
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Sondre Sørensen Kielland
Secure com

m
unication w

ith W
ireG

uard - VPN
-as-a-Service in beyond 5G

Sondre Sørensen Kielland

Secure communication with
WireGuard

VPN-as-a-Service in beyond 5G

Master’s thesis in Communication Technology
Supervisor: Katina Kralevska
Co-supervisor: Danilo Gligoroski, Ali Esmaeily
February 2022

M
as

te
r’s

 th
es

is

Sondre Sørensen Kielland

Secure communication with WireGuard

VPN-as-a-Service in beyond 5G

Master’s thesis in Communication Technology
Supervisor: Katina Kralevska
Co-supervisor: Danilo Gligoroski, Ali Esmaeily
February 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Title: Secure Communication with WireGuard
– VPN-as-a-Service in Beyond 5G

Student: Sondre Sørensen Kielland

Problem description:

In a 5G environment, a number of verticals can be connected together in shared
physical infrastructure on different locations. Network slicing is used in 5G networks
as a way to separate verticals. A network slice consists of one or more network
services. To ensure security of the exchanged traffic between network services or
network functions inside network services VPN can be a solution. The thesis will
study this through the following research questions.

How can WireGuard be used in a 5G virtualized environment to guarantee slice
isolation? How does WireGuard deployed in a virtualized environment satisfy
performance requirements in terms of security and latency? How can OSM support
WireGuard as a VPN-as-a-Service?

Date approved: 2021-10-13
Supervisor: Assoc. Prof. Katina Kralevska, IIK
Cosupervisor: Prof. Danilo Gligoroski and Ali Esmaeily, IIK

Abstract

The introduction of network slicing in 5G networks has allowed verticals
to deploy their services alongside other applications. Compared to the
earlier cellular generations, the goal is for 5G to deliver various services
simultaneously. Two key enabling technologies are Software-Defined
Networking (SDN) and Network Function Virtualization (NFV). SDN
and NFV bring flexibility for deploying network functions and chaining
them together.

Security is one of the main challenges for shared infrastructure like net-
works and computational resources of an NFV infrastructure. Virtual
Private Network (VPN) tunneling is one countermeasure a tenant man-
ager, controlling the network service, can use to separate network slices,
services, and functions when using shared environments in a service
function chaining context.

In this thesis, we have studied how WireGuard can provide an encrypted
VPN tunnel as a service between network functions. We used Open
Source MANO (OSM) to deploy and orchestrate the network functions
into network services and slices. We have created multiple scenarios
simulating a real-life cellular network during our development process.
WireGuard was then used as a VPN-as-a-Service between the different
network functions to secure and isolate the interfaces. In our work, we
have implemented a Proof-of-Concept where the WireGuard tunnel is
configured automatically using the inbuilt Juju controller of OSM to
minimize manual steps.

After deploying our network services, we have then performed measure-
ments to observe the performance of WireGuard. The performance
measurements show between 0.8Gbps and 2.5Gbps throughput and
under 1ms delay between network functions using WireGuard. These
measurements are within several key performance indicators of 5G, mak-
ing WireGuard suited to be used to provide security in slice isolation in
5G and beyond networks.

Sammendrag

Innføring av skivedeling i 5G nettverk åpner for at vertikale virksom-
heter kan utvikle og benytte sine tjenester ved siden av hverandre i
telenett. Sammenliknet med tidligere generasjons mobilnettverk, søker
5G å kunne tilby flere tjenester simultant. Programvaredefinerte Nett-
verk (SDN) og Virtualiserte Nettverksfunksjoner (NFV) er, ved å innføre
nødvendig fleksibilitet til å deployere nettverksfunksjoner og koble de
sammen i ønsket rekkefølge, to hovedteknologier for å kunne lage kjeder
av tjenestefunksjoner dynamisk med felles infrastruktur.

Sikkerhet er en av utfordringene med å ha en delt nettverks- og pro-
sesseringsinfrastruktur. Tunnelering gjennom Virtuelle Private Nettverk
(VPN) er et sikkerhetstiltak som kan iverksettes av den skiveansvarlige
for å skille nettverksskiver, tjenester og funksjoner fra hverandre.

Vi har studert hvordan WireGuard kan brukes som VPN tilbyder for å
skape en kryptert tunnel som en tjeneste mellom nettverksfunksjoner.
Open Source MANO (OSM) er brukt som programvare for å kombinere
og orkestrere nettverksfunksjoner til nettverkstjenester og nettverkskiver.
For å simulere reelle mobilnettverk har vi designet og testet flere scena-
rioer. WireGuard har blitt lagt til som VPN som en tjeneste i de ulike
situasjonene for å isolere og sikre trafikken mellom nettverksfunksjoner.
Gjennom utvkling i oppgaven har vi kommet opp med et konsept for å
implementere en WireGuard som en tjeneste der vi bruker minimalt med
manuelle steg. For å redusere manuelle steg i oppsett og konfigurasjon av
WireGuard har vi brukt den innebygde Juju kontrolleren i OSM.

