feature for fricative and PHN features for
phoneme /3/ ( ) and channel output from the 1st 1D-
CNN layer ( ) and 2nd 1D-CNN layer ( ).

4.3. Speaker independent analysis
For evaluating the proposed method for SI training, we adopt a
leave-one-out strategy, where each speaker is in turn considered
as the testing speaker, and the rest of speakers are used in train-
ing. For articulatory data, we use TV trajectories as targets, and
FBE and PHN features are fed at the input of the neural archi-
tectures. We used PCC as the performance measure, because of
its intrinsic normalized nature that makes it less dependent on
the differences between speakers’ anatomy, and range of move-
ments. We can observe from Fig. 4 that 1D-CNN improves the
performance of both SD and SI configurations. Moreover, by
comparing the performances of 1D-CNN with FBE, PHN and
their combination, we can observe 1D-CNN has extracted more
speaker dependent information while it is less speaker indepen-
dent compared to FBEs. Using processed FBE features with
1D-CNN filters together with PHN features enhances the sys-
tem performance in both SD and SI.

5. Conclusion
In this paper, we address the problem of articulatory inversion
by employing 1D-CNNs as preprocessing layers to BLSTM lay-

0.75 0.80 0.85 0.90

PHN
FBE

1D-CNN-FBE
FBE+PHN

1D-CNN-FBE+PHN

SD
SI

Figure 4: PCC for the three different neural architecture tested
in the present work in both speaker dependent, SD, (blue bar)
and speaker independent, SI, (Orange bar) conditions.

ers. We show that this architecture improves the performance
for the SD AAI task compared both to a BLSTM network alone,
but also to BLSTM whose input is obtained with fully con-
nected layers with a larger number of parameters. We also show
that the representations obtained by the 1D-CNNs can be com-
bined with phonetic features to improve performance both for
SD and SI systems. The best result from only acoustic features
for SD AAI of TV trajectories is PCC=0.895 and by consider-
ing phonetic features is PCC=0.901. As a comparison the SD
results obtained by [30] on the same data set but with another
architecture, is PCC=0.826. Our best results from only acoustic
features for SI AAI of TV trajectories is PCC=0.755, by con-
sidering phonetic features with the proposed architecture, we
reached averaged PCC equals to 0.810 for SI system. For the
future works, we will focus on language learning and miss pro-
nunciation detection by employing AAI systems while we have
the transcription in this application.
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Abstract
Articulatory information has been argued to be useful for sev-
eral speech tasks. However, in most practical scenarios this in-
formation is not readily available. We propose a novel transfer
learning framework to obtain reliable articulatory information
in such cases. We demonstrate its reliability both in terms of
estimating parameters of speech production and its ability to
enhance the accuracy of an end-to-end phone recognizer. Ar-
ticulatory information is estimated from speaker independent
phonemic features, using a small speech corpus, with electro-
magnetic articulography (EMA) measurements. Next, we em-
ploy a teacher-student model to learn estimation of articulatory
features from acoustic features for the targeted phone recog-
nition task. Phone recognition experiments demonstrate that
the proposed transfer learning approach outperforms the base-
line transfer learning system acquired directly from an acoustic-
to-articulatory (AAI) model. The articulatory features esti-
mated by the proposed method, in conjunction with acoustic
features, improved the phone error rate (PER) by 6.7% and
6% on the TIMIT core test and development sets, respectively,
compared to standalone static acoustic features. Interestingly,
this improvement is slightly higher than what is obtained by
static+dynamic acoustic features, but with a significantly less.
Adding articulatory features on top of static+dynamic acoustic
features yields a small but positive PER improvement.
Index Terms: Articulatory inversion, transfer learning, speech
recognition, deep learning

1. Introduction
Parameters related to the position and movement of the articu-
lators involved in speech production can be of use in numerous
applications. Examples include automatic speech recognition
(ASR) [1, 2], speech synthesis [3, 4], pronunciation training [5]
and description of the speech production mechanism. The artic-
ulatory parameters can be derived by measuring the articulators’
kinematics through different methods, such as magnetic reso-
nance imaging (MRI) [6], X-ray microbeam [7], ultrasound [8]
and electromagnetic articulography (EMA) [9, 10, 11]. Among
these methods EMA is most frequently adopted as it allows us-
ing higher sampling rates and simple pre-processing is sufficient
to extract the articulatory features from the measurements.

However, measuring the articulatory trajectories directly is
not applicable in most real world applications since it requires
instrumentation not available outside laboratories, and imposes
heavy burdens on the subjects. Thus, in order to utilize artic-
ulatory parameters in speech processing applications, we need
to estimate them from more accessible information. The most
obvious information source is the speech acoustic waveform,

and the task to be accomplished is acoustic-to-articulatory in-
version (AAI). AAI is challenging from several aspects. The
first problem is the one-to-many mapping problem because sev-
eral articulator gestures may produce the same acoustic speech
signal. A common approach to address this problem is to em-
ploy trajectory based deep neural networks [12, 13, 14, 15]. The
next problem is insufficient amounts of data for adequate mod-
eling of the acoustic space, leading to inferior performance for
speaker independent (SI) scenarios compared to the speaker de-
pendent (SD) scenarios, or matched speakers compared to mis-
matched speakers in SI scenarios. For the articulatory space,
lack of data is also important, but the articulatory domain ex-
hibits in general less variation compared to the acoustic space,
which makes it less speaker dependent.

In scenarios where the textual content of the spoken utter-
ance is known, linguistic information, e.g. the predicted phone
sequence for that utterance, can be used. Indeed, to cope with
scarcity of input data for modeling the acoustic space in the
AAI task, augmenting the acoustic features with linguistic in-
formation has been shown to improve the performance for SD
scenarios [16, 13, 15]. Systems utilizing the linguistic informa-
tion alone have also been reported to work quite well [17, 15]
even when using binary features, e.g. one-hot encoded phone-
mic features (PHN, phone identity) or binary articulatory fea-
ture vectors, where multiple features can be active simultane-
ously [15]. The performance of linguistic information based
articulatory inversion (AI) is in line with the reported results
in [18], which confirms that front articulators in the vocal tract
are related to the linguistic content and the back cavity articula-
tors are more speaker specific. We report in [19] that utilizing
linguistic features improves both SD and SI cases significantly.
That performance boost is due to less variation between speak-
ers in the linguistic space that is built from a limited set of dis-
crete binary value vectors, in contrast with the acoustic space
that is a continuous valued space. In fact, the speaker variabil-
ity in the linguistic space is limited to the phone duration in the
uttered speech sequence.

The advancement in deep neural networks for the task of
AI and the positive effect of exploiting PHN features in this
task motivate us to propose a new transfer learning approach
for AI. We extract articulatory knowledge from a speech cor-
pus providing articulatory measurements, e.g., the “Haskins
production rate comparison” (HPRC), and use transfer learn-
ing to convey the knowledge to a scenario where articulatory
measurements are not available, e.g., the TIMIT [20] phone
recognition task. To this end, a teacher model is trained to
perform phone-to-articulatory inversion (PAI) on HPRC. The
trained teacher provides articulatory targets needed to build a
student model that performs acoustic-to-articulatory inversion



Figure 1: Block diagram of the proposed transfer learning
method from the HPRC to the TIMIT database, and knowl-
edge distillations from phonemic features to acoustic features
through articulatory space. Dashed arrows correspond to no
training.

(AAI) on TIMIT. Finally, we use the articulatory information
that we estimate on TIMIT through AAI, as input features to
perform phone recognition, demonstrating that articulatory fea-
tures boost phone recognition accuracy.

The rest of paper is organized as follows. The proposed
transfer learning method is described in Section 2. Corpora and
evaluation methods are in Sections 3 and 5, respectively. Ex-
periments and results are described in Section 5 followed by
Section 6 to conclude our work.

2. Teacher-student approach to articulatory
information transfer

The proposed approach is motivated by the following observa-
tion: Articulatory information can be useful for various speech
processing tasks, such as ASR. However, such information is
not usually available in corpora for speech recognition. More-
over, it may not be possible to estimate articulatory parameters
from the speech signal (AAI) with a satisfactory level of accu-
racy, and speaker adaptive AAI suitable for typical ASR scenar-
ios is a challenging task. To overcome this, we propose to use
phonemic to articulatory inversion (PAI), which is speaker in-
dependent by design, as a bridge between scenarios where AAI
can be estimated, and speech technology applications where this
is usually not the case.

To put forth our solution, we define the following feature
sets, and models. The acoustic features, x ∈ Rn, the articula-
tory features, y ∈ Rm, and the phone features, p ∈ Bl, where
R is the field of real numbers, and B is the Boolean field. A
teacher neural architecture is built on HPRC data to perform
the mapping fPAI : Bl → Rm, from phonemic to articulatory
features. This mapping is shown in the upper part in Figure 1.
The teacher model not only performs PAI for the HPRC task,
but it also provides the articulatory targets for performing PAI
with TIMIT data. This process is shown in the middle part in
Figure 1, where the PAI architecture is copied to be used with
TIMIT phone features at its input and generates articulatory fea-
ture estimates at its output. Finally, a student neural architecture
is built to perform the mapping fAAI : Rn → Rm on the TIMIT
task. The inputs are acoustic features extracted from the TIMIT
waveforms; the outputs are articulatory targets, provided by the
teacher neural networks. This step is shown in the bottom part
in Figure 1.

With the above feature sets and models, we are ready to use
fAAI in order to recover the articulatory features directly from
the speech signal without using any annotations. Those artic-
ulatory features can be used e.g. as supplemental information
in an ASR task, with the goal of improving the overall system
performance. In sum, we have built a framework to transfer
the knowledge embedded into the articulatory parameters avail-
able in the HPRC task to the TIMIT task by using fPAI and fAAI

systems, avoiding to address the mismatch between different
recording settings and speaker characteristics through a adapta-
tion stage, which is the conventional solution.

The two neural architectures used for articulatory estima-
tion and shown in Figure 1 were trained by minimizing the mean
square error (MSE) between estimated values and the ground
truth. Those two neural architectures accomplish the following
tasks:

Phone-to-articulatory inversion - PAI: This model is trained
to estimate the output articulatory features, y, from the input
PHN features, p. The PAI neural architecture consists of two
bi-directional long short-term memory (BLSTM) layers having
128 cells for each forward and backward directions.

Acoustic-to-articulatory inversion - AAI: The AAI neural
structure is a combination of five stacked 1-D convolutional
layers of kernel size [1,3,5,7,9], followed by two BLSTM lay-
ers with 128 cells in each direction. The convolutional layers
extract features from the input acoustic features, x, and the
BLSTM layers model temporal dynamics in the system and es-
timate the articulatory features, y.

