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Abstract

Hierarchical decomposition (HD) priors are a prior construction framework for
setting joint priors on variance parameters in latent Gaussian models (LGMs)
using a tree-structure reflecting the structure of the model. Currently they can
only incorporate random effects, not fixed effects, meaning they can at most
decompose the residual variance after linear regression.

In this thesis we aim to remove this limitation, extending the framework
to also include fixed effects, and testing these new priors on a series of non-
linear smoothing problems, in 1 and 2 dimensions, with complete and sparse data
sets. In all cases we evaluate prior performance using continuous rank probability
scores and mean square errors.

Our findings are inconclusive regarding whether HD priors, with or without
incorporating fixed effect variance, are an improvement over competing priors
performance-wise. Whether HD, expanded HD or independent priors perform
the best varies between tests. Further research is needed to reach a general
conclusion.

Applying the new priors to multidimensional smoothing problems can cause
impractical runtimes compared to independent or basic HD priors, though it is
possible this is more due to the complexity of the HD tree than the framework
expansion per se. We therefore recommend further research into performing
inference with the expanded HD priors before using them in practice.
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Chapter 1

Introduction

Bayesian statistics is a highly flexible tool that, owing to powerful statistical
software like WinBUGS(Spiegelhalter et al., 2000) and Stan(Carpenter et al.,
2017) sees a wide range of applications across all statistical fields of science, and
within Bayesian statistics, latent Gaussian models (LGMs) are used particularly
frequently. The defining property of this class of models is that all latent pa-
rameters are normally distributed. At first it might sound impractically limiting
to restrict oneself to a single model class, but, as users of INLA (Rue et al.,
2009) can attest (Rue et al., 2016), this is nowhere near the issue one might first
assume.

However, the field of applying these models is still far from being solved, with
prior choice potentially being a particular challenge. Fuglstad et al. (2020) at-
tempts to mitigate part of this problem by offering an intuitive framework for
setting joint priors on variance parameters in LGMs, namely hierarchical decom-
position (HD) priors, which we will be expanding upon in this thesis. These priors
hold much promise. They are intuitive to specify and reflect model structure in
a transparent way. However, Fuglstad et al. (2020) noted one remaining step in
particular; the priors can currently only handle variance from random effects, not
fixed ones. We will expand the framework so that they can, provide new theory
and explore how viable the expanded framework is through a series of examples.

For all of our examples, priors are compared by applying them to non-linear
smoothing problems. We begin by comparing basic HD priors to competing priors
on a 1-dimensional problem with a rich data set, with ideal as well as poor prior
beliefs. We then introduce the expanded HD prior, that incorporates fixed effect
variance, offering theory on how to conceptualise model and node variance in
this new context, before we compare them to the other priors on the same one
dimensional problem, first with a rich data set, then two different sparse ones.

5



6 CHAPTER 1. INTRODUCTION

Finally, we perform a simulation study on a 2-dimensional problem with sparse
data sets. In all cases, objective prior performance is measured using MSE and
CRPS scores. We will also consider the aspect of how intuitive the different priors
are to specify.

HD priors are part of an on-going effort to supply general practitioners with
default priors. In their paper on penalised complexity (PC) priors, Simpson et al.
(2017) noted that, as developers of INLA, they were faced with an unpalatable
choice between requiring that users specify full joint priors for model parameters
on their own, or to supply users with default priors. Neither alternative was par-
ticularly inviting. Despite being the mathematically correct option, leaving prior
choice entirely up to end users would not be feasible due to all the confusion that
would ensue. Default priors meanwhile were problematic in that they were often
chosen somewhat arbitrarily in hopes that they would provide decent results. PC
priors can then, while not universal, be seen as an attempt to mitigate this prob-
lem by providing a general means to specify priors that are both conservative
and intuitive to use, as well as having a number of other desirable properties. In
light of this HD priors are an extension of the PC prior framework to the more
narrow domain of joint variance priors for LGMs.

One may also draw parallels between HD priors and the R2-D2 shrinkage prior
(Yanchenko et al., 2021), indeed Yanchenko et al. (2021) does this themselves in
their introduction, conceptualising Simpson et al. (2017)’s multivariate PC priors
as a means of performing shrinkage on the entire model. They also employ a
similar scheme of variance decomposition, assigning a Dirichlet prior on portions
of variance corresponding to each random effect model component. This is similar
to assigning an unstructured prior in the HD framework. However, the resulting
prior seems more ad hoc, which runs counter to calls for Bayesian workflow
(Gelman et al., 2020) in which model understanding is prioritised. To this end,
HD priors seem more appropriate, as they respect model structure and makes
inputting prior knowledge more intuitive.

In chapter 2 we provide necessary background material, laying out our general
model, the principled priors we will be expanding upon and the algorithm and
software we will be make use of in performing inference with said model. In
Chapter 3, we introduce our main example problem along with our basic priors.
Chapter 4 is where we introduce the expanded HD prior. Here we also provide
additional theory regarding how to conceptualise total (node) variance in this
new context. Chapter 5 is our first step towards more realistic model complexity,
with priors being tested on sparse data sets, and Chapter 6 takes this a step
further, with a simulation study on applying the different priors to sparse data
sets for a 2-dimensional problem.



Chapter 2

Background

2.1 Bayesian hierarchical models

Central to Bayesian inference are (Bayesian) hierarchical models, for a number
of reasons. Firstly, realistic complexity often entails a hierarchy of variables. In
many cases, they are also simply more representative of the truth. The archetyp-
ical example is standardised school test scores, which have multiple levels of
experimental units, from individual students, to classes, to schools, to districts,
to countries. Even without a strictly defined formal hierarchy, inference can still
be helped by finding ways of grouping observations to utilise more information.
On a more human level, hierarchical models may also simply be more intuitive,
with relationships between model parameters that are more easily understood, in
line with recommended Bayesian workflow(Rue et al., 2016). One specific exam-
ple, and the main model we will using for this thesis is the non-linear smoothing
model.

Example 1. The general non-linear smoothing model: Let y be a signal
with normally distributed random noise, and linear and non-linear contributions
from p covariates {x1,x2, ...,xp}. Assuming that any non-linear contribution is
continuously differentiable, and that there is no interaction between covariates,
we can model y as follows:

7



8 CHAPTER 2. BACKGROUND

y | σR, α,β ∼ N (η, σ2
R) (2.1)

η = α1 +

p∑
i=1

fi(xi) (2.2)

f i(xi) = βixi + ui (2.3)

α ∼ N (0, σ2
α) (2.4)

βi ∼ N (0, σ2
βi) , i = 1, 2, ..., p (2.5)

ui ∼ N (0, σ2
uiΣ̃ui) , i = 1, 2, ..., p (2.6)

with additional priors on the set of variance parameters {σα, σβ1 , σβ2 , ..., σβp ,
σu1

, σu2
, ..., σup , σR}. Here α is the population intercept, β is the vector of fixed

effects, and the vectors ui , i = 1, 2, ..., p are random-walk-2 vectors represent-
ing the non-linear contributions from each covariate. The distribution of u is
explained more closely in Section 2.2.1, and our variance priors in general are
discussed in Section 2.3.2.

Although this model has a total of p covariates, it is still substantially limited
in the range of behaviour it can capture as it assumes no interaction between
covariates. Nevertheless it is sufficiently complex to be used in interesting prob-
lems within the scope of this thesis, and will indeed generally be the model by
which data is generated and modelled, with the exception of Chapter 3, in which
we explicitly encode a specific non-linear function when generating data.

This layered approach is highly flexible, easing the process of encoding desired
knowledge into the model, and overall the approach is versatile, as the hierarchy
can be adjusted depending on the specific problem. Although models set up this
way are generally not analytically tractable, this problem is typically mitigated
by the availablity of powerful Bayesian software for approximating the posterior
using Markov chain Monte Carlo methods. The main software we will be using
is Stan, which, as we shall discuss further in Section 2.4, involves a particularly
sophisticated approach to MCMC sampling, namely the No-U-turn sampler.

2.2 Gaussian Markov random fields

Out of the model components mentioned so far, the most complex, and thus the
potentially most expensive to simulate as part of our inference, are the random
vectors used to represent non-linear effects mentioned in Example 1. Performing
Markov chain Monte Carlo-based Bayesian inference using a multivariate nor-
mal distribution requires computing the inverse of that distribution’s covariance
matrix, its precision matrix. In general, inverting matrices can quickly get very
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expensive, so mitigating this cost is an important part of keeping this type of
inference, where the posterior is evaluated thousands of times, practically feasi-
ble. One way to achieve this for LGMs, is to ensure the precision matrices are
sparse. As we shall demonstrate in this section, this holds for our random vectors
u1,u2, ...,up, as they belong to the category of Gaussian Markov random fields
(GMRFs).

Gaussian Markov random fields encompasses a wide array of statistical mod-
els, with applications in spatiotemporal statistics, analysis of time-series and lon-
gitudinal and survival data, as well as semi-parametric statistics and graphical
data(Rue and Held, 2005), but they are not least particularly relevant to Bayesian
inference using hierarchical models. They provide naturally sparse precision ma-
trices (Rue and Held, 2005), which is extremely useful for MCMC procedures on
LGMs due to the aforementioned costs that might otherwise arise.

The key property that distinguishes GMRFs from Gaussian random vectors
in general is that their full conditional dependence structure can be described
with an undirected graph. More specifically:

Definition 2.2.1. Gaussian Markov random field: If u ∈ Rn, and G is an
undirected graph consisting of a set V of vertices and a set E of edges, then u is
a GMRF with mean µ and precision matrix Q if and only if it has density

π(u) = (2π)−
n
2 | Q |1/2 exp(−1

2
(u− µ)TQ(u− µ))∀u ∈ R

where | Q | is the determinant of Q and Qij 6= 0 ⇐⇒ {i, j} ∈ E ∀ i 6= j.

Given this definition, a number of useful properties follow, besides those that
apply to any normal distribution. For instance it can be shown that the condi-
tional dependence structure of x can easily be found from inspecting Q.

