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“I think it’s much more interesting to live not knowing
than to have answers which might be wrong.
I have approximate answers and possible beliefs and different degrees of
uncertainty about different things,
but I am not absolutely sure of anything
and there are many things I don’t know anything about,
such as whether it means anything to ask why we’re here.
I don’t have to know an answer.
I don’t feel frightened not knowing things,
by being lost in a mysterious universe without any purpose,
which is the way it really is as far as I can tell.”

RICHARD P. FEYNMAN



Abstract

This thesis explores the properties of Windkessel Models based on synthetic
simulation studies and is a part of the cross-disciplinary project "My
Medical Digital Twin" at NTNU. The Windkessel models estimate the global
arterial properties by relating measured (aortic) pressure and flow through
linear differential equations. The aim is to make inferences about the
physically interpretable parameters, namely, total vascular resistance and
arterial compliance.
Inference is performed using an adaptive MCMC strategy. This allows us to
successfully omit the use of an emulator for the computer model and is one
of the main contributions of our work. As the second main contribution, we
investigate the effect of dependent and independent noise in simulated
pressure observations on the uncertainty and accuracy of parameter
estimates. This is, to our knowledge, never done for the Windkessel models,
nor other models based on linear differential equations.
We perform inference on models not accounting for the discrepancy, which
confirms that not accounting for the model discrepancy leads to biased and
unstable parameter estimates. Therefore, the inverse problem is set in a
Bayesian calibration framework, where a Gaussian process models the
discrepancy. Then, based on synthetically derived pressure observations,
the inverse problem is solved, accounting for and quantifying the
uncertainty in the model formulation and the parameter estimates.
Accounting for discrepancy allows us to recreate the true physical
parameters successfully. Furthermore, this proposed framework yields a run
time of estimating physical parameters for one person’s pressure and flow
observations to mere seconds. We also demonstrate the challenge of
incorporating model discrepancy in confounding issues with physical
parameters. This is solved through informative priors for observation noise
and discrepancy parameters, yielding the most robust parameter estimates
when subject to observations with time-dependent noise.



Sammendrag

Denne oppgaven utforsker egenskapene til Windkessel-modellene basert på
syntetiske simuleringsstudier, og er en del av det tverrfaglige prosjektet "My
Medical Digital Twin" ved NTNU. Windkessel-modellene estimerer de
globale arterielle egenskapene ved å relatere målt (aorta) trykk og strømning
gjennom lineære differensialligninger. Målet er å trekke slutninger om de
fysisk tolkbare parameterne, nemlig total vaskulær motstand og arteriell
etterlevelse.
Inferens utføres ved å bruke en adaptiv MCMC-strategi. Dette lar oss utelate
bruken av en emulator for data-modellen og er et av hovedbidragene til
dette arbeidet. Som det andre hovedbidraget undersøker vi effekten av
avhengig og uavhengig støy i simulerte trykkobservasjoner på usikkerheten
og nøyaktigheten til parameterestimater. Dette er, så vidt vi vet, aldri gjort
for Windkessel-modellene, og heller ikke for andre modeller basert på
lineære differensialligninger.
En enkel simuleringsstudie bekrefter at det å ikke ta hensyn til
modellavviket fører til uriktige og ustabile parameterestimater. Derfor er det
inverse problemet satt i et Bayesiansk kalibreringsrammeverk, der avviket er
modellert av en Gauss-prosess. Basert på syntetisk utledede
trykkobservasjoner løses det inverse problemet ved å redegjøre for og
kvantifisere usikkerheten i modellformuleringen og parameterestimatene.
Å estimere avviket lar oss gjenskape de sanne fysiske parameterne på en
vellykket måte. Videre gir dette foreslåtte rammeverket en kjøretid for å
estimere fysiske parametere for én persons trykk- og
strømningsobservasjoner på bare sekunder. Vi demonstrerer også
utfordringen med å inkorporere modellavvik i identifiserings-problemer
med fysiske parametere. Dette løses gjennom informative priorer for
observasjonsstøy og avviksparametere, som også gir de mest robuste
parameterestimatene ved observasjoner med tidsavhengig støy.
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Chapter 1
Introduction

Hypertension is a significant cause of premature death and is often referred
to as “the silent killer” [WHO [1]]. This is because most people with
hypertension are unaware of the problem, as it may have no warning signs
or symptoms. Therefore, it is essential to measure blood pressure regularly
and distribute information on preventing it from increasing.

"My Medical Digital Twin" is one of NTNU’s Digital Transformation Projects.
The Digital Twin is based on a broad combination of research areas, with the
goal to develop a personalized twin for patient-specific hypertensive
intervention [MyMDT [2]]. As every human is different and responds
differently to treatment, patient-specific intervention with monitoring and
predicting through a digital twin can contribute to changing the way we
treat lifestyle diseases in the future.

As a part of the MyMDT project, this thesis analyzes the Windkessel Models
commonly used to describe the cardiovascular system. The Windkessel
models relate blood pressure P (t ) and blood flow Q(t ) in the aorta through
linear differential equations and are referred to as lumped models
[Westerhof, Lankhaar, and Westerhof [3]]. Models are a simplification of
reality, and lumped models are a family of mathematical models for the load
to the heart, in which the physics of the entire systemic arterial tree is
represented by a few lumped parameters [Segers, Rietzschel, Buyzere,
Stergiopulos, Westerhof, Bortel, Gillebert, and Verdonck [4]]. By observing
these parameters, we can describe an individual’s medical condition, which
in turn can provide information about possible treatment or response to
treatment. Therefore, the main goal of this thesis is to obtain estimates of
the physical parameters of the Windkessel models, quantify their
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uncertainty and investigate how the estimates behave under different
conditions related to noise.

The measurement of pulse pressure is recognized as an important factor in
the prediction of cardiovascular mortality [Westerhof, Lankhaar, and
Westerhof [3]]. We want to obtain a model that we know creates robust and
unbiased parameter estimates. We can then observe how the digital twin’s
parameters change when subject to different medication. The models we
consider are the two and three-element Windkessel models. The
two-element Windkessel describes the hemodynamics of the arterial system
in terms of two physically interpretable parameters; resistance R and
compliance C . It can represent aortic pressure decay in diastole but falls
short in systole where blood pressure reaches its maximum value
[Westerhof, Lankhaar, and Westerhof [3]]. The terms diastole and systole
refer to when the heart muscles relax and contract respectively [Silva [5]]. As
the goal is to model the whole cardiac cycle, it is crucial to mend for the
two-element Windkessel models’ shortcomings in systole.

The three-element Windkessel model contains a third parameter
interpreted as a tuning parameter. This makes the model capable of
generating pressure wave profiles that closely resemble pressure waves
measured in the arterial tree [Segers, Rietzschel, Buyzere, Stergiopulos,
Westerhof, Bortel, Gillebert, and Verdonck [4]]. One could argue for using
the more complex model directly without any fuss. But, even though more
complex models might yield an improved fit to data, they often bring
identifiability issues of the parameters and/or loss of physical
interpretability. As presented in [Spitieris, Steinsland, and Ingestrom [6]],
the three-element Windkessel model fits observed data better but generally
overestimates the total arterial compliance.

We are considering an inverse problem, that is, to learn about the values of
parameters within the model from field observations, a process which is
often called calibration [Brynjarsdóttir and O’Hagan [7]]. We are estimating
the parameters R and C from the observations. In reality, the field
observations would be a real person’s medical history of flow and pressure
measurements. However, these kinds of measurements have not been
available for the work of this thesis. More importantly, we wish to keep the
experiments within a controlled environment. Therefore we simulate noisy
data from the three-element Windkessel model to obtain field observations.
We know that the two-element Windkessel model is wrong, but by using
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Bayesian calibration to get an accurate estimate of exactly how wrong the
model is, we can produce robust inference of the parameters R and C .

In a digital twin setting, individual sensor data can be noisy. Therefore, part
of our method’s analysis revolves around investigating how noise in field
observations affects the parameter estimates. As we do not live in a perfect
world, the common assumption of the field observations containing
independent and identically distributed noise does not hold in all cases.
Since the future digital twin operates with real-time sensor acquired data
from an individual, the noise is prone to dependencies over time, for
example due to movement. Consequently, we investigate how the
calibration procedure responds to simulation studies using synthetic field
observations containing both independent and dependent noise.
Furthermore, we only assume noise in simulated pressure observations, not
in flow Q, which is unrealistic, but a common assumption.

Furthermore, to make appropriate use of observations of the physical
system, it is vital to recognize model discrepancy, i.e., the difference
between the simulation model and the computer model output. Hence, our
primary focus lies in investigating the effect of model misspecifications and
biased errors and seeing if Bayesian calibration can solve the issues.

The method is inspired by the general statistical formulation presented in
[Higdon, Kennedy, Cavendish, Cafeo, and Ryne [8]] and Bayesian calibration
of Windkessel models made by [Spitieris, Steinsland, and Ingestrom [6]].
[Spitieris, Steinsland, and Ingestrom [6]] outline a statistical approach for
combining noisy field observations with the imperfect two-element
Windkessel model to calibrate parameters and to characterize uncertainty
in parameter estimates. By taking a Bayesian approach that closely follows
that of [Kennedy and O’Hagan [9]], they can explicitly model uncertainty in
model inputs and the discrepancy between the computer model simulator
and the actual physical system. Furthermore, in line with suggestions of
[Kennedy and O’Hagan [9]] (KOH), they incorporate underlying knowledge
of the calibration parameters in the form of prior distributions based on
prior knowledge about the processes, whereas a flexible Gaussian process
model the discrepancy prior [Spitieris, Steinsland, and Ingestrom [6]]. The
advantage of doing this in a Bayesian fashion is that the accuracy estimates
of all predictions and parameter estimates are available, accounting for all of
the modeled uncertainties [Berger and Smith [10]]. In addition, the Bayesian
methodology produces input-dependent optimal values for the calibration
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parameters, as well as characterizes the associated uncertainties via
posterior distributions [Karagiannis, Konomi, and Lin [11]].

In many cases, the computer model is computationally expensive. To mend
for this, [Spitieris, Steinsland, and Ingestrom [6]] impose in line with
suggestions by KOH to apply a Gaussian process(GP) model as
emulator(surrogate) for the computer model. KOH suggests inferring all
unknowns for both emulator and calibration parameters simultaneously,
using Markov Chain Monte Carlo (MCMC). [Gramacy [12], however, showed
that fully Bayesian KOH calibration yields emulator model fits that can be
unfaithful to computer model simulations, being biased by field data.
Therefore [Spitieris, Steinsland, and Ingestrom [6]] follow a modularized
approach proposed by [Bayarri, Berger, Paulo, Sacks, Cafeo, Cavendish, Lin,
and Tu [13]]. This suggests estimating the parameters in two stages. First,
they fit and estimate the hyperparameters of the emulator GP using only
computer model simulations. These values are then fixed when continuing
with the second stage of obtaining the posteriors for the parameters of
interest.

Modularization helps because it limits flexibility somewhat through a more
constrained prior, allowing only computer model runs to influence emulator
fits. [Bayarri, Berger, Paulo, Sacks, Cafeo, Cavendish, Lin, and Tu [13]]
showed that this can improve identifiability and mixing of the MCMC
algorithm. Nevertheless, confounding issues are a concern, and by
approximating the computer model with an emulator, we inarguably
introduce more uncertainty into the estimation procedure [Gramacy [12]].
Furthermore, according to [Spitieris, Steinsland, and Ingestrom [6]],
computer model outputs are usually functional, and specifically, the
Windkessel models produce time-series outputs. This creates a
computational challenge for the Bayesian calibration approach with the
emulator due to the quadratic complexity of the GP models. In addition,
mixing properties of the estimation procedure is slow when using an
emulator and depends on the values of the real parameters.

As a result of arising issues from using an emulator, it becomes attractive to
find computationally feasible alternatives. This is where adaptive MCMC
enters the picture. The adaptive MCMC performs a Random Walk (RW)
Metropolis-Hastings Algorithm, with a tuning of the proposal variance as
the chain is running, in line with [Shaby and Wells [14]]. The method is
made available through the R package NIMBLE [NimbleUserManual [15]],
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and is an extension of the probabilistic programming language BUGS. One
of its most significant advantages lies in its compiling scheme being
implemented in C++. As a result of both NIMBLE’s adaptive RW sampler and
its compiling scheme, the simulation run-times and the burn-in phase of
the chain are drastically reduced. In this thesis, we utilize this benefit of the
adaptive MCMC scheme and can therefore deviate from previous work in
[Spitieris, Steinsland, and Ingestrom [6]] by omitting the emulator and
operating with the actual computer model itself.

There are two main contributions of this thesis. The first contribution is
setting up and demonstrating the procedure of performing Bayesian
calibration on the Windkessel models without fitting an emulator for the
computer model. Secondly, we explore the properties of this approach with
dependent and independent noise. This is, to our knowledge, not done
before, neither for the Windkessel models nor for other models based on
linear differential equations.

Hence, the simulation studies are conducted to answer the following research
questions:

• Research Question 1: How does independent and dependent noise in
field observations affect the inference of parameters?

• Research Question 2: Will performing Bayesian calibration without
fitting an emulator yield well calibrated estimates from a misspecified
computer model?

As for the rest of this thesis, Chapter 2 gives background information on the
Windkessel Models, Bayesian Statistics, adaptive MCMC, and a brief
introduction to Gaussian Processes. Next, we present the general framework
and methodology in Chapter 2.3, which is tied to the Windkessel models in
Chapter 3 where we introduce the simulation studies. Finally, Chapter 4
presents and discusses resulting parameter estimates with associated
uncertainties.



Chapter 2
Background

The Windkessel models are described in Chapter 2.1. Bayesian inference and
calibration are introduced in Sections 2.2 and 2.3. Inference is performed
using Markov Chain Monte Carlo (MCMC) methods, introduced in Section
2.4. We use adaptive MCMC and the package NIMBLE by de Valpine [16]
et.al. This is presented in Section 2.4.1. Finally, Gaussian Processes are briefly
introduced in Section 2.5.

2.1 The Windkessel Models For Modelling the Cardiac Cycle

The cardiac cycle describes the physiological events associated with one
single heartbeat and is illustrated in Figure 2.1. It is essentially split into
systole (the contraction phase) and diastole (the relaxation phase). Each of
these is then further divided into an atrial and ventricular component [Silva
[5]. Following the grey area in Figure 2.1 named the ventricular ejection, we
have the systole, where the ventricles, i.e., the two lower chambers of the
heart, contract and eject blood out to the body through the aorta. As a result
of the ventricles contracting, the aortic pressure rises and reaches its
maximum at the systolic pressure. As the ventricles relax and allow fresh,
oxygenated blood to fill the chambers, the pressure gradually drops and
reaches the diastolic pressure [Klabunde [17]]. This is when pressure is at its
lowest and occurs immediately before the ventricles again contract and
eject blood into the aorta.

Together, diastolic and systolic pressure measurements make up the
medical judgment of a patient’s blood pressure. The current blood pressure
categories, according to the guidelines of the European Society of
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Figure 2.1: Arterial blood pressure over one Cardiac Cycle. Maximum point of the curve represents
the Systolic pressure, whereas the minima the Diastolic pressyre. Image from Klabunde [17].

Figure 2.2: The current blood pressure categories according to the guidelines of the European Society
of Cardiology and the European Society of Hypertension, last updated in 2018. Image from [Williams
et.al. [18]].

Cardiology and the European Society of Hypertension (ESC/ESH) updated
2018, are presented in Figure 2.2 [Williams et.al. [18]].

It is still an open question which model reflects the cardiac cycle the best
and leads to the best estimates of arterial properties, but the Windkessel
models prove as an eligible candidate [Segers, Rietzschel, Buyzere,
Stergiopulos, Westerhof, Bortel, Gillebert, and Verdonck [4]]. The
Windkessel models relate blood pressure P (t ) and blood flow Q(t ) in the
aorta and are so-called lumped models. Lumped models refer to a family of
mathematical models for the load to the heart, in which the physics of the
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entire systemic arterial tree is represented by a few lumped parameters
[NTNU [19]]. These parameters are relevant in the context where we do not
have access to a more fine-tuned model and can be used to monitor the
effect of medications used to treat cardiovascular conditions such as
hypertension.

wk2 : Q(t ) = 1

R
P (t )+C

dP (t )

d t
(2.1)

wk3 : Q(t )
(
1+ Zc

R

)+ZcC
dQ(t )

d t
= 1

R
P (t )+C

dP (t )

d t
(2.2)

Equation 2.1 presents the two-element Windkessel model, which describes
the arterial system through two physically interpretable parameters: total
peripheral resistance R and total arterial compliance C . We define flow Q(t )
as a function of time, and P (t ) represents the pressure. Total peripheral
resistance R is often referred to as total vascular resistance and represents
the resistance generated by the small arteries and arterioles. The
compliance element C mimics the elastic properties and the buffering
capacity of the large arteries [Segers, Rietzschel, Buyzere, Stergiopulos,
Westerhof, Bortel, Gillebert, and Verdonck [4].