3. Corpora
3.1. HPRC

The “Haskins Production Rate Comparison”(HPRC) [11], is a
multi-speaker EMA corpus with data from four female and four
male native American English speakers. Sampling rates for the
speech signal and the EMA recordings are 44.1kHz and 100Hz,
respectively. Eight sensors were used to measure the articula-
tors’ trajectories. Those eight sensors are placed at the tongue
rear (TR), tongue blade (TB), tongue tip (TT), upper and lower
lip (UL and LL), mouth left (ML), jaw or lower incisors (JAW)
and jaw left (JAWL). The sensors movements are measured in
the midsagittal plane in X, Y and Z direction, which denote
movements of articulators from posterior to anterior, right to
left and inferior to superior, respectively. In the HPRC corpus,
sensors do not record significant movements in Y direction; we
therefore generate information related to the articulatory move-
ments by employing the geometrical transformations defined in
[21] on the X and Z directions. Nine tract variables (TVs) are
obtained, namely: Lip Aperture (LA), Lip Protrusion (LP), Jaw
Angle (JA), in addition to Constriction Degree and Location for
Tongue Rear (TRCD, TRCL), Tongue Blade (TBCD, TBCL)
and Tongue Tip (TTCD, TTCL). The sampling rate of the ar-
ticulatory features was maintained. The HPRC speech signals
were resampled to 16kHz to match the TIMIT sampling rate.

3.2. TIMIT

The TIMIT database [22] consists of 6300 sentences spoken by
630 speakers from 8 major dialect regions of the United States.
There is a predefined portion for training consisting of all the
SX and SI sentences from 462 speakers with a total of 3696
sentences. The sentences from the remaining 168 speakers are
meant for development and testing purposes. We will follow
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Figure 3: TV trajectories from fPAI, fAAI-base, and fAAI-stud for
utterance “She slipped and sprained her ankle on the steep
slope.”

[23] and use the core test set spoken by 24 speakers for testing
and the development set spoken by 50 speakers for validation.
The core test set consists of 192 utterances and the development
set consists of 400 utterances.

4. Evaluation methods
We used two evaluation methods to assess the proposed tech-
nique. The first method computes the Pearson’s correlation co-
efficient explicitly on the target articulatory parameters. The
second method is implicit and aims at demonstrating the ef-
fectiveness of our approach by inspecting the effects of using
estimated articulatory features on the TIMIT phone recognition
task.
4.1. Pearson’s correlation coefficient

To measure the performance of the articulatory inversion meth-
ods, the Pearson’s correlation coefficient (PCC) [24] is adopted.
The PCC measures the similarity between estimated and ground
truth trajectories and is defined as:

PCC =

∑
i(y(i)− ȳ)(ŷ(i)− ¯̂y)√∑

i

(
y(i)− ȳ

)2∑
i

(
ŷ(i)− ¯̂y

)2 , (1)

where y(i) and ŷ(i) are the ground truth and estimated param-
eters value of the ith frame respectively and ȳ and ˆ̄y are mean
values of y(i) and ŷ(i).

4.2. End-to-end phone recognizer

There is no actual ground truth articulatory measurements for
TIMIT; therefore, we verify the performance of the proposed

approach through the phone error rate (PER) of a phone rec-
ognizer built on TIMIT data. In particular, the ESPnet recog-
nizer [25] is used in this work. This phone recognizer is based
on (i) an end-to-end encoder-decoder with hybrid connectionist
temporal classification (CTC), and (ii) an attention mechanism
[26]. The encoder part contains four layers of BLSTM with
320 cells, one layer of LSTM for the decoder with 300 cells,
location-aware attention mechanism with 10 convolution filters
of length 100, and the same weight, 0.5 for the CTC and atten-
tion losses. The interested reader is referred to [26] for more
details.

5. Experiments & Results
We evaluate two different types of AI systems, namely PAI-
and AAI-based systems. The PAI and AAI systems trained on
HPRC material are referred to as fPAI and fAAI-base, respectively,
and validated using the PCC measure. In order to assess the fPAI

accuracy for TIMIT data, the estimated TVs are visualized and
discussed with regards to the speech production mechanism.
The student model, which is referred to as fAAI-stud, trained on
the TIMIT acoustic data, is assessed from the inversion perfor-
mance point of view, with the average PCC measure computed
using the fPAI as ground truth. An example of estimated TVs
for fAAI-stud and fAAI-base are visualized. In addition, a compar-
ative ASR performance test is carried out for the TIMIT cor-
pus in terms of PER, to compare efficiency of the fAAI-base and
fAAI-stud systems and their complementary information for ASR
task. Implementations of AI systems are performed using Keras
[27] with TensorFlow backend [28].

5.1. Articulatory, phonemic, & acoustic representations

The TVs are calculated for the HPRC data at a rate of 100Hz. In
order to have the same 100Hz rate for the acoustic and phone-
mic feature, a 25ms sliding analysis window and 10ms frame
shift are used for acoustic feature extraction. The spoken ut-
terances in HPRC corpus were labeled with the Penn phonetics
lab forced aligner [29]. There are 61 phone categories which
are folded onto 39 categories [30] to match the conventional 39
phones used in TIMIT [20]. Each phone is represented as a one-
hot 39-dimensional vector (PHN) [17]. For TIMIT, we use PHN
features for estimating the TVs with the teacher network. For
AAI accomplished through the student network, we use the fea-
ture vectors consisting of 13 Mel frequency cepstral coefficients
(MFCCs). Finally, 23-dimensional Mel filter bank log energies
(FBE) are employed along with 3 estimated pitch and voicing
features as 26-dimensional static acoustic features in the ESPnet
phone recognizer. We also consider first and second derivatives
of the FBEs in the phone recognition task.

5.2. Phone-to-articulatory inversion on HPRC

The fPAI input is a 39-dimensional phonemic feature vector,
including silence. It should be noted that starting and end-
ing silences have been removed with an energy based thresh-
old speech activity detection (SAD) procedure. Moreover, the
9-dimensional TV features are utterance-based z-score normal-
ized and scaled to be in range (−0.5,+0.5). Training data from
the all eight speakers is used to build the fPAI system; whereas
validation data is employed with the goal of preventing over-
fitting. In Fig. 2, we observe that the fPAI is able to predict the
articulators in the front vocal cavity akin to the fAAI-base system.
This is inline with what reported in [18, 31], namely that the
front articulators capture the linguistic content. The back cav-



Table 1: PER for acoustic features and their combinations with
the estimated TVs from fAAI-stud and fPAI. D denotes feature di-
mensionality.

feature type D Dev PER Test PER

x 26 25.6% 27.9%
x, yAAI-base 35 20.9% 23.3%
x, yAAI-stud 35 19.6% 21.2%
x, ∆x, ∆2x 78 19.8% 21.4%
x, ∆x, ∆2x, yAAI-base 87 19.8% 22.8%
x, ∆x, ∆2x, yAAI-stud 87 19.1% 20.8%

Table 2: Lower bound of PER for the estimated TVs from fPAI
combined with the FBEs.

feature type D Dev PER Test PER

yPAI 9 12.3% 13.3%
x, yPAI 35 8.8% 9.5%
x,∆x,∆2x, yPAI 87 8.2% 9.1%

ity articulators relate closely to speaker specific properties as
it is mentioned in [31], and this is reflected by the less precise
prediction capability of the PAI system than the AAI system.

5.3. Acoustic-to-articulatory inversion on HPRC

The performance of fAAI-base system in terms of PCC is shown
in Fig. 2. As discussed before, PCC values are comparable for
fPAI and fAAI-base systems for front vocal cavity. For the back
cavity, the fAAI-base system performs better. We can attribute the
better performance of the AAI in comparison with the PAI, to
the matched speaker independent training style.

5.4. Teacher-student approach to AAI on TIMIT

In the proposed teacher-student approach to perform transfer
learning and extract articulatory estimates from acoustic infor-
mation, we use the fPAI system previously trained on HPRC as
the teacher. Articulatory parameters are estimated in terms of
TV for TIMIT by feeding TIMIT phonemic transcriptions into
the fPAI system. In Fig. 3, we can observe (inside the solid
ellipses) that for production of the stop sound /p/, the LA is
decreasing and LP is increasing, vowel /æ/ has wider LA or JA
than vowels /eI/ or /oU/, which is inline with dropping of the jaw
in production of vowel /æ/ while the jaw is slightly open in /eI/
or closed in /oU/. Evaluation of the student model (fAAI-stud) is
carried out by the average PCC measure, which is 0.929 for the
core test set of TIMIT. The PCC distribution is shown in Fig. 4
for each TVs. Estimations from fAAI-stud and fAAI-base are visu-
alized in Fig. 3. We can observe that at the end of the utterance
(inside the dashed ellipses), the values of the fAAI-base estimation
do not decrease or increase for lip separation or protrusion, re-
spectively, when the stop sound /p/ is present and it is expected
to have lowest values for the LA compared to the other phones
in this sequence of phones. We can see the fAAI-base estimation
of the LA for /l/ is less than the estimated value for /p/ which is
wrong because for production of /p/ lips are closed and for pro-
duction of /l/ lips are separated. That implies the fAAI-base model
does not provide correct information with respect to speech pro-
duction constraints.

TRCD TRCL TBCD TBCL TTCD TTCL LA LP JA

0.4

0.6

0.8

1.0

Figure 4: Distribution of PCC between estimated TV trajecto-
ries from fAAI-stud and fPAI.

5.5. Exploiting TV estimates in phone recognition

We now explore the role of articulatory information in the task
of phone recognition. The ESPnet recognizer in Section 4.2 is
employed to build all of our phone recognizers. Several exper-
iments are conducted in order to gain insights on the role of
the TV estimates in speech recognition. In the initial experi-
ment, we train the phone recognizer on static acoustic features,
(x), only. In the second experiment, we include dynamic fea-
tures to x and denote it as (x,∆x,∆2x). The phone recognizers
based on acoustic features only serve as baseline systems. The
PER for different input features is reported in Table 1. yAAI-stud

combined with x, significantly improves the recognition accu-
racy, and reduce the PER by 6.7% on the test set. Interestingly,
a slightly better PER, +0.2%, is obtained by replacing the 52-
dimensional dynamic acoustic features (∆x,∆2x) with the 9-
dimensional yAAI-stud. Moreover, we can observe that employing
the yAAI-stud obtains better performance than the yAAI-base. The
combination of yAAI-stud with x,∆x,∆2x reduces the PER by
0.6%.

Finally, we used the TV features yPAI (obtained from the
phonemic transcriptions) alone and combined with x,∆x,∆2x
to calculate the lower bound of PER in this problem. The results
are shown in table. 2.

6. Conclusions
This work proposes a new teacher-student method to transfer ar-
ticulatory knowledge from the HPRC corpus through phonemic
features onto the TIMIT corpus, which is purely acoustic. We
exploit the transferred knowledge to build an acoustic to artic-
ulatory inversion (AAI) system for TIMIT with the goal of im-
proving ASR performance. In this way, we obtained 0.6% im-
provements compared to the baseline system for PER when the
mixed acoustic and estimated articulatory representations are
used. Similarly we obtain better PER combining static acoustic
and articulatory features (35 dim.) compared to dynamic acous-
tic features (78 dim.) proving that articulatory features are a
more efficient representation of the dynamics of speech produc-
tion. We also show that our method performs better than trans-
ferring AAI models trained on the HPRC corpus with acoustic
adaptation. In the future, we will work on transfer learning of
both acoustic and phonetic features to improve the performance
of our AI system and getting closer to the PER lower bound.
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Articulatory Inversion Models
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Abstract—We investigate the problem of speaker independent
acoustic-to-articulatory inversion (AAI) in noisy conditions within
the deep neural network (DNN) framework. In contrast with
recent results in the literature, we argue that a DNN vector-
to-vector regression front-end for speech enhancement (DNN-
SE) can play a key role in AAI when used to enhance spectral
features prior to AAI back-end processing. We experimented
with single- and multi-task training strategies for the DNN-SE
block finding the latter to be beneficial to AAI. Furthermore,
we show that coupling DNN-SE producing enhanced speech
features with an AAI trained on clean speech outperforms a
multi-condition AAI (AAI-MC) when tested on noisy speech. We
observe a 15% relative improvement in the Pearson’s correlation
coefficient (PCC) between our system and AAI-MC at 0dB signal-
to-noise ratio on the Haskins corpus. Our approach also compares
favourably against using a conventional DSP approach to speech
enhancement (MMSE with IMCRA) in the front-end. Finally, we
demonstrate the utility of articulatory inversion in a downstream
speech application. We report significant WER improvements on
an automatic speech recognition task in mismatched conditions
based on the Wall Street Journal corpus (WSJ) when leveraging
articulatory information estimated by AAI-MC system over
spectral-alone speech features.