Theorem 1. Let u be a GMRF. Then ui ⊥ xj ⇐⇒ Qij = 0 for i 6= j.

For details, see Rue and Held (2005). This result is a prime example of why
GMRFs are desirable, as it means that a sparse dependence structure between
covariates also means that evaluating the associated prior is relatively inexpen-
sive.

2.2.1 Intrinsic Gaussian Markov random fields (IGMRFs)

We noted at the start of this section that we are interested in GMRFs for the
purpose of modelling the random vectors, ui, i = 1, 2, ..., p that we use for non-
linear smoothing. These vectors actually fall within a specific subclass of GMRFs,
namely GMRFs that are intrinsic. These GMRFs are characterised by precision
matrices without full rank. The definition of such a GMRF is quite similar to
that of GMRFs in general:
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1 2 3 4

Figure 2.1: The beginning of the graph corresponding to a random-walk 1 model.

Definition 2.2.2. Intrinsic Gaussian Markov random field(IGMRF): Let Q be
an symmetric, semi-positive definite n× n matrix with rank n− k, then u is an
IGMRF with mean µ and precision matrix Q if it has density

π(u) = (2π)−
n−k

2 (| Q |∗)1/2 exp(−1

2
(u− µ)TQ(u− µ))

where | Q |∗ is the generalised determinant of Q, ie. the product of all the non-
zero eigenvalues of Q. Furthermore, u is an IGMRF with respect to the graph
G if and only if Qij 6= 0 ⇐⇒ {i, j} ∈ E ∀ i 6= j We also define the order of u to
be k.

Note that µ and Q are not truly the mean and precision matrix of u as
they formally do not exist, but we will continue to refer to them as such for
convenience when describing IGMRFs. IGMRFs of order k are often constructed
using forward differences of order k.

Definition 2.2.3. Forward difference
Let f(z) be a function defined over a regular grid with step length h. Then

the forward difference of f(z), ∆f(z), is given by the following.

∆f(z) = f(z + h)− f(z)

Furthermore, forward differences of higher order are defined recursively,

∆kf(z) = ∆∆k−1f(z)

so we have for instance ∆2f(z) = f(z+2h)−2f(z+h)+f(z) and, in the general

case ∆kf(z) = (−1)k
∑k
j=0

(
k
j

)
f(z + jh).

Example 1. Random-walk-1 model: If we define u ∈ RN and ∆ui ∼
N (0, σ) for i = 1, 2, ..., N − 1, then we have a random walk model of order 1.
Note that we only define the distribution of the first N − 1 differences as, for a
random walk of order k, the k-order forward difference is not defined for the last
k components of u, and k = 1 in this case. The conditional dependence graph is
shown in Figure 2.1.

The precision matrix is straightforward to derive. We need only note that the
joint probability density of all the finite differences and the density of u must
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be equivalent. Because the normalisation constants are the same, the only parts
that differ are the exponents, and, having set up that equality, it is simple to
derive Q.

In other words, π(∆kui, i = 1, 2, ..., n − 1) ∝ exp(− 1
2σ

∑n−1
i=1 (∆kui)

2) and
π(u) ∝ exp(− 1

2u
TQu). Define the structure matrix R = Q/σ, and the Q

follows thus.

n−1∑
i=1

(∆ui)
2 = (Du)T (Du) = uTDTDu = uTRu = σuTQu

The resulting precision matrix is then as follows.

Q =
1

σ


1 −1
−1 2 1

. . .
. . .

. . .

−1 2 1
−1 1


This simple example illustrates the basic ideas of order n random walk mod-

els, but is uninteresting for our modelling purposes, as it essentially describes a
discretised Brownian motion. However, we do not need much more complexity
for the resulting IGMRF to be useful, as the type we use in our model is only
one order higher.

Example 2. Random-walk-2 model: The conditional dependence structure
of this matrix is as shown in Figure 2.2, and, by a derivation analogous to the
one in Example 1, the precision matrix is the following.

Q =



1 −2 1
−2 5 −4 1
1 −4 6 −4 1

1 −4 6 −4 1
. . .

. . .
. . .

. . .
. . .

1 −4 6 −4 1
1 −4 5 −2

1 −2 1


In either of these cases, the ensuing precision matrices are rank deficient, but

can be made proper by introducing constraints. In general, if u ∈ Rn is an
IGMRF with precision matrix Q with diagonal decomposition Q = Σiλieie

T
i =

V ΛV T where λi is the ith non-zero eigenvalue of Q and ei is the corresponding
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2

1 3

4

5

Figure 2.2: The beginning of the graph corresponding to a random walk model
of order 2.

eigenvector, then, under the linear constraint Au = a where AT = [e1, e2, ..., ek]
(the specific form of A is not actually a limitation), then we have that

lnπ(u | Au = a) =
n− k

2
ln 2π +

1

2

n∑
i=k+1

lnλi −
1

2
uT Q̃u

where Q̃ = V Λ̃V T where Λ̃ = diag(0, ..., 0, λk+1, ..., λn). For details, see Rue
and Held (2005).

2.3 Principled priors

Here, we will, as briefly mentioned in Example 1 in Section 2.1, discuss our
variance priors. These priors, HD priors, will be the main focus of this thesis. HD
priors are an extension of a more general prior framework, penalised complexity
(PC) priors. Both frameworks are derived from a set of principles chosen to elicit
desirable prior properties, hence the name of this section.

2.3.1 Penalised complexity priors

We will begin our discussion with PC priors. PC priors were first introduced
by Simpson et al. (2017). They noted a need for default priors, and PC priors,
though not universal, were an attempt to bridge part of that gap. Simpson et al.
(2017) found that these priors were often a step in the right direction. The
PC prior framework aims, as the name suggests, to avoid models that are more
complex than what is needed to explain the data by denoting a base model and
setting priors that penalise deviations from this model.

To illustrate some of the basic principles behind PC priors, we will briefly go
through the process of setting a prior on the standard deviation, σ, on a single
Gaussian effect. The first principle is that of the aforementioned base model,
which is typically the simplest model, or at least the the one towards which
we wish to enforce shrinkage. For the single Gaussian effect, the base model is
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simply the limiting case where σ → 0. In order to enforce shrinkage towards the
base model, Simpson et al. (2017) defines a ”distance” function, which is defined
using the Kullback-Leibler divergence (KLD) between the base model, g, and
more flexible model f for which σ is non-zero.

KLD(f ||g) =

∫
f(x) ln

f(x)

g(x)
= Ef

[
ln
f(x)

g(x)

]
This is in other words the expectation of ln f(x)

g(x) when x ∼ f . The expres-

sion can be seen as a measure of the information lost when using the simpler
distribution g to approximate the more flexible, and thus more complex, f . In
general, given the KLD between f and g, the distance function d of the complexity
parameter, ξ(σ in our specific example), is defined as follows

d(ξ) =
√

2KLD(f ||g)

where the 2-factor has been added for convenience, and the square root compen-
sates for the power of two usually associated with KLD. For our example this
also yields the intuitive result that d = σ. For more details, see Simpson et al.
(2017).

Note that this function is not formally a distance, as it is not a metric. Nev-
ertheless we will, for simplicity, adopt the terminology used by Simpson et al.
(2017) and continue to refer to it as such. Given the distance function, the re-
maining steps follow easily via the prior on d, π(d). Recall that the general aim
of PC priors is to penalise complexity, identified as distance from the base model.
Therefore, π(d) must have a maximum at d = 0, and decay with increasing d.
Furthermore, because users will generally not be expected to have domain-specific
knowledge of π(d), the rate of decay is chosen to be constant. This entails a expo-
nential distribution on d, possibly truncated in general depending on the model,
and the prior on ξ follows from substitution on π(d). For ξ = σ, this is trivial,
but we could also have chosen to set a prior on variance, σ2, precision, σ−2, or
any other bijective transformation of σ and obtained an equivalent result, as they
all would have followed from π(d). This is a nother noteworthy property of PC
priors, invariance to reparameterisation.

2.3.2 Hierarchical variance decomposition

Originally formulated by Fuglstad et al. (2020), the HD prior framework uses, in
part, PC priors to decompose the total latent variance in latent Gaussian models.
This framework will be the main focus on this thesis, as we test some basic HD
priors in Chapter 3, expand upon it by accounting for fixed effect variance in
Chapter 4 and test these new priors in chapters 5 and 6.
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A+B + C

A+B C

A B

Figure 2.3: An example of a typical HD hierarchy structure. Grey colouration
denotes preferred nodes.

A+B + C

CA B

Figure 2.4: An example of an unstructured HD hierarchy. Generally used to
express ignorance.

To summarise, given a model with a set of associated variance parameters,
Fuglstad et al. (2020) assigns a prior to the total model variance, and parame-
terises the variances corresponding to specific model components as proportions
thereof, which he assigns using a series of splits. The eponymous variance decom-
position hierarchy is then given by the ordering and types of these splits. These
hierarchies can be visualised as (binary) trees, see for instance Figures 2.3 and
2.4.

More specifically, the total model variance, V , is given a typical variance prior,
for instance a PC prior like the one described in Section 2.3.1. The first split
in the hierarchy is then between the total latent model variance, t =

∑N
i=1 σ

2
i

and the residual variance σ2
R, and is controlled by the parameter ωR =

σ2
R

t+σ2
R

and its assigned prior. Given this top split, the rest of the hierarchy is up to
the specific researcher. Although it is redundant to assign a parameter ωi for
every σ2

i , i = 1, 2, ..., N , we will still denote portions of variance as if we do for
simplicity’s sake.

Splits can either express ignorance, or some degree of information. In the
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latter case Fuglstad et al. (2020) suggests using binary splits with PC priors,
which are given in the following theorem.