With the addition of a third parameter, aortic characteristic impedance Zc ,
we have the three-element model, shown in Equation 2.2. Aortic
characteristic impedance is interpreted as a tuning parameter and does not
hold the same physical interpretation as R and C [Spitieris, Steinsland, and
Ingestrom [6]]. The addition of characteristic aortic impedance can be seen
as a link between the lumped Windkessel model and wave travel aspects of
the arterial system [Westerhof, Lankhaar, and Westerhof [3]]. As a result, the
three-element Windkessel model is capable of generating pressure wave
profiles that closely resemble pressure waves measured in the arterial tree
[Segers, Rietzschel, Buyzere, Stergiopulos, Westerhof, Bortel, Gillebert, and
Verdonck [4]].

The left part Figure 2.3 illustrates measured flow Q used as input to the
Windkessel Models, which gives the pressure curve. Simulated pressure
curves obtained from the two and three Windkessel models with fixed
parameters, R = 0.9, C = 1.3, and Z = 0.1, are presented in the right panel of
Figure 2.3. Compared to the real, measured pressure curve represented in
Figure 2.1 we observe how the three-element Windkessel indeed mimics the
pressure wave profile well. The two-element Windkessel, however, is
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Figure 2.3: Left: Flow Q used as input for the WK models. Right: Estimated pressure curves from the
two (red) and three (blue) element Windkessel model using flow Q in left plot and fixed parameter
values R = 0.9, C = 1.3, and Z = 0.1.

Figure 2.4: The Windkessel effect in both a hemodynamic and the equivalent electrical setting of the
Windkessel models. Image from [Westerhof, Lankhaar, and Westerhof [3]].

capable of producing an exponential decay in diastolic pressure but does, as
presented in [Westerhof, Lankhaar, and Westerhof [3]], fall short in systole.

It is common to present the Windkessel models as an electrical analogue,
demonstrated in Figure 2.4 [Segers, Rietzschel, Buyzere, Stergiopulos,
Westerhof, Bortel, Gillebert, and Verdonck [4]. Here we observe the WK
effect in both a hemodynamic and the equivalent electrical analog. The
original term ’Windkessel’ means ’air chamber’ in German. In the
hemodynamic representation in Figure 2.4 one can observe blood running
through the veins. The air reservoir marked ’WK’ behaves as the WK effect.
While blood is pumped through the veins, the air in the chamber is
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compressed, pushing the blood out of the chamber. As a result of age or
genetics, our veins become less compliant or elastic. This corresponds to a
reduction in the size of the air reservoir. Less area to move yields larger flow;
hence the pressure increases.

The electrical presentation in Figure 2.4 provides a more clear picture of the
roles the different parameters play. Here P (t ) is the voltage that drives the
circuit, and Q(t ) represents the current. Total arterial compliance C is
represented as a conductor, which stores the energy, and the resistive
element R resists the current. For the two-element Windkessel model, they
are placed in parallel. When a second resistive element is placed in series
with the RC model, namely the characteristic impedance Zc , we have the
three-element Windkessel model. As a result, the ratio of mean pressure and
mean flow i.e., systemic vascular resistance, can be assumed to be Zc + R
and not just R. Furthermore, the placement of Zc underlines its role as a
tuning parameter. The impedance will impact the blood flow arriving at the
part identical to the two-element Windkessel model, introducing an
amplitude loss and a potential flow shift (current).

To further demonstrate the impact the parameters have on the simulated
pressure waveform, we observe Figure 2.5 for the two-element Windkessel
and Figure 2.6 for the three-element Windkessel. Here we have calculated
the pressure curve from the Windkessel models using the flow in Figure 2.3
and changing one parameter while keeping the others fixed. We commence
with the two-element Windkessel model in Figure 2.5. To the left, we
observe that the C parameter controls the amplitude of the pressure curve.
However, the right plot illustrates the impact on the pressure curve when
varying R. Here the shape of the pressure curve remains the same, but its
intersection with the pressure axis increases intact with R. Hence R controls
the diastole and C the systole.

Moving on to the three-element Windkessel in Figure 2.6, we observe the
same behavior for R in the top right plot; however, the curve itself has a
different shape. This is all due to the impedance Z , illustrated in the two
bottom plots of 2.6. Here we are varying C with either Z = 0.1 or Z = 0.01.
For the latter, we observe that small Z values yield pressure curves identical
to the two-element model in Figure 2.5, whereas where Z = 0.1 we indeed
obtain the characteristic "bump" in diastole as in Figure 2.1. In addition,
increasing Z yields higher pressure, whereas increasing C yields lower
pressure. As a result, we can conclude that both C and Z control the
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Figure 2.5: The output pressure curve from running the two element Windkessel Model for fixed
R = 0.9 and different values of C (left), and fixed C = 1.3 and different values of R (right)

amplitude of the pressure curve in systole.

2.2 Bayesian Inference

We give a general introduction to Bayesian statistics and inference before
diving into Bayesian calibration. The section is based on [van de Schoot,
Depaoli, King, Kramer, Märtens, Tadesse, Vannucci, Gelman, Veen,
Willemsen, and Yau [20]], [Robert [21]] and the master thesis of [Lam [22]].

Bayesian inference yields a probabilistic approach for inverse problems, i.e.,
the process of calculating the parameters θ by studying the causal factors
behind them, like observations from a model. Bayes rule updates prior
belief of an event with information extracted from data to make inferences.
This is both done to estimate parameters and for prediction.

Parameter Estimation

Consider data points y , with y being a vector of field observations and θ a
vector of parameters. Bayesian inference is interested in estimating the
parameters θ given data y , which is performed through Bayes’ theorem :

π(θ|y) = L(y |θ)×p(θ)

p(y)
∝ L(y |θ)×p(θ) (2.3)

The posterior π(θ|y) describes our knowledge and uncertainty in θ given
data y . The posterior can be used to find the point estimate of θ such as
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Figure 2.6: The output pressure curve from running the three element Windkessel Model with all but
one parameter fixed. Top right plot show varied R and fixed C = 1.3 and Z = 0.1. The top left plot vary
Z with R = 0.9, and C = 1.3. Bottom plots vary C with R = 0.9, and Z = 0.1 (left) and Z = 0.01(right).
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posterior mean or its maximum a posteriori (MAP) value and characterize
the associated uncertainties. As the posterior is generally not analytically
tractable, we resort to sampling approaches to draw samples from an
approximate distribution.

The prior distribution p(θ) represents prior information about the
parameters and is specified mainly from prior data, literature, or expert
opinion. The priors help keep inference well defined; for example, if the
physical interpretation of the parameter limits it to take a specific range of
values, e.g., be strictly non-negative or can be chosen to be vague.

The likelihood-function L(y |θ) is the key component that connects model
inputs to the measured quantity of interest. It is often determined by the
noise model, which describes a disagreement between field observations y
and parameters of interest.

p(y) in the denominator is considered a normalizing constant and is
dropped from the equation as it does not depend on θ. Hence, the posterior
becomes proportional to the product of the likelihood function and prior
distribution. As a result, the posterior now contains both prior knowledge of
what was thought to be the distribution of θ before observing the data, and
information of the data itself. This represents the core of Bayesian statistics
and how it is reflected in Bayes’ theorem, i.e., merging prior knowledge and
information from data to make inference. If not much data is available, the
posterior will be strongly influenced by the prior. On the other side, data will
dominate the influence of the posterior when there is too much available. It
is, therefore, crucial to find the right balance between the two when one
performs inference.

Prediction

To predict a new data point ỹ , Bayesian statistics uses the posterior predictive
distribution which has the following form:

π(ỹ |y) =
ˆ

L(ỹ |θ)π(θ|y)dθ

Here we obtain the posterior predictive distribution π( ˜y |y) used to predict ỹ
through the posterior distribution π(θ|y) found in Equation 2.3 and the
likelihood function L(ỹ |θ). As we integrate over the domain of θ, we are
accounting for the uncertainty. Furthermore, since we are using the
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posterior distribution π(θ|y) from Equation 2.3, both prior knowledge of θ
and information from the data can be found in the posterior predictive
distribution.

Credible Intervals (CI)

A credible interval is an interval that contains a parameter with a specified
probability and is the Bayesian statistics’ equivalent to the frequentist
statistics’ confidence interval. A 100(1−α)% credible interval is an interval
covering 100(1 − α)% of the posterior distribution. The bounds of the
interval are the upper and lower percentiles of the parameter’s posterior
distribution and can be expressed for prediction as (ỹL, ỹU ), where

P (ỹL < θ < ỹU |y) =
ˆ ỹU

ỹL

π(ỹ |y)dθ = 1−α

For predictions in this thesis, the mean and the 90 % credible interval are
used, meaning it has the upper and lower 5 % percentiles of the posterior
distribution as its bounds.

2.3 Bayesian Calibration of Windkessel Models

In this Chapter we introduce Bayesian calibration and set up the statistical
formulation of the computer model η accounting for discrepancy. The
framework is based upon [Kennedy and O’Hagan [9]], [Bayarri, Berger,
Paulo, Sacks, Cafeo, Cavendish, Lin, and Tu [13]] and [Higdon, Kennedy,
Cavendish, Cafeo, and Ryne [8]] as well as the previous work of and
[Spitieris, Steinsland, and Ingestrom [6]].

For an input vector x, field observations y are made of the real process γ

y(xi ) = γ(xi )+ϵ(xi ), i = 1, . . . ,n (2.4)

Where ϵ(xi ) denotes the observation error .

We want to simulate the real system γ through a computer model η(x,θ), and
rewrite equation 2.4 as:

y(xi ) = η(xi ,θ)+ϵ(xi ), i = 1, . . . ,n (2.5)
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Where η(x,θ) denotes the computer model output given the input (x,θ).
The vector x contains observable and controllable inputs, whereas θ

represents the un-observable calibration parameters required to run the
code of the computer model. The process of fitting a computer model η to
field observations y by adjusting parameters is known as calibration.
Traditional calibration is typically made by simple fitting algorithms such as
least squares(LS). After calibration, the model is used with the fitted
parameter values to predict the system’s future behavior.

It is common, however, that computer models do not fit the field
observations perfectly. This leads to the model being systematically biased,
which in turn yields biased calibration parameter estimates [Spitieris,
Steinsland, and Ingestrom [6]].

Kennedy and O’Hagain proposed a statistical framework that improves the
traditional approach by introducing a systemic bias function that links the
computer model η with the real process γ in the following manner:

γ(xi ) = η(xi ,θ)+δ(xi ), i = 1, . . . ,n (2.6)

Here δ(xi ) accounts for discrepancy between computer model simulator
η(x,θ) and reality γ(xi ). The most important goal of the discrepancy is
identifying flaws in the model, with the hope they can be corrected [Berger
and Smith [10]].

We can now rewrite the field observations with a computer model simulator
η(x,θ).

y(xi ) = η(xi ,θ)+δ(xi )+ϵ(xi ), i = 1, . . . ,n (2.7)

Kennedy and O’Hagans’ approach improves the estimation procedure in
two respects [Kennedy and O’Hagan [9]]. First, the predictions allow for all
sources of uncertainty, including the remaining uncertainty over the fitted
parameters. Second, it attempts to correct for any inadequacy of the model,
which is revealed by a discrepancy between the observed data and the
model predictions from even the best-fitting parameter values. This is done
by adding the discrepancy as an unknown parameter in the estimation
procedure.

This methodology allows one to adjust the predictions by the estimated
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discrepancy and provides tolerance bounds for adjusted predictions.
Depending on the size of the discrepancy, this can yield considerably more
accurate predictions than can be achieved by using the model alone. Note,
however, that this adjustment might have limited utility in extrapolation to
new situations unless we are willing to make strong assumptions about how
the bias extrapolates.

In this thesis, we refer to the term Bayesian Calibration as the process of
performing inference with estimating the discrepancy.

2.4 Markov Chain Monte Carlo (MCMC)

This section is based on [Brooks [23]], [Roberts and Rosenthal [24]] and
[Shaby and Wells [14]].

Posterior distributions in Bayesian statistics may often have a complex,
high-dimensional form that does not belong to any known distribution
family. This makes it impossible to calculate analytically. Therefore we
resort to sampling techniques such as Markov Chain Monte Carlo(MCMC),
where we sample from the posterior directly and obtain sample estimates of
the quantities of interest.

The idea is: suppose we have some distribution π(θ),θ ∈ E ⊆Rp known up to
a normalization constant. We refer to this as the target distribution. If the
target distribution π(θ) is very complex, we cannot sample from it directly.
Therefore, we create an indirect sample method by constructing an
a-periodic, irreducible Markov Chain with state-space E and whose
stationary distribution is π(θ). Hence, if we run the chain for sufficiently
long, simulated values can be treated as a dependent sample from the target
distribution and used as the basis for summarizing important features of
π(θ).

The main theorem underpinning the MCMC algorithm is that any aperiodic
and irreducible chain will have a unique stationary distribution as i → ∞,
where i is a number of iterations [Roberts and Rosenthal [24]]. We
manipulate the chain to let the target distribution π become the stationary
distribution, and there are many updating and transition schemes to obtain
this. We focus on the Random Walk Metropolis updating scheme.

To understand the Random Walk Metropolis updating scheme, we start by
briefly introducing its core - namely the Metropolis-Hastings update. The
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Metropolis-Hastings algorithm allows us to sample from a generic target
distribution, even if we do not know the normalizing constant. To do this,
we construct, and sample from a Markov chain, whose stationary
distribution is the target distribution we are looking for. It consists of picking
an arbitrary starting value and iteratively accepting or rejecting candidate
samples drawn from a candidate distribution. We want to sample from a
target distribution π(θ), but we only know it up to some normalizing
constant. Hence

π(θ) ∝ g (θ) (2.8)

Since we do not know the normalizing constant, because g (θ) might be hard
to integrate, we only have g (θ) to work with. The Metropolis-Hastings
algorithm will proceed as follows:

1. Select initial value for θ0

2. For i in m (where m is a large number of iterations) repeat:

(a) Draw a candidate θ∗ from proposal distribution θ∗ ∼ q(θ∗|θi−1)

(b) Compute:

α= g (θ∗)q(θi−1|θ∗)

g (θi−1)q(θ∗|θi−1)
(2.9)

(c) Check if:
α≥ 1: accept candidate θ∗ and set θi = θ∗

0 <α< 1: accept candidate θ∗ and set θi = θ∗ with probability α OR
reject candidate θ∗ and set θi = θi−1 with probability 1−α

Steps (b) and (c) act as a correction since the proposal distribution q is not
the target distribution π. At each step in the chain, we draw a candidate and
decide whether to move the chain there or remain where we are. If the
proposed move to the candidate is advantageous, i.e., α > 1, we move for
sure. On the other hand, if the proposed move is not advantageous, we
might still move, but only with probability α. Since our decision to move to
the candidate only depends on where the chain currently is, this is a Markov
Chain.

