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"We’re all stories in the end.
Just make it a good one, eh?"

The 11th Doctor, Doctor Who, E13S5





Summary

The work in this thesis revolves around the metabolism of prostate cancer, mainly by using and improving

biological pathway analysis. A large part of the thesis is about the development of the method FunHoP,

and how this method can be used in different ways and provide new biological insight. FunHoP is a Python

based method that uses metabolic pathways from KEGG, along with read counts from RNA-sequencing.

The basis for the thesis is three scientific studies.

The first study is about metabolism in samples from prostate cancer grouped by their content of reactive

stroma. 108 samples were histopathologically evaluated and graded by their content of reactive stroma.

Out of these, metabolites were measured in 85 samples and gene expression in 78 samples. Multivariate

metabolomics and transcriptomics were used to compare groups with low stroma content (≤ 15 %) to

groups with high reactive stroma (≥ 16 %). We found that groups with high content of reactive stroma

had upregulated both genes and metabolites related to functions in the immune system and extracellular

matrix. This study was a good introduction to metabolism in prostate cancer, and demonstrated how

different types of omics can be used together to give new understanding of how the biology works.

In the second study, development of FunHoP was the main topic. Visualisation is a great tool in analysis

of big data, and a well-known method is to use data to colour nodes in a network to show differential

expression, using tools such as Cytoscape. A problem with the combination of KEGG, KEGGScape

(which is used to load KEGG files into Cytoscape), and Cytoscape is that only the first gene/protein in

each node is shown. This makes all reactions look as if there is only one enzyme able to catalyze the

reaction. In many cases, this representation is not biologically correct. FunHoP expands the nodes to

include all genes, shows the user how the genes are differentially expressed as well as their read counts,

before they are all joined together and differential expression can be calculated on node level. This study

shows how FunHoP was developed, and also contains two case studies where we show how FunHoP

provides results that both fits better into the known biology, and also gives a better visual understanding to

the viewer.

In the final study, FunHoP was used in an alternative way to bring out a new level of biological insight.

By including cellular localisation data it became possible to differentiate between mitochondrial and non-

mitochondrial biological paths, along with those that are a mixture, and see how differentially expressed

genes possibly changed between the two location groups. Here we used gene expression from normal and

cancerous cell lines, along with a consensus of localisation from both experiments and predictions. This

study shows how FunHoP could be used in alternative ways, that mitochondrial pathways are generally

upregulated in prostate cancer, and that use of localisation data can give a wider biological insight.
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Sammendrag

Arbeidet som presenteres i denne avhandlingen omhandler metabolisme i prostatakreft, hovedsakelig i

form av bruk og forbedring av analyse av biologiske spor. En stor del av oppgaven handler om utvikling av

metoden FunHoP, og hvordan denne kan brukes på forskjellige måter og gi ny biologisk innsikt. FunHoP

er en Python-basert metode som bruker metabolske spor fra KEGG, sammmen med transkripsjonsuttrykk

fra RNA-sekvensering. Basis for avhandlingen er tre vitenskapelige studier.

Den første studien handler om metabolisme i prostatakreftprøver gruppert etter innhold av reaktivt stroma.

108 prøver ble histopatologisk evaluert og gradert etter innhold av reaktivt stroma. Av disse ble det

målt metabolitter i 85 prøver mens det ble målt genuttrykk i 78 prøver. Multivariat metabolomikk og

transkriptomikk ble brukt for å sammenligne grupper med lav andel av stroma (≤ 15 %) mot grupper med

høy andel reaktivt stroma (≥ 16 %). Det ble vist at i grupper med høy andel reaktivt stroma var både gener

og metabolitter med tilknytning til funksjoner i immunforsvaret og ekstracellulær matrise oppregulert.

Denne studien gav en god introduksjon til metabolisme i prostatakreft, og demonstrerte også hvordan

forskjellige typer omics kan brukes sammen for å gi økt forståelse av hvordan biologien henger sammen.

I den andre studien sto utvikling og demonstrasjon av FunHoP i fokus. Visualisering er et godt hjelpemid-

del i analyse av store mengder data, og en mye brukt metode er å bruke data til å f.eks farge noder for å vise

differensielt uttrykte gener, ved hjelp av verktøy som Cytoscape. En ulempe med kombinasjonen KEGG,

KEGGScape (som laster inn KEGG-filer i Cytoscape), og Cytoscape er at bare det første genet/proteinet i

en node vises. Dette gjør at alle reaksjoner ser ut til å bare kunne katalyseres av ett enzym. Dette stemmer

i mange tilfeller ikke overens med biologien. FunHoP utvider noder til å inkludere alle gener i en node,

viser brukeren hvordan genene er differensielt uttrykt og hvilken read count de har, før alle genene til slutt

slås sammen og differensielt uttrykk på node-nivå kan beregnes. Denne studien viser hvordan FunHoP

ble utviklet, og har også to eksempler hvor vi viser hvordan FunHoP gir resultater som både stemmer

bedre overens med kjent biologi og gir en bedre visuell forståelse av biologien.

I den siste studien ble FunHoP brukt på en alternativ måte for å få fram et nytt nivå av biologisk innsikt.

Ved å inkludere lokasjonsdata ble det mulig å differensiere mellom mitokondrielle og ikke-mitokondrielle

biologiske spor, samt identifisere de som var en blanding, og se på hvordan differensielt genuttrykk

eventuelt endret seg i forskjellige lokasjoner. Her ble genuttrykksdata fra normal- og kreftcellelinjer

brukt, sammen med en konsensus av lokasjonsdata fra både eksperimenter og prediksjon. Denne studien

viste hvordan FunHoP kunne brukes på alternative måter, at mitokondrielle spor er generelt oppregulert i

prostatakreft, og at bruk av lokasjonsdata kan gi mer biologisk innsikt.
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Chapter 1
Introduction

The overall aim of this thesis is to utilize and improve biological pathway analysis. The work revolves

mainly around the development and use of Functionally Homologous Proteins, FunHoP, a Python-based

method that works on metabolic pathways from the Kyoto Encyclopaedia of Genes and Genomes (KEGG)

in Cytoscape. The thesis examines gene expression and differentially expressed genes in prostate cancer

(PCa), and explores how the addition of new information can make pathway analysis more biologically

correct.

This thesis is based on three papers. In the first paper, ‘Integrative Metabolic and Transcriptomic Profiling

of PCa Tissue Containing Reactive Stroma’ (Andersen et al., 2018), we examined metabolism and gene

expression in PCa. This collaborative work was based on the different gradings of reactive stroma; my

contribution was performing the differential expression analysis comparing different groups of reactive

stroma and the enrichment analysis of gene ontologies (GO).

The second paper presents the main work of this thesis, ‘FunHoP – Enhanced Visualization and Analysis

of Functionally Homologous Proteins in Complex Metabolic Networks’ (Rise et al., 2021). This section

examines how FunHoP was made and how it expands the pathways and uses read counts from RNA

sequencing (RNA-Seq) in a new way. We present two case studies to show how FunHoP improves

biological pathway analysis, using PCa as an example.

The final paper, ‘The Upregulation of Mitochondrially Located Genes in Prostate Cancer: A FunHoP

Discovery’, further expanded the usage of FunHoP. This study discusses how FunHoP can be used in

combination with localisation data to show how mitochondrial genes, and thus mitochondrial pathways,

are upregulated in PCa. The addition of localisation data shows how our interpretations of the pathways

can be improved and how FunHoP can provide more biological information.

To introduce this thesis, I give a brief overview of the aims of the studies and a summary of each paper.

This is followed by a longer chapter explaining the background of the main topics discussed, to give the

reader the explanation of networks, metabolism, RNA-sequencing, and the prostate, needed for reading

and understanding the thesis. Following is a section on the methods used for measuring metabolites and

1



Chapter 1. Introduction

gene expression, as well as the development of FunHoP in more detail. This is followed by a general

discussion, notes on each paper, suggestions for possible future research, and a conclusion. Finally, the

three papers will follow as appendices.

2



Chapter 2
Aims of the thesis

This research aims to improve pathway analysis by developing a new tool, FunHoP, and to show how the

three papers provide three levels of integration of biological data, which makes analysis more biologically

relevant. At the primary level, FunHoP improves pathway analysis by expanding the display of a pathway

to show all genes of each node, rather than just a single gene. The second level is added by showing the

expression level of each gene, making it possible to identify dominant genes. The expression level is

based on read counts from RNA-Seq. The read counts are also used in combination for all genes within a

node and to perform differential expression at node level. The final level of pathway analysis improvement

involves adding protein localisation and making it possible to divide pathways into subsets, for example

mitochondrial vs non-mitochondrial versions. These levels can be used partially, separately, or together to

give a deeper understanding of biological pathways.

The main focus of the first study is an analysis of reactive stroma in PCa tissue. We combined differential

gene expression analysis and metabolite analysis with histopathology to compare differences between the

gradients of reactive stroma and find related pathways. Thus, this paper constitutes an introduction to

genes, metabolites, and pathways in PCa.

The second study examined the subject of differentially expressed genes and pathways in greater detail. It

was separated into two parts: the first section discussed the development of FunHoP and finding solutions

that would create an overall improvement of pathway analysis; the second section used FunHoP in two

case studies to show how it works and to give new biological insights. This paper shows how FunHoP and

read counts can be used in combination.

The third study investigated pathway analysis by studying how protein location can alter our understanding

of the pathways in even greater detail. By adding localisation data to FunHoP, the pathways could be

divided into one mitochondrial and one non-mitochondrial version and more could be learnt about protein

localisation and gene regulation within the different parts of the cell.

3
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Chapter 3
Summary of papers

3.1 Paper 1

The main topic of this paper is metabolism in different groups of reactive stroma. Several analyses

compared the differential gene expression between groups of tissue type and identified the metabolic

pathways of particular interest in those groups. Reactive stroma were histopathologically evaluated in

108 fresh frozen PCa tissue samples from 43 patients and divided into four groups, ranging from reactive

stroma grade (RSG) 0 to 3. Metabolites were measured in 85 samples using HR-MAS MRS. In 78 samples,

the transcriptome was analysed using RNA microarray. Multivariate metabolomics and transcriptomics

were used to compare low reactive stroma content (<15%) to high reactive stroma content (>16%). Both

metabolites and genes linked to immune functions and extracellular matrix remodelling were significantly

upregulated in samples with high RSG. This study showed how different omics can complement each

other in the search for a more complete biological picture.

3.2 Paper 2

Pathway analysis is an essential tool when analysing large amounts of data. A standard tool for visu-

alisation and analysis is Cytoscape, which can be used in combination with pathways from the KEGG

database. Each of the many pathways in KEGG can be downloaded as XML files written in KEGG

Markup Language (KGML). By using the KGML reader KEGGScape, these pathways can be opened

up and viewed in Cytoscape. However, although multiple genes can be responsible for the protein that

catalyses the reaction, KEGGScape shows only one. Only showing the first gene can lead to incorrect

interpretations of the pathway. By contrast, FunHoP shows all genes, giving a broader picture that can be

interpreted more accurately. To determine how the pathway is regulated, FunHoP collapses all genes in a

node into one measurement using RNA-Seq read counts. Assuming that activity for an enzymatic reaction

depends mainly on the gene with the highest number of reads, as well as weighting reads according to gene

length and ratio, a new expression value is calculated for the node as a whole. Differential gene expression

is then applied to the whole network. Using PCa as a model, we integrated RNA-Seq data from two patient

cohorts and metabolism data from the literature. We could then give plausible explanations as to how the

5



Chapter 3. Summary of papers

metabolic paths of histidine metabolism and a minor part of glycerophosphocholine (GPC) were regulated.

3.3 Paper 3

Mitochondrial activity in cancer cells has been central to cancer research since Otto Warburg first published

his thesis on the topic in 1956. In this study, we expanded the usage of our method FunHoP. We used RNA-

Seq data from cancerous and normal prostate cell lines. By adding localisation data based on experimental

data and computational predictions, we could differentiate between mitochondrial and non-mitochondrial

processes in PCa. Our results showed that mitochondrial pathways are generally upregulated in PCa and

that splitting metabolic pathways into mitochondrial and non-mitochondrial counterparts using FunHoP

enables more accurate interpretation of the metabolic make-up of PCa cells.

6



Chapter 4
Background

Pathway analysis and gene expression are the common focus of all three studies described in this thesis,

in addition to the development and usage of FunHoP. In this chapter, I briefly explain five of the related

topics: networks, the cell, metabolism, gene expression, and the prostate and prostate cancer.

The first section discusses networks and pathways – how they are created and used, how Cytoscape works,

and the possibilities it contains. The second section looks briefly into the cell, before I discuss the basics

of the metabolism of the carbohydrates studied in Paper 3. The fourth section looks into gene expression,

while the fifth and final section describes the prostate, how a normal prostate differs from other glands,

and several ways in which metabolism is altered by prostate cancer.

4.1 Networks

The main topic of this thesis is improving the analysis of biological pathways. Biological pathways are the

defined steps between two given compounds, with various genes and intermediate compounds between

them. These pathways can be represented as networks, which are a collection of nodes connected by

links. Network representation can be used in various ways in biology, such as showing nodes as muscles

with skeleton links or showing how COVID-19 spreads (the ‘links’) between humans (the ‘nodes’) in a

population. These representations can contain various levels of information, depending on the available

data.

7



Chapter 4. Background

Mathematically, a network can be represented by an adjacency matrix with nodes on each axis and links in

the intersections, where a 1 indicates a link and a 0 indicates no link. In the simplest representations, links

are simply undirected and unweighed connecting nodes, as shown in figure 4.1A. In this representation,

it does not matter in which direction the links between the nodes go, as they are all equal, carry no

information, and are either there or not. The muscular-skeletal network is an example of this type of

network, as the skeleton does not have any particular direction — the bones are either connected to the

muscles or not. The adjacency matrix is identical on both sides of the diagonal.

Adding direction to the links can be useful, for example to describe the spread of COVID-19 from human

to human. Who carried the virus and how they were infected becomes relevant. The direction is important

and visible in the adjacency matrix, which is no longer equal on both sides of the diagonal (figure 4.1B).

Tracing the spread of COVID-19 would be impossible without knowing the direction of these links.

If more information is available, the links can also be weighted, as in figure 4.1C. In a network for

predicting where COVID-19 would appear next, the links could be weighted based on the length of the

connection between two nodes, for example contact time or physical distance, or to represent various

mutations of the virus. Longer exposure to a more infectious mutation would increase the probability of

getting COVID-19 from an infected person, and the weighted network would indicate who should be

prioritized in getting tested for the disease.

Figure 4.1: A network can be represented as a matrix. In A, the nodes are connected with undirected and unweighted
links, making the matrix identical across the diagonal. This pattern is lost in B and C, where all the links are directed,
and for C also weighted (Almaas, 2013).

Networks can also include important topological features, such as patterns, node importance, and node

interactions. One of these features is the number of links connected to a given node, for instance, if a

node becomes a so-called hub (figure 4.2). A hub is a central node in the network with multiple links

connected to it, and removing the node would break up the network. In the COVID-19 example, a hub

could be an infected person who talked to almost everyone at a party. Another feature of networks is

bottlenecks, or nodes that determine the rate of flow in the network (figure 4.2). Nodes can also exhibit

other features, depending on the network in question. Knowledge about the nodes can be represented by

using various sizes, colours, or shapes. Similar to an undirected and unweighed link, nodes about which

no specific knowledge is available can be indicated by a default shape, colour, or size.
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Figure 4.2: Patterns and features of a network. The connecting link between the green and the blue node becomes a
bottleneck, while the orange with multiple connected nodes is a hub (Yu et al., 2007), CC BY 4.0.

4.1.1 KEGG

The Kyoto Encyclopaedia of Genes and Genomes (KEGG) (Kanehisa and Goto, 2000; Kanehisa, 2019;

Kanehisa et al., 2021) is one of the main resources used in this thesis. The KEGG database includes data

for a wide range of organisms and contains information on pathways, genomes, and compounds (such

as metabolites), as well as disease-specific information. Figure 4.3 shows KEGG’s representation of

histidine metabolism, studied and discussed further in Paper 2.
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Figure 4.3: KEGG website representation of tyrosine metabolism. The green nodes are the ones found in humans,
while the total network covers other species as well (KEGG, 2022b).

KEGG uses rectangles to symbolize genes (or proteins), with circles representing compounds. In figure
4.3, the ‘Homo sapiens mode’ has been chosen, and the genes belonging to Homo sapiens are marked

in green. This way of representing a biological pathway sadly reduces the chance of patterns such as

bottlenecks or hubs, as the different paths are spread out and not intertwined. The same gene can occur on

multiple ‘branches’, and hence, any potential patterns are lost. It does however make it easy to investigate

the many possible branches.

KEGG pathways can be downloaded as XML files, where the network is represented in tree structures.

This feature is utilized in Paper 2 and 3, where the XML files are altered to show more information

(Paper 2) or separated into versions representing different subcellular locations (Paper 3). The way we

use these XMLs are shown and discussed more in sections Changing the XML files and Hard coding
the XML files.
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4.1.2 Cytoscape

Visualisation is an important tool in analysing biological pathways, and Cytoscape (Shannon et al., 2003)

is one of many platforms that can help in this regard. Cytoscape was created for biological research, but

today it is used as a general platform for complex network analysis and visualisation. The Cytoscape

core is open source and provides basic features for building networks and integrating, analysing, and

visualising data. Networks can be built from the outset based on the theory shown in figure 4.1. It is

also possible to use ready-made networks from databases such as KEGG, WikiPathways (Martens et al.,

2021), or Reactome (Fabregat et al., 2018). In addition to the core, a wide variety of applications can be

downloaded. These applications are available for layouts, network and molecular analyses, additional file

format support, scripting, and connections to databases. Being open source means that anyone can access

the code and modify it, come with suggestions or create Cytoscape apps for others to use. Cytoscape’s

Java-based open API is used for app creation, and the app community is always open to new members.

4.2 The cell

The biological pathways mentioned so often throughout this thesis are found within human cells, in our

studies they are either coming from tissue samples or cell cultures. In general, a human cell is bounded by

a semi-permeable plasma membrane, consisting of a bilayer of phospholipids. Small uncharged molecules

can pass through the membrane, and there are various proteins and protein complexes that serve as gates

for larger and charged molecules. The interior of the cell is known as cytoplasm, and in eukaryotic cells

such as human cells, the cytoplasm refers to the area between the nucleus and the cell membrane, as can

be seen in figure 4.4 (Reece et al., 2014).
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Figure 4.4: The view of a generalized, eukaryotic cell. Here we see some of the basic structure of a human cell,
surrounded by a plasma membrane, containing organelles such as the nucleus, ER, golgi, and mitochondria, among
others (Parker et al., 2016). CC BY 4.0, access figure for free at https://openstax.org/books/microbiology/pages/3-4-
unique-characteristics-of-eukaryotic-cells.

