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Abstract

Construction machinery is responsible for one fifth of the greenhouse

gas emissions from the construction industry in Norway, and spends up

to 40 % of the workday idle with the engine running due to conflicting

schedules. Reducing idle time by project scheduling and route optimization

is thus an important step towards creating a more efficient and sustainable

construction process.

This thesis is concerned with the relocation of mass on a road construc-

tion site. We aim at finding optimal schedules for mass pickup and delivery

activities, given a fleet of available dump trucks. We formulate the problem

as an extension of the Resource-Constrained Project Scheduling Problem

(RCPSP), with the objective of maximizing the number of pickups and de-

liveries completed within a fixed time horizon. Due to the intractability of

the RCPSP formulation, finding optimal schedules for projects with many

activities is computationally infeasible. Thus, we develop several inexact

methods to schedule the pickup and delivery activities more efficiently. We

introduce a location mapping to narrow the solution space of the RCPSP

instances, and create a schedule concatenation algorithm to find feasible

schedules with long time horizons by merging shorter plans. In addition,

we develop a greedy scheduling heuristic to build schedules iteratively by

adding new activities one by one until infeasibility is proven. We solve

the RCPSP instances using the optimization tool Gurobi and with a cus-

tom implementation of Benders decomposition. A simulation study and a

real-world case study show promising results for the inexact methods.





Sammendrag

Anleggsmaskiner st̊ar for en femtedel av klimagassutslippene i bygg-

og anleggsbransjen i Norge, og tilbringer opptil 40 % av arbeidsdagen p̊a

tomgang som følge av venting og d̊arlig planlegging. Bruk av prosjekt-

planlegging og ruteoptimering for å redusere tomgangskjøring er dermed et

viktig steg mot å skape en mer effektiv og bærekraftig byggeprosess.

Denne masteroppgaven handler om transportering av masse p̊a anleggs-

plasser. Vi tar sikte p̊a å finne optimale tidsplaner for henting og levering

av masse mellom lokasjoner med et begrenset antall tilgjengelige dumpere.

Vi formulerer optimeringsproblemet som en utvidelse av Resource-Con-

strained Project Scheduling-problemet (RCPSP), med m̊al om å maksimere

mengden masse transportert innen en gitt tidshorisont. P̊a grunn av den

kompliserte RCPSP-formuleringen er det beregningsmessig krevende å finne

optimale tidsplaner for prosjekter over lange tidsrom. Vi utvikler derfor

flere ikke-eksakte metoder for å planlegge hente- og leveringsaktivitetene

mer effektivt. Vi introdusere en lokasjonsparing for å redusere løsningsrommet

til probleminstansene, og utvikler en plansammensl̊aingsalgoritme for å

raskt kunne finne lange tidsplaner ved å sl̊a sammen kortere planer. Vi

utvikler ogs̊a en gr̊adig planleggingsheuristikk for å finne tidsplaner iter-

ativt ved å legge til nye aktiviteter en etter en. Vi løser optimerings-

problemene ved hjelp av optimeringsverktøyet Gurobi, og med en egen im-

plementasjon av Benders dekomponeringsalgoritme. En simuleringsstudie

og en casestudie med ekte data viser lovende resultater for de ikke-eksakte

metodene.
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Chapter 1

Introduction

The construction industry in Norway plays an important role in provid-

ing infrastructure, creating employment, and generating value. In 2016, the

industry had a gross product of NOK 182.2 billion and employed 227 400

persons [1]. Alarmingly, the construction industry is also responsible for

about 15 % of Norway’s total greenhouse gas emissions [2]. It is estimated

that about one fifth of the emissions come from the construction machinery

alone and that these can spend up to 40 % of their time idle as a conse-

quence of conflicting schedules [3], where idle time is the time spent inactive

with the engine still running. Additionally, it is approximated that 70 %

of the cost of road construction projects are related to fuel and machine

operations [3]. Reducing the idle time of construction machinery by project

scheduling and route optimization is thus an important step towards cre-

ating a more efficient and sustainable construction process.

The use of operations research for project management has grown rapid-

ly in recent years as a response to the need for efficient project schedul-

ing, also in the construction industry [4, 5]. Project management involves

the planning and scheduling of activities to reach goals associated with

project performance, cost, and duration while using resources efficiently.

Today, project management is essential for businesses to stay competitive,

and efficient planning can have both economic and environmental impact.

With the current availability of computing power and advanced algorithms,

mathematical methods for project scheduling have become a vital research

area [5, 4, 6].



In this thesis, we are concerned with the specific problem of optimizing

the relocation of mass on a road construction site, henceforth named the

Mass Relocation Problem (MRP). The movement of mass is an essential

preparatory component to flatten the land before construction. The MRP

involves routing dump trucks between loading and unloading sites with the

aim of moving mass as quickly and efficiently as possible, given a fixed time

horizon. Today, the routing of dump trucks is determined on-site based on

short-term goals and convenience. This can lead to excessive work, unneces-

sary waiting, and extended project durations. Using optimization methods

to plan the movement of dump trucks and schedule activities can increase

project productivity and provide valuable insight into mathematical pro-

gramming methods for vehicle routing and scheduling.

The Mass Relocation Problem is part of a project aimed at using data-

driven methods to create a more efficient and sustainable construction in-

dustry. The project, aptly named Datadrevet anleggsplass (eng: Datadriven

construction site), is a collaboration between Skanska, Sintef, Volvo, and

Ditio aimed at developing a solution for real-time management of construc-

tion machinery to streamline the road construction process [7]. The project

has a goal of cutting at least 10 % of the emissions from the construction

industry by use of machine learning and route optimization and describes

itself as a front-runner when it comes to using artificial intelligence for con-

struction machinery [3]. Finding an efficient solution to the MRP can be

an important contribution toward the ultimate goal of automatic real-time

machine routing.

A previous attempt at solving the MRP with exact methods was im-

plemented in the master’s thesis The Mass Relocation Problem with Uncer-

tainty by Ella Johnsen [8] using the Vehicle Routing Problem (VRP) [9].

The approach aimed to find the optimal routes of dump trucks between

pickup and delivery locations, with the objective of minimizing the cost

of travelling. Uncertainty in the travelling times was accounted for with

different robustness techniques. The resulting MRP formulation managed
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to provide feasible routes and schedules but became too computationally

demanding for large real-world scenarios. The slowness of the VRP method

was attributed to symmetries in the problem formulation, in addition to

the difficulty of providing reasonable estimates of the number of activities

for which there was time to complete.

Instead of using the VRP, we model the Mass Relocation Problem

as an extension of the Resource-Constrained Project Scheduling Problem

(RCPSP). The RCPSP is a general problem formulation suitable for solv-

ing a variety of scheduling problems, and several books [10, 4, 6] and sur-

veys [11, 12, 13] treat the problem and its extensions thoroughly. The

objective of the RCPSP is to provide a schedule of activities with varying

durations, taking into account precedence relations between the activities

and resource constraints. With this formulation, we shift the focus of the

MRP from vehicle routing to explicit scheduling of pickup and delivery ac-

tivities, and the objective of the MRP translates into completing as many

activities as possible within a time limit. The scheduling approach allows

for maximizing the number of activities we can complete, which contributes

to reducing the idle time of the dump trucks while optimizing the mass

relocation. The MRP is modelled by several extensions of the RCPSP

formulation, namely multiple modes, time lags, and setup times.

The Resource-Constrained Project Scheduling Problem is NP-hard in

the strong sense [10]. Due to the intractability of the formulation and the

symmetries that arise when modelling, solving the MRP exactly with the

RCPSP can be very time-consuming when dealing with many activities.

To solve the Mass Relocation Problem more efficiently, we develop several

inexact solution methods tailored to find feasible schedules quickly. To

limit the solution space of the problem instances, pickup and delivery lo-

cations are paired ahead of time. This allows us to redefine an activity as

a pickup and a corresponding delivery, thus reducing the number of binary

variables in the problems. An algorithm for schedule concatenation is de-

veloped to merge schedules while preserving as many activities as possible,



thus providing an efficient tool for quickly building feasible schedules with

long time horizons. A greedy scheduling heuristic is also created by us-

ing the exact mathematical formulation of the RCPSP within a heuristic

framework. Schedules are made by iteratively adding activities in a greedy

manner until infeasibility is proven or a predefined time limit is reached.

By prioritizing each activity based on its urgency, the heuristic can ensure

that the most time-sensitive activities are given precedence in the resulting

schedules.

The RCPSP instances are solved using a mixed-integer programming

(MIP) solver implemented in the commercial optimization tool Gurobi [14].

We also implement a solver based on Benders decomposition [15]. Ben-

ders decomposition is a decomposition algorithm that takes advantage of a

mixed-integer linear program’s (MILP) structure and splits it into smaller

independent subproblems. These simpler subproblems are iteratively solved

to produce an exact solution to the original MILP. To make our implemen-

tation efficient enough to compete with the MIP solver in Gurobi, several

algorithmic improvements to the decomposition algorithm are discussed

and implemented.

A simulation study is carried out to test the models developed with

the RCPSP formulation using both Gurobi’s MIP solver and our imple-

mentation of Benders decomposition. A case study using real-world data

from Skanska is also conducted in order to consider the practicability of

the scheduling methods. Results show that the implementation of Benders

decomposition is not able to solve MRP instances more efficiently than the

Gurobi MIP solver. However, schedules produced with the inexact schedul-

ing methods perform better than schedules approximated with the exact

solution methods considering computation time, vehicle idle time, and num-

ber of activities included. The RCPSP provides a flexible starting point

for modelling the Mass Relocation Problem, but the exact mathematical

formulation is challenging to solve to optimality. Thus, going forward, the

focus should be on incorporating the mathematical model into a heuristic
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framework.

The remainder of the thesis is structured as follows. In Chapter 2

the Mass Relocation Problem is properly defined and discussed, and an

example problem and solution is presented. In Chapter 3 we introduce the

Resource-Constrained Project Scheduling Problem formulation and explore

the variants and extensions which are relevant when modelling the MRP.

In Chapter 4 the MRP is formulated in terms of the RCPSP, and two

separate models are developed; model 1 with the objective of minimizing

the project duration given a fixed number of activities, and model 2 with

the objective of maximizing the number of activities within a fixed project

makespan. In Chapter 5 we propose the use of Benders decomposition

for solving the RCPSP instances and discuss algorithmic enhancements

necessary for an efficient implementation. Chapter 6 proposes the use of

several inexact methods to find feasible schedules more efficiently. The

models and methods are tested in a simulation study in Chapter 7, and on

real-world data in Chapter 8. Our results and conclusions are summed up

in Chapter 9.





Chapter 2

Mass Relocation Problem

The movement of mass is an essential component of the road construc-

tion process and involves routing dump trucks between mass loading and

unloading sites. Currently, routing is determined on-site based on short-

term goals and convenience, resulting in delayed projects and unnecessary

idle time for the construction machinery. To streamline operations, routing

and scheduling optimization using data-driven methods can be beneficial.

The idea of using route optimization was explored in the master’s thesis by

Ella Johnsen [8], and the problem of mass relocation was suitably named

the Mass Relocation Problem (MRP). In this thesis, we change the word-

ing of the MRP to free it from the specific implementation by Johnsen and

formally define it as:

Definition 1. The Mass Relocation Problem is the problem of scheduling

the movement of mass between loading and unloading sites with a fleet of

dump trucks, given a fixed time horizon. The objective is to maximize the

amount of mass moved while minimizing the idle time of the dump trucks.

The Mass Relocation Problem encompasses two separate but intertwined

problems. We need to find both the optimal travel patterns of the dump

trucks between the pickup and delivery locations and the optimal schedule

of the specific pickup and delivery activities. The MRP can therefore be

approached by both routing and scheduling techniques.

When modelling the MRP, we consider the scheduling of activities at

pickup and delivery locations. Mass is excavated and loaded into dump

trucks at the pickup locations and unloaded and dumped at the delivery



locations. Thus, dump trucks must alternatively travel between the pickup

and delivery locations to move the mass. On real construction sites, the

pickup and delivery locations can include different types of mass, like sand,

dirt, and gravel. However, in this preliminary approach to solving the MRP,

we do not consider the implications of different mass types.

Each pickup and delivery location has an associated service time which

relates to the time it takes for a dump truck to load or unload mass. A

preparation time is also associated with each pickup location to account

for the time it takes to dig up new mass for a pickup. As the dump trucks

have to be loaded by an excavator at the pickup locations, we impose

that only one vehicle can visit these locations at a time. For the delivery

locations, the capacity for simultaneous deliveries will differ from location

to location. To simplify the modelling, we assume that only one vehicle

can visit the delivery locations at a time as well. This means that the

individual activities at all pickup locations must be separated by at least

the service and preparation time, while activities at delivery locations must

be separated by the service time. When solving the MRP, we make no

impositions on where the dump trucks begin or end their workday, as long

as they respect the road network on the construction site during their

travel. We assume that there are no one-way or one-lane roads, and we

ignore the possibility of queues and road congestion. In this thesis, we

also assume that the fleet of dump trucks has the same capacity, as was

assumed in [8], but allow the vehicles to operate at different speeds. We

are usually interested in solving the Mass Relocation Problem for a full or

half workday, equivalent to 12 or 6 hours.

The outline of the Mass Relocation Problem given above gives a very

simplified version of the real problem. On real construction sites, different

dump trucks can have different capacities. Hence, the number of pickup

and delivery activities needed would vary based on which dump trucks move

the mass, complicating the MRP significantly. We have also assumed that

only one vehicle can service a location at a time, but this can vary from site
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P1 D1

D2 P2

10 min

15 min

5 min 7 min

Figure 2.1: Example of a simple construction site to illus-
trate the Mass Relocation Problem. The colored nodes repre-
sent the pickup (P1, P2) and delivery (D1, D2) locations. The
edges represent the legal travel patterns between the locations.
The white node illustrates a road intersection.

to site; the number of simultaneous pickups at a location depends on the

number of excavators present, and the number of simultaneous deliveries

depends on the size of the specific delivery locations. The simplification

that we can have no road congestion, queues, one-way or single-lane roads

is also unlikely and can cause considerable delays if not accounted for.

Letting the dump trucks choose freely where to both start and end their

journeys is also unrealistic, especially for half-day schedules where there

might be long distances between where the vehicles finish in one schedule

and start in another. Lastly, the assumption that we need a preparation

time before every individual pickup at a location is also improbable. A

more natural way to model this would be to include a preparation of, for

example, four loads of mass at a time. Once an efficient way to model

and solve the simplified Mass Relocation Problem is obtained, the more

complicating aspects of the problem can be considered.

To give an example of an MRP instance, we use the simple construction

site shown in Figure 2.1. The colored nodes show the pickup and delivery

locations, while the edges show the network of roads. With the assumption

that each vehicle has the same capacity, the objective of the MRP reduces

to maximizing the number of pickup and delivery activities possible within

a fixed time horizon. Given two dump trucks operating at the same speed
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Project schedule with n=16 and Smax=120
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P2 D2 P2 D2 P2 D2 P2 D2

Figure 2.2: Gantt chart of a solution to the Mass Relocation
Problem on the construction site shown in Figure 2.1, given
a project duration of 120 minutes. The y-axis shows which
activities are processed by which vehicles, and the x-axis shows
the timing of each activity.

and a time horizon of 120 minutes, an example of an optimal schedule of

pickup and delivery activities can be seen in Figure 2.2. We have assumed

that each pickup and delivery takes 5 and 3 minutes, respectively, regardless

of location and dump truck used and that the preparation of mass by an

excavator takes 4 minutes.

The schedule is given as a Gantt chart and shows what activities are

processed by the two dump trucks at different times. The colored areas

indicate the duration of the pickup and delivery activities, while the dark

grey areas represent the time spent driving between the locations. The light

grey areas show the mass preparation time at each pickup location. The

two dump trucks can complete a total of eight pickups and eight deliveries

within the project makespan. Vehicle 1 drives between P1 and D1, while

vehicle 2 drives between P2 and D2. This constructed example makes it

easy to verify that the provided schedule is a feasible and optimal solution to

the MRP. Solving the Mass Relocation Problem in more involved examples

with many locations, dump trucks, and long scheduling horizons can be

very challenging.

The previous approach to modelling the MRP by Johnsen was formu-

lated using the Vehicle Routing Problem (VRP) [8]. We propose a new
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model formulation using the Resource-Constraint Project Scheduling Prob-

lem (RCPSP). Instead of minimizing the cost associated with the routing,

the RCPSP allows us to focus on scheduling a given number of activities

as efficiently as possible, given precedence and resource constraints.





Chapter 3

Resource-Constrained

Project Scheduling Problem

The Resource-Constrained Project Scheduling Problem (RCPSP) is a

general problem formulation suitable for solving a variety of scheduling

problems. The objective of the RCPSP is to provide a schedule of a set of

activities with varying durations, taking into account precedence relations

and resource constraints. The key difference between the RCPSP and other

well-known scheduling approaches, like the Critical Path Method [5], is the

presence of limited resource capacities. This makes the RCPSP one of

the most intractable scheduling problems in practice [10]. Because of the

challenging nature of the problem, as well as its industrial relevance, solving

and modelling the RCPSP and its extensions has become an important

research area. Several books [10, 6, 4] and surveys [11, 12, 13] treat the

problem and its variations thoroughly.

This chapter is concerned with the general RCPSP formulation and

the extensions necessary to model the Mass Relocation Problem presented

in Chapter 2. In Section 3.1 the classical Resource-Constrained Project

Scheduling Problem is defined, and in Section 3.2 two different mathemat-

ical formulations to model the RCPSP as a mixed-integer linear program

(MILP) are introduced. Section 3.3 explores three different extensions of

the general RCPSP formulation, namely multiple modes, time lags, and

setup times. Lastly, Section 3.4 discusses the computational complexity of

the RCPSP and exact solution methods.



3.1 General problem formulation

The standard Resource-Constrained Project Scheduling Problem can be

formulated as a combinatorial optimization problem and is defined by a set

of activities, precedence relations, and resource capacity constraints [10].

The goal of the RCPSP is to find a feasible schedule of the activities which

is optimal in regard to some objective. The n activities we want to sched-

ule are denoted by A1, . . . , An. We introduce two dummy activities, A0

and An+1, to represent the start and end of the schedule, and denote the

set of all activities by V = {A0, . . . , An+1}. Each activity Ai is given a

duration di, defined as the time needed to complete the activity. The du-

ration of the dummy activities is defined to be zero. The activities are

linked by precedence relations that define in what order they must be com-

pleted. The precedence relations can be represented by an activity-on-node

(AON) graph G(E, V ) where the nodes correspond to the activities and the

edges to the precedence relations [10]. The pair (Ai, Aj) ∈ E indicates that

activity Ai must precede Aj in a feasible schedule. All non-dummy activ-

ities are preceded by the source A0, while the dummy activity An+1 can

only start once all other activities are completed, such that (A0, Ai) and

(Ai, An+1) ∈ E ∀ Ai ∈ V \ {A0, An+1}. To complete the activities we

have K renewable resources, defined by the set R = {R1, . . . ,RK}. The

resources are renewable in the sense that a resource allocated to an activity

is unavailable while the activity is being processed but freed at full capac-

ity once the activity is finished. The availability of resource Rk is denoted

by Bk, while its demand for activity Ai is denoted by bik. The demand

represents how much of resource Rk is needed to service an activity [10].