One careful choice we must make is with the candidate generating
distribution q [Shaby and Wells [14]]. It may or may not depend on the
previous iterations value of θ. One example where it does not depend on the
previous value would be if q(θ∗) is always the same distribution. If we take
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this option, q(θ) should be similar to π(θ) to approximate it. Another
popular option, one that does depend on the previous iteration, is the
Random Walk Metropolis-Hastings. Here the proposal distribution is
centered around the previous iteration. For instance, it might be a normal
distribution where the mean is our previous iteration θi−1. Because the
normal distribution is symmetric around its mean, this example comes with
another really nice advantage. Now the two proposal distributions
q(θi−1|θ∗) = q(θ∗|θi−1), cancel each other out when we calculate the
acceptance probability α, hence 2.9 in the Algorithm reduces to

α= g (θ∗)

g (θi−1)
(2.10)

Clearly, not all candidate draws are accepted, so our Markov Chain
sometimes stays where it is. Possibly for many iterations. How often you
want the chain to accept candidates depends on the type of algorithm. If
you approximate π with q and always draw candidates from that
distribution, accepting candidates often is a good thing, it means that q
approximates π well. However, you still may want q to have a more
considerable variance than π and see some rejection in candidates as an
assurance that q is covering the space well. On the contrary, a high
acceptance rate for Random Walk is not good. If the Random Walk takes too
small steps, it will accept candidates often, but it will take a very long time to
explore the posterior distribution fully. Furthermore, if the Random Walk is
taking too large steps, many of its proposals will have low probability and
low acceptance rate. This will cause us to waste many draws. Ideally, a
Random Walk sampler should accept somewhat between 23 and 50 percent
of candidates proposed.

The Random Walk Metropolis-Hastings algorithm is applicable whatever the
dimension of θ. Finding the posterior of the joint distribution of θ1,θ2,θ3,θ4,
is equivalent to finding the posterior distribution of Θ, where Θ is a 4×1
vector with Θ= [θ1,θ2,θ3,θ4]. The simplest idea is to apply the same strategy
to each of the components, and defining a proposal of independent
components such that

q(Θ∗|Θi−1) = q(θ∗
1 |θ1,i−1)q(θ∗

2 |θ2,i−1)q(θ∗
3 |θ3,i−1)q(θ∗

4 |θ4,i−1)

with a specified variance in the different directions the algorithm is moving
[Roberts and Rosenthal [24]].
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2.4.1 Adaptive MCMC

As mentioned above, a vital but difficult task for Metropolis-Hastings
algorithms is choosing a good proposal distribution q . If, for instance, we
assume q to be a normal distribution, to obtain efficient mixing, it is crucial
to make sure that parameters such as the variance, σ2

q , of the proposal
distribution are small enough to approximate the target distribution π, but
large enough to be sure we do not remain in a tiny area of the posterior
space. The adaptive MCMC attempts to deal with this challenge by learning
better parameter values while the algorithm is running. [Roberts and
Rosenthal [24]] showed that adaptive MCMC can be very successful at
finding good parameter values with little user intervention. Here, good is
defined as some appropriate measure of Markov chain mixing, such as the
integrated autocorrelation of a functional of interest. Adaptive MCMCs are
proven to not only converge correctly but often have significantly better
mixing properties than comparable nonadaptive algorithms [Roberts and
Rosenthal [24]].

NIMBLE

NIMBLE stands for Numerical Inference for statistical models for Bayesian
and Likelihood Estimation. It adopts and extends the probabilistic
programming language BUGS as a modeling language and allows for the
usage of customized models programmed by the user. Other packages that
use the BUGS language are only for MCMC; however, NIMBLE turns BUGS
code into model objects which can be used for whatever algorithm desired.
This includes algorithms provided with NIMBLE and algorithms written by
the user using nimbleFunctions. NIMBLE extends BUGS by allowing
multiple parameterizations for distributions, user-written functions, and
distributions. The NIMBLE algorithms are written so they can adapt to
different statistical models. For MCMC, NIMBLE can assign a default set of
sampler choices, but it is possible to customize the samplers from R. For
example, one can choose what parameters to sample in a block and then
easily write customized samplers and include them. Another one of
NIMBLE great advantages lies in its compiling scheme. The compiler
generates C++ for the customized models and algorithms, compiles that in
C++, and allows for usage from R without knowing anything about or writing
anything in C++ [NIMBLE – An R package for programming with BUGS
models and compiling parts of R. [25]].
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We apply the "RW sampler" from the NIMBLE library, which executes
Random Walk adaptive Metropolis-Hastings sampling with a normal
proposal distribution. The adaptation routine is described in full detail in
[Shaby and Wells [14]]. This sampler can be applied to any scalar
continuous-valued stochastic node and can optionally sample on a log scale
[de Valpine [16]]. The adaptive MCMC constructs the proposal distribution
q(θ, ·) as a multivariate normal distribution:

q(θ, ·) ∼N (θ,σqΣ0)

For some positive scaling constantσq and some d×d positive definite matrix
Σ0, where d is the number of parameters to be approximated.

The sampling algorithm applies a popular adaptive strategy of running a
single chain, which, at each iteration, uses previous states to generate a
proposal. The complication is that this approach destroys the Markov
property; however [Shaby and Wells [14]] implements "controlled MCMC"
to make sure that the resulting processes are ergodic and hence converge to
the desired target distributions. This strategy involves vanishing adaption,
where the idea is to dampen the adaption process such that the proposal
distribution becomes approximately constant for large i . The algorithm
performs what [Shaby and Wells [14]] calls Log Adaptive Proposals (LAP) of
the Random Walk algorithm. The intuition behind the LAP is quite simple. It
takes a block of Random Walk Metropolis steps and then estimates that
block’s acceptance rate. If it accepts too often, it increases σq ; if it accepts
too rarely, it decreases σq .

As a result of both NIMBLE’s adaptive RW sampler and its compiling scheme,
the simulation run-times and the burn-in phase of the chain are drastically
reduced.

2.5 Gaussian Processes (GP)

This section is based on the book by [Gramacy [12]] and definitions of the
powered exponential and Matern covariance functions are obtained from
[scikit-learn [26]]. We apply Gaussian processes in this thesis both when
modeling the discrepancy in Section 2.3 as well as simulating both
independent and dependent noise in the simulation studies in Chapter 3.
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A general definition of a Gaussian Process is a prior over unknown functions
where any finite collection of realizations (i.e., n observations) are modeled
as having a multivariate normal (MVN) distribution. More specifically, an
MVN distribution means that all characteristics of those realizations can be
completely described by their mean µ and covariance matrix Σ. These are
often referred to as functions, i.e. mean-function µ(x) and covariance
function or covariance kernel function C (x, x ′). Applying these functions at
some specific input location x1, x2, · · · , xn can explain the gathered
characteristics of these input locations from their mean vector and resulting
covariance matrix. Hence we can define the collection of realizations
drawing from an n-variate distribution as:

Y ∼N (µn,Σn×n)

The covariance function explains the majority of the characteristics of a GP.
In an MVN, a covariance function must be positive (semi)definite. This
means that when defining a covariance matrix based on evaluating pairs of
n x-values, we must have that:

xTΣx ≥ 0∀x

Positive definiteness is the multivariate extension of requiring a univariate
Gaussian to have a positive variance parameter σ2.

As an example, we consider a covariance function known as the squared
exponential. It is parameterized by a length scale parameter ρ , which can
either be a scalar or a vector with the same number of dimensions as the
number of covariates in the distribution. The length scale represents the
rate of decay of correlation, i.e. it determines how far one needs to move in
input space for the function values to become uncorrelated. The smaller the
value of ρ, the higher the correlation between design points. More
specifically, a small length scale value means that function values can
change quickly, whereas large values mean that the function values change
slowly. In other words, the length scale determines how far we can reliably
extrapolate from the training data.
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The squared exponential covariance function is given by:

C (d) =σδexp
(− ||d ||2

2ρ2

)
(2.11)

Where ||d ||2 is the squared Euclidean distance and d represents the distance
between point x and x ′. Observe how covariance here decays exponentially
fast as x, and x ′ grows farther away from each other in the input or x-space.
σδ is a scaling factor and determines the variation of the function from its
mean. Small σδ means that the function stays close to its mean value,
whereas larger values mean more variation and allows for the function to
chase outliers.

Another example is the class of Matern covariance functions, which is a
generalization of the squared exponential covariance function. It has an
additional parameter ν which controls the smoothness of the resulting
function. The smaller the ν, the less smooth the approximated function is.
As ν → ∞, the covariance function becomes equivalent to the squared
exponential. When ν = 1/2, the Matern covariance function becomes
identical to the absolute exponential covariance function [scikit-learn [26]].
Important intermediate values are ν = 3/2 (once differentiable functions)
and ν= 5/2 (twice differentiable functions).

The covariance function is given by:

C (d) = 1

Γ(ν)2ν−1

(p2ν

ρ
||d ||)νKν

(p2ν

ρ
||d ||) (2.12)

Where ||d || is the Euclidean distance, Kν(·) is a modified Bessel function and
Γ(·) is the gamma function.



Chapter 3
Models and Simulation Studies

We organize the simulation studies by first introducing the simulation
models, from which we simulate synthetic field observations. Then we
present the inference models with corresponding priors. Furthermore, we
introduce the inference methods and a small toy example to illustrate the
motivation for estimating the discrepancy. Finally, we present the
simulation studies and their specifications.

3.1 Simulation Models

The simulation models are defined in line with Equation 2.4 in Chapter 2.3.
Field observations y are, in the remaining of the thesis, noisy pressure
observations Pobs . We simulate Pobs from the true model γ, which is either
the two or three element Windkessel model with some added observational
noise ϵ. Hence we can rewrite Equation 2.4 as

Pobs(ti ) = wkγ

model (Qi , ti ,θ∗)+ϵ(Qi , ti ), i = 1, . . . ,n (3.1)

Where Q and t are input vectors containing the flow and time observations
respectfully. θ∗ is a vector holding the true values of the calibration
parameters required to simulate from the Windkessel models. When
wkγ

model = wkγ
2 , θ∗ contains Rtr ue and Ctr ue , and when wkγ

model = wkγ
3 , θ∗

contains the physical parameters Rtr ue and Ctr ue as well as the tuning
parameter Ztr ue .

We obtain the pressure P by solving the linear differential Equations 2.1 and
2.2 of the two and three-element Windkessel models in the same way as
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Segers, Rietzschel, Buyzere, Stergiopulos, Westerhof, Bortel, Gillebert, and
Verdonck [4]. Here the pressure response P is calculated in the frequency
domain through the impedance Zmodel . Flow is decomposed into a Fourier
series ΣQn. The response for each harmonic (index n) is calculated and
recomposed into ΣPn to obtain pressure estimate P from the model. For
each harmonic the following applies:

Pn = ZmodelQn

For the three element Windkessel model, Zmodel becomes:

ZW K 3 = Zc + R

1+ i 2π f RC

Where f is the frequency of the corresponding discrete Fourier transform
samples, i the complex constant, R and C the physical parameters, and Zc

characteristic impedance. As Z is not an input or a tuning parameter in the
two-element Windkessel model, the impedance is calculated as follows:

ZW K 2 = R

1+ i 2π f RC

To simulate noisy field observations we introduce independent noise ϵ and
time-dependent noise ϵt to the simulation model wkγ

model . It is important to
note that both independent and dependent noise ϵ(·) and ϵt (·) are functions
of the input points flow Q and time t , but the t in subscript of ϵt (·) implies the
dependency in time.

The two noise models are defined as following:

3.1.1 Independent And Identically Distributed Noise ϵ

As a benchmark, we first model the noise ϵ in the field observations to be
independent in time and identically distributed N (0,σ2 = 32). We present
one example of a realisation from this distribution in Figure 3.1.

3.1.2 Time Dependent Noise ϵt

To simulate time dependent noise we apply a Gaussian Process with a Matern
5-2 covariance function described in Equation 3.2, as presented in Chapter
2.5 with ν= 5/2
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Figure 3.1: One realisation of independent noise ϵ.

Cν=5/2(d) =σ2(1+
p

5|d |
ρ

+ 5d 2

3ρ2

)
exp

(−p
5|d |
ρ

)
(3.2)

Where d represents distance between design points x and x ′. The length scale
ρ is set to 0.4. σ is an additional component of covariance when x = x ′, and
is set to 3 as for the independent noise. One realisation from this distribution
is represented in Figure 3.2, where the errors clearly depict dependencies in
time.

3.1.3 Simulated Inflow Q(t )

Input data of flow Q is plotted as a function of time t in Figure 3.3. To
prevent overfitting and reduce numerical load, we sample n = 50 evenly
distributed data points from Figure 3.3 and use this to simulate from the
Windkessel model.

We want to keep the experiments within a controlled environment and use
the same simulated flow Q as input for all experiments.
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Figure 3.2: One realisation of dependent noise ϵt from a Gaussian Process with a Matern 5-2 kernel
from 3.2 with length scale ρ = 0.4.

Figure 3.3: Flow Q(t ) used for the Windkessel models

3.2 Inference Models

3.2.1 Model Without Discrepancy

We combine the general definition of the computer model η simulating the
real process γ without discrepancy from Equation 2.5 in Chapter 2.3 and
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rewrite the equation as:

Pobs(ti ) = wkη

model (Qi , ti ,θ)+ϵ(Qi , ti ), i = 1, . . . ,n (3.3)

Where θ represents the calibration parameters we want to estimate. As for
the simulation model, when wkη

model = wkη
2 , θ represents R and C , and when

wkη

model = wkη
3 , θ represents the physical parameters R and C as well as the

tuning parameter Z . In addition we want to estimate the standard deviance
σ of noise ϵ.

Priors

The simulations are performed in a Bayesian framework presented in 2.2.
Priors are set to the following:

p(R) ∼U [0.5;3];p(C ) ∼U [0.5;3];

p(σ) ∼U [0,30];

Where U denotes a uniform distribution between 0.5 and 3 for R and C . The
choice of this range for the physical parameters is based upon previous work
by [Spitieris, Steinsland, and Ingestrom [6]]. The prior for σ is set to be a
uniform distribution between 0 and 30. For simulation studies where
computer model is the three-element Windkessel model, Z is estimated and
has the same prior as the physical parameters.

3.2.2 Model With Discrepancy

We now combine Equation 2.7 from 2.3, defining the computer model η
simulating the real process γ accounting for discrepancy δ, and rewrite it as
follows:

Pobs(ti ) = wkη

model (Qi , ti ,θ)+δ(Qi , ti )+ϵ(Qi , ti ), i = 1, . . . ,n (3.4)

To consider the potential non-linearity of the discrepancy function, a
Gaussian process prior with a powered exponential covariance kernel as
presented in Chapter 2.5 is used to model the discrepancy. The powered
exponential kernel is specified for our use case in Equation 3.5. As the input
for the Windkessel model consists of both time t and flow Q, the length scale
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is now a two-dimensional vector, where ρ1 corresponds to flow Q and ρ2 to
time t .

Cδ(d) =σ2
δexp

(− ||d ||2
2ρ2

δ

)+σ2 (3.5)

We conduct the simulation studies for the inference model containing
discrepancy by applying a full calibration framework, fitting model and
discrepancy simultaneously, and two modularization frameworks, where we
fit the model and discrepancy separately. We first present the priors for the
full calibration framework, then the priors for fitting the discrepancy alone,
and finally the two modularization approaches. The method is presented in
3.3.2

Priors For Full Calibration

In addition to R,C and σ we need to estimate the parameters ρ1, ρ2 and σδ

related to the discrepancy δ. Keep in mind that the parameters of the
discrepancy are non-identifiable and that we do not know the truth.

We want to construct priors of the length scales based on our knowledge of
the data so far. We have transformed input data t and Q to be in the range
between 0 and 1; consequently, there is no information in the data from
which the likelihood can inform length scales above ρ = 1. This is because
the likelihood is non-identified above the maximum covariate distance.
Therefore we set the prior of the length-scales to a uniform prior between 0
and 1.

Priors for the physical parameters R and C remain the same and we set a
uniform prior for both standard deviances as follows:

p(R) ∼U [0.5,3];p(C ) ∼U [0.5,3];

p(σ) ∼U [0,10];p(σδ) ∼U [0,500];

p(ρ1) ∼U [0,1];p(ρ2) ∼U [0,1];

Priors For Fitting Discrepancy Alone

When we fit the discrepancy alone, we use the same argument as for the full
calibration to set the limits of the prior for length scales. More specifically, we
use the range of our input parameters time and flow. Since both t and Q are
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transformed to be on a scale between 0 and 1, length scales are expected to
be between 0 and 1.

However, this time, we are looking for a stricter prior for the length scale that
places negligible mass below a lower length scale, l , and above an upper
length scale, u. We follow the same approach from [Betancour [27]], where
the choice falls on an inverse Gamma distribution due to its properties of a
lighter tail towards zero, which more strongly constrains the posterior above
l .