Theorem 2. Let u1 and u2 be random effects entering into the linear predictor
through Aiui ∼ N (0, σ2

i Σ̃i) , i = 1, 2
Then if Σ̃1 + Σ̃2 is invertible then ω = σ2

2/(σ
2
1 +σ2

2) has the following priors.
If the base model is ω0 = 0 then

π(ω) =

{
λ|d′(ω)|

1−exp(−λd(1)) exp(−λd(ω)) , Σ̃1invertible
λ

2
√
ω(1−exp(−λ)) exp(−λ

√
ω) , Σ̃1singular

, ω ∈ (0, 1)

If ω0 is set to a median value, ωm, then

π(ω) =

{
λ|d′(ω)|

2[1−exp(−λd(0))] exp(−λd(ω)) , ω ∈ (0, ω0)
λ|d′(ω)|

2[1−exp(−λd(1))] exp(−λd(ω)) , ω ∈ (ω0, 1)

In both of these cases the distance function d(ω) is given by

d(ω) =
√

tr(Σ(ω0)−1Σ(ω))− n− ln |Σ(ω0)−1Σ(ω)|

where Σ(ω) = (1− ω)Σ̃1 + ωΣ̃2, and λ is a hyperparameter.

Note that the prior for ω0 = 1 follows from reversing the roles of u1 and u2.
The approach suggested by Fuglstad et al. (2020) for specifying λ is to choose a
value such that the median is ωm = 0.25 in the case where ω0 ∈ (0, 1) and such
that P(logit(ω)+ logit(1/4) < logit(ω) < logit(ω0)+ logit(3/4)) = 1/2 in the case
where ω0 is the median.

For splits expressing ignorance there are two options. The first is to express
ignorance through a series of split priors with base models such that the base
case distributes the variance evenly, however, this is cumbersome, and dependent
on how we choose to order the splits. The more convenient and intuitive option
is to use Dirichlet priors. These have the form

π(ω) =
1

B(α1, ..., αK)

K∏
k=1

ω
αk−1

k , ω ∈ ∆K

where ∆K = {ω ∈ RK :
∑K
i=1 ωi = 1 , ωi > 0 for i = 1, 2, ...,K} and B is the

multivariate beta function.
In order to express ignorance, the split prior has to be symmetric, so we

choose a1 = a2 = ... = ak = a. The recommendation regarding specifying
this parameters is to set a such that P (logit(1/4) < logit(ω1) − logit(ω0) <
logit(3/4)) = 1/2. By the symmetry of the distribution, this requirement holds
for every component of ω if it’s enforced for one component.
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Finally, to complete the framework, the question of dependencies between the
variance parameters must be answered. Here Fuglstad et al. (2020) postulates
two major simplifications in that splits are assumed to be dependent on only
their direct descendants, and only through the prior for their base values, not
their actual ones. In other words, the model for the entire latent part of the tree
structure is

π(σ2
1 , ..., σ

2
N ) = π(t|{ωs}Ss=1

S∏
s=1

π(ωs|{ωj = ω0
j}j∈D(s)) (2.7)

where D(s) is the set of direct descendant nodes of split number s, ωj ∈ ∆lj

where ∆n denotes the set {x ∈ Rn :
∑n
i=1 xi = 1 , xi ≥ 0 ∀i} and ls is the

number of direct descendant splits in split s.

Implementing this in practice can be rather difficult. For more than trivial
covariance matrices, the direct way to handle the prior from Theorem 2 during
MCMC is to recompute it at every step. Because computing π(ω) involves in-
verting the resulting covariance matrices, it is computationally infeasible with
common random effect dimensions.

Luckily, Hem et al. (2021) has developed an R package, makeMyPrior, that
automates the process of defining and fitting HD priors using a numerical ap-
proach. It features built-in functions for specifying any variance prior within the
HD prior framework, setting up tree structures, choosing whether to express ig-
norance or some form of knowledge, as well as PC or other variance priors for root
and singleton nodes Like the HD prior framework overall, these builtin functions
are restricted to random effects. In order to add fixed effects to the tree, we will
have to write custom makemyprior Stan code. Luckily, the library also facilitates
this.

2.4 The No-U-turn sampler

The No-U-turn sampler(NUTS) is an extension of Hamiltonian Monte-Carlo(HMC),
in turn an extension of the general MCMC method, making it an improvement
over an algorithm which itself greatly improves upon generic MCMC. The No-U-
turn sampler is particularly efficient at approximating samples from joint posteri-
ors with potentially difficult geometry, and will therefore be the workhorse of all
inference in this paper. In this section, we will cover the mathematical theory be-
hind the algorithm, and, in Section 2.4.5, briefly discuss Stan, the implementation
of NUTS on which we will be relying.
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2.4.1 Markov chain Monte Carlo methods

In general, applying Bayesian statistics to realistically complex problems leads to
posterior distributions that are not analytically tractable to integrate over. Get-
ting applied Bayesian statistics off the ground has thus been largely dependent on
innovations in computers and algorithms that enable researchers to approximate
these distributions numerically. The general term for most of these techniques is
Markov chain Monte Carlo(MCMC), and the most basic type of MCMC is given
by the Metropolis-Hastings algorithm.

As detailed by Givens and Hoeting (2012), the algorithm approximates sam-
pling X from the target distribution f(x) by first choosing an initial value x0

such that f(x0) > 0 and then, for every step, t = 1, 2, ... proceeding as follows.

1. Sample x∗ ∼ g(· | xt)

2. Compute R(xt,x
∗), where R(u,v) = f(v)g(u,v)

f(u)g(v,u)

3. Accept x∗ as the next value xt+1 with probability min{R(xt,x
∗), 1}. Oth-

erwise set xt+1 = xt.

It can be shown that for reasonable choices of g, the Markov chain defined
by this process will converge in distribution to the target distribution, f . For
details, see Givens and Hoeting (2012).

While this algorithm is highly flexible and can in principle be applied to any
target distribution, it is still far from optimal. For starters, its basic version
can exhibit undesireable random walk behavior wherein it struggles to explore
distributions with problematic geometry and doubles back on itself, effectively
doing work to more or less stay in place.

Example 1. Metropolis Hastings over a strongly correlated normal
distribution: As a demonstration, consider the MH algorithm on a distri-
bution from which we know how to sample without using MCMC. Let X ∼

N (0,

[
1 0.98

0.98 1

]
. Figure 2.5 displays the result of running a random walk vari-

ant of MCMC wherein the proposal distribution is uniform on a ball with radius
0.5 about the last point in the chain for 200 iterations. As can be seen from
the figure, the domain is yet to be adequately explored, and many of the points
considered by the algorithm are rejected. The sample generated by NUTS, on
the other hand, has clearly performed better, having already explored most of
the relevant sample space.

Another problem of the MH-algorithm, and MCMC in general, is tuning.
Consider for instance the problem of running MH with a random-walk proposal,
with a parameter ε controlling how large steps to take. Then the choice of ε
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Figure 2.5: A comparison of samples for a highly correlated bivariate normal
distribution using MH (2.5a) and NUTS (2.5b). In both cases sample-points are
superimposed over a heatmap displaying the true distribution. In both cases,
sample points are represented by dots, whereas for the MH sample, the rejected
sample points are marked with crosses.
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can have substantial consequences for the ensuing inference. If ε is set too low,
then the algorithm will overall have a very high acceptance probability, but will
explore the parameter space very slowly.

On the other hand, if ε is set too high, the algorithm will attempt to do steps
that are far too large, the overall acceptance probability will drop drastically, and
the algorithm will rarely move to new points.

The issue of tuning ε and other parameters that affect the sampling process, is
generally non-trivial and problem-dependent, but luckily there are extensions of
the basic MCMC scheme that seeks to automate this process, and consequently
make efficient MCMC schemes more easily available and not restricted to those
with the expert knowledge or the time to perform tuning themselves. Two ex-
amples of such schemes is Hamiltonian Monte Carlo (HMC), and an extension
thereof, NUTS.

2.4.2 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo, Hybrid Monte Carlo, or HMC, improves upon the
basic MCMC algorithm by proposing new samples in a manner that utilises
the posterior distribution’s geometry. The way this is done can be understood
as a physical analogy. Let θ be the vector of parameters to be sampled, of
dimension D, distributed according to the probability density function π(θ) and
define L(θ) = lnπ(θ). The idea behind HMC is then to conceptualise θ as the
position of a particle in D-dimensional space, introducing an auxiliary parameter
vector r ∈ RD, and moving through the space in manner that (approximately)
conserves the Hamiltonian of this fictitious system. In the simplest case, the
components of r are independently standard normally distributed, and so the

joint density of the two vectors is π(θ, r) ∝ exp(L(θ)− 〈r,r〉2 ), where 〈·, ·〉 is the
cross product operator. The Hamiltionian of the the system is then

H(θ, r) = V (θ) +K(r)

where V (θ) = −L(θ) and K(r) = 〈r,r〉
2 . Updates are performed according to the

following differential equations.

dθ

dt
=
∂H

∂r
,
dr

dt
= −∂H

∂θ

As with MCMC methods in general, this can generally not be done analyt-
ically for systems complex enough to be interesting, and so the updates must
be acquired via numerical integration. The leapfrog integrator, a second order
quadrature with guaranteed stability for oscillating functions, is chosen as this
helps preserve detailed balance, and thus guarantee convergence to the target
distribution. This numerical integration is done for a total of L steps at which
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point a new r is sampled, and the integration starts over at the newly selected
sample parameter space point.

Integrating numerically introduces the issue of tuning the step length ε as well
as the number of steps per iteration, L. Without any default rule, these must be
chosen by the user, typically requiring tuning runs and sufficient expertise, which
lower the overall availability of the algorithm.

HMC also has another drawback in that it will on occasion make ”U-turns”,
where the parameter space trajectory turns back on itself, in which case the
integration step ends up spending computing power to move closer to its starting
point. This is obviously undesirable. Solving both this issue as well as eliminating
the need to tune for L and ε is what defines NUTS.

2.4.3 The No-U-turn sampler

The innovation of the No-U-turn sampler is threefold. It adaptively chooses leap-
frog step-sizes per iteration, εt as well as the corresponding number of leap-frog
steps, Lt, and it does this via a stopping condition that simultaneously eliminates
the issue of the algorithm taking U-turns.