Etter å ha deployert nettverkstjenestene vi har utviklet til en delt infra-
struktur har vi gjort målinger for å studere hvordan WireGuard påvirker
ytelsen. Vi har målt en gjennomstrømning på mellom 0.8Gbps og 2.5Gbps
og forsinkelse på under 1ms ved bruk av WireGuard-tunneler mellom
nettverksfunksjoner. Målingene vi har gjort ligger innenfor flere av nøk-
keltallsindikatorene for 5G nettverk. Det gjør WireGuard passende for å
brukes til å tilføre sikkerhet for isolering av nettverksskiver i utviklingen
av 5G nettverk og kommende teknologier.

Preface

This project has been done as a master thesis in Communication Technol-
ogy as part of the Digital Infrastructure and Cyber Security (MSTCNNS)
program at the Norwegian University of Science and Technology (NTNU).
The project has been carried out by Sondre Kielland and supervisors
Assoc. Prof. Katina Kralevska, Prof. Danilo Gligoroski, and Ali Esmaeily
have carried out the project. I want to thank my supervisors for all their
excellent guidance and insight during the work with the thesis. Their
valuable inputs have improved the practical work and written report. I
will also thank my family, friends and colleagues that have shown inter-
est and support during this work. All referenced code and descriptors
throughout the thesis are made available on Github.1

1https://github.com/sondrki/TTM4905

https://github.com/sondrki/TTM4905

Contents

List of Figures xi

List of Tables xiii

Listings xv

List of Acronyms xix

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Problem Description . 2
1.3 Research Scope . 3
1.4 Contribution . 4
1.5 Hypothesis Statement . 4
1.6 Research Questions . 4
1.7 Tools and Resources . 5

1.7.1 OSM . 5
1.7.2 WireGuard . 5
1.7.3 MicroStack . 5
1.7.4 Cloud-init . 6
1.7.5 Juju . 6
1.7.6 iPerf3 . 6
1.7.7 OpenAirInterface . 6

1.8 Thesis Structure . 6

2 Methodology 9
2.1 Work Process . 9

2.1.1 Testing . 10
2.2 Tool Decisions . 11

2.2.1 VNF Architecture . 11
2.2.2 OSM Version . 11
2.2.3 WireGuard . 12
2.2.4 Juju Charms . 12

vii

2.3 Lab Setup . 12

3 Background and Related Work 15
3.1 Background Theory . 15

3.1.1 4G Networks . 15
3.1.2 Towards and Beyond 5G Networks 17
3.1.3 Isolation Theory . 20
3.1.4 OSM Descriptor Language . 22
3.1.5 OSM Onboarding . 23
3.1.6 WireGuard . 24

3.2 Related Work . 25
3.2.1 Towards 5G Network Slice Isolation with WireGuard and Open

Source MANO . 25
3.2.2 5G VINNI . 26
3.2.3 Service Function Chaining in 5G and Beyond Networks: Chal-

lenges and Open Research Issues 27
3.2.4 5G Multi-access Edge Computing: Security, Dependability,

and Performance . 28
3.2.5 5G Core Network Security Issues and Attack Classification

from Network Protocol Perspective 30
3.2.6 Virtualized Cellular Networks with Native Cloud Functions . 30
3.2.7 A Secure Link-Layer Connectivity Platform for Multi-Site NFV

Services . 31
3.3 OSM Hackfests . 32

4 Implementations 33
4.1 Intended End-state . 33
4.2 Adapting Previous Work . 34
4.3 WireGuard NS . 34
4.4 OAI EPC . 35
4.5 Juju Relations . 39
4.6 Combining Elements . 43
4.7 Adding eNB and UE to the NS . 45
4.8 Double Resources . 51
4.9 Network Slice Template . 51
4.10 Multi-site Deployment . 53

5 Results and Observations 55
5.1 Network Traffic . 55
5.2 Performance Monitoring . 56

5.2.1 Throughput . 57
5.2.2 Latency . 59

5.2.3 Service Response Time . 60
5.3 Measurements of the Multi-site NS 61

6 Discussion 63
6.1 Charms in OSM . 63
6.2 Lifecycle for a VPNaaS . 65
6.3 Key Management . 67
6.4 Performance . 68

7 Conclusion and Future Work 73
7.1 Conclusion . 73
7.2 Future Work . 74

References 75

Appendices
A Preparation of MicroStack 81

B Preparation of OSM VM 83

C Creation of UE VM 85
C.1 Command Line History . 85
C.2 ue_eurecom_test_sfr.conf . 85

D WireGuard Charm 87

E VPNaaS Additions to Descriptor Files 97

F Performance Measurements 101
F.1 Single Network Services with and Without WireGuard Connectivity 101
F.2 Two Different Network Slice Instances 107

F.2.1 Running Tests on Only One NSI at a Time 107
F.2.2 Running Tests Simultaneously on NSIs to See Any Difference

in Performance . 117
F.3 Double Resources of vCPU and RAM 127
F.4 Multi-site Deployment . 134

G Research Paper 137

List of Figures

2.1 Software to ETSI NFV MANO framework slicing [EKG20]. 13

3.1 EPS architecture [BVA+18]. 15
3.2 4G and 5G core network components comparison [Ope]. 17
3.3 5GS reference architecture [ETS20]. 18
3.4 KPI comparison between 4G and 5G networks [ETSd]. 19
3.5 MANO of isolated network slices using a shared infrastructure [GOLH+20]. 20
3.6 SOL specifications supporting the different parts in the NFV Architecture