We want to translate the lower l and upper u length scales to a specified
inverse Gamma distribution. To obtain the parameters shape a and scale b
for this, we define the following criterion, which represent an inverse
Gamma distribution that has 1% of prior mass above and below the limits of
the length scales:

ˆ l

0
dρInv−G (ρ|a,b) =0.01

ˆ ∞

u
dρInv−G (ρ|a,b) =0.01

We obtain approximate values for a and b satisfying this criterion by making
a Gaussian approximation to the tail conditions,

l ≈µ−3σ= b

a −1
−3

b√
(a −1)2(a −2)

u ≈µ+3σ= b

a −1
+3

b√
(a −1)2(a −2)

Hence, to obtain a prior distribution for length scales ρ, we solve the two
equations above and set l = 0 and u = 1. This results in parameter
approximations of shape a = 11 and scale b = 5, and an inverse Gamma
distribution with the following specifications:

E(X ) = b

a −1
= 5

11−1
= 0.5

V ar (X ) = b2

(a −1)2(a −2)
= 52

(11−1)2(11−2)
= 1

36
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We set uniform priors for the variances σ and σδ. A reasonable range of
values is assumed to be between 0 and 10 for σ, whereas σδ remains
non-identifiable; consequently, we set a larger range between 0 and 500.
This results in the following priors:

p(σ) ∼U [0,10];p(σδ) ∼U [0,500]

p(ρ1) ∼ Inv −G [a = 11;b = 5];p(ρ2) ∼ Inv −G [a = 11;b = 5]

Priors For First Modular Framework

In the first modular framework, we fix the length scale parameters using the
MAP estimates from fitting the discrepancy. Furthermore, we continue with
uniform priors for σ, σδ and the physical parameters - leaving us with the
following:

p(R) ∼U [0.5,3];p(C ) ∼U [0.5,3];

p(σ) ∼U [0,10];p(σδ) ∼U [0,500];

Priors For Second Modular Framework

In the second modular framework, we use the posterior from fitting the
discrepancy as priors for the length scale parameters. We continue with an
inverse Gamma distribution as prior, but this time we use the range of the
posteriors as lower and upper bound. Consequently, l = 0 and u = 1 for ρ1,
whereas l = 0 and u = 0.1 for ρ2, resulting in inverse Gamma distributions
with the following specifications:
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ρ1 :

E(X ) = b

a −1
= 5

11−1
= 0.5

V ar (X ) = b2

(a −1)2(a −2)
= 52

(11−1)2(11−2)
= 1

36
ρ2 :

E(X ) = b

a −1
= 0.5

11−1
= 0.05

V ar (X ) = b2

(a −1)2(a −2)
= 0.52

(11−1)2(11−2)
≈ 0.278

With all priors summed up as:

p(R) ∼U [0.5,3];p(C ) ∼U [0.5,3];

p(σ) ∼U [0,10];p(σδ) ∼U [0,500];

p(ρ1) ∼ Inv −G [a = 11, ;b = 5];p(ρ2) ∼ Inv −G [a = 11;b = 0.5];

To ensure the robustness of the estimates when we conduct the simulations
with observations containing dependent noise, we set strictly limiting priors
for the σ’s using an inverse Gamma distribution instead of uniform
distributions. Hence, we change the prior for σ to be an inverse Gamma
prior with l = 2.9 and u = 3.1, and for σδ, the lower bound l = 0 and upper
u = 100. Yielding inverse Gamma distributions with the following
specifications

σ :

E(X ) = b

a −1
= 24303

8102−1
= 3

V ar (X ) = b2

(8102−1)2(8102−2)
= 243032

(11−1)2(11−2)
= 1

900
σδ :

E(X ) = b

a −1
= 500

11−1
= 50

V ar (X ) = b2

(a −1)2(a −2)
= 5002

(11−1)2(11−2)
≈ 277.78
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The new, more informative, priors are now:

p(R) ∼U [0.5,3];p(C ) ∼U [0.5,3];

p(σ) ∼ Inv −G [a = 8102,b = 24303];p(σδ) ∼ Inv −G [a = 11,b = 500];

p(ρ1) ∼ Inv −G [a = 11, ;b = 5];p(ρ2) ∼ Inv −G [a = 11;b = 0.5];

3.3 Inference Methods

3.3.1 Samples From The MCMC

Posterior distributions are obtained using the adaptive Markov Chain Monte
Carlo method discussed in 2.4.1. The results are evaluated from its parameter
estimates and prediction uncertainty after running the adaptive MCMC one
time with number of samples set to NMC MC = 10000 and Nbur n−i n = 5000.
The sampling is conducted with the same data but different initial points to
ensure convergence. If the chains do not overlap, we run the chain longer
until convergence.

3.3.2 Modularization

When performing Bayesian Calibration, we take a full calibration approach
by fitting both model and discrepancy simultaneously. However, this might
yield identifiability issues, and therefore we wish to pursue a modular
approach by fitting discrepancy and model separately.

To obtain an initial approximation of the discrepancy, we conduct a fitting of
the two-element Windkessel model and calculate the difference between
the mean predictions and the field observations simulated from the
three-element Windkessel. We then carry on by fitting the discrepancy and
estimate its parameters ρ1, ρ2, σδ as well as noise in field observations σ

with priors as presented in Chapter 3.2.2

After having fitted the discrepancy, we perform two types of modularization
when returning to fitting the model:

1. Fix length scale priors to the MAP estimate of the posterior distribution
in Figure 4.6a.

2. Use posteriors of length scales in Figure 4.6a as priors.
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From now, we refer to the two approaches defined above as mod 1 and mod
2, respectively.

3.4 Motivational Toy Example

The motivation for including the discrepancy in the model is illustrated with
a small toy example. We perform two simulation experiments where
synthetic field observations are simulated with independent noise ϵ. We
want to demonstrate a situation where the computer model can recreate the
true process and when the computer model is biased. For both examples,
we set the computer model to be the two-element Windkessel model wkη

2 .
We then conduct two simulations where the simulation model is first
defined as wkγ

2 . Then we perform a second simulation, but this time with
simulation model wkγ

3 .

Equation 2.5 holds in the situation where there is assumed to be no
discrepancy present, as the only difference between computer model wkη

2

and real system wkγ

model should be the noise ϵ, which here is assumed to be
independently distributed. We can therefore make a small test of whether or
not there is discrepancy present by subtracting the expression on the right of
Equation 2.5 from the expression on the left and plotting the result. We
perform this on the two simulation setups, and results are depicted in Figure
3.4 and 3.5.

In the case of no discrepancy, one can expect a scatter plot resembling
independent and identically distributed noise, randomly scattered around
its mean with a constant variance. This is illustrated in figure 3.4, which is
obtained by indeed the first experiment, where both simulation model and
computer model are represented by the two-element Windkessel model.
Hence, we can safely conclude that there is no discrepancy present.

Observing Figure 3.5 below, however, one can observe a pattern resembling
the pressure curve. This plot is generated by performing the same test of
subtracting the right side of Equation 2.5 from the expression on the left and
plotting the result. In this example, the computer model is still represented
by the two-element Windkessel model, but this time, we have defined the
simulation model with the more complex three-element Windkessel model.
The pattern of the noise in Figure 3.5 is a clear indicator that there is a
discrepancy present that needs to be taken into account in the estimation
procedure. Furthermore, Figure 3.5 confirms the shortcomings of the
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Figure 3.4: Discrepancy with no pattern

Figure 3.5: Discrepancy with pattern

two-element Windkessel model in systole, as we observe, this is where the
discrepancy is at its largest.
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3.5 Simulation Studies

Table 3.1 specifies all simulation studies in terms of the corresponding
simulation and computer model, as well as the inference model. The
independent noise is represented by ϵ, and ϵt represents dependent noise.
For simplicity, time t , flow Q, and θ are omitted in the expressions. The full
specifications can be found in Chapter 3.1 and 3.2.

Note that all experiments are set in a Bayesian framework, but in this thesis,
the term Bayesian Calibration is only used for the experiments where the
discrepancy is estimated.

We distinguish between cases where simulation and computer model are
based on the same or different Windkessel models. Observe for instance,
line 1 in the table above, where both simulation and computer models are
represented as the two-element Windkessel, i.e., matching models. On the
contrary, in line 3, where the simulation model is the three-element
Windkessel, and the computer model the two-element Windkessel - hence
they do not match. Therefore, we refer to the latter as the non-matching
case and the former as a matching model case.

The column defining the inference model contains the models under
investigation. Here we have omitted the parameters in the two and
three-element Windkessel model, but as defined in Chapter 2.1 we estimate
R and C for the two-element Windkessel model, and R, C and Z for the
three-element Windkessel. Furthermore, we estimate the parameters
contained in the independent and dependent noise models, defined in 3.1.1
and 3.1.2 respectively. Finally, where δ is included, we perform Bayesian
Calibration and estimate the parameters of the discrepancy.

The column defining the inference method implies if we infer all parameters
for the Bayesian Calibration at once or if we perform modularization by
fitting the discrepancy and model separately. When we perform Bayesian
Calibration and infer discrepancy and model parameters simultaneously, we
refer to this as full calibration marked as "full calib" in the table.
Furthermore, we make two modularization approaches, referred to as "Mod
1" and "Mod 2". For Simulation Study 1 and part of Simulation Study 3 we
infer all parameters simultaneously but do not estimate the discrepancy. As
we have restricted the usage of the term calibration for the case of
estimating the discrepancy, we therefore mark these columns with a "-".
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Model Combination And Simulation Study Summary
Simulation
Model

Computer Model Inference Model Simulation Study Inference
Method

wkγ
2 + ϵ wkη

2 wkη
2 + ϵ 1.1 -

wkγ
3 + ϵ wkη

3 wkη
3 + ϵ 1.2 -

wkγ
3 + ϵ wkη

2 wkη
2 + ϵ 1.3 -

wkγ
2 + ϵt wkη

2 wkη
2 + ϵ 1.4 -

wkγ
3 + ϵt wkη

3 wkη
3 + ϵ 1.5 -

wkγ
3 + ϵt wkη

2 wkη
2 + ϵ 1.6 -

wkγ
2 + ϵ wkη

2 wkη
2 + δ + ϵ 2.1 Full Cal

wkγ
3 + ϵ wkη

3 wkη
3 + δ + ϵ 2.2 Full Cal

wkγ
3 + ϵ wkη

2 wkη
2 + δ + ϵ 2.3 Full Cal

wkγ
3 + ϵt wkη

2 wkη
2 + δ + ϵ 2.4 Full Cal

wkγ
3 + ϵ wkη

2 wkη
2 + δ + ϵ 2.5 Mod 1

wkγ
3 + ϵt wkη

2 wkη
2 + δ + ϵ 2.6 Mod 1

wkγ
3 + ϵ wkη

2 wkη
2 + δ + ϵ 2.7 Mod 2

wkγ
3 + ϵt wkη

2 wkη
2 + δ + ϵ 2.8 Mod 2

wkγ
2 + ϵt wkη

2 wkη
2 + ϵ 3.1 -

wkγ
3 + ϵt wkη

3 wkη
3 + ϵ 3.2 -

wkγ
3 + ϵt wkη

2 wkη
2 + ϵ 3.3 -

wkγ
3 + ϵt wkη

2 wkη
2 + δ + ϵ 3.4 Full Cal

wkγ
3 + ϵt wkη

2 wkη
2 + δ + ϵ 3.5 Mod 1

wkγ
3 + ϵt wkη

2 wkη
2 + δ + ϵ 3.6 Mod 2

wkγ
3 + ϵ wkη

2 wkη
2 + δ + ϵ 4.1 Full Cal

wkγ
3 + ϵ wkη

2 wkη
2 + δ + ϵ 4.2 Mod 1

wkγ
3 + ϵ wkη

2 wkη
2 + δ + ϵ 4.3 Mod 2

Table 3.1: Summary of all simulation studies
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True Parameter Values
Parameter Matching Models Non-Matching Models
R = Rwk2 0.9 -
R = Rwk3 0.9 -
R = Rwk3 +Z - 1.0
Z 0.1 0.1
C 1.3 1.3
σ 3 3

Table 3.2: Summary of true parameter values used for simulation studies.

The main goal of these experiments is to investigate whether we can
estimate physical parameters R and C from field observations. However, for
us to be able to validate our results, we need to simulate from a model where
the values of the true physical parameters are known. Note that in terms of
interpretability, as described in 2.1, total vascular resistance R takes a
different value when we fit the two-element Windkessel Model to the
three-element Windkessel. On the other hand, the total arterial compliance
C should be identical. Furthermore, we have no information about the true
value of the parameters for the discrepancy but report the maximum
posterior mean for all experiments. All true parameter values for simulation
studies are defined in table 3.2.
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Simulation Algorithm

Algorithm 1 presents the pseudocode for the general simulation algorithm
used in all simulation studies.

Algorithm 1 Simulation Algoritm

1: function SIMALG(time,flow, Nsi ms , θ∗)
2: Load Windkessel Model Simulators
3: Transform flow to 0-1 scale
4: for Nsi ms do
5: if independent noise then
6: Simulate Pobs from simulation model wkγ

model +ϵ

7: else
8: Simulate Pobs from simulation model wkγ

model +ϵt

9: end if
10: if Bayesian Calibration then
11: Inference Model = wkη

model +δ+ϵ

12: else
13: Inference Model = wkη

model +ϵ

14: end if
15: Define priors
16: Run adaptive MCMC sampling on inference model
17: Report mean, upper and lower 5% quantile of posteriors for parameters
18: end for
19: end function

Code to simulate pressure observations from all the Windkessel Models
were provided by the project [MyMDT [2]]. We use NIMBLE to define our
models, with corresponding priors, covariance- and likelihood function.
Furthermore , we conduct the MCMC sampling using NIMBLE. Complete
code can be found in the following repository
https://github.com/helemo/Master-Thesis.

3.5.1 Simulation Study 1: Inference Models Without Discrepancy

In Simulation Study 1, we fit matching and non-matching models. The
parameters of the computer models are estimated using a Bayesian
framework but without estimating the discrepancy. We produce 100 noisy
data sets by using the simulation models corresponding to Simulation Study
1 in Table 3.1 and add both dependent and independent noise. We report
the resulting 90% credible interval for each run by taking the 90th percentile
of the sorted samples, and we estimate the average posterior mean of the

https://github.com/helemo/Master-Thesis
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resulting 100 credible intervals. Furthermore, we report the coverage of the
true value after simulating the posterior 100 times.

3.5.2 Simulation Study 2: Bayesian Calibration

In Simulation Study 2 we take the same approach as in Simulation Study 1 in
3.5.1, as we will investigate the case of both independent and dependent
noise and produce 100 noisy data sets. This time, however, we wish to
estimate the discrepancy as well.

We assume the bias to be normally distributed with a squared exponential
kernel. Hence, to model the discrepancy we need to estimate its kernel
parameters lengthscale ρδ and scaling parameter σδ presented in Equation
3.5. We also estimate noise in field observations σ.

We commence with a full calibration, fitting both model and discrepancy
simultaneously, with priors defined as in 3.2.2. Furthermore, we perform
modularization as described in 3.3.2.

Matching Models

The main focus lies on performing the simulation studies where the
computer model is biased, i.e., non-matching models as presented in Table
3.1. Nevertheless, we experiment on the matching models for completeness,
where there is no discrepancy between the computer and simulation
models. We perform full calibration and simulate the noisy data-set with
independent noise, specified in Table 3.1 as simulation studies 2.1 and 2.2.
The priors are set to the same as for the full calibration in simulation study
2.3.

3.5.3 Simulation Study 3: Dependencies In ϵt

Due to simulation studies 1 and 2 showing instabilities in the presence of
dependent noise, we want to investigate this further. We do so by rerunning
all simulation studies in 1 and 2 with reduced and increased dependencies
in the noise. As presented in 2.5, length scale is the parameter controlling
the dependencies. Hence, we perform the simulation studies with length
scales between ρ = [0.1,0.4,0.8,1,5]. As explained in 2.5, the smaller the
length scale, the more correlated. Figures 3.6a, 3.6b, 3.6c, 3.6d and 3.6e
depict corresponding realisations of the noise with different values of length
scale. Note that the previous simulation studies are performed with a
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dependent noise of length scale set to 0.4. It is also included here for
comparison. Furthermore, observe that the closer we get to 1, the less
correlated the noise gets, but then go above the value of 1 for the length
scale, the noise again takes a slight dependent shape. This is again caused by
the fact that our input to generate the noise, time, is on a 0-1 scale; hence
there is no information in the data to support larger length scale values.