A schedule is usually defined by a vector S ∈ Rn+2, where each coordi-

nate Si ≥ 0 denotes the start time of activity Ai [10]. We define the start

time of dummy activity A0 as S0 = 0, and the start time of An+1 as the

end of the project. In many applications, the objective of the RCPSP is

chosen such as to minimize the makespan of the project. This is equivalent
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to minimizing the start time of the last dummy activity as this activity suc-

ceeds all others. Other objectives also exist, like minimizing the tardiness

of activities or the cost of resources [4].

A feasible schedule must respect the precedence and resource constraints

imposed by the precedence graph, resource capacities, and demands. The

general precedence constraints are usually of the form [10]:

Sj − Si ≥ di ∀ (Ai, Aj) ∈ E. (3.1)

The constraint states that the start time of activity Aj must be greater or

equal to the start time and duration of activity Ai, if Ai precedes Aj . The

general resource constraint is given as:

∑
Ai∈Vt

bik ≤ Bk ∀ Rk ∈ R, ∀ t ≥ 0, (3.2)

where Vt = {Ai ∈ V | Si ≤ t < Si + di} represents the set of activities

in process at time t [10]. The constraint simply states that the sum of

demands for all activities processed at a time t, given a fixed resource Rk,

cannot surpass the availability of the resource, Bk. With the two general

constraints we define a feasible schedule [16]:

Definition 2. A feasible schedule S of a set of activities V is given as

a schedule that respects the precedence constraints (3.1) and resource con-

straints (3.2).

Choosing the objective of the RCPSP as to minimize the total project

duration, we also define an optimal schedule:

Definition 3. An optimal schedule S∗ of a set of activities V is a feasible

schedule S with the minimal makespan Sn+1.

Depending on the characteristics of the activities and resources, several

optimal schedules might exist.



Generally, we prefer the schedules with the smallest sum of start times:

n+1∑
i=0

Si. (3.3)

This is usually called an active schedule and refers to a schedule where

none of the activities can be globally left-shifted [16]. This means that

all the activities are completed as soon as possible and that no rearrange-

ment of the activities can decrease the start times Si. An active schedule

is guaranteed to minimize the idle time of the resources between the pro-

cessing of the activities, but might be expensive to compute. Instead we

settle for a semi-active schedule. This is a feasible schedule where none of

the activities can be locally left-shifted, meaning that the start time of an

activity cannot be decreased without changing the start time of any other

activity [16]. A semi-active schedule can be found in a post-processing step

by simply shifting all activities to the left while ensuring that the time

constraints are still respected.

3.2 Mathematical formulations

We restrict our attention to mathematical formulations of the RCPSP to

mixed-integer linear programs. Formulating an MILP with constraints (3.1)

and (3.2) directly becomes difficult because of the set Vt, which can not

trivially be incorporated into a linear constraint. We must therefore find

alternative formulations to express the resource constraints. Several MILP

formulations exist in the literature, and they are generally divided into

two classes based on their decision variables [10]. The time-indexed for-

mulations assign resources to activities at each time unit based on a time

discretization. In contrast, the schedule-based formulations focus on the

ordering of the activities in relation to each other. It has been shown that

when exact commercial solvers are used, no model class is superior to the

other when used on a wide variety of problems [17]. Therefore, an ap-
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propriate mathematical formulation must be chosen based on the specific

problem characteristics.

Below we present both the time-indexed formulation of Pritsker et

al. [18] and the schedule-based formulation of Artigues et al. [19]. Ad-

ditional noteworthy MILP formulations can be found in [4]. For the re-

mainder of the thesis we shorten the mathematical notation introduced

in Section 3.1 and simply denote activities Ai and resources Rk by their

indices i and k.

3.2.1 Time-indexed formulation

The time-indexed formulations are based on an early model by Pritsker et

al. in 1969 [18]. Given a fixed planning horizon, T , the decision variables

yit are defined as Boolean variables equal to 1 if activity i starts at time

t ∈ T = {0, . . . , T}, and 0 otherwise [10]. Thus, we have the following

relation:

Si =

T∑
t=0

t · yit ∀ i ∈ V, (3.4)

and can define the MILP as [4]:

min

T∑
t=0

t · y(n+1)t (3.5)

s.t.

T∑
t=0

yit = 1, ∀ i ∈ V, (3.6)

T∑
t=0

t · (yjt − yit) ≥ di, ∀ (i, j) ∈ E, (3.7)

∑
i∈V \{0,n+1}

bik

t∑
τ=t−di+1

yiτ ≤ Bk, ∀ k ∈ R, ∀ t ∈ T , (3.8)

yit ∈ {0, 1}, ∀ i ∈ V, ∀ t ∈ T . (3.9)

The objective (3.5) is similar to the one defined in Section 3.1, and aims at

minimizing the makespan of the project. The first constraint (3.6) imposes



that each activity must be started exactly once over the planning horizon

T . Constraint (3.7) imposes the precedence relations in a similar manner to

the precedence constraint defined in (3.1) and states that an activity can

only be processed after the completion of the preceding activities. Con-

straint (3.8) makes sure the resource constraints are respected by imposing

that the amount of resource k used at time t cannot exceed the resource

availability Bk. The resource conflicts are thus avoided by adding a linear

constraint for each time period [10]. The last constraint defines the domain

of the decision variables yit.

The disadvantage of this formulation is the potential for many binary

variables and constraints when using a large scheduling horizon T . The

formulation allows for up to nT binary variables and will attain another

resource constraint for every time unit. With the time-indexed formulation,

we are also limited to using only integer activity durations or choosing a

very fine time grid to avoid wasting time. An advantage of the formulation

is that a simple preprocessing algorithm can be used to tighten the time

windows of the activities, which allows us to remove the superfluous binary

variables [4]. A notable time-indexed formulation that also uses the idea of

time discretization is the formulation by Mingozzi et al. [20].

3.2.2 Schedule-based formulation

The sequence-based models are usually defined on two sets of decision vari-

ables: a Boolean linear ordering variable to determine the relative ordering

of the activities and a date variable to determine the start or completion

time of the activities [10]. The linear ordering variables make sure the se-

quence of activities respects the precedence and resource constraints, while

the date variable makes sure the sequence of activities does not violate

the time restrictions. The main difference between the time-indexed and

schedule-based formulations is that the latter do not discretize the time.

An early schedule-based formulation by Alvarez et al. [21] is based on

the notion of forbidden sets to avoid resource overuse. As the computa-
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tion of the forbidden sets can be difficult and time-consuming [10], a more

recent formulation by Artigues et al. [19] based on the notion of resource

flow has gained popularity. Renewable resources can naturally be mod-

elled as a flow in and out of activities; the resource is occupied when an

activity is processed but freed again once the activity is complete. In this

formulation, an additional decision variable fijk is introduced to model the

flow and represents the amount of resource k transferred from activity i to

activity j [10]. Linear resource constraints can now easily be formulated

by imposing that the total resource flow into an activity must meet the

activity’s resource demands bik.

The formulation by Artigues et al. also includes a linear ordering vari-

able xij and a date variable Si [10]. The Boolean variable xij equals 1 if

activity j starts after activity i in the final schedule and 0 otherwise. The

variable Si gives the start time of each activity. The MILP of Artigues’

flow formulation is thus given as [10]:

min Sn+1 (3.10)

s.t. xij = 1, xii = 0, ∀ (i, j) ∈ E, (3.11)

xij + xji ≤ 1, ∀ (i, j) ∈ V 2, i < j, (3.12)

xik ≥ xij + xjk − 1, ∀ (i, j, k) ∈ V 3, (3.13)

Sj − Si ≥ −M + (di +M)xij , ∀ (i, j) ∈ V 2, (3.14)∑
j∈V

fijk = bik, ∀ i ∈ V, ∀ k ∈ R, (3.15)

∑
j∈V

fjik = bik, ∀ i ∈ V, ∀ k ∈ R, (3.16)

0 ≤ fijk ≤ min(bik, bjk)xij , ∀ (i, j) ∈ V 2, ∀ k ∈ R, (3.17)

xij ∈ {0, 1}, ∀ (i, j) ∈ V 2, (3.18)

fijk ∈ R+, ∀ (i, j) ∈ V 2, ∀ k ∈ R, (3.19)

Si ∈ R+, ∀ i ∈ V. (3.20)



The first three constraints are concerned with the linear ordering variables.

Constraint (3.11) makes sure the precedence relations are respected, while

constraints (3.12) and (3.13) make sure we get no cycles and that the linear

ordering variables are transitive. Constraint (3.14) links the linear ordering

variables and the date variables with a big-M constraint to make sure the

ordering of the activities respects the time restrictions. The value of M

must be large enough to avoid cutting of legitimate solutions when xij is

equal to 0, which means that M > Sn+1. Finding a tight lower bound

on M to avoid a bad linear relaxation can be challenging. However, by

computing the latest start time of activity An+1, an estimate can be ob-

tained. Constraints (3.15), (3.16) and (3.17) make sure the correct amount

of resources service each activity and are transferred between the activi-

ties. To make sure that the availability of the resources is not exceeded, the

demands of the dummy activities b0k and b(n+1)k are set to Bk for every

resource k [10].

The advantage of the schedule-based formulations is that the size of the

MILP is not directly related to the project duration, such that schedules

with long planning horizons can be made without increasing the number

of binary variables. Without the time discretization, we can also use non-

integer activity durations since Si can take on any positive, real value. The

disadvantages include the increased number of decision variables and the

big-M constraints, which have a bad linear relaxation. Using the flow-

based formulation also has the disadvantage of inducing many symmetries,

making it more computationally demanding to find optimal solutions [10].

3.3 Modifications

With only the simple precedence and resource constraints presented in Sec-

tion 3.1, the classical Resource-Constrained Project Scheduling Problem

formulation does not allow for accurate modelling of many practical sit-

uations. Consequently, various extensions of the basic RCPSP have been
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developed to model a variety of problems. We present three extensions

that seem natural to include when modelling the Mass Relocation Prob-

lem: multiple modes, time lags, and setup times. A comprehensive study

of the various variants can be found in [12, 13].

3.3.1 Multiple modes

The standard RCPSP assumes each activity can only be performed in one

predefined way, defined by the activity’s duration and resource require-

ments. The activity concept can be extended by allowing an activity to

be performed in several different ways, specified by a specific duration and

resource demand [12]. Each such duration-resource combination is called

a mode [22]. Each activity has a given number of modes Mi and must be

completed in one of them. With only one mode per activity, we are reduced

to the standard RCPSP. We define a new duration and resource demand

for each mode m ∈ {1, . . . ,Mi} [6]:

dim Duration of activity i in mode m.

bikm Resource demands required by activity i when completed by

resource k in mode m.

An example of the time-discretized formulation by Pritsker et al. with

multiple modes can be found in [22].

3.3.2 Time lags

Time lags are usually included to model time restrictions between the ac-

tivities. If a certain number of time units must elapse between the end of

an activity and the beginning of another, this can be modelled with time

lags [12]. A minimal time lag is defined as a constraint of the form:

Sj − Si ≥ Tmin
ij , (3.21)



and imposes that the start of activity j can only happen Tmin
ij time units

after the beginning of activity i [23]. If activity j can begin before the com-

pletion of activity i, this can be expressed by setting Tmin
ij < di. Minimal

time lags are often used to model release dates or ready times [23], where

we want to specify at what time since the beginning of the project, or since

the last activity, a new activity can be processed. A maximal time lag on

the other hand, can model the maximal time units between two activities:

Sj − Si ≤ Tmax
ij . (3.22)

Maximal time lags are often used to model deadlines, where Tmax
ij can

express the longest time we can wait from the start of the project until

activity i must be processed. Time lags can be modelled as an AON graph

where the edges between the activities are weighted by the time lags [23].

Time lags focus on the activities and their ordering in relation to each

other but are usually independent of the resources used to complete the

activities.

3.3.3 Setup times

Setup times are the times needed for preparation or transportation of re-

sources between activities [12]. In scheduling models with setup times, re-

sources are unavailable for certain periods due to being changed, charged,

or transported from one location to another [6]. If tijk denote the setup

time between activity i and j for resource k, a scheduling model with setup

times must satisfy:

Si + di + tijk ≤ Sj , (3.23)

if activity j is processed directly after activity i on resource k [13]. The

difference between setup times and time lags is that the resources are un-

available during the setup time, while the time lags focus solely on the

ordering of the activities and do not affect the resource availability.

Setup times connected to transportation of resources are often called
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transfer times [13]. In this case, tijk represents the travel time between

activity i and j with resource k. Many different approaches to modelling

transfer times and routing exist [24, 25, 26]. Lacomme et al. [26] investi-

gates the integration of routing in RCPSP instances where resources have

to be transported between activities with a limited fleet of vehicles. The

problem consists of finding a feasible schedule of minimal duration and as-

signing a vehicle to each transport of resources. If the transportation of

the resources does not have to be completed by a separate fleet of vehicles,

we can instead use approaches proposed by Quilliot and Toussaint [24] and

Poppenberg and Knust [25]. In these approaches, the possible resource

flows are represented by a graph where each activity is modelled as a node,

and each resource transfer is represented by a directed arc. To incorporate

the transfer times, the edges are weighted with the values di + tijk [25].

3.4 Solution methods

The Resource-Constrained Project Scheduling Problem is one of the most

complex scheduling formulations and belongs to the class of NP-hard prob-

lems in the strong sense. A proof can be found in [4]. The introduction of

limited renewable resources makes the RCPSP more intractable than other

similar scheduling formulations, and exact solution methods become slow

and time-consuming once the number of activities and resources increases.

Exact solution methods for the RCPSP are usually based on the branch-

and-bound algorithm [10], which is used to solve mixed-integer linear pro-

grams [27]. The branch-and-bound algorithm enumerates candidate solu-

tions of an MILP by creating a search tree [27]. At the root node, the

linear relaxation of the MILP is solved. A recursive splitting of the solu-

tion space into smaller regions is performed in a process called branching to

systematically discover new incumbents. Upper and lower solution bounds

are used to prune branches until the optimal solution is found. Specialized

branch-and-bound methods take advantage of the problem structure of the



RCPSP, and enhancements like cut generation and constraint propagation

are often used [24]. Even the best exact solution schemes for solving the

RCPSP struggle when the problem instances become too big.

An alternative to using exact methods for solving the RCPSP instances

is to use heuristics and metaheuristics. A heuristic is an algorithm that

yields a solution to an optimization problem efficiently, even though the

solution might not be optimal [4]. Heuristics are often used in cases where

exact methods are too time-consuming and computationally demanding

to solve to optimality. The approximate solutions are often good enough

in practice, but it is challenging to verify how close to optimal they are.

Heuristics are therefore problematic to use in many applications. Even

though exact solution methods are often too computationally demanding,

they can contribute greatly to understanding the characteristics of problems

and help the development of other solution techniques [10].



Chapter 4

Mass Relocation RCPSP

When modelling the Mass Relocation Problem with the Resource-Con-

strained Project Scheduling Problem, we want to schedule pickup and deliv-

ery activities given a fixed time horizon using the dump trucks as resources.

The schedules must respect resource constraints imposed by the number of

dump trucks, as well as precedence relations between the activities. The

implicit routing of the dump trucks is natural when viewed as a resource

flow between activities; hence we use the schedule-based formulation by

Artigues et al. [19] as a starting point. With this problem formulation, the

program size is not directly related to the scheduling horizon, and we can

use real-valued durations and travel times with no adjustments.

In Section 4.1 we model the different aspects of the MRP in terms of

the schedule-based mathematical formulation of the RCPSP. In Section 4.2

we formally define the full Mass Relocation RCPSP formulation, while in

Section 4.3 a reduced model is presented. Section 4.4 introduces a flipped

model where we change the objective to maximizing the number of activities

instead of minimizing the makespan.

4.1 Modelling the MRP

Each individual pickup and delivery at a location is considered an activity,

and the total number of activities is denoted by n. Like in the standard

RCPSP in Section 3.1, we include two dummy activities, A0 and An+1.

These act as a source and a sink where all dump trucks have to start



P1 D1

Figure 4.1: Illustration of construction site with only one
pickup and one delivery location, P1 and D1.

A0 A1 A3 A2 A4 A5

Figure 4.2: Precedence graph for two pickups and two de-
liveries on the construction site in Figure 4.1. Nodes A1 and
A2 represent the pickup activities, while A3 and A4 represent
the delivery activities. The white nodes illustrate the dummy
activities, and the directed edges represent the precedence re-
lations.

and end their journeys. Precedence relations are defined to ensure that

the time restrictions between adjoining activities can be enforced. We

define the precedence relations between the activities such that only one

activity can be simultaneously processed at any given location. We also

include precedence relations between the source and the first pickup at each

location and between the sink and the last deliveries. These relations ensure

that the schedules always start with activity A0 and end with activity

An+1. If the ordering of the individual pickup and delivery activities are

unambiguous, precedence relations between these can also be included.

To illustrate the precedence relations, we include two examples. The

simple construction site in Figure 4.1 only has one pickup and one delivery

location where we want to schedule two pickups and two deliveries. The

pickups are denoted by A1 and A2, while the delivery activities are denot-

ed by A3 and A4. The ordering of the activity numbers indicates which

pickup and delivery activities must be completed first. Figure 4.2 shows

the precedence relations between the activities as an AON graph, hence-

forth called the precedence graph. Each node represents an activity, and

each edge represents a precedence relation. The first pickup A1 is preceded

by the source A0. The first delivery activity A3 cannot be finished before
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P1 D2

D3 P2

D1

Figure 4.3: Illustration of construction site with two pickup
(P1, P2) and three delivery (D1, D2, D3) locations.

the first pickup is completed, thus A1 precedes A3. Since we cannot do

two pickups simultaneously at the same location, activity A1 also precedes

the second pickup activity A2. The same is true for the deliveries, thus

A3 precedes the second delivery activity A4. The last delivery A4 precedes

the sink A5. As it is possible for the second pickup activity A2 to start

while the first delivery A3 is still in progress, there is no need for an edge

between A3 and A2.

The more complicated construction site in Figure 4.3 includes two pick-

up and three delivery locations. As it is no longer trivial which deliveries

follow which pickups, we cannot model any precedence relations between

these without narrowing the solution space and potentially excluding the

optimal solution. The precedence graph thus only includes edges between

activities at the same locations, in addition to edges from the source and

sink. Figure 4.4 shows the precedence graph assuming we want to schedule

three pickups at P1 and P2, two deliveries at D1, one delivery at D2 and

three deliveries at D3. To avoid a disconnected graph, precedence rela-

tions between the source and the first deliveries and the sink and the last

pickups are also included. These are not strictly necessary but remove any

ambiguity as to which activities should be scheduled first and last.