Framework [ETSc]. 22
3.7 Steps of lifecycle management of services in a 5G and CI/CD context [Groa]. 23
3.8 Handshake procedure in WireGuard [Don17]. 25
3.9 Network connection in the NS of Haga et al. [Hag20]. 26
3.10 Architecture of SimulaMet EPC VNF [Dre20]. 27
3.11 MEC-in-NFV architecture presented in two levels with deployed applica-

tions and their management and orchestration [NGO21]. 29
3.12 Multi-site L2S connectivity [VNL+21]. 31

4.1 Target network architecture. 33
4.2 Juju status for working OAI NS. 38
4.3 Ping from HSS to MME over the S6a interface. 38
4.4 Listening for ICMP messages on the NFVI. 39
4.5 Overview of juju relation setup using OSM. 40
4.6 Variables from HSS peer at Juju unit for MME. 43
4.7 Variables from MME peer at Juju unit for HSS. 43
4.8 Network setup of the EPC NS in MicroStack. 45
4.9 VNF instances of OAI EPC components in MicroStack with WireGuard

tunnels implemented. 46
4.10 Architecture of the network shown in OSM web GUI. 47
4.11 Subscribers in the HSS Cassandra database. 47
4.12 Logs on MME showing successful connection of eNB. 49
4.13 UE and eNB connected to the EPC. 50
4.14 Relations in OAI EPC with WireGuard tunnel between components as

seen from the OSM web GUI. 50

xi

5.1 Traffic on S6a interface without VPN. 55
5.2 Traffic on S6a interface with WireGuard deployed. 56
5.3 Diameter SRT statistics on MME without WireGuard tunneling. 60
5.4 Diameter SRT statistics on MME with WireGuard tunneling. 60
5.5 Diameter SRT statistics on MME without WireGuard tunneling - double

resource NS. 61

6.1 Comparison of WireGuard implemented in a single VDU and a multi-VDU
VNF with a dedicated WireGuard VDU. 64

6.2 Latency comparison for different interfaces with WireGuard. 70
6.3 Throughput comparison for different interfaces with WireGuard. 71
6.4 Throughput comparison with WireGuard for NSIs measured separately

and simultaneously. 72

List of Tables

2.1 Practical tasks formed to solve our research questions. 10

4.1 VNF information of WireGuard NS. 35
4.2 VNF information of OAI NS. 39
4.3 VNF information of OAI NS with RAN. 48
4.4 VNF information of OAI NS with RAN, doubled resources and WireGuard

connection between components. 51
4.5 VNF information of multi-site OAI NS with RAN and WireGuard con-

nection between components. 54

5.1 Throughput measurements over WireGuard for different NSs and VNFs. 58
5.2 Latency measurements over WireGuard for different NSs and VNFs. . . 60

xiii

Listings

2.1 Instantiation of VIM in OSM. 14
4.1 Content of the on_generateconfig_action function in charm code to

create inital WireGuard configuration. 34
4.2 Additional VLD configurations for OAI EPC. 36
4.3 S6a network configuration in NSD. 36
4.4 Addition to Juju configuration file metadata.yaml for the HSS VNF

to provide relation between the HSS and MME VNFs. 41
4.5 Addition to Juju configuration file metadata.yaml for the MME VNF

to provide relation between the HSS and MME VNFs. 41
4.6 NSD relation configuration to provide a relation between the HSS and

MME VNFs. 42
4.7 eNB installation commands. 46
4.8 QoS parameters for the NSIs. 51
4.9 Connection points shared between NS and NST. 52
4.10 Additional instantiating parameters for the multi-site deployment. . 53
A.1 Command line history from installation and setup of Microstack VIMs. 81
B.1 Command line history from OSM intallation. 83
C.1 Command line history for UE VM. 85
C.2 Content of modified ue_eurecom_test_sfr.conf. 85
D.1 Python code to share WireGuard data between peers. 87
E.1 Additional configuration in cloud-init for implementing WireGuard as

a VPN-as-a-Service. 97
E.2 Additional configuration in action.yaml charm file for implementing

WireGuard as a VPN-as-a-Service. 97
E.3 Additional configuration in metadata.yaml charm file for implementing

WireGuard as a VPN-as-a-Service. 98
E.4 Additional configuration in VNFd for implementing WireGuard as a

VPN-as-a-Service. 99
F.1 Performance on S1-U over WireGuard tunnel for the EPS NS with

WireGuard. 101
F.2 Performance on S1-U over WireGuard in the EPS NS with default

MTU of iPerf3 (1500 bytes). 102

xv

F.3 S1-C throughput with WireGuard in the OAI EPS NS. 102
F.4 Performance between UE and SPGW-U over Uu (10MHz) and Wire-