From the simulation models presented in Table 3.1, we simulate 50 noisy
data-sets for each length scale and make inference using the corresponding
inference method. From the resulting credibility intervals, we identify
outliers in the sense of very narrow or very large credible intervals. We want
to investigate whether possible mixing problems of the chain cause the size
of the credibility interval or if there is a problem with the model itself. Hence
we run the corresponding chain for 1 million iterations with a burn-in of 500
000.
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(a) Length scale ρ = 0.1 (b) Length scale ρ = 0.4

(c) Length scale ρ = 0.8 (d) Length scale ρ = 1.0

(e) Length scale ρ = 5.0

Figure 3.6: Simulation Study 3: One realisation of the noise with different dependencies.
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3.5.4 Simulation Study 4: Computer Model Discrepancy

[Kennedy and O’Hagan [9]] presented that a flawed model which tries to
describe complex data will show its uncertainty in its posteriors. Therefore,
we want to perform simulation studies where we increase uncertainty by
increasing Z when simulating data from the simulation model.
Furthermore, the solution presented by [Kennedy and O’Hagan [9]] states
that in the case of large uncertainty in the posteriors, we incorporate the
discrepancy function to reduce the uncertainty. Therefore, we only conduct
this simulation study on inference models where we estimate the
discrepancy, as it would be hard to separate if the uncertainty in the
posteriors occur because we are not estimating the discrepancy or, in fact,
due to the increase in discrepancy.

As presented in Chapter 2.1, larger Z increases the amplitude of the
three-element Windkessel model; hence we obtain a more considerable
discrepancy when we have the two-element Windkessel model as a
computer model. To investigate this effect on our model set up, we perform
the simulation study on 5 simulated data sets generated with 5 different
values of Z = [0.01,0.05,0.1,0.15,0.2] and independent noise. Z = 0.1 is the
parameter value we have used to generate the data-sets for all simulation
studies in this thesis and is included for comparison. The resulting
simulated pressure curves from the three-element Windkessel model are
illustrated in Figure 3.7, where the black stapled line represents the
two-element Windkessel model used as a computer model, and we observe
how the discrepancy is increasing as we increase Z .
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Figure 3.7: Simulation Study 4: Resulting pressure curves from increased Z in the three element
Windkessel model. The thick, black stapled line represents the two element Windkessel model used
as computer model for all experiments.



Chapter 4
Results

We summarize the results for each simulation study by reporting the bias,
mean 90% credible interval(CI), and the total coverage of the true mean for
all 90% CI’s. The mean CI is calculated from averaging the lower and upper
bound of the 100 90% CI’s. Together with the mean MAP estimate, we can
investigate the biasedness and uncertainty in the posteriors. In addition, we
present the total coverage of the true value to draw conclusions of the
stability of the credible intervals for each simulation run. For example, one
might observe an excellent average MAP estimate and narrow credible
intervals, but the coverage tells us how much the posterior is "jumping" for
each simulated data-set.

We focus on presenting results related to the physical parameters and
observation noise σ, whereas results related to the discrepancy’s parameters
and all results in full can be found in the Appendix.

Finally, we present MCMC diagnostics to assess convergence of the chains.

For a summary of simulation studies and their corresponding computer,
simulation and inference model, we refer to Table 3.1.

4.1 Results Simulation Study 1: Inference Models Without
Discrepancy

We present mean MAP, CI, and coverage of the results for the physical
parameters and observational noise from simulation study 1, and refer to
the Appendix 6.1 for the entire presentation of the results.

We commence with C and observe mean MAP estimates with corresponding
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mean 90% CI’s in Figure 4.1. The MAP estimates are accurate for simulation
studies 1.1, 1.2, 1.4, and 1.5 (matching models) with narrow mean 90%
credible intervals. Nevertheless, when we look at the coverage depicted in
Figure 4.5, we see that just around half of the simulations gave 90% CIs
covering the true mean. Hence, we have instability of the posterior for each
model run. To the contrary, results from simulation studies 1.3 and 1.6 (the
non-matching models) report that all CI’s cover the true mean. Going back
to Figure 4.1, however, we see large uncertainties in the average CI. This
implies a stable but uncertain estimate of the posterior.

The mean CI’s for R are depicted in Figure 4.2. As for C , the mean CI’s from
simulation studies 1.3 and 1.6(non-matching models) show a biased MAP
with an increase in uncertainty for the posterior. Note that the true value of
R changes between the matching and non-matching results as explained in
Chapter 2.1. Furthermore, we observe that the results for simulation studies
1.4 and 1.5 corresponding to data generated from the simulation model with
dependent noise are very narrow, but the average MAP estimates are biased
and lie outside the average credible intervals. To understand why this
happens, we look at the total coverage in Figure 4.5, where we do observe an
insufficient coverage of the true mean for these simulation studies. This
implies that the credible intervals are "jumping" around, leading to biased
estimates of the average MAP. We confirm this by plotting all resulting 90%
CI’s from the simulation studies 1.4,1.5 and 1.6 in Figures 4.3a-c), which
indeed depicts large variability in estimates and credibility intervals
between each simulated data-set. This is a good example of the case where
we have posterior distributions with a small uncertainty, but the estimate is
not to be trusted for one data-set as we might be far from the true parameter
value.

For simulation studies 1.1, 1.2, 1.4 and 1.5 we observe a good and stable fit
for σ, with narrow average CI’s and high total coverage in Figure 4.4. On the
contrary, the observation noise σ is highly overestimated for simulation
studies 1.3 and 1.6.

The biased mean MAP and increased uncertainty in the mean CI’s for the
parameters in simulation studies 1.3 and 1.6 are results of the discrepancy
between computer and simulation model that we do not estimate in
simulation study 1.

We summarize the total coverage of the true parameter value for the
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Figure 4.1: Simulation Study 1: Average Credible Interval from simulating the posterior of C 100
times. The corresponding simulation study number as presented in Table 3.1 is depicted on the y-
axis. Fully drawn and dashed lines correspond to dependent and independent noise respectfully. X
marks the average MAP estimate, and the vertical thick black line represents the true parameter value.
Legend "Model" refers to which Windkessel model used as simulation model(To the left of the dash -
) and computer model (to the right of the dash - ).

physical parameters R, C and observations noise σ in Figure 4.5. The
coverage is indeed much higher for independent noise compared to
dependent noise. Nevertheless, we have high coverage for simulation study
1.3 and 1.6 for both physical parameters, except for observation noise σ,
which is zero. However, we have seen that the high coverage of R and C
results from the increased uncertainty in the credible intervals for
simulation studies 1.3 and 1.6.

4.2 Results Simulation Study 2: Bayesian Calibration

We now present the results from performing Bayesian calibration where we
estimate the discrepancy in addition to the physical parameters and
observational noise. Results are presented through the mean MAP, the mean
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Figure 4.2: Simulation Study 1: Average Credible Interval from simulating the posterior of R 100
times. The corresponding simulation study number as presented in Table 3.1 is depicted on the y-
axis. Fully drawn and dashed lines correspond to dependent and independent noise respectfully. X
marks the average MAP estimate, and the vertical thick black line represents the true parameter value
for simulation studies 1.3 and 1.6 and dashed, vertical line true parameter value for simulation studies
1.1,1.2,1.4,1.5. Legend "Model" refers to which Windkessel model used as simulation model(To the
left of the dash - ) and computer model (to the right of the dash - ).

(a) Simulation Study 1.4:
2-2 - dependent noise ϵt

(b) Simulation Study 1.5:
3-3 - dependent noise ϵt

(c) Simulation Study 1.6:
3-2 - dependent noise ϵt

Figure 4.3: Mean MAP estimate with corresponding 90% credible intervals of R from 100 simulations
of the posterior distribution with dependent noise ϵt . The blue line represents the true parameter
value and the red line the mean MAP.
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Figure 4.4: Simulation Study 1: Average Credible Interval from simulating the posterior ofσ 100 times.
The corresponding simulation study number as presented in Table 3.1 is depicted on the y-axis. Fully
drawn and dashed lines correspond to dependent and independent noise respectfully. X marks the
average MAP estimate, and the vertical thick black line represents the true parameter value. Legend
"Model" refers to which Windkessel model used as simulation model(To the left of the dash - ) and
computer model (to the right of the dash - ).

CI, and coverage of the true value. We focus on the results for the physical
parameters and observational noise in this Chapter and refer to Appendix
6.3 and 6.4 for the entire presentation of the results for simulation study 2.

4.2.1 Results From Fitting the Discrepancy

We commence with the results from fitting the discrepancy alone, as this
creates the baseline for the upcoming modular approaches. The resulting
posteriors are depicted in Figure 4.6a. The correlation between parameters
are shown in Figure 4.6b, where all correlation coefficients are of high
significance(the larger number of ∗′s behind coefficient, the more
significant), but of moderate size except for the one between length scale ρ1

and σδ. The first modular approach utilizes the MAP estimate of the length
scale parameters, hence ρ1 = 0.50 and ρ2 = 0.075, whereas the second
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Figure 4.5: Simulation Study 1: Coverage of true mean of resulting 90% credible intervals for 100
simulations of the posterior of the physical parameters R and C , and observation noiseσ. From Table
3.1: 2-2 corresponds to simulation studies 1.1 and 1.4, 3-3 to simulation study 1.2 and 1.5, and 3-2
simulation study 1.3 and 1.6. Dashed line is at 0.9 and represents the expected coverage from a 90%
credible interval.
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modular approach takes the limits of the posterior and forms a prior for the
length scales as presented in Chapter 3.

4.2.2 Results Bayesian Calibration

We have performed Bayesian calibration through a full calibration approach,
fitting discrepancy and model simultaneously, and two modular approaches,
fitting discrepancy and model separately.

Figure 4.7 shows the mean MAP and credible intervals for C . Here we
observe larger uncertainties for the mean CI’s of the two modular
approaches compared to the full calibration. In addition, the mean MAP
estimate for simulation studies 2.6, 2.7, and 2.8 overestimates the true value
of C . Furthermore, the introduction of dependent noise is prominent in the
results, with a further increase of uncertainty when compared to
independent noise. The high coverage in Figure 4.11 for the two modular
approaches implies that the CI’s are stable but with large uncertainty for all
data-sets. The full calibration also depicts a high coverage in Figure 4.11, but
is coupled with narrower average CIs, and less biased average MAP
estimates in Figure 4.7 than the two modular frameworks. Nevertheless,
with a tail towards the right, which is further increased for the dependent
noise.

Compared to the mean MAP and CI’s for C , R overall has less biased MAP
estimates and narrower mean CI’s in Figure 4.8. This is further backed up by
high coverage of the true parameter value in Figure 4.11. Whereas C showed
the largest uncertainties for the modularization, R, on the other hand, shows
the largest average CI for the full calibration with biased MAP estimates in
Figure 4.8. For comparison to simulation study 1, we plot all resulting 90%
CI’s for simulation studies 2.4, 2.6 and 2.8 of R in Figures 4.9a-c). Even
though we do not observe the same instability of the credible intervals, we
now observe outliers in the sense of very large or tiny credible intervals for
simulation studies 2.4 and 2.6. We investigate what might cause this
behavior further in simulation study 3.

The resulting mean CI’s for the observation noise σ are presented in Figure
4.10. Here we observe minor uncertainties and accurate average MAP
estimates for all simulation studies with independent noise. However, the
second modular approach is the only framework able to remain robust
against the dependent noise. This is expected due to the highly informative
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(a) Simulation Study 2: Resulting posterior distributions from estimating the discrepancy from one simulated
data-set. Red line represents estimated MAP of parameter.

(b) Simulation Study 2: Correlation plot of the parameters. Contourplots of each pair of numeric variable
are drawn on the left part of the figure. Pearson correlation is displayed on the right. Variable distribution
is displayed on the diagonal.

Figure 4.6: Discrepancy parameters estimate.
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Figure 4.7: Simulation Study 2: Average Credible Interval from simulating the posterior of C 100
times. Corresponding simulation study number as presented in Table 3.1 is depicted on the y-axis.
Fully drawn and dashed lines correspond to dependent and independent noise respectfully. X marks
the average MAP estimate, and vertical thick black line represents the true parameter value.

and strictly limiting priors we incorporate here compared to the first
modular and full calibration framework.

The total coverage of the true parameter value for the physical parameters R,
C and observations noiseσ is summarized in Figure 4.11. We observe that the
coverage in total is high, indicating stable, credible intervals. Nevertheless,
we observe a coverage of 0 forσ in simulation studies 2.4 and 2.5. In addition,
C also suffers from a reduction in coverage for simulation study 2.4( when we
perform the simulations in the full calibration framework with dependent
noise). However, as we have observed in Figure 4.7, the uncertainty in the
credible intervals is large for C for particularly the second modular approach.
R, on the other hand, yields average credible intervals with less uncertainty
for both dependent and independent noise and consistent high coverage of
the true value.

Combining the results observed from the average credible intervals and MAP
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Figure 4.8: Simulation Study 2: Average Credible Interval from simulating the posterior of R 100 times.
Corresponding simulation study number as presented in Table 3.1 is depicted on the y-axis. Fully
drawn and dashed lines correspond to dependent and independent noise respectfully. X marks the
average MAP estimate, and vertical thick black line represents the true parameter value.

(a) Simulation Study 2.4 -
Full Calibration -
dependent noise ϵt

(b) Simulation Study 2.6 -
Mod 1 -
dependent noise ϵt

(c) Simulation Study 2.8 -
Mod 2 -
dependent noise ϵt

Figure 4.9: Average MAP estimate with corresponding 90% credible intervals of R from 100
independent simulations of the posterior distribution with dependent noise ϵt . The blue line
represents the true mean and the red line the average of the 100 maximum posterior mean values.
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Figure 4.10: Simulation Study 2: Average Credible Interval from simulating the posterior of σ 100
times. Corresponding simulation study number as presented in Table 3.1 is depicted on the y-axis.
Fully drawn and dashed lines correspond to dependent and independent noise respectfully. X marks
the average MAP estimate, and vertical thick black line represents the true parameter value.

estimate with the total coverage, we conclude that the most stable and robust
results are obtained for the second modular approach, at the cost of slightly
larger uncertainties in the posteriors for physical parameters C and R. .

4.3 Results Simulation Study 3: Dependencies in ϵt

We have constructed noise with length scales ρ = (0.1,0.4,0.8,1.0,5.0) to
investigate the effect of different dependencies in ϵt . For each level of
dependent noise, we generated 50 noisy data sets, from which we simulated
the posteriors for all simulation studies.

Results from simulation study 3.1, 3.2, and 3.3, showed behaviour in line
with what we observed for simulation study 1, i.e., a large instability in the
credible intervals for each data-set causing the posteriors to "jump" around.
Furthermore, all credibility intervals behaved similarly, growing narrower as
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Figure 4.11: Simulation Study 2: Total coverage of true mean of resulting 90% credible intervals for
100 simulations of the posterior of physical parameters R and C and observations noise σ. Dashed
line is at 0.9 and represents the expected coverage from a 90% credible interval.

we increased the length scale. Therefore we do not pursue to investigate the
credible intervals further, as we did not identify outliers of interest.

Simulation studies 3.4, 3.5, and 3.6, however, showed behaviour with what
we observed in simulation study 2. This is illustrated in Figures 4.12a, 4.12b
and 4.12c, which present resulting 90% credible intervals of the physical
parameter R with from simulation studies 3.4, 3.5 and 3.6 with length scale
ρ = 0.8. The second modular approach (Figure 4.12c) is once again robust
when introduced to all kinds of dependent noise. This is no surprise since
this framework is set up with the most informative and limiting priors.
Consequently, the resulting credible intervals from simulating the posterior
for different dependencies remained stable across the board, with Figure
4.12c presented as one example.

However, we observe a different behavior for the full calibration and first
modular approach. In line with what we observed in simulation study 2,
Figures 4.12a and 4.12b show credible intervals with some very small and



56 4.4. Results Simulation Study 4: Computer Model Discrepancy

huge ranges. We investigated outliers of these two frameworks further by
choosing one small and one large, credible interval and ran the
corresponding chain much longer.