We model the service and preparation times of the activities using min-

imal time lags. The service times can differ based on location, while the

preparation time is assumed to be constant at all pickup sites. We define

the time lags for the pickup activities as di + p, where di is the duration of

activity i and p is the mass preparation time. For the delivery locations,



A0 A7 A8

A9

A10 A11 A12

A4 A5 A6

A1 A2 A3

A13

Figure 4.4: Precedence graph for three pickups at P1 and P2,
two deliveries at D1, one delivery at D2 and three deliveries
at D3 on the construction site in Figure 4.3. Nodes A1-A6

represent pickup activities, while A7-A12 represent delivery
activities. The white nodes illustrate the dummy activities,
and the directed edges represent the precedence relations.

the time lag will include only the service time of an activity di.

The transportation of dump trucks between pickup and delivery loca-

tions is implemented using transfer times. The legal travel patterns on

the construction sites are modelled by a travel graph, where each node

represents an activity and each directed edge a possible travel path. The

travel graph incorporates the restrictions left out by the precedence graph,

namely that the vehicles must alternatingly travel between the pickup and

delivery locations. An example of a travel graph for the construction site in

Figure 4.1 is shown in Figure 4.5. From a pickup activity, the dump trucks

can travel to any delivery activity and vice versa. Thus, edges between

the pickups and deliveries will always be bidirectional and weighted by the

travel times tij and tji. As the dump trucks can start from an arbitrary

pickup activity, the travel paths from the source to each pickup are weighted

by 0 and can be travelled along with no time delay. The same is true for the

paths leading from the delivery activities to the sink. To include the option
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A0

A1 A3

A2 A4

A5

0

0

0

t31

t13

t41
t14
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t32
t23

t42

t24

0

Figure 4.5: Travel graph illustrating the legal travel patterns
on the construction site in Figure 4.1, assuming we want to
complete two pickup (A1, A2) and two delivery (A3, A4) activ-
ities. The weights on the edges show the travel times between
the activities, and the white nodes illustrate the dummy ac-
tivities.

of vehicles remaining unused, a zero-delay edge directly between the source

and the sink is also included. The unavailability of a vehicle during travel

is modelled by imposing that the start time of two activities processed by

the same vehicle must be separated by at least di + tij .

The fleet of K dump trucks available to complete the activities creates

the resource constraints. In Chapter 2, we made the assumption that the

dump trucks have the same capacity. Hence, we define an activity’s demand

for a resource as bik = 1 for all i ∈ V \ {0, n+ 1} and k ∈ R. In addition,

since each dump truck can only visit one location at a time, Bk = 1 for all

resources k ∈ R. As the speed of the vehicles can vary, the service times

of the activities and the travel times between the locations can change

based on which dump truck is used. To model this, we use the extension of

multiple modes to choose which resource-mode to complete an activity in.

We define the set of resources R = {1, . . . ,K} to include the K different

dump trucks. The resource R is now cumulative in the sense that it may

process up to K activities at a time [10], and gives us the option to complete

an activity in K different modes. The duration of activity i ∈ V completed

with vehicle k ∈ R is given by dik, and the travel time between activity i

and j using vehicle k ∈ R is given by tijk.



4.2 Full model

With the precedence graph, the travel graph, and the time delays defined,

we can model the Mass Relocation Problem as a mixed-integer linear pro-

gram. We define the following sets and variables:

V Set of activities, V = {A0, . . . , An+1}. Contains two dummy

activities, A0 and An+1.

E Set of pairs (Ai, Aj) defining the precedence relations between

the activities. The pair (Ai, Aj) ∈ E indicates that activity Ai

precedes activity Aj .

F Set of pairs (Ai, Aj) defining the legal travel patterns between

the activities. The pair (Ai, Aj) ∈ F indicates that a resource

can travel from activity Ai to activity Aj .

R Set of K resources, R = {1, . . . ,K}.

dik Duration of activity Ai ∈ V when processed by resource k ∈ R.

For A0 and An+1, it holds that d0k = d(n+1)k = 0 ∀ k ∈ R.

pi Preparation time of activity Ai ∈ V . The preparation time is

equal to p for all pickup activities, and 0 otherwise.

tijk Travel time between activity Ai and Aj with resource k ∈ R

where (Ai, Aj) ∈ F .

The resource flow-based MILP formulation defined in (3.10)-(3.20) in-

cludes three types of decision variables: xij , fijk and Si. Since the avail-

ability of the resources and the activity demands are equal to 1, the variable

fijk is now a binary variable. Either a vehicle traverses the edge (i, j) ∈ F ,

or it does not. We can thus omit the linear ordering variable xij from the

formulation, as constraint (3.17) is no longer needed to make sure the cor-

rect resource flows are transferred between activities. Information about

which activities directly precede each other is defined in the precedence
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graph, hence the presence of xij in constraint (3.14) is also superfluous.

The date variable Si remains unchanged. Thus, the decision variables are

defined as:

Si Start time of activity Ai ∈ V , S0 = 0.

fijk Boolean variable equal to 1 if edge (Ai, Aj) ∈ F is traversed with

resource k ∈ R.

As in the classical RCPSP, we define the objective of the MILP as:

min Sn+1, (4.1)

which is equivalent to minimizing the makespan of the schedule. We start

by defining the constraints concerned with the resource allocation, which

are variations of constraints (3.15) and (3.16). To make sure all activities

are visited by only one dump truck, we impose that:

∑
j∈V in

i

∑
k∈R

fjik = 1, ∀ i ∈ V \ {0, n+ 1}, (4.2)

where V in
i = {j ∈ V | (j, i) ∈ F} is the set consisting of all activities with

a travel edge into activity i. The constraint enforces that only one of the

travel paths leading into an activity can be used, regardless of the mode k,

and thus only one vehicle can complete an activity. As all vehicles start at

the source and end at the sink, this is not true for the dummy activities,

and thus they are omitted. Similarly, to make sure only one vehicle can

leave an activity, we impose that:

∑
j∈V out

i

∑
k∈R

fijk = 1, ∀ i ∈ V \ {0, n+ 1}, (4.3)

where V out
i = {j ∈ V | (i, j) ∈ F} is the set consisting of all activities

with a travel edge out of activity i. Constraints (4.2) and (4.3) make sure

each activity is visited only once, but we have not guaranteed that it is the



same vehicle that enters and leaves an activity. To do this we include a

flow conservation constraint:

∑
j∈V in

i

fjik −
∑

j∈V out
i

fijk = 0, ∀ i ∈ V \ {0, n+ 1}, ∀ k ∈ R. (4.4)

The constraint imposes that if an edge into an activity is traversed by a

resource k, the same resource must also traverse an edge out of the activity

to make sure the travel of the vehicles is consistent. Since we impose that

each activity must be visited and can only be visited once, we have to ensure

that we have the same amount of pickups and deliveries, and therefore

an even total number of activities n. Otherwise, it will be impossible to

complete all the activities, and the problem becomes infeasible.

Since we have omitted the dummy activities from the previous con-

straints, we have to make sure the resources behave as we want them to

also when travelling out of the source and into the sink. To enforce that

the vehicles can only travel from the source or to the sink once, we impose

that: ∑
j∈V out

0

f0jk = 1, ∀ k ∈ R, (4.5)

and ∑
j∈V in

n+1

fj(n+1)k = 1, ∀ k ∈ R. (4.6)

The constraints simply state that each vehicle must traverse exactly one

edge out from the source and one edge into the sink. Since we have included

an edge directly from the source to the sink in the travel graph, these

constraints are still valid when the optimal use of the vehicles is to remain

unused. This is relevant in cases where we have more vehicles than activities

to complete. The precedence constraint (3.14) can be implemented without

much change as:

Sj − Si ≥ dik + pj , ∀ (i, j) ∈ E, ∀ k ∈ R, (4.7)



Chapter 4. Mass Relocation RCPSP 33

where we have included a minimal time lag to account for the mass prepa-

ration time at each pickup location. Since the set E is explicitly defined,

we no longer need to include the variable M . The constraint imposes that

the start time of activity j must be greater than the sum of the start time

of activity i, the duration of activity i and preparation time of activity j,

given that (i, j) ∈ E.

To make sure the travel times are respected, we need an additional time

constraint:

Sj − Si ≥ −M + (dik + tijk +M)fijk, ∀ (i, j) ∈ F, ∀ k ∈ R. (4.8)

The constraint imposes that the start times of activities connected by a

travel path that is being traversed must be separated by the time it takes

to travel between the activities with resource k and the duration of the

activity. We do not have to include the preparation time in this constraint

as we cannot travel directly between pickup activities. As fijk is binary

and can be turned on and off, we need to include the variable M to make

sure the constraint still holds when fijk = 0. As discussed in Section 3.2.2,

M must be chosen such that M > Sn+1.

With the constraints defined above, we define the full Mass Relocation

Resource-Constrained Project Scheduling Problem as:

min Sn+1

s.t. (4.2), (4.3), (4.4), (4.5),

(4.6), (4.7), (4.8),

fijk ∈ {0, 1}, ∀ (i, j) ∈ F, ∀ k ∈ R,

Si ∈ R+, ∀ i ∈ V.

(4.9)

The program has a total of K|F | binary variables, where |F | is the number

of edges in the travel graph. The majority of the binary variables will simply

become zero as all edges, apart from possibly those connecting to A0 or



An+1, will be traversed in at most one mode. For every pickup-delivery pair

we add to the problem, the number of binary variables grows. Increasing

the number of activities from n to n + 2 increases the number of binary

variables by K(2n + 4). This quickly makes the problem instances large

and computationally demanding to solve. Therefore, for this preliminary

effort to solve the MRP using the RCPSP, we define a reduced program

where we assume we are dealing with a homogeneous fleet of vehicles to

reduce the problem size.

4.3 Reduced model

The full model defined in (4.9) is necessary when we are dealing with dump

trucks with different travel speeds and service times. Assuming we have

a homogeneous fleet of dump trucks where the vehicles do not differ sig-

nificantly in terms of travel or processing speeds, we can omit the k-index

from all variables:

di Duration of activity Ai ∈ V . For A0 and An+1, it holds that

d0 = dn+1 = 0.

tij Travel time between activity Ai and Aj where (Ai, Aj) ∈ F .

The flow decision variable is redefined as:

fij Boolean variable equal to 1 if edge (Ai, Aj) ∈ F is traversed.

Removing the multiple modes extension reduces the number of binary vari-

ables in the problem by (K−1)|F |, and we are left with |F |+n+2 decision

variables. We define the reduced Mass Relocation Resource-Constrained

Project Scheduling Problem, henceforth named model 1, by the following
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MILP:

min Sn+1 (4.10)

s.t.
∑
j∈V in

i

fji = 1, ∀ i ∈ V \ {0, n+ 1}, (4.11)

∑
j∈V out

i

fij = 1, ∀ i ∈ V \ {0, n+ 1}, (4.12)

∑
j∈V out

0

f0j ≤ K, (4.13)

∑
j∈V in

n+1

fj(n+1) ≤ K, (4.14)

Sj − Si ≥ di + pj , ∀ (i, j) ∈ E, (4.15)

Sj − Si ≥ −M + (di + tij +M)fij , ∀ (i, j) ∈ F, (4.16)

fij ∈ {0, 1}, ∀ (i, j) ∈ F, (4.17)

Si ∈ R+, ∀ i ∈ V. (4.18)

The objective (4.10) of model 1 is unchanged from the full model. We

still want to minimize the time spent completing the activities. In con-

straints (4.11) and (4.12) we have simply removed the sum over k. Only

one vehicle can still enter and leave an activity, and all activities must be

visited once. As it no longer matters which specific vehicle visits each activ-

ity, the flow conservation constraint (4.4) is redundant. Constraints (4.5)

and (4.6) are changed to (4.13) and (4.14), and rewritten to such a form

that not more than K vehicles can leave the source or enter the sink. Since

the travel graph only allows for one path from the source directly to the

sink, we cannot impose that all vehicles must travel out from the source as

there might be no available paths. Therefore, the vehicles have the choice

to remain unused by never leaving the source, and the path between the

source and the sink is removed from the travel graph. The restrictions im-

posed by the travel graph will make sure that if a vehicle leaves the source,

it must also end at the sink. Constraints (4.15) and (4.16) are unchanged,



except for the fact that we have removed the k-index from the variables.

Without the multiple modes, constraint (4.14) is redundant given the con-

straints above it and can in principle be removed.

Even though we have drastically reduced the number of binary variables

in model 1, finding an optimal schedule is still demanding in terms of com-

puting power and time once the number of activities increases. As discussed

in Chapter 3, the RCPSP formulation is NP-hard, and the flow-based for-

mulation is prone to inducing symmetries [10]. Symmetries arise when

multiple optimal solutions exist with different binary variables turned on

and off. They often appear in scheduling problems with identical machines,

like model 1 [28]. Problem instances can become expensive to compute with

the branch-and-bound algorithm when symmetries are present, as comput-

ing power is wasted on solving isomorphic solutions in the search tree [28].

Methods to combat symmetries include adding symmetry-breaking con-

straints to reduce the number of optimal solutions. This has proved suc-

cessful in some RCPSP formulations [29].

Most of the symmetries in model 1 arise due to the ordering of the

activities. Constraint (4.15) makes sure that the activities at each loca-

tion must be completed in order but does not impose in what order the

pickup and delivery locations should be visited. The vehicles thus have the

freedom to choose which locations to visit first. This induces many sym-

metries, especially with few dump trucks to schedule the activities. With

only one vehicle, there exists a multitude of different routes between the

activities, and several of these will lead to equivalent project makespans.

When increasing the number of resources, the number of symmetries of

this type decreases as there is less freedom in the ordering of the activ-

ities. This would not be the case if the vehicles were not homogeneous.

An artificial example is illustrated in Figures 4.6 and 4.7. Assuming the

distances between locations P1, P2, D1 and D2 are all equal, all routes in

Figure 4.6 yield an optimal solution for model 1 with one vehicle. With

two vehicles, the number of optimal solutions is reduced to two, as shown
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P1 P2D1 D2

A1 A2

A3 A4

P1 P2D1 D2

A1 A2

A3 A4

P1 P2D1 D2

A1 A2

A3 A4

P1 P2D1 D2

A1 A2

A3 A4

Figure 4.6: Illustration of four solutions from an MRP in-
stance with one vehicles. The graphs show the vehicle’s path
through four activities on a construction site. The travel times
between the locations are equal, and thus the four different
paths lead to the same optimal value.

P1 P2D1 D2

A1 A2

A3 A4

P1 P2D1 D2

A1 A2

A3 A4

Figure 4.7: Illustration of two solutions from an MRP in-
stance with two vehicles. The graphs show the vehicles’ paths
through four activities on a construction site. The travel times
between the locations are equal, and thus the two different
paths lead to the same optimal value.



in Figure 4.7. This simple example illustrates that with more vehicles, the

number of symmetries can be reduced as each vehicle’s path choice limits

the movement of the other vehicles.

Symmetries and computation time aside, model 1 can successfully find

optimal schedules given a fixed number of activities at each pickup and

delivery location. Unfortunately, this does not solve the Mass Relocation

Problem as posed in Chapter 2. The model assumes that we know exactly

how many activities we want to complete at each location and that the

number of pickups and deliveries have to match. However, to solve the

MRP, we have to maximize the number of activities we have time to com-

plete before a fixed time horizon. In this case, we do not know exactly

how many deliveries and pickups it is most efficient to complete at each

location. Model 1 could still be used in a trial and error manner to find

schedules of an approximate length, but there is still the issue of picking

the exact number of activities at each location. Thus, we must change the

model to find a more precise formulation of the MRP.

4.4 Flipped model

The standard Resource-Constrained Project Scheduling Problem finds the

ordering of a given set of activities with the goal of completing them in the

shortest amount of time. The goal of the Mass Relocation Problem is to

maximize the number of activities we can complete within a fixed schedul-

ing horizon, and thus we do not know how many activities to schedule at

each location ahead of time. Hence, to solve the MRP, we have to change

the objective of the RCPSP; instead of searching for the smallest project

makespan, we search for the maximal number of activities we have time to

complete. We denote the fixed scheduling horizon by Smax and the number

of activities we have time to complete within Smax by q. The variable q
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can be defined in terms of the flow variable fij in the following manner:

q =
∑

(i,j)∈F ′

fij , (4.19)

where F ′ = {(i, j) ∈ F | j 6= n + 1}. Since every traversed path (i, j) ∈ F

signifies that activity j is visited, the sum of the traversed edges equals the

number of completed activities. To avoid counting the sink as an activity,

the paths leading into it are omitted. Changing the objective of model 1

to maximizing q, we get the following MILP, henceforth called model 2:

max q (4.20)

s.t.
∑
j∈V in

i

fji ≤ 1, ∀ i ∈ V \ {0, n+ 1}, (4.21)

∑
j∈V out

i

fij ≤ 1, ∀ i ∈ V \ {0, n+ 1}, (4.22)

∑
j∈V out

0

f0j ≤ K, (4.23)

∑
j∈V in

n+1

fj(n+1) ≤ K, (4.24)

∑
j∈V in

i

fji −
∑

j∈V out
i

fij = 0, ∀ i ∈ V \ {0, n+ 1}, (4.25)

∑
k∈V in

i

fki −
∑
k∈V in

j

fkj ≥ 0, ∀ (i, j) ∈ E′′, (4.26)

Sn+1 ≤ Smax, (4.27)

Sj − Si ≥ di + pj , ∀ (i, j) ∈ E′, (4.28)

Sj − Si ≥ −M + (di + tij +M)fij , ∀ (i, j) ∈ F, (4.29)

fij ∈ {0, 1}, ∀ (i, j) ∈ F, (4.30)

Si ∈ R+, ∀ i ∈ V, (4.31)

where E′ = {(i, j) ∈ E | j 6= n+1} and E′′ = {(i, j) ∈ E | i 6= 0, j 6= n+1}.

In model 2, the objective is to complete as many activities as possible



before Smax. Hence, the model has to allow for some activities not to

be completed. This is implemented in constraints (4.21) and (4.22) by

imposing that at most one path in or out of an activity can be traversed,

allowing the dump trucks to omit activities. Constraints (4.23) and (4.24)

are unchanged from model 1, while the flow conservation constraint (4.25)

has to be reintroduced to ensure the vehicle routes are continuous. With the

addition of the flow conservation constraint, constraints (4.22) and (4.24)

become redundant and can, in principle, be removed from the model.

Since the vehicles no longer have to visit all activities, the start time

Si of activities that are not completed can take on arbitrary values. Thus,

enforcing the precedence relations is not enough to ensure that activities

that come first in the precedence chains are completed before the others.

To avoid the symmetries related to allowing the vehicles to choose freely

among the identical activities at a location, we add the symmetry breaking

constraint (4.26). The constraint ensures that a vehicle can only travel to

an activity if the preceding activities have been travelled to. We cannot

impose this on the source or the sink, as the source has no incoming edges,

and the sink must be completed at the end of the schedule, even if not all

other activities have been completed.

To make sure the project duration does not exceed the scheduling hori-

zon Smax, we include constraint (4.27). Considering we might not have

time to complete all the activities, we can no longer impose that the last

activity at each location has to be finished before Sn+1, and thus the set E

is changed in precedence constraint (4.28). Travel time constraint (4.29) is

unchanged from model 1.