Guard in the EPS NS with WireGuard. 103
F.5 Throughput on S6a with WireGuard in the OAI EPS NS. 103
F.6 Throughput on S6a in the OAI EPS NS without WireGuard. 104
F.7 Latency on S1-C run on two EPS NS with and without WireGuard. 104
F.8 Latency on S1-U with and without WireGuard in the EPS NS. . . . 105
F.9 Latency on S6a with and without WireGuard in the EPS NS. 106
F.10 UE throughput to SPGW-U in the EPS NS without WireGuard. . . 106
F.11 S6a throughput with WireGuard in the eMBB descripted slice. . . . 107
F.12 S6a throughput with WireGuard in the eMBB slice - run 2. 107
F.13 S1-C throughput with WireGuard in the eMBB slice. 108
F.14 S6a latency in the eMBB slice. 108
F.15 Latency on S1-C in the eMBB slice. 109
F.16 S1-C latency in WireGuard tunnel in the eMBB slice - run 2. 109
F.17 S1-U latency in WireGuard tunnel in the eMBB slice. 110
F.18 S1-U throughput with WireGuard tunnel in the eMBB slice. 110
F.19 S1-U throughput outside tunnel in the eMBB slice. 110
F.20 S1-U throughput between management interfaces in the eMBB slice. 112
F.21 eMBB slice load average sample. 113
F.22 S6a throughput with WireGuard in the URLLC slice. 114
F.23 S6a throughput with WireGuard in the URLLC slice. 114
F.24 S6a latency in the URLLC slice with WireGuard. 115
F.25 S1-U latency in the URLLC slice with WireGuard. 115
F.26 S1-C latency in WireGuard tunnel in the URLLC slice. 115
F.27 S1-C latency outside VPN tunnel in the URLLC slice. 116
F.28 S1-U latency outside tunnel in the URLLC slice. 116
F.29 S1-U throughput in WireGuard tunnel in the URLLC slice. 116
F.30 S1-C throughput in WireGuard tunnel in the URLLC slice. 117
F.31 S6a latency with WireGuard. 117
F.32 S1-U latency with WireGuard in two NSIs measured simultaneously. 118
F.33 S1-C latency with WireGuard in two NSIs measured simultaneously. 118
F.34 S1-U throughput in WireGuard tunnel measured simultaneously for

NSIs. 119
F.35 S1-U throughput outside tunnel measured simultaneously on NSIs. . 121
F.36 S6a throughput with WireGuard tunnel in two NSIs measured simul-

taneously. 122
F.37 S6a throughput with WireGuard tunnel - run 2. 123
F.38 S1-U throughput between management interfaces in two NSIs measured

simultaneously. 124
F.39 S1-C throughput with WireGuard in two NSIs measured simultaneously. 125

F.40 Measurement of latency between SPGW-U and Microstack VIM router
when measuring for two NSIs simultaneously. 126

F.41 S1-U management interface latency. 127
F.42 S1-U throughput in WireGuard tunnel in EPS NS with double resources. 127
F.43 S1-U throughput outside tunnel in EPS NS with double resources. . 128
F.44 S1-C throughput with WireGuard in EPS NS with double resources. 129
F.45 S6a throughput in WireGuard tunnel in EPS NS with double resources. 129
F.46 S6a throughput outside tunnel in EPS NS with double resources. . . 130
F.47 Run two of S6a throughput measurement outside VPN tunnel in EPS

NS with double resources. 130
F.48 S1-U latency in WireGuard tunnel in EPS NS with double resources. 132
F.49 S1-C latency in WireGuard tunnel in EPS NS with double resources. 132
F.50 Run 2 of latency measurements on the S1-C interface in WireGuard

tunnel in EPS NS with double resources. 132
F.51 S1-C latency outside tunnel in EPS NS with double resources. 132
F.52 S1-U latency outside tunnel in EPS NS with double resources. 133
F.53 S6a latency with WireGuard tunnel in EPS NS with double resources. 133
F.54 S6a latency outside tunnel in EPS NS with double resources. 133
F.55 S6a throughput with WireGuard in EPS NS with double resources. . 133
F.56 Sample of load average in VNFs after initial setup. 134
F.57 S6a throughput between VIMs - with WireGuard (MME and HSS

management interfaces as endpoints). 134
F.58 S6a throughput between VIMs - without WireGuard. 135
F.59 S6a latency between VIMs - without WireGuard. 136
F.60 S6a latency between VIMs - with WireGuard. 136

List of Acronyms

5GC 5G Core.

5G NR 5G New Radio.

5GS 5G System.

5QI 5G Quality of Service (QoS) Identifier.

AAA Authentication, Authorization and Accounting.

AKA Authentication and Key Agreement.

AMF Access and Mobility Management Function.

API Application Programming Interface.

AS Access Stratum.

AUSF Authentication Server Function.

CI/CD Continuous Integration/Continuous Deployment.

CIA Confidentiality, Integrity and Availability.

CNF Container Network Function.

CUPS Control and User Plane Separation.

DDoS Distributed Denial of Service (DoS).

DHCP Dynamic Host Configuration Protocol.

DoS Denial of Service.

E-UTRAN Evolved-Universal Terrestrial Radio Access Network (RAN).

E2E End-to-End.

xix

eMBB enhanced Mobile BroadBand.

eNB eNodeB.

EPC Evolved Packet Core.

EPS Evolved Packet System.

ETSI European Telecommunications Standards Institute.

gNB gNodeB.

GTP GPRS Tunnelling Protocol.

GUI Graphical User Interface.