We present results from conducting the experiments with length scale
ρ = 0.8 as we encountered numerical issues with the sampling algorithm of
the full calibration for all other length scales. In addition, the full calibration
framework showed substantial mixing issues for the smallest observed
credible intervals, for instance, nr 5 from the bottom in Figure 4.12a. An
example of this is presented in Appendix 6.5. Therefore, we chose to run the
chain longer for medium-sized credible intervals, such as simulation 2 in
Figure 4.12a, and can already conclude that there are issues with the full
calibration framework.

We present corresponding noise for the chosen large and small credible
intervals in Figures 4.14a and 4.14b and 4.13a, 4.13b.

Resulting posteriors are presented in Figures 4.15a-d) for the small CI’s, and
Figures 4.16a-d) for the big CI’s. We observe no mixing issues when
comparing the posteriors from running the chain longer to the ones
obtained from the shorter chain. The only difference seems to be that the
posteriors become smoother. What is interesting, however, is that the MAP
estimate of the marginal variance σδ is much larger for the big CI’s in Figures
4.16a-d) compared to the small CI’s in Figures 4.15a-d). Hence, we can
conclude that the instability in the credible intervals for the first modular
framework is not caused by mixing issues. This also holds for the full
calibration when we investigated credibility intervals of the same size or
larger than the first modular approach. However, the smallest credibility
intervals observed in Figure 4.12a showed large mixing issues.

4.4 Results Simulation Study 4: Computer Model
Discrepancy

We have performed simulation studies to investigate the effect of increasing
the discrepancy. Posterior distributions of simulating from one data-set with
the same fixed independent noise for all experiments are depicted for both
modularization approach 1 and 2 in the Figures 4.18 and 4.19. Here it remains
clear, as for the previous results of simulation study 2, that C incorporates
the increased discrepancy as uncertainty in its posterior for both modular
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(a) Simulation Study 3.4 -
Full Calibration

(b) Simulation Study 3.5 -
Mod 1

(c) Simulation Study 3.6 -
Mod 2

Figure 4.12: 90% credible intervals of R from 50 simulated noisy data-sets with dependent noise and
length scale 0.8 ϵt . Blue line is true parameter value, red is average MAP estimate.

(a) Full Calibration:
simulation 2 from Figure 4.12a

(b) Mod 1:
simulation 38 from Figure 4.12b

Figure 4.13: Simulation Study 3: Corresponding dependent noise ϵt to small credible interval.

(a) Full Calibration:
simulation 40 from Figure 4.12a

(b) Mod 1:
simulation 50 from Figure 4.12b

Figure 4.14: Simulation Study 3: Corresponding dependent noise ϵt to big credible interval.
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frameworks. The reason for C taking on the uncertainty can be explained
by its role as the parameter that controls the amplitude for the two-element
Windkessel model.

In Figure 4.17, however, the full calibration yields increased uncertainty in
the posteriors for σδ and ρ2 as well as growing uncertainty in the posterior
for R. It is reasonable that R incorporates the increased discrepancy
resulting from an increase in Z . This is because Z is interpreted as a resistive
element, and the sum of R and Z make up the total vascular resistance when
the two-element Windkessel is fitted to the three-element Windkessel
model. Nevertheless, when compared to the two modular frameworks, we
would have expected C to incorporate a larger amount of uncertainty
compared to R in the full calibration framework too.

4.5 Convergence of MCMC

To ensure convergence, we performed a test by running 4 MCMC chains on
the same generated data-set with different initial values and observed
whether the mixing plots and posteriors were overlapping. This was
conducted for each simulation study and inference model. All chains
showed signs of convergence; therefore, we only present two cases in this
Chapter. We have chosen simulation study 1.1, with independent noise in
simulated observations, and the second one from simulation study 2.8, with
dependent noise.

Figure 4.20 shows good mixing for simulation study 1.1, where we do not
estimate the discrepancy. Furthermore, Figure 4.21 depicts good mixing for
simulation study 2.8. Note the large uncertainty in the mixing for parameter
C , which is reflected in the average credibility intervals presented in Figure
4.7.
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(a) Simulation Study 3.4 - Full Calibration
Small CI - short chain

(b) Simulation Study 3.4 - Full Calibration
Small CI - long chain

(c) Simulation Study 3.5- Mod 1
Small CI - short chain

(d) Simulation Study 3.5- Mod 1
Small CI - long chain

Figure 4.15: Simulation Study 3: Resulting posteriors for running the chain short and long for small
credible intervals.
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(a) Simulation Study 3.4 - Full Calibration
Big CI - short chain

(b) Simulation Study 3.4 - Full Calibration
Big CI - long chain

(c) Simulation Study 3.5- Mod 1
Big CI - short chain

(d) Simulation Study 3.5- Mod 1
Big CI - long chain

Figure 4.16: Simulation Study 3: Resulting posteriors for running the chain short and long for large,
credible intervals.
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Figure 4.17: Simulation Study 4.1: Posterior distributions from simulating from one data-set with
independent noise and increasing Z in the full calibration framework.
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Figure 4.18: Simulation Study 4.2: Posterior distributions from simulating from one data-set with
independent noise and increasing Z in the first modular framework(Mod 1).
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Figure 4.19: Simulation Study 4.3: Posterior distributions from simulating from one data-set with
independent noise and increasing Z in the second modular framework(Mod 2)
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Figure 4.20: Mixing after conducting 4 chains with different initial values and one simulated data-set.
Inference model is non-matching models with independent noise in simulation study 1.

Figure 4.21: Mixing after conducting 4 chains with different initial values and one simulated data-set.
Inference model is modular approach 2 and dependent noise in simulation study 2.
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Discussion and Conclusion

5.1 Discussion

We have presented a Bayesian calibration framework for the arterial
Windkessel models. Our primary interest is to obtain estimates of two
physically interpretable parameters (total arterial compliance, C and
vascular resistance, R) and observe the behaviour of the estimates when
subject to independent and dependent noise. We chose the two-element
Windkessel model (2.1) as a computer model, and simulated synthetic field
observations from the three-element Windkessel model (2.2) with added
noise. Posterior distributions of the estimates of the physical parameters
were obtained by performing Bayesian inference, both accounting for and
not accounting for model discrepancy.

For all inference models we considered 100 noisy blood pressure
simulations from the simulation model with both independent and
dependent noise to evaluate the robustness of the estimates. To investigate
the results, we compare the mean MAP and credible interval from the 100
simulations and assess them in combination with the total coverage of the
true parameter value for each data-set.

When we performed inference on the models not accounting for the
discrepancy, physical parameters R and C were well-calibrated when fitted
to field observations generated with independent noise. On the contrary, the
introduction of dependent noise was reflected in considerable variability in
estimates and credibility intervals between each simulated data-set.
Nevertheless, the mean MAP was able to approximate the true parameter
value. Still, this is a flawed model because we in practice, want to estimate
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the parameters using observations from one person, and the results are
unreliable for one data-set. Furthermore, when we fit the two element
Windkessel model to field observations generated from the three element
Windkessel model without accounting for discrepancy, the measurement
noise σ, acted inappropriately as a tuning parameter, shifting away from its
true value to try to correct for model discrepancy. This was remedied by
introducing Bayesian calibration.

Inference on the model accounting for discrepancy yielded non-identifiable
posteriors when simultaneously estimating the discrepancy and model.
Therefore, the need for modularization was imminent. When the simulation
model was coupled with independent noise to generate field observations,
we obtained well-calibrated posteriors from fitting the model using fixed
values of the length scales or setting priors according to the posteriors from
fitting the discrepancy. In the case of dependent noise, however, the
framework with estimated priors for the length scales proved to be the only
method robust enough to yield well-calibrated results. This framework also
included the most informative priors for the σ’s. Hence, it demonstrates the
importance of choosing suitable priors when incorporating model
discrepancy in statistical inverse problems.

The highly informative priors we used for the observational noise σ can be
argued as restricting the applicability to situations where we have to know
the actual value of σ. However, it is realistic to obtain such information even
when we do not initially know the true value. This is because when
conducting a modular approach, we get knowledge of the range of the
observation noise when fitting the discrepancy. Therefore we have available
information to perform this limitation in future experiments.

The full calibration and first modular approach with fixed values for the
discrepancy length scales yielded irregular credibility intervals for the
simulations with dependent noise. Therefore, we conducted simulation
studies to investigate the impact of different dependencies in the noise. The
full calibration framework showed severe mixing issues. On the contrary, the
first modular framework with fixed length scale values depicted no mixing
issues, but the results indicated an overfitted bias model. For the first
modular approach, we have estimated and fixed the length scale of the
discrepancy to ρ2 = 0.07. Hence, we observed that as the length scales go
towards zero, the effect of the discrepancy goes to the marginal variance σδ

and the physical parameters.
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Furthermore, we investigated the impact of increasing the discrepancy,
which resulted in posteriors with large uncertainties for both physical
parameters. [Brynjarsdóttir and O’Hagan [7]] state that the challenge with
incorporating model discrepancy in statistical inverse problems is being
confounded with calibration parameters, which will only be resolved with
meaningful priors. In other words, to reduce uncertainty in the case of large
discrepancies, the framework proposed in this thesis needs additional
information.

We wanted to keep the experiments within a controlled environment and
used the same simulated flow as input for all experiments. Further, we
assumed no noise in measured flow for all simulation studies, as integrating
this into the models was beyond the scope of this thesis. Nevertheless,
exploring other inflow curves is an interesting topic for future investigation,
as noise in flow will cause issues with uncertainty in inference.

Furthermore, using the three-element Windkessel model as the real model is
not realistic because real pressure data obtained from a person might follow
a much more complex model. We use the three-element Windkessel, as it
can yield results not far from reality. However, most importantly, it is used to
investigate properties that can be hard to deduce from an even more complex
model.

An important note is the speed of the algorithm. Estimating physical
parameters from one person’s flow data using the adaptive MCMC and
modular framework takes only mere seconds, which scales well in a digital
twin setting.

5.2 Conclusion

The difference in inference for independent and dependent noise shows
itself in the stability and uncertainty in the posteriors. Furthermore, we
successfully obtain estimates of the physical parameters using the Bayesian
calibration framework without an emulator. Coupled with highly
informative priors we obtain robust posteriors, nevertheless at the cost of an
increased uncertainty for the physical parameters compared to inference
models without estimating the discrepancy.
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Appendix

6.1 Results Simulation Study 1: Independent noise

6.1.1 Results For One Simulated Data Set

Figures 6.1a, 6.1b and 6.1c display the resulting posterior distributions from
simulation studies 1.1,1.2 and 1.3 with independent noise ϵ. Apart from the
posterior for σ for simulatoin study 1.3, the results yield overall well
calibrated parameter estimates.

Figure 6.2a, 6.2b and 6.2c represent the same posterior distributions as
Figures 6.1a, 6.1b and 6.1c, but with the corresponding correlation between
the parameters. Observe for simulation study 1.2 in Figure 6.2b, how R and
Z are negatively correlated. This corresponds to theory, where we know that
for the three element Windkessel, total arterial resistance becomes the sum
of R and Z . In the same Figure, one can also observe a slight positive
correlation between C and Z .

6.1.2 Results For Simulation Study

The reported 90% credible intervals of the 100 simuulations of posterior of C
is plotted in Figures 6.3a and 6.3b for simulation study 1.1 and 1.2. Here, one
can observe the resulting 94% coverage of the true mean for the two element
Windkessel, and an 88% coverage for the three element Windkessel.
Similarily, Figure 6.4a depicts a 92% coverage of the true mean for R and
Figure 6.4b and 87% coverage. Whereas Figure 6.5a depicts a 86% coverage
of the true mean for σ and Figure 6.5b and 89% coverage.

We move on to simulation study 1.3. Here the parameters C and R, have a
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(a) Simulation Study 1.1: WK2 - iid noise ϵ

(b) Simulation Study 1.2: WK3 - iid noise ϵ

(c) Simulation Study 1.3: iid noise ϵ

Figure 6.1: Posterior distributions for calibration parameters and standard deviance σ from one
simulated data-set and independent noise ϵ. Red line represents estimated MAP of parameter,
whereas blue line represents the known, true value.

coverage of 100%, displayed by Figures 6.3c and 6.4c. In contrast to
simulation study 1.1 and 1.2, where we observe narrower credible intervals,
for simulation study 1.3 they look almost identical for each simulation.
Looking closer, C in Figure 6.3c almost spans the prior entirely with a range
∈ [0.8;2]. This is most likely a result of the model discrepancy being
introduced and not accounted for, consequently introducing more
uncertainty in the estimates. At first glance, one could expect the same for R
in 6.4c, but here we observe the span of the credible intervals being
∈ [0.95;1.05], hence very narrow credible intervals. In addition to this, the
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overestimation of sigma in Figure 6.10c indicates that the variable is
inaccurately behaving as a tuning parameter to fix problems with the model.

6.2 Results Simulation Study 1: Dependent noise

6.2.1 Results For One Simulated Data Set

We present the posterior distributions after simulating from one data-set
with dependent noise ϵt in Figures 6.6a, 6.6b and 6.6c. Observe a similar
behaviour for all posteriors of C compared to the case of independent noise.
R on the other hand, now depicts a biased estimate, nevertheless on a small
scale. In addition, the posterior distribution for σ is again shifting to the end
of the range of its prior for the non-matching models, becoming highly
overestimated. Furthermore, correlation between parameters in Figure ??,
?? and 6.7c depict an almost identical behaviour as for the results of
simulating from one data-set for independent noise.

6.2.2 Results For Simulation Study

Figure 6.8a, 6.8b and 6.8c display the resulting 90% credible intervals of C for
100 independent simulations with dependent noise. Compared to the
independent noise case, we observe much narrower credible intervals for
the matching models. This implies less uncertainty in the estimate itself,
however in Figure 6.8a the coverage of the true value lies around 40%,
whereas for 6.8b it is a bit more than 50%. Hence, all over a less coverage of
the true mean for the matching models when compared to the independent
noise case, but the average of the posterior mean remains more or less
unbiased. This implies that in the presence of dependent noise the resulting
posteriors when simulating from one data-set are uncertain, and might
present bias. Nevertheless, reasonable estimates can be obtained from the
average MAP estimate after several simulation runs. To the contrary, when
we look at the result from the non-matching models presented in Figure
6.8c, there is more similarity with the result from the independent noise
case. Here coverage is all the way up to 100% and posteriors are spanning a
large chunk of the prior. This implies more uncertainty in the posterior
itself.

Both Figures 4.3a and 4.3b for the 90% credible intervals of R, show
behaviour in accordance with the results of C for matching models with
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dependent noise, i.e. considerably more narrow credible intervals for each
simulation. The coverage of the true mean is less than 20 % for both the two
and three element Windkessel. This is an even larger drop in coverage than
the C estimates when compared to the independent noise case, and
underlines the care needed when using parameter estimates from only one
simulation run in the presence of dependent noise. However, the span of the
values is much more narrow compared to C , where we have a range of
values between ∈ [1.1;1.6], but for R the range lies between ∈ [0.84;0.96, and
Rtr ue = 0.9. Figure 4.3c shows a similar behaviour to the non-matching
models with independent noise, but not the same identical shape of the
credible intervals and the coverage is reduced to 98%. In addition, the span
of the credible intervals are slightly larger. (from ∈ [0.92;1.05] to ∈ [0.9;1.10]

As the measurement noise σ is no longer the only parameter defining the
kernel, which Equation 3.2 describes, it can explain the underestimation for
the matching models depicted in Figure 6.10a and 6.10b. The measurement
noise still has the same true value of σ= 3, but the coverage of the true mean
of the credible intervals is around 27% for the two element Windkessel. It is
further reduced for the three element Windkessel in Figure 6.10b to a
coverage around 17%. For non-matching models however, the discrepancy
is again overruling the estimate, hence the coverage is similar to the
non-matching models with independent noise, with 0 % coverage of the true
value and an average MAP estimate around the same value as for
independent noise.

6.3 Results Simulation Study 2: Independent noise

We first present the results from fitting the discrepancy alone, which forms
the baseline for the two modular approaches. Then we present results from
the full calibration, where we infer all parameters simultaneously, and then
results from the two modularization strategies for one simulated data-set and
for 100 simulated data-sets with independent noise .

True values of the discrepancy parameters ρ1, ρ2 and σδ are not known,
hence we report MAP estimates from the posterior distributions and
credible intervals.