The criterion for choosing L is where the no-U-turn sampler gets it’s name.
Using a physical analogy again, we can intuit a naive stopping criterion: For a
given leapfrog path where (θ, r) is the initial state and (θ̃, r̃) is the current state,
the algorithm should do no further leap-frog steps when the distance between
current and initial position begins to decrease over time, in other words when the
following derivative becomes less than zero.

d

dt

1

2
〈θ̃,θ〉 = 〈(θ̃ − θ),

d

dt
(θ̃ − θ)〉 = 〈θ̃ − θ, r̃〉 (2.8)

This criterion would indeed prevent undesirable random-walk behaviour, but
the ensuing proposals would not be guaranteed to converge to the target distri-
bution as they would lack time-reversibility.

To avoid this pitfall, NUTS employs a recursive algorithm that successively
step-wise doubles the trajectory, moving either forwards or backwards through
fictitious time at every step. This approach can be thought of as building a
balanced binary tree, the leaf nodes of which are position-momentum states in
parameter space and is illustrated in Figure 2.6. Given this tree, NUTS’ stops
adding more leap-frog steps to a given iteration when Equation (2.8) is less than
zero for the left-most and right-most node of some balanced sub-tree. Once the
integration stops, the algorithm deterministically chooses a set C out of the set B
of all the generated trajectory states such that starting from any state in C has
an equal chance of generating B.

A second stopping criterion is also in place to stop integrating if the error
becomes too large. This is enforced by stopping if
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3 3 3 3 1 0 2 2 4 4 4 4 4 4 4 4

Figure 2.6: An example of a binary tree representing a NUTS integration step
trajectory. Labels and colours denote the order in which nodes are added, and
the ordering from left to right denotes time-order in the fictitious physical system.
A balanced subtree is any set of leaf nodes that share a common ancestor (grey
node). In other words all nodes added in the third doubling make up a balanced
subtree, as do the ones added during the final one.
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L(θ)− 1

2
〈r, r〉 − lnu < −∆max (2.9)

for some leaf node state, where ∆max is some large non-negative number, for
instance 103 and u ∼ U(0, exp(L(θ) − 〈r, r〉)) is a slicing variable used in the
NUTS implementation.

2.4.4 Adaptively choosing ε for NUTS

Hoffman and Gelman (2011) chooses ε adaptively by means of dual averaging.
In general, dual averaging is a method for tuning parameters for MCMC at
every iteration. Given T iterations, a set of statistics Ht

T
i=1 providing some

information about a specific aspect of the MCMC behaviour at their respective
iterations with expectation h(x) = Et[Ht | x] = limT−→∞ΣTt=1Et[Ht | xt], where
xt ∈ R for t = 1, 2, ..., T is a set of tuning parameters, dual averaging performs a
series of updates such that the average expectation of Ht approaches zero.

In the particular dual averaging method chosen by Hoffman the tuning pa-
rameters, xt = ln εt are updated according to

xt+1 = µ−
√
t

γ(t+ t0)
Σti=1Hi ; x̄t+1 = ηtxt+1 + (1− ηt)x̄t

where µ is a freely chosen parameter towards which the values xt are shrunk, γ is
a parameter controlling the degree of shrinkage, t0 is a free parameter that serves
to stabilise the initial iterations, ηt = tκ, where κ = 0.75 and x̄1 = x1.

As mentioned previously, these updates cause the average expectation of Ht

to approach zero. Therefore, by defining Ht = δ − HNUTS
t , where HNUTS

t is
the average Metropolis-Hastings acceptance probability of (θ, r) at every node
in the tree Bt, Hoffman can control the achieve the desired acceptance rates,
and by extension the desired step lengths, by setting δ to be the desired average
acceptance probability.

All that remains to fully specify the scheme is to initialise ε1. Hoffman and
Gelman (2011) suggests doing this by starting at ε = 1 and successively doubling
or halving the value until the corresponding proposal density according to another
MCMC scheme based on a physical analogy, the Langevin proposal, crosses 0.5.

For further details, see Hoffman and Gelman (2011).

2.4.5 Stan

Stan is a probabilistic programming language based on NUTS, and will be the
main inferential tool of this paper. Stan is highly flexible, and can more or less
run on any model that can be mathematically specified. However, its performance
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does depend somewhat on parameterisation. As mentioned in Section 2.4, the
integration step will halt, perhaps prematurely, if the criteria in Equation 2.9
occurs, in which case Stan will report a divergent transition. This is particularly
likely if model parameters are defined over some closed interval, as crossing the
boundaries of these intervals will cause the target likelihood to drop towards
negative infinity. If this occurs during warmup, Stan will compensate by making
the average step length extra small, causing sampling to be less effective.

To avoid this pitfall it is often best not to specify target distributions directly,
but rather use parameter transformations that are in stead defined over the entire
real line. For instance, variance parameters are sampled using log variance, and
the variance proportions in HD priors discussed in Section 2.3.2 are transformed
to logit scale. After sampling on these alternative scale, Stan can easily return
the actual desired parameters as via a transformed parameters block and use
them as normal.

Inference is also affected by parameters being ”coupled”, or correlated. If one
parameter limits the likelihood of another, such as when a set of parameters con-
trol an aspect of the model together, then this will tend to make traversing the
parameter space more difficult. To prevent this issue it is best to re-parameterise
such that parameters are ”de-coupled” as much as possible. The most prominent
example of this is to parameterise the RW2 component as a (log) variance pa-
rameter and a normalised RW2 vector, u/σRW , so that the vector only controls
the shape of the non-linear effect, and its amplitude is only controlled by the
variance parameter. This is similar to advice given by Gelman (2006).

2.5 Scoring rules

We will need an objective criterion for discriminating between models. Mean
square error, or MSE, is a well-known measure of model accuracy, but is somewhat
lacking in this context, as it only considers the value(s) of a given prediction, not
the associated uncertainty.

In general, a function S used to evaluate a model F given the observation Z
is called a scoring rule, and we say that it is proper if

E[S(Z,F )] ≤ E[S(Z,G)]

in the case where Z ∼ F .
Despite it’s prevalent use, MSE is not a proper scoring rule. Another scoring

rule, which is proper and also factors in the uncertainty associated with statistical
estimation, is the continuous rank probability score, or CRPS. It is defined thus

CRPS(y, F ) =

∫
R

(F (z)− 1{z ≥ y})2dz
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where 1 is the indicator function. If the observation is a random vector Z the
CRPS is simply defined as the average value over all components of said vector.
In other words we have

CRPS(y, F ) =
1

n

n∑
i=1

CRPS(yi, F )

where y ∈ Rn.
Note that according Gneiting and Raftery (2007), the CRPS is defined with

the opposite sign, but we choose to define it to be positive instead to provide a
more natural interpretation and an comparison with other performance measures.

Example 1. CRPS of a point predictive distribution.
One interesting property of CRPS is that it can be viewed as a generalisation

of the mean absolute error. To see this, consider a point prediction-distributions
that places all the probability mass at y = ŷ. The cumulative density function
of such a distribution is a step function, and so we obtain

CRPS(y, F ) =

∫
(1y>ŷ − 1z>y)2dz =

∫ max(y,ŷ)

min(ŷ,y)

dz =| y − ŷ |= MAE

where MAE denotes the mean absolute error. This also demonstrates that
CRPS generalises beyond statistical models to deterministic approaches, such as
neural nets and other types of machine learning, or single meteorological models.

Example 2. Using CRPS to differentiate between models with equal
prediction-observation distance

To illustrate how this scoring rule compares to MSE, consider evaluating
the predictive distributions N (0, 0.3), N (0, 3) and N (2, 1) given the observation
Y = 1. These distributions are displayed in Figure 2.7. From inspecting the
plot, one would expect the third distribution to be best by a small margin, but
because all three distributions have modes that equidistant from Y = 1, they are
all equal with respect to MSE.

CRPS, on the other hand, does recognise this slight difference, and does in-
deed indicate that the third predictive distribution is the one that best fits the
observation. Although analytical solutions to the integral generally are not easily
available, there is one for the normal distribution. If the predictive distribution
is N (µ, σ2), and the observation is y then we have

CRPS(N (µ, σ2)) = σ[π−1/2 − 2φ(z)− z(2Φ(z)− 1)]

where we have defined z = y−µ
σ and φ and Φ is the standard normal probability

function and cumulative density function, respectively.
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Figure 2.7: A comparison of the predictive distributions in Example 2 in Section
2.5, with a vertical line representing the observation, and the blue, red and yellow
curves representing the probability density functions of the N (0, 0.3), N (0, 3) and
N (2, 1) distributions, respectively.
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The ensuing values for the distributions we consider are then displayed in
Table 2.1

(µ, σ2) MSE CRPS
(0, 0.3) 1 0.70
(0, 2) 1 0.629
(2, 1) 1 0.602

Table 2.1: A comparison of CRPS and MSE values for a selection of predictive
distributions N (µ, σ2) given the observation y = 1.



Chapter 3

HD variance priors for
non-linear smoothing

In Example 1 in Section 2.1, we laid out the general model to be used in this
paper, a p-dimensional non-linear smoothing model. Here, we demonstrate said
model, as well as the current HD prior framework with a basic example: Modelling
a noisy non-linear signal in one dimension. We will also be comparing the HD
priors to an independent prior setup, in terms of both objective performance
scores and how prior knowledge is specified and encoded, and what implications
this appears to have for the ensuing posteriors. These implications seem to
become most apparent in Section 3.2, where we compare how the priors perform
when they are misspecified.

The data for this section will be generated as the sum of a simple linear
function, a sine wave, and Gaussian noise:

yn ∼ N (α+ nβ + sin
2πn

30
, σ2
R) , n = 1, 2, ..., N (3.1)

with N = 50, α = −1/10, β = 1/10 and σR =
√

0.1. As can be seen from
Figure 3.1, data generated from this distribution clearly exhibits both linear and
non-linear behavior, as the function oscillates sinusoidally around a linear trend.