Within the cytoplasm are multiple organelles, all with a specialised shape and function. These are

membrane-bound structures that all serve a particular purpose for the cell and the organism. For instance,

the mRNA we measure in our studies is made in the nucleus, where the DNA is stored. Surrounding the

nucleus is rough and smooth endoplasmic reticulum (ER), which is active in membrane synthesis, and

the ribosomes that make the ER rough are the ones that translate the mRNA into proteins. An important

organelle in Paper 3 is the mitochondria, which is known as "the power house of the cell", due to being

the host for glycolysis and oxidative phosphorylation. As seen in figure 4.4, there are also multiple other

organelles and structures, such as the cytoskeleton, the golgi apparatus, peroxisomes, and lysosomes

(Reece et al., 2014). All of these, including the ones briefly mentioned, could be discussed through many

books. However, here I focus on measuring the mRNAs and the products of them.
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In order to learn more about how the cell works, it is important to know more about the subcellular locali-

sation of proteins. In Paper 3 we look into subcellular localisation. Here we combine the localisation data

with differential expression from RNA-seq and metabolic pathways from KEGG, and combine it all with

our method FunHoP. Finding the subcellular localisation can be done either experimentally or predicted

by computers. Experimentally, it is possible to use for instance isotope-labeled C-atoms (Chokkathukalam

et al., 2014), antibodies and immunofluorescence (Lundberg and Borner, 2019), or mass spectrometry,

which is the method used by the SubCellBarCode (Orre et al., 2019) used in Paper 3. Another method

used in this study is the Bologna Unified Subcellular Component Annotator (BUSCA), which predicts

localisation based on known amino acid patterns such as GPI anchors, and signal and transit peptides. It is

also possible to use transmembrane domains like alpha-helices and beta-barrels (Savojardo et al., 2018).

And with that brief introduction to the cell and its components, it is time to move over to metabolism.

4.3 Metabolism

The word ‘metabolism’ comes from the Greek word metabolē, which means ‘change’. Metabolic changes

are either anabolic (‘building up’) or catabolic (‘breaking down’). The purpose of metabolism is to harvest

energy from food, to create building blocks in the form of proteins, lipids, carbohydrates as well as nucleic

acids, and to remove metabolic waste (Nelson and Cox, 2008). The reactants, products, and intermediates

in these processes are called metabolites, which can be sorted into two groups, namely primary (central)

and secondary (specialised) metabolites.

Primary or central metabolites are directly involved in growth and development processes. They include

amino acids, nucleotides, sugars, as well as mono-, di-, and tricarboxylic acids. Primary metabolites are

produced in large quantities, making them easy to extract, and are not species-specific, meaning they

can be found in multiple organisms. Secondary or specialised metabolites are compounds not directly

involved in growth or development. They are generally produced in smaller quantities and can be harder

to extract. They can also be species-specific, such as certain antibiotics (Reece et al., 2014).

A metabolic pathway links the chemical reactions that occur to create or break down a specific metabolite.

Yielding energy is the main goal of catabolic pathways, along with obtaining smaller components for

anabolic pathways. Organic compounds contain potential energy in the bonds between their atoms,

and a gradual harvest of energy can be achieved through the creation of adenosine triphosphate (ATP)

and reduced nicotinamide adenine dinucleotide (NADH). ATP is either created by adding a phosphate

group to adenosine diphosphate (ADP) or through chemiosmosis driven by the electron transport chain

in oxidative phosphorylation. NADH is created when NAD+ is reduced and gains a hydrogen atom and

two electrons. The easy cycling between oxidized (NAD+) and reduced (NADH) states is what makes

NAD+ a well-suited electron carrier (Reece et al., 2014). ATP and NADH are involved in all pathways,

even if they are not always shown: for example, in the KEGG pathways which are central to this thesis.
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However, energy yield should be kept in mind, even if it is not visible. This lack of information will be

further discussed in the Discussion.

The metabolic pathways of a human cell are intertwined in a complex system (figure 4.5). Products or

intermediates of one reaction can be reactants in another, and vice versa. This must always be kept in

mind when studying isolated pathways, and it is important not to be overly focused on a single pathway.

However, when working with them, it is easier to separate metabolic pathways into categories based on

their reactants or products.

Figure 4.5: The massive and complex human metabolism consists of multiple different types of metabolism, such
as nucleotide, lipid, energy, and amino acid metabolism, all connected either directly on indirectly (Zephyris, 2022).
Figure is licensed under CC BY-SA 3.0.

Figure 4.5 shows how some of the more central pathways in metabolism are marked, such as lipid

metabolism, carbohydrate metabolism, and nucleotide metabolism. As they are relevant for Paper 2 and
3, glycolysis and the tricarboxylic acid cycle (TCA) will be discussed in greater detail in the following

section.
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4.3.1 Carbohydrates

Carbohydrates are one of the most easily catalysed sources of energy in cells. Larger polysaccharides

such as starch and glycogen are hydrolysed to glucose, a six-carbon carbohydrate. Taking place in the

cytosol, glycolysis breaks down glucose into two molecules of pyruvate, a three-carbon sugar, as shown

in figure 4.6 (Reece et al., 2014).
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Figure 4.6: Glycolysis is the process where glucose is converted into pyruvate. Energy is used to split the circular
glucose molecule into two linear ones, and energy is harvested by making ATP while two pyruvate molecules are
made (Gordon Betts et al., 2022). CC BY 4.0, access for free at https://openstax.org/books/anatomy-and-physiology-
2e/pages/24-2-carbohydrate-metabolism.
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In the first steps of the glycolysis, ATP is used to transfer a phosphate group to the glucose molecule, mak-

ing it more chemically reactive and keeping it inside the cell due to the charge on the phosphate. Two ATP

molecules are used to add two phosphate groups, after which the sugar molecule is split into two molecules

of three-carbon sugars. During the further oxidation of these three-carbon sugars, four ATP molecules

are created, in addition to two NADH molecules, which can later be used in harvesting energy during

oxidative phosphorylation (or in multiple other reactions in the cell). Provided oxygen is available, the two

pyruvate molecules can be transferred into a mitochondrion and oxidized into acetyl coenzyme A (acetyl-

CoA), which can be further used in TCA. This is the first step in which CO2 is released (Reece et al., 2014).

Once acetyl-CoA is available, its two-carbon acetyl group can be added to oxaloacetate, which creates

citrate, as shown in figure 4.7. Step 2a is a dehydration reaction, where citrate is converted into isocitrate

by the enzyme aconitase (ACO2). This has an important function in PCa, which will be discussed in more

detail in Prostate cancer and altered metabolism (Reece et al., 2014).

Figure 4.7 also shows how three NADH molecules are created by the reduction of NAD+, in addition

to one FADH2 and one molecule of ATP via guanosine diphosphate (GDP) and guanosine triphosphate

(GTP). It also shows how more CO2 is released and how H2O is both used and released. The remaining

molecule at the end of the cycle is oxaloacetate, which can be added to new acetyl-CoA (for instance, from

pyruvate), and the whole circle can be repeated. In this manner, energy is extracted from glucose and stored

mainly in NADH and FAD2 molecules. To obtain more energy in the form of ATP from NADH and FAD2,

these two electron transporters must release their energy in the electron transport chain (Reece et al., 2014).
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Figure 4.7: Acetyl-CoA enters the TCA cycle and is combined with oxaloacetate and becomes citrate. During a full
circle, NADH, FADH2, and ATP/GTP is created, H2O and CO2 is released, and the final compound is oxaloacetate,
which can start the whole thing over again with more Acetyl-CoA (Narayanese, 2008). Figure is licensed under CC
BY-SA 3.0.

The electron transport chain consists of a collection of protein complexes in the inner mitochondrial

membrane. As the inner mitochondrial membrane is folded, its areal surface is increased, creating space

for thousands of copies of the electron transport chain’s protein complexes. These protein complexes

pump H+ across the membrane, while the electrons are passed along the chain to their final acceptor O2,

creating H2O, as shown in figure 4.8 (Reece et al., 2014).
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Figure 4.8: Oxidative Phosphorylation takes place in the inner mitochondrial membrane. Pumping H+ across the
membrane creates an osmotic potential, which drives the ATPase further down in the chain, creating ATP (Lewis
et al., 2019), CC BY 4.0.

The pumping of H+ across the membrane creates a difference in H+ on opposite sides of the membrane,

and this difference pushes the H+ through ATP synthase, which in turn creates ATP. To summarize, energy

has been harvested from a glucose molecule and 30–32 molecules of ATP have been created (Reece et al.,

2014).

As mentioned earlier, this aerobic oxidation only happens if oxygen is present, working as an electronega-

tive pull for the electrons in the transport chain. If oxygen is not available, the whole cycle stops. NADH is

not oxidized, and there is no NAD+ to harvest energy. However, as certain organisms live under anaerobic

conditions, a solution must exist. In this case, the solution is fermentation. Glycolysis still takes place

during fermentation, but the pyruvate molecules are not transported into the mitochondria and converted

to acetyl-CoA. Instead, they stay in the cytosol. Two of the most common types of fermentation are

alcohol fermentation, where pyruvate is converted to ethanol, or lactic acid fermentation, where pyruvate

is reduced directly to NADH and lactate. The latter happens in human muscles during a hard workout

(Reece et al., 2014). Lactic acid fermentation will be discussed further in 4.4.2.

Energy sources other than carbohydrates also exist. Figure 4.9 shows the four processes already mentioned,

namely glycolysis, conversion to acetyl-CoA, TCA, and oxidative phosphorylation. It also illustrates how
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carbohydrates, proteins, and fatty acids can enter these processes at various stages.

Figure 4.9: Nutrients such as proteins, carbohydrates, and fats can be catabolized and incorporated at different
places of the energy metabolism chain (Zhang et al., 2020), CC BY-NC-ND 4.0.
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4.3.2 Metabolic networks

The networks representing human metabolism are intended to show the metabolic biochemistry that takes

place in a human cell, as explained in the beginning of section 4.3. Creating metabolic pathways is a

way of sorting out specific components from start (substrate) to finish (product) via a path (enzymes and

intermediates), from the intricate mixture of metabolites inside a human cell. Yet cellular metabolism is

much more plastic and complex than its linear textbook representation (Schuster et al., 2000; Yarmush

and Berthiaume, 1997).

A main goal of today’s functional genomics is to complete the reconstruction of metabolic pathways, but

researchers studied metabolism long before the dawn of the genomic era. In 1945, Horowitz made one of

the first attempts at describing a metabolic pathway when he described the retrograde hypothesis. This

suggests that if the biosynthesis of compound A requires sequential transformations by B, C, and D via

corresponding enzymes, the final product A would have been the first compound (of these) used by the

primordial heterotrophs. According to Horowitz, if A was essential for the survival of primordial cells

and the primitive soup was depleted of it, selective pressure and the production of cells able to transform

B into A would lead to the creation of the very first pathway. This would include enzyme a to catalyse the

transformation from A to B. Variants with enzyme b in addition to a would have possibilities to create

more B and build up a more complex pathway. With A and B being chemically related, a and b would

also be related, and the theory is that a duplication of the a gene, a, leads to the creation of the b gene, b.

The theory further suggests that these duplication events leading to similar genes means that similar genes

are to be found within the same areas (Horowitz, 1945).

After the early 1960’s discovery of operons, a prokaryotic feature in which similar genes are controlled

by the same operator, Horowitz argued that genes belonging to the same operon or the same pathway

were a result of series or tandem duplications which created a paralogous gene family (Horowitz, 1965).

Other hypotheses regarding gene duplication and the formation of pathways have since been published,

such as the patchwork hypothesis by Ycas and Jensen (Yčas, 1974; Jensen, 1976). They suggested

that an ancestral enzyme, E0, had a very low substrate specificity and could bind to three different

substrates, thereby catalysing three different yet similar reactions. Duplications of E0 would lead to

more specific enzymes which would have higher substrate specificity and lead to different metabolic routes.

Researchers have been studying metabolic pathways for decades. Examples include early studies on

the catalytic action of chymotrypsin (Kraut, 1977; Bender et al., 1973) or glycolysis, which has been

researched extensively (Chen and Geiling, 1946; Wu et al., 1964; Villar-Palasi and Larner, 1970; Ottaway

and Mowbray, 1977; Melendez-Hevia and Siverio, 1984; Fernie et al., 2004). With the central goal of

functional genomics being to determine the metabolic routes from a specific start to an end product, such

research will continue (Schuster et al., 2000). Metabolic flux balance analysis and genome-scale recon-

structions are growing fields of research, meaning that our knowledge of the complexity of metabolism is

increasing (Schilling and Palsson, 1998; Förster et al., 2003; Orth et al., 2010; Brunk et al., 2018).
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4.3.3 Gene expression

A key element of this thesis is gene expression. Gene expression comparison between different states

and groups is the basis for finding pathways in Paper 1, for colouring nodes in Paper 2 and 3, and for

suggestions on location-specific regulation in Paper 3. In Paper 1, gene expression has been measured

using RNA microarray, the previous gold standard for gene expression, whereas Paper 2 and 3 use

RNA-sequencing. Both these techniques will be discussed below after a general explanation of the process.

The DNA contains the recipe for all the possible proteins a cell can make. Protein levels are regulated on

multiple levels. On the catabolic side, ingested proteins are broken down into amino acids, which can be

catabolized again into smaller molecules and enter the energy harvest cycle at various stages. Humans

require 20 amino acids to make proteins and can synthesize 12 of these. The remaining eight must be

obtained by ingesting proteins. Most animal products, such as eggs and meat, contain all 20 amino acids,

including the eight essential ones. Having amino acids available is crucial for building new proteins on

demand. Most human cells have a nucleus in which DNA is transcribed into primary RNA. The primary

RNA is processed to create a finished mRNA, which leaves the cell and is translated into a protein. The

finished mRNA has a ‘cap’ at the 5’ end (‘the beginning’), and a poly-adenine tail at the 3’ end (‘the end’),

and untranslated regions (UTRs) can be found between the cap and the tail and the actual coding segment.

The 3’ UTR contains information regarding the mRNA’s location (Alberts, 2008). The process of going

from primary RNA to mRNA is shown in figure 4.10 and is explained further in the Discussion.

Figure 4.10: The primary RNA transcript with its mixture of introns and exons needs to be processed before
the mRNA can leave the nucleus. A 5’ cap and a 3’ poly-A tail is added, and exons are combined into the
finished mRNA while the introns are left behind. Each end of the mRNA contains an UTR, and the 3’ end
UTR contains information regarding the mRNA’s location (Fowler et al., 2013). CC BY 4.0, access for free at
https://openstax.org/books/concepts-biology/pages/9-3-transcription.

In contrast to prokaryotes, eukaryotes have exons and introns in their DNA. As exons are spliced together

to form the final mRNA, and due to alternative splicing, the same gene can become different mRNAs, and

hence different proteins. Once the mRNA is fully processed, it leaves the nucleus and is translated by
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ribosomes. As the mRNA moves through a ribosome, codons on the mRNA are translated into an amino

acid chain one at a time. The carboxyl end of one amino acid binds to the amino end of another amino

acid through a peptide bond. This linear chain of amino acids is known as the primary structure of the

protein, and it dictates the secondary and tertiary structure due to the chemical nature of the polypeptide

backbone and the R groups of the amino acids. The secondary structure consists of alpha-helix coils and

beta sheets and is a result of hydrogen bonds between the repeated constituents in the backbone. The

R groups of the various amino acids also interact and shape the polypeptide, thus creating the tertiary

structure. Both hydrophobic interactions and disulfide bridges are among the interactions that contribute

to the shaping of the protein. The main challenge of using mRNAs as a measure of proteins is the lack of

a known relationship between gene and final protein, level of gene expression and level of active protein.

However, in this thesis, we still use mRNA levels as an approximation of protein levels, as it is easier to

identify and measure than its end products (Nelson and Cox, 2008).
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4.4 The prostate

4.4.1 The normal prostate

The prostate gland is a walnut-sized gland located below the bladder and surrounding the urethra in

mammalian males (Marker et al., 2003). It is the largest accessory gland of the male genital tract (Kosova

et al., 2014). As shown in figure 4.11, the prostate has three distinct zones, namely the central zone (CZ),

the peripheral zone (PZ), and the transitional zone (TZ), and its main purpose is to produce and contain

prostatic fluids. A unique trait of the prostate concerns its citrate production and levels – the prostatic

fluid contains high levels of citrate, 20–70 times higher than usually found in tissue and 400–1,500 times

higher than in blood plasma (Costello and Franklin, 2009; Kavanagh, 1985). This citrate is accumulated

in the TCA cycle, where m-aconitase (ACO2, reaction 2a in 4.7) in most cells would convert citrate to

isocitrate, which would then be converted further and release energy. However, the PZ glandular epithelial

cells in the prostate accumulate high levels of zinc, which inhibits aconitase. Therefore, citrate is not

converted. The zinc uptake in these prostate epithelial cells is a result of the expression and activity of

ZIP1, a zinc uptake transporter (the SLC39A1 gene; (Costello and Franklin, 2009).

Figure 4.11: The prostate gland contains three zones, namely the central zone (CZ), the transitional zone (TZ), and
the peripheral zone (PZ). (Packer and Maitland, 2016), Elsevier open access license.
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When citrate is secreted instead of being used in the TCA cycle, the benign prostate cells do not use

oxidative phosphorylation as their main resource for energy harvesting. This is in contrast to most human

cells, where the TCA cycle and the subsequent oxidative phosphorylation is the most common way of

utilizing carbohydrates. The fact that prostate metabolism is different from other cells makes it important

to get a better understanding of it, and we can to a lesser extent just use data from other cell types. We

have to get as much information as possible out of prostate cells.

The prostate can cause health problems later in life, and most men who reach the age of 80 are affected

by prostate disease. The most common type is benign prostatic hyperplasia (BPH;(Berry et al., 1984)

(Fitzpatrick, 2006)). BPH is a non-cancerous enlargement of the prostate, and symptoms of BPH are

similar to those of PCa (Kim et al., 2016). However, BPH is not cancer, despite the similar symptoms. It

is therefore important to learn as much as possible about the features of prostate cancer, and especially to

find non-invasive biological markers that can be used to differentiate between cancer and BPH.