72 6.3. Results Simulation Study 2: Independent noise

6.3.1 Results From Fitting The Discrepancy

The resulting posteriors from estimating the discrepancy form the baseline
for the modular approaches one and two and are depicted in Figure 4.6a.
The correlation between parameters are shown in Figure 4.6b, where all
correlation coefficients are of high significance(the larger number of ∗′s
behind coefficient, the more significant), but of moderate size except for the
one between length scale ρ1 and σδ. The first modular approach utilizes the
MAP estimate of the length scale parameters, whereas the second modular
approach takes the limits of the posterior and forms a prior for the length
scales.

6.3.2 Results For One Simulated Data Set

Full Calibration

We present the results from the full calibration (simulation study 2.3 in Table
??) with independent noise ϵ. As presented in 3.5.2 We have conducted the
full calibration with two different uniform priors for the length scales.

First we have the results from conducting the simulations with a uniform
prior between 0 and 1 in Figure 6.12a. The MAP estimates of physical
parameters R and C show a slight overestimation when compared to the
true mean, and there is uncertainty in the long tails of both posterior
distributions. The observation noise σ shows a slight underestimation,
nevertheless a well calibrated posterior compared to the results from
Simulation Study 1 with non-matching models, where σ is heavily
overestimated.

To the contrary, we can observe that the posteriors for the length scales are
accumulating at the end of the range of their priors, indicating that they
have not converged. Due to our input covariates time and flow being
transformed to a 0-1 scale, there should not be information in the data
pushing the length scales to larger values than 1. Out of curiosity, however,
we conduct the experiment with a larger range in the priors to observe if the
posteriors of length scales do converge at one point. Nevertheless,
correlation between parameters are moderate in Figure 6.12b, which shows
relatively small values. Note, however, how the correlation between C and
allother parameters are reported as highly significant, with three stars ∗

behind. This level of significance is also reported for the correlation between
the length scales, and ρ1 and σδ.
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The resulting posteriors from increasing the range of priors for the lengths
scales are presented in 6.13a. While the length scale ρ1, corresponding to
flow, seems to accumulate somewhere below 50, ρ2 corresponding to time
does not seem to converge, not even within a range of 0 to 5000. This is
interesting, as mentioned above, there is no information in the data that
would draw values of the length scales up to such extremes. In addition,
allowing ρ1 to explore a larger posterior has resulted in an increase
correlation with σδ as presented in Figure 6.13b. Most importantly, the
results yield less accurate posteriors in Figure 6.13a for the physical
parameters, which are the main stars of the simulation studies.
Furthermore, we observe an increase in correlation between R and C in
Figure 6.13b. Therefore, we conclude that we continue the full calibration
approach for the rest of the simulation studies with a uniform prior for
length scales between 0 and 1, and turn to the modularization framework to
be able to identify posteriors for the length scales.

Mod 1: Fixed Values For Length Scale Parameters

We present the results from estimating the parameters from one data-set
and utilizing the first modularization approach, where we fix the length
scales to the MAP estimates of the posteriors from fitting the discrepancy.
The resulting posteriors are presented in Figure 6.14a. Here C looks to be a
bit overestimated, but what indicates uncertainty in the posterior is the long
tail, which looks to span the whole prior range between [0,5;3]. R is slightly
over estimated, but with a well calibrated posterior. In addition σ is also
slightly over estimated, but with the true value contained in the posterior.
Furthermore, we observe very small correlation between parameters Figure
6.14b, where all correlation coeficients are reported as highly significant
except for the ones between σ and the physical parameters. Noteworthy
would be the correlation between C and σδ which is considerably larger if
we compare it to the correlation with other parameters, and might be a
factor causing the uncertainty in the posterior for C .

Mod 2: Priors For Length Scale Parameters

We present the results simulating from one data-set with the second modular
approach of taking the estimated posteriors from fitting the discrepancy as
priors for length scales ρ1 and ρ2. The resulting posteriors in Figure 6.15a
show a slight overestimation of R, and a slightly large range in the posterior. C
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on the other hand is overestimated, with a large tail in its posterior, indicating
uncertainty in the estimate. Furthermore, the length scales are larger than
when we conducted the fitting of the discrepancy alone. In addition the MAP
of σδ has increased from 15 for the first modular approach to 25 here in the
second modular approach.

We again observe moderate degrees of correlation between parameters in
Figure 6.15b. Noteworthy is, that again compliance C is significantly
correlated with all the other parameters. Furthermore, the two length scales
are significantly correlated with the scaling parameter σδ of the discrepancy,
in line with what we observed when we fitted the discrepancy alone.
Compared to the results in Figure 4.6a, however, this correlation seems to be
reduced.

Matching Models

We finalize the simulations with one data-set and independent noise with
presenting the results from conducting full calibration on the matching
models as presented in Table 3.1.

Performing Bayesian calibration when there in theory is no discrepancy
present, yields identifiability issues, and both Figure 6.16a and 6.17a
illustrate this for the discrepancy parameters. Both the two and three
element Windkessel model look like they are in fact estimating a
discrepancy that does not exist, as we obtain a posterior for σδ with a MAP
around 3 and the length scales around 0.5. The physical parameters,
however, are close to unbiased in their MAP estimate with small uncertainty
in the posteriors.

6.3.3 Results For Simulation Study

We now move on to presenting the results from simulating the posterior
from 100 synthetically derived noisy data-sets. We compare the full
calibration with the two modular approaches in terms of the 90% credible
intervals total coverage of the true mean, as well as the stability of the CI’s
between each run.

We commence with the 90% credible intervals of C presented in 6.18a, 6.18b
and 6.18c. The average MAP estimate becomes more and more
overestimated as we move from full calibration, the first modular approach
and finally to the second modular approach. Furthermore, the credible
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intervals for the two modular approaches seem more stable, but in line with
the results from one data-set, the uncertainty is much larger compared to
the full calibration. Looking at the full calibration in Figure 6.18a, we
observe narrower credible intervals. Nevertheless, we observe some sudden
jumps resulting in large spread of the CI. The reason for this is unclear, but
could be due to the fact that we simulate noise randomly for each data-set.
Sudden large simulated noise might cause sudden large uncertainties in the
posteriors.

The results for the resistance R is presented in Figures 6.19a, 6.19b and
6.19c. Here, the CIs seem to be stable for each data-set. Nevertheless, the
least results are presented for the full calibration, with an overestimated
average MAP as well as the largest uncertainty in the resulting CIs. Average
MAPs for both the modular approaches are nearly unbiased, but with the
first modular approach showing slighly narrower Confidence intervals.

These are much more accurate and stable results when compared to the
results for C , and might connected to the correlation plot we observed for
the results when simulating from one data-set. Here C depicted significant
correlation with all parameters, whereas R did not hold that same level of
correlation, hence we observe the lower level of uncertainty in the Credible
intervals. Furthermore, we know that C is directly linked to the amplitude of
the pressure curve, and with a fitting of the two element Windkessel to the
three element Windkessel, C is the parameter to make up for the
shortcomings in the amplitude of the two element Windkessel.

The results for σ presented in Figures 6.20a,6.20b and 6.20c are close to
identical in both the stability and range of the credible intervals, as well as
the unbiasedness of the average MAP estimate.

Results for both length scales are presented in Figures 6.22b, 6.22b and
6.23a, 6.23b for ρ1 and ρ2 respectively. As expected, their credible intervals
are accumulating around 1 for full calibration, but remain stable for the
second modular approach. It is interesting, however, that ρ2 is
systematically larger, with an average MAP 0.25 for the second modular
approach compared to around 0.07 when we fitted the discrepancy alone.

Credible intervals for σδ are reported in Figures 6.21a, 6.21b and 6.21c. Here
we observe that both the average MAP and range of credible intervals are at
its largest ofσδ for the full calibration. This might be caused by the posteriors
for the length scale parameters not converging, but rather accumulating at
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the end of the range of their prior at 1. To the contrary, the average MAP
and CI’s are at their lowest for the first modular approach, where we do not
estimate, but fix the length scales. As we have observed, length scales and σδ

are significantly correlated, and this might explain why the estimates are at
their lowest for the first modular approach.

6.4 Results Simulation Study 2: Dependent noise

We now present the results from the full calibration, where we infer all
parameters simultaneously, and then results from the two modularization
strategies for one simulated data-set and for 100 simulated data-sets with
dependent noise .

Again, true values of the discrepancy parametersρ1, ρ2 andσδ are not known,
hence we report MAP estimates from the posterior distributions and credible
intervals.

6.4.1 Results For One Simulated Data Set

Full Calibration

In line with the results presented for the full calibration approach with
independent noise, we have performed inference on the parameters with
uniform priors between 0 and 1 for the length scales. Resulting posteriors
are presented in Figure 6.24a. Compared to the case of independent noise, C
shows an underestimated MAP value with a larger range in the posteriors,
whereas R is overestimated with a tail indicating uncertainty in the
posterior. Furthermore, σ is now very underestimated, while σδ looks
almost identical to the independent noise. In addition, the posteriors for the
length scales show the same behaviour of accumulating to the end of the
range of their prior. As a result, we observe that the physical parameters and
noise σ are the ones trying to correct for the dependent noise. Hence, full
calibration is not a robust inference method in this case.

Mod 1: Fixed Values For Length Scale Parameters

The resulting posteriors from estimating the parameters with fixed length
scales are presented in Figure 6.25a. Here, the uncertainty of the posterior
for C is extreme, and the MAP estimate strongly overestimated. Surprisingly,
R is very well calibrated, with an unbiased MAP estimate as well as a narrow
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range in the posterior. The noise σ is very underestimated, whereas σδ has a
slightly increased MAP estimate when compared to the posterior from the
data-set with independent noise.

Mod 2: Priors For Length Scale Parameters

When we introduce dependent noise and estimate the parameters using the
second modular approach we run in to some numerical issues. This is
depicted in Figure 6.26a. Surprisingly the calibration of the physical
parameters look good, but the sampling is barely conducted for most of the
parameters of the discrepancy as well as the noise σ.

With an attempt of improving this, we modify the priors of the σ’s as
explained in 3.5.2 to be even more restrictive. Therefore we replace the
uniform priors with an inverse Gamma distributions and conduct the
experiments again. Results from one simulated data-set are presented in
Figures 6.27a and 6.27b. Interestingly enough, at the cost of improving the
calibration for the discrepancy parameters and noise σ, we have introduced
more uncertainty in the posterior for R. Furthermore, the posterior for C
still has an overestimated MAP estimate and a large tail that spans the range
of the entire prior between [0.5;3].

Correlation coefficient and its significance between C and other parameters,
however, is reduced compared to results from the full calibration and first
modular approach for both dependent and independent noise. This is
depicted in Figure 6.27a, where in fact correlation in general seems to be
reduced.

6.4.2 Results For Simulation Study

We now present the results from simulating the posterior from 100
synthetically derived noisy data-sets with dependent noise. We compare the
full calibration with the two modular approaches in terms of the 90%
credible intervals total coverage of the true mean, as well as the stability of
the CI’s between each run.

The results for the estimation of compliance C are presented in Figures
6.28a, 6.28b and 6.28c. Observe for the full calibration how there is a very
large variation in uncertainty for each data-set, as the width of the credible
intervals go from unrealistically narrow to extremely wide. Nevertheless, the
average MAP estimate is almost unbiased. For the modular approaches, we
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have an overestimated average MAP estimate. The credible intervals are
wider, and more stable than for the full calibration, however, the results for
fixed length scales seem to be a bit more unstable than for the results where
we estimate the length scales. In addition, overall the credible intervals show
more uncertainty for the two modular approaches, and the MAP estimate is
slightly more overestimated for the second modular approach.

Moving on to the results for total resistance R presented in Figures 4.9a, 4.9b
and 4.9c. We again observe more unstable credible intervals for each data-
set for the full calibration, and an overestimated MAP estimate. Furthermore,
the first modular approach show the best estimate of the average MAP, which
is nearly unbiased with little uncertainty in the CI’s, however for R we also
observe this sudden jumps in ranges of credible intervals as we did for C in
the full calibration framework. For the second modular approach we have
the most stable CI’s, which look close to stationary for each data-set, and are
narrower than for the full calibration, nevertheless wider than for the first
modular approach.

Furthermore, we observe the results for the observations noise σ in Figures
6.30a, 6.30b and 6.30c. Here we observe a large underestimation for both the
full calibration and first modular approach, which both have uniform priors
for σ. In addition, we have the same behaviour very narrow credible
intervals and sudden jumps of large uncertainty for the full calibration. The
credible intervals for the first modular approach are also unstable from
data-set to data-set, but remain narrow for all runs. For the second modular
approach however, we an inverse Gamma distribution as a prior, which is
strictly limiting the noise. This is reflected in 6.30c, where we observe stable
and narrow credible intervals.

The results for σδ in Figures 6.31a, 6.31b and 6.31c show similar behaviour
for the results of σ, with unstable credible intervals and large jumps for the
full calibration. This is also represented for the the first modular approach,
nevertheless on a smaller scale, and an average MAP estimate approximately
around 24, whereas the second modular approach is stable around an
average MAP of 34. This can be blamed on the more inverse Gamma
distribution being a more robust prior when introduced to dependent noise,
compared to a uniform distribution.

The instability of the full calibration is further presented for both length scale
parameters in Figures 6.32a and 6.33a. Furthermore, the MAP estimate for
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the second modular approach are larger than before, with ρ
¯M AP

1 = 0.7 and
ρ

¯M AP
2 = 0.3

6.5 Results Simulation Study 3

6.5.1 Mixing Issues of The Full Calibration

We present results from conducting Simulation Study 3 with dependent noise
generated with length scale 1 to demonstrate how the full calibration runs in
to numerical issues when we run the chain for longer. This can be observed
in Figure 6.40b
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(a) Simulation Study 1.1: WK2 - Matching-models - iid
noise ϵ

(b) Simulation Study 1.2: WK3 - Matching-models - iid
noise ϵ

(c) Simulation Study 1.3: iid noise ϵ

Figure 6.2: Correlation plot of the parameters. Contourplots of each pair of numeric variable are
drawn on the left part of the figure. Pearson correlation is displayed on the right. Variable distribution
is displayed on the diagonal.
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(a) Simulation Study 1.1: WK2 -
Matching-models - iid noise ϵ

(b) Simulation Study 1.2: WK3 -
Matching-models - iid noise ϵ

(c) Simulation Study 1.3: iid
noise ϵ

Figure 6.3: Average MAP estimate with corresponding 90% credible intervals of C from 100
independent simulations of the posterior distribution with iid noise ϵ. Blue line represents the true
mean and red line the average of the 100 maximum posterior mean values

(a) Simulation Study 1.1: WK2 -
Matching-models - iid noise ϵ

(b) Simulation Study 1.2: WK3 -
Matching-models - iid noise ϵ

(c) Simulation Study 1.3: iid
noise ϵ

Figure 6.4: Average MAP estimate with corresponding 90% credible intervals of R from 100
independent simulations of the posterior distribution with iid noise ϵ. Blue line represents the true
mean and red line the average of the 100 maximum posterior mean values

(a) Simulation Study 1.1: WK2 -
Matching-models - iid noise ϵ

(b) Simulation Study 1.2: WK3 -
Matching-models - iid noise ϵ

(c) Simulation Study 1.3: iid
noise ϵ

Figure 6.5: Average MAP estimate with corresponding 90% credible intervals of σ from 100
independent simulations of the posterior distribution with independent noise ϵ. Blue line represents
the true mean and red line the average of the 100 maximum posterior mean values
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(a) Simulation Study 1.4: WK2 - Matching-models - dependent noise ϵt

(b) Simulation Study 1.5: WK3 - Matching-models - dependent noise ϵt

(c) Simulation Study 1.6: dependent noise ϵt

Figure 6.6: Posterior distributions for calibration parameters and standard deviance σ from one
simulated data-set and dependent noise ϵt . Red line represents estimated MAP of parameter, whereas
blue line represents the known, true value.