The advantage of model 2, as opposed to model 1, is that we can find

the maximal number of activities and the optimal schedule in one step,

but the formulation has several disadvantages. Firstly, we have to define

an initial overhead of activities at each location beforehand. If too many

activities are defined, the MILP becomes large and difficult to solve. If

too few activities are defined, the solution is not necessarily optimal in the
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sense that we could have included more activities. The initial number of

activities n must therefore be chosen based on trial and error, which can

be time-consuming for long schedules.

Model 2 also includes many symmetries. As in model 1, we have the

symmetries related to the ordering of the activities. In addition, the model

includes symmetries linked to the choice of which activities to include in

the schedule. The objective simply requires that the number of activities

is maximized, but several activity subsets yielding feasible schedules can

have the same size. These symmetries are challenging to remove without

including a prioritization on which activities we prefer to be included in

the schedules.

Since model 2 is focused simply on completing as many activities as

possible, the ordering of the activities in the resulting schedule might not

be optimal. A possible solution is using model 2 to identify which activities

we should schedule and model 1 to schedule them efficiently. Since both

models can be time-consuming, using them both to produce a schedule

can be very inefficient. Instead, a semi-active schedule can be found in a

post-processing step by locally left-shifting all the activities.

Curiously, even with different starting points, the final formulation of

model 2 is very similar to the VRP formulation of the Mass Relocation

Problem developed in [8]. The only significant difference in the MILPs

is the objective. The objective of the VRP formulation is to minimize

the cost related to travelling while penalizing the activities not completed.

As minimizing the travelling of the dump trucks is a natural byproduct

of completing as many activities as possible within a fixed time horizon,

the objective of model 2 is perhaps more intuitive when solving the MRP.

Because of the similar formulations, the models face the same challenges

concerning symmetries and estimation of initial activities.



4.4.1 Priorities

With the single objective of maximizing the number of activities, we might

encounter cases where only some activity types are completed, and certain

locations are ignored because of long travelling times. To prevent this, we

can include individual activity priorities into the objective of model 2:

qw =
∑

(i,j)∈F ′

wjfij . (4.32)

Instead of maximizing q, we maximize qw where each activity is weighted

by a unique priority. By prioritizing time-sensitive or strenuous activities,

the model will be prone to completing these even if it means reducing the

total number of activities in the schedule. The priorities can be chosen such

that an equal amount of activities at each location is favorable or according

to a pre-existing plan.

Construction sites usually have a plan of how much mass they want

moved to and from the different locations within a due date. With such a

plan, we can define a priority wj for each activity by calculating:

wj =
remaining activitiesj

due datej
+ 1 ∀ j ∈ V \ {0, n+ 1}. (4.33)

A higher value of wj signifies a higher priority. The variable ”remaining

activitiesj” indicates how many remaining activities we have to complete at

the location of activity j. The number of activities can be calculated based

on the mass volume needed to be moved to/from the location by taking

into account the capacity of the dump trucks. The variable ”due datej”

indicates how much time is left before the activity must be completed.

The due date is measured in ”schedule lengths”. If we make a six-hour

schedule, the due date indicates how many six-hour periods we have left to

finish an activity. Given a month to complete the activities at a location,

and assuming a workday is twelve hours, this would translate into a due

date of 60 ”six-hour schedules”. Holidays and Sundays could be subtracted
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from the due date. Activities not part of the plan are given priority 1.

When defining the priorities in this manner, we avoid completely ig-

noring certain activity types. We also remove some of the symmetries in

the model, as feasible schedules with the same number, but different types,

of activities can be differentiated based on their prioritized sum. There

will be a trade-off between completing as many activities as possible and

completing the highest prioritized activities.





Chapter 5

Benders decomposition

As discussed in Chapters 3 and 4, exact solutions to large RCPSP in-

stances can be expensive and time-consuming to compute with methods

based on the branch-and-bound algorithm, such as the MIP solver in the

optimization tool Gurobi [30]. Benders decomposition (BD) is a solution

method that exploits the structure of large MILPs to ”decentralize the

overall computational burden” [31]. The method was first introduced by J.

F. Benders in 1962 [15] and has been applied to solve large MILPs in many

fields, including planning and scheduling [31]. Approaches to solving the

Resource-Constrained Project Scheduling Problem with Benders decompo-

sition have also proved successful, for example, in maritime trafficking [32],

for projects with multi-skilled personnel [33], and for projects with many

resources [34].

In this chapter, we apply Benders decomposition to model 1 and model 2

with the aim of finding exact solutions to the MRP efficiently. In Section 5.1

the standard Benders decomposition algorithm is introduced, and in Sec-

tion 5.2 the decomposition method is applied to model 1 and model 2.

Section 5.3 discusses improvements to the standard algorithm necessary

for an efficient implementation.

5.1 Standard Benders decomposition

Benders decomposition is an iterative algorithm used to find exact solu-

tions to mixed-integer linear programs [15]. The decomposition works by



separating the original problem into a master problem (MP) and a cut-

generating problem, often called the subproblem (SP) [35]. The solution of

the master problem is used to generate the subproblem, and the solution of

the subproblem is used to tighten the master problem by adding new con-

straints, often called cuts. The master and subproblem are alternatingly

and iteratively solved until the master problem is sufficiently bounded and

a solution can be found [31]. The BD algorithm is most often used in do-

mains like stochastic optimizations, where the problems take on specific

forms that are advantageous for the decomposition [31].

To use Benders decomposition we assume we have an MILP of the

following form:

min dT y + cTx

s.t. Ax+By ≥ b,

y ∈ Y,

x ≥ 0,

(5.1)

where y ∈ Rn1 is an integer variable and x ∈ Rn2 is continuous. The

remaining variables are given as follows: d ∈ Rn1 , c ∈ Rn2 , A ∈ Rm×n2 ,

B ∈ Rm×n1 and b ∈ Rm. The constraints are written in the general form

Ax+By ≥ b. Benders decomposition decomposes the MILP into a master

problem containing the integer variable and a subproblem formulated in

the space of the remaining variables [35]. The master problem is thus an

MILP, while the subproblem becomes a linear program (LP).

To derive the linear SP we fix the integer variable y in the original

MILP, and obtain the following:

min dT ȳ + cTx

s.t. Ax ≥ b−Bȳ,

x ≥ 0,

(5.2)

where ȳ denotes a fixed y-value. The term dT ȳ is now a constant and can
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be removed from the objective. The resulting program is called Benders

Subproblem and is a linear program concerned only with the continuous

variable x. For certain ȳ’s, the SP might become infeasible. To avoid

infeasibility and to easily obtain dual multipliers which are used to generate

cuts, it is usual to solve the Dual of the SP (DSP) instead of the SP

itself [31]. The DSP is formulated as:

max (b−Bȳ)Tu

s.t. ATu ≤ c,

u ≥ 0,

(5.3)

where we have introduced the continuous variable u ∈ Rm. From duality

theory it is known that if the Primal is infeasible, the Dual is unbounded.

By strong duality we also know that if the Dual is feasible for a given u, the

Primal and the Dual have the same optimal solutions. Thus, an unbounded

DSP indicates an infeasible SP, and in the case where the DSP is feasible,

we know that (b−Bȳ)Tu = cTx.

The Benders Master Problem is concerned with the integer variable y

and is formulated as follows [35]:

min dT y + z

s.t. {Benders cuts},

y ∈ Y,

z ∈ R.

(5.4)

The addition of the z variable works as a surrogate for the cTx term in

the objective function of the original problem. To begin with, the MP con-

tains no constraints, except in the case where the original problem includes

constraints concerning only the integer variable. In this case, the integer

variable constraints will be directly included in the MP. The set of Benders

cuts is initially empty, but a new constraint is added to the set every time



we solve the DSP to tighten the MP formulation. The form of the cut

depends on the feasibility of the subproblem. When solving the DSP, we

encounter extreme points up if the problem is feasible and extreme rays ur

if the problem is unbounded [31]. In the case of feasibility, an optimality

cut will be added to the master problem. The optimality cuts are of the

form [31]:

(b−By)Tup ≤ z, (5.5)

where up is the solution variable of the DSP. The cut will tighten the

lower bound on z in the MP. If the DSP is unbounded, a feasibility cut is

generated. The feasibility cuts are of the form [31]:

(b−By)Tur ≤ 0, (5.6)

where ur is an unbounded ray. The unbounded ray indicates the direc-

tion of unboundedness where the SP is infeasible for the given ȳ. The

addition of the feasibility cut restricts further movement in the unbounded

direction [31].

We have reached optimality when the optimal value of z from the MP

equals the objective value of the corresponding DSP (or SP), or when they

are closer than a given tolerance ε:

cTx∗ − z∗ = OBJDSP − z∗ < ε. (5.7)

We can calculate the optimality gap at each iteration by keeping track of

the objective values of the MP and SP. The objective value of the master

problem yields a valid lower bound on the optimal solution, as the master

problem is a relaxation of the original problem. A valid upper bound is

given by the combination of the objective value of the DSP/SP and the

contribution of the fixed y-value:

LB = OBJMP, UB = dT ȳ +OBJDSP. (5.8)
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Algorithm 1: Benders decomposition

Initialize ε, LB = −∞, UB =∞;

while UB − LB ≥ ε do

Solve MP;

if infeasible then

Stop algorithm;

end

Update LB = OBJMP;

Solve the DSP with ȳ = y∗;

if unbounded then

Find unbounded ray ur;

Add feasibility cut (b−By)Tur ≤ 0 to MP;

end

if feasible then

Add optimality cut (b−By)Tup ≤ z to MP;

Update UB = dT ȳ +OBJDSP;

end

end

Solve SP with ȳ = y∗;

The Benders decomposition algorithm thus iteratively adds optimality and

feasibility cuts to the master problem until the upper and lower bounds

meet. Geometrically, the cuts generated from the DSP shrink the poly-

hedron of the MP and allow us to find the optimal solution to the MILP

when the solution space is sufficiently decreased.

A flowchart of the Benders decomposition process can be seen in Fig-

ure 5.1, and the general algorithm is given in Algorithm 1. We initialize

the algorithm by defining the bounds and choosing a tolerance ε. We start

by solving the MP. If the master problem is infeasible, the original problem

is also infeasible, and the algorithm is terminated. If the MP is feasible, we

update the lower bound and solve the DSP with the optimal y-value from

the MP. Based on the result of the DSP, either a feasibility or optimality

cut is generated, and the upper bound is updated. The algorithm contin-



Solve MP

Result

Original problem
is infeasible Solve DSP

with ȳ = y∗

Result

Solve SP
with ȳ = y∗Add

feasibility cut
Add

optimality cut

Optimal solution
(x∗, y∗)

Infeasible

Feasible
(z∗, y∗)

Unbounded
Feasible

OBJDSP − z∗ ≥ ε

Feasible
OBJDSP − z∗ < ε

Figure 5.1: A flowchart of the standard algorithm for Ben-
ders decomposition. Figure is inspired from [36], with some
modifications.
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ues until the difference between the upper and lower bounds is smaller than

the chosen tolerance. When these are sufficiently close, we have found the

optimal y, and we use this to find the optimal x by solving the SP.

5.2 Benders decomposition for model 1 and model 2

When applying Benders decomposition to model 1 and model 2 derived in

Chapter 4, the MILPs are decomposed by separating the fij and Si vari-

ables. In the original model formulations, we attempt to compute both

the optimal driving patterns of the vehicles and the optimal schedule of

the activities in one step. Computing both of these simultaneously yields

a complex problem when the number of activities, and thus the number of

binary variables, increases. Splitting the models into smaller parts where

each problem focuses on one of the two aspects can therefore be advanta-

geous and contribute to solving the RCPSP instances faster. With Benders

decomposition, the master problem will be concerned with finding feasible

driving patterns for the vehicles, while the subproblem will ensure that

the time restrictions between the activities are respected. If we can find

a driving pattern in the master problem that does not violate the time

restrictions in the subproblem, we have a feasible solution.

Both model 1 and model 2 fit into the standard MILP form (5.1). For

model 1, constraints (4.15) and (4.16) yield mixed constraints of the form

Ax+By ≥ b. The objective function of model 1 is given as Sn+1 and can

be written as cTS, where c is a vector with zeroes everywhere except at

the last coordinate and S ∈ Rn+2 is a vector where the ith entry equals Si.

The subproblem can thus be written in the form:

min cTS

s.t. AS ≥ b−Bf̄,

S ≥ 0.

(5.9)



Constraint AS ≥ b−Bf̄ is a combination of constraints (4.15) and (4.16),

where A is the constraint matrix of Si and B is the constraint matrix of

fij . The Dual of the SP is given as:

max (b−Bf̄)Tu

s.t. ATu ≤ c,

u ≥ 0.

(5.10)

The remaining constraints from model 1, only concerned with the binary

variables fij , can be directly included in the master problem. The MP for

model 1 is thus given as:

min z

s.t.
∑
j∈V in

i

fji = 1, ∀ i ∈ V \ {0, n+ 1},

∑
j∈V out

i

fij = 1, ∀ i ∈ V \ {0, n+ 1},

∑
j∈V out

0

f0j ≤ K,

∑
j∈V in

n+1

fj(n+1) ≤ K,

{Benders cuts},

fij ∈ {0, 1}, ∀ (i, j) ∈ F,

z ∈ R,

(5.11)

where the variable z acts as a surrogate for the continuous variables Si in

the objective function. Since z is initially unbounded, the MP will remain

unbounded until we add an optimality cut to bound the lower value of z.

To prevent this, we impose a lower bound on z during the implementation

of the BD algorithm. Given a feasible schedule, the value of z can never be

smaller than 0, so any bound below this is valid.

Model 2 is a maximization problem but can easily be turned into a
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minimization problem by multiplying the objective with a negative one.

The master problem is thus given as:

min − q + z

s.t. (4.21), (4.22), (4.23),

(4.24), (4.25), (4.26),

{Benders cuts},

fij ∈ {0, 1}, ∀ (i, j) ∈ F,

z ∈ R.

(5.12)

The subproblem will include constraints (4.27), (4.28) and (4.29), and the

DSP is defined in the same manner as in (5.10). A notable difference from

Benders decomposition for model 1 is that the vector of weights c is now

equal to the zero vector. Hence, the SP has no objective to minimize. This

means that once the fixed f̄ from the master problem provides a feasible

solution to the DSP, an optimal solution is already found. Because of this,

no optimality cuts will be generated during the iterative solution process,

and the lower bound of z will remain unchanged. We can thus remove the

variable z from the MP completely as it does not provide any information

about the convergence. The algorithm is terminated once the DSP becomes

feasible.

With the programs defined above, Benders decomposition can be im-

plemented for both model 1 and model 2. In addition to separating the

search for valid driving patterns and feasible schedules, we have moved the

big-M constraint from the MP to the SP, which will yield a better linear

relaxation when solving the master problem [10]. For the numerical ex-

periments in Section 7.2, the MPs and SPs are solved using implemented

solvers in Gurobi.



5.3 Algorithmic improvements

A straightforward implementation of Benders decomposition can often re-

sult in excessive computing time and memory usage [31]. The algorithm is

prone to many pitfalls, including weak cut generation and time-consuming

iterations. Thus, to implement a competitive algorithm, some enhance-

ments have to be considered [35]. A plethora of algorithmic improvements

exist [31, 35, 37], but the effectiveness of each method for a specific pro-

gram is difficult to assess beforehand. As the number of iterations, and

by extension the computing time, is strongly related to the strength of

the feasibility and optimality cuts [31], we focus on enhancements aimed

at strengthening the cuts, as well as dealing with the growing number of

constraints in the master problem more efficiently.

5.3.1 Feasibility cuts

Feasibility cuts do not directly assist us in finding optimal solutions but

rather help us avoid the infeasible ones. For an MRP instance, many valid

driving patterns yield infeasible schedules. If we generate weak feasibility

cuts at each such occurrence, the Benders decomposition algorithm will con-

verge very slowly. To strengthen the cuts, we must choose the unbounded

rays ur with care [35]. Instead of choosing an arbitrary ur every time the

DSP is unbounded, it has been shown that adding a normalization on the

unbounded ray can be advantageous [35, 38]. One such normalization is the

L1-normalization, also called the Standard Normalization Condition [38].

If the SP is infeasible, an L1-normalized unbounded ray is found by solving

the auxiliary LP [35]:

min v

s.t. Ax+ v ≥ b−Bȳ,

x, v ≥ 0.

(5.13)
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The constant v is called the penalty parameter, and acts as a normalization

condition in the dual space [35]. If the SP is infeasible, the constraint

Ax ≥ b − Bȳ is impossible to satisfy given the fixed value of y. The

solution of problem (5.13) gives us the smallest v which makes the inequality

Ax+v ≥ b−Bȳ true. By strong duality we know that v = (b−Bȳ)Tur > 0.

Hence the cut (b − By)Tur ≤ 0 is violated by ȳ, and can be used as a

feasibility cut.

The L1-normalization has been shown to exhibit many good properties,

including sparsity, but does not give any theoretical guarantees on the

strength of the resulting cuts [38, 35]. Since the normalization includes

the optimization of an additional LP, this can increase the computing time

of each iteration. There is a trade-off between the increased time and the

potential decrease in the total number of iterations.

5.3.2 Combinatorial cuts

An alternative to strengthening the feasibility cuts is to generate Combina-

torial Benders cuts [31]. Combinatorial cuts were developed as a method

for dealing with MILPs with binary variables and big-M constraints [31].

The addition of the big-M constraints weakens the feasibility cuts, inde-

pendent of the normalization of the unbounded rays. Thus, for these kinds

of problems, purely combinatorial cuts can be generated instead by using

the minimal infeasible subsystem of the subproblems [39]. We adopt a hy-

brid version of the method proposed in [39] by generating optimality cuts

when the SP is feasible and combinatorial cuts when the SP is infeasible.

A similar approach was implemented in [40] and [41].

The key to understanding the combinatorial cuts is to recognize that

if a subproblem is infeasible, some of the binary variables in the fixed ȳ

have to change for the problem to become feasible. This can be stated as



a constraint by imposing that [41]:

∑
ȳi=0

yi +
∑
ȳi=1

(1− yi) ≥ 1. (5.14)

The constraint states that at least one of the binary variables must change

from 0 to 1, or vice versa. It yields a purely combinatorial constraint, not

dependent on the big-M constraints. We notice that in our models, we can

never go from an infeasible to a feasible solution by only changing variables

from 0 to 1. Thus, to further strengthen the cuts, we impose that at least

one of the binary variables equal to 1 has to change:

∑
ȳi=1

(1− yi) ≥ 1. (5.15)

To further strengthen the combinatorial cuts, we can identify the subset

of constraints in the SP which has to be changed for the problem to become

feasible [39]. This subset is usually called the minimal infeasible subsystem

(MIS) or the irreducible inconsistent system (IIS) of an infeasible problem.

An IIS is a subset of constraints with the properties that: (1) it is infeasible,

(2) if a single constraint or bound is removed, the subsystem becomes

feasible [41]. The IIS can therefore provide us with a subset of the variables

ȳ that have to be changed. We denote the binary variables associated with

the IIS ŷ and define the combinatorial cut by [39]:

∑
ŷi=1

(1− yi) ≥ 1. (5.16)

If the IIS is small, this will provide a strong combinatorial cut.