4.4.2 Prostate cancer and altered metabolism

PCa is the most common type of cancer in males, with 5030 diagnosed in Norway in 2019. About 90% of

these men were over 60. PCa is generally slow-growing, and 95.5% of patients are still alive five years

after diagnosis (Kreftforeningen, 2022). Symptoms will normally not be visible in the early stages of PCa,

but as the cancer grows, patients might experience a weak urine flow and frequent urination, trouble with

emptying the bladder, and blood in the urine. If the cancer has progressed, patients might also experience

back pain (Kreftforeningen, 2022). If cancer is suspected, primary examinations will be performed,

including a rectal examination and a blood sample. Screening for elevations in prostate-specific antigens

can be deceptive and should not be used as the only source in PCa screening.

During malignant transformation, or the act of growing into cancerous cells, cells gradually evolve

from benign to malignant (Brawer, 2005). PCa begins in the peripheral zone epithelium cells, which

are programmed to produce and not oxidize citrate (Costello et al., 2004; Costello and Franklin, 2016).

During this process, the epithelial cells stop secreting citrate, instead reactivating the TCA cycle and

starting to oxidize citrate (Zadra et al., 2013). The high levels of zinc must be decreased to avoid apoptosis,

and it has been suggested that this decrease is caused by alterations in ZIP1 (Franz et al., 2013; Feng et al.,

2002). Zinc levels must also be kept low to alter the inhibition of aconitase, the enzyme that converts

citrate to isocitrate.

In Paper 1 we study the reactive stroma. The stroma is generally known as the part of the tissue with

a structural or connective role, and consists of the non-epithelial components, such as blood vessels,

fibroblasts, extracellular matrix (ECM), immune cells, and nerves. The tumor microenvironment (TME)

of PCa has chronic inflammation, and is referred to as reactive stroma. The transition from healthy to

reactive stroma is part of the cancer process, and reactive stroma appears to play an important part in

cancer development (Tuxhorn et al., 2002; Barron and Rowley, 2012). Using the reactive stroma grading
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system (Ayala et al., 2003), we were able to divide the samples in Paper 1 into four groups, and use these

as a basis for the differential expression analysis and the correlation analysis.

The aforementioned lactic acid fermentation is the result of the so-called Warburg effect, which can be ob-

served in many types of solid tumours. This effect shows that many tumours have an increased glycolytic

rate despite having lower access to O2. This means aerobic glycolysis is the dominant ATP-producing

pathway, and that cancerous cells take up more glucose to meet their need for ATP. Warburg suggested

that cancerous cells sustain irreversible damage at some point during oxidative phosphorylation (Warburg,

1956). ATP synthase consists of many subunits, and many studies show that some of these subunits are

downregulated in cancers. For instance, Cuezva et al. have found a reduction in mitochondrial markers,

such as the beta-catalytic subunit of H+-ATP synthase (β-F1 ATPase) in the human liver, kidney, and colon

(Cuezva et al., 2002). Another study, by Isidoro et al., has analysed both mitochondrial and glycolytic

protein markers from gastric, prostate, and breast adenocarcinomas and squamous oesophageal and lung

carcinomas. These markers include the β-F1 ATPase and HS P60 of mitochondrial marker proteins and

GAPDH and PK in the cytosolic proteins. In all cancers except PCa, β-F1 ATPase is found to be down-

regulated, with no difference (Isidoro et al., 2004). This trait distinguishes PCa from other types of cancers.

Amino acids are the building blocks of proteins, and the utilization of particular amino acids can be

observed in the promotion of cancer cell growth. They can also be used in determining the aggressiveness

of cancer (Wang et al., 2013). For instance, glutamine is involved in multiple pathways in the cell.

Glutamine uptake is found to be upregulated in multiple types of cancer, including PCa, where it can be

used in de novo lipid biosynthesis (Eidelman et al., 2017). Glutaminolysis is a way for cancer cells to

produce ATP, and upregulation of the glutaminase-1 responsible has been found (Moncada et al., 2012;

Pan et al., 2015). An in vitro study (Wang et al., 2015) has also shown that the inhibition of glutamine

uptake limits proliferation and invasiveness.

Another relevant amino acid is arginine, which can be converted to both glutamine and proline and is

important in the generation of nitric oxide (NO). Neither arginine nor NO’s role in cancer is fully known,

although NO is thought to play an important role (Qiu et al., 2015), and in vitro studies have shown that

starving cells of arginine kills the cells and that high availability of arginine is necessary for cell survival

(Feun et al., 2008; Kim et al., 2009).
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5.1 Techniques

As already shown, the human metabolome is massive. In addition to the features discussed in previous sec-

tions, it also includes acids, amines, vitamins, minerals, drugs, food additives, and other compounds that

humans ingest and/or metabolize. A problem with studying the metabolome is that the levels of expressed

genes, which are easier to measure, cannot be directly correlated with the levels of metabolites and pro-

teins. Hence, what can be measured does not easily translate to the knowledge that researchers are seeking.

In this chapter I will generally present some of the techniques for measuring metabolites and gene expres-

sion, as well as going through the development of our new method FunHoP.

5.1.1 Identification of metabolites

The metabolite data in Paper 1 was obtained by high-resolution magic angle spinning magnetic reso-

nance spectroscopy (HR-MAS MRS), which is a well-established technique for analysing biological

tissue (Giskeødegård et al., 2013). HR-MAS is a non-destructive method that provides a snapshot of

the metabolic status. As the sample remains intact, it can be used for other types of analysis such as

proteomics or genomics data, and data from the same sample will be more comparable than data from

different samples (Moestue et al., 2011).

5.1.2 Measuring gene expression

As previously mentioned, the two applied techniques for measuring gene expression in this thesis are

microarray and RNA-sequencing. Microarray hybridization was the gold standard for gene expression

from the late 1970s until the 2000s (Bumgarner, 2013), even if Fredrick Sanger provided the prototype

of Sanger Sequencing in 1977 (Sanger et al., 1977). Figure 5.1 shows a microscope slide containing

multiple DNA fragments in specific positions. The mRNA molecules are converted into complemen-

tary DNA (cDNA) and labelled with fluorescent dyes (here red and green), before being hybridized
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to the microarray. Lasers are used to measure the expression of each gene, and computer analysis is

used to compare the two samples. If the expression is equal between the two samples, a spot will ap-

pear yellow, otherwise the sample with the highest expression of the gene will determine the colour of

the spot (red or green, respectfully). The relationship between the two samples is known as the fold change.

Figure 5.1: cDNA of the samples are labelled with two different colours, before hybridized to the microarray.
Lasers are used to measure the expression, and the two samples can be compared. The two colours will appear
according to expression. Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer
Nature, Nature Genetics, (Duggan et al., 1999).
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Sequencing became increasingly popular during the 2000s, as the technology became more available and

affordable. Figure 5.2 provides a brief overview of how RNA-sequencing works.

Figure 5.2: mRNA is converted into cDNA fragments, and made into a library with adaptors in the ends of each
fragment. The molecules are sequenced from one or both ends, and the reads are either aligned to a reference
genome or assembled de novo. This creates a genome-scale transcription map that contains the level of expression
for each gene (the read count). Reprinted by permission from Springer Nature Customer Service Centre GmbH:
Springer Nature, Nature Reviews Genetics, (Wang et al., 2009)

A library is created from the fragmented mRNAs from the sample, and the short sequences are read and

mapped. This gives a read count for each of the genes, which can be used either for the sample alone or in

comparison with another sample. The latter is used in Paper 2. Variations of this procedure can be applied

to sequence genomic DNA, for example in search for variations, or perform single cell transcriptomics.
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5.1.3 Using Cytoscape

For this thesis, the KEGGScape app (Nishida et al., 2014) was used to load KEGG XML files. Cytoscape

has a feature that links directly to KEGG, but this would not allow access to FunHoP before loading. The

networks in Paper 2 and 3 were styled based on two types of data: transformed p-values from differential

gene expression, and/or read counts from RNA-Seq. To achieve consistent styling, a unique colouring

style was devised for each type of data (figures 5.3 and 5.4) and applied to all networks of each type.

Figure 5.3: Transformed P-values can be found on a scale from −1200 (black) to 600 (dark blue-green), with a
light yellow at zero and red or purple indicating downregulation and green indicating upregulation.

Figure 5.4: The scale for read counts goes from white at zero to a dark blue at above 50,000, with a light to a bright
pink representing the numbers from 1 to 4000. Most of the genes were found in this area.

Additionally, the genes within nodes of any size were indicated by a rectangle with grey or purple as

the default colour. This colour was retained for genes which were either not found or not significant in

differential expression, read counts, or both. Links were shown in black and in the same size, with default

KEGG directions where available. No additional information was added to the links. Metabolites were

shown as small circles with grey or purple as the default colour.

5.2 Developing FunHoP

The underlying idea for FunHoP was conceived at a presentation by a medical doctor and researcher at

the Norwegian University of Science and Technology in December 2015. The medical doctor showed a

screenshot of a KEGG pathway and had marked one of the nodes with a star (similar to the illustration in

figure 5.5). This star was supposed to indicate that the node was upregulated, and from this, conclusions as

to the overall regulation of the pathway were drawn. This solution seemed far too simple, and I examined

the pathway in question later that day. The star-marked node was found to contain multiple genes that
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were not included in the earlier presentation. The examination of other nodes in the downstream pathway

showed more nodes with many ‘hidden’ genes. Therefore, the conclusion about the overall regulation of

the pathway was based on an unsatisfactory level of information.

Figure 5.5: Using sphingophospholipid metabolism as an example, we see how a gene (here CERS) can be marked
by a star, which is supposed to indicate some form of important information. Additionally, this node, which seems
to have only one gene, actually contains six (KEGG, 2022a).

It could be misleading for a scientist to see a pathway (such as that in figure 5.5) without the further

addition of all the proteins that can participate in the reaction. It would be more useful to see all genes

within a node and then determine which one of them were most likely doing the job.

5.2.1 Changing the XML files

Based on these observations, an idea took hold. When examining the KEGG pathways with KEGGScape

in Cytoscape, only one gene was shown, regardless of the number of genes within the node. I wondered

what would happen if the pathway files were simply changed to show all the genes, and whether some

form of decision could be included regarding which genes within such a multigene node were responsible

for the enzymatic activity in the node.

As demonstrated in Paper 2, the answer to this last question was yes. Both the KEGG website and a

pathway loaded into Cytoscape will show only one gene in each node. However, the KEGG XML files

contain all the information needed to see all genes within a node figure 5.6, and FunHoP performs a

step-by-step modification of the XML files to show all the genes.
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XML files are accessed through the ElementTree XML API, which is part of the Python Standard Library.

Figure 5.6 shows how the XML nodes are built, using entry ID 56 as an example. Each of these nodes,

known as a ‘child’ in ElementTree, have a number of features for us to look at, with some particular

ones that have been coloured. For instance they have their own entry ID (purple), name (green), and type

(orange), along with reaction, and link. The ‘underchild’ is a section within the child, which contains

the graphics information, such as name (red, this is shown in Cytoscape), a font colour, a background

colour, a type, two coordinates (which determines the place within the network), and two variables for

determining size (height in light blue). FunHoP leaves most of these untouched, but the first notable

aspect is a comparison of the child name and the graphics name. The child name shows four gene IDs

within the node, meaning that four genes are considered as homologs in this reaction. The graphics name

shows the familiar ALDH3A1, followed by the genes’ names in other organisms. Cytoscape chooses the

first of these and uses it as the name for the node.

Figure 5.6: Original KEGG XML node. Notice how the node ID is marked with purple, the name in green, and the
type in orange. There is also an inner "child", which has the details for the graphics. This includes the name in red,
and the height in light blue, which will be changed with FunHoP

The first stage in FunHoP is to change the graphic names. This is done by identifying all children with

‘type=“gene”’ with a name that contains more than one gene name (meaning that it contains an open space,

which occurs only between two or more names that have been manipulated by FunHoP, in contrast to the

original which has commas). As the child name contains the IDs, the corresponding gene names can be

found on the KEGG website. These relations can be downloaded and are used to expand the graphics

name string, as shown in figure 5.7.

Figure 5.7: Expanding the graphics name (red), notice how it has changed into containing one name for each of the
genes in the child name (green)

When the graphics name has been expanded (figure 5.7), it contains the names of all the genes. At this

point in the process, nothing else has been changed. The next step is to expand the number of nodes to

include all these genes. FunHoP accomplishes this by using the same strategy that KEGG uses for gene
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complexes. This means creating a new child for each gene, and then connecting them in a new, larger

group node. The first step in this part of the process is to remove three of the four genes from the node,

leaving only the first one, as shown in figure 5.8.

Figure 5.8: In this node, only the first gene is kept. Notice how the both name (green) and graphical name (red)
now only contains data for the first gene from the original node. The remaining three will get their own nodes,
before they are all linked in a group

The three remaining genes will then need their own sibling entries. These are shown in figure 5.9, all with

type ‘gene’. They all have only one gene in both name (green) and graphical name (red).

Figure 5.9: Three new entries have been created, for the three remaining genes from the original node. Notice how
they have entries with a higher number than the original 56, these are added to the bottom of the file, and all new
entries get their own number

It is noticeable that the new entries have much higher ID numbers than the original node from which they

came. FunHoP allocates new IDs based on the first available ID and continues from there. The entry name

and graphics name are also changed, while the other details are retained from the original. With the new

entries made, the four entries in figure 5.8 and figure 5.9 are joined into a multigene node, as shown in

figure 5.10.
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Figure 5.10: Connecting the genes in a multigene node using KEGG’s gene complex strategy to link genes together
in a group. Notice how the name (green) is set to "undefined", and the type (orange) is set to "group". The height
(light blue) represents all four nodes (4*17 = 68), and four components with IDs belonging to the original node as
well as the three newly created ones

The entry that combines the genes in figure 5.10 is different from the gene type entries. It has less

information, and links to the IDs it consists of. The type is changed into ‘group’, and the height has been

changed to represent all the genes. The original height of a gene node is set to 17 (presumably pixels),

and with four genes in the group, the new height is set to 68. The multigene nodes are separated from the

protein complexes by a broader edge around them, with additional white space.

Another process that takes place in FunHoP at this point is cleaning up the XML files by removing

orthologs and metabolites that are included in the file but not connected to any of the nodes (this step is

not shown in the figures in this thesis, but is described in more detail in Paper 2).

In the final stage of FunHoP, multigene nodes are collapsed once more into single-gene nodes. As the

read counts for each gene are combined and differential expression is calculated from the new value, the

nodes in the XML files must change their names to match the differential expression results. A collapsed

node is shown in figure 5.11.

Figure 5.11: In order to make the pathway less comprehensive, we collapse the nodes back into the original size.
The collapsed node has the same ID as the original, and almost every other detail is the same. However, the graphics
name has been changed to reflect the name of the first gene in the node, along with the total number of genes

The collapsed entry is a copy of the original, but the child name contains all the gene IDs. By simply

counting the genes (X), the graphics name can be changed to include ‘-BX’ at the end. There are four

genes in figure 5.11, making the name of the collapsed node ‘ALDH3A1-B4’. As the calculations of

read counts (section 5.2.2) create a dataset with differential expression on the node level with compatible

names, the nodes can be styled in Cytoscape, as previously.
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5.2.2 Using the read counts

Although it is possible to use parts of FunHoP without them, the read counts bring an interesting layer to

the analysis. The gold standard of microarrays and fold change could show the comparison of the same

gene in two different samples in the form of transformed p-values from differential expression, but read

counts add a new dimension.

One of the advantages of using RNA-seq as measurement method for mRNA is the advantage you get

from the read counts. Read counts provide a number of how many reads were mapped to a gene, and

can be used as a measurement of how many mRNAs the sample contained for each gene. A gene with a

higher number of reads indicates more mRNA was made for this gene than a gene with a lower read count.

Although enzyme kinetics play an important role here, it is still possible to assume that in the case of

homologs within a node, a higher number of read counts for a particular gene means the gene is actually

upregulated. This is shown and discussed further in Paper 2 and the Discussion. As we saw in Paper
2, adding a read count value to each gene provides some interesting views — in many cases, it shows a

different picture than the fold changes.

The read counts were used in two different ways in FunHoP. The first was to show the read count for

each individual gene in the pathways. Using the Cytoscape style shown in figure 5.4, each gene in the

node could be coloured based on the read counts. This means it becomes possible to see the regulation

for each gene. The second was the combination of the values into a single value for all genes in the

node, which was then used to calculate differential expression at node level. The final step of changes to

the XML files, as shown in figure 5.11, was particularly important here, as the new name, ‘gene-BX’,

became the name of the node. This had to be taken into consideration when calculating the results from

the differential expression. The problems related to this particular step are further explored in section 7.5.1.
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Chapter 6
Summary of the results

All the results from the three studies are presented in greater detail in their respective articles. However, a

short presentation of the main results from each paper will be presented in this section.

Our metabolic and transcriptomic profiling of prostate cancer tissue in Paper 1 provided us with more

knowledge about the differences between high and low stromal content in the tissue samples. We found

that high stromal content has upregulated genes and metabolites linked to ECM remodelling and the

immune system.

The main result in Paper 2 was FunHoP, which takes metabolic pathway XMLs from KEGG and read

counts from RNA-sequencing, and extend and combine these two into a new way of utilizing biological

pathways analysis. The user can take a closer look at all genes within a node, both from differential

expression and read counts point of views, and learn more about both the pathway and the gene expression.

A new value based on all the read counts from all the genes within a node is calculated, and can be used

for differential expression analysis on node-level. Our two case studies show plausible explanations to

how histidine and GPC can be elevated in PCa.

In Paper 3 we use parts of FunHoP combined with data on subcellular localisation. We used this data

to divide the pathways into mitochondrial and non-mitochondrial editions, which in turn showed how

mitochondrial paths are upregulated in PCa.
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Chapter 7
Discussion

In this chapter, I will discuss some of the challenges we met in these studies. I will look at the common

challenges that all three studies encountered, and then each paper will be discussed in turn.

The PCa transcriptome was used as a basis for the research in this thesis. Two different types of transcrip-

tome data were used, namely RNA microarray and RNA-Seq. Different types of additional data were

applied to the studies wherever useful and available, such as histopathology and recurrence-free survival

in Paper 1, and metabolomics data in all three papers, both from our own samples and from the literature.

The prostate was a source of transcriptome, both in the form of tissue data in Paper 1 and 2 and from cell

lines in (Paper 3). Metabolism and metabolic changes were the focus of all three papers.