3.1 Model fits using existing priors

We will model this signal with three different joint variance priors, but before
introducing these we will explain the rest of the model. In all three cases the
model has the same basic likelihood

27
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Figure 3.1: The data distribution in this chapter. The dots display observed
values from the distribution in Equation 3.1, whilst the blue line represents the
signal without any error, or in other words the expectation of the distribution in
Equation 3.1.
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yn | α, β,u, σR ∼ N (α+ nβ + un + εn, σR) , n = 1, 2, ..., N (3.2)

where u is a vector of parameters used to capture the signal’s non-linear
behavior by means of a second order random walk model, as discussed in Example
2. The variance for the forward differences that define u is σ2

u.
The ensuing second-order IGMRF can be made proper by introducing two

constraints. We do so by specifying that u is orthogonal to the intercept and
linear trends.

ū =
1

N

N∑
n=1

un = 0 and

∑N
n=1 un(n− N+1

2 )∑N
n=1(n− N+1

2 )2
= 0 (3.3)

The last two basic model components besides the variances are the priors for
α and β, namely α ∼ N (0, 30) and β ∼ N (0, 100).

For the variance priors we test three different approaches. First we fit a
model with independent PC priors on σR and σu, then we test a HD prior with

an ignorance prior for ω =
σ2
u

σ2
u+σ2

R
and a PC prior on the total model variance, V ,

and finally a HD prior with a PC on ω in addition to the one for V . The priors are
illustrated in Figure 3.2. In general, we try to encode the prior belief that V = 1,
and ω = 0.25. To see the reason for the former, note that, because π(β) is not
included in the HD prior, it only needs to explain the variance that remains after
removing the linear trend. From inspecting Figure 3.3b, we see that non-linear
part of the data mostly span the interval (−1, 1), hence the prior belief for V .
The value for ω, meanwhile, is chosen to provide shrinkage towards random noise
whilst still enabling the model to capture non-linear behaviour given sufficiently
strong evidence.

It is worth noting at this point that we scale u in our implementation such that
it does not exhibit extremely large marginal variances. We do this by choosing
a ”representative value” of the random walk variance in the same manner as
Sørbye and Rue (2014), namely the geometric mean of the diagonal entries of the
generalised inverse of u’s improper precision matrix, and dividing all the vector
entries by this value. This means the exact values of the marginal variances of the
components of u does not need to be factored in to the process of specifying prior
knowledge. This helps keep it intuitive, in line with Bayesian workflow(Gelman
et al., 2020).

Our comparison shows that HD priors perform equally well or better than the
”basic” prior model, and also highlights some other benefits of the HD approach.

We collect statistics summarising the models’ performance in Table 3.1.

Example 1. Independent priors: Our first model is the simplest, and
ironically the most involved when it comes to specifying prior knowledge, as we
must first ”translate” our prior belief in terms of independent prior parameters.
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σR σu

(a) The HD tree structure for the indepen-
dent prior.

V

σR σu

(b) The structure of the ignorant split HD
prior.

V

σR σu

(c) The structure of the PC split HD prior.

Figure 3.2: HD structures for the variance priors in this section. The graph in
Figure 3.2a is entirely disconnected as no decomposition is in effect yet. The trees
in 3.2b and 3.2c have the simplest possible structure and differ only in latter’s
preference towards σR.

We assign independent PC priors for σR and σu. In other words, the priors
are as described in Section 2.3.1, σR ∼ exp(λR) and σu ∼ exp(λRW ). The
hyperparameters are then set such that the ensuing a priori medians are the
same as the total variance V multiplied by the variance split ω would be for the
HD priors. In other words, we choose parameters such that the prior for σR has
median 0.75V , and the one for σu has median 0.25V .

Decomposing the signal and estimate in their linear and non-linear compo-
nents shows that both seem to be modeled quite well, as can be seen in Figure
3.3.

Example 2. Joint variance prior with ignorance split: Here we reparam-
eterise as described in Section 2.3.2, so that we work with ω and V instead of σr
and σu. The prior for V is assigned in the same manner as for the independent
variances in Example 1, with an exponential prior on the standard deviation with
a priori correct median, and because we only have a single split, the prior for ω
is simply ω ∼ u[0, 1]. We do not include estimate plots for this example, nor for
Example 3, as both appear only negligibly different from Figure 3.3.

Example 3. HD prior with PC split: In this model, we keep the reparam-
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(a) Linear signal component with corre-
sponding confidence interval
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(b) Non-linear signal component with cor-
responding confidence interval

Figure 3.3: Comparisons of the true signal components, their corresponding es-
timates and 95 % credibility intervals given the model in Equation (3.2) and
independent priors. True signal components are represented with a blue line, red
signifies our estimate, and the orange curves mark 95% confidence intervals.
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Table 3.1: Performance statistics for the priors in Chapter 3.

Prior(s) MSE (10−3) (η0.975 − η0.025)(10−1) CRPS (10−2)
Independent 1.69 3.18 3.33

Ignorance HD 1.55 3.17 3.47
PC HD 1.64 3.15 3.38

eterisation from Example 2, but use the PC prior for ω described in Theorem 2.
Setting hyperparameters is then straightforward, we simply set hyperparameters
for π(V ) and π(ω) such that the medians match our prior beliefs. Again, the
model performs on par with previous setups.

As we can see, the priors seem to perform more or less on par based on this
example. All margins of error are so small that it is not certain what part of
the fluctuations are due to the priors per se, and which are randomness from the
Stan-inference. In any case this example suggests that HD priors perform on par
with competing priors, if not better.

3.2 Model behaviour under prior misspecifica-
tion

We have seen that all three priors lead to good model performance given reason-
able specification. Here we will compare how they behave when mis-specified. To
do so, we will vary the belief encoded into each prior, and compute the ensuing
CRPS, fixing ω and varying V , and then vice versa. Recall that we set V = 1
and ω = 0.25 in the base case. Increasing V beyond 1 is uninteresting, as there
is enough data to pull the model towards more reasonable values of V for any
realistic over-specification of V . On a similar note, our permissible a priori beliefs
for ω are confined to (0,

√
1/2). To see why, recall that π(ω) is given in Theorem

2 and note that the value of λ constrains the range of permissible median val-
ues of ω. In the liminal case where λ → 0, all the mass is concentrated around
ω = 0 and for the opposite case we see that λ → ∞ leads to π(ω) → 1

2
√
ω

. The

median of this liminal distribution is
√

1/2 ≈ 0.707, and so it does not make
sense to consider values of ω outside of (0, 0.7), unless we want to reverse the
roles of u and ε in the prior and have shrinkage towards non-linearity, which
would be against the principle of parsimony. We also want to limit ourselves to
mis-specifications that are interesting without seeming too unrealistic, so for V
we look at a prior expectations in the interval (0.01, 0.75). The results can be
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seen in figures 3.4a and 3.4b. Note that the comparison in Figure 3.4b is not
applicable to the ignorance prior, hence why it only features in the plot where
we vary the specified belief about the variance.

Clearly it appears the HD priors are more robust under mis-specification,
either taking much more extreme values before getting significantly worse, as we
can see in Figure 3.4b, or not reaching this point at all, as we see in figure 3.4a,
in stead worsening at a steady but slow pace.

This is, in part, to be expected given how HD priors are implemented. Speci-
fying medians for V and ω is a more ”soft” way of encoding prior knowledge than
setting medians for each component separately, as we can see in how the different
priors behave in Figure 3.4b. The difference is even more dramatic when mis-
specifying V . We suspect this too is because of how ω is encoded in the different
priors. Recall that we are fixing the priors at ω = 0.25 when varying V , and
that the way this is encoded for the independent priors is by proportioning the
medians of π(σR) and π(σu). This, combined with the model having less ability
to stray from specified variance proportions likely means that as V → 0, π(σu)
is having all its probability mass moved towards 0 at a faster rate for the inde-
pendent prior than for the HD one, forcing the model to explain all non-linear
variance as residual variance and thus drastically worsening model performance
earlier.
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(a) Plot of CRPS values to ln(V ).
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Figure 3.4: Plots of CRPS values under mis-specification. Independent, igno-
rant and PC HD priors are represented with a purple, yellow and green curve
respectively. Transformations of V and ω are used to better highlight interesting
features.



Chapter 4

Adding fixed effects to the
HD prior

As a first step towards more complex modelling, we incorporate the variance
associated with the linear coefficient into the HD tree, as shown in Figure 4.1.
Note that we will not be including the variance from the intercept, as imposing
shrinkage on the intercept seems generally redundant.

4.1 Adding linear effect variance to the variance
hierarchy

When Fuglstad et al. (2020) first formulated the HD prior framework, they noted
that they would be focusing on random effects. As such, the HD prior framework
can currently only handle random effects. Despite this, the prior for this new
case actually follows quite easily.

Theorem 3. Let y ∈ RN be modelled according to Equation (2.1), and let the
contributions from ui and βj, for i, j ∈ {1, 2, ..., p}, enter the model through

Aui ∼ N (0, σ2
uiΣ̃ui) and βjxj ∼ N (0, σ2

βj
xTj xj), where the covariate vectors

have been standardised such that ‖xj‖ = 1 and
∑N
i=1 xji = 0 for j = 1, 2, ..., p.

Then the prior for the split ω between ui and βj has the following expression.

π(ω) =
λ exp(−λ

√
ω)

2
√
ω(1− exp(−λ))

Proof. The proof proceeds similarly to the corresponding proof in the supple-
mentary material of Fuglstad et al. (2020) et al., with a few key differences.
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V

s1 ε

β u

Figure 4.1: The HD tree incorporating the variance associated with a single linear
effect β into the hierarchy.

For simplicity, we simply refer to ui and xj as u and x for the remainder of
the proof.