Index Terms—Deep neural network, Acoustic-to-articulatory
inversion, Speech enhancement, Multi-task training, Speaker
independent models.

I. INTRODUCTION

THE human speech production system contains several
organs, namely, lungs; trachea; larynx; throat; oral and

nasal cavities. The oral cavity comprises several anatomi-
cal elements, such as velum, tongue, teeth, jaw and lips.
Those elements are considered as the articulators. Articula-
tor movements result in the production of various speech
sounds. The problem of estimating the articulators’ movements
from the acoustic speech signal is referred to as acoustic-to-
articulatory inversion (AAI). In recent years, AAI has attracted
increasing attention because of its potential applications in
speech processing. Examples include low bit rate coding [1],
automatic speech recognition (ASR) [2]–[4], speech synthe-
sis [5], [6], computer aided pronunciation training (CAPT)
[7], [8], depression detection from speech [9], [10], and
speech therapy [11], [12]. The articulators’ movements can be
measured and parameterized through various techniques, for
instance real-time magnetic resonance imaging (rt-MRI) [13],

X-ray microbeam [14], electromagnetic articulography (EMA)
[15], and ultrasound [16]. Nevertheless, obtaining articulatory
measurements is not practical in real world applications since
it requires instrumentation not available outside laboratories,
and imposes heavy burdens on the subjects. As a consequence,
estimation of these parameters from the available source of
information, which is the speech signal, must be achieved
through an AAI system. Unfortunately, this inversion problem
is highly non-linear and non-unique [3], [17], which means
that different articulator configurations can produce the same
sound. Moreover, coarticulation [18], i.e., the impact of adja-
cent phonemes on the articulators’ movement, makes the AAI
problem even harder. In addition, articulatory measurements
are only available for a limited number of speakers. This
limitation introduces an additional complexity to the AAI
problem and urges building up speaker independent AAI
systems (SI-AAI) that can be utilized for speech databases
with no articulatory recordings.

The majority of available AAI works mainly focused on two
different aspects: (i) the acoustic feature representation, and
(ii) the solution to the AAI regression problem with different
techniques. Different acoustic representations, such as Line
Spectral Frequencies (LSFs) [19], Perceptual Linear Predictive
coding (PLP) [20] and Mel-Frequency Cepstral Coefficients
(MFCCs) [21] have been widely used for the AAI task. Filter-
Bank Energies (FBEs) from STRAIGHT spectra [22] have
also been employed as the input of the AAI system [23].
Among these features, MFCCs are reported to perform better
compared to other features for SI-AAI [24], [25].

In the literature, various techniques are applied to the AAI
problem, e.g. search-based algorithms in the joint codebook
of the acoustic-articulatory space [26], [27], non-parametric
and parametric statistical methods, such as support vector
regression (SVR) [28], local regression approach based on
K-nearest neighbour [29], joint acoustic-articulatory distri-
bution by utilizing Gaussian mixture models (GMMs) [30],
hidden Markov models (HMMs) [7], mixture density networks
(MDNs) [31], deep neural networks (DNNs) [4], [32], and
recurrent neural networks (RNNs) [23], [33]–[39]. Among
those methods, the neural network based models outperform
the rest by having the ability of dealing well with large context
size and better modelling of acoustic and articulatory spaces.

It is also important to remark that most of the available
AAI research is accomplished using clean data, with the goal
of improving the AAI accuracy either for speaker dependent,
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or speaker independent cases. Real world speech applications,
however, suffer from the presence of environmental noise
in the recordings, which in turn leads to a performance
degradation of the AAI system. There are few works available
for AAI in noisy conditions. Most of these works are in the
field of robust ASR [4], [40], and use synthetically generated
speech data obtained with an articulatory synthesizer and
the Task Dynamics and Applications (TADA) system [41].
To the best of the authors’ knowledge, there is only one
work dealing with real articulatory measurements in noisy
conditions [42], where the authors compared the accuracy of
two AAI systems. One system was trained on clean data (AAI-
C); the other system was built using multi-condition speech
data (AAI-MC), including clean data. For the AAI-C system
the noisy test data were optionally enhanced by minimum
mean square error (MMSE) based speech enhancement (SE)
[43]. The outcome of the study was twofold. First, AAI-MC
seemed to be the best solution for dealing with noisy data.
Second, MMSE-based SE on the noisy data led to a drop in
the AAI-C performance on noisy data compared to both AAI-
MC and to AAI-C with unprocessed speech. Such an outcome
contrasts with the naı̈ve expectation that enhanced speech
should yield an improved performance. A possible explanation
of the unexpected outcome could be that distortions and
artifacts introduced by the MMSE-based method may have
reduced the quality of the enhanced speech with respect to
the AAI task.

Although SE based on the MMSE approach did not seem
useful in AAI applications in noisy conditions, we observe
that deep neural network (DNN) based approaches to SE have
recently been shown to better overcome musical noise issues
and introduce less distortion than traditional digital signal
processing (DSP) methods [44]–[46]. Therefore, we argue that
DNN-SE can play a key role in AAI too if used at a pre-
processing stage before the downstream speech applications,
as demonstrated for other tasks in [47]–[49], for instance. Our
goal is therefore to clean up the input signal before sending
it to the off-the-shelf AAI-C, avoiding the need to build an
AAI-MC system leveraging multi-condition data. In addition,
for speech recognition in noisy conditions which is more
applicable in the daily usage, it would be helpful to apply
enhancement as a pre-processor, and estimate the articulatory
trajectories and subsequently utilize them in the recognition
task.

We design our SE system using deep neural networks
vector-to-vector regression with the goal to enhance the speech
features. The deep model used for the AAI task is stacked
on top of the SE model, allowing for joint optimization of
the full model for further improved performance. In this way
the overall neural model learns to enhance the noisy speech
in a helpful way for the AAI goal. To better appreciate our
experimental evidence, we compare and contrast our proposed
approach with the MMSE-based speech enhancement with an
improved noise estimation method, namely minima controlled
recursive averaging (IMCRA) [50]. The IMCRA algorithm
produces less distortion in the enhanced speech compared
to the original MMSE based approaches, e.g. [43]. We will
refer to IMCRA based system as DSP-SE. Moreover, we

assessed the role that articulatory information, extracted with
the proposed solution, could play in a downstream speech
application using an ASR task in noisy condition, namely a
hand-crafted noisy version of the Wall Street Journal (WSJ)
task [51]. Experimental evidence clearly demonstrates the
beneficial effect of combining articulatory information with
standard spectral-based speech features when decoding noisy
speech data using a character-based encoder-decoder end-
to-end ASR system leveraging both a hybrid connectionist
temporal classification (CTC) loss function, and the attention
mechanism.

The rest of the paper is organized as follows. In section II
different neural architectures are described. Section III intro-
duce the corpora which are utilized in this research work,
and in Section IV, different experiments are conducted and
the results are discussed. Section V concludes our work and
suggests future work.

II. AAI SYSTEMS

In this section, three different systems are described. The
first system performs acoustic-to-articulatory inversion (AAI)
directly on (noisy) speech using a deep model; the second
systems consists of a feed-forward deep neural network based
speech enhancement module (DNN-SE) and an AAI module
based on a deep architecture; finally, the third system combines
the DNN-SE and DNN-AAI module into a single deep archi-
tecture and joint training is used to fine-tune the overall AAI
system. In the following, those three systems are discussed in
detail.

A. DNN for Acoustic-to-articulatory inversion (DNN-AAI)

A speaker-independent (SI) design is used to deploy the
DNN-AAI system, so that test speakers are removed from
the developing material during the training phase. The input
features are the standard MFCCs. These features have been
shown to attain better performance than other speech features
for the SI task [24] when higher order cepstral coefficients are
removed. The smooth nature of articulatory trajectories and
co-articulation effect suggest that the input temporal context
should be long enough to capture the needed information with
respect to to the output trajectories [3]. We select every other
frame in a 2 × Maai window preceding and succeeding the
current frame to construct the following extended input vector:

Xaai[n] =
[
X[n− 2×Maai]

T , . . . , X[n− 2]T , X[n]T ,

X[n+ 2]T , . . . , X[n+ 2×Maai]
T
]T

, (1)

where Xaai is the contextualized MFCC vector for the AAI
system and [.]T indicates the transpose operator. Employing
every other frame gives us the benefit of longer temporal
context with less parameters in the AAI model with no
performance degradation.1 Fig. 1 shows the structure of input
data for a DNN-AAI system, where the output features are
tract variables (TVs), which are described later in Section

1Experiments with different decimation factors, D, showed no PCC degra-
dation for D = 2 and a moderate degradation for D = 3 and 4.
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IV. The input features and output targets of the DNN-AAI
system are mean and variance normalized at an utterance level.
DNN-AAI systems trained on clean and multi-condition noisy
speech data will in the following be denoted AAI-C and AAI-
MC, respectively.
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Fig. 1. DNN based AAI system with 340 ms input context of MFCCs, and
tract variables (TV) as the output.

B. DNN-SE for AAI

In this solution, a DNN is first built to map noisy speech
features into estimated clean features using a regression frame-
work [46]. The AAI-C system is then used to estimate the
articulatory trajectories. The DNN-SE system is based on a
feed-forward layered structure of non-linear hidden layers and
a linear output layer. The non-linear blocks allow the network
to better handle the complex interactions between degraded
noisy signal and its clean counterpart, as argued in [46].
The input features for the DNN-SE are globally mean and
variance normalized Log Power Spectra (LPSs). LPSs have
been obtained by taking the log of the squared magnitude of
the signal’s short-time Fourier transform (STFT). The DNN-
SE enhances only the magnitude spectrum; therefore, the noisy
phase is used in the reconstruction step (synthesis). In this
work, we synthesise the enhanced speech waveform from
enhanced magnitude and noisy phase spectrum using the the
overlap-add method [52], which was also used in [46], to be
able to assess the quality of the enhanced speech. To take into
account context information, Mse previous and future frames
around the current frame are used at the DNN-SE input:

Sse[n] =
[
S[n−Mse]

T , . . . , S[n]T , . . . , S[n+Mse]
T
]
, (2)

where the Sse is the contextualized LPS of the noisy signal as
the input vector.