HSS Home Subscriber Server.

IaaS Infrastructure-as-a-Service.

IMS IP Multimedia System.

IMSI International Mobile Subscriber Identity.

IoT Internet of Things.

K8s Kubernetes.

KMS Key Management System.

KNF Kubernetes-based Network Function.

KPI Key Performance Indicator.

LCM Life-Cycle Management.

LTE Long Term Evolution.

MANO Management and Orchestration.

MCC Mobile Country Code.

MEC Multi-Access Edge Computing.

MME Mobility Management Entity.

mMTC Massive Machine-type Communication.

MNC Mobile Network Code.

MNO Mobile Network Operator.

MSIN Mobile Subscription Identification Number.

MSISDN Mobile Station International Subscriber Directory Number.

MTU Maximum Transmission Unit.

NAS Non-Access Stratum.

NEF Network Exposure Function.

NF Network Function.

NFV Network Function Virtualisation.

NFVI Network Function Virtualisation (NFV) Infrastructure.

NRF Network Repository Function.

NS Network Service.

NSA 5G Non-Standalone.

NSD Network Service (NS) Descriptor.

NSI Network Slice Instance.

NSSAAF Network Slice Specific Authentication and Authorization Function.

NSSF Network Slice Selection Function.

NST Network Slice Template.

OAI Open Air Interface.

ONAP Open Network Automation Platform.

OS Operating System.

OSM Open Source Management and Orchestration (MANO).

OTT Over the Top.

PCF Policy Control Function.

PDB Packet Delay Budget.

PDN Packet Data Network.

PGW Packet Data Network (PDN) Gateway.

PLMN Public Land Mobile Network.

PNF Physical Network Function.

PoC Proof of Concept.

QoS Quality of Service.

RAM Random Access Memory.

RAN Radio Access Network.

RAT Radio Access Technology.

RBAC Role-based Access Control.

SA 5G Standalone.

SAPD Service Access Point Descriptor.

SBA Service Based Architecture.

SBI Service Based Interface.

SCP Service Communication Proxy.

SDN Software-Defined Networking.

SDR Software-Defined Radio.

SEPP Security Edge Protection Proxy.

SF Service Function.

SFC Service Function (SF) Chaining.

SGW Serving Gateway.

SMF Session Management Function.

SOL Solution.

SPGW-C Service Packet Gateway-Control plane.

SPGW-U Service Packet Gateway-User plane.

SRT Service Response Time.

SSH Secure Shell.

TA Tracking Area.

TAC Tracking Area Code.

UDM Unified Data Management.

UE User Equipment.

UICC Universal Integrated Circuit Card.

UPF User Plane Function.

URLLC Ultra Reliable Low Latency Communication.

V2X Vehicle-to-Everything.

VCA VNF Configuration and Abstraction.

vCPU virtual Central Processing Unit.

VDU Virtual Deployment Unit.

VIM Virtual Infrastructure Manager.

VLAN virtual Local Area Network.

VM Virtual Machine.

VNF Virtual Network Function.

VNFD Virtual Network Function (VNF) Descriptor.

VNFM VNF Manager.

VPN Virtual Private Network.

VPNaaS VPN-as-a-Service.

YANG Yet Another Next Generation.

Chapter1Introduction

1.1 Background and Motivation

The enrollment of 5G cellular networks has already been happening for some time.
Yet there are many of the foreseen features like Vehicle-to-Everything (V2X), 5G
Standalone (SA), and tactile Internet that are under development [3GPa, 3GPb]. Like
the rolling releases of the previous generations, we can expect that the functionality
of 5G networks will continue to increase. Introduction to 5G New Radio (5G NR)
has created media and regular users’ attention. Likewise, communication between
vehicles, V2X, is likely to get attention from regular consumers, media, and legislative
authorities. A more hidden development for end-users is the work on the 5G Core
(5GC). The 5GC is an important part of the 5G System (5GS) in order to fulfill its
Key Performance Indicators (KPIs) [GP]. Another ongoing work on the core network
is the evolution from 5G Non-Standalone (NSA) toward a SA core network. The
biggest difference between the two is that SA is independent of support from the
previous generation Evolved Packet Core (EPC). The separation from the EPC will
likely be an important improvement to introduce new features to 5G networks.

The introduction of the 5GS using commercial products and new technology intends
to help verticals deploy applications in an agile way. To have multiple verticals
running on a shared infrastructure, End-to-End (E2E) services and network slice
isolation are key factors. NFV, Software-Defined Networking (SDN) and Multi-Access
Edge Computing (MEC) are technologies introduced to enable flexible 5G networks
in providing services with diverse QoS requirements [BFG+17].

With NFV, the network operator should be capable to deploy and manage applications
in a flexible way. To do this a NFV MANO is used to connect to a hypervisor running
on a NFV Infrastructure (NFVI) and Virtual Infrastructure Manager (VIM). In that
way, the network operator is able to deploy Virtual Machines (VMs) to the VIM.
In the 5G network context the terminology for VMs with their functionalities are
VNFs. The NFV MANO is in other words responsible for handling the setup and

1

2 1. INTRODUCTION

management of different applications combined in VNFs, NSs and Network Slice
Instances (NSIs) running on one or multiple VIMs [GOLH+20].