Commercial optimization solvers like Gurobi can generate an IIS from

an infeasible subproblem, but this will only provide us with one combina-

torial cut each iteration. To generate inconsistent systems fast, we solve
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the following linear problem [39]:

min

m∑
i=1

ui

s.t uTA = 0,

uT (b−Bȳ) = 1,

u ≥ 0.

(5.17)

The problem is designed to find a linear combination of the constraints in

the SP that yields a minimal infeasible subsystem [39]. The program finds

a dual multiplier u such that uTAx ≥ uT (b−Bȳ) is false, and by extension

the assertion Ax ≥ (b − Bȳ) is infeasible. This is achieved by imposing

that the left-hand side of the equality has to equal zero, while the right-

hand side must be positive [39]. The objective makes sure we obtain the

u with the lowest cardinality, as this will generate the strongest cuts [41].

The program (5.17) can be solved multiple times by setting the non-zero

elements of the previous u to zero. This is continued until no more feasible

solutions can be found [41].

With (5.17) we can quickly generate many strong combinatorial cuts

each iteration and thus decrease the occurrence of infeasible subproblems

later in the solution process. The disadvantages of generating combinatorial

cuts include solving several linear programs every time we encounter an

infeasible SP and the management of the numerous cuts generated at each

iteration.

5.3.3 Optimality cuts

For the implementation of Benders decomposition for model 1, it can also

be beneficial to strengthen the optimality cuts. The strength of these cuts

is directly related to the quality of the lower bound and thus to the speed

of convergence. Any feasible solution to the DSP generates an optimality

cut. In our subproblems, multiple optimal solutions S∗ can exist as we only



seek to minimize Sn+1. The different optimal solutions might not produce

cuts of equal strength, and consequently, we aim to find the solutions that

generate the best cuts at each iteration [37]. This can be achieved by

solving an auxiliary subproblem to find a dual solution u that dominates

other cuts in terms of Pareto-optimality [31].

To find the Pareto-optimal solutions, we must first find a core point. A

core point yo is defined as a point in the relative interior of the convex hull

of the domain Y of y [31]. In our case, the domain Y consists of binary

variables, and a valid core point will be any vector with 0 < yoi < 1. We

therefore choose the vector yo = [0.5, 0.5, . . . , 0.5] as the core point. The

dual variable u for the Pareto-optimal cut can be found by solving [37]:

max (b−Byo)Tu

s.t. (b−Bȳ)Tu = v(ȳ),

ATu ≤ c,

(5.18)

where v(ȳ) is the objective value of the DSP. The formulation finds an

extreme point u which yields the same objective value as the solution of

the original DSP and respects the same constraints, in addition to providing

the maximal value at the core point. The optimal u∗ is inserted into (5.5)

to produce the Pareto-optimal cut.

Pareto-optimal cuts have proven effective in practice [31] but include

the optimization of an additional program at each iteration. Alternative

approaches to finding good cuts without solving an auxiliary problem exist

but are usually more complicated to implement [31].

5.3.4 Lazy constraints

Many implementations of Benders decomposition include the addition of so-

called lazy constraints [35, 40, 41]. Instead of repeatedly solving the master

problem and generating new cuts, the addition of lazy constraints allows us

to work with a single search tree during the optimization of the MP [41].
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Using a callback function, the branch-and-bound solution process of the

master problem can be paused every time we encounter a new incumbent

solution. During the pause, the related subproblem is solved, and new cuts

are added to the master problem as lazy constraints before the optimization

is continued [40].

The advantage of this solution process is that we do not encounter the

same incumbents several times, as we might do in the standard implemen-

tation of Benders decomposition. The lazy constraints also make sure only

cuts violated by previous solutions are included in the program, making

the cut management in the MP easier. The approach is not necessarily

faster when dealing with small problem instances but can be beneficial

when many iterations are needed to reach an optimal solution.

5.3.5 Other improvements

In addition to the enhancements discussed above, countless other improve-

ments exist [31]. While it is common to attribute slowness in the BD

algorithm to bad cut generation [31], some also claim that there is more to

be gained by stabilizing the initial cut loop of the master problem in the

root node [42]. To help the master problems find feasible solutions faster,

the author of [40] also proposed a two-stage Benders decomposition. The

first stage involves solving a relaxed version of the original MILP to gener-

ate cuts fast, while the second stage involves solving the original problem

with the cuts generated in the first stage. The goal of the process is to

tighten the master problem faster.





Chapter 6

Inexact methods

Given the intractability of the RCPSP formulation, the implementation

of Benders decomposition in Chapter 5 is not guaranteed to find optimal

solutions to the MRP within a reasonable computation time. For model 1

and model 2, providing a suitable initial number of activities at each loca-

tion also presents a challenge, as the chosen n can affect the efficiency of

the solution methods and the resulting optimal schedules. To solve these

problems, we shift our focus from finding optimal schedules to finding fea-

sible schedules efficiently by introducing elements of inexactness. The use

of inexact methods can reduce the computation time by narrowing the so-

lution space, and can make initial activity estimation easier. However, the

methods come at the cost of not being able to prove the resulting schedules’

optimality.

To restrict the freedom of the dump trucks, a predefined mapping be-

tween pickup and delivery locations is introduced in Section 6.1. The

mapping allows us to reduce the number of binary variables in the mod-

els. It also makes it easier to estimate the number of activities we have

time to complete at each location. In Section 6.2 we introduce the idea of

schedule concatenation. With schedule concatenation, short schedules can

be merged into longer ones, thus allowing for more efficient scheduling of

projects with long time horizons. Lastly, Section 6.3 uses the mathemati-

cal formulation of the RCPSP as a basic tool within a heuristic framework.

The result is a greedy scheduling heuristic that adds activities to a schedule

one by one in an iterative process.
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Figure 6.1: Illustration of a construction site where pickup
and delivery locations are mapped together ahead of the
scheduling. Every time we do a pickup at P1, we have to
do a delivery at D1. The same is true for the pairs P2-D3,
P3-D2 and P4-D3.

6.1 Location mapping

The vehicles’ freedom to choose which pickup and delivery locations to

travel between induces many symmetries in the Mass Relocation Problem,

as discussed in Sections 4.3 and 4.4. To remove some of these symmetries,

we pair pickup and delivery locations ahead of time. This entails deciding

which delivery locations vehicles must travel to after completing a specific

pickup activity prior to the scheduling. Figure 6.1 shows an example of a

location mapping in the case where we have four pickup and three delivery

locations. Pickup location P1 is mapped to D1, meaning that every time

we do a pick up at P1 the mass must be dumped at D1. The same is true

for the pairs P2-D3, P3-D2 and P4-D3. Several pickup locations can be

mapped to the same delivery location, but the travel path from any pickup

activity must be unambiguous. The vehicles can choose freely among the

different pickup locations when leaving a delivery location.

The location mapping shrinks the solution space of the MRP consid-

erably. Consequently, we might not find the optimal scheduling of the

activities with this method. However, the mapping allows us to remove

several paths from the travel graph and thus reduce the number of binary
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(b) With location mapping.

Figure 6.2: Comparison of adjacency matrices from travel
graphs with and without the location mapping from the con-
struction site in Figure 6.1. Without the location mapping,
the problem includes 312 binary variables. The problem size
is reduced to 216 binary variables with the location mapping.
Travel times are randomly generated for illustration.

variables. This reduction is necessary for solving the MRP more efficiently.

Even though the location mapping adds a considerable restriction to the

vehicles’ travel paths, the assumption that specific locations are connected

based on mass type or proximity is not unlikely on a real construction site.

Since a pickup location can only be paired with one delivery location, we

might not be able to service all delivery locations when using the location

mapping.

The location mapping can be implemented directly into model 1 and

model 2 without significant modifications. Vehicles can be prevented from

travelling between certain activities by removing edges from the travel

graph. Hence, the location mapping can be implemented by enforcing

that vehicles can only travel from a pickup activity to a delivery activity

at a predefined location. Figure 6.2 shows a comparison between the ad-

jacency matrices of travel graphs with and without the location mapping

from Figure 6.1, in the case where we want to schedule three activities at

each pickup location and four activities at each delivery location. Activi-

ties A1-A12 represent the pickups and A13-A24 represent the deliveries. In
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(a) Precedence graph.
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(b) Travel graph.

Figure 6.3: Examples of precedence and travel graphs with
the new activity definition. Each activity Ai represents a
pickup and a delivery, as well as the travel time between them.
The white nodes illustrate the dummy activities.

Figure 6.2(a), the vehicles can travel freely from any pickup to any de-

livery activity and vice versa. This induces 312 edges, and thus equally

many binary variables. With the location mapping, we reduce the number

of binary variables by 96, as shown in Figure 6.2(b). Since the location

mapping only pairs the locations, not the activities, we do not know which

specific activities from each location must be adjoined. Hence, the vehicles

still have some freedom in which deliveries to pair with each pickup.

To reduce the number of binary variables further, the location mapping

can also be used to redefine the concept of an activity. Instead of defining

an activity as an individual pickup or delivery, we can now define it as

both. An activity’s duration will thus encompass the pickup duration, the

delivery duration, and the travel time between the locations. With this

definition, we halve the number of activities in the MRP instances and

significantly reduce the number of binary variables. With the same 24

activities as in Figure 6.2, a problem with the new activity definition will

only include 144 binary variables.

An example of a precedence and travel graph for the new activity con-

cept is illustrated in Figure 6.3. The example is based on a construction

site with two pickup (P1, P2) and two delivery (D1, D2) locations. The lo-

cations P1 and D1 are mapped together, as well as P2 and D2. We want to

complete three activities (A1, A2, A3) at P1-D1, and two activities (A4, A5)
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at P2-D2. As the precedence graph shows, the activities at the same loca-

tions still precede each other, and the precedence chains still have to start

and end with the dummy activities. In the travel graph, vehicles can now

travel freely between all activities at different locations. In accordance with

the precedence relations, vehicles can only travel between activities at the

same location if they are travelling to an activity further on in the prece-

dence chain. The travel graph also includes edges from the source to all

activities and from all activities to the sink, even though these are omitted

from the figure.

The models defined in Chapter 4 can still be used with the new activity

formulation with a small adjustment. To ensure that two activities that

precede each other do not have to be separated by the first activity’s entire

duration, we have to change the precedence constraints. We only want

other vehicles to wait for the duration of a pickup, as well as the mass

preparation time, before starting a new activity at the same location. We

thus have to rewrite constraint (4.15) in model 1 and (4.28) in model 2 as:

Sj − Si ≥ dpi + pj ∀ (i, j) ∈ E, (6.1)

where dpi is the duration of the pickup associated with activity i.

The new activity definition comes at the cost of losing the precedence

relations on the delivery activities. This only becomes an issue when sev-

eral pickup locations are mapped to the same delivery location. When this

happens, we cannot ensure that several deliveries are not simultaneously

scheduled at the same location. The precedence relations between the de-

liveries thus have to be added in a post-processing step. When doing this,

we cannot be sure the length of the schedules stays below Smax. However,

as it is challenging to fill a schedule precisely to the end when no vehicles

can work past Smax, we expect long schedules to contain enough slack to

stay feasible even after the precedence relations are enforced. This is shown

to be true in our numerical experiments in Sections 7.3 and 8.2. How big of



a problem the conflicting delivery activities become depends on the topol-

ogy of the construction sites and the chosen location mapping. On some

construction sites, there will be room for several deliveries simultaneously,

and thus the lack of precedence relations will not be an issue.

The new and old activity definitions can be combined to allow some

pickup and delivery locations to be paired while others are not. This is

relevant for construction sites with different types of mass, where some

types can be transported to almost any delivery location, but some can

only be dumped at a specific location. By combining the two activity

concepts, we can restrict the travel paths between locations with delivery

restrictions but retain the freedom of the vehicles between the remaining

locations. Although interesting, this approach is not explored further in

this thesis.

The advantage of the new activity definition, in addition to reducing the

problem size, is being able to roughly estimate how many activities can be

completed at each location before Smax. Given the distances between the

paired pickup and delivery locations, we can estimate how many rounds

of pickups and deliveries one vehicle can complete within the fixed time

horizon. The duration of a round between pickup location i and delivery

location j is given by:

Tij = di + tij + dj + tji + γ. (6.2)

The parameter γ is added for the possibility of including some slack to

the round durations. In the cases where we have many vehicles and might

have to wait for the mass preparation at a pickup location, γ = pi could

for example be used. The number of rounds rij we can complete at each

pickup-delivery pair is defined as:

rij =

⌊
Smax − pi

Tij

⌋
+

1 if resij ≥ di + tij + dj + γ,

0 otherwise,
(6.3)
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where resij is defined as:

resij = Smax − Tij ·
⌊
Smax − pi

Tij

⌋
. (6.4)

The number of rounds one vehicle can complete at each location pairing

can be used to provide an estimate of how many activities we have time to

do. The addition of the term γ ensures that the estimation can be both an

under- and overestimation based on the needs. If rij equals zero for some

pickup-delivery pair, we do not have time to service the locations within

Smax.

6.2 Schedule concatenation

The location mapping helps reduce the size of the mixed-integer linear

programs in model 1 and model 2. Nevertheless, finding long optimal

schedules with exact solutions methods is still computationally demand-

ing and impractical for real-world applications. Hence, we develop an ap-

proach for quickly building feasible schedules with large scheduling hori-

zons. The schedule concatenation method works by merging short sched-

ules into longer ones while guaranteeing that the resulting schedule’s length

does not surpass the sum of the smaller schedules makespans. This is not

an exact approach as we cannot prove that the concatenated schedules

are optimal, even when they consist of optimal components. However, the

method allows for long schedules to be built quickly. Schedules must be

concatenated two by two, but the procedure can be continued in an iterative

manner to merge several plans.

We denote the first schedule we want to concatenate by S1 and the

second by S2. The schedules can have different lengths and number of

activities but must use the same number of vehicles. The fixed scheduling

horizons are denoted by S1
max and S2

max. When concatenating the schedules,

we have to take into account the travel times between the locations we



end at in S1 and start at in S2. As there might not be enough time to

travel between the end of one schedule and the start of another, we cannot

guarantee that the resulting schedule S will include as many activities as

S1 and S2 combined. To merge the schedules, each vehicle’s activity path

in S1 has to be paired with an activity path in S2. An activity path ak

is defined as the sequence of activities vehicle k ∈ R traverses through in

a schedule. Assuming that the activity path for vehicle k1 in schedule S1,

denoted by a1
k1

, is to be merged with the activity path for vehicle k2 in

schedule S2, a2
k2

, we have to make sure that the following relation holds:

S1
max − S1

i − d1
i + S2

j ≥ dist(i, j). (6.5)

Activity i denotes the last delivery activity in a1
k1

and j the first pickup

activity in a2
k2

. The variable di denotes the duration of activity i in S1

and dist(i, j) represents the distance between the activities. The inequality

states that the time left in S1 before S1
max, added to the start time of the

first activity in S2, has to be larger or equal to the travel time between the

activities. If the assertion does not hold, the first pickup in a2
k2

is discarded

from S2 along with its corresponding delivery activity, and activity j is set

to the next pickup activity in a2
k2

. This process is continued until (6.5)

holds. The makespan of the resulting schedule is then guaranteed to be

below, or equal to, Smax = S1
max + S2

max.

When concatenating the schedules, we must choose which activity paths

should be coupled. The easiest way to merge the paths is according to ve-

hicle number, such that a1
k and a2

k are merged for all k ∈ R. Concatenating

schedules in this manner might lead to unnecessarily many activities being

discarded if the travel times between the activity paths are long. A better

approach is thus creating a pairing that considers the distances between the

activity paths and minimizes the number of activities discarded during the

concatenation. With K vehicles, there are K! different pairings to choose

from. The best mapping can be calculated efficiently by utilizing graph

matching algorithms. In this thesis, we have implemented an alternative
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approach based on a greedy pairing for simplicity. For a1
1, we choose the

path in S2 with the shortest positive residual time:

S1
max − S1

i − d1
i + S2

j − dist(i, j). (6.6)

Once the path for vehicle 1 is chosen, the pairing for activity path a1
2 is

chosen among the remaining available paths, and so on. As we choose the

optimal choice at each step without considering the overall solution, the

activity path pairing will not necessarily lead to the optimal coupling. It

is shown in Section 7.3 that the simple algorithm produces good results in

practice. Still, if the greedy scheduling heuristic is to be developed further,

it can be worthwhile to find an improved method based on an existing

graph matching algorithm.

The pseudocode for the schedule concatenation algorithm is given in

Algorithm 2. We start by finding the activity paths a1
k and a2

k for the

different vehicles in both schedules and choose an activity path mapping

h. The mapping details which specific paths in each schedule will be con-

catenated. For each vehicle k ∈ R, a1
k and a2

h[k] is merged to create a new

activity path ak. The new activity paths are used to construct the flow

variables f for the concatenated schedule. To find the updated start times

of the activities, f is used as a warm start in model 1 with the objective:

min

n+1∑
i=0

Si, (6.7)

and the added constraint:

Sn+1 ≤ S1
max + S2

max. (6.8)

The model aims at ordering the activities such that they are globally left-

shifted while still making sure that the start times Si stay below Smax.

Even with a warm start, model 1 can be time-consuming, and thus the

optimization is only run for a short time to obtain an approximate activity



Algorithm 2: Schedule concatenation

Define schedules S1 and S2;

Find activity paths a1
k and a2

k ∀ k ∈ R;

Choose activity paths map h;

for k ← 1 to K do

Set i to last delivery activity in a1
k;

Set j to first pickup activity in a2
h[k];

while S1
max − S1

i − d1
i + S2

j < dist(i, j) do

Discard first pickup and delivery in a2
h[k];

Set j to next activity in a2
h[k];

end

Create new vehicle path ak by merging a1
k and a2

h[k];

end

Create flow-variable f based on ak ∀ k ∈ R;

Use f as warm start in model 1 with a time limit;

ordering. The computation time of the algorithm depends on the efficiency

of the method used to find the activity paths map h and on how long

model 1 is run.

The schedule concatenation algorithm can be used to make long sched-

ules with prioritized activities by consecutively merging small schedules

made with continuously updated priorities. When making short schedules,

we must ensure that the makespans are long enough to include all activity

types. Otherwise, certain activities will never be included in the resulting

concatenated schedule. Another consideration when concatenating is the

boundary effect a schedule can exhibit towards the end. A schedule might

behave differently close to Smax as a result of being close to finishing. This

can result in activity patterns we would not observe in longer schedules. To

alleviate the consequences of the boundary effects, we can remove the last

m activities in each activity path in schedule S1 before concatenation. In

our scheduling problems, we do not impose that the vehicles have to start

or end at any specific locations. Hence, we assume that any boundary

effects are negligible.
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6.3 Greedy scheduling heuristic

The way model 2 is formulated, feasible schedules are quickly produced if

the n activities initially defined can all be completed before Smax. However,

the model slows down considerably when having to prove that a feasible

ordering of all the activities is impossible and choose which activities to re-

move. We exploit this characteristic of model 2 to create a greedy schedul-

ing heuristic. The heuristic iteratively adds activities to a schedule one by

one until additional activities make the schedule infeasible or a time limit

is reached. This method is thus not dependent on a predefined overhead

n but adaptively adds activities based on the feedback from the current

schedule.