It should be noted that Mse is shorter than Maai, that is,
less context is taken into account in the SE step. That is
coherent with the non-stationary property of noises, which
enables the network to have a better estimation of short-time
noise spectrum to be suppressed. At a target level, there are
several possible choices, namely, only clean LPS can be used
in a single-task learning procedure, or both MFCC and LPS
can be employed in a multi-task scenario. In the multi-task
case, the back propagated loss from the MFCC output layer

acts as a regularizer and would prevent the model to over-fit
to the training data. Moreover, the MFCC-related output layer
can be directly used as an input of the AAI-C system. Fig. 2
shows a sketch of DNN-SE system with multiple output tasks.

speech enhancement 
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Fig. 2. DNN based SE system with 120 ms context of noisy LPSs, and clean
LPSs and MFCCs as the output.

Although MFCCs can be derived from LPS through a
transformation, joint estimation of enhanced LPS and MFCCs
may impose additional constraints unavailable in the direct
prediction of clean LPS. As discussed in [53], Mel-filtering is
applied to make the acoustic features consistent with human
auditory perception. However there is so far no prior auditory
knowledge adopted in the LPS domain except for the log-
compression, and clean LPS features could therefore be better
predicted with a MFCC constraint imposed at the output
layer. Furthermore, the correlation information among differ-
ent channels can be incorporated in each MFCC coefficient
due to the discrete cosine transformation (DCT) [54] operation.
Therefore, we expect that correlated and consistent distortion
across different frequency bins can be learned when predicting
the clean LPS. Differently from [53] the DCT block in our
pipeline also performs dimensionality reduction, since we use
MFCCs for the AAI block.

C. Joint DNN-SE and DNN-AAI

In Sections II-A and II-B, we described the two independent
DNN-based systems for AAI and SE task respectively, where
the DNN-SE module could be employed in a pre-processing
step before the target AAI task to be accomplished with the
DNN-AAI system. Since the two independent systems are built
within the connectionist framework, we can stack them back-
to-front and obtain a single overall AAI system. The overall
system can be further fine-tuned using the same loss employed
to build the DNN-AAI system. However, the fusion of those
two systems into a single one is challenging, because of the
different temporal contexts used to build the two systems
independently. As mentioned in Section II-B, the DNN-SE
input context size (Mse) is smaller than AAI-C one (Maai). The
required frames for building the AAI input need to be provided
at the input layer of the DNN-SE module. To this end, a
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Fig. 3. Network structure of joint training of SE and AAI systems (Mse = 5,Maai = 8)

sequence Sjoint of contextualized speech vectors is presented
at the input of the joint system, where the sequence is built
as follows:

Sjoint[n] =
[
Sse[n− 2×Maai]

T , . . . , Sse[n− 2]T , Sse[n]
T ,

Sse[n+ 2]T , . . . , Sse[n+ 2×Maai]
T
]
, (3)

The DNN-SE module thus generates all needed input frames
for the AAI module, Xaai[n]. In the training stage, back
propagated error for the enhancement part is limited to that
referring to the middle contextualized vector in the input
sequence. The proposed architecture is illustrated in Fig. 3
where the LPS and MFCC tasks are considered for the current
time n. In this way the network parameters are trained on the
current time n, while being able to deal with the different
time-varying nature of the events to be handled in the two
modules. For the AAI module, the output concerned with the
MFCC task for each input sequence of contextualized LPSs is
reshaped to build the AAI input vector. The overall system loss
function based on mean squared error (MSE) is formulated as
follows:

Ljoint =
1

N

N∑

i=1

||yLPS
i − ŷLPS

i ||2 + ||yMFCC
i − ŷMFCC

i ||2+

||yTV
i − ŷTV

i ||2,
(4)

where, yi
(... )s are the reference output vectors, ŷi

(... )s are
the estimated vectors for each output and N is the number of
training samples.

III. CORPORA AND DATA REPRESENTATION

There are three tasks in this work, the main one is the
AAI, the second one is speech enhancement, and the third
task is automatic speech recognition. For the first task, two
corpora are employed, the “Haskins Production Rate Com-
parison”database (HPRC) [55], which contains both acoustic
and articulatory measurements, and the AURORA2 database
[56] which contains eight noise types. For the second task, we
additionally employ two datasets: TIMIT [57] with spoken
American English; and Nonspeech [58] which contains 100
various noise types. For the third task, we use the WSJ

dataset. In the following, the mentioned corpora are described
in details. Furthermore, the representation of the acoustic and
articulatory data is described.

A. Corpora

1) HPRC: The Haskins Production Rate Comparison
(HPRC) database is selected as the main database for the AAI
experiments. It contains recordings of eight native American
English speakers, four female (F01-F04) and four male (M01-
M04) speakers. There are 720 spoken utterances available
in the dataset with both normal and fast speaking rate. For
some of the normal speaking rate utterances, there are a few
repetitions available. Speech waveforms are sampled at the rate
of 44.1 kHz, and synchronous EMA recordings are available
at a sampling rate of 100 Hz. EMA recordings are obtained
from eight sensors, which record tongue rear or dorsum (TR),
tongue blade (TB), tongue tip (TT), upper and lower lip (UL
and LL), mouth left (ML), jaw or lower incisors (JAW) and
jaw left (JAWL). The articulatory measurements are aligned
to the occlusal plane in X, Y and Z directions, corresponding
to movements from posterior to anterior, right to left and
inferior to superior, respectively. The movements along the
Y axis carry limited information. In this work, we employed
only the X and Z directions of TR, TB, TT, UL, LL and
JAW. Furthermore, we used 80% of data for training, 10% for
validation, and the remaining 10% for test.
2) TIMIT: TIMIT [57], [59] is a speech corpus consisting

of 6300 sentences spoken by 630 speakers, covering 8 major
dialect regions of the United States. The dataset includes two
dialect sentences (SA), 1890 phonetically diverse sentences
(SI), and 450 phonetically compact sentences (SX). The
training set is predefined and consists of all the SX and SI
sentences from 462 speakers with a total of 3696 sentences.
The sentences from the remaining 168 speakers constitute the
full test set. We use the core test set [59], covering speech
material from 24 speakers, for testing purposes. A validation
set spoken by 50 speakers is used to prevent over-fitting and
performance tuning with respect to the validation data. The
core test set consists of 192 utterances, and the development
set consists of 400 utterances.
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3) Wall Street Journal - WSJ: The WSJ [51] corpus is
in two distinct parts: WSJ0 and WSJ1. The SI-84 training
material from the WSJ0 covers 7,193 utterances (15 hours).
The SI-284 (80 hours) data is formed by combining training
data from both the WSJ0 and WSJ1 (26,515 utterances).
For development and evaluation, 503 utterances (1.1 hour),
and 333 utterances (0.7 hour) are used, respectively. Clean
waveforms, sampled at 16kHz, and corresponding transcripts
are provided for both WSJ0 and WSJ1. Waveforms were
down-sampled to 8kHz to carry out our downstream ASR
experiments. Moreover, testing waveforms were corrupted
with noise in order to create mismatched conditions between
training (clean) and testing (noisy) and better assess the effect
of introducing articulatory information into an end-to-end ASR
system. More details are given in Section IV-G.

4) AURORA 2: AURORA 2 [60] is a corpus of noisy
speech created by adding noise of various types and levels
to clean speech recordings. In this work we only employ the
noise recordings consisting of eight different noise types that
are recorded in different places, namely, airport, crowd of
people (babble), car, exhibition hall, restaurant, street, subway,
and train station. The recordings contain stationary and non-
stationary noise segments, and are sampled at a rate of 8 kHz.

5) Nonspeech: The Nonspeech dataset [61], which contains
100 different environmental noises, is recorded with a 20
kHz sampling rate and was downsampled to 8 kHz for our
experiments. The noise types available in the dataset are as
follows, N1-N17: Crowd noise, N18-N29: Machine noise,
N30-N43: Alarm and siren, N44-N46: Traffic and car noise,
N47-N55: Animal sound, N56-N69: Water sound, N70-N78:
Wind, N79-N82: Bell, N83-N85: Cough, N86: Clap, N87:
Snore, N88: Click, N88-N90: Laugh, N91-N92: Yawn, N93:
Cry, N94: Shower, N95: Tooth brushing, N96-N97: Footsteps,
N98: Door moving, N99-N100: Phone dialing.

6) Simulated multi-condition dataset: Multi-condition
waveforms are synthetically generated by randomly adding
noise from AURORA2 and Nonspeech to the HPRC and
TIMIT speech samples at different signal-to-noise ratios
(SNR). The multi-condition data set also includes clean data.
To match the 8 kHz sampling rate of the AURORA2 database
the audio material from the other datasets is downsampled to
8 kHz. Another constraint is imposed by the 100 Hz sampling
rate of the articulatory measurements, which leads to a frame
shift of 10ms to match the 100 Hz sampling rate.

B. Articulatory data representation
As reported in [62], geometrical transformations can be

applied to the EMA measurements in order to transform
those measurements into tract variables (TVs). TVs have the
property of being more speaker independent than the original
measurements, because they are relative measures and suffer
less from non-uniqueness [63]. We use nine TVs, including
Lip Aperture (LA), Lip Protrusion (LP), Jaw Angle (JA),
Tongue Rear Constriction Degree (TRCD), Tongue Rear Con-
striction Location (TRCL). For TB and TT, we also calculate
TBCD, TBCL, TTCD and TTCL, as explained below. The
aforementioned geometrical transformations are defined as
follows:

LA[n] =

√(
LLx[n]−ULx[n]

)2
+
(
LLz[n]−ULz[n]

)2
,

(5)
LP[n] = LLx[n]− median

m∈all utterances
LLx[m]. (6)

LA represents the Euclidean distance between LL and UL
sensors. LP is defined as the movement of LL from its median
position in the X direction,

JA[n] =

√(
JAWx[n]−ULx[n]

)2
+
(
JAWz[n]−ULz[n]

)2
,

(7)

is defined as the Euclidean distance between the JAW and UL
sensors.

For each of the tongue sensors TR, TB and TT, two TVs are
defined. Those TV features represent constriction locations,
which are the deviations from median of the corresponding
sensor along the X axis, and the constriction degree, which
is the minimum distance between the corresponding tongue
sensors position and the palate trace. TRCL and TRCD are
defined as follows

TRCL[n] = median
m∈all utterances

TRx[m]− TRx[n], (8)

TRCD[n] = min
{√(

TRx[n]− xpal

)2
+
(
TRz[n]− zpal

)2}
,

(9)

where xpal and zpal are the palate coordinates on the occlusal
plane.

The remaining four variables TBCL, TBCD, TTCL and
TTCD can be obtained in a similar way:

TBCL[n] = median
m∈all utterances

TBx[m]− TBx[n], (10)

TBCD[n] = min
{√(

TBx[n]− xpal

)2
+
(
TBz[n]− zpal

)2}
,

(11)

TTCL[n] = median
m∈allutterances

TTx[m]− TTx[n], (12)

TTCD[n] = min
{√(

TTx[n]− xpal

)2
+
(
TTz[n]− zpal

)2}
.