7.1 Common challenges for all three papers

All three papers have transcriptome data as either a partial or major source of data. Four challenges arose

regarding the data from RNA microarrays and RNA-Seq used in this thesis: The first is that we studied

the templates (mRNA) while trying to understand the functions of the products (proteins and metabolites),

but the relationship between RNA, proteins, and metabolites is not linear. The second challenge is that the

transcriptome is a snapshot of the condition in the cells or tissue, and it does not show variations. It will

not show you the situation in the cell the minute before or after the sample was taken, it can only show

that exact moment, and that might not be representative. The third is that the data is not location-specific

within the cell or tissue. We tried to find a partial solution for this problem in Paper 3. The final challenge

is that, in many cases, the results will be an average over several cells and cell types.

For the first challenge, we look at the relationship between genes and phenotypes. Ideally, scientists would

have a good understanding of the relationship between mRNAs and final proteins, and all the steps in this

process, but this is not the case. Even if the goal is to understand the functions of the proteins and how

they affect metabolism, knowledge of transcriptomics is also important. Learning how the cell changes

gene expression when becoming cancerous is of interest, and this type of data is currently available. In our

studies, we used mRNA levels, which can be measured, to come to a conclusion about protein levels and

work towards a greater understanding of metabolite levels, which is the phenotype we want to comprehend.
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Although these levels are all very much connected, multiple factors affect the relationship between them.

This complexity becomes clear from a brief look at RNA regulation. Four levels of control exist between

an mRNA molecule and the finished protein, namely RNA transport and localisation control, mRNA

degradation control, translation control, and protein activity control (Alberts, 2008). The localisation of

mRNA is regulated by many distinct mechanisms that require specific signals found in the 3’ UTR of the

mRNA (Lipshitz and Smibert, 2000; Alberts, 2008; Chin and Lécuyer, 2017). Localisation is an important

factor, as proteins are needed in specific locations, as shown in Paper 3. The degradation of mRNA deter-

mines how long the mRNA is available for translation. Small RNA molecules like microRNAs (miRNA)

or small interfering RNAs (siRNAs) affect both mRNA degradation and translation, as well as chromatin

structure. Therefore, they have an impact on both transcription and translation rates (Valencia-Sanchez

et al., 2006). Baudrimont et al. have found that the median half-life of an mRNA is around two minutes in

yeast (Baudrimont et al., 2017), although this is a debated topic. In addition to being affected by miRNAs,

translation can also be regulated by other translational repressors which bind to the 5’ end and inhibit

translation (Alberts, 2008).

Additionally, multiple forms of regulation exist on the protein itself. Activity by the finished proteins is

also regulated by activation or cofactors, among others. Adding or removing phosphate is one way of

activating a protein, and this has a major impact on the overall activity within a pathway. When all of

this is considered, and knowing that this is just a brief overview of all the mechanisms occurring between

mRNAs and protein functions, it becomes clear that in most projects one will not have enough data or

knowledge to fully understand how levels of active protein may be reflected in the measured levels of

mRNA. In Paper 2, we used known accumulated metabolites (histidine and glycerophosphocholine) as

‘proof’ of some form of upregulated activity. As the paths leading towards these metabolites contain

upregulated genes, a plausible explanation is that the upregulated genes lead to more proteins that are,

in turn, responsible for the upregulation of metabolites. It is possible that proteomics would indicate

something different. This is a possible area for future study. Ideally, it would be possible to add data to all

the omics layers and combine them to determine if our hypotheses are correct.

The second challenge is related to using ‘snapshots’ to describe a living, dynamic system, which is

a common challenge in systems biology. When using transcriptomics data from microarrays or RNA

sequencing, as in this thesis, the data is not time-specific. It does not say anything about changes or flux in

the system, only what the status is at a specific moment, or more precisely, the average over many different

points in time. In the case of Paper 1 and 2, which are based on prostatic tissue, this is still a challenge

without an easy (or ethically approved) solution. It is possible that single-cell analysis and spatial data can

provide more information for experiments like these. For the cell lines in Paper 1, it would be possible to

take samples and measurements from the same culture over time. For instance, one could measure the

metabolites in the growth medium to determine how they change over time (Halldorsson et al., 2017). How-

ever, this was not done and, to our knowledge, these types of data on PCa are not available for common use.
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The third challenge is related to how the transcriptomics analysis is performed. Traditionally this type

of analysis involves homogenizing the tissue and extracting mRNA from this mixture (Bertilsson et al.,

2011). New technology on spatial transcriptomics on tissue biopsies (Ståhl et al., 2016; Berglund et al.,

2018; Friedrich and Sonnhammer, 2020) will make it possible to learn more about where in the tissue

the different pathways are found to be active. Single-cell sequencing (Stegle et al., 2015) also makes it

possible to look at transcriptomics within a specific subtype of tissue. These techniques will add more

depth to the analysis and understanding of metabolism. Given the emergence of technologies such as

spatial proteomics with MALDI imaging (Cornett et al., 2007), combining these and other techniques will

lead to even more knowledge. However, this was not an option when the work for this thesis was done.

For future research, studying these types of data could be an option.

The fourth challenge is closely related to the third, and shares a similar solution. In traditional methods, the

sample contains multiple different cells, even if they are from similar areas of the tumour. Using a mixture

of cells means the final numbers used to define regulation of a gene will be based on an average from all

these potentially different cells. If single cell transcriptomics were an option, the results could vary more

between the cell types and perhaps reveal more interesting features. Along with spatial transcriptomics

and proteomics, this holds potential for future research.

From this point on, I will look into each of the papers and their individual challenges.

7.2 Paper 1

This study was one of many prostate-related studies from the MR Cancer Group, using techniques and data

they had collected over many years. Having these different types of data made it possible to combine them

within the same study, which is often lacking in other projects. My role involved analysing differential

gene expression and finding relevant GO terms based on different groups of reacting stroma. The study

used a different technique for gene expression than the others mentioned in this thesis, as it was based

on microarrays and not on RNA-Seq. Using a microarray means that only transformed p-values were

available and not read counts, which makes it impossible to use all the steps of FunHoP. When finding

relevant GO terms, some terms with equivalent pathways in KEGG appeared, such as the 04660 T cell

receptor signalling pathway. The GO terms were found in three categories, namely the immune system,

cell signalling, and the extracellular matrix. KEGG includes sections on both the immune system and

cell signalling. It would be possible to use the first part of FunHoP, which involves expanding pathways

and examining all genes within the pathway, for the relevant paths found based on GO terms. However,

FunHoP was not fully developed at the time this study was performed and could not be used.

One of the main arguments in Paper 2 is that RNA-Seq is a better technique than microarrays, as it

creates read counts which not only look at the differential expression but also at the actual read count

number. This argument still stands. However, having different types of data, including expressions using

microarrays from the same tissue, was such an advantage that other limitations of the microarray technique
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were acceptable in this study.

Paper 1 is a more biologically focused paper than the other two, which deal more with the technical

aspects of development and analytical methods. Instead, this research tends to use results from established

methods for analysis, providing a valuable introduction to the complexity of studying PCa. It provides a

good starting point for the continued creation of new analysis tools for different pathways, metabolites,

and genes that play an important role in PCa.

7.3 Paper 2

In Paper 2, we made a few necessary assumptions that went against certain widely accepted techniques

and theories. The first assumption was that we used read counts from RNA-Seq to colour the nodes

directly. The reason was that using only the p-value could be misleading. If a gene is considered as having

five read counts in condition X and 10 in condition Y, this means it has twice as many reads in condition

Y. However, there are still only a few read counts, even if the relative difference between them is large. If

another gene has 250 read counts in condition X and 350 in condition Y, the relative difference between

them is smaller, and therefore, the p-value between them is larger. This means that the p-value indicates a

larger difference between the genes in condition X. If these two genes are considered functional homologs

and can be expected to have a similar kinetic rate, the gene with >250 read counts will be expressed more

in both samples than the first gene, despite the p-values suggesting the first gene is more important. Of

course, in reality, more than one sample exists of each condition, and therefore, p-values are affected by the

similarity of read counts between samples of the same condition. However, the principle remains the same.

This leads to the second assumption, namely a similar rate for proteins within a node. If the genes from

the above example were found within the same node, we assumed they were so closely related that they

could catalyse the same reaction and would do so at a similar rate. This is a simplification, as there is

not enough conversion rate data to confirm or disprove this. However, since we had to assume that the

proteins were similar enough to perform the same task, we decided it would be reasonable to assume they

would have the same rate. For the two genes in question, this is of importance. Even if a doubling occurs

between the conditions in gene 1, the total number of read counts in gene 2 is much higher. If these two

genes have the same rate, the gene with 250 or 350 copies will be able to catalyse a great deal more than

the gene with 5 or 10 copies. Therefore, it can be said that a dominant gene can be found within a node.

7.3.1 Colours in Cytoscape

An important comment from one of the reviewers concerned the choice of colour scale for the transformed

p-values. It was pointed out that the colour scale we used would be problematic for the colour blind, and

that it was more common to use this range in the opposite direction to ours. Our colour scales (figure 5.3)

range from a faint yellow at zero to a dark green (value 600) via bright green in the positive direction,

and to a black (-1200) via red and purple (-600) in the negative direction. For most of the genes, this

would mean that an upregulated gene would be bright green and a downregulated gene would be bright
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red, or fainter variations of these colours. As the reviewer pointed out, red-green is the most common type

of colour blindness. Colour blindness itself is relatively common, affecting approximately 8% of males

and 0.4% of females (Birch, 2012). Our choice of colours could therefore become a problem for those

who are colour blind, as it would be harder to distinguish between the ranges. We have not found any

evidence to prove the reviewer’s comment about the colour range being the opposite of the standard in the

field, which supposedly uses red to indicate upregulation and green for downregulation. However, we

do acknowledge that a majority of studies seem to have used the opposite colour range, and to ensure

accessibility for all readers we should have changed our colour scale.

7.3.2 What the pathways are not telling us

A major limitation in defining a path from A to E via B, C, and D is that the path is rarely linear and

isolated. B might be the substrate for creating compound K, creating a side branch, while C can also be

created via the path of L, which creates another branch. These side branches need to be investigated to

make sure no important information is sidelined. This can be seen in the studies outlined in Paper 2,

where the measured levels of histidine and glycerophosphocholine were used as precursors for trying

to explain the regulations and flows in the pathways. Although the two main pathways were properly

shown in the case studies, we also considered the potential other paths in which these two metabolites

participated to make sure our suggestions were plausible. As none of the other pathways had any particular

regulated genes that could be responsible for the elevated metabolites, our interpretation of the results

from the case studies were more likely to be plausible.

Another limitation in the pathways from KEGG is the lack of additional information about for instance

energy transfer. When looking at pathways in a textbook (or at figures 4.6, 4.7, or 4.8), it is clear how

much more detailed these pathways are. They include the usage and creation of ATP/NADH, H2O, and

CO2, among others, and it would be helpful to see whether an area with many up- or downregulated genes

would be affected or would affect the production or usage of these additional compounds.

7.4 Paper 3

In this study, an alternative usage of FunHoP was found. Another level of detail was added to the ongoing

discussion on multigene nodes, and finding a solution to how we could use these details was fascinating.

Paper 2 showed that the concept of multigene nodes was somewhat controversial, especially when we

compared the enzyme kinetics of the genes within the node. However, when we started splitting the

multigene nodes into mitochondrial and non-mitochondrial parts, the reactions from colleagues and other

scientists were far more positive. Linking our findings to the biological literature inspired some interesting

thoughts. Despite Paper 3 not being peer-reviewed and published yet, and hence there being no comments

from reviewers to discuss, there are some points that can be examined.

We know that, in the normal prostate, the Krebs cycle is stopped at early stages due to zinc inhibition of

aconitase (ACO2). This can also be seen in the fact that citrate is the major anion in the sperm fluids. In
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our analysis, we saw that the Krebs cycle is, for the most part, upregulated. This would indicate that the

uptake transporter for zinc, ZIP1, was downregulated or inhibited in some way. SLC3A91, the gene that

translates into ZIP1, is upregulated in the prostate cancer cell lines, as shown in table 7.1.

Table 7.1: Comparing the differential expression of two genes; ACO2 and SLC39A1. ACO2 has a higher fold
change and a lower p-value than SLC39A1

.

This shows that ACO2 has a slightly higher fold change than SLC39A1, meaning there is slightly more

of it. The p-value is also lower for ACO2. If these were to have a one-to-one relationship in regard to

inhibition (one zinc uptake transporter takes up one zinc atom, which inhibits one aconitase), this could

be a possible explanation. It would be plausible to say that in cancer the levels of zinc uptake transporters

decrease, so there is a slightly lower amount of zinc to inhibit aconitase. Without full inhibition, the Krebs

cycle can continue, as seen in PCa. However, this theory relies on multiple assumptions, including directly

comparing the kinetics of two very different enzymes.

7.4.1 Hard coding the XML files

In order to create two sets from the same pathway, one mitochondrial and one non-mitochondrial, the

XML file was physically hard coded to represent both. This was done by going through all the genes

within the pathway, determining location, and then removing either mitochondrial or non-mitochondrial

genes, depending on which file. This included removing some compounds and links, and the process was

cumbersome in the case of pathways that lacked a certain location from the beginning. The chance of

human error is large in detailed work such as dividing the XMLs, and it would have been preferable to

automate this process.

Dividing the XML files could also have created problems in cases where the three location sources

disagreed. If one said ‘mitochondrial’, the other ‘non-mitochondrial’, and the third ‘unknown’, it would

be hard to determine the actual location. Our decision to use the predictions from the Bologna Unified

Subcellular Component Annotator (BUSCA) as a casting vote meant making some decisions that would

have given a different result if we had chosen just one of the sources. For instance, if the BUSCA casting

vote was ‘mitochondrial’ for a single gene with no homologs, and the removal of the non-mitochondrial
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gene made the whole pathway fall apart, this would be considered a much larger consequence than if the

gene was part of a multigene node. Additionally, all links had to be removed for single genes.
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7.5 FunHoP

FunHoP changes the KEGG pathways and adds more information. It is simple to use, the results are easy

to understand (at least to the degree that pathways can be easily interpreted), and it brings added value to

the field. As seen in Developing FunHoP, the process were FunHoP expands nodes is fairly simple and

gives the user the opportunity to edit the pathway XML files to their own liking. However, FunHoP has

not yet reached its full potential, and it could be improved by a variety of additions. The first step is to

turn FunHoP into a functional Python package. This would make it even easier to use FunHoP and make

it more easily available to users. Making FunHoP into a Python package would also include removing

the steps that are currently hard-coded, and it would be possible to include more databases. Adjusting

coordinates, adding example data, and looking at alternative uses for FunHoP are also of interest. This

section will end with a brief look at possible fundamental changes to FunHoP.

7.5.1 Removing the hard coding

These hard-coded sections are found in the section where multigene nodes are created, as shown in figure
5.11. Each multigene node is named ‘gene-BX’, where X is the number of genes within the multigene

node. This means that for two nodes with identical first genes and the same number of genes within, the

name would be the same. This was checked manually and the second node was renamed ‘Gene-BX-2’.

No cases were found of three nodes with a similar name, and only eight cases of duplicate names were

discovered, so this was relatively easy to fix manually. It is crucial that the node that becomes the second

in the read counts list has the correct corresponding nodes in the XML files. In case of a mismatch, the

colouring might be wrong. Ideally, this should be solved automatically. This is one of the improvements

that are necessary before publishing FunHoP as a Python package.

7.5.2 Including more databases

FunHoP currently only works for XML files from KEGG, which limits its usage. Ideally, users should be

able to choose which database they want to use, and FunHoP would automatically adjust to their choice.

As the databases use different methods for creating their pathways, this presents a difficult, although not

impossible, challenge. Making specific versions of FunHoP for each of the major databases (such as

Reactome, WikiPathways, and Panther) and letting the user choose based on the type of input would be

possible. Another possibility is to use one specific database format as standard and provide access to other

databases through conversion to this format. If it were possible to convert other formats into one that

FunHoP can recognize and work with, this would be a better and more stable solution than creating a

different version of FunHoP for each individual database.
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7.5.3 Coordinates

A major difficulty in the current version of FunHoP is the coordinates of the nodes. Each node in the

original XML files has both an x- and a y-coordinate, placing the node within the graphical display of

the network. When nodes are expanded, they become larger. The expanded node retains the coordinates

of the original node, meaning that the top of the node is in the same location as before, but the bottom

of the node might be expanded downwards, sometimes creating conflict with the nodes, metabolites, or

links that were placed below the original node. For nodes that are only expanded to include two genes,

this is usually not an issue, but with any more than two this tends to become a problem, which only

grows with an increase in the number of genes. In Paper 2, some of the largest multigene nodes in the

glycerophosphocholine metabolism case study have 21 genes. These come into conflict with all other

nodes, making the network hard to work with.

The interim solution to the coordinate problem for an expanded node was to keep the x-coordinates and

change the y-coordinates for all nodes below, based on the number of genes in the multigene nodes.

Changing the y-coordinates stretches the entire network vertically and means that the user must subse-

quently make a slight adjustment, but this stretching makes adjustment easier, as it separates the nodes

and links from each other.

This solution is not perfect. It stretches the network into a shape that can be easily adjusted, but manual

adjustment by the user is still required. Ideally, all components of the network would have the ‘perfect’

coordinates, similar to the original files. We still do not know how KEGG creates its XML files, or

whether any apps exist that can redraw a network from an XML file into something more useful than the

coordinates in the XML, but to my knowledge, this is complicated. Finding the current solution took a

great deal of trial and error, and it does work, albeit imperfectly. If FunHoP were to become a Cytoscape

app, this would be one of the main areas for improvement.

7.5.4 Example datasets

One of the biggest challenges for potential FunHoP users at present is the lack of example data on which

to test it. Ideally, a simple dataset could ensure that FunHoP is working as intended on local machines,

and the user could see how it was intended to work. A small set of gene expression data, the gene

ID list from KEGG, and a number of KEGG XML files could be used, in addition to output files and

finished figures, to show how FunHoP functions. This is one of the main priorities for future improvements.

7.5.5 Alternative use of FunHoP

FunHoP can be used on many levels, and it is not necessary to go through all the steps in order to gain more

information. For instance, it would be possible to use only the read counts to find interesting pathways in

DAVID (Dennis et al., 2003) or Enrichr (Chen et al., 2013). This might give a different view than doing

the same with transformed p-values. Another example is shown in Paper 3, where only the first part of
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FunHoP is used to expand the networks, and these are then used without read counts or collapsed nodes

and p-values on the node level. This only shows the expanded pathways and neither of the other options

(original or collapsed). Using FunHoP without the read count section means that all types of data that

connect a value to a gene or protein can be visualized in Cytoscape. Therefore, proteomics measurements

could easily be used as a basis for colouring KEGG pathways.