The heuristic’s efficiency depends on the method used to determine if a

schedule is feasible or not. Instead of simply using model 2, which is slow

to prove that a schedule is infeasible, we combine features from model 1

and model 2 to create model 3, defined as:

max q =
∑

(i,j)∈F ′

fij (6.9)

s.t.
∑
j∈V in

i

fji = 1, ∀ i ∈ V \ {0, n+ 1}, (6.10)

∑
j∈V out

i

fij = 1, ∀ i ∈ V \ {0, n+ 1}, (6.11)

∑
j∈V out

0

f0j ≤ K, (6.12)

∑
j∈V in

n+1

fj(n+1) ≤ K, (6.13)

Sn+1 ≤ Smax, (6.14)

Sj − Si ≥ dpi + pj , ∀ (i, j) ∈ E′, (6.15)

Sj − Si ≥ −M + (di + tij +M)fij , ∀ (i, j) ∈ F, (6.16)

fij ∈ {0, 1}, ∀ (i, j) ∈ F, (6.17)

Si ∈ R+, ∀ i ∈ V. (6.18)



The goal of model 3 is to decide if a schedule is feasible or infeasible consid-

ering the precedence and resource constraints. The model’s objective (6.9)

is thus inconsequential for the optimization. Constraints (6.10) and (6.11)

impose that all activities have to be completed, as in model 1, and con-

straint (6.14) from model 2 makes sure all activities must be finished within

Smax. The remaining constraints are common for both model 1 and model 2

and ensure that the schedules respects the resource allocations and time

restrictions. We expect model 3 to be faster than model 2, both when it

comes to proving feasibility and infeasibility, as the model knows before-

hand that all activities must be completed.

To build schedules with the heuristic, activities are iteratively added

to an initially empty plan. In order to add activities one by one, the

activity definition from Section 6.1 must be used. Activities are added

greedily by alternating between the different activity types created by the

location mapping. Once a schedule is proven infeasible with the addition

of a specific activity type, we refrain from adding activities of this type

in the remainder of the algorithm. The process is terminated when the

inclusion of no further activity types is feasible. When making schedules

with prioritized activities, the activity types with the highest priorities

are added to the schedule first. In this way, we can guarantee that the

most time-sensitive activities are prioritized. As proving infeasibility can

be time-consuming when the schedules are close to being complete, a cut-off

point τ is chosen to avoid spending too much time on this step. As there is

a trade-off between adding the most activities and reducing the time spent

on proving infeasibility, the time limit τ must be chosen with care.

When adding new activities to a schedule, we must update the prece-

dence and travel graphs. Instead of redefining the problem, we simply add

the new activities into the current formulation. This makes it easy to add

and remove activities quickly. To illustrate the process, we make an exam-

ple by adding a new activity to the graphs in Figure 6.3. New activities

always get the highest activity number in the graphs; thus, the activity will
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Figure 6.4: Illustration of the changes in the precedence
and travel graph when a new activity is added in the example
shown in Figure 6.3. The red and green edges indicate the
edges we have to remove and add, respectively.

be denoted A7. Assuming A7 is a pickup and delivery at P2-D2, the activ-

ity is included in the precedence graph by simply appending it to the last

non-sink activity at the location precedence chain. The activity must also

be connected to the sink, and the previous connection from the penultimate

activity to the sink has to be removed. This is illustrated in Figure 6.4(a).

To add the activity to the travel graph, we do not have to remove any

edges but simply add edges from the new activity to all activities at other

locations and edges from all other activities to the new activity. This is

shown in Figure 6.4(b).

The pseudocode for the greedy scheduling heuristic is given in Algo-

rithm 3. We start by defining the project makespan Smax and the time

limit τ for model 3. We construct a list ` of activities in the order we want

to add them to the schedule. If there are no priorities on the activities,

the different activity types are alternatingly added to `. In the case of

priorities, the activities in ` are ordered based on w. While the activity list

is not empty, the algorithm adds the topmost activity in ` to the schedule.

Model 3 is used to determine if the schedule with the added activity is fea-

sible or not, either by proving this exactly or by reaching the time limit τ .

If an activity is not accepted, all activities of the specific type are removed



Algorithm 3: Greedy scheduling heuristic

Define the project makespan Smax;

Set the time limit τ ;

Construct list of activities `;

while ` is not empty do

Add next activity in ` to schedule;

Use model 3 to determine feasibility/infeasibility;

if infeasible or timeout τ reached then

Remove activity type from `;

else

Update parameters to include new activity;

end

end

Solve model 1 with a time limit;

from `. The algorithm terminates when ` is empty. After having added

all the activities we can, we try to find an active schedule by globally left-

shifting all the activities with model 1, similar to what was implemented

in the schedule concatenation in Section 2.

The advantage of the greedy scheduling heuristic is that we have com-

plete control over which activities are added to the schedules. This is

especially important when long and time-consuming activities must be pri-

oritized. Even though the algorithm is not exact, we have the chance of

proving that the addition of more activities is infeasible for short sched-

ules. If this is the case, the schedules are ”optimal” in the sense that we

can prove we do not have room for more activities. From experiments,

schedules with around 30 activities can be proven ”optimal” in this regard.

Thus, the heuristic can be used in combination with the scheduling con-

catenation. Small schedules quickly made with the heuristic can be merged

into feasible schedules with large scheduling horizons.

The heuristic is challenging to use for creating long schedules because of

the difficulty of choosing the time limit τ . If we meet the time limit at the
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addition of every new activity at the end of the algorithm, the computation

time will be at least τ times the number of activity types. Thus, the time

limit cannot be chosen too large to avoid spending too much time proving

infeasibility. Setting the time limit too low, we risk discarding feasible

schedules.

A key component to keeping the heuristic efficient is the greedy ac-

tivity addition. However, instead of simply adding activities one by one,

we can think of situations where it would be profitable to remove certain

activities to maximize q or qw. Achieving this would include comparing

several schedules made with different activities to determine which should

be removed and added and would significantly increase the computation

time.





Chapter 7

Simulation study

We conduct a simulation study to test the different models and methods

we have developed to solve the Mass Relocation Problem. Section 7.1

starts by examining the features of model 1 and model 2, showing how

the models become inefficient and computationally demanding when we

are scheduling long projects. In Section 7.2 we test the implementation

of Benders decomposition and compare it to the standard branch-and-cut

MIP solver implemented in Gurobi in terms of computation speed and

solution quality. Lastly, we investigate the effectiveness and correctness of

the inexact methods developed in Chapter 6 and compare the results to

schedules made with the exact methods. The computations are performed

on NTNU’s computation server Markov, using 10-20 threads for parallel

computing. We limit ourselves to studying schedules of a maximum of 6

hours.

7.1 Model features

We start the simulation study by testing how the computation time of

model 1 and model 2 vary with the number of activities n, the number

of vehicles K, and the fixed time horizon Smax when using exact solution

methods. We simulate random construction sites of different sizes and

complexities to estimate the average performance. A problem instance is

generated by determining the number of pickup and delivery locations, the

number of activities at each location, and the distance between the loca-



tions. A random discrete uniform distribution on the interval [2, 5] is used

to determine the number of pickup locations, n1, and delivery locations,

n2. Given a total number of activities n, we use a multinomial distribution

to distribute n
2 activities among the n1 pickup locations and the n2 deliv-

ery locations. Each location has an equal probability of being assigned an

activity. Lastly, to simulate the distances between the pickup and deliv-

ery locations, we draw from a uniform distribution on the interval [3, 20],

such that the driving times range from 3 to 20 minutes. For every problem

size, we generate and solve ten different problem instances with different

topography. The goal is to explore model characteristics, and thus, the

experiments are completed using the built-in MIP solver in Gurobi. We set

the pickup and delivery durations to 5 and 3 minutes, respectively, and the

mass preparation time to 4 minutes.

We start by investigating the computation time of model 1 as a function

of n, using a fixed number of vehicles K = 3. The results are presented in

Figure 7.1. The solid line shows the average computation time of an optimal

schedule on ten randomly generated problem instances with n activities.

The small marks indicate each problem’s particular computation time, and

the shaded area shows the span between the fastest and slowest problem

instances to be solved. The grey dotted line shows the 2-hour time limit

used for each problem instance. The instances where no solutions are found

within the time limit contribute to the average with 2 hours. We see that

the computation time increases roughly exponentially with n. Problem

instances with many activities quickly grow in size and complexity, and as

the solution space increases, so does the time to find an optimal schedule.

The expansion of the shaded area for larger n indicates that the complexity

of the topography of the construction site impacts the difficulty of the

scheduling. At n = 24, some problem instances are solved in minutes,

while others are not solved within the 2-hour time limit. This tells us

that even though a model might work well for a particular MRP instance,

it might not converge as fast on other construction sites. Instances that
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Figure 7.1: Average computation time as a function of num-
ber of activities for model 1 with K = 3. Calculated using ten
randomly generated problem instances at each n.
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Figure 7.2: Average computation time as a function of num-
ber of vehicles K for model 1 with n = 20. Calculated using
ten randomly generated problem instances at each K.



are solved fast usually contain fewer pickup and delivery locations, which

makes the routing of the dump trucks easier.

We also investigate the effect the number of dump trucks has on the

computation time for model 1. Figure 7.2 shows the average computation

time as a function of K with n = 20. The figure indicates that increas-

ing the number of resources decreases the computation time. Scheduling

n = 20 activities with one dump truck can take over 2 hours while schedul-

ing the same activities with nine dump trucks takes less than a second.

The reason for this was discussed in Section 4.3; with few vehicles, many

different orderings of the activities can provide feasible and optimal sched-

ules, and these symmetries can slow down the optimization. With many

similar dump trucks, where we do not differentiate between which vehi-

cle does what activity, the solution room is smaller, and multiple optimal

solutions are not as abundant. This means that, generally, a bigger fleet

of homogeneous vehicles will provide feasible schedules faster. However,

scheduling with many resources will also become time-consuming once the

number of activities grows.

For model 2, we want to see how the chosen scheduling horizon and

activity overhead affect the program’s performance. Figure 7.3 shows the

average computation time as a function of Smax, when n = 30 and K = 3.

Green instances represent schedules where all 30 activities can be com-

pleted within Smax. Problem instances that have not finished within the

2-hour time limit are marked with orange. The figure shows that all in-

stances where the optimal solution is found before the time limit are green,

indicating that the model is having problems proving that only a subset

of the n activities can be completed within Smax. If all activities can be

scheduled with a good margin, like for Smax greater than 200 minutes, op-

timal schedules are quickly found. For problems with a smaller scheduling

horizon, like 50 minutes, it is obvious that every activity cannot be com-

pleted in time, but model 2 still struggles to prove this. The branch-and-cut

method in Gurobi manages to increase the lower bound on the objective
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Figure 7.3: Average computation time as a function of the
fixed time horizon Smax for model 2 with n = 30 and K = 3.
Calculated using ten randomly generated problem instances
at each Smax.
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Figure 7.4: Best incumbent solution as a function of number
of activities with Smax = 100, K = 3 and a time limit of 10
minutes for each problem instance.



q =
∑

(i,j)∈F ′ fij reasonably fast but is unable to lower the upper bound.

This feature makes it difficult to utilize model 2 to maximize the number

of activities. However, the model can still be used as a heuristic by using

the lower bound on q as a solution after a certain amount of time.

Figure 7.4 shows how the best incumbent solution of model 2 changes

as a function of n. A single construction site with a fixed number of pickup

and delivery locations was used to generate the figure. For each n, the

activities were randomly distributed between the locations. With Smax =

100 and K = 3, the best solutions of the problem instances after 10 minutes

are plotted. Instances with fewer than approximately 40 activities are

quickly solved to optimality, but instances with a large activity overhead

are not solved within the 10 minutes time limit. We see that even when

the activity overhead increases, which produces larger and more complex

scheduling problems, roughly the same solution is reached for problems

with up to n = 200. This result indicates that the initial activity overhead

does not change the solution significantly when using model 2 as a heuristic

by stopping the optimization early. Choosing a suitable activity overhead

is thus most crucial when using model 2 to find exact solutions.

Figure 7.5 shows the average computation time as a function of K for

model 2, with Smax = 150 and n = 30, and verifies that maximizing q is

faster with more vehicles to complete the activities. This is not unnatural,

as we can process activities much faster with more vehicles available. None

of the schedules where we can do fewer than 30 activities are solved to

optimality. Thus, the figure does not indicate if the model is faster at

finding new incumbents with more vehicles present. However, as this has

been shown to remove some of the symmetries in model 1, we assume this

is also the case for model 2.

Based on the previous analysis of model 2, showing that we can sched-

ule n activities before Smax is fast, but proving that we cannot is slow. To

determine the infeasibility of a schedule faster, model 3 was developed in

Section 6.3. The model simply checks if scheduling n activities within a



Chapter 7. Simulation study 83

1 2 3 4 5 6 7 8 9
Number of vehicles

100

102

104

Co
m

pu
tat

io
n 

tim
e [

se
c]

Average computation time vs. K for model 2

Figure 7.5: Average computation time as a function of num-
ber of vehicles K for model 2 with Smax = 150 and n = 30.
Calculated using ten randomly generated problem instances
at each K.
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Figure 7.6: Average computation time as a function of the
fixed time horizon Smax for model 3 with n = 30 and K = 3.
Calculated using ten randomly generated problem instances
at each Smax.



fixed scheduling horizon is feasible or infeasible and can be used to more

quickly determine if n is too large. Figure 7.6 shows the average compu-

tation time of model 3 as a function of Smax with n = 30 and K = 3.

As before, green instances represent schedules where all 30 activities are

completed within Smax, while red instances show schedules where n = 30

is infeasible. The figure shows that problems are easily classified when the

activity margin is large but takes longer when the activities are close to

being a perfect fit. Compared to Figure 7.3, model 3 manages to show

that many instances below Smax = 100 are infeasible very quickly, which

we were not able to determine with model 2. This indicates that model 3

is better suited for the greedy scheduling heuristic.

7.2 Benders decomposition

The results from the previous section indicate that the branch-and-cut MIP

solver in Gurobi is unable to solve large MRP instances to optimality within

a reasonable time. In this section, we test if the implementations of Benders

decomposition for model 1 and model 2 can find optimal schedules more ef-

ficiently by decomposing the large mixed-integer linear programs. To assess

the effectiveness of the different algorithmic enhancements studied in Sec-

tion 5.3, four Benders decomposition models are developed: Standard BD,

Enhanced BD, Combinatorial BD, and Lazy BD. The Standard BD model

is implemented using the basic Benders decomposition algorithm outlined

in Algorithm 1. The Enhanced BD algorithm is implemented with cut

strengthening techniques; feasibility cuts are strengthened by normalizing

the unbounded rays, and optimality cuts are strengthened by using Pareto-

optimal cuts. The Combinatorial BD generates combinatorial cuts instead

of feasibility cuts, in addition to Pareto-optimal optimality cuts. Lastly,

Lazy BD is implemented as the standard BD algorithm, except with the

addition of lazy constraints. The different models are created to recognize

and isolate the improvements beneficial for the optimization.
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We start by investigating the average computational time vs. n for

model 1 with the four BD algorithms. We also include results from the

Gurobi MIP solver for comparison. The results are shown in Figure 7.7.

The figure shows the average computation time of three randomly generated

problem instances for every even n ∈ {2, . . . , 20} with K = 3. A time limit

of 1 hour is used for each problem instance during the optimization. We

observe that the MIP solver is considerably faster than either of the BD

implementations, which are unable to find optimal solutions for instances

with n > 12 within the time limit. The difference in computation time

between the four BD algorithms is minimal, though the Combinatorial BD

seems slightly slower than the other methods.

To evaluate which of the BD algorithms perform best, we compare the

upper bounds of the methods at termination. The upper bound of a min-

imization problem represents the best feasible solution found thus far and

indicates how close the methods are to reaching the optimal solution. Fig-

ure 7.8 shows the upper bounds for the individual problem instances with

n ≥ 12. The individual problem instances, ordered by size, are shown on

the x-axis, while the upper bounds of the problems are shown on the y-axis.

The red line, corresponding to the solutions from the MIP solver, shows

the optimum for each instance. We see that even though the Combinato-

rial BD algorithm was the slowest, it is also the one with upper bounds

generally closest to the optimal solutions, closely followed by the Lazy BD.

The upper bounds of the Standard BD algorithm get larger as the problem

instances grow. The same is true for the Enhanced BD, which struggles to

find any upper bounds once the problems become too big.

A selection of the results for n = 14 and n = 20 is shown in the first

two sections of Table 7.1. The columns UB and LB indicate the upper and

lower bounds at termination, while FC and OC represent the number of

feasibility and optimality cuts, respectively. We see that the MIP solver

finds optimal solutions in less than a minute while all BD algorithms run

until the timeout. The Enhanced BD generally produces fewer optimality
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Figure 7.7: Average computation time as a function of n for
Benders decomposition of model 1 with K = 3. Calculated
using three randomly generated problem instances at each n.
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The individual problem instances, ordered by size, are shown
on the x-axis, while the upper bounds of the problems are
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bound was found.
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n Model Time [min] UB LB FC OC

14 MIP solver 0.02 69.36 69.36 − −
Standard BD 60 74.33 0 2868 3878
Enhanced BD 60 80.55 0 4138 2012
Combinatorial BD 60 73.66 0 3312 4166
Lazy BD 60 73.66 0 2334 6556

20 MIP solver 0.27 75.38 75.38 − −
Standard BD 60 152.30 0 2007 6
Enhanced BD 60 184.00 0 1320 1
Combinatorial BD 60 101.01 0 6470 392
Lazy BD 60 113.77 0 1903 511

60 MIP solver 240 175.60 174.90 − −
Standard BD 240 ∞ 0 96 0
Enhanced BD 240 ∞ 0 92 0
Combinatorial BD 240 ∞ 0 1276 0
Lazy BD 240 ∞ 0 143 0

Table 7.1: Results from Benders decomposition of model 1
for problem instances with n ∈ {14, 20} and K = 3, and with
n = 60 and K = 6. The columns UB, LB, FC and OC repre-
sent the upper bound, lower bound, number of feasibility cuts
and number of optimality cuts at termination, respectively.

cuts than either of the other methods, indicating that the normalized fea-

sibility cuts are weaker than the unaltered cuts. The Combinatorial BD

produces many feasibility and optimality cuts, indicating that the itera-

tions of the method are generally faster than those of the Standard and

Enhanced BD. It also implies that the combinatorial cuts are well suited

for the MRP. The Lazy BD produces more optimality cuts than any other

methods, implying that the lazy addition of cuts is beneficial for updating

the upper bounds faster.

Methods like Benders decomposition usually include an overhead before

becoming more efficient than more straightforward solvers. To test if this

is the case, we solve a large problem instance with n = 60 and K = 6.