The proof in the supplementary material begins by noting that for random
effects u1 and u2 entering the linear predictor through Aiui ∼ N (0, σ2

i Σ̃i) , i =
1, 2 both Σ̃1 and Σ̃2 are positive semi-definite and their sum is invertible. The
matrices are positive semi-definite for our case as well, but it does not follow that
the sum corresponding to Σ̃1 + Σ̃2 is non-singular, as both covariance matrices
have zero-valued eigenvalues.

More specifically, Σ̃u has rank deficiency 2, xTx has rank deficiency N − 1,
and the sum has rank deficiency 1, as adding xTx to Σ̃u introduces x as a
non-zero eigenvector.

In any case, the resulting sum is still singular. We can however work around
this by simply omitting the remaining one dimension which the sum does not
span and then proceeding as in the original proof.

We can now define Σ′(ω) = ωΣ′u + (1 + ω)Σ′β where Σ′β and Σ′u are the

projections of xTx and Σu onto the span of Σu, respectively. Σ′(ω) is now
invertible, and Σβ is still singular, that means that the distance function for the
case in which Σβ is invertible, and the distance function

d(ω) =

√
tr(Σ̃

−1
1 Σ(ω))− n− ln | Σ̃−11 Σ(ω) |

goes to infinity for every non-zero value of ω, so we instead define the distance as
the liminal value of d(ω;ω0) as ω0 → 0, because d(ω;ω0) is finite for any non-zero
ω0.

All that remains then is to define λ(ω0) such that d(ω;ω0) converges to a
finite value as ω0 → 0+.
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Prior(s) MSE (10−3) (η0.975 − η0.025)(10−1) CRPS (10−2)
Independent 1.69 3.18 3.33

Ignorance HD 1.55 3.17 3.47
PC HD 1.64 3.15 3.38

Expanded PC HD 1.62 1.89 2.34

Table 4.1: Performance statistics for all the variance priors so far

As in Fuglstad et al. (2020)’s original proof, we define the matrix P such that
P (Σ′u + Σ′β)P T = I, and Si = PΣ′iP

T , where Σ′1 = Σ′u and Σ′2 = Σ′β .

We then get an alternate distance function given by

d(ω;ω0)2 = tr(S(ω0)−1S(ω))− n− ln | S(ω0)−1S(ω) |

where S(ω) = (1− ω)S1 + ωS2 = ωI + (1− 2ω)S1 because S1 + S2 = I.

The distance can then be computed by writing S1 = ΣNi=1[(1−2ω)λi+ω]viv
T
i ,

where λi and vi is the ith eigenvalue and eigenvector of S1, respectively.

Because S1 has rank deficiency N − 1, this degenerates to a single term cor-
responding to the single non-zero eigenvalue of S1. If we assume the eigenvalues
are sorted in decreasing order we have the following.

d(ω;ω0) = (N − 1)(
ω

ω0
− ln

ω

ω0
) +

(1− 2ω)λ1 + ω

(1− 2ω0)λ1 + ω0

Now we need only introduce a new scaled distance, d̃(ω;ω0) = ω0d(ω;ω0)
and an expression expression for λ that makes the limit converge, λ(ω0) =√
ω0/(N − 1)λ̃ and the distribution function follows by taking the limit.

π(ω) =
λ̃ exp(λ̃

√
ω)

2
√
ω(1− exp(−λ̃))

, ω ∈ (0, 1)

The performance statistics of this new prior are shown and compared to those
of the previous priors form Chapter 3 in Table 4.1

As we can see, the new prior performs quite well, scoring second best out of
all the HD priors when it comes to MSE, and outperforming every other prior
by a relatively significant margin when it comes to credibility interval width
and CRPS. From this example it then seems that the new prior offers similarly
accurate predictions, but with a significant increase in accuracy.
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4.2 Redefining the total variance for the expanded
HD prior

This expansion of the HD prior framework calls for a re-evaluation of what we
consider the ”total” variance in a split or root node, as Fuglstad et al. (2020)
only ever considered decomposing entirely random effects, not linear coefficients.
Though it might seem intuitive to simply take the sum total, or the average of
var(y), conditional on all the model parameters, we find that the choice most
in line with Fuglstad et al. (2020)’s original ideas, and also the one yielding the
most intuitive results, is taking the ”average” of the trace of Σ̃V , which we have
defined in a manner analogous to the covariance matrices in Theorem 2. More
specifically, it is the sum of all the covariance structure matrices from all the
model components, weighted by their corresponding component variances. So
for the model in Section 3 we have

Σ̃V = ωβσ
2
βxx

T + ω2
uσ

2
uΣ̃u + ωRσ

2
RI

where the structure matrix for u, Σ̃u, is as explained in Example 2 in Section
2.2.1. Also note that we diverge from the usual split notation in this section
and the remainder of this chapter by letting the usual symbols for the leaf node
split weights refer to the de facto portions of the total variance assigned to their
respective components, and not merely the portion they are assigned from their
(non root) parent node. So for instance we write ωu in stead of the arguably
more correct alternative ωS1ωu.

The ”average” variance is then taken by dividing by N .

V =
1

N
tr(Σ̃V ) =

1

N
tr(ωβσ

2
βx

Tx+ ω2
uσ

2
uΣ̃u + ωRσ

2
RI)

Because the trace function is linear, this is the same as the weighted sum of the
traces from each structure matrix.

Here we will make a quick note about the term corresponding to σ2
β . Recall

from Section 4.1 that we standardise covariate vector such that it sums to 0 and
has unit norm. This important for keeping the role of σ2

β clear, as makes the

contribution from β simply ωβσ
2
β whereas it would otherwise be a function of the

covariate vector, which would be less intuitive, and thus undesirable.

The contribution from the residual error has the same form without any ex-
tra work, as the assumption of identical independence means Σ̃R = Ip and so

Tr(Σ̃R) = N . We then get the following total variance.

V = ωβσ
2
β +

1

N
ωuσ

2
utr(Σ̃u) + ωRσ

2
R
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4.3 Extending the new total variance to multiple
covariates

Extending the notion of total variance to the multivariate case is not much more
complicated. Consider the model with likelihood

y|α,β,u, σR ∼ N (α+

p∑
i=1

βixi + u, σ2
R) (4.1)

in other words, the same model as in Section 4.2, but with the addition of any
number of additional covariates, each with a independently identically distributed
linear effect.

Again, standardising the covariates simplifies things significantly, making it
so 〈Xi,Xj〉 = δij , which implies Σ̃β = XTX = Ip. This means we then get an
analogous result to the one in Section 4.2

tr(ωβσ
2
βΣ̃β)

1

N
= ωβσ

2
βN

1

N
= ωβσ

2
β

and the total variance follows quite simply once more.

V = ωβσ
2
β + ωuσ

2
utr(Σ̃u)

1

N
+ ωRσ

2
R

4.4 Extending the new total variance to the gen-
eral case

As a next step, consider a general model with an arbitrary number S of random
effects, besides the residual. This means the likelihood is then

y|α,β, σ2
R, {us}Ss=1 ∼ N (α+Xβ +

S∑
s=1

us, σ
2
R) (4.2)

where us is the contribution from random effect s to the linear predictor. The
total covariance matrix is then

Σ̃V = ωβσ
2
βΣ̃β +

S∑
i=1

[ωiσ
2
i Σ̃i] + ωRσ

2
RIp

after which the total variance follows rather straightforwardly.

V = ωβσ
2
β +

1

N
ΣSi=1ωiσ

2
i tr(Σ̃) + ωRσ

2
R
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4.5 Performing shrinkage between covariates

Enabling the model to select between contributions from specific covariates, or
sets of covariates might be another natural extension of the framework. Consider
again the model given by (4.2), but now focus only on the total linear coeffi-
cient variance. If we want the model to select between two sets of covariates
{x1,x2, ...,xk} and {xk+1,xk+2, ...,xp} with corresponding design matrices X1

and X2 respectively, both standardised as in Section 4.3, then we can let the
model select between them by introducing ωβ1

and ωβ2
such that

ωβΣ̃β = σ2
β1

Σ̃β1
+ ωβ2

σ2
β2

Σ̃β2

where Σ̃βi = XT
i X for i = 1, 2, and the rest is as we saw in Section 4.4.

We can proceed equivalently to enable selection between any partition of
covariates, either applying the same procedure to X1 or X2 or both.

ωβΣ̃β =

Sβ∑
i=1

ωβσ
2
βiΣ̃βi (4.3)

and if we set priors with equal marginal variance on S′ of the coefficient vectors
and order them such that these come first, then their total covariance matrix is

simply ωβ1
σ2
β1

∑S′

i=1 Σ̃βi , so the case in which we set the priors on a number of
coefficient vectors to be the same, in other words the model in Equation (4.2),
can be seen as a special case of Equation (4.3).



Chapter 5

Missing data examples

So far our model has been dealing with a very informative data set. As the
data points cover the entire interval and are close together it is relatively easy to
identify the residual error and by extension the non-linear effect. In more realistic
settings, this is generally not guaranteed. It is thus natural to ask how our priors
perform given more sparse information, and whether the ensuing difficulties in
distinguishing between residual and non-linear effect variance would make it more
appropriate to specify our priors differently, for instance in a way that seeks to
coerce more strictly linear behaviour.

In this section, we aim to answer these questions by comparing model perfor-
mance given the independent and HD priors from Chapter 3 and the expanded
HD prior from Chapter 4 over two different cases of reduced data sets and two
different prior specifications.

5.1 Reduced data sets and priors

Our two reduced data sets are chosen to pose two distinct problems. With the
first we try to to investigate how well the model extrapolates over a single, long
interval of unknown data points, and with the second we try to find how well it
performs when the data points are still evenly spaced, but fewer in number.