If more data became available, applying them to the networks would be possible. Cytoscape has features

for changing both nodes and links, and if data on enzymatic rates were available, it could be added to the

networks by changing the thickness of links or the borders of the nodes.

7.5.6 How FunHoP could have been created differently

With regard to writing FunHoP, certain things could have been done differently. FunHoP is written in

Python, whereas Cytoscape apps are usually written in Java. It would have been an advantage if FunHoP

was written in Java, as it could be converted into a Cytoscape app much more easily. However, due to a

lack of both Java and app design experience, this was not an option. In its current form, FunHoP can still

be converted into a Python package.

In order to create the best version of FunHoP, a more active testing regime should have been in place from

the start. A number of tests were conducted during the creation process, but without truly satisfactory

structure. A complete testing system would also be important in allowing others to use FunHoP to its

fullest extent.

If the exact nature of FunHoP had been determined before the work started, many things could have been

done differently. However, as the final product was quite different from the initial concept, and it was

made by non-developers, several of these things were simply unknown unknowns. The important thing is

to focus on the lessons that have been learnt and the fun I had during the process.
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Future work

In terms of future work, several paths can be followed. FunHoP in its current state is far from fully

developed and although it is ready to use, it has not reached its full potential. Adjusting coordinates,

removing hardcoding, adding example data, and including other databases are among the many possi-

bilities for improving the method. The top priority could be turning FunHoP into a Python package,

which would make it easier to use. FunHoP could be greatly improved by collaborating with a group with

more experience in software development, specifically a group that has worked on Cytoscape and app

development. This would be extremely helpful in improving some of the more challenging aspects of

FunHoP, such as the coordinates.

This project was initially intended to be about the spatial distribution of genes and metabolites in PCa

tissue, and the first few months we were focusing on this topic. However, the financial planning did not go

through, and the plans had to change. This research is now being conducted by our partners in May-Brit

Tessem’s group (Tessem, 2022), and their work with MALDI imaging will hopefully yield more location

data in the future. Combined with spatial transcriptomics, spatial metabolomics is a promising topic for

further study. This could take the work described in Paper 3 further and also combine different types of

data from the same tissue samples. FunHoP would be useful in this endeavour.

More studies on enzyme kinetics could also be of interest. Our assumptions from Paper 2 would need a

great deal of work to be considered valid. Yet even if they were found to be invalid, the new information

on kinetics could be incorporated into the networks to provide even more information.

With time and resources, improving the manual hard-coding from Paper 3 would be an interesting project.

Getting FunHoP to identify the location of the gene products and modifying the XML files accordingly

would require intensive research and development, but at the same time be a very fun project to take on.

This project could also be extended to look at more specific subcellular localisations, perhaps doing more

than two categories for instance, and see if we could separate the pathways even further. All in all, there

are many exciting topics waiting for someone to pick them up!
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Chapter 9
Conclusion

In the three projects in this thesis we have studied the metabolism of prostate cancer, from different angles

and with different approaches. All three studies have brought us new insight, and the second and the third

have also given us new tools for further studies.

In the first study we looked at differences in the stromal environment in PCa. Our 108 samples were

evaluated using histopathology, and out of these, metabolites were measured in 85 and gene expression

was measured in 78. Multivariate metabolomics and transcriptomics were used to compare the samples

with high levels of reactive stroma versus samples with low levels of reactive stroma. We found that the

samples with high levels of reactive stroma had upregulated genes and metabolites connected to functions

in the immune system and extracellular matrix. This study was an exciting introduction to prostate cancer,

biological and statistical methods, and metabolism.

In the second study we looked into pathway analysis. Visualisation is an important tool when working with

big data, and a well-known method is to use biological pathways from KEGG in Cytoscape. Unfortunately,

both the KEGG webpage and KEGG in Cytoscape (via the KEGGscape app) shows only one gene in each

node, regardless of the number of homologs capable to participate enzymatically in the reaction. Our new

method FunHoP fixes this by expanding each node to show all genes, making it possible for the user to

look at and style the nodes based on their own data. If the user has data from RNA-seq, FunHoP can use

the read counts to show the number for each genes, to see if a node has a dominating gene, and finally it

collapses all the genes in each node into a new number, which can be used in differential expression. Our

two case studies showed how FunHoP could bring new biological insight, as well as improving the visual

understanding for the viewer.

In the final study we took FunHoP a step further, bringing yet another layer of insight to the biological

picture. By adding localisation data from both experimental and prediction data, we could differentiate

between mitochondrial and non-mitochondrial processes, and those that are a mixture. By altering the

KEGG pathways based on our findings, we could compare differential gene expression from cell lines,

based on localisation. We saw that mitochondrial processes are generally upregulated in PCa, and that

localisation data brought a new and interesting aspect to the pathway analysis.
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Overall, this thesis adds a few more pieces to the prostate cancer metabolism puzzle. With many pieces

left, it is my hope that my new tool FunHoP and the approach of using localisation data can be further

adapted and developed into finding the remaining ones.
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Integrative metabolic and 
transcriptomic profiling of prostate 
cancer tissue containing reactive 
stroma
Maria K. Andersen1, Kjersti Rise2, Guro F. Giskeødegård1, Elin Richardsen3,4, Helena Bertilsson2,5, 
Øystein Størkersen6, Tone F. Bathen  1, Morten Rye2,7 & May-Britt Tessem1

Reactive stroma is a tissue feature commonly observed in the tumor microenvironment of prostate 
cancer and has previously been associated with more aggressive tumors. The aim of this study was to 
detect differentially expressed genes and metabolites according to reactive stroma content measured 
on the exact same prostate cancer tissue sample. Reactive stroma was evaluated using histopathology 
from 108 fresh frozen prostate cancer samples gathered from 43 patients after prostatectomy 
(Biobank1). A subset of the samples was analyzed both for metabolic (n = 85) and transcriptomic 
alterations (n = 78) using high resolution magic angle spinning magnetic resonance spectroscopy 
(HR-MAS MRS) and RNA microarray, respectively. Recurrence-free survival was assessed in patients 
with clinical follow-up of minimum five years (n = 38) using biochemical recurrence (BCR) as endpoint. 
Multivariate metabolomics and gene expression analysis compared low (≤15%) against high reactive 
stroma content (≥16%). High reactive stroma content was associated with BCR in prostate cancer 
patients even when accounting for the influence of Grade Group (Cox hazard proportional analysis, 
p = 0.013). In samples with high reactive stroma content, metabolites and genes linked to immune 
functions and extracellular matrix (ECM) remodeling were significantly upregulated. Future validation 
of these findings is important to reveal novel biomarkers and drug targets connected to immune 
mechanisms and ECM in prostate cancer. The fact that high reactive stroma grading is connected to BCR 
adds further support for the clinical integration of this histopathological evaluation.

The tumor microenvironment (TME) has in recent years gained attention for its role in cancer cell and tumor 
development. TME, considered to consist of non-malignant cells and their products, is more genetically stable 
than cancer cells and supports and allows cancer cells to develop1,2. In prostate tumors, TME include activated 
fibroblasts called cancer associated fibroblasts (CAFs), immune cells and vasculature cells. It is often the site of 
chronic inflammation and extracellular matrix (ECM) remodeling, similar to what occurs during wound-healing 
with an increase of activated fibroblasts2,3. Such inflammatory TME is usually referred to as ‘reactive stroma’. In 
prostate cancer, a transition from healthy stroma to reactive stroma has been characterized by a replacement of 
smooth muscle cells by CAFs and immune cells3.

For prostate cancer, the current gold standard for predicting clinical outcome is histopathological evaluation 
through the Grade Group system4. This system sets a grade based on the morphological appearance of prostate 
glands and cancerous epithelial cells. However, the tumor area can contain clinically relevant histopathologic 
information that is not captured by the current grading system. Ayala et al. were the first to develop a grading 
system for reactive stroma in prostate cancer and to show that a higher level of reactive stromal response is 
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connected to biochemical recurrence (BCR)5. Since then, several studies have linked high reactive stroma content 
to a worse clinical outcome, including BCR6–9, development of castration-resistant prostate cancer10 and prostate 
cancer-specific mortality11. In particular, evaluating the tumor stroma was shown to be of extra value in cases 
were the Grade Group system failed to accurately predict outcome6. Although validation and standardization is 
needed, incorporating reactive stroma into the clinical histopathology evaluation, along with Grade Group, shows 
potential to optimize prognostic stratification of prostate cancer patients.

As reactive stroma appears to play a significant role in cancer development12, it is of interest to understand 
its underlying molecular mechanisms. These insights may provide new prognostic markers and therapeutic tar-
gets. Some molecular features of reactive stroma have already been identified. Smooth muscle differentiation 
markers such as calponin and desmin are commonly reduced in reactive stroma3,5,9,10,13. In contrast, vimentin, 
pro-collagen and tenascin-C, markers for activated fibroblasts and ECM remodeling, are elevated in reactive 
stroma in prostate cancer tissue3,10,13,14. Reactive stromal cells have also been suggested to promote angiogenesis 
in the tumor area15. Dakova et al.16 performed global gene expression on laser dissected prostate tissue sam-
ples, identifying several differentially expressed genes between reactive and normal stroma. These included genes 
related to functions such as neurogenesis and DNA repair16. Thus, research on proteins and gene expression has 
revealed changes associated with ECM remodeling, angiogenesis and DNA repair. In contrast, metabolic patterns 
related to reactive stroma content in prostate cancer tissue are currently unknown. Metabolic reprogramming is 
a hallmark of cancer and several metabolic alterations has been identified in prostate cancer tissue compared to 
normal tissue through metabolic profiling, including increase of choline17 and sarcosine18, and decrease of poly-
amine and citrate levels19.

The aim of our study was to combine histopathology determined reactive stromal grading (RSG) with inte-
grative analysis of metabolomics and transcriptomics data from the same prostate cancer tissue sample, thereby 
investigating the molecular characteristics of reactive stroma in prostate cancer. Further we investigated how the 
expression of significant genes and metabolites of reactive stroma are correlated, and investigated biochemical 
recurrence of patients with high reactive stroma content.

Methods
Patients and tissue collection. This study was approved by the Regional committee for Medical and 
Health Research Ethics (REC) central Norway (identifier 4.2007.1890). All experiments were carried out in 
accordance to the ethical regulations of REC. All tissue donors signed a written informed consent.

Tissue used for this study was donated and collected in 2007 and 2008 ensuing radical prostatectomy. None 
of the patients received neoadjuvant therapy prior to surgery. A two mm thick tissue slice was cut from the mid-
dle of the prostate gland perpendicular to the urethra. The slice was snap frozen in liquid nitrogen on average 
15 minutes after surgical removal and stored at −80 °C as previously described by Bertilsson et al.20. Between 
four and eleven core tissue samples (three mm diameter) were later collected from each prostate slice (Fig. 1a). 
In total 158 samples were collected from 43 patients. We obtained at least five years of clinical follow-up from 
the hospital patient records (Braadland et al.21) including T-stage, clinical Gleason score (postoperative), tumor 
volume, preoperative serum prostate specific antigen (PSA) measurements and biochemical recurrence (defined 
as PSA ≥0.2 ng/ml). The clinical Gleason scores were translated into the new Grade Group system as described 
by Gordetsky and Epstein4.

Histopathological evaluation. From one side of each fresh frozen tissue sample, a four µm tick cryosec-
tion was stained with hematoxylin and eosin (HE). All HE-stained slides (n = 158) were evaluated independently 
by two experienced uropathologists (E.R. and Ø.S.). Percentage of cancer, normal epithelium and healthy stroma 
were determined along with Grade Group4. Reactive stroma content was defined as the percentage of stroma that 
was reactive within the tumor area, according to the reactive stroma grade (RSG) system developed by Ayala et al.5.  
Each sample was given a grade ranging from 0 to 3: RSG 0 containing 0–5% reactive stroma; RSG 1, 6–15% reac-
tive stroma; RSG 2, 16–50% reactive stroma and RSG 3, 51–100% reactive stroma. Normal prostatic stroma with 
a high number of smooth muscle cells were characterized by a strong red eosinophilic staining, and the cells by 
having a large cytoplasm, rounded nuclei and organization into bundles (Fig. 2a). When the stroma gets reactive 
there will be a replacement of smooth muscle cells by CAFs and immune cells, and the stroma will appear with 
a paler eosinophilic coloring (Fig. 2b–d). Kappa-statistics was used to calculate a quality score between the two 
pathologists for both Grade Group and RSG22. Later, consensus was reached between the pathologists when there 
was disagreement on RSG. With disagreement on Grade Group, an independent previous histopathological eval-
uation by a third pathologist was used to find consensus20.

Metabolomics. Metabolite data was obtained by high-resolution magic angle spinning magnetic resonance 
spectroscopy (HR-MAS MRS) on fresh frozen tissue samples. HR-MAS MRS spectra were acquired on a Bruker 
Advance DRX600 (14.1 T) spectrometer (Bruker BioSpin, Germany) with a 1H/13C MAS probe. LCModel was 
applied to quantify 23 metabolites from the spectra23,24. Further details of the HR-MAS MRS procedure, spectral 
pre-processing and metabolite quantification are described by Giskeødegård et al.19. Furthermore, samples con-
taining >50% tumor (n = 85) were selected for molecular and statistical analysis to ensure that the metabolomics 
profiles mainly represented tumor areas.

RNA microarray. After HR-MAS MRS, the tissue samples were homogenized and mRNA was extracted. 
Isolated mRNA was amplified with Illumina TotalPrep RNA amplification Kit (Ambion Inc.) and relative gene 
expression was subsequently measured with Illumina Human HT-12v4 Expression Bead Chip (Illumina). A com-
prehensive overview of the protocol and data preprocessing is reported by Bertilsson et al.25. Here we also selected 
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samples with >50% tumor content (n = 78) for further gene expression analysis (GEA). There was an overlap of 
76 samples which were subjected to both metabolite and gene expression analysis (Fig. 1b).

Multivariate and statistical analysis. Biochemical recurrence (BCR) -free survival analysis included 
Kaplan Meier and Cox proportional hazards analysis and were performed with the survival package in the R 
environment. BCR was defined as serum PSA >0.2 ng/mL, confirmed by two independent measurements. 
Time-to-event was set as the number of days between radical prostatectomy and confirmed BCR. Three patients 
were lost to follow-up and two patients received adjuvant treatment before BCR. As the adjuvant treatment could 
be influencing the time to BCR, these patients were removed from survival analysis, resulting in a total of 38 
patients. As multiple samples were collected from each patient, the sample with the highest RSG was selected as 
representative for a patient in survival analysis (patient RSG). Patients were divided into a low RSG (RSG 0 and 
1) group and high RSG (RSG 2 and 3) group due to the low numbers of RSG 0 and RSG 3 patients. Covariates 
included in Cox proportional hazard was low vs high RSG and clinical Grade Group. For Kaplan-Meier, a log-rank 
test was used to calculate significance. In addition, to correct for the possible confounding effect of clinical Grade 
Group and T-stage, a second Kaplan-Meier analysis was performed after removing patients with clinical Grade 
Group ≥4, as this produced the same median Grade Group and T-stage in both the low and high RSG group. 
Pearson correlations between RSG and clinical Grade Group, and RSG and preoperative PSA of the patients were 
also performed.

Multivariate analysis of the metabolite dataset (23 metabolites, n = 85) was performed in PLSToolbox in the 
MatLab 8.6.0 (The Mathworks, Inc, USA) environment. The dataset was preprocessed by autoscaling. Supervised 
orthogonal partial least squares discriminant analysis (OPLS-DA) was used to examine metabolic differences 
between high and low RSG using leave-10%-of-patients-out cross-validation and permutation testing for analyz-
ing model reliability (1000 permutations).

Figure 1. Methodology flowchart. (a) Samples were collected from fresh frozen human prostate tissue 
and cryosections were stained with hematoxylin and eosine. Two pathologists evaluated Grade Group and 
reactive stroma grade (RSG). Samples with >50% tumor content were selected for further metabolomics and 
transcriptomics analysis. Data analysis included survival analysis (Kaplan-Meier and Cox hazard proportional 
analysis) with biochemical recurrence as endpoint, multivariate orthogonal partial least squares discriminant 
analysis (OPLS-DA), linear mixed models (LMM), gene expression analysis (GEA) and Pearson correlation 
between selected genes and metabolites. GEA results were used for enrichment analysis. (b) Venn diagram of 
samples used for metabolomics, transcriptomics and both.
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Univariate analysis of the 23 quantified log-transformed metabolites was performed with linear mixed models 
(LMM) in R with the nlme package26. The relationship between each metabolite concentration and RSG was mod-
eled while correcting for multiple samples per patient. Correct model assumptions were confirmed by qq-plots 
of model residuals.

Univariate GEA was carried out with the lumi and limma packages in R for the 23 444 probes, representing 
16 312 genes. Samples with low RSG were compared to samples with high RSG. The result of the GEA was further 
used to remove duplicated probes so that the dataset only contained one probe per gene. The probe with the low-
est adjusted p-value from the GEA was selected for further analysis. The significantly upregulated and downreg-
ulated genes were separated into two gene lists, and used for enrichment analysis with Enrichr27,28. Results from 
the background library Gene Ontology (GO) Biological Process 2018 were exported.

Pearson correlation between significant metabolites (n = 5) and the most significantly expressed genes 
involved in relevant biological processes (n = 42) was calculated in R. Due to lack of normal distribution, the 
metabolite data was log2-transformed prior to correlation analysis. Five metabolites were selected based on sig-
nificance in LMM analysis and/or a loading score of ≥±3.0 (first latent variable, OPLS-DA). The genes were 
selected based on an adjusted p-value < 0.001 from GEA (n = 98, Supplementary Table S1). These genes were 
manually annotated through genecards.org, and genes with a clear relation to biologically relevant processes were 
selected for correlation analysis (n = 42).

Unadjusted p-values of ≤0.05 were considered significant for univariate tests and LMM on the metabolic data-
set due to a low number of variables (n = 23). Benjamini-Hochberg adjusted p-values ≤ 0.05 were considered sig-
nificant for GEA, enrichment analysis and gene-metabolite correlations. All confidence intervals (CI) were 95%.