Another important aspect with the MANO and VIM relation is the network setup.
The MANO should be able to set up the network between VNFs. The networking
can be either internal within a VNF or between VNFs on the same or different VIMs.
As the setup of applications should be rapid, there is a need to make the networking
part flexible. SDN introduces this flexibility for creating and configuring virtual
networks and forwarding their traffic flow [KGFG19, FKGG19].

Compared to the earlier cellular networks, 5G is more service-oriented in the way
of enabling deployments of Over the Top (OTT) services in the cellular network.
The three main use cases in 5G are categorized as Ultra Reliable Low Latency
Communication (URLLC), enhanced Mobile BroadBand (eMBB), and Massive
Machine-type Communication (mMTC) [ETSb, ETSd]. MEC brings computational
power closer to the end-users supporting functionality for the different use case
categories. By utilizing distributed computational power, User Equipments (UEs)
can get a quicker service response. Simultaneously, moving more data to the edges
can help offload bandwidth further into the core network. Deploying functionality
closer to the user may require additional network infrastructure or computational
resources not owned by the Mobile Network Operator (MNO). Computation in a
cloud or using hypervisors that are rented or shared and transport data through
shared networks may therefore be a reality for verticals to deliver E2E services. Using
shared environments introduces new security challenges. One of the challenges is
how a vertical makes the application data secured between Network Functions (NFs).

To summarize, the combination of NFV, SDN, MEC, and other new technologies
enable verticals to deploy services in 5G networks. With a service-oriented future,
the services should be E2E and handled by a MANO. Besides, different levels of
physical hardware control introduce security challenges, such as securing application
data transferred over networks.

1.2 Problem Description

The introduction of new functionality and design in 5G networks have presented
the possibility for verticals to deploy their services alongside or OTT of traditional
cellular network applications. Separating NSs employing a shared environment can
be done using several countermeasures. For example, deploying a Virtual Private
Networks (VPNs) between NFs can be one solution to secure data transportation.
However, adding additional overhead is potentially problematic for near-real-time
applications with the necessity of low latency. The same is valid for applications that
require high throughput.

1.3. RESEARCH SCOPE 3

This thesis will look into how a NFV MANO can deploy real-life or close to real-
life applications in a NS and secure the network traffic between VNFs of the NS.
Furthermore, the VPN tunneling in a NS should contribute in isolating network slices
apart. The VPN setup should secure the confidentiality of network data without
adding significant overhead related to URLLC or eMBB applications in order to
fulfill their QoS requirements.

1.3 Research Scope

Open Source MANO (OSM) and Open Network Automation Platform (ONAP) are
two of many NFV MANO systems which are built to support flexibility of deployment
in a 5G context [YYSCP20]. Both ONAP and OSM are getting attraction from
large cellular network providers and are in many ways comparable in functionality,
performance, and resource usage. In this thesis we will use OSM as our NFV MANO.

In OSM, network slices are defined by combining NSs together into templates. The
primary focus of the thesis will be on building and testing the relevant NS and the
relationship between VNFs. However, we will also demonstrate creating network
slices to examine how this affects the performance of VPNs in a NS.

OSM supports different types of VIMs. We have limited ourselves to using MicroStack
because of available resources. MicroStack has some limitations that will affect
monitoring of our VNFs and NSs. Monitoring the performance when producing test
traffic will therefore require some manual steps. Except for manual performance
monitoring, all other Life-Cycle Management (LCM) should be within the OSM
framework.

The NSs and NSI should include an application simulating actual cellular network
functionality. We will use Open Air Interface (OAI) to introduce such capability.
Further, we will focus on the inbuilt functionality of OSM by, as long as possible,
avoiding the introduction of additional third-party applications that are not created
in a NS deployment. An exception is introducing components to create realistic
test data into the network. However, the thesis will not consider additional external
applications such as centralized key management systems. We have made this choice
because of time concerns and decreased additional complexity to an already complex
environment. Also, we will not look at the scalability of NFs feature in OSM in this
thesis because of the increased complexity in the OAI configuration setup it will
entail.

4 1. INTRODUCTION

1.4 Contribution

Comparisons between VPN software packages are documented both directly from
VPN providers and in scientific work [TT19, Hag20, Don17]. Creating new VMs
and setting up VPN tunnels between them can be classified as mainstream work
for IT personnel. In a 5G context, additional complexity is, however, added with
MANO software and dynamic deployments of NSs. The MANO helps the verticals to
deploy and control a potentially vast amount of NFs across sites. One of the goals for
using a MANO is to make the verticals deploy their services faster. Several examples
already exist on how OSM, the MANO solution in this thesis, can deploy VNFs into
NSs and NSIs. However, how a VPN can be deployed in this context to improve the
security of slice isolation has not been well investigated.

This thesis studies how WireGuard as the VPN application can be deployed in a 5G
environment. OSM is used to orchestrate VNFs with WireGuard into NSs and NSIs,
and to establish VPN tunnels between them.

The thesis also contributes to the OSM community by extending the work done by
Haga in [Hag20] and Dreibholz in [Dre20] in making a Proof of Concept (PoC) of a
WireGuard-OSM lifecycle in the Evolved Packet System (EPS).