(13)

C. Acoustic feature representations

As discussed in the previous sections, we study three tasks.
The first task is the AAI, which is the main task in the present
work; the SE is the second task. Both tasks are addressed under
the DNN framework. AAI models are trained over MFCC
feature vectors, which are extracted using a 20ms windowed
signal with a frame shift of 10ms. 13-dimensional MFCC
feature vectors are extracted from 23 Mel-scaled filter banks.
For the AAI system we set Maai = 8. This moderately long
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temporal span covers 340ms of the input acoustic data. As
already mentioned, the temporal context improves the AAI
performance due to the smooth varying nature of the articula-
tor trajectories. For the SE system, the log power spectra (LPS)
(256 coefficients) are calculated for 20ms windowed signal
with 10ms frame shift. The temporal context with Mse = 5
spans past and future frames around the target frame at time
n, that is equivalent to 120ms of speech.

IV. EXPERIMENTS AND RESULTS

The key experiments reported in this section are concerned
with AAI, and the effect of speech enhancement on AAI.
Speech enhancement quality is also reported for all of the
DSP- and DNN-based systems investigated in this work.
Finally, the role of AAI system in a downstream speech
application is assessed using an ASR task in noisy condition.

Moreover, several experiments have been carried out to
validate the proposed approach and fine tune all models.
With respect to the optimization of network parameters, the
AAI systems investigated in the present work have been built
leveraging clean and multi-condition data, resulting in AAI-
C and AAI-MC systems, respectively. The AAI-MC system
is considered in the present study, because it was recently
reported as the best AAI solution in noisy conditions [42].
For the evaluation of the optimized networks, clean, multi-
condition and enhanced multi-condition data are used. More-
over, all of the AAI experiments are carried out in mismatched
speaker conditions using the leave-one-speaker-out (LOSO)
cross-validation scheme during the training phase. For speech
enhancement, we compare and contrast the IMCRA-based
DSP approach (DSP-SE), and the feature-based vector-to-
vector regression with deep models for speech enhancement
approach (DNN-SE) discussed in [46]. The DNN-SE is de-
ployed using a deep feed-forward neural network with three
hidden non-linear layers, each having 1024 nodes. ReLU
activation functions [64] were employed in both AAI and SE
neural modules; whereas, a linear activation function was used
at the output layer. The PCC criterion was used to select the
best performing network on the validation data. Moreover,
early stopping prevents over-fitting to the training data, and
training is halted either when the PCC on validation data does
not improve for 10 consecutive epochs, or a total number of
epochs equal to 100 has been reached. The ADAM optimizer
[65] was employed to minimize the MSE between the ground-
truth and estimated tract variables. All neural models imple-
mented in our work were built using the Tensorflow library
[66] with Keras API [67]. Drop-out [68] was used to contrast
over-fitting, and a drop-out rate of 10% was used in each
hidden layer. Different DNN-SE systems have been built using
a different experimental setups, namely:

1) matched speakers, noise types, and SNRs between train-
ing and testing phases;

2) mismatched speakers but matched noise types and SNRs
between training and testing phases;

3) mismatched speakers, noise types and SNRs between
training and testing phases.

The purpose of latter experimental setup is to verify the ap-
plicability of DNN-SE in real-world conditions, where having

similar speakers, noise types and SNRs is highly unlikely. In
our experiments, we consider SNR levels in the range between
-5 dB to 20 dB in incremental steps of 5 dB. In the following,
experiments and results are presented and discussed in more
detail, yet we first introduce the metrics used in this work to
assess all systems.

A. Test data

Because we employ several corpora in this work, the data
split needs to be clarified. In all simulations, the test set is
from the HPRC database. In the case of multi-condition data,
the test set is distorted by additive noises from AURORA2.

B. Performance metrics

The Pearson’s correlation coefficient (PCC) was used as a
measure of accuracy between the estimated and the reference
TVs in the AAI systems. The reason for choosing PCC is
that the PCC is a normalized measure and varies between -1
to 1, and it is independent from the difference in articulatory
measurement’s ranges which is related to speakers’ anatomies.
A higher value of the PCC shows better performance of
inversion system.

Perceptual evaluation of speech quality (PESQ) was used to
evaluate the quality of the enhanced speech [69]. For comput-
ing the PESQ, enhanced speech waveforms were synthesized
from the enhanced LPS and the noisy phase spectra. The PESQ
score ranges from -0.5 to 4.5, and the higher the PESQ score,
the closer the enhanced speech is to the original clean speech.
Indeed, PESQ has been proven to provide a high correlation
to the quality scores rated by humans [70].

C. DNN-AAI results

Using LOSO cross-validation during training, each of the
eight speakers, in turn, becomes a test speaker while the
remaining seven speakers are used in the training phase.
Reported results are thus averaged across all test speakers.
Several experiments varying the number of hidden layers
and nodes in the DNN were carried out. PCC is used
to select the best AAI system using the validation data.
In particular, the following configurations were investigated:
[100, 300, 500, 1000] nodes, and [2, 3, 4, 5] hidden layers. The
PCC value is reported in the upper panel in Figure 4 when
clean data are used; PCC curves show that the best performing
AAI system has 5 hidden layers with 100 nodes per layer.
As the amount of available data is limited, it is reasonable
that increasing the number of parameters would not lead to a
performance improvement. The same set of experiments was
executed using multi-condition data, and results are reported
in the lower panel of Figure 4. We can see that either 4
or 5 hidden layers with 300 nodes can lead to the best
PCC score. For our following experiments we have chosen
the configuration with 4 hidden layers to save computational
resources.

After tuning the neural parameters, the average PCC on the
test set is calculated and reported with respect to two different
aspects, namely: 1) SNR level, and 2) noise type. Experimental
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results for different SNRs are shown in Fig. 5 for both AAI-
C and AAI-MC systems. It can be observed that AAI-MC
attains almost similar PCC on clean data and noisy data at
SNRs ≥ 15 dB. It can be concluded that the required speech
information for the inversion are obtainable at these SNRs.
The high standard deviation in the PCC distribution in Fig. 5 is
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database.

due to several factors, e.g., different test speakers performance,
different variation range for each of the TVs and the effect of
various noise types.

The effect of different noise types on the performance
of AAI-C and AAI-MC systems is shown in Fig. 6 that
shows the average PCC over different speakers and SNRs.
It can be observed that ’exhibition’ and ’subway’ noises have
the greatest negative effects on AAI accuracy and cause a
significant performance drop; in contrast, ’car’ and ’train’
noises have a minor negative effects on the final AAI accuracy.
Inspecting the long term averaged power spectrum of different
noise types in Fig. 7, we can observe that a common feature
of the noise types that cause the most severe degradation of
the AAI performance is that they have considerable energy in
frequency bands between 1 kHz and 3 kHz. For clean data,
AAI-MC performs slightly better than the AAI-C, which can
be explained thinking of the larger amount of training data
used to build the system, i.e., a consequence of the data-
augmentation effect, especially data at an SNR equal to 20
dB.

D. DNN-SE results

The DNN-SE system has been trained in three different
scenarios. We briefly describe each scenario along with the
corresponding training procedure in the following.
DNN-SE1 - Matched speakers, noise types, and SNRs:
The HPRC dataset is used for the speech material, and the
AURORA 2 noises are added to it in order to synthetically
simulate noisy speech. All of the eight possible noises are
added to the speech waveforms at different SNR levels. The
same speakers, noise types and SNR levels are employed for
creating training, validation, and test data. Furthermore, these
settings are used in both the single and multi-task approaches
(see Section II-B). SNR levels are [0, 5, 10, 15, and 20] dB.
DNN-SE2 - Mismatched speakers, matched noise types
and SNRs: The speech material and noises are the same as
those employed in the first experimental scenario. Mismatch
between training and testing condition was inserted at a
speaker level. For each speaker, a stand-alone network is built
using the other seven speakers in the training phase, which
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TABLE I
PESQ PERFORMANCE COMPARISON OF SINGLE-TASK (ST) AND

MULTI-TASK (MT) SPEECH ENHANCEMENT SYSTEMS BASED ON DNN
FOR THREE DIFFERENT SCENARIOS.

SNR Noisy DSP-SE DNN-SE1 DNN-SE2 DNN-SE3
ST MT ST MT MT

-5 dB — — — — — — 2.359
0 dB 1.51 1.700 2.554 2.653 2.365 2.528 2.580
5 dB 1.75 2.077 2.767 2.873 2.544 2.729 2.770
10 dB 2.06 2.533 2.955 3.069 2.702 2.907 2.937
15 dB 2.47 2.950 3.104 3.224 2.828 3.048 3.074
20 dB 2.97 3.316 3.205 3.333 2.919 3.148 3.180

is applied to speech from the given speaker in the testing
phase. In doing so, the deep model is more realistic and better
simulates real world applications compared to the previous
scenario, which may be useful for a feasibility assessment.
SNR levels are again [0, 5, 10, 15, and 20] dB.
DNN-SE3 - Mismatched speakers, noise types, and SNRs:
In this third experimental scenario, the 8 kHz version of
the TIMIT corpus is used for the speech material, and the
challenging Nonspeech database is used for the noises. The
validation set also comes from TIMIT and Nonspeech. The
test set consists of material taken from the HPRC speakers and
degraded by AURORA 2 noises. The SNR levels in training
are [0, 5, 10, and 20] dB. Different SNRs, namely [-5, 0, 5, 10,
15, and 20] dB, are used in the test phase. These experimental
conditions are closer to what one can expect in real production;
moreover, our DNN-SE module is trained on independent data
and noises with respect to the testing conditions, so it functions
a general purpose SE tool.

Table I shows the average PESQ for models trained and
tested as discussed above. A visual inspection of Table I shows
that DSP-SE improves the average PESQ by 0.1 for 0 dB,
0.2 for 5 dB, 0.4 for 10 dB, 15 dB, and 20 dB. A main
issue with the DSP-SE method is its poor performance at
low SNRs, yet its strength is the inherent nature of the DSP
solution that does not require training data and makes it a
general SE tool for real-world applications. The best results are
expected for DNN-SE1, which is trained in matched conditions
for speakers, noise types, and SNR levels. Both single-task
(DNN-SE1-ST) and multi-task (DNN-SE1-MT) configurations
are evaluated. DNN-SE1-MT achieves a better performance
than DNN-SE1-ST, as it can be observed comparing columns
four and five in Table I. This confirms our intuition about the
regularization effect of the multi-task configuration. Indeed,
DNN-SE1-MT attains better PESQ compared to DSP-SE and
DNN-SE1-ST in all tested SNRs.

Experiments in matched condition demonstrated the fea-
sibility of our idea, and the positive effect of a multi-task
configuration for a SE task. DNN-SE2 is built using a different
training configuration, which takes into account a mild level
of mismatch between training and testing phases. Therefore,
a small drop in the SE performance is expected, and results
reported in the sixth and seventh column in Table I confirm our
expectation. Moreover, DNN-SE2-MT attains a performance
comparable to DNN-SE1-ST in spite of the more challenging
SE scenario. Given that multi-task is a viable way to boost SE

TABLE II
PERFORMANCE OF SI-AAI SYSTEMS TRAINED ON CLEAN AND

MULTI-CONDITION DATA AND TESTED ON CLEAN, MULTI-CONDITION AND
ENHANCED DATA.