Results
Histopathology. A total of 158 samples from 43 patients were histologically evaluated for Grade Group, tumor 
content and RSG (Fig. 1). Before consensus between pathologists was reached on tumor containing samples (n = 108), 
the original evaluations gave a kappa score of 0.64 and 0.30 for Grade Group and RSG, respectively. An overview of 
histopathology and clinical data are listed in Table 1.The majority of samples (n = 48, 55.2%) and patients (n = 24, 

Figure 2. Photomicrographs (x20) of representative hematoxylin and eosinofil stained slides of histopathology 
of prostate tissue cryosections with reactive stroma grade (RSG) 0–3. (a) Normal prostatic tissue with reactive 
stromal grade (RSG) 0 (<5% reactive stroma). Stroma is mostly consisting of smooth muscle cells making 
up bundles. (b) RSG 1 (6–15% reactive stroma) and Grade Group 4. The majority of stroma still has a strong 
eosinophilic stain, with a few cells with paler staining appearing, in addition to the presence of more fibroblasts. 
(c) RSG 2 (16–50% reactive stroma) and Grade Group 3. The reactive stroma is more prominent by a weaker 
eosinophilic stain. (d) Sample with RSG 3 (>50% reactive stroma) and Grade Group 3. Here, nearly all normal 
stroma is replaced by reactive stroma with pale eosinophil staining.
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63.2%) were scored as RSG 1, while the least prevalent score was RSG 3 with four samples (4.6%) and two patients 
(5.3%). There was a clear correlation between clinical Grade Group and RSG of patients (R = 0.56, = . ∗ −p 0 23 10 3). 
There was also a weak, but significant, correlation between RSG and Grade Group in the samples (R = 0.25, p = 0.018). 
There was no correlation between preoperative PSA levels and patient RSG (R = 0.015, p = 0.93).

High RSG predict shorter BCR-free survival independent of Grade Group. A total of 38 patients had 
sufficient clinical follow-up data and were included in survival analysis where low RSG (n = 26) was compared to high 
RSG (n = 12). Kaplan-Meier analysis showed significantly better BCR-free survival in patients with low RSG, having 
92.3% recurrence-free survival, and high RSG patients having 25.0% recurrence-free survival after 5 years of follow-up 
( = . ∗ −p 2 09 10 7) (Fig. 3a). However, the low and high RSG patient groups had a different median clinical Grade 
Group of 2 and 4, respectively (two-sided t-test, p = 0.013). In addition, these two groups also had a significant different 
median T-stage of T2c for low RSG and T3a for high RSG (two-sided t-test, = . ∗ −p 0 16 10 3). A second Kaplan-Meier 
analysis was therefore performed for patients with Grade Group ≤3, resulting in a total of 29 patients. This second 
selection of low (n = 24) and high RSG (n = 5) patients had the same median Grade Group of 2 and median T-stage of 
T2c and still displayed a significant recurrence-free 5-year survival difference (BCR-free survival 95.8% for low RSG 
and 60% for high RSG, p = 0.009) (Fig. 3b). Multivariate Cox proportional hazard model of all 38 patients provided 
hazard ratios of 16.44 (p = 0.013, CI = 1.81–149.20) for RSG and 1.95 (p = 0.018, CI = 1.12–3.40) for Grade Group.

Reactive stroma shows metabolic alteration. Multivariate OPLS-DA analysis using quantified values 
for 23 metabolites showed a significant difference between high and low RSG (p = 0.014, accuracy 64.9%, sensi-
tivity 75.0% and specificity 54.9%, Fig. 4a,b). The loadings depicted in Fig. 4b show that there are lower levels of 
citrate and spermine and higher levels of leucine in samples with high RSG.

RSG 0 RSG 1 RSG 2 RSG 3 Total

Samples with >50% tumor used for metabolomics (n = 85)

Samples (percent) 11 (12.9%) 47 (55.3%) 23 (27.1%) 4 (4.7%) 85

Median Grade Group (range) 3 (1–5) 1 (1–5) 3 (1–5) 4.5 (3–5) 2 (1–5)

Mean tumor percent (range) 89.5 (70–100) 82.3 (60–92.5) 83.2 (62.5–100) 88.1 (72.5–97.5) 83.6 (60–100)

Samples with >50% tumor used for transcriptomics (n = 78)

Samples (percent) 10 (12.8%) 41 (52.3%) 23 (29.5%) 4 (5.2%) 78

Median Grade Group (range) 2.5 (1–5) 1 (1–5) 3 (1–4) 4.5 (3–5) 2 (6–10)

Mean tumor percent (range) 87.5 (70–100) 83.2 (57.5–95) 83.2 (62.5–100) 88.1 (72.5–97.5) 84.0 (57.5–100)

Clinical variables of Patients (n = 38)

Patients (percent) 2 (5.3%) 24 (63.2%) 10 (26.3%) 2 (5.3%) 38

Recurrence, 5 year follow-up (percent) 0 1 (4.2%) 7 (70.0%) 1 (50.0%) 11 (28.9%)

Mean age at operation (range) 58.5 (56–61) 61.4 (48–69) 62.1 (48–68) 68.5 (68–69) 61.8 (48–69)

Median Grade Group (range) 2 (2) 2 (1–5) 3.5 (1–5) 5 (5) 3 (1–5)

Median pathological stage (range) T2c (T2c) T2c (T2a–T3b) T3a (T2c–T3b) T3b (T3a–T3b) T2c (T2a–T3b)

Mean preoperative serum PSA (range) 8.0 (5.2–10.7) 10.8 (3.7–45.8) 10.6 (5.2–17.0) 9.75 (5.6–13.9) 10.3 (3.7–48.8)

Table 1. Histology of samples and clinical data of patients. RSG = reactive stroma grade, PSA = prostate 
specific antigen.

Figure 3. Kaplan-Meier plots of biochemical recurrence (BCR). Kaplan-Meier analysis were performed on (a) 
all patients (n = 38) and (b) patients with low-to-medium Grade Group (≤3) (n = 29).
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Univariate LMM testing of each quantified metabolite modeled against RSG values 0–3 resulted in four sig-
nificant metabolites (Fig. 4c). Taurine (p = 0.018) was found at elevated levels, while citrate (p = 0.027), spermine 
(p = 0.031) and scyllo-inositol (p = 0.009) were found at lower levels with increasing RSG.

Genes involved in immune responses and ECM remodeling are upregulated in reactive 
stroma. Gene expression analysis (GEA) was performed comparing high RSG to low RSG. A total of 609 and 
471 genes were up- and downregulated, respectively. Enrichment analysis was performed with Enrichr using 
gene lists of significantly up- and downregulated genes, which produced 339 significantly upregulated and seven 
significantly downregulated enriched biological process terms in high compared to low RSG (Supplementary 
Table S2). All biological terms with a combined score (calculated by Enrichr) over 30 are presented in Fig. 5. Of 
these terms (n = 22), all were upregulated and 18 were related to the immune system, three to cell signaling and 
one was related to extracellular matrix.

Correlation between selected genes and metabolites. A total of 42 upregulated genes and five metab-
olites (spermine, taurine, scyllo-inositol, leucine and citrate) were selected for correlation analysis. Immunology 
and ECM were considered relevant biological processes to reactive stroma based on our enrichment results and 
the literature29,30, and were along with level of significance, used as selection criteria for the genes. Nine genes 
were related to ECM and 33 were related to immunology, which could be further categorized into various differ-
ent functions of the immune system and ECM (Fig. 6). Of the selected genes, four immunology-related genes, 

Figure 4. Metabolite analysis in samples with high and low reactive stroma grading (RSG). (a) Scores plot 
and (b) loadings plot from OPLS-DA model where low RSG (RSG 0 and 1, n = 58) were compared to high 
RSG (RSG 2 and 3, n = 27). Variables in the loadings plot are color-coded by variable importance in the 
projection (VIP), which is an estimate of each variables contribution to the model. Metabolites with a loadings 
score ≥3.0 or ≤−3.0 are indicated by * (c) Univariate linear mixed model (LMM) regression coefficients 
with increasing RSG. Error bars represent standard error and significant metabolites are indicated by *. 
Abbreviations: CA = classification accuracy, GPC = Glycerophosphocholine, GPE = Glycerophosphoethanol, 
PC = phosphocholine, PEA = phosohpoethanolamine and GPE = Glycerophosphoethanol.
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CTSC, AIF1, CD8A and CD86, were not correlated with any of the metabolites. Taurine was correlated with all the 
remaining 38 genes, while scyllo-inostol only correlated with one gene, C1QA. Citrate and spermine were neg-
atively correlated to all genes, while taurine, scyllo-inositol and leucine were positively correlated with all genes 
that had a significant correlation.

Discussion
In this study we have demonstrated that reactive stroma content in human prostate cancer tissue is associated with 
metabolic and transcriptomic alteration, and significantly influence biochemical recurrence. The gene expression 
analysis showed that reactive stroma is clearly connected to inflammatory responses, one of the triggers of cancer 
initiation31. Our results suggest that grading of reactive stroma could be a valuable supplement to Grade Group.

Although the Grade Group system is currently the gold standard for assessing patient prognosis and aggres-
siveness of prostate cancer, there is still a need for improvements especially within Grade Group 2 and 329. 
Histological reactive stroma grading could provide further strength to the Grade Group evaluation and improve 
patient prognosis assessment6–9,11. In our study, both the Kaplan-Meier and the Cox analysis showed a signifi-
cantly worse BCR-free survival in patients with a high compared to low RSG, even when accounting for Grade 
Group (p = 0.009 and p = 0.013, respectively) (Fig. 3).

This indicates that reactive stroma content can provide additional information beyond the Grade Group sys-
tem used for current patient prognosis assessment in prostate cancer, which is in line with previous studies6–9,11. 
However, RSG is not entirely independent of Grade Group, as illustrated by our correlation analysis and previous 
studies7,11,14. This suggest that a reactive stromal response is coevolving with cancer aggressiveness and supporting 
tumor progression.

Our statistical analysis of 23 different tissue metabolites indicated that the levels of spermine, citrate, taurine, 
leucine and scyllo-inostol were different between low and high RSG (Fig. 4). Since RSG and Grade Group are 
correlated with each other, it is not possible to robustly assess whether the changes in these metabolites are due to 
reactive stroma or Grade Group. Spermine and citrate are normally found at high levels in healthy prostate tissue 
compared to other human tissues, as these metabolites are secreted by the gland32. We have previously shown 
lower spermine and citrate levels to be predictors of aggressive cancer19,21. Reduced citrate and spermine levels 
have not previously been connected to typical processes involved in reactive stroma, such as inflammation and 
ECM remodeling as presented in this study. It is therefore possible that the reduced levels of citrate and spermine 
are a result of tumor cell growth rather than high RSG, and further studies are necessary to assess the connection 
to inflammation and ECM remodeling.

Citrate and spermine concentrations were negatively correlated with selected genes (selected based on signif-
icance level in GEA), while leucine and taurine concentrations were positively correlated with the selected genes 
(Fig. 6). A high number of significant correlations are to be expected since both the genes and the metabolites 
were selected based on analysis which compared low RSG to high RSG. However, our analysis reveals in which 
direction these metabolites and genes interact. Interestingly, taurine was significantly positively correlated with 
the highest number of genes (38 of 42). Taurine is known to be a prevalent metabolite in most tissues and one of 
its functions is protection against oxidative stress produced by inflammatory reactions33. In prostate cancer, an 
elevation of taurine levels compared to healthy tissue is reported34,35, but no significant difference in taurine has 
been found in this cohort, neither between cancer and non-cancer tissue nor between low and high Grade Group 
prostate cancer19. Significantly higher levels of taurine in reactive stroma (p = 0.018) suggest that elevated taurine 
levels may be a response to inflammation in reactive stroma. Scyllo-inostol concentrations were significantly 
elevated in high RSG compared to low RSG in univariate (p = 0.009), but not multivariate analysis. Although pre-
viously found to be elevated in prostate cancer34, no biological process has been suggested and its potential role in 
prostate cancer remains unclear. The amino acid leucine is another metabolite found at higher levels in high RSG 

Figure 5. Enrichment analysis of Gene Ontology (GO) Biological Processes using Enrichr. Analysis was based 
on output from gene expression analysis (GEA) comparing low RSG (RSG 0 and 1) to high RSG (RSG 2 and 3). 
The figure includes all biological process terms with a combined enrichment score over 30.
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samples (Fig. 4b). Leucine is a key amino acid of proteoglycans such as decorin and biglycan. These molecules 
function as building blocks during ECM remodeling and are found with elevated expression in tumor stroma36. 
Biglycan expression was upregulated among high RSG samples in this study ( = . ∗ −p 1 23 10 4) and is previously 
reported to attract pro-inflammatory macrophages in both cell culture and mice37. In sum, our metabolic profile 
appears to be linked to inflammation and ECM remodeling.

The results from gene enrichment analysis indicated that genes involved in immunity, cell signaling and extra 
cellular matrix were particularly important when comparing low and high RSG (Fig. 5). Cellular signaling path-
ways are known to be reprogrammed in cancer cells38 and our results from the enrichment analysis may therefore 
represent both cancer cell and the cross-talk between cancer cells and reactive stroma. One known example is 
transforming growth factor-β (TGF-β), significantly upregulated in our GEA (p = 0.003, Supplementary Data S1), 
which is secreted by cancer cells, activates fibroblasts and promotes ECM remodeling39. Remodeling of the ECM 
is, together with inflammation, a feature of the reactive stroma40, and is parallel to chronic wound repair.

Figure 6. Correlation analysis between selected metabolites and genes. Values are Pearson correlation 
coefficients. Values marked with red (positive correlation) or blue color (negative correlation) were significant 
after Benjamini-Hochberg adjustment, while values marked with light grey were non-significant. Color 
intensity corresponds to the correlation coefficient value.
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Among the genes which were selected based on level of significance between low and high RSG and their 
involvement in immunity and ECM remodeling, we found 12 genes that were specifically involved in pathogen 
responses, such as phagocytosis, pathogen pattern recognition and antigen processing (Fig. 6). Additionally, bio-
logical processes related to interferon signaling were particularly enriched (Fig. 5). Interferons are a group of 
signaling proteins which are secreted from cells as a response to pathogen infections41. Infectious pathogens like 
bacteria and viruses may be involved in chronic inflammation and further progression of cancer42. In previous 
studies different pathogens were correlated with prostate cancer initiation, including high risk human papil-
loma virus (HR-HPV)43, Enterobacteriaceae species44 and Porpionibacterium acnes44–47. In our study, both the 
genes CD6 and CD14, which are directly involved in recognition of surface bound bacterial lipopolysaccharide 
(LPS)48,49, were expressed higher in high RSG samples. The fact that genes specifically involved in both recognition 
and destruction of pathogens are among the most highly expressed genes in high RSG, suggest the presence of 
infectious agents contributing to the reactive stromal response. Future studies using sensitive methods suitable 
for detecting suspected pathogens are needed.

Several genes involved in immune cell activation were differentially expressed between high and low RSG 
(Fig. 6). Many of these genes are involved in regulation of inflammatory responses, by modifying the functions of 
T-cells, macrophages and natural killer cells, and can either be pro-inflammatory or inhibit immune responses. 
These genes include CCL5 and CSF1R. CCL5 is a pro-inflammatory chemokine that attracts immune cells such as 
macrophages, T-leukocytes, eosinophils and basophiles50. CCL5 has previously been linked to cancer progression 
in prostate51. CSF1R is a pro-inflammatory receptor mainly found on macrophages and monocytes. It is thought 
to trigger recruitment, growth and proliferation of these cells in cancer, and blocking this receptor was found to 
suppress tumor growth in combination with irradiation therapy in prostate cancer patients52. These data indicate 
that the tissue is inflamed by the actions of an array of immune cells.

Several genes related to remodeling of the ECM were upregulated in reactive stroma in this study (Fig. 6). One 
of the key contributors to reactive stroma is a group of activated fibroblasts, CAFs. The function of these cells is 
to remodel the ECM53. CAFs have an elevated production of α smooth muscle actin (α-SMA) and fibroblast acti-
vation protein (FAP) compared to other cells in the tissue53,54. FAP is selectively expressed by activated fibroblasts 
during either wound-healing responses or by CAFs in epithelial cancers55,56, and was found to have increased 
expression in high RSG in our cohort (p = 0.001). Expression of α-SMA is also a key characteristic of CAFs, but it 
was not found to be differentially expressed in reactive stroma of this study (p = 0.34). A possible explanation for 
this observation is that α-SMA is also produced by smooth muscle cells40, so any increase in fibroblast-derived 
α-SMA may be hidden by a reduction of smooth muscle-derived α-SMA.

Collagen is the most abundant type of protein making up the ECM, and various collagen genes had increased 
expression in high RSG samples in our study. In cancer, breakdown and re-deposition of collagen is common and 
causes cancer progression through destabilization of cell polarity and cell-to-cell adhesion57. Collagen building is 
thought to be partly organized by the proteoglycan biglycan58. Biglycan is encoded by the gene BGN, which was 
higher expressed in high RSG ( = . ∗ −p 0 12 10 3). Up-regulation of BGN has previously been linked to poor prog-
nosis in prostate cancer59. Another proteoglycan encoding gene which were higher expressed in high RSG, 
MXRA5, has a similar function to BGN and is associated with several forms of cancers60. These findings reflect the 
remodeling of ECM which occurs in reactive stroma, and suggest that a higher number of CAFs are likely present 
due to the high expression of FAB, a selective marker for activated fibroblasts.

Even though stromal grading shows clinical potential, RSG evaluation will still need standardization before it 
can be implemented in the clinic, clearly indicated by the kappa score for RSG (κ = 0.30) which was considerably 
lower than for Grade Group (κ = 0.64). To our knowledge, no kappa score was included in any of the previous 
published studies, and it is therefore not possible to compare the robustness of our evaluation to others. Progress 
are being made to optimize characterization of reactive stroma61 and there is a need to quality check and quan-
tify the variation between individual pathologists. In addition, evaluating RSG on cryosections caused further 
limitation in this study due to common lower staining quality compared to sections from formalin fixed paraffin 
embedded tissue. There is higher requirement for section quality and staining when assessing RSG compared to 
assessing Grade Group.