CHAPTER 6. Appendix 83

(a) Simulation Study 1.4: WK2 - Matching-models -
dependent noise ϵt

(b) Simulation Study 1.5: WK3 - Matching-models -
dependent noise ϵt

(c) Simulation Study 1.6: dependent noise ϵt

Figure 6.7: Posterior distributions with correlation plots for calibration parameters and standard
deviance σ from running the MCMC sampling once with dependent noise ϵt .
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(a) Simulation Study 1.4: WK2
- Matching-models - dependent
noise ϵt

(b) Simulation Study 1.5: WK3
- Matching-models - dependent
noise ϵt

(c) Simulation Study 1.6:
dependent noise ϵt

Figure 6.8: Average MAP estimate with corresponding 90% credible intervals of C 100 independent
simulations of the posterior distribution with dependent noise ϵt . Blue line represents the true mean
and red line the average of the 100 maximum posterior mean values

(a) Simulation Study 1.4: WK2
- Matching-models - dependent
noise ϵt

(b) Simulation Study 1.5: WK3
- Matching-models - dependent
noise ϵt

(c) Simulation Study 1.6:
dependent noise ϵt

Figure 6.9: Average MAP estimate with corresponding 90% credible intervals of R from 100
independent simulations of the posterior distribution with dependent noise ϵt . Blue line represents
the true mean and red line the average of the 100 maximum posterior mean values
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(a) Simulation Study 1.4: WK2
- Matching-models - dependent
noise ϵt

(b) Simulation Study 1.5: WK3
- Matching-models - dependent
noise ϵt

(c) Simulation Study 1.6:
dependent noise ϵt

Figure 6.10: Average MAP estimate with corresponding 90% credible intervals of σ from 100
independent simulations of the posterior distribution with dependent noise ϵt . Blue line represents
the true mean and red line the average of the 100 maximum posterior mean values



86 6.5. Results Simulation Study 3

(a) Discrepancy: Resulting posterior distributions from estimating the discrepancy from one simulated data-
set. Red line represents estimated MAP of parameter.

(b) Discrepancy: Correlation plot of the parameters. Contourplots of each pair of numeric variable
are drawn on the left part of the figure. Pearson correlation is displayed on the right. Variable
distribution is displayed on the diagonal.

Figure 6.11: Discrepancy parameters estimate from one simulated dataset
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(a) Simulation Study 2.3 - Full Calibration: Resulting posterior distributions from one simulated data-set with
priors for ρ’s ∼ U [0,1] and independent noise ϵ. Red line represents estimated MAP of parameter, whereas
blue line represents the known, true value.

(b) Simulation Study 2.3 - Full Calibration: Correlation plot of the parameters. Contourplots of each
pair of numeric variable are drawn on the left part of the figure. Pearson correlation is displayed on
the right. Variable distribution is displayed on the diagonal.

Figure 6.12: Posterior distributions and correlation plots for calibration parameters, standard
deviance σ and bias parameters σδ, ρ1 and ρ2 from full calibration with iid noise ϵ. Priors for ρ’s
are uniform with a range of 0 to 1.
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(a) Simulation Study 2.3 - Full Calibration: Resulting posterior distributions from one simulated data-set with
priors for ρ’s ∼ U [0,5000] and independent noise ϵ. Red line represents estimated MAP of parameter, whereas
blue line represents the known, true value.

(b) Simulation Study 2.3 - Full Calibration: Correlation plot of the parameters. Contourplots of each
pair of numeric variable are drawn on the left part of the figure. Pearson correlation is displayed on
the right. Variable distribution is displayed on the diagonal.

Figure 6.13: Posterior distributions and correlation plots for calibration parameters, standard
deviance σ and bias parameters σδ, ρ1 and ρ2 from full calibration with iid noise ϵ. Priors for ρ’s
are uniform with a range of 0 to 5000.
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(a) Simulation Study 2.5 - Mod 1: Resulting posterior distributions from one simulated data-set with fixed MAP
values for length scales ρ and independent noise ϵ. Red line represents estimated MAP of parameter, whereas
blue line represents the known, true value.

(b) Simulation Study 2.5 - Mod 1: Correlation plot of the parameters. Contourplots of each pair of
numeric variable are drawn on the left part of the figure. Pearson correlation is displayed on the
right. Variable distribution is displayed on the diagonal.

Figure 6.14: Posterior distributions and correlation plot for physical parameters R and C , standard
deviance σ and bias parameter σδ from using estimated fixed values for length scales ρ with
independent noise ϵ.
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(a) Simulation Study 2.7 - Mod 2: Resulting posterior distributions from one simulated dataset with priors for
length scales ρ and independent noise ϵ. Red line represents estimated MAP of parameter, whereas blue line
represents the known, true value.

(b) Simulation Study 2.7 - Mod 2: Correlation plot of the parameters. Contourplots of each pair of numeric
variable are drawn on the left part of the figure. Pearson correlation is displayed on the right. Variable
distribution is displayed on the diagonal.

Figure 6.15: Posterior distributions and correlation plots for physical parameters R and C , standard
deviance σ and bias parameters σδ, ρ1 and ρ2 from using estimated posteriors as priors for length
scales ρ with independent noise ϵ.
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(a) Simulation Study 2.1 - WK2 - Matching Models: Resulting posterior distributions from performing full
calibration on one simulated data-set with independent noise ϵ. Red line represents estimated MAP of
parameter, whereas blue line represents the known, true value.

(b) Simulation Study 2.1 - WK2 - Matching Models: Correlation plot of the parameters. Contourplots
of each pair of numeric variable are drawn on the left part of the figure. Pearson correlation is
displayed on the right. Variable distribution is displayed on the diagonal.

Figure 6.16: Posterior distributions and correlation plots for calibration parameters, standard
deviance σ and bias parameters σδ, ρ1 and ρ2 from performing full calibration with independent
noise ϵ.
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(a) Simulation Study 2.2 - WK3 - Matching Models: Resulting posterior distributions from performing full
calibration on one simulated data-set with independent noise ϵ. Red line represents estimated MAP of
parameter, whereas blue line represents the known, true value.

(b) Simulation Study 2.2 - WK3 - Matching Models: Correlation plot of the parameters. Contourplots
of each pair of numeric variable are drawn on the left part of the figure. Pearson correlation is
displayed on the right. Variable distribution is displayed on the diagonal.

Figure 6.17: Posterior distributions and correlation plots for calibration parameters, standard
deviance σ and bias parameters σδ, ρ1 and ρ2 from performing full calibration with independent
noise ϵ.
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(a) Simulation Study 2.3 - Full
Calibration - iid noise ϵ

(b) Simulation Study 2.5 - Mod 1
- iid noise ϵ

(c) Simulation Study 2.7 - Mod 2
- iid noise ϵ

Figure 6.18: Average MAP estimate with corresponding 90% credible intervals of C from 100
independent simulations of the posterior distribution with independent noise ϵ. Blue line represents
the true mean and red line the average of the 100 maximum posterior mean values

(a) Simulation Study 2.3 - Full
Calibration - iid noise ϵ

(b) Simulation Study 2.5 - Mod 1
- iid noise ϵ

(c) Simulation Study 2.7 - Mod 2
- iid noise ϵ

Figure 6.19: Average MAP estimate with corresponding 90% credible intervals of R from 100
independent simulations of the posterior distribution with independent noise ϵ. Blue line represents
the true mean and red line the average of the 100 maximum posterior mean values

(a) Simulation Study 2.3 - Full
Calibration - iid noise ϵ

(b) Simulation Study 2.5 - Mod 1
- iid noise ϵ

(c) Simulation Study 2.7 - Mod 2
- iid noise ϵ

Figure 6.20: Average MAP estimate with corresponding 90% credible intervals of σ from 100
independent simulations of the posterior distribution with independent noise ϵ. Blue line represents
the true mean and red line the average of the 100 maximum posterior mean values
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(a) Simulation Study 2.3 - Full
Calibration - iid noise ϵ

(b) Simulation Study 2.5 - Mod 1
- iid noise ϵ

(c) Simulation Study 2.7 - Mod 2
- iid noise ϵ

Figure 6.21: Average MAP estimate with corresponding 90% credible intervals of σδ from 100
independent simulations of the posterior distribution with independent noise ϵ. Blue line represents
the true mean and red line the average of the 100 maximum posterior mean values

(a) Simulation Study 2.3 - Full
Calibration - iid noise ϵ

(b) Simulation Study 2.7 - Mod 2-
iid noise ϵ

Figure 6.22: Average MAP estimate with corresponding 90% credible intervals of ρ1 from 100
independent simulations of the posterior distribution with independent noise ϵ. Blue line represents
the true mean and red line the average of the 100 maximum posterior mean values

(a) Simulation Study 2.3 - Full
Calibration - iid noise ϵ

(b) Simulation Study 2.7 - Mod 2-
iid noise ϵ

Figure 6.23: Average MAP estimate with corresponding 90% credible intervals of ρ2 from 100
independent simulations of the posterior distribution with independent noise ϵ. Blue line represents
the true mean and red line the average of the 100 maximum posterior mean values
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(a) Simulation Study 2.4 - Full Calibration: Resulting posterior distributions from one simulated data-set with
dependent noise ϵt . Red line represents estimated MAP of parameter, whereas blue line represents the known,
true value.

(b) Simulation Study 2.4 - Full Calibration: Correlation plot of the parameters. Contourplots of each
pair of numeric variable are drawn on the left part of the figure. Pearson correlation is displayed on
the right. Variable distribution is displayed on the diagonal.

Figure 6.24: Posterior distributions with correlation and mixing plots for calibration parameters,
standard devianceσ and bias parametersσδ, ρ1 and ρ2 from full calibration with dependent noise ϵt .
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(a) Simulation Study 2.6 -Mod 1: Resulting posterior distributions from one simulated data-set with fixed MAP
values for length scales ρ and dependent noise ϵt . Red line represents estimated MAP of parameter, whereas
blue line represents the known, true value.

(b) Simulation Study 2.6 -Mod 1: Correlation plot of the parameters. Contourplots of each pair of
numeric variable are drawn on the left part of the figure. Pearson correlation is displayed on the
right. Variable distribution is displayed on the diagonal.

Figure 6.25: Posterior distributions and correlation plot for physical parameters R and C , standard
deviance σ and bias parameter σδ from using estimated fixed values for length scales ρ with
dependent noise ϵt .
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(a) Simulation Study 2.8 - Mod 2: Resulting posterior distributions from one simulated dataset with priors
for length scales ρ and dependent noise ϵt and uniform priors for σ’s. Red line represents estimated MAP of
parameter, whereas blue line represents the known, true value.

(b) Simulation Study 2.8 - Mod 2: Correlation plot of the parameters. Contourplots of each pair of numeric
variable are drawn on the left part of the figure. Pearson correlation is displayed on the right. Variable
distribution is displayed on the diagonal.

Figure 6.26: Posterior distributions and correlation plots for physical parameters R and C , standard
deviance σ and bias parameters σδ, ρ1 and ρ2. We use estimated posteriors as priors for length scales
ρ and uniform priors for σ’s with dependent noise ϵt .
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(a) Simulation Study 2.8 - Mod 2: Resulting posterior distributions from one simulated dataset with priors for
length scales ρ and dependent noise ϵt and inverse gamma priors for σ’s. Red line represents estimated MAP
of parameter, whereas blue line represents the known, true value.

(b) Simulation Study 2.8 -Mod 2: Correlation plot of the parameters. Contourplots of each pair of numeric
variable are drawn on the left part of the figure. Pearson correlation is displayed on the right. Variable
distribution is displayed on the diagonal.

Figure 6.27: Posterior distributions and correlation plots for physical parameters R and C , standard
deviance σ and bias parameters σδ, ρ1 and ρ2. We use estimated posteriors as priors for length scales
ρ and inverse Gamma priors for σ’s with dependent noise ϵt .
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(a) Simulation Study 2.4 - Full
Calibration -
dependent noise ϵt

(b) Simulation Study 2.6 - Mod 1
-
dependent noise ϵt

(c) Simulation Study 2.8 - Mod 2
-
dependent noise ϵt

Figure 6.28: Average MAP estimate with corresponding 90% credible intervals of C from 100
dependent simulations of the posterior distribution with dependent noise ϵt . Blue line represents
the true mean and red line the average of the 100 maximum posterior mean values

(a) Simulation Study 2.4 - Full
Calibration -
dependent noise ϵt

(b) Simulation Study 2.6 - Mod 1
-
dependent noise ϵt

(c) Simulation Study 2.8 - Mod 2
-
dependent noise ϵt

Figure 6.29: Average MAP estimate with corresponding 90% credible intervals of R from 100
independent simulations of the posterior distribution with dependent noise ϵt . Blue line represents
the true mean and red line the average of the 100 maximum posterior mean values
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(a) Simulation Study 2.4 - Full
Calibration -
dependent noise ϵt

(b) Simulation Study 2.6 - Mod 1
-
dependent noise ϵt

(c) Simulation Study 2.8 - Mod 2
-
dependent noise ϵt

Figure 6.30: Average MAP estimate with corresponding 90% credible intervals of σ from 100
independent simulations of the posterior distribution with dependent noise ϵt . Blue line represents
the true mean and red line the average of the 100 maximum posterior mean values

(a) Simulation Study 2.4 - Full
Calibration -
dependent noise ϵt

(b) Simulation Study 2.6 - Mod 1
-
dependent noise ϵt

(c) Simulation Study 2.8 - Mod 2
-
dependent noise ϵ

Figure 6.31: Average MAP estimate with corresponding 90% credible intervals of σδ from 100
independent simulations of the posterior distribution with dependent noise ϵt . Blue line represents
the true mean and red line the average of the 100 maximum posterior mean values
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(a) Simulation Study 2.4 - Full
Calibration -
dependent noise ϵt

(b) Simulation Study 2.8 -Mod 2 -
dependent noise ϵt

Figure 6.32: Average MAP estimate with corresponding 90% credible intervals of ρ1 from 100
independent simulations of the posterior distribution with dependent noise ϵt . Blue line represents
the true mean and red line the average of the 100 maximum posterior mean values

(a) Simulation Study 2.4 - Full
Calibration -
dependent noise ϵt

(b) Simulation Study 2.8 - Mod 2-
dependent noise ϵt

Figure 6.33: Average MAP estimate with corresponding 90% credible intervals of ρ2 from 100
independent simulations of the posterior distribution with dependent noise ϵt . Blue line represents
the true mean and red line the average of the 100 maximum posterior mean values
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Figure 6.34: Simulation Study 2: Summary of the mean credibility intervals for length scale parameter
σδ.Corresponding Simulation Study as defined in Table 3.1 can be deduced from the y-axis. Fully
drawn and dashed lines correspond to dependent and independent noise respectively.
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Figure 6.35: Simulation Study 2: Summary of the mean credibility intervals for length scale parameter
ρ1. Corresponding Simulation Study as defined in Table 3.1 can be deduced from the y-axis. Fully
drawn and dashed lines correspond to dependent and independent noise respectively.
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Figure 6.36: Simulation Study 2: Summary of the mean credibility intervals for length scale parameter
ρ2. Corresponding Simulation Study as defined in Table 3.1 can be deduced from the y-axis. Fully
drawn and dashed lines correspond to dependent and independent noise respectively.
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(a) Simulation Study 3: Full Calibration -
R for dependent noise with theta 1 ϵt

(b) Simulation Study 3: Mod 1-
R for dependent noise with theta 1 ϵt

(c) Simulation Study 3: Mod 2-
R for dependent noise with theta 1 ϵt

Figure 6.37
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(a) Simulation Study 3: Full Calibration -
Big CI for dependent noise ϵt - iteration 2

(b) Simulation Study 3: Mod 1-
Big CI dependent noise ϵt - iteration 48

Figure 6.38
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(a) Simulation Study 3: Full Calibration -
Small CI for dependent noise ϵt - iteration 3

(b) Simulation Study 3: Mod 1-
Small CI dependent noise ϵt - iteration 30

Figure 6.39
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(a) Simulation Study 3: Full Calibration -
Small CI for dependent noise ϵt - short - theta 1

(b) Simulation Study 3: Full Calibration -
Small CI for dependent noise ϵt - long - theta 1

(c) Simulation Study 3: Mod 1-
Small CI dependent noise ϵt - short - theta1

(d) Simulation Study 3: Mod 1-
Small CI dependent noise ϵt - long - theta1

Figure 6.40
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(a) Simulation Study 3: Full Calibration -
Big CI for dependent noise ϵt - short - theta 1

(b) Simulation Study 3: Full Calibration -
Big CI for dependent noise ϵt - long - theta 1

(c) Simulation Study 3: Mod 1-
Big CI dependent noise ϵt - short - theta 1

(d) Simulation Study 3: Mod 1-
Big CI dependent noise ϵt - long - theta 1

Figure 6.41
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