Test data Enhancement AAI-C AAI-MC

Clean None 0.705 0.710
Multi-Cond None 0.595 0.665
Multi-Cond DSP-SE 0.568 0.620
Multi-Cond DNN-SE1-MT 0.699 0.711
Multi-Cond DNN-SE1-ST 0.689 0.702
Multi-Cond DNN-SE2-MT 0.670 0.701
Multi-Cond DNN-SE2-ST 0.662 0.693
Multi-Cond DNN-SE3-MT 0.678 0.697

performance in mismatched conditions, only DNN-SE3-MT is
built in the third experimental scenario, the most realistic and
challenging one. Since DNN-SE3-MT is trained as general
purpose SE module, it is not a surprise that it shows PESQ
values superior to those attained with DNN-SE2-MT. The key
strength of DNN-SE3-MT compared to the DNN-SE2-MT is
the larger number of speakers, and thereby speech material,
used in the training phase along with the more challenging
noises that the model had to deal with. In mismatched SNRs,
very promising results are obtained; for example, at an SNR
of 15 dB, DNN-SE3-MT slightly outperforms DNN-SE2-MT
in terms of PESQ. For -5 dB the PESQ value is 2.359 which
it is ≈0.2 less than 0 dB, and the PESQ value is 2.580 at 0
dB is ≈0.2 less than the PESQ value at 5 dB.

In general DNN-SE models have higher performance than
DSP-SE at low SNR levels.

E. AAI on SE data

We investigated the effect of enhancing the speech data prior
to AAI. Because it is unlikely that clean data are available in
real production, SE modules are employed prior to the AAI-
C system, as a pre-processing step. In doing so, we can use
an off-the-shelf AAI-C model without exploiting MC training.
We compare and contrast the effect of both DSP-SE and DNN-
SE on AAI, and the AAI-MC performance is reported to ease
the comparison.

First, we notice from Table II that AAI-C tested on data
enhanced by DNN-SE performs better than AAI-MC tested
on multi-condition data without enhancement. On the one
hand, it can be argued that the improvement comes from
an increase of the neural parameters obtained by coupling
two deep models. On the other hand, it should be noted that
the DNN-SE and the AAI-C deep model were independently
trained on different data, and our solution allows us to use an
off-the-shelf AAI-C system avoiding training a new system
from scratch. This aspect should not be underestimated in a
production pipeline of a real complex system. It should also
be recalled that [42] reported DSP-SE to cause a drop in the
AAI performance. We therefore further compare DSP-SE and
DNN-SE effects on AAI-C. In Table II, we see that DSP-
SE coupled with AAI-C indeed causes 0.11 drop in the PCC
compared with our DNN-SE-MT3 coupled with AAI-C. Most
importantly, for AAI-C, applying DSP-SE to the noisy data
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reduces the PCC by 4.5% relative compared to using the noisy
data directly. That result is in line with [42], and it could
be explained by the signal distortions usually introduced by
DSP-SE, such as musical noise [71]. In contrast, our DNN-
SE method does not cause any drop in the AAI performance,
and our findings open up a new path for DNN-based front-
end approaches in speech applications. In Table II, we see that
the DNN-SE system has a significant improvement over the
DSP-SE, an increase of 0.11 in terms of average PCC, and a
relative improvement of 19.36% is achieved using DNN-SE3-
MT system over DSP-SE. For the sake of completeness, we
report experimental results with multi-task (MT) and single-
task (ST) training strategies in Table II, both in matched
and mismatched speaker scenarios. The multi-task DNN-SE
methods outperform single-task counterparts; whereas, a drop
in PCC is observed when moving from matched to mismatched
speakers. However, speech enhancement is performed to avoid
building an AAI-MC system, we provided results using AAI-
MC on clean, noisy and enhanced data for completeness.
Interestingly, enhancing the noisy speech with the DNN-SE
based systems improves the AAI-MC model’s performance,
in contrast with what is observed for DSP-SE. It should be
noted the better performance of separate DNN-SE1-MT model
with AAI-MC model in comparison with the joint model
performance is due to the matched speaker condition of SE
module.

A detailed comparison in terms of SNR values of the AAI-
C on DSP-SE and DNN-SE systems, is shown in Fig. 8.
Enhancement with DNN-SE2-MT always gives a better PCC
in low SNR conditions. Moreover, DNN-SE2 and DSP-SE
lead to similar PCC only in very high SNR. At 0 db, from
Figures 6 and 8, we see that AAI-MC attains a PCC of 0.579,
and AAI-C on DNN-SE enhanced data attains a PCC of 0.67,
which accounts for a 15% relative improvement in favor of
the proposed DNN-SE based AAI-C approach.

The DNN-SE methods cause degradation for the clean data
performance compared to the performance of clean data on the
AAI-C. The performance degradation of AAI-C, for enhanced
clean data by DNN-SE system, can be explained by over-
smoothing of enhanced speech compared to the natural ones
or enhanced by DSP-SE method.

TABLE III
JOINT SPEECH ENHANCEMENT AND ARTICULATORY INVERSION

PERFORMANCE IN TERMS OF PESQ AND PCC.

0 dB 5 dB 10 dB 15 dB 20 dB

PESQ 2.655 2.864 3.050 3.197 3.301
PCC 0.697 0.697 0.697 0.697 0.697

F. Joint AAI and SE based on DNN

So far we have investigated the AAI system either using
stand alone AAI systems or decoupled SE and AAI system.
We now address both the SE and AAI tasks under a unified
DNN framework, by coupling the two deep architectures into
a single network and leveraging the availability of the MFCC
output in the SE module. Then, the overall network can be
jointly fine-tuned with the goal of accomplishing AAI. Train-
ing the joint model is challenging because back-propagation
of different tasks affect each other and make the convergence
slower compared to learning different models designed to
accomplish different tasks. To improve convergence, there are
two alternative procedures available:

1) First, the speech enhancement module is trained while
keeping AAI parameters frozen, so that the gradient flows
back through the network layers until the enhancement
module converges. Next, the speech enhancement module
weights are kept frozen, and the AAI parameters are
updated till convergence. In this way, the training scheme
will be similar to AAI training with enhanced multi-
condition data.

2) Initializing each the connectionist parameters with the
pre-trained DNN-SE3 and AAI-C weights, and then fine-
tune the whole system with the goal of accomplishing
AAI. In this way both modules start from a better
initialization starting point.

We decided to use the second approach to carry out joint
training of the SE and AAI blocks. The LOSO cross-validation
approach is utilized for training of the joint model. The
multi-condition data is kept the same as in the previous
experiments, to have comparable results. Table III reports
results with joint training. It is interesting to see that we can
improve both SE and AAI tasks in terms of PESQ and PCC,
respectively. It should be recalled that the DNN-SE has a
primary task which corresponds to enhancing the LPS speech
vector. By comparing PESQ values in Tables I and III, we
can observe that the SE module in the joint model attains
results close to the DNN-SE1-MT model which is the best
performing enhancement model presented in this work. The
AAI performance for different SNR levels are the same to the
third decimal place. The AAI performance of the joint model
on multi-condition data is PCC=0.697, and the AAI-C model
performance on clean data is PCC=0.705. The joint model
performance is closer to the AAI-C system on clean data
than the performance of either the AAI-MC system on multi-
condition data (PCC=0.665), or the AAI-C system on DNN-
SE3-MT data (PCC=0.678). This performance is expected
considering that the AAI part is tuned for the enhanced data in
the joint training of the enhancement and inversion systems.
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Fig. 9. Spectrogram of the utterance “Dill pickles are sour but taste fine.”, corrupted by Exhibition noise at SNR=5 dB. (a) noisy speech with (PESQ=1.768),
(b) enhanced by DSP-SE (PESQ=1.815), (c) single-task DNN based model (PESQ=2.204), (d) multi-task DNN based model (PESQ=2.55), multi-task DNN
based model jointly with the articulatory inversion (PESQ=2.89), and (f) the clean speech signal. Black arrows indicate the high energy whistle sound.
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Fig. 10. TTCD and JA trajectories for utterance “Dill pickles are sour but
taste fine.”, distorted by exhibition noise at SNR=5 dB.

In addition, from Fig. 8, it can be observed AAI-MC system
performs better than the AAI-C system with enhanced data by
DNN-SE modules at SNR≥10 dB. The joint model decrease
this under performing.

Fig. 9 shows spectrograms for a testing utterance corrupted
by exhibition noise at an SNR equal to 5 dB, clean, and
enhanced with different SE methods. The DSP-SE method
clearly introduces some distortions in the form of musical
noise. Moreover, it could not remove high energy whistle
sound (indicated by black arrows) starting at ∼ 1.93s. The
DNN based methods are instead able to suppress different
noise characteristics in the noisy signal but the over-smoothing
affects the higher frequency components. However, the un-
wanted whistle sound is completely suppressed by all of DNN-
SE methods.

TTCD and JA trajectories for the same selected utterance
are depicted in Fig. 10. The ”Noisy‘’one is estimated using
AAI-MC model, and the other trajectories are enhanced and
predicted by AAI-C model. From those trajectories in Fig. 10,
we can argue that the enhanced speech by DNN-SE methods
allows to obtain AAI accuracy like those obtained on the clean
speech signal. The estimated trajectories by the AAI-MC with
the noisy data as the input are very different with the estimated
trajectories by the AAI-C model, e.g. the estimated JA at ∼ 2s

which is due to the whistle distortion.

G. AAI for ASR

We now turn our attention on assessing the role of articu-
latory information on downstream speech tasks. To this end,
a continuous word recognition task is considered, namely the
WSJ0 [51], and several end-to-end automatic speech recog-
nition (ASR) systems are built and contrasted to demonstrate
the effect of TV information on the ASR performance in both
clean, and noisy conditions. The word error rate (WER) is
selected as the metric to compare the accuracy of all systems
deployed in this section.

Clean data is already available with the WSJ0 corpus, and
noisy data are synthetically generated by adding two noise
types, namely exhibition, and subway. In the previous sections,
the most adverse effects on AAI accuracy were caused by these
noise types. Two SNR levels are used for training and testing,
namely 0dB and 10 dB. WSJ waveforms are downsampled
from 16kHz to 8 kHz. 60-dimensional log Mel filter bank
energy (FBE) features were extracted using a 512-point short-
time Fourier transform to compute the spectra of each overlap-
ping windowed frame. A 32-ms Hamming window and a 16-
ms window shift were adopted. The end-to-end ASR systems
are all based on the end-to-end ESPnet recognizer [72],
which is a character-based encoder-decoder model leveraging
both a hybrid connectionist temporal classification (CTC) loss
function, and an attention mechanism [73]. The encoder part
contains 12 layers of BLSTM with 2048 cells, six layers of
LSTM for the decoder with 2048 cells, and a location-aware
attention mechanism with 10 convolution filters of length 100.
The CTC loss and the attention loss were weighted by 0.2 and
0.8 respectively. Words are obtained from characters using an
RNN language model, utilizing one LSTM layer with 1000
cells, which is trained on 65000 words from the WSJ1 corpus.
In our experiments, the “dev93” part of WSJ0 corpus is used
for parameter tuning. The actual evaluation is carried out on
the for the “eval92” part.

We built two ASR systems using different data conditions,
namely clean or noisy (0dB and 10dB), and different input
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TABLE IV
WER FOR THE ”EVAL92” PART OF WSJ DATABASE FOR THE TWO

MENTIONED ASR SYSTEMS.