We make our code and descriptors publicly available to the research community.1

Finally, the main contributions of the thesis are summarized in the academic paper
“Providing Network Slice Isolation with WireGuard in Beyond 5G” to be submitted
to 4th International Workshop on Cyber-Security in Software-defined and Virtualized
Infrastructures (SecSoft), co-hosted at 8th IEEE International Conference on Network
Softwarization (NetSoft2022). A draft of the paper is given in Appendix G.

1.5 Hypothesis Statement

We think OSM should be able to support our operations by deploying both WireGuard
and authentic functionality for VNFs. We also work with the hypothesis that adding
WireGuard tunnels in our network will not reduce performance considerably regarding
the use cases related to eMBB and URLLC applications.

1.6 Research Questions

1. How can WireGuard be used in a 5G virtualized environment to guarantee
slice isolation?

1https://github.com/sondrki/TTM4905

https://github.com/sondrki/TTM4905

1.7. TOOLS AND RESOURCES 5

2. How does WireGuard deployed in a virtualized environment satisfy performance
requirements in terms of security, throughput, and latency?

3. How can OSM support WireGuard as a VPN-as-a-service?

The numbering is for reference purposes only and does not prioritize the research
questions.

1.7 Tools and Resources

The following subsections introduce different software packages we have used in
developing and testing use-cases to answer our research questions.

1.7.1 OSM

OSM is a MANO software solution from the European Telecommunications Standards
Institute (ETSI) for orchestrating E2E NSs. The aim of the software is to simplify
operational-ready NS deployments and its LCM. This is done by helping developers
creating operations that can be run in the whole lifecycle of NSs and its NFs.
In the OSM community Day-0, Day-1 and Day-2 operations are used as terms for
required actions regarding LCM. Day-0 describes the initial configuration, for instance
setting user names and passwords. Further, Day-1 operations concerns actions such
as installation and configuration of applications. Lastly, Day-2 operations refer to
maintenance and other runtime operations [OSMk]. Instantiation of NSs is performed
via a number of files describing the different VNFs and NS and eventually a NSI. The
latest version of OSM is version 11 which was released in December 2021 [OSMl].
In the thesis OSM will be used to manage and orchestrate different NS and NSIs
including 4G and WireGuard services.

1.7.2 WireGuard

WireGuard is a lightweight VPN software intending to be an easy configurable, fast
alternative to other VPN software solutions [Don]. In the thesis, WireGuard will be
used to set up tunnels between VNFs to secure data transport and provide isolation
of NSIs. WireGuard is described further in section 3.1.6.

1.7.3 MicroStack

MicroStack is an Infrastructure-as-a-Service (IaaS) platform being a container-based
downscaled implementation of OpenStack. In the thesis, we use MicroStack as VIM.
In MicroStack our NSs are deployed as VMs for the VNFs, with virtual networks
connecting them. To be able to do this, OSM will connect to MicroStack. MicroStack

6 1. INTRODUCTION

itself installs on top of one of several Operating Systems (OSs). In our case, we will
use Ubuntu 18.04 as the base OS for MicroStack.

1.7.4 Cloud-init

Cloud-init is a tool for doing basic configuration and managing of a VM hosting VNF
during instantiation [Ltda]. Possible tasks include setting credentials and installing
software using the VNFs’ package manager. Cloud-init is included in OSM to provide
day-0 operations.

1.7.5 Juju

To provide Day-1 and Day-2 operations in the thesis, we will use Juju. When
describing Day-1 and Day-2 operations together, we will often use Day1-2 operation
as a term. Juju is an integrated VNF Manager (VNFM) in OSM providing LCM
of VNFs [Ltdb]. By using packaging scripts and metadata, Juju can perform user-
specified actions to install, set up, and maintain applications in a VNF or Kubernetes-
based Network Function (KNF). Operations in an NF using Juju can be either
native, running directly in an NF, or by using a centralized proxy controller, a VNF
Configuration and Abstraction (VCA). The latter requires connectivity between the
controller and the NF while the first one can perform standalone. Further, Juju
units can be related to each other. In this thesis, we will use proxy charms carried
out by the inbuilt VCA in OSM. How Juju works in the context of OSM is further
described in Section 3.1.5.

1.7.6 iPerf3

iPerf3 is a cross-platform tool to perform network performance tests [DEM+]. iPerf3
can be used to measure throughput and latency in multiple ways based on input
parameters. We will use iPerf3 in the thesis to test how introducing WireGuard
affects network performance.

1.7.7 OpenAirInterface

OAI is an Open Source project which aims to deliver 3GPP compliant cellular
networks [All]. OAI provides code for 4G and 5G components, both for the core
network and the RAN. In the thesis, we use OAI to provide a realistic cellular network
service for testing.

1.8 Thesis Structure

The thesis is organized into seven chapters. Chapter 2 describes how we have worked
to answer the research questions. The chapter also describes the lab environment and

1.8. THESIS STRUCTURE 7

the reasoning for the different tools. Chapter 3 gives an overview of relevant work
and background knowledge of important aspects in the thesis. The results from the
work are split into Chapter 4 for the development and implementation and Chapter
5 includes the results including performance measurements. The following Chapter 6
discusses our findings. Finally, Chapter 7 concludes the thesis.