In this study we have demonstrated that reactive stroma grading of prostate cancer offer additional prognostic 
value as a supplement to the clinical Grade Group assessment. However, for applying RSG in the routine clinical 
assessment, more standardized scoring criteria is needed. Metabolic and translational differences between sam-
ples with high and low reactive stroma content were also identified. In particular, genes related to immunology 
and ECM remodeling were upregulated in samples with high reactive stroma content. Molecular understanding 
of the reactive stroma may lead to new diagnostic and therapeutic tools. Identifying therapeutic targets residing 
in reactive stroma, could be of particular benefit due to the higher degree of genetic stability compared to cancer 
cells. Hence, such therapeutic targets might be less prone to treatment resistance.
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Abstract Cytoscape is often used for visualization and analysis of metabolic pathways. For exam-

ple, based on KEGG data, a reader for KEGGMarkup Language (KGML) is used to load files into

Cytoscape. However, although multiple genes can be responsible for the same reaction, the KGML-

reader KEGGScape only presents the first listed gene in a network node for a given reaction. This

can lead to incorrect interpretations of the pathways. Our new method, FunHoP, shows all possible

genes in each node, making the pathways more complete. FunHoP collapses all genes in a node into

one measurement using read counts from RNA-seq. Assuming that activity for an enzymatic reac-

tion mainly depends upon the gene with the highest number of reads, and weighting the reads on

gene length and ratio, a new expression value is calculated for the node as a whole. Differential

expression at node level is then applied to the networks. Using prostate cancer as model, we inte-

grate RNA-seq data from two patient cohorts with metabolism data from literature. Here we show

that FunHoP gives more consistent pathways that are easier to interpret biologically. Code and

documentation for running FunHoP can be found at https://github.com/kjerstirise/FunHoP.

Introduction

Metabolic pathway analysis is a common framework for inter-

preting large-scale omics data and revealing functional trends
and patterns in known biological multi-gene pathways.
Important curated resources of metabolic pathways are the

Kyoto Encyclopedia of Genes and Genomes (KEGG) [1,2],
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Reactome [3], Panther [4], and similar knowledge bases [5].
Such resources are increasingly integrated with other knowl-
edge bases, as can be seen for example for KEGG [6]. Several

approaches can be used for analyzing metabolic pathways in
the context of general network representations [7], and recent
tools like eXamine [8] and Orthoscape [9] are relevant exam-

ples. For transcriptomics, an often-used approach is to map
differentially expressed genes (DEGs) to known biological
pathways, for example from KEGG. Such pathway represen-

tations can then be analyzed and visualized with commercial
tools like Pathway Studio (www.pathwaystudio.com/) or
iPathwayGuide (www.advaitabio.com/ipathwayguide.html),
or free tools like CellDesigner [10] or Cytoscape [11].

In these tools, metabolic pathways are generally displayed
as a network of metabolic transitions, where each transition
is associated with a node representing the enzyme responsible

for the transition. Each node typically represents a separate
child from a structured pathway file, such as XML format.
However, a challenge occurs when a transition from one

metabolite to another can be catalyzed by more than one pos-
sible enzyme, i.e., by functionally homologous protein families,
or functional homologs [12]. This is best illustrated by a typical

example from KEGG. In the histidine metabolic pathway
(KEGG: hsa00340), the four paralogs of NAD(P)+ dependent
aldehyde dehydrogenase (ALDH3A1, ALDH1A3, ALDH3B1,
and ALDH3B2, KEGG node index 1.2.1.5, Figure 1A) can

all catalyze the transition from methylimidazole acetaldehyde
to methylimidazole acetate. However, KEGG displays only
the first gene, ALDH3A1, both in the website and in the

XML file. In the website, the user can hover the mouse pointer
over the gene in question to see any functional homologs, and
the XML file does contain the KEGG IDs to all of them,

although the corresponding gene names are not available in
the file. In most conditions and cell types, one of these paralogs
might be the preferred for the enzymatic transition, but in cer-

tain conditions one or several of the other three paralogs may
become important, which should be taken into account.
Though the selected example contains only four paralogs,
the number of alternative enzymes can exceed 30 for some

transitions, which complicates both visualization and interpre-
tation of such nodes in the current framework. An example of
a large node is the PLA2G4B node with 21 genes shown Fig-

ure 1B. In particular, the conclusion as to whether a node is
overall up- or down-regulated will depend on the degree of dif-
ferential expression of each gene (fold change and/or P value),

the relative expression level of each gene in the node, and the
enzymatic efficacy of the protein. The challenges regarding
nodes with multiple genes are thus twofold. First, there is a
need for data that can help us identify the most important

enzyme(s) in conditions where multiple genes are able to per-
form the same reaction. Second, there is a need for improved
visualization strategies to convey the relative importance of

different enzymes with overlapping function when viewing bio-
logical networks from databases such as KEGG.

Cytoscape is a common tool for pathway visualization and

analysis, often with data from KEGG. Pathways of choice can
be downloaded from KEGG as KGML XML files (KEGG
Markup Language, in XML format) and imported into Cytos-

cape using one of the many apps, such as KEGGscape [13]. In
Cytoscape, the user can define styles, highlight nodes and/or
edges, or change properties (e.g., color, thickness, or shape
of both nodes and edges based on uploaded data, such as gene

expression or protein data). Layouts, statistical analyses, or
specific apps with certain abilities can be applied to analyze
the network in question. Importing the pathway is a crucial

part of the analysis. The limitation in the KEGG XML files
and/or KEGGScape of only showing the first of potentially
multiple genes in each node has consequences for both analysis

and interpretation (Figure 1), since the missing expression data
of the remaining genes in the node makes it impossible to con-
clude on the overall gene expression associated with each node.

It would be a huge advantage if one could expand the analysis
to include differential expression of all genes in a node, and
visualize the expression levels and associated differences for
nodes consisting of multiple genes. This can be used to con-

clude on the overall up- or down-regulation at the node level,
and suggest which gene(s) in the node that may have the lar-
gest influence on the overall activity.

Other options for importing KEGG XML files are
CyKEGGParser [14] and CytoKEGG (http://apps.cytoscape.
org/apps/cytokegg). CyKEGGParser discusses the topic of

paralogs being grouped into single nodes, and their solution
is to create new separate nodes for each of the genes within
a multi-gene node. CytoKEGG is used to search and import

KEGG pathways into Cytoscape. Dealing with multiple genes
in the same node has also been discussed by others in a non-
Cytoscape related context. The Bioconductor package Gra-
phite [15] converts pathway topology to gene networks, and

uses a combination of data from three curated databases
(KEGG, Reactome, and BioCarta/NCI/NPID [16]) to create
more complete networks. For the pathways from KEGG,

Sales et al. [15] discuss how nodes with multiple genes may rep-
resent two different types of groups: protein complexes
(‘‘AND groups”, all genes should be considered together) or

alternative proteins for the same function (functional homo-
logs; ‘‘OR groups”, considering one gene at the time). This sec-
ond group (OR) can be expanded into pathways without any

connections between the alternative genes/proteins. In another
publication, Wang et al. [17] acknowledge nodes with multiple
genes by coloring the same node with multiple colors repre-
senting the different gene expression values. In addition, the

number of genes in each node is displayed next to it. Although
this approach can work for nodes with a limited number of
genes, it will become harder to interpret when the number of

genes increases. Additionally, neither of these approaches
show the expression level for each gene, which can help to
identify the genes that are most likely to be responsible for

the reaction in a given node.
In nodes with multiple functional homologs, the relative

expression levels of the genes in a node can be an accessible
and useful measure to assess the relative importance of the

individual enzymes for a given condition. For microarrays,
the previous golden standard for gene expression analysis, dif-
ferences in probe-affinities made it difficult to assess the rela-

tive expression levels between genes in an experiment [18].
However, the replacement of microarrays by RNA sequencing
(RNA-seq) has now made comparison of expression levels fea-

sible [18–21]. Data from RNA-seq could therefore be utilized
to improve the analysis of the overall node activity, as well
as the individual contribution of each gene in the node for a

given metabolic pathway.
Here we present Functionally Homologous Proteins (Fun-

HoP): a method to improve gene expression pathway analysis
and visualization. FunHoP improves the network visualization
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and analysis with respect to differential expression of nodes

with multiple genes, and the relative contribution of each gene
in a node. In particular, FunHoP aggregates gene information
for each KEGG node consisting of multiple genes by using

RNA-seq gene expression data for each gene, assuming that

genes in the same node represent overlapping enzymatic poten-
tial (i.e., functional homologs). We show that prioritizing
genes based on read counts from RNA-seq will improve the

Figure 1 Comparison of pathway XML files in Cytoscape to the same pathways in KEGG

A. A schematic of histidine metabolism pathway. All nodes in the original Cytoscape display show one single gene, including the

ALDH3A1 node. The ALDH3A1 node from KEGG actually contains four genes: ALDH3A1, ALDH1A3, ALDH3B1, and ALDH3B2. B.

A schematic of glycerophosphocholine metabolism pathway (part). The PLA2G4B node contains 21 genes, despite only showing one in

KEGG.
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interpretation of differential expression results when analyzed
with KEGGmetabolic pathways. By gaining information from
multiple genes for each node as input for differential expres-

sion analysis, we receive more biologically relevant and reliable
pathways. Using prostate cancer (PCa) as a model system, we
present two case studies showing how gene expression data are

able to explain previously observed metabolic changes when
FunHoP is applied.

Method

RNA-seq data for PCa (read counts and gene identifiers) were
downloaded from The Cancer Genome Atlas (TCGA) [22] at

https://portal.gdc.cancer.gov/repository. For the Prensner
cohort [23], RNA-seq raw reads in fastq-format were down-
loaded with approval from The database of Genotypes and

Phenotypes (dbGap: phs000443.v1.p1, project #5870) at
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?
study_id=phs000443.v1.p1.

Raw RNA-seq reads were mapped to the hg19 transcrip-
tome using TopHat2 [24], and featureCounts [25] was used to
assign the reads to each gene. Voom [26] was further used for
differential expression analysis. DEGs with a P value below

0.05 were extracted, and P values were log2 transformed by:

Value ¼ log2P value� ð�10Þ � regulationð Þ ð1Þ
where regulation was defined as 1 for upregulated genes (pos-
itive fold-change) and �1 for downregulated genes (negative

fold-change). Average RNA-seq read count for each gene
was calculated using the mean of the two average values calcu-
lated over cancer and normal samples, respectively. All read

counts were adjusted for gene lengths by a factor estimated
by taking the gene length of the respective gene (sum of exons)
divided by the average gene length over all genes.

In this study, 85 pathways of relevance to human metabo-
lism, from subcategories 1.1 up to and including 1.11, were
downloaded with human genes from the KEGG pathway
database [27]. 71 of these did not contain any ‘‘line” nodes,

and were used further (see Tables S1 and S2). The initial path-
way analysis was performed by loading original KEGG XML
files into Cytoscape (v. 3.4.) via the KEGGScape app and

using a color gradient based on differential expression. All dis-
plays of differential expression used the same gradient: values
were found on a scale from �1200 (black) to 600 (dark green),

via �600 (purple), �300 (bright red), 0 (light yellow), and 300
(bright green). All values below zero showed downregulated
gene expression, and all values above zero showed upregulated

gene expression.
To expand the XML files to show all the genes in all the

nodes, the list of human IDs and corresponding gene names
was downloaded [28]. Using the ElementTree XML API, name

strings in nodes with more than one gene were extended to
include only the human names for all these genes (File S1).
KEGG’s solution to protein complexes was used as a base,

and nodes with more than one gene were expanded. The
expanded nodes were made by creating a new child for each
of the genes that were not included in the initial child, and

combining the new children along with the old child in a com-
mon node. The gene nodes use the same coordinates as the
original gene, making it appear in the same place. To distin-
guish gene nodes from protein complexes, the gene nodes were

made bigger than the default size, giving them a white field on
each side. Differential gene expression was first used in combi-
nation with the expanded networks, showing how all the genes

in the pathway were expressed.
To make more interpretable networks yet containing all the

information, all genes within a node were aggregated into one.

Name strings were extracted from all the network files, and the
lists of unique names were defined as unique nodes. These
included both single-gene and multiple-gene nodes. All gene

nodes were named on the form ‘‘gene1-Bx”, where ‘‘gene1”
is the name of the first gene in the gene-name string for a given
node, and ‘‘x” is the number of genes within the node. For
single-gene nodes x is 1. The total read count for a node was

found by adding the read counts for all genes in the node,
and this value was used for differential expression analysis at
the node level. The contribution of each gene to expression

level within a node was calculated as the fraction of the read
count for that gene to the total read count of the node. The
read count for each gene was used to style for expanded net-

works according to the relative expression levels of the genes.
Nodes were colored on a scale from 0 to �50,000 read counts,
changing from white to dark blue via shades of pink and blue.

The aggregated network files were adapted to work with the
aggregated network gene node names. Changing the name
strings to reflect the first gene name and the number of genes
made the string similar to the gene node name format, and

the network files could again be used together with the output
from differential expression. The previously used style for dif-
ferential expression was again used for the aggregated

networks.
To show that the method works, two case studies were per-

formed: the histidine metabolism pathway and a minor part of

the metabolic pathway for glycerophosphocholine (GPC). The
original files from KEGG were run through FunHoP’s steps of
creating expanded and aggregated networks, as explained

above, analyzed with differential expression, and visualized
as expanded networks at the gene level and aggregated net-
works at the node level.

Results

Expanding nodes and using RNA-seq counts to improve pathway

analysis

To visualize KEGG pathways using information from all the
individual genes involved, each node containing multiple func-
tional homologs was expanded to show all genes in the node.
Nodes were expanded by adding a new child for each gene

belonging to the node, in addition to the existing child repre-
senting the default gene displayed in the pathway from KEGG
in Cytoscape by KEGGScape. Old and new children of a node

were then connected in a type ‘‘group” child, using the same
strategy as for protein complexes (AND groups). To visually
distinguish nodes with functional homologs (OR) from protein

complexes (AND), the nodes were made bigger than the
default size, giving them a white border on each side
(Figure 2A).

We then used the average RNA-seq read count for each gene

(normalized against gene length), generated from patient sam-
ples in two available PCa cohorts [22,23]. Aggregated average
read counts for all genes in each node were used to define the
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total expression level of each node in the network. Moreover,
the relative read count for each gene in a node divided by the
total read count for the node was used to define the relative

expression contribution from each gene in a node.
To show the effect of FunHoP, original pathways were

color-coded according to log-transformed P values from dif-
ferential gene expression analysis, here comparing PCa tissue

with normal prostate tissue. For showing individual genes
within an expanded node, each gene was color-coded by both
P values and the average read count for the gene to indicate

expression level, giving two expanded networks that were com-
parable. The final representation shows the network with
aggregated nodes, color-coded by differential expression based
on overall read counts within a node.

Figure 2 Validation of the FunHoP approach

A. The ALDH3A1 node expanded to show individual genes styled by differential gene expression. B. The expanded PLA2G4B node with

its 21 genes. The PLA2G4B gene itself is not found in the dataset, leading to the whole node to be seen as not significant when only

PLA2G4B is shown, although the other hidden genes are significantly differentially expressed. C. Plots of log2 read count from TCGA and

Prensner (top) and gene abundance ratio in TCGA vs in Prensner (bottom). D. Gene abundance ratios within the PLA2G4B node from

Figure 2B are comparable between the TCGA and Prensner cohorts.
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Assumptions regarding gene families and expression levels

We introduce two important assumptions for the biological
interpretations in FunHoP. First, we observe that genes
assigned to the same node usually belong to the same func-

tional gene family or are closely related, as in the case of the
nodes for the aldehyde dehydrogenases (Figure 2A) and phos-
pholipases (Figure 2B). Thus, we make the assumption that the
gene products also have similar function, in particular that

they are able to catalyze the same main reaction, and describe
them as enzymes with homologous function, or functional
homologs. Therefore, we assume that each homolog can cat-

alyze the reaction at a comparable rate. This is obviously an
oversimplification, but also a necessary simplification given
the general lack of rate data for most cellular processes.

Second, we assume that read counts from RNA-seq are
indicative of the relative expression level of genes within a sam-
ple cohort. To check this assumption, we used RNA-seq read

counts from two independent datasets. We see that the gene
expression levels based on RNA-seq read counts are highly cor-
related (Figure 2C). We also find that expression ratios for indi-
vidual genes in a node are correlated (Figure 2D). In particular,

there is a very good correspondence for genes having particu-
larly high (>0.9) or low (<0.1) ratios, which shows that
RNA-seq data can robustly identify genes with a very high or

very low relative abundance. This pattern is also evident when
looking at individual genes within a node with high complexity,
as the ratio for each gene within the node follows the same trend

independent of which dataset we used (Figure 2D). The highly
expressed PLA2G2A is clearly dominant in both datasets, the
genes with very low number of read counts are the same, and
the genes identified with few and intermediate number of read

counts are also the same, though the relative ratios vary some-
what among the intermediate genes in the two datasets.

Under these assumptions, a gene’s contribution to the over-

all node activity is proportional to its expression level. This
information becomes particularly useful in situations where
one specific gene is dominating within a node. An example

of this is the PLA2G4B node in the glycerophospholipid meta-
bolism pathway (KEGG: hsa00564). The current Cytoscape/
KEGGScape/KEGG framework only shows PLA2G4B, which

is not found in the TCGA dataset, and hence the node seems to
be not significant in the pathway. When the node is expanded,
we see all 21 genes or functional homologs. By comparing the
read counts for each gene, we see how PLA2G2A is expressed

at a level that is ten times higher than the second one on the list
(Figure 2B). Here, the darkest blue corresponds to �50,000
read counts, whereas the white/pink/light blue corresponds

to <5000 read counts. The genes indicated in light pink have
<10 read counts, and the ones in white are not expressed.
These genes will most likely not contribute significantly to

the pathway in this case. The KEGG default gene PLA2G4B
is not found in the TCGA dataset, and has a low expression
in the Prensner dataset. In this case, it is reasonable to assume
that PLA2G2A is the main driving force for the transition rep-

resented by the node.

Case studies

To investigate the impact of FunHoP on real biological inter-
pretation of networks, we used PCa as a model system for two

case studies. Metabolic studies have identified significant
changes in metabolites in both histidine and glycerophospho-
lipid metabolism pathways, but gene expression changes in

the original network models were unable to explain the
observed metabolic differences. Our aim was to investigate if
FunHoP could identify the possible changes in expression

levels leading to the observed changes in metabolites. The
dataset from TCGA was further used in the following case
studies due to its high number of samples and thereby statisti-

cal power.

Case study 1: histidine metabolism

The first case study looks at the histidine metabolism pathway.