The results are shown in the last rows of Table 7.1. After a time limit

of 4 hours, the Gurobi MIP solver reaches an optimality gap of 0.40 %,



while none of the BD methods manage to find an incumbent solution. The

decrease in feasibility cuts indicates that the master problem becomes too

computationally demanding to solve to optimality at each iteration in the

implemented BD algorithm.

For Benders decomposition of model 2, the average computation time

as a function of n, with K = 3 and Smax = 100, is shown in Figure 7.9.

The figure indicates similar results for model 2 as for model 1. The MIP

solver finds the optimal solutions for almost all instances and is considerably

faster than the BD methods on small problems. The Standard BD method

is generally the fastest of the decomposition methods, likely due to the

fact that it does not have to solve any additional linear programs in each

iteration.

Table 7.2 shows a selection of results for n ∈ {16, 20, 24}. The BD meth-

ods do not find optimal solutions for n = 20 or n = 24 within the 1-hour

time limit. Because of how the Benders decomposition of model 2 is im-

plemented, no optimality cuts are generated during the optimization. The

Combinatorial BD method converges with the fewest feasibility cuts when

a solution is found, though it uses more time on each iteration compared

with the other methods. Similarly to model 1, the number of generated cuts

decreases with problem size when the optimal solutions are not found. In

these cases, neither the implementations of Benders decomposition nor the

MIP solver manages to find incumbent solutions with q < n. As no lower

bounds are generated in the BD methods because of the lack of optimality

cuts, no approximate solutions can be obtained by simply cutting off the

optimization early. This indicates that the current implementation of the

BD algorithm for model 2 is less than ideal, and other implementations

which produce a lower bound should be explored.

Based on the results, we conclude that applying Benders decomposition

to model 1 and model 2 is not beneficial for solving the Mass Relocation

Problem more efficiently. The methods suffer from an inefficient imple-

mentation and spend too much time solving the master problem in each
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Figure 7.9: Average computation time as a function of n for
Benders decomposition of model 2 with K = 3. Calculated
using three randomly generated problem instances at each n.

n Model Time [min] UB LB FC

16 MIP solver 0.00 16 16 −
Standard BD 5.03 16 16 402
Enhanced BD 4.63 16 16 301
Combinatorial BD 5.48 16 16 279
Lazy BD 43.18 16 16 508

20 MIP solver 0.08 20 20 −
Standard BD 60 20 − 2062
Enhanced BD 60 20 − 183
Combinatorial BD 60 20 − 1257
Lazy BD 60 20 − 338

24 MIP solver 60 24 22 −
Standard BD 60 24 − 1034
Enhanced BD 60 24 − 107
Combinatorial BD 60 24 − 759
Lazy BD 60 24 − 122

Table 7.2: Results from Benders decomposition of model 2
for problem instances with n ∈ {16, 20, 24} and K = 3. The
columns UB, LB and FC represent the upper bound, lower
bound and number of feasibility cuts at termination, respec-
tively.



iteration. Time-consuming iterations lead to fewer cuts being generated,

and upper and lower bounds update slowly. How the algorithm is imple-

mented is crucial to its success, and effort should go into making an efficient

implementation that accounts for our specific problem structure. With the

current decomposition, the master problems do not become simple enough

to redeem being solved multiple times in the iterative algorithm. There-

fore, a two-tier Benders decomposition where the master problem is further

simplified could be an option.

Because of its inefficiency, we refrain from using Benders decomposition

to solve further scheduling problems in this thesis and solely rely on the

branch-and-cut algorithm implemented in Gurobi.

7.3 Inexact methods

In this section, the inexact scheduling methods developed in Chapter 6 are

tested. Inexact schedules made with the location mapping, schedule con-

catenation, and the greedy scheduling heuristic are compared to schedules

made from solving model 2 with a cut-off time. The schedules are com-

pared in terms of computation time, number of included activities q, sum

of prioritized activities qw, and vehicle idle time. The goal is to identify

which methods can quickly provide feasible schedules with as little inactive

time for the vehicles as possible. Schedules are made using data from the

simulated construction site in Figure 7.10. The site consists of four pickup

locations and three delivery locations. The travel times are randomly gen-

erated using a uniform distribution on the interval [5, 20] minutes. We

assume the travel times are symmetric; thus tij and tji are equal.

Ideally, we would like to test the inexact methods on many different

problem instances, as we know performance varies depending on construc-

tion site topography. As an exhaustive study is too time-consuming for this

thesis, the generated example is simulated to emulate a typical construc-

tion site. Hence, the performance of the methods is hopefully generalizable
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Figure 7.10: Simulated construction site with four pickup
and three delivery locations. The weights on the edges show
the symmetric travelling times in minutes.

to other Mass Relocation Problem instances. We focus on finding sched-

ules for 90, 180, and 360 minutes using K = 6 dump trucks. As in the

last sections, we assume every pickup and delivery duration takes 5 and 3

minutes, respectively, and that the mass preparation takes 4 minutes.

We start by making schedules with separate pickup and delivery activ-

ities, using model 2 with and without priorities. Approximate solutions

are found using the Gurobi MIP solver with a cut-off time. Applying the

location mapping, schedules are produced in a similar fashion for the new

activity type defined in Section 6.1. These are compared to schedules cre-

ated with the greedy scheduling heuristic, both with and without priori-

ties. Finally, the schedule concatenation algorithm is used to concatenate

the schedules made with the other methods. Schedules of 180 minutes are

created by concatenating two 90-minute schedules, and schedules of 360



Location Activities Due date

P1 20 15
P2 40 10
P3 50 5
P4 30 8
D1 40 10
D2 30 8
D3 70 10

Table 7.3: Randomly simulated plan for how many activities
we have to complete within a due date on the construction site
in Figure 7.10 without the location mapping. The plan is used
to create priorities for the activities.

minutes are created by concatenating two 180-minute or four 90-minute

schedules.

The location mapping we use is chosen by pairing locations randomly,

and is given by: P1-D3, P2-P1, P3-D3 and P4-D2. As we have more pickup

locations than delivery locations, two pickups are mapped to the same de-

livery. This means that we cannot enforce the precedence relations between

the delivery activities at this location and that these have to be added in an

additional post-processing step. Plans for the activities with and without

the location mapping are given in Tables 7.3 and 7.4. The plans are con-

structed such that activities at the same locations get approximately the

same prioritized ordering in both systems. In this way, we can make a fair

comparison between the schedules and the prioritized sums qw. The prior-

ities for the individual activities are defined as described in Section 4.4.1.

When making schedules with model 2, a cut-off time equal to the length

of the schedule is chosen. For the problems without the location mapping,

an arbitrary activity overhead n is chosen such that we have the same

number of activities at each location. The reasoning behind this is that

we would not have time to find an approximate activity overhead at each

location in a trial and error manner when utilizing the scheduling method

on a real construction site. For the prioritized activities, the same activity
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Location Duration [min] Rounds Due date

P1-D3 7.70 20 15
P2-D1 15.38 40 10
P3-D3 12.43 50 5
P4-D2 18.44 30 8

Table 7.4: Randomly simulated plan for how many activities
we have to complete within a due date on the construction site
in Figure 7.10 with the location mapping. The durations indi-
cate how long it takes to complete an activity at the locations.
The plan is used to create priorities for the activities.

overheads are chosen.

When using model 2 with the location mapping, we can use the activity

estimation from Section 6.1 to give an initial activity overhead. The esti-

mation allows us to calculate how many rounds each vehicle can complete

between the mapped pickup and delivery locations within Smax. These esti-

mates only represent how many activities one vehicle can complete. As we

have more dump trucks than locations, we multiply the location estimates

by three. This number is chosen because it is unlikely that more than three

vehicles will work at the same location at a time, as this would induce de-

lays. The variable γ is set to zero as we do not worry about overestimating

the number of activities at each location. A similar procedure is completed

to estimate the number of activities with priorities, except more activities

from the prioritized types are added and fewer of the less prioritized ones.

After producing the initial schedules, they are post-processed to enforce

the precedence relations between the delivery activities at D3.

The resulting schedules from model 2, with and without the location

mapping and priorities, are shown in Table 7.5. The column M indicates if

the activities are from the location mapping or not. Similarly, the column

P signals whether the schedules are made with or without priorities. The

time represents the cut-off time of the optimization, and the optimality gap

represents the difference between the upper and lower bounds at termina-



Smax M P Time [min] Opt. gap n q qw Idle time

90 − − 90 157.14 % 72 28 142.90 25.00 %
− X 90 85.60 % 72 30 205.58 16.24 %
X − 90 87.50 % 60 32 170.40 17.68 %
X X 90 19.77 % 48 32 219.28 14.52 %

180 − − 180 54.84 % 96 62 311.00 16.81 %
− X 180 49.06 % 96 54 328.43 16.59 %
X − 180 93.55 % 120 62 394.80 12.86 %
X X 180 52.29 % 100 62 371.88 9.54 %

360 − − 360 38.46 % 144 104 521.38 21.96 %
− X 360 15.71 % 144 108 584.73 14.14 %
X − 360 118.64 % 258 118 567.55 9.08 %
X X 360 34.30 % 216 118 676.95 12.18 %

Table 7.5: Results for schedules made with model 2 with
a cut-off time equal to Smax. Schedules for 90, 180 and 360
minutes are made with and without location mapping and
priorities, as indicated by the columns M and P, respectively.

tion. The variable n gives the initial activity overhead counted in separate

pickup and delivery activities, even when the location mapping is utilized.

The variables q and qw, calculated using the definitions in (4.19) and (4.32),

give the number of separate pickup and delivery activities included in the

schedules and the sum of the activities’ priorities.

The idle time represents the inactive time in a schedule. The idle time

for an individual vehicle is calculated by summing up its total active time,

consisting of the activity durations and the travel times, and subtracting

this from Smax. The total percentage of idle time for all vehicles is then

given by: ∑K
k=1 Ik

K · Smax
, (7.1)

where Ik is the idle time of vehicle k ∈ R. The number provides a simple

metric to compare how well activities are fitted into the schedules. The

variable q is not a good estimator of this in the situations where we add

prioritized activities, as a high q might not be equivalent to a high qw.
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Most of the idle time stems from the end of the schedules when vehicles do

not have time to complete additional activities before Smax.

The results from Table 7.5 indicate that schedules made without the

location mapping generally include fewer activities and more idle time than

the schedules made with the new activity type. This is partly due to

the difficulty of estimating a suitable activity overhead at the locations

with separate pickups and deliveries, as too few or too many of certain

activities can make the scheduling difficult. Since the models with the

location mapping only include n
2 activities during the optimization, it is

also expected that better solutions are obtained because of the smaller

problem sizes. An example of two 360-minute schedules with and without

the location mapping is shown in Figure 7.11. The first schedule made

with the old activity type includes 104 activities and has 21.96 % idle time

for the vehicles. On the other hand, the schedule made with the mapped

locations fits a total of 118 activities and has an idle time of just 9.08 %.

This illustrates the effectiveness of reducing the size of the MRP instances

with the location mapping.

Comparing the schedules with and without priorities, the optimality

gaps in the prioritized schedules are smaller than in their unprioritized

counterparts. The optimization becomes easier when we want to maximize

the prioritized sum qw, compared to simple maximizing q, as some of the

symmetries in the problems disappear when the activities have weights.

The idle times of the prioritized schedules are also generally lower, both for

schedules made with and without the location mapping. This indicates that

the chosen activities better fill out the scheduling horizons. As the value

of qw is generally higher in the prioritized schedules, the prioritization of

activities by simply changing the objective of model 2 seems promising.

In general, we would expect the number of activities q to be lower in

schedules with prioritized activities, as is seen in the 180-minute schedule

without the location mapping. Even though the number of activities added

to the schedule is lower, the vehicles spend more of their time active com-
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Figure 7.13: Driving paths of the K = 6 dump trucks in
the 90-minute schedules created with model 2, with the loca-
tion mapping and a cut-off time of 1.5 hours. Top: Driving
paths without priorities. Bottom: Driving paths with prior-
ities. The driving paths illustrate that the addition of the
priorities changes the activities included in the schedules.
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pared to the schedule without priorities. The reason for this is that the

prioritized schedule includes activity paths with longer travelling times to

maximize qw. This is shown in Figure 7.12. For the schedules of 90 and

360 minutes, the number of activities in the prioritized schedules is higher

or equal to the non-prioritized ones. This is because the optimization be-

comes easier once several of the symmetries in the problem formulations

are removed, and thus more activities are proven to fit in the schedules

within the cut-off time.

To illustrate how priorities change the activity composition of the sched-

ules, we compare the number of different activity types in the two 90-minute

schedules made with the location mapping. Based on the duration of the

activities given in Table 7.4, the activities at P1-D3 are the fastest to com-

plete. We thus expect many of these activity types in the schedules where

we maximize q. According to the plan, the activities with the highest pri-

orities are at P3-D3. For schedules maximizing qw, more of these activities

should thus be priorities. This is observed in Figure 7.13. The plots show

the vehicles’ driving paths between the activities in the schedules. Even

though we complete the same number of activities in the two schedules,

the first schedule favors the quicker activity type. In contrast, the second

schedule favors the activities with the highest priorities.

Table 7.6 shows the results from using the greedy scheduling heuristic

to make schedules with and without priorities. Time limits of 10, 20 and 30

minutes are chosen for the 90, 180 and 360 minute schedules, respectively.

The time limit is increased to consider the growing difficulty of proving

infeasibility for long schedules. In this simulation study, the time limits are

chosen somewhat arbitrarily. However, when regularly creating schedules

on a construction site, more reasonable limits can be chosen in a trial and

error manner based on how many activities we usually include in a schedule.

The column ”infeasibility proved” indicates which activity types are proven

infeasible when added to a schedule and which are just discarded because

of the time limit. These are marked by a one and a zero, respectively.



Smax P Time [min] Infeasibility proved q qw Idle time

90 − 0.04 1—1—1—1 32 188.75 13.56 %
X 0.01 1—1—1—1 32 218.48 14.07 %

180 − 85.50 0—0—0—0 64 358.60 5.60 %
X 23.24 1—1—1—0 60 406.00 10.09 %

360 − 132.74 0—0—0—0 120 614.75 9.21 %
X 127.73 0—0—0—0 112 668.25 11.63 %

Table 7.6: Results from the greedy scheduling heuristic on
schedules of 90, 180 and 360 minutes with and without pri-
orities. The presence of priorities is indicated by the column
P. Time limits τ of 10, 20 and 30 minutes are chosen for
the schedules, respectively. The column ”infeasibility proved”
indicates how many of the four activity types are proven in-
feasible when added to the schedule (1), and how many are
removed due to reaching the time limit (0).

The results show that short schedules are produced very quickly with

the greedy heuristic. The 90-minute schedules include as many activities

as the best 90-minute schedules from Table 7.5 and have equal or lower

idle times. The schedules from the heuristic are found in seconds with the

confidence that no further activities can be added to the schedules. We

do not get the same security with the approximate schedules found with

model 2.

The time limit is reached for almost all activity types for the longer

schedules, but this does not seem to impair the results. The heuristic still

uses less time than model 2 and achieves similar or even better values

for q, qw, and the vehicle idle time, even though the activities are added

greedily. In the 180-minute schedules, the presence of priorities makes

proving infeasibility easier, as the schedules become completely saturated

with certain activity types. The scheduling heuristic thus shows promising

results compared with the schedules from model 2.

The results from concatenating schedules made with model 2 and the

greedy scheduling heuristic are shown in Tables 7.7 and 7.8. The col-
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umn ”units” indicates the building blocks used to make the concatenated

schedules, and n indicates the maximum number of activities that can be

included based on the unit schedules’ number of activities. When merging

schedules, a quick left-shifting of the activities is completed to condition

the schedules the best way for the concatenation. As we base the merg-

ing on the remaining time in the activity paths in the first schedule, it

is crucial that the activities are as left-shifted as possible. Still, we do

not want to spend too much time on this step. Therefore, a left-shifting

is completed using model 1 for five minutes with the objective (6.7) and

the added constraint (6.8). The total time for the schedule concatena-

tion thus includes the original time for making the schedules and the time

for left-shifting them, in addition to the time spent on the procedure in

Algorithm 2. When concatenating schedules without priorities, the same

schedules are concatenated with themselves, but when concatenating prior-

itized schedules, different schedules with updated priorities must be created

and merged. Thus, making concatenated schedules with priorities is more

time-consuming.

The concatenated schedules in Table 7.7 generally produce similar or

better results than the non-concatenated schedules in Table 7.5, especially

for the 360-minute plans. When several schedules do not have to be com-

puted to maximize qw, the method also produces results faster. We observe

that for most concatenated schedules, the difference between n and q is be-

tween 0-2, with one example of four. This means that the concatenation

process generally manages to retain most of the activities in the merged

schedules, even when a perfect matching of the activity paths is not used.

The results of the concatenation of schedules from the greedy scheduling

heuristic are shown in Table 7.8. When combining the schedule concatena-

tion and the heuristic, the resulting schedules are fed through the greedy

scheduling algorithm after the concatenation to see if we can further in-

crease the number of activities included. The time column in the table

indicates the time it takes to make both the concatenated schedules and



Smax Units M P Time [min] n q qw Idle time

180 90 − − 100 56 56 271.45 19.59 %
− X 195 62 58 368.13 18.44 %
X − 100 64 62 313.50 15.89 %
X X 195 62 62 401.38 11.49 %

360 90 − − 110 112 112 485.90 16.59 %
− X 395 124 120 673.06 12.28 %
X − 110 128 126 561.70 12.45 %
X X 395 128 124 688.15 9.84 %

360 180 − − 190 124 124 551.80 13.15 %
− X 375 108 108 595.82 16.56 %
X − 190 124 124 680.23 10.74 %
X X 375 122 120 670.63 8.75 %

Table 7.7: Results from schedule concatenation using the
schedules made with model 2 in Table 7.5. The use of loca-
tion mapping and prioritized activities are indicated by the
columns M and P, respectively. The column ”units” indicates
the size of the building blocks used to make the concatenated
schedules.

Smax Units P Time [min] n q qw Extra Idle time

180 90 − 5.04 + 45 64 64 359.08 3 9.24 %
X 5.06 + 45 64 64 406.25 1 10.29 %

360 90 − 15.04 + 85 128 122 619.33 0 10.93 %
X 15.04 + 85 128 124 673.13 0 11.13 %

360 180 − 90.50 + 125 128 124 627.08 0 7.25 %
X 51.49 + 125 120 118 687.58 0 9.46 %

Table 7.8: Results from schedule concatenation using the
inexact schedules produced by the greedy scheduling heuristic
in Table 7.6. The use of prioritized activities is indicated by
the column P. The column ”units” indicates the size of the
building blocks used to make the concatenated schedules. The
column ”extra” indicates how many additional activities the
heuristic adds after the concatenation.
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apply the extra heuristic step. The column ”extra” indicates how many

additional activities were added. We see that we can only add additional

activities to the schedules of 180 minutes, and not the 360-minute ones.