More specifically, for the first data set, we chose to leave out 36 data points
in one continuous interval centred on the middle of the data set, n = 25. In the
latter we leave out 42 data points by including only every seventh data point.
This has the desirable result that for N = 50 data points we have perfectly even
spacing between every known data point whilst also including the end points,
ensuring that every interval of unknown data points is adjacent to a known data
point in either direction. Otherwise we would have the choice between ending
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Figure 5.1: A visualisation of the reduced data sets used in Chapter 5. Again the
blue curve denotes the true signal, whilst the known data points are displayed as
violet crosses.

with an unknown data point, adding some extra ”extrapolation error” which
is besides the point for this problem, or putting two known data points more
closely together, which would make the posterior of σ2

R easier to narrow down,
diminishing the actual problem we are trying to pose. The ensuing data sets are
illustrated in Figure 5.1.

From inspection of Figure 5.1 it appears these data sets should make inference
substantially more difficult, as either could plausibly have been generated from
a purely linear distribution, making it not immediately clear which choice of
prior or prior belief would be best. We therefore test the prior specifications
used in chapters 3 and 4, this time with a much less vague prior on σβ for
the former, against alternate specifications designed to coerce the model into
behaving linearly.

Again, for the independent and basic HD priors, we choose to specify the
priors such that median(V ′) = 1 and median(ω′u) = 0.25. This time the prior on
β is the less vague β ∼ N (0, 6). We use primes to distinguish these parameters
from those with the same symbol in the expanded HD prior. For the expanded HC
prior we have chosen to encode the prior knowledge that the leaf node variances,
Vε, Vu and Vβ are the same. In other words we choose median(V ), median(ωS1)
and median(ωu) such that Vu = median(ωS1)median(ωu) = 0.25, similar to the
specification for the independent and basic HD priors. The specification of the
other parameters follows similarly.

The alternative prior specifications keep the same values for V ′, σβ and Vβ ,
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and set ω′u = 0.01, Vε = 0.99 and Vu = 0.01.

For convenience, these new parameters are collected in Table 5.1.

Table 5.1: Prior specifications used in Chapter 5. Primes denote parameters for
the independent and basic HD priors to avoid ambiguity, and VA denotes the
prior variance assigned to leaf node A.

Expert knowledge
Independent and HD prior

(V ′, ω′u, σ
2
β)

Expanded HD
(Vε, Vu, Vβ)

Base case (1, 0.25, 6) (0.75, 0.25, 6)
Linear model (1, 0.01, 6) (0.99, 0.01, 6)

5.2 Results

Our results are somewhat mixed regarding which prior is best. The CRPS and
MSE scores over unknown data points in the first sparse data set are contained
in Table 5.2, and the ensuing estimates, along with 95% credibility intervals are
displayed in Figure 5.2. Here it appears that independent priors are the best in
both cases, whilst the expanded HD prior is the worst by a significant margin.
Both independent and basic HD priors change as expected given linearity co-
ercing prior knowledge, producing tighter credibility intervals and slightly better
scores, unlike the expanded HD prior. The HD prior for some reason does not
becomes ”more linear” given the altered prior knowledge, in stead it becomes
simply performs worse, with a less rounded curve and worse scores.

This is more or less the opposite of what we observe for the second data set, the
results of which are compiled in Table 5.3 and illustrated in Figure 5.3. Although
the priors behave similarly, this now leads to the expanded HD prior performing
the best, in both prior knowledge cases, and the independent priors the worst.
The expanded HD prior improves slightly in the case where we try to coerce
linearity. From inspecting Figure 5.3 this appears to be for the same reasons that
it performed the worst for the first reduced data set. Unlike the independent and
basic HD prior, the expanded HR prior has not produced predominantly linear
behaviour. This appears to be an advantage for this data set, as the model
still manages to decently identify the non-linear effect. Ironically, it appears
attempting to coerce linearity now leads the expanded HD prior to overfit. Had
the data been noisier, this might have been a disadvantage, but the scores suggest
it is not, at least for this data set. Interestingly it also appears the independent
and basic HD priors perform more or less on par when linearity is coerced.
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Prior knowledge Prior type Hold-out MSE Hold-out CRPS
Independent 0.75 0.67

Basic HD 1.98 0.90
HD+ 2.95 0.98

Independent 0.71 0.70
Linear HD 0.81 0.67

HD+ 5.00 1.28

Table 5.2: Performance scores for the different priors given the first data set of
Chapter 5.

Prior knowledge Prior type Hold-out MSE Hold-out CRPS
Independent 0.54 0.54

Basic HD 0.40 0.42
HD+ 0.17 0.23

Independent 0.55 0.53
Linear HD 0.55 0.52

HD+ 0.13 0.20

Table 5.3: Performance scores for the different priors given the second data set
of Chapter 5.
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Figure 5.2: A comparison of model fits on the first reduced data set of Chapter 5.
Blue curves display the true signal, red curves represent model estimates, orange
curves show 95% credibility intervals, and known data points are plotted using
violet crosses.
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Figure 5.3: A comparison of model fits for our second reduced data set of Chapter
5. Blue curves display the true signal, red curves represent model estimates,
orange curves show 95% credibility intervals, and known data points are plotted
using violet crosses.



Chapter 6

Multiple covariates - A
simulation study

In Section 4.3, we briefly touched on the case of a model with multiple covariates.
In this section we will be executing a simulation study on how the different
types of priors considered so far perform in this new context. More specifically,
we will be expanding the 1-dimensional smoothing problem from before to two
dimensions, comparing prior performance by considering the ensuing scores on
signal estimates as well as that of the contributions specific to either covariate.
The priors in question again include independent and basic HD priors, as well as
two expanded HD priors with differing tree structures.

6.1 Data and model likelihood

Our data will be generated similarly to that of Chapter 3. For now we will avoid
any interaction between variables, so the likelihood is of the form

yi ∼ N (α+

p∑
j=1

fj(xji), σ
2
R) , i = 1, 2, ..., n (6.1)

where the total contribution fi from the ith covariate xi, i = 1, 2, is decom-
posed into a linear and non-linear component. We represent this, both when
generating the data and in our model, using linear coefficients β1 and β2, and
random-walk-2 vectors u and w for x1 and x2 respectively, so f1(x1) = β1x1 +u
and f2(x2) = β2x2 +w. We do not include any interaction between covariates.
Furthermore, to keep Stan runtimes manageable, we reduce the upper bound on
permissible covariate values down from 50 to 10.
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Figure 6.1: An example realisation of a signal generated as described in Chapter
6.

The distribution of the random walk components is analogous to that of Chap-
ter 3. In other words

∆2
2ui = ui+2 − 2ui+1 + ui ∼ N (0, σ2

u) , i = 1, 2, ..., N − 2 (6.2)

ū =
1

N

N∑
n=1

un = 0 and

∑N
n=1 un(n− N+1

2 )∑N
n=1(n− N+1

2 )2
= 0 (6.3)

and equivalently for w. Samples are obtained by generating standardised
realisations of u and w and then scaling them by the desired standard deviations
to produce samples. When generating data for the simulation study, we chose
the parameter values α = 1, β = (−0.2,−.3), σu = 0.05 and σw = 1. The signal
of one such data set is displayed in Figure 6.1.

Moving parallel to the x1 axis, one can see the predominantly linear behaviour
of f1(x1), whereas moving vertically we can clearly see the noticeable non-linear
behaviour of f2, with a significant dip for x1-values 4 to 6.
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ε u w

Figure 6.2: The HD prior ”tree” for the independent prior for modelling a signal
over two covariates. u and w are random walk components for x1 and x2,
respectively.

V

S1

u w

ε

Figure 6.3: The HD prior tree the basic HD prior for two covariates. u and w
are random walk components for x1 and x2, respectively.

6.2 Tree structures

Adding a covariate naturally necessitates differently structured and generally
more complex priors. The changes to the independent prior(s) are the most
basic, simply requiring a third isolated node, as illustrated in Figure 6.2. For
this prior, as well as all others in this chapter, we encoded the prior belief that
V = 2.5 (by making the median variances sum to the desired V and exhibit the
desired proportions in this case, equivalently to the approach in Chapter 3).

The tree structures for the HD priors are more interesting. In all three cases
we choose a PC prior on total variance, with a priori knowledge differing between
basic HD priors and expanded ones similarly to before. For the most basic HD
prior we enforce shrinkage towards residual variance, like in Section 3, with a
PC prior split at the top of the tree with a 75% portion of total variance being
assigned to ε a priori. The next and only other split is then between u and w.
We see no reason to prefer one random walk effect over the other in the general
case, and so we use an ignorance prior for this split. The ensuing structure is
displayed in figure 6.3.

The greatest complexity thus far naturally comes from including also linear
coefficients into the HD hierarchy. This complexity arguably also gives us a
non-trivial choice regarding what tree structure to employ. A conventional tree
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Figure 6.4: The expanded HD tree for two covariates with a Simpson type struc-
ture. u and w are random walk components in the same dimension as x1 and
x2, respectively.

structure, and indeed one which has been used for a similar problem by Simpson
et al. (2017), is the one displayed in Figure 6.4. Here we again start by enforcing
shrinkage towards random noise using a PC split prior with 75% of total variance
being assigned to ε a priori. When choosing between f1(x1) and f2(x2) we
again have no preference, and encode this using an ignorance split prior. For the
remaining two splits we enforce shrinkage towards linearity, using PC split priors
with 75% of total covariate function variance assigned to β1 and β2 a priori. We
denote this expanded HD prior the Simpson HD+ prior.

We have also considered another tree structure using the same leaf nodes.
Similar to how the HD priors in Chapter 3 were arguably parsimonious in how
they enforce shrinkage, first preferring random noise over function variance, then
linearity over non-linearity, this parsimonious prior starts with a PC prior assign-
ing 75% of variance to ε. It then encodes equivalent shrinkage towards β in the
split between β and u+w. Finally, it uses ignorance priors between the remain-
ing leaf nodes. The ensuing structure is illustrated in Figure 6.5. We denote this
the parsimonious HD+ prior.

To summarise, we have compiled the defining characteristics of each of the
four priors in tables 6.1 and 6.2.



6.2. TREE STRUCTURES 51

V

X ε

β RW

β1 β2 u w

Figure 6.5: The expanded HD tree for two covariates with a ”parsimonious”
structure. u and w are random walk components for x1 and x2, respectively.