It has been shown that histidine is elevated in PCa compared
to normal prostate tissue [29]. This elevation cannot be
explained by differential changes in gene expression using the

original pathway (Figure 3A). In the original pathway, his-
tidine is produced from carnosine in two paths, by CNDP2
or CNDP1. Histidine can then be converted back to carnosine
through a loop by CARNS1 (Figure 3A). Looking at the P val-

ues for the respective genes shows that CNDP1 is downregu-
lated, and CNDP2 and CARNS1 are upregulated with P
values within the same order of magnitude. Moreover, of the

genes in the other paths leading away from histidine, HAL is
upregulated while HDC and DDC are unchanged (Figure 3A).
Overall, this pathway is not compatible with the observed

increase in histidine levels in PCa.
However, when using the FunHoP-expanded pathway to

visualize all genes and nodes, we can see how the original path-

way is an oversimplification of a more complex pathway
including three nodes with multiple genes (Figure 3B). Many
of these nodes have genes that are up- or down-regulated. As
there are no functional homologs in the nodes most directly

linked to histidine, expanding nodes alone does not lead to
any improved interpretation in this case. However, when
RNA-seq read counts are shown together with differential

expression in the extended pathway, we are able to provide a
possible explanation as to how histidine level may be elevated
(Figure 3C).

For the paths leading to histidine synthesis, the most dom-
inant gene in read counts is CNDP2, which is upregulated and
has about 11,000 reads. Upregulation of CNDP2 pushes car-
nosine conversion to histidine. The downregulated CNDP1

has close to zero read counts and can be ignored. CARNS1,
responsible for the loop back towards carnosine, has less than
100 reads, and is probably less influential than CNDP2. We

can therefore assume that upregulation of the highly expressed
CNDP2 most likely leads to increased production of histidine.
For the paths leading away from histidine, all genes in the path

leading towards glutamate (including the upregulated HAL)
have close to zero read counts, and can be ignored. With
HDC and DDC remaining unchanged, there is no net change

in histidine consumption. Increased histidine production
through the highly expressed CNDP2 combined with ignorable
changes in histidine consumption, leads to a possible explana-
tion for how histidine accumulates. Moreover, the genes fur-

ther downstream of histamine (i.e., HNMT and AOC1) are
downregulated with higher read counts (2519 and 3636 read
counts, respectively), creating a bottleneck in the influx/efflux

balance, which can lead to further increase in histidine levels.
The overall read counts in the pathway seems to push towards
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accumulation of histidine, which is not used further down-

stream in any direction, allowing a build-up of histidine to
happen. The histidine pathway also shows examples of nodes
with high difference in read counts between genes in the node.
One example is the ALDH3A1 node, where ALDH1A3 domi-

nates with 46,595 read counts, while the three remaining genes
have less than 1000 reads each. This further strengthens the
idea that the differential expression of the dominant gene will

determine the overall expression of the node.
The conclusions from the expanded network are also evi-

dent in the aggregated network at the node level (Figure 3D),

where CNDP2 is clearly highlighted, especially when looking
at the pathway styled with read counts. The aggregated net-
work shows how nodes that appear to be upregulated in the

original network are shown to be downregulated, and vice

versa. Overall, FunHoP provides a more complete pathway
analysis, and is able to give a more precise explanation on
how histidine can be elevated in PCa.

Case study 2: glycerophospholipid metabolism

The second case study looks at part of the glycerophospholipid
metabolism. The complete pathway is extensive and contains

several complex nodes with up to 21 genes, which makes visu-
alization and analysis challenging. Previous studies have
shown elevated levels of GPC in PCa [30–32], and the original
Cytoscape network from KEGG colored by differential

expression is shown in Figure 4A.

Figure 3 Pathway of histidine metabolism

A. Original pathway colored by differential gene expression on a log-scale. B. Expanded pathway colored by differential gene expression.

C. Expanded pathway colored by RNA-seq read counts. D. Aggregated pathway colored by differential gene expression at the node level.
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The initial pathway does not provide an explanation to how
GPC can be elevated based on differential gene expression val-
ues. In the reaction paths leading from lecithin towards GPC,

three displayed genes are not significantly differentially
expressed (PLA2G16 and PNPLA6 via 1-lysolecithin, and
PLA2G4B towards 2-lysolecithin), and one is downregulated

(LCAT towards 2-lysolecithin), along with one upregulated
gene functioning in the opposite direction (upregulated
LPCAT3 from 2-lysolecithin back to lecithin). This indicates

that even if the conversion from 2-lysolecithin to GPC is
upregulated by LYPLA1, the reaction is just as much pushed
away from 2-lysolecithin and back towards lecithin by
LPCAT3, instead of towards GPC. Overall, this does not

explain how GPC can be accumulated. However, when
expanding the network, a more complex picture emerges, with

more genes involved in several nodes and huge differences in
RNA-seq read counts among genes and nodes (Figure 4B
and C). The expanded networks provide a different interpreta-

tion of several nodes in the pathway.
A particularly complex node of 21 genes appears in the

original PLA2G4B node. This node contains both non-

significant genes and up-/down-regulated genes, with average
RNA-seq read counts varying over many orders of magnitude.
The clearly dominant gene is PLA2G2A with 71,482 read

counts (Figure 4C), which is also upregulated (Figure 4B).
Since none of the other genes have read counts of comparable
magnitude (the second highest is PLA2G12A with 4502 read
counts), we see how this node changes from non-significant

in the original network to upregulated in the aggregated
network (Figure 4D). The other nodes in the paths leading

Figure 4 Pathway of glycerophospholipid metabolism (part)

A. Original pathway colored by differential gene expression on a log-scale. B. Expanded pathway colored by differential gene expression.

C. Expanded pathway colored by RNA-seq read counts D. Aggregated pathway colored by differential gene expression at the node level.
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to production of GPC also show both up- and down-regulated
genes. The most dominant gene in the PNPLA6 node is
LYPLA2 (Figure 4C), which is upregulated (Figure 4B). For

the LYPLA1 node, the dominant gene is LYPLA1 (Figure 4C),
which is upregulated as in the original network (Figure 4A and
B). Both dominant genes lead to their respective nodes being

upregulated in the aggregated network (Figure 4D), enabling
two possible paths towards production of GPC. Both paths
via 1-lysolecithin and 2-lysolecithin, respectively, are now

upregulated. Even though PLA2G16 in the 1-lysolecithin path
is not significant, PLA2G16 still has 3246 reads, which indi-
cates a flux through this path. For the path via 2-
lysolecithin, the upregulation of both the PLA2G4B and

LYPLA1 nodes reveals an unambiguous upregulated path
from lecithin to GPC. Though the LPCAT3 node looping
backwards upstream of GPC is also upregulated, the pathway

as a whole shows a net unambiguous flux towards GPC
through several possible paths, explaining why GPC would
accumulate in PCa. The expanded network also shows that

LCAT (the sole gene of the LCAT node) has fewer reads than
the PLA2G4B and LPCAT3 nodes, making its downregulation
less important (Figure 4C).

Alongside providing more biological information, the GPC
example also illustrates the possible complexity of nodes. With
the full pathway having four highly complex multi-gene nodes
of 21 genes, as well as several nodes with 4–6 genes, we see how

difficult pathways can be to interpret. Using FunHoP, we
show how we can gain important additional information by
expanding the networks to show all genes, and by looking at

differential expression and gene expression level simultane-
ously for network interpretation.

In order to validate our conclusions on the two case studies

using data from TCGA, we performed the same analysis with
the data from the Prensner cohort. Due to the generally smal-
ler number of samples in the Prensner data, in addition to

lower sequencing depth, many of the significant changes
observed in TCGA were not statistically significant in Pren-
sner. However, the overall patterns are also evident in both
case studies, both in terms of the dominant genes within the

pathway and the differential expression (Figures S1 and S2),
which supports the conclusions on which genes can contribute
to the elevated levels of histidine and GPC in PCa.

Discussion

Metabolic pathway analysis is an important approach for ana-
lyzing gene expression. With the constantly growing amount of
available data, we can improve our understanding of the com-
plexity in biological systems, and continuously develop models

to capture and utilize new data and information. However, the
most commonly used pathway representations from databases
and associated tools often give a simplified picture of meta-

bolic pathways, focusing on only one gene in each network
node, despite the fact that more genes may be able to perform
the same enzymatic reaction. One example, which we have

focused on in this study, is the current integration of KEGG
and Cytoscape using KEGGScape.

We have therefore implemented a strategy for including all
functional homologs of a gene in the analysis, based on the fol-

lowing assumptions:

First, we have to assume that the relevant genes in an
expanded node indeed are functional homologs, i.e., with sim-
ilar function. KEGG networks are manually curated, and doc-

umentation can be found within KEGG for genes,
compounds, and reactions. When KEGGScape places a gene
within a certain node, we assume that this gene is able to pro-

duce an enzyme that can catalyze the transition represented by
the node. In FunHoP, we have implicitly made an assumption
that the different genes within a node representing an enzy-

matic reaction also catalyze the reaction at a similar rate. This
is a simplification, and to model the enzyme activity one
should ideally also include enzyme efficiency and kinetics for
the given situation. However, data on enzyme kinetics are usu-

ally not available, or very hard to obtain. We believe that our
assumption on the enzyme activity correlating with expression
level is at least reasonable for differences spanning several

orders of magnitude, and represents a model improvement
compared to networks where expression levels are not consid-
ered at all. Supporting this assumption is the observation that

genes in a node usually belong to the same gene family. For
example, for the node in the histidine metabolism pathway
with ALDH3A1 on top, all the other genes are aldehyde dehy-

drogenase paralogs that are able to catalyze the same reaction
(Figure 2A).

Secondly, we have to assume that we actually can estimate
relative expression levels of relevant genes. With microarrays

being the previous gold standard to measure changes in gene
expression, differential expression analysis and subsequent net-
work mapping were limited to fold changes and P values. Vari-

ations in probe affinities made it difficult to assume anything
about the real expression level differences between genes.
However, with RNA-seq, one should be able to provide rela-

tive expression level measurements with much improved corre-
lation to the real relative mRNA levels compared to
microarrays.

Using the two assumptions on relative expression levels and
similarity in enzyme efficiency described above, we can predict
which of the genes is/are most likely to be responsible for a
given reaction in a node. Especially for cases where the read-

count difference for two genes in the same node spans several
orders of magnitude, we find it likely that difference in expres-
sion level will take precedence over reaction efficiency. We

have shown that read counts are highly reproducible for two
independent patient cohorts for PCa. We observe that many
pathway nodes typically consist of one or a few dominant

genes in terms of expression level, supporting our claim that
this is a highly relevant measure to include when evaluating
the contribution from different enzymes in a node. For the
single-gene nodes, the approach of looking at absolute gene

expression can also reveal patterns in the pathways that are
not evident from comparing P values alone. By using read
counts, we are also capable of determining whether some paths

are turned completely off, as in the case for the path leading
from histidine to glutamine (Figure 3C).

A possible limitation of our approach is to which degree

tissue-specific isoforms affect enzymatic activity and estimated
expression levels of the genes represented in the nodes. Not all
isoforms of a gene are necessarily enzymatically active. How-

ever, KEGG does not currently provide curated information
on enzyme activity of isoforms. We have thus limited analysis
to the gene level. However, an expansion to isoforms is concep-
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tually possible within the FunHoP framework if such data
become available. Another isoform related limitation is that
genes with particularly short or long dominant isoforms com-

pared to the canonical isoform model may lead to aberrant
expression level estimation for the genes affected. In addition,
tissue-specific isoform switches can potentially affect results

from differential expression analysis. In this study, we have
assumed that genes are presented by their canonical isoform.

The starting point for network analysis is usually an expres-

sion table with samples and genes, which for RNA-seq is pre-
sented as a table of read counts. It is thus preferable that the
network analysis is reproducible with respect to RNA-seq
RNA selection protocols, sequence length, library size, choice

of alignment, and mapping tools. It was not possible to sys-
tematically investigate many settings (mostly due to lack of
available data on prostate), but we demonstrate that the results

are reproducible in two independent PCa cohorts with differ-
ent properties. Both cohorts use poly-A selection of tran-
scripts, but differ in sequence length, library size, and

alignment/mapping tools.
We also assume that changes in transcript level are infor-

mative about changes in protein level. It is well known that

a direct association between mRNA expression level, protein
level, and subsequent protein activity is inaccurate, for exam-
ple because of the effects of post-transcriptional and post-
translational regulation of proteins on enzyme kinetics; how-

ever, the reasons in most cases are unknown. We cannot say
with absolute certainty that an upregulated pathway with mul-
tiple read counts will result in a similar increased number of

metabolites. A study by Schwanhäusser et al. [33] shows a cor-
relation between mRNA and protein copy numbers in
NIH3T3 mouse fibroblasts, which was found to be 0.41. When

considering translation rate constants, the correlation went up
to 0.95.

Other studies in different organisms have also shown corre-

lations, although this is organism dependent [32,34]. FunHoP
does not pretend to describe the complete picture, but still rep-
resents a significant improvement compared to analyses where
all genes are assumed to have the same expression level, or

where multiple genes in the same node are not taken into
account at all.

In the KEGG database, histidine is also involved in two

other pathways that can affect the overall levels of this
metabolite. In aminoacyl-tRNA biosynthesis (KEGG:
hsa00970), histidine is converted to L-histidyl-tRNA(his), cat-

alyzed by HARS and HARS2. Neither of these genes show sig-
nificant changes, which indicates that this does not affect the
level of histidine between the samples. In beta-alanine metabo-
lism (KEGG: hsa00910), histidine is involved in the same step

as the one in our case study, although we here see a more com-
plete picture of carnosine being converted into histidine and
beta-alanine. This is performed by the same enzymes as in

the case study (CNDP1/CNDP2). As we know, CNDP1 is
downregulated and has close to zero read counts, and CNDP2
is upregulated with 11,217 read counts. This should indicate

that beta-alanine is also elevated in PCa, which was confirmed
by the same study [29]. Overall, we see how the case study pro-
vides a possible explanation on how histidine can be elevated

in PCa, and our solution also fits with other available measure-
ments of related metabolites [29].

GPC is also involved in another pathway: ether lipid meta-
bolism (KEGG: hsa00565), where GPC can also be produced

by conversion of 1-(1-alkenyl)-sn-glycero-3-phosphocholine by
TMEM86B. However, this gene does not show a significant
change between PCa tissue and normal tissue, and hence we

can explain the elevated levels of GPC by the extracted part
of glycerophospholipid metabolism shown in the case study.
Another possibility for GPC to be elevated using the original

network would be if the level of 2-lysolecithin was high, the
upregulated LYPLA1 converted 2-lysolecithin to GPC. To
our knowledge, 2-lysolecithin has not been documented as

high in PCa.
Choline metabolism in PCa is a well-studied topic, espe-

cially in regard to relevant metabolites and identification of
potential biomarkers [30–32,35,36]. The pathways involved in

the metabolism are still not fully covered, and our findings
from case study #2 are therefore of special interest. These
results will be focused on in later studies.

The current version of FunHoP supports the human meta-
bolic pathways found in KEGG, with exception of the glycan-
related pathways (mostly found in ‘‘Glycan biosynthesis and

metabolism”, category 1.7), which uses a different type of visu-
alization (‘‘lines” instead of the traditional ‘‘rectangles”).
These lines cannot be colored and expanded similarly to gene

nodes, and are hence not suitable for pathway analysis in
Cytoscape. Another challenge with the glycan-related path-
ways is that many of the children lack reactions in the down-
loaded XML files, even if the genes are presented as

rectangles, and hence parts of the networks seem to consist
of random genes with no connection to the path. It is possible
to extend and style these gene nodes like in other pathways,

but the missing reactions will still be lost. These problems
are due to the way KEGG builds the XML file and how the
file is read by KEGGScape.

As seen in the Tables S1 and S2, a total of 64 out of the 71
pathways contain at least one multi-gene node. The 71 path-
ways contain a total of 1974 nodes, of which 768 has multiple

genes. Even though this only accounts for 39% of all nodes, it
still means that for 90% of the pathways there is a possibility
that not all relevant data will be included in the analysis. As we
have shown, a single multi-gene node can change the entire

interpretation of the pathway when all genes are included.
Having at least one multi-gene node for 90% of the
metabolism-related pathways used in this study demonstrates

the importance of developing tools like FunHoP.
The first part of FunHoP, which deals with expanding the

nodes with multiple genes, could possibly be solved also with

other KGML-readers. CyKEGGParser has similar functions
where all the ‘‘hidden” genes get a new node, with its own
edges. This displays all the genes within a node as separate
nodes, and these nodes can be colored and analyzed similarly

as the original ones. However, as this study has shown, there
are some nodes that contain a very large number of genes,
which makes the analysis and interpretation challenging with-

out further filtering by read counts from RNA-seq. CyKEGG-
Parser is a KGML-reader/tweaker and does not have any of
the features of FunHoP with regard to using reads from

RNA-seq to determine an overall expression value for all genes
in a multi-gene node. KEGGScape is a pure KGML-reader,
which allows for running the pathway XML files through Fun-

HoP locally and using KEGGScape to import the improved
files. KEGGScape does not bend the edges the way CyKEGG-
Parser does, and does not separate the functional homologs
when reading the KEGG XML files. However, CyKEGGPar-
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ser has many useful features such as corrections of inconsisten-
cies in pathways and tissue-specific tuning, and these features
could be interesting to consider in future studies.

For the cases where a KEGG protein complex contains
nodes with multiple genes, it is dealt with by adding an
expanded node on top of the protein complex. All genes can

hence be seen and colored by expression, although the user
may have to do a bit of manual editing of the network. This
is a challenge in visualization of the networks, as an expanded

node will be placed in the same position as the original node,
but in most cases, it takes up more space than what was orig-
inally allocated.

To improve FunHoP and make it easier for others to use it,

solutions for the problems above are under development. Con-
verting FunHoP into a Cytoscape app is also in development,
which will make it easier for all users to apply this method to

their own analyses.

Conclusion

In this study, we have shown how FunHoP can be used to
expand nodes from KEGG in Cytoscape to include all alterna-
tive genes present in a node. We have shown how P values

from differential expression are not sufficient to determine reg-
ulation in a pathway, and how using the read counts from
RNA-seq can facilitate metabolic network interpretation.

Finally, we have shown that information in the extended net-
works can be aggregated to create more simplified networks
at the node level, taking data from all genes into account.

By comparison of measured values of histidine and GPC in
PCa and healthy prostate tissue from literature, we have
shown how our analysis can explain why these metabolites

are elevated, whereas the original pathway representations
could not. We have also managed to show how differential
expression based on P values does not differentiate between
highly expressed genes and lowly expressed genes. By incorpo-

rating RNA-seq read counts into the analysis, we have high-
lighted genes that are highly expressed and more likely to
dominate within a pathway. Overall, we show that FunHoP,

by incorporating more biological information on network
nodes and genes from KEGG, is able to provide improved
pathway analysis.

Code availability

Code and documentation for running FunHoP can be found at

https://github.com/kjerstirise/FunHoP.
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