Thus, the extra time spent adding additional activities is wasteful for long

schedules. Nevertheless, the schedules from the concatenated heuristic gen-

erally have a higher q and qw, as well as less idle time, than the schedules

made purely from the heuristic. This indicates that the heuristic’s best use

is to quickly create short schedules, which can be concatenated into longer

ones.

Compared to the results in Table 7.7, the results from the concatenated

heuristic are comparable to the best schedules from model 2, both when it

comes to the number of included activities q, the prioritized activity sum

qw, and the vehicle idle time. The additional strength of the heuristic com-

pared to the other methods is the efficiency, especially when disregarding

the unnecessary time spent trying to add additional activities in the end.

Examples of two of the best schedules considering qw and idle time are

shown in Figure 7.14. The schedule on top is made with the concatenated

heuristic by merging two 180-minute schedules, and one on the bottom is

created with model 2 and the location mapping by concatenating four 90-

minute schedules. The schedules both have a high qw and a low idle time of

around 9− 10 %. The concatenated heuristic schedule takes approximately

50 minutes to create, while the other one takes 395 minutes.

Generally, the methods based on the location mapping and the greedy

scheduling heuristic, both with and without concatenation, outperform the

schedules purely based on model 2 with the old activity definition. The ad-

dition of the new activity type does not seem to produce schedules of worse

quality, even though the movement of the vehicles is more restricted. The

addition of the precedence relations on the delivery activities after schedul-

ing never caused any schedules to surpass Smax. This can, of course, be a

coincidence for the MRP instance we have chosen to solve and should be

tested on several different problems. For efficient scheduling, the simula-

tion study shows that the concatenated heuristic produces the best results

fastest by making short schedules and merging them.
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Chapter 8

Case study: Skanska

construction site

The simulation study in Chapter 7 showed promising results for the

concatenation of schedules from the greedy scheduling heuristic with the

location mapping. This section employs these methods on data from a real

construction site to make 6-hour schedules with and without priorities.

The inexact schedules are compared to approximate schedules made with

model 2, and the practicability and quality of the results are discussed.

The computations are completed on NTNU’s computation server Markov

using 10 threads.

8.1 Data

The data we utilize in this chapter originates from a Skanska construction

site near Hønefoss, Norway. An aerial view of the site is shown in Figure 8.1.

When solving the Mass Relocation Problem at the construction site, the

previously discussed assumptions from Chapters 2 and 4 still hold. Thus,

we assume we have a fleet of K homogeneous dump trucks to complete as

many pickup and delivery activities as possible within 360 minutes. We

also assume that there are no one-way roads or traffic congestion on the

construction site and that there is only one possible travel path between

each pickup and delivery location.

With the coordinates of the roads and the points of interest, we model



Figure 8.1: An aerial view of the Skanska construction site
near Hønefoss, Norway, where the data we use is collected.
The red marks indicate the points of interest: pickup loca-
tions, delivery locations, and road intersections.

the construction site as a graph, shown in Figure 8.2. The nodes represent

all pickup locations, delivery locations, and road intersections on the con-

struction site. When solving the MRP, we only consider the active pickup

and delivery locations. The active pickup locations are recognized as those

with excavators present to dig up mass, and the active delivery locations

as those in the proximity of the active pickups. The current construction

site includes six active pickup and seven active delivery locations. These

are marked by red in Figure 8.2.

The dump trucks’ travel times along each road on the construction site

are automatically logged during their workday. Each distance thus has

a set of historical durations that can be used to derive an average travel

time. The data does not differentiate between the direction of travel, and

therefore, the travel times will be symmetric. The automatic logging also

does not take breaks or unexpected stops into account. Hence, the travel

times include outliers which are often considerably larger than the other
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values. As including these would give a false impression of the average

travel time, we remove the most prominent outliers using the interquartile

range (IQR). The IQR is defined as the difference between the third and

the first quartile of the data:

IQR = Q3−Q1, (8.1)

where Q1 and Q3 denote the first and third quartiles, respectively. We

use the interquartile range to remove all travel times larger than the third

quartile plus the IQR:

Q3 + IQR. (8.2)

After removing the outliers, we take the average of the remaining times to

obtain a single travel time estimate for each road. Roads missing travel

data are removed. As a consequence, two of the delivery locations are also

removed as the roads leading into them are missing.

Since our model only allows for one path between the pickup and deliv-

ery locations, we calculate the shortest distance between each location with

Dijkstra’s algorithm. We are left with the simplified construction site in

Figure 8.3. Figure 8.3(a) shows the resulting six pickup locations and five

delivery locations where we want to solve the Mass Relocation Problem.

Figure 8.3(b) shows the calculated travel distances between the locations.

In the future, more thought should be put into the data preprocessing to

obtain a more robust modelling of the construction site. In this preliminary

effort at investigating the usefulness of the scheduling methods, using the

average travel times and the shortest paths between the locations is enough

to get a sense of the effectiveness of the methods.

To use the greedy scheduling heuristic, we need to define a location

mapping. In a realistic scenario, people with insight into the construction

process would choose a mapping that considers both the different mass

types, the construction site topography, and the travel times between the

locations. Lacking this information, we map the pickup and delivery loca-



Figure 8.2: The Skanska construction site from Figure 8.1
illustrated as a graph. Nodes represent pickup locations, de-
livery locations, and road intersections. The edges indicate the
network of roads. The red nodes represent the active pickup
and delivery locations.

P1

P2
P3

P4

P5

P6

D1

D2

D3

D4
D5

(a) Active pickup and de-
livery locations and driving
patterns between them.

D1 D2 D3 D4 D5

P1

P2

P3

P4

P5

P6

5

10

15

(b) Symmetric travel times
between the pickup and de-
livery locations.

Figure 8.3: Simplified construction site with six pickup and
five delivery locations. The only legal travel paths between the
locations are the shortest paths found by Dijkstra’s algorithm.
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P1 P2 P3 P4 P5 P6

D2 D4 D1 D2 D5 D3

Table 8.1: Location mapping for the construction site. Each
pickup location is paired with a delivery location. Both pickup
locations P1 and P4 are mapped to delivery location D2.

tions as shown in Table 8.1. The pairing is chosen such as to avoid very

short or very long activity durations, as these might not be beneficial for

the workflow. Since we have six pickup and five delivery locations, two

pickup locations are mapped to the same delivery location. We also lack

estimates of the pickup and delivery durations. Thus, as in the other sec-

tions, we assume that a pickup activity takes 5 minutes and a delivery

activity takes 3 minutes. The mass preparation time at a pickup location

is assumed to take 4 minutes. We use these numbers to solve the MRP on

the construction site with K = 7 vehicles.

8.2 Schedules without priorities

The results from solving the Mass Relocation Problem using data from the

real construction site without priorities are presented in Table 8.2. The

column ”type” refers to how the schedules are made; E refers to schedules

made with model 2, H to schedules made with the heuristic, and C to

schedules made by concatenation. The remaining columns are explained in

Section 7.3. We choose to only concatenate 90-minute schedules, as these

can be made quicker than the 180-minute ones, and we try to keep the

schedule-making below 3 hours for all methods. Thus, the 6-hour approx-

imate schedules made with model 2 are run for 180 minutes, while the

90-minute approximate schedules used for the concatenation are run for 90

minutes. This is implemented for the schedules both with and without the

location mapping.

For the heuristic, a time limit of τ = 20 min is chosen for making sched-



Type Units M Time [min] n q Idle time

E − − 180 420 124 51.48 %
CE 90 − 110 208 208 26.41 %

E − X 180 516 194 15.02 %
CE 90 X 110 208 204 13.30 %

H − X 171.36 − 182 17.50 %
CH 90 X 147.63 216 212 5.40 %

Table 8.2: Results of 360-minute schedules created with
model 2 and the greedy scheduling heuristic, with and without
concatenation. The column ”type” indicates if the schedules
are made with model 2 (E), the heuristic (H), or concatena-
tion (C). The column ”units” indicates the size of the building
blocks used to make the concatenated schedules, and M rep-
resents if the schedules are made with or without the location
mapping.

ules of both 360 and 90 minutes. The schedule concatenation includes

left-shifting the schedules with model 1 with objective (6.7) and the ad-

ditional constraint (6.8) for five minutes. This is performed both prior to

concatenation and for the intermediate schedules during the process, thus

adding 20 minutes to the total time. When concatenating the heuristic

solutions, we do not attempt to add additional activities into the sched-

ules after concatenation, as this did not work for the long schedules in the

simulation study.

The results confirm the findings from the simulation study, namely that

the schedules made with the concatenated scheduling heuristic outperform

the others, both when it comes to the number of included activities and

idle time. The concatenated heuristic schedule includes 212 activities and

an idle time of just 5.40 %. In contrast, the approximate schedule without

the location mapping includes only 124 activities and has an idle time of

51.48 %. The concatenated schedule without the location mapping comes

closest to including as many activities as the concatenated heuristic but

has a high vehicle idle time. The two schedules are compared in Figure 8.4.
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We see that while the concatenated heuristic manages to fill almost the

entire 6-hour schedule with activities, the schedule made with model 2

includes much idle time for the vehicles. The idle time appears towards

the end of the schedule because of the left-shifting of the activities after

concatenation. It illustrates that there is more than enough room for more

activities. Model 2, without the location mapping, should theoretically

be able to find better schedules than the heuristic as it does not restrict

the movement of the dump trucks. Still, it is unable to do so because of

the computational burden associated with solving large problem instances.

As model 2 simply tries to maximize q, it favors the locations with short

travel times. This is why it can fit the activities much tighter than the

concatenated heuristic. The heuristic has the advantage of alternating

between the activities, which is preferable from a practical point of view.

The schedules made with the location mapping generally produce bet-

ter results than those made without considering a combination of included

activities and idle time, even though we have reduced the solution space

considerably. This indicates that problem size and complexity are more de-

cisive to the solution quality than retaining complete travel flexibility. The

concatenated schedules also perform better than their non-concatenated

counterparts, implying that utilizing the computation time to find good

short schedules and merging them is better than scheduling all activities

at once.

One of the disadvantages of the heuristic is the loss of precedence rela-

tions between the delivery activities, as discussed in Section 6.3. This can

become an issue in short schedules. An example is shown in Figure 8.5

for the 90-minute schedule from the heuristic used in the concatenation.

The figure shows that several delivery activities exceed the fixed schedul-

ing horizon Smax when precedence relations between activities at location

D2 are enforced. When merging the schedule with itself into a longer one

and enforcing the precedence relations, enough slack between the activities

is present to avoid the activities exceeding the scheduling horizon, as shown

in the bottom schedule in Figure 8.4.
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8.3 Schedules with priorities

To make schedules with priorities, we need information about the total

amount of mass to be moved from and to the pickup and delivery locations.

As we currently have no such data from the construction site, we construct

simulated long-term plans. The number of activities at each location is

determined by randomly drawing numbers from the set {10, 20, . . . , 100}

with a discrete uniform distribution. Similarly, the due dates are chosen

by drawing numbers from the interval [5, 30] with equal probability. The

resulting plans are presented in Tables 8.3 and 8.4. For the activities to

get approximately the same ordering both with and without the location

mapping, the same activity demands and due dates are chosen for the

pickup and delivery locations in the two plans.

The results from solving the Mass Relocation Problem on the real con-

struction site with prioritized activities are presented in Table 8.5. The

methods are implemented as in the last section, except with the objective

of maximizing qw instead of q. The variable qw, defined in Section 4.4.1,

represents the prioritized sum of the activities included in the schedules.

When making the 90-minute schedules used in the concatenation, four dif-

ferent schedules must be created as each schedule needs to update its pri-

orities based on the previous schedule’s included activities. Thus, to keep

the computational time low, only 30 minutes are used to create each indi-

vidual 90-minute schedule with model 2. For the creation of the 90-minute

schedules with the heuristic, the time limit τ = 5 min is chosen.

Similar to what was observed in the simulation study, the results show

that schedules made with model 2 without the location mapping can fit

more activities when maximizing qw than q. For the remaining schedules,

the addition of the priorities decreases q, which is natural. For the heuris-

tic, the addition of priorities allows the 90-minute schedules used in the

concatenation to be made in a few seconds, as all activity types can be

proven infeasible to add quickly. This makes the concatenated heuristic
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Location Activities Due date

P1 70 8
P2 50 9
P3 70 26
P4 20 6
P5 90 22
P6 10 15
D1 70 26
D2 90 7
D3 10 15
D4 50 9
D5 90 22

Table 8.3: Randomly simulated plan for how many activities
we have to complete at each location on the Skanska construc-
tion site within a due date, without the location mapping. The
plan is used to create priorities for the activities.

Location Duration [min] Rounds Due date

P1-D2 14.03 70 8
P2-D4 17.84 50 9
P3-D1 21.08 70 26
P4-D2 14.76 20 6
P5-D5 21.38 90 22
P6-D3 13.11 10 15

Table 8.4: Randomly simulated plan for how many activities
we have to complete at each location on the Skanska construc-
tion site within a due date, with the location mapping. The
durations indicate how long it takes to complete an activity
at a location. The plan is used to create priorities for the
activities.



Type Units M Time [min] n q qw Idle time

E − − 180 420 126 768.42 47.92 %
CE 90 − 155 220 220 1161.87 28.30 %

E − X 180 442 182 1126.30 18.74 %
CE 90 X 155 198 196 1208.66 11.04 %

H − X 170.54 − 182 1237.95 17.29 %
CH 90 X 15.36 202 198 1239.23 12.04 %

Table 8.5: Results of prioritized 360-minute schedules cre-
ated with model 2 and the greedy scheduling heuristic, with
and without concatenation. The column ”type” indicates if
the schedules are made with model 2 (E), the heuristic (H), or
concatenation (C). The column ”units” indicates the size of
the building blocks used to make the concatenated schedules,
and M represents if the schedules are made with or without
location mapping.

the fastest scheduling method of them all.

The table shows that the concatenated schedule from model 2 without

the location mapping can do the most activities but has a low qw compared

to other schedules. It also has a high vehicle idle time. The schedules from

the concatenated heuristic and model 2 made with the location mapping

perform the best when it comes to both qw and idle time. The two schedules

are shown in Figure 8.6. The tie-breaker between them is the time usage.

With the addition of priorities, the concatenated heuristic produces the

360-minute schedule in only 15 minutes.

The addition of priorities generally makes all methods converge faster

and provides a certain control over which activities are included in the

schedules. Priorities should thus be added to the models to ensure a rea-

sonable number of each activity type is completed during a workday and

to make the optimization easier by removing symmetries from the pro-

grams. We conclude that the concatenated heuristic is the most successful

in creating feasible schedules with low idle time, both with and without

priorities. Because of the quick scheduling, the method is easy to utilize

on a construction site for day-to-day scheduling.
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Chapter 9

Closing remarks

Section 7.1 demonstrated the inefficiency and computational complexity

of solving the Mass Relocation Problem exactly with the RCPSP formula-

tion. The intractability of the problem and the induced symmetries make

using exact solution methods based on the branch-and-bound algorithm

challenging. The introduction of the inexact methods in Chapter 6 allowed

us to explore practical scheduling algorithms constructed to quickly build

feasible schedules with many activities and little idle time, at the cost of

losing optimality.

When creating 6-hour schedules in both the simulation study and the

case study, schedules produced by the greedy scheduling heuristic with the

location mapping and the schedule concatenation performed best consider-

ing a combination of q, qw, idle time, and computation time. The advantage

of the greedy scheduling heuristic, compared to model 2, is the complete

control over which activities are added to the schedules. By increasing the

time limit τ , the heuristic can create schedules of any length, though at the

cost of increased computation time. The method performs best when used

to create short schedules, such that the infeasibility of adding additional

activities can be proved before τ .

The greedy element of the scheduling algorithm makes it efficient but

also allows for the possibility that the addition of individual activities does

not work towards the ultimate goal of increasing q and qw. Another disad-

vantage is being locked to the location mapping, which can be detrimental

to the schedule quality if not chosen with care. As previously discussed,



we might also lose the precedence relations between the delivery activities

when using the location mapping. As the number of deliveries we can do si-

multaneously at a location depends on the layout of the construction sites,

the necessity of adding the precedence relations in a post-processing step

has to be considered based on each individual site.

Given the assumptions made in Chapters 2 and 4, the schedules pro-

duced in the case study could theoretically be used to route vehicles for

6 hours on the Skanska construction site. No activities are processed at

the same locations simultaneously, and the vehicles respect the network of

roads on the site. Based on the estimation that dump trucks can spend

up to 40 % of the workday idle, utilizing the schedules we have produced

would decrease the inactive time to 5 − 10 %. This reduction can reduce

emissions, lessen unnecessary fuel usage, and contribute to finishing road

construction projects more efficiently.

However, the schedules we have made do not consider road capacities,

possible delays, or breaks. The lack of robustness and traffic modelling

makes the implementation of the schedules infeasible in real-world applica-

tions. Thus, further study of the Mass Relocation Problem should focus on

efficiently incorporating these complicating elements into the model. The

most imminent change to the scheduling algorithms should be including un-

certainty in all problem parameters. This includes the travel times, activity

durations, and mass preparation times. Promising work on including ro-

bust optimization into the MRP formulation was conducted by Johnsen [8]

by allowing for a certain degree of conservativeness in the coefficients when

modelling the problem. Similar approaches could be implemented into the

RCPSP formulation.

To more accurately model the Mass Relocation Problem, some of our

imposed assumptions should also be reconsidered. In a real-world scenario,

we cannot assume that all roads have infinite capacity and that no traffic

congestion will occur. Including uncertainty in the travel times based on

the historical data can help account for traffic delays without explicitly
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modelling the traffic. Using asymmetric travel times can also provide better

travel estimates, as these would take into account the topography of the

construction sites and the additional weight of the vehicles when carrying

mass.

It is also unrealistic that the vehicles can start and stop wherever they

like. When making schedules for a complete workday, imposing that the

dump trucks have to start where they left off the previous day and allowing

them to end wherever they like might be a solution. For half-day schedules,

we have to impose both start and end locations for the possibility of conti-

nuity between schedules. Enforcing start and end locations in model 1 and

model 2 can be implemented by changing the travel graph and adding some

additional constraints. The scheduling algorithm should also consider the

vehicles’ different capacities, speeds, and abilities to handle different types

of mass. To allow for this, we would have to reintroduce the multiple modes

in the RCPSP formulation and allow the flow-variable fij to take on integer

values.

Considering the complexity of the Mass Relocation Problem, it is doubt-

ful that an exact mathematical formulation can be solved to optimality effi-

ciently enough to create schedules for real-world use. Thus, going forward,

the focus should be on developing efficient heuristics and inexact methods

which take advantage of the specific problem formulation. Making meth-

ods that are not reliable on a location mapping and which are not greedy

in nature can be beneficial for maximizing the movement of the mass and

utilizing the dump trucks as efficiently as possible. The use of machine

learning techniques and artificial intelligence for routing the dump trucks

should also be explored.

Even though the methods we have developed in this thesis solve a sim-

plified version of the MRP, they yield valuable insight into the problem

and can be used as a benchmark for more sophisticated scheduling ap-

proaches in the future. Through the work of this thesis, we have also

shown that approaching the MRP from a scheduling perspective by the

Resource-Constrained Project Scheduling Problem is possible.
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