Test Condition System 1 System 2

Clean FBEs 5.3 —-
Clean FBEs + TV (AAI-MC) —- 5.5
Clean FBEs + TV (DNN-SE+AAI-C) —- 5.4
Clean FBEs + TV (Joint) —- 5.4
Enh Clean FBEs 6.1 —-

10 dB FBEs 49.4 —-
10 dB FBEs + TV (AAI-MC) —- 22.6
10 dB FBEs + TV (DNN-SE+AAI-C) —- 19.8
10 dB FBEs + TV (Joint) —- 19.1
Enh 10 dB FBEs 42.3 —-

0 dB FBEs 78.2 —-
0 dB FBEs + TV (AAI-MC) —- 57.8
0 dB FBEs + TV (DNN-SE+AAI-C) —- 51.4
0 dB FBEs + TV (Joint) —- 49.8
Enh 0 dB FBEs 68.4 —-

speech features, namely FBEs, or FBEs and TVs. The first
system is trained on clean data and used FBE features; we
refer to this system as System 1, and it sets a WER lower-
bound when testing on clean data, and an upper-bound in
noisy conditions. The second system, System 2 is trained on
clean data and leverages both FBE and TV features. System
2 allows us to assess the effect of articulatory information on
the downstream ASR task.

Table IV shows all results gathered in our experiments.
System 1 is evaluated on three different conditions, namely
clean, noisy, and enhanced FBE features obtained with DNN-
SE3-MT. System 2 leverages TV features, which are obtained
with the AAI-C model described in Section IV-C in the
training phase. In the testing phase, however, TV features are
obtained either using the AAI-MC model in Section IV-C, the
DNN-SE3-MT+AAI-C model discussed in Section IV-E, or
the joint model discussed in SectionIV-F. A visual inspection
of Table IV reveals that System 1 attains the best results on
clean FBE features with a WER equal to 5.3%, and attains
the worst WER (6.13%) when tested in clean condition on
enhanced data, as expected. The use of TV features along
with clean FBE does not cause a significant increase of the
WER. In noisy conditions, namely testing on FBE extracted
on waveforms at 10dB and 0dB SNRs, we can see that
System 1 attains the worst WERs as expected . Interestingly,
the injection of TV features in System 2 boosts the ASR
recognition performance significantly. Given that System 2 is
also trained on clean FBE features as System 1, the latter
results allow us to argue that articulatory information plays a
key role in the selected downstream speech tasks. Moreover,
the estimated TVs from the joint model have the most effect
on the System 2 performance in terms of WER.

V. CONCLUSION

We have investigated into the speaker-independent AAI
problem in noisy speech conditions. We have shown that
DNN-based speech enhancement for input noisy signals can

boost the performance of the AAI-C system trained on clean
data. A good improvement was also observed for the AAI-MC
system trained on multi-condition data. In the mismatched-
speaker scenarios, enhancing multi-condition data with DNN-
SE combined with the AAI-C model performed better than
the straight AAI-MC system, which clearly demonstrates
the effectiveness of the proposed speech enhancement pre-
processing with deep models. Although the AAI-C system
with speech enhanced by DNN-SE systems performs better
than the AAI-MC system for noisy data, the performance at
high SNR levels is degraded. To cope with this degradation, a
joint model was proposed to perform both speech enhancement
and articulatory inversion, which demonstrated its benefit over
separate systems for each task. The joint system performance
is close to the performance of clean data in AAI-C system. The
key strength of applying DNN based enhancement methods
prior to the AAI-C model, compared to the AAI-MC method
are their better performance at low SNRs which is beneficial
for ASR systems in presence of noise. Our experimental results
also sheds new light on the AAI problem by contrasting what
reported in the recent literature, namely speech enhancement
does not bring any improvement when used in a pre-processing
prior to AAI with noisy data [42]. Finally, we show that
articulatory information can be useful in downstream speech
applications, namely end-to-end ASR.
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Abstract
We propose a novel sequence-to-sequence acoustic-to-
articulatory inversion (AAI) neural architecture in the temporal
waveform domain. In contrast to traditional AAI approaches
that leverage hand-crafted short-time spectral features obtained
from the windowed signal, such as LSFs, or MFCCs, our
solution directly process the input speech signal in the time
domain, avoiding any intermediate signal transformation, using
a cascade of 1D convolutional filters in a deep model. The
time-rate synchronization between raw speech signal and the
articulatory signal is obtained through a decimation process
that acts upon each convolution step. Decimation in time thus
avoids degradation phenomena observed in the conventional
AAI procedure, caused by the need of framing the speech
signal to produce a feature sequence that perfectly matches
the articulatory data rate. Experimental evidence on the
“Haskins Production Rate Comparison” corpus demonstrates
the effectiveness of the proposed solution, which outperforms
a conventional state-of-the-art AAI system leveraging MFCCs
with an 20% relative improvement in terms of Pearson correla-
tion coefficient (PCC) in mismatched speaking rate conditions.
Finally, the proposed approach attains the same accuracy as the
conventional AAI solution in the typical matched speaking rate
condition.
Index Terms: Acoustic-to-articulatory inversion, raw speech
modelling, 1D-convolution, temporal convolutional network
(TCN)

1. Introduction
Acoustic-to-articulatory inversion (AAI) refers to the problem
of estimating the parameters that describe the movement of the
articulators from the uttered speech. In recent years, AAI has at-
tracted increasing attention because of its potential applications
in speech processing. Examples include low bit rate coding [1],
automatic speech recognition (ASR) [2, 3, 4], speech synthe-
sis [5, 6], computer aided pronunciation training (CAPT) [7, 8],
depression detection from speech [9, 10], and speech therapy
[11, 12]. Several regression-based methods were devised to
to deal with the AAI problem before the deep learning break-
through. For example, non-parametric and parametric statisti-
cal methods, such as support vector regression (SVR) [13], joint
acoustic-articulatory distribution by utilizing Gaussian mixture
models (GMMs) [14], hidden Markov models (HMMs) [7],
mixture density networks (MDNs) [15]. State-of-the-art ap-
proaches leverage sequence-to-sequence deep models, for ex-
ample, recurrent neural networks (RNNs) in [16, 17, 18, 4, 19].

Interestingly, deep and non-deep methods focused mainly

on properly tackling the high non-linearity and non-uniqueness
issues in the AAI task. The speech representation commonly
adopted was in the short-time frequency domain, e.g., Line
Spectral Frequencies (LSFs) [20], Perceptual Linear Predictive
coding (PLP) [21] and Mel-Frequency Cepstral Coefficients
(MFCCs)[22]. Filter-Bank Energies (FBEs) from STRAIGHT
spectra [23] have also been employed as the input of the AAI
system [18], which uses a parametric modelling of the speech
spectrum, and the human auditory system. Those hand-crafted
speech features have been adopted due to their success in dif-
ferent speech processing areas, for instance, LSFs was useful
in speech coding [24], and voice conversion [25], FBEs and
MFCCs were widely adopted with success in speech recogni-
tion, speaker recognition [26], and voice conversion [27]. The
first required step in extracting those features is the windowing
of the speech signal in the time domain in the hope of satisfying
the requirements of stationarity posed by the Fourier transform.
However, the windowing typically has a fixed window dura-
tion and shift. A fixed analysis window and consequent con-
stant frame rate are not optimal settings for modeling the dif-
ferent characteristics of different parts of speech signal [28]. In
fact, non-stationary parts, such as plosives and transient speech,
have shorter duration compared to the stationary parts (e.g.,
vowels). Such a deficiency causes a performance degradation
in the final speech application, especially when the speaking
rate (SR) becomes slower or faster [29] compared to a normal
speaking rate: Changes in SR affect both dynamic and static
properties of speech. The former are related to the duration of
phonemes and their transient phase. The latter are related to the
distortion in the spectrum: “This distortion may be caused by
the unusual movement of articulators particularly when dealing
with co-articulations” [29]. In addition, there are several works
in speech applications [30, 31, 32] argueing that for particular
tasks using fixed filterbanks is not the optimal choice.

The above mentioned issues motivated us to leverage 1D
convolutional layers and decimation to extract suitable features
for the AAI task directly in the tempora domain. The pro-
posed solution will be presented in Section 2, where the key
features to avoid the degradation phenomena are discussed. In
Section 4, the experimental evidence will be reported, which
clearly demonstrates the advantages of the proposed approach
over conventional approaches. In particular, we demonstrate
comparable results with state-of-the-art conventional AAI so-
lution when speech features and articulatory features are syn-
chronous. Moreover, our solution based on the raw speech
waveform for articulatory inversion outperforms the conven-
tional state-of-the-art AAI system leveraging MFCCs by an
20% relative improvement in terms of Pearson correlation coef-
ficient (PCC) in mismatched speaking rate.
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2. Proposed Method
In the proposed method, the raw waveform is directly utilized
to accomplish the AAI task. To deal with the mismatch in
sampling rate between the acoustic speech signal and articu-
latory measurements, - the sampling rate of speech signal is
much higher than that of the articulatory signal, a multi-stages
decimation procedure is employed. Decimation can be accom-
plished by pooling layers - we use max-pooling layers, or lever-
aging the stride operation in the convolutional layers - samples
are skipped while sliding the convolutional filters over the input.
In this work, we employ both max-pooling layers and strides to
decimate the input signal and reduce its rate to that of the articu-
latory signal, namely 100 Hz. The decimation is done gradually
in several stages, which allows to cover a much bigger temporal
span compared to that of hand-crafted features, which is limited
to the frame length. Furthermore, using the max-pooling op-
eration with overlaps provides a non-uniform downsampling of
the signal that preserves the required information for the AAI
task from the relevant region of speech. This is in contrast with
the fixed and uniform downsampling factor needed to match the
articulatory rate when extracting handcrafted speech features.

After having the decimated the input to match the tar-
get articulatory rate, a temporal convolutional network (TCN)
[33, 34] is employed to captures the dynamics in the speech
signal, which are beneficial for the estimation of articulators’
movements. TCNs use hierarchy of temporal causal convolu-
tions to capture short and long range patterns from the input
signal leveraging upon dilated convolutions. The filter size k
and dilation factor d affect the receptive field of a TCN. The
receptive field of the TCN can be increased by choosing larger
filter size, and augmenting the dilation factor so that the recep-
tive field can cover the temporal length of (k − 1)d. One of the
TCN’s key strengths is the possibility of parallelizing the oper-
ations in contrast to RNNs. Finally, the TCN output is fed into
a 1D convolutional layer followed by a time distributed fully
connected layer to estimate the articulatory information.

3. Experimental Setup
3.1. Database

The EMA method is one of the most used techniques for the
recording of articulatory data, which also allows for simulta-
neous recording of the speech signal. One of the available
databases with EMA recording is the “Haskins Production Rate
Comparison”(HPRC) [35], which covers material from eight
native American English speakers, namely four female (F1-F4),
and four male (M1-M4) speakers. There are 720 sentences
available in this database with the normal and fast Speaking
Rate (SR). For some of the normal speaking utterances, there
are repetitions available. The amount of data for each speaking
rate (SR) is shown in Table 1, where ‘‘N1’’, ‘‘N2’’ and ‘‘F1’’
represent the normal SR; repetition of some of the sentences
with the normal SR; and fast SR, respectively.