Prior Total variance
Independent 2.5

Basic HD 2.5
Simpson 2.5

Parsimonious 2.5

Table 6.1: Total variances for the priors in Chapter 6.
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Prior Split Prior knowledge
Independent1 u, w, ε 0.125, 0.125, 0.75

Basic HD
u+w, ε 0.25, 0.75
u, w Ignorant

Simpson

t, ε 0.25, 0.75
f1, f2 Ignorant
β1, u 0.75, 0.25
β2, w 0.75, 0.25

Parsimonious

t, ε 0.25, 0.75
β, u+w 0.75, 0.25
β1, β2 Ignorant
u, w Ignorant

Table 6.2: A summary of the priors in Chapter 6. A ”split” of the form A,B
means the split is between components A and B. ”Prior knowledge” enumerates
respective portions of total parent node variance assigned a priori, if any. Splits
are ordered according to layer, starting at the root. t is the total latent model
variance.

6.3 Simulation study and results

For our simulation study we generated 10 data sets with parameters α = 1,
β = (−0.2, 0.3), σu =

√
0.05 and σw = 1, holding out all but 10 randomly chosen

points for each data set, and trained models on each data set using each of the
four priors. The resulting scores for the signal estimate, as well as the estimates
of the covariate specific contributions, f1(x1) and f2(x2) are compiled in Table
6.3.

Prior
Signal f1(x1) f2(x2)

MSE CRPS MSE CRPS MSE CRPS
Independent 2.74 0.95 0.092 0.14 2.13 0.92

HD 0.39 0.35 0.056 0.12 0.19 0.24
Parsimonious HD 0.37 0.37 0.041 0.12 2.00 1.00

Simpson HD 0.58 0.49 0.057 0.15 2.02 1.00

Table 6.3: The average results from the simulation study in Chapter 6.

1We denote the portions of total variance assigned a priori to the different components by
the independent prior even though it formally does not have any variance splits. This is similar
to how the independent prior in Chapter 3 is described.
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At first, some of these data might seem implausible. The errors for f2 are
relatively large compared to that of the signal overall for the expanded HD priors.
However, there is an explanation for this, and it reiterates some of our results
from Section 5.2. Recall that we hold out all but 10 randomly chosen points
for each data set, and that we previously found that given a sparse data set,
a model may perform better when reverting to one that is (almost) exclusively
linear. As we can see from Figure 6.6, for every prior expect the basic HD prior,
this has happened for both f1 and f2, although the ensuing incrase in error is
only noticeable for f2, as this is the only covariate function with a significant
non-linear effect. Note that although we only show plots for one, this overall
behaviour occurs for each data set.

To further support our explanation, we considered the number of effectively
unique data points with respect to f1 and f2. Recall that f1 and f2 depend only
on their respective covariate, so for every pair of data points that share a value of
x1 or x2, the effective amount of information about that covariate’s contribution
is reduced. Naively, one might expect each covariate to have close to 10 unique
values in most data sets, but we find that this is not the case. As can be seen
in Table 6.4, most data sets have significantly less, particularly for x2, with an
average of 6.7 unique values per data set, and most having less than 8.

Data set x1 x2
1 7 7
2 9 7
3 7 6
4 9 7
5 7 8
6 7 6
7 8 7
8 7 6
9 7 7
10 7 6

Mean 7.5 6.7

Table 6.4: Unique values of either covariate per data set used in Section 6.3.

The other main insight from Table 6.3 is that the basic HD prior performs
the best overall, having managed decent estimates of both covariate functions.
This is a curious result given that this type of prior did not perform the best in
any of our other examples so far, and it might be a subject of further research
why only this prior could identify the non-linear effects, and more generally what
situations cause some priors to fail or succeed at doing so.
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Figure 6.6: Example plots of true values (blue curve), estimates(red) and credibil-
ity intervals(orange) of f1 (left column) and f2 (right column) given the different
priors.
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Finally as a practical note, we stress that there are stark differences in how
easily these priors can be fitted using Stan. As touched on in Section 2.4.5,
performing decent Stan based inference might require adjustments to the model,
like reparameterising in oter to decouple parameters and ensure their domains
are without hard boundaries, but for difficult models this alone is not enough.
In that case it is necessary to tune Stan’s runtime arguments. For our inference
we tried to maintain a mean effective samples size (ESS) of 5000 or more, with
less than 1% divergent transitions, and preferably less than 10% of iterations
exceeding the maximum tree depth for the integration stage of the algorithm, see
Section 2.4.3. Sample ESS naturally increases with more iterations per chain, and
the maximum tree depth, as incrementing this parameter doubles the potential
range of each iteration. Incrementing maximum tree depth is naturally also
the only way to reduce the number of transitions exceeding the maximum tree
depth. Finally, to get rid of divergent transitions, we increase the target mean
proposal acceptance probability during warmup. This forces the algorithm to
take smaller steps when integrating, and thus explore the parameter space more
slowly. However, adjusting any of these, particularly the latter two, come at the
cost of substantially increased runtime per chain, so it is important to do so in
moderation.

This had not been a major problem for our previous examples, but proved
substantially worse here. To systematically approach this issue, we made use of
a tuning function that starts by running a short test chain, checking for transi-
tions that are divergent or exceed the maximum tree depth, and adjust target
mean proposal acceptance probability and the maximum tree depth accordingly.
If the portions of divergent and tree-depth-exceeding transitions fall beneath a
given threshold, the function then adjust the number of iterations to achieve an
acceptable mean ESS, and the process repeats, if needed.

When running this function on the model with independent priors, no in-
creases to neither maximum tree depth nor target mean acceptance probability
were needed, and the ensuing models were the fastest, completing in a matter of
minutes. For the basic HD priors, some increments were needed, and runtimes
were longer, taking hours, over half a day for some data sets. For the expanded
HD priors, however, the chains could not be tuned to conform to our initial
goals. After a few iterations, even the short test chains would take infeasibly
long to run. We tried working around this by fixing the maximum tree depth at
its default value and simply compensating with more iterations, but even after
this there were still warnings about low ESS for some data sets. This might be
another contributor to the low performance we have observed from these priors
here. As is, these expanded priors seem too unstable to be feasibly used in this
situation, though this might be due to the increased number of HD splits and
not the expanded HR priors per se.
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Chapter 7

Discussion

One of the key principal aims of PC and HD priors, as noted by both Simpson
et al. (2017) and Fuglstad et al. (2020), is that the priors should be meaningful
and intuitive. In general, through our work in this paper, we find this to be the
case. In particular, even with the increase in complexity from the addition of
another covariate in Chapter 6, the matter of specifying a prior was relatively
straightforward, although there is a choice between first splitting variance be-
tween covariates, yielding the Simpson HD prior, or first performing shrinkage
towards all linear effects, and then splitting between covariates, yielding the par-
simonious HD prior.

Concerning the viability of the HD prior framework, our results are mixed.
As seen in chapters 3 and 4, in the context of the 1-dimensional smoothing
problem, the various HD priors perform on par with alternative priors given a
complete data set, and possibly slightly better under mis-specification, which is
most probably tied to the way HD priors encode prior knowledge more ”softly”,
such that relative proportions of variance between components are left with more
room to vary from the prior belief.

When comparing prior performance given incomplete data sets in Chapter 5,
our results were mixed. For the first data set, with known data points concen-
treated at the end of the domain, the independent priors won out by a significant
margin, and the expanded HD prior performed the worst. This failure might sow
doubt regarding the overall viability of this new prior, as it failed to exhibit one of
the key desired properties of PC, and by extension HD priors: Shrinkage towards
the base model. More specifically, it did not shrink towards a predominantly
linear model. This same property, however, appears to be what made it perform
the best on the second data set. For that data set, known data points appeared at
fixed intervals, and the independent prior performed the worst. Further research
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may be needed to ascertain why the HD+ prior exhibits this property, and to get
a general indication of when it will be desirable or not.

The simulation study of Section 6 provided more discouraging results. Here,
the best prior overall was the basic HD prior, with every other prior failing to
identify the non-linear effects in the data. The study also demonstrated that
there is serious difficulty associated with performing Stan inference using the
expanded HD priors. We are not sure about the degree to which this is due to
the new priors themselves, or simply the increased tree complexity. Investigating
this, as well as ways to alleviate these issues may be a subject of further research,
but based on our current findings we cannot recommend using these priors in
this context.

More research is is also needed into more complex models, as all the prob-
lems and priors considered were still relatively simple. Because there were no
interaction between covariates, the problem in Chapter 6 was in a sense two 1-
dimensional problems put together. The drastic increase in inference difficulty
may also have negative implications for the use of expanded HD priors on more
realistically complex problems with even more covariates. A simple compromise
might be to simply revert to the basic HD prior framework, but even then the
researcher might find the cost of increased complexity catching up with them,
which is a problem the HD prior framework would have to overcome, should it
become established as a viable ”default” framework for joint variance priors in
Bayesian hierarchical models. Alternatively, a workaround like working with a
maximal tree height might be an answer, with a number of distinct HD trees for
groups of components that per se do not lead to too complicated trees.



Bibliography

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt,
M., Brubaker, M., Guo, J., Li, P., and Riddell, A. (2017). Stan: A probabilistic
programming language. Journal of Statistical Software, 76(1):1–32.

Fuglstad, G.-A., Hem, I. G., Knight, A., Rue, H., and Riebler, A. (2020). Intuitive
Joint Priors for Variance Parameters. Bayesian Analysis, 15(4):1109 – 1137.

Gelman, A. (2006). Prior distributions for variance parameters in hierarchi-
cal models (comment on article by Browne and Draper). Bayesian Analysis,
1(3):515 – 534.

Gelman, A., Vehtari, A., Simpson, D., Margossian, C. C., Carpenter, B., Yao,
Y., Kennedy, L., Gabry, J., Bürkner, P.-C., and Modrák, M. (2020). Bayesian
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