Speech waveforms are sampled at rate of 44.1 kHz, and
the synchronously recorded EMA data are sampled at 100 Hz.
EMA data is measured from eight sensors capturing informa-
tion about the tongue rear or dorsum (TR), tongue blade (TB),
tongue tip (TT), upper and lower lip (UL and LL), mouth left
(ML), jaw or lower incisors (JAW) and jaw left (JAWL). The ar-
ticulatory movements are measured in the midsagittal plane in
X, Y and Z direction, which denote movements of articulators
from posterior to anterior, right to left and inferior to superior,
respectively. In this work, we used the X and Z directions of

Table 1: Available amount of data in HPRC database.

SR NO. utterances Amount of data (minutes)

N1 5756 ∼ 244
N2 1379 ∼ 55
F1 5735 ∼ 173
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Figure 1: The state-of-the-art S2S-AAI systems, employing (top)
hand-crafted features, (middle) extracted features from speech
frames by 1D-CNN, (bottom) extracted features from the whole
speech sequence by 1D-CNN and decimation layers.

TR, TB, TT, UL, LL and JAW for the speaker dependent AAI.

The speech waveforms are downsampled to 16 kHz for per-
forming AAI. For each of the fast and normal speaking rates,
80% of utterances are kept for training, 10% for validation data,
and 10% for the test, with no overlap among them.

3.2. Input representation

In our experiments, acoustic features for the conventional AAI
systems are extracted from a down-sampled waveform at 16
kHz using an analysis window of length 25ms with frame shift
of 10ms, yielding a frame rate to match rate of the EMA record-
ings. Acoustic features are calculated from 40 filters, which are
linearly spaced on the Mel-scale frequency axis. Log energies
in the overlapping frequency bands are called filterbank energy
(FBE) features. By taking the discrete cosine transform from
FBEs, MFCCs can be extracted. The first 13th cepstral fea-
tures, including energy, are kept and higher cepstral features are
liftered to remove the fine details of the spectral envelop.

3.3. Output representation

For the articulatory space representation, instead of using EMA
measurements, tract variables (TVs) [36] are employed. TVs
are relative measures and suffer less from non-uniqueness [37].
We employed nine TVs, which are obtained by geometric trans-
formations on EMA measurements. Those TVs are Lip Aper-
ture (LA), Lip Protrusion (LP), Jaw Angle (JA), Tongue Rear
Constriction Degree (TRCD), Tongue Rear Constriction Loca-
tion (TRCL). In a similar way for TB and TT we have TBCD,
TBCL, TTCD and TTCL, respectively.
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3.4. Neural Architectures

To better assess the proposed solution, three baseline systems
are built following state-of-the-art guidelines, as shown in the
top two panels in Figure 1. The first and second baseline sys-
tems employ hand-crafted features, MFCCs and FBEs. The
baseline with MFCC features, base1, consists of two BLSTM
layers with 128 cells in both forward and backward directions.
The baseline with FBE features, base2, uses a cascade of 1D
convolutional layers to extract high-level features from FBEs,
and two BLSTM layers with 128 cells are used to provide dy-
namic information to the full connected layer to predict TVs
[19]. The third baseline, base3, is inspired from [38], which
is similar to our proposed method, but it utilizes a 1D convolu-
tional layer to extract features over a windowed speech signal.
In that 1D convolutional layer, 256 filters with size spanning
320 samples (20ms) are used for feature extraction; next, two
BLSTM layers with 128 cells in each layer followed by a dense
layer are used to predict TVs. It should be noted that a batch-
normalization layer was employed after the 1D convolutional
layer, following [38], to prevent vanishing gradient.

In our solution, which is showed in the bottom panel in Fig-
ure 1, the filter size of the convolutional layers can be very
small due to multi-stage filtering. The first layer filter size thus
spans 40 samples, which is around 2.5 milliseconds (ms): the
following convolutional layer has filters with a size spanning 20
samples and with decimation through the max-pooling opera-
tor, the temporal span of second convolutional layer filters are
10ms. Filtering and decimation are carried out till features at
100Hz rate, which is equal to the TVs rate, are obtained. The
time span for each of the feature vectors with rate 100 Hz is
equal to 70ms considering all of the filtering and decimation
layers. In our approach, the batch-normalization layer resulted
to be useless, since there were not vanishing gradient issues.
The TCN contains 64 filters with length 3 and dilation rates of
power two up to 256, which is bigger than the maximum input
sequence length (400 samples or 4 seconds). The TCN output
are passed through a 1D convolutional layers followed by time
distributed fully connected layer to predict TVs.

3.5. Performance metric

To measure the accuracy of the AAI approach, Pearson’s cor-
relation coefficient (PCC) is chosen. The PCC measures the
similarity of the two trajectories, and it is a normalized score
which is independent of different range of speakers’ articula-
tory movements. The PCC measure is defined as follows:

PCC =

∑N
i=1(y(i)− ȳ)(ŷ(i)− ¯̂y)√∑N

i=1

(
y(i)− ȳ

)2∑N
i=1

(
ŷ(i)− ¯̂y

)2 , (1)

where y(i) and ŷ(i) are the ground-truth and estimated EMA
values of the ith frame, respectively; ȳ and ˆ̄y are mean values
of y(i) and ŷ(i).

4. Experimental Results
In the first set of experiments, the goal is to compare and con-
trast the use of 1D convolutional filters to extract features di-
rectly in the temporal domain from either a windowed speech
signal, i.e., base3, or without the windowing operation, i.e., our
solution. Next, we compare the proposed method against all
the three baseline systems in different experimental scenarios in
terms of matching and mismatching SR conditions. All the AAI
systems are speaker independent, and are evaluated both with
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Figure 2: The magnitude response of learned filters sorted by
center frequency for base3 system.
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Figure 3: The magnitude response of learned filters sorted by
center frequency for the proposed method.

matched and mismatched speakers for the training and testing.
In the mismatched speaker scenario, the leave-one-speaker-out
cross validation (LOSO) strategy is employed to carry out the
assessment.

4.1. 1D-CNN feature extractor

In the proposed and base3 solutions, the first convolutional
layer is extracting the features from the raw speech signal; how-
ever, a windowing pre-processing step is employed in base3. To
better appreciate the effect of the windowing process, the char-
acteristics of the learnt filters can be compared. To this end, the
frequency response of filters is computed, and the magnitude re-
sponses are sorted by the center frequency along the frequency
axis and displayed in Figure 2 for base3, and Figure 3 for base3
and proposed methods, respectively. From Figure 2, it can be
observed that ≈60% learnt filters’ center frequency are linearly
spread below 1000Hz and are non-linear above it. The highest
center frequency of filters in base3 system is less than 4000 Hz.
The narrow-band magnitude response of filters can be described
by the filters size which is 320 samples (20 ms). In Figure 3,
due to the short filter size (2.5ms), the learnt band-pass filters
have a bigger bandwidth compared to that of the base3 system
in Figure 2. Moreover, 75% of filters’ center frequencies are
non-linearly spread up to 3000 Hz. The center frequencies are
up to 6000 Hz, which is due to short duration of the filters and
therefore high frequency components of sounds do not filter-out
through the filtering of first layer. The preservation of detailed
information at high frequency is very useful in the estimation of
TVs for high frequency sounds, such as fricatives.

1186



Table 2: The average PCC for different systems in the matched
speaking rate condition. Spk cond indicates whether the speak-
ers in the training and testing sets are matched or mismatched.

Proposed base1 base2 base3
Spk cond test-SR

matched N 0.84 0.83 0.80 0.81
mismatched N 0.72 0.7 0.66 0.7

matched F 0.79 0.79 0.73 0.78
mismatched F 0.66 0.64 0.58 0.62

NO. Parameters 377,827 544,009 1,585,033 873,481

Table 3: The average PCC for different systems in the mis-
matched speaking rate condition. Spk cond indicates whether
the speakers in the training and testing sets are matched or mis-
matched.

Proposed base1 base2 base3
Spk cond test-SR

matched N 0.76 0.71 0.70 0.73
mismatched N 0.65 0.52 0.56 0.61

matched F 0.78 0.78 0.73 0.78
mismatched F 0.68 0.67 0.64 0.66

4.2. Matched speaking rate

We now assess the effectiveness of the proposed solution in
matched SR conditions. The training and test datasets have the
same SR, as described Section 4, but the speaker condition, Spk
cond, can be either matched of mismatched, as mentioned in the
end of Section 4. Table 2 shows the average PCC results for dif-
ferent systems, where “N” and “F” stand for normal and fast SR
respectively. PCC for all systems in normal SR is higher that
that in fast SR. The latter is inline with what expected, since
coarticulation effects are more severe in fast SR compared to
those in normal SR, so capturing and tracking them is more
challenging. Interesting, MFCCs allow better performance than
FBEs, as observable by comparing base1 and base2 in Table
2. In the mismatched speaker condition, it can be observed that
the system performs worse than the matched speaker condition
by ≈0.12 in PCC for both normal and fast SR, which is ex-
pected (first and second row of Table 2). In matched speaker
conditions, the proposed system attains the best results in terms
of PCC and is competitive with the state-of-the-art base1 sys-
tem in fast SR. Interestingly, base3 attains comparable or lower
PCC compared to base1 although the input features are in the
temporal domain. The latter supports the discussion laid out in
Section 4.1. Finally, the last row in Table 2 reports the number
of parameters used in each system. A visual inspection of Ta-
ble 2 allows us to argue that proposed solution attains, overall,
the best results with significantly less network parameters.

4.3. Mismatched speaking rate

We now turn to the problem of performing AAI in mismatched
SR. To this end, we use the systems in Section 4.2 but tested
in mismatched speaking rate condition. To clear ideas: systems
trained on normal SR data are evaluated on fast SR conditions,
and vice versa. Table 3 summarizes the experimental evidence,
in terms of average PCC, in both matched and mismatched
speaker conditions. Tested on fast SR, the performance of sys-
tems trained on normal SR drops significantly compared to that
obtained on normal speaking rate in Table 2. That is expected,

since fast SR causes an increase in the overlap among articula-
tors (increased coarticulation); therefore, AAI systems trained
on normal SR can not model fast coarticulation movements in a
proper way. However, the proposed method performance tested
on fast SR achieve PCC=0.65 while the base1 has PCC=0.52,
which is a relative 20% improvement. There is no appreciable
drop in PCC when systems trained on fast SR are tested on nor-
mal SR, and that is due to the fact that required information to
model normal coarticulation is also available in fast SR data.
By looking at the last row in Table 3, it can be observed that the
results in fast SR trained model, is better when predicting the
normal SR, which is another confirmation of easier prediction
of TVs in normal SR which has less coarticulation.

5. Conclusion
In this work, we addressed the acoustic-to-articulatory problem
is addressed in the temporal domain. Compared to conventional
state-of-the-art AAI solutions based on hand-crafted short-term
frequency features or windowed speech signal, 1D convolu-
tional filters are used to extract features meaningful for the AAI
task. Moreover, to match the articulatory rate, we avoid win-
dowing, which reduce precision in capturing details at high fre-
quency, and leverage instead decimation techniques. Moreover,
a temporal convolutional network (TCN) followed by a dense
layer is employed to map learned features to the TVs. Exper-
iments are conducted on HPRC database, which provides syn-
chronously recorded speech and EMA measurements for eight
speakers. Experimental evidence demonstrates that our solution
is feasible and attains top performance in mismatched speaking
rate conditions, and competitive performance in matched speak-
ing rate using however a significantly smaller amount of neural
parameters.
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