Chapter2Methodology

The following chapter covers how we have carried out our work. We have split the
chapter into three sections. The first section describes the methodology we have
followed for implementation and testing. Next, we explain the tools we have chosen
to use. Finally, we describe how we have set up our lab environment.

2.1 Work Process

Prototyping has been an essential method of working with the project. OSM and the
supporting features like Juju and cloud-init consist of a vast amount of possibilities.
Therefore, we have used practical implementations with incrementally high complexity
to check that everything is working and learn the tools. With the different options,
a combination of prototyping and understanding already given examples has been
a way to increase the complexity of the NSs gradually. Therefore, prototyping has
been the primary procedure to deploy applications for helping us answer the research
questions.

The methodology we have used to study the research question is by using single-
case mechanism experiments [Wie14]. We have chosen this overall methodology to
build our knowledge simultaneously as we structure our observations. The research
method of single-case mechanism experiments is described as observations when
intervening with a phenomenon based on the architecture of the case. Single-case
experiments can be done both as isolated tests in the lab, simulation of real-world
scenarios, and studying real-world behavior in the field. Thus OAI being able to
connect and function with real-world UEs is not intended to provide production-ready
components. Therefore, this thesis will use a simulated real-world scenario for our
single-case experiments. The validation of our data should include code that should
be repeatable and reusable. With our lab setup, different factors can affect the
deployment of NSs. We will therefore try to deploy the NSs with various resources
and use the samples to reduce uncertainty in regards to measurements.

9

10 2. METHODOLOGY

To get a better overview, we have broken down the research questions from Section
1.6 into practical tasks. Table 2.1 lists the tasks and their related research question(s).
The numbering of research questions are in the order they appear in Section 1.6.
Functionality, ease of deployment, and measurement to gather empirical data are
parts that the tasks should cover.

Table 2.1: Practical tasks formed to solve our research questions.

Task description Corresponding
research question

Setup OSM and VIM in a lab environment. 3
Create a simple NS to ensure functionality

of lab environment. 3
Deploy NSs for OAI and WireGuard

with support of previous work. 3
Include WireGuard in the OAI NSs. 1 and 2

Define the lifecycle of WireGuard as a service 1
Produce traffic for testing

the URLLC and eMBB KPIs of 5G.
Measure both with and without WireGuard inline. 2

2.1.1 Testing

To test how WireGuard affects latency and throughput in a realistic environment, we
will use a combination of data traffic going over the different protocols employed in a
cellular network and using arbitrary data directly in the VPN tunnel. We believe
high throughput cellular measurements are done most straightforward over the user
plane described in chapter 3. On the other hand, we will observe the latency of
telecommunication-specific data and throughput from arbitrary data traffic for the
control plane. To produce realistic data and traffic flow as in an actual cellular
network, we will implement a full EPS. To create traffic into the user plane, we will
include a simulated UE. Resources available in the VNFs may affect the performance
of WireGuard. We will therefore do a series of tests with various amounts of resources.

After deploying an NS, we will run multiple tests to observe the performance of
WireGuard in our architecture. The tests will give measurable results on how the
different deployments of WireGuard-as-a-service perform. For reference, we will
create an EPS NS without WireGuard. This NS will be in equal to a functioning NS
with WireGuard between EPS components, except the VPN tunnels. The following
items describe the overall measurement tasks we plan for the NSs and NSIs we deploy.

2.2. TOOL DECISIONS 11

– Observe latency on response time of packets on eNodeB (eNB) or Mobility
Management Entity (MME) when a UE connects.

– Observe maximum throughput and latency in the user plane with a UE using
iPerf3 to a reachable service when connected to the cellular network.

– Measure maximum throughput and latency directly between two components
in the EPS using iPerf3.

2.2 Tool Decisions

To implement and perform the tests described in Section 2.1 several tools and methods
can be used. The following subsections will reason why we have chosen the tools
used in this thesis.

2.2.1 VNF Architecture

We have approached the tool selecting to choose tools that make the lab and tests as
realistic as possible. OSM can deploy processing units in different ways. A popular
way of deploying processing power is by using Kubernetes (K8s) pods as Container
Network Functions (CNFs)/KNFs [OSMe]. With the installation method we have
used for OSM, a K8s cluster is installed ready to use on the same VM as OSM.
However, we will not deploy any CNF on it as part of our NSs. In this way, we
deploy the OSM on a separate server.

A way of splitting applications and connecting them with internal networks is by using
multiple Virtual Deployment Units (VDUs) or CNFs in a single VNF. A multi-VDU
deployment is the way OAI is deployed in the work of Dreibholz [Dre20]. To be able
to split the EPS components to support a multi-site deployment, we have chosen
to use an approach with one VDU per VNF. With this approach, a simulation of
a realistic network is also possible. For example, can an NS supporting a URLLC
application in the edge have a VPN-as-a-Service (VPNaaS) solution back to the core.

2.2.2 OSM Version

The second choice we have made is the version of OSM we will use. At the start of the
thesis, version 10 was the newest version of OSM. Since version 9 the new descriptor
language, ETSI NFV-Solution (SOL)006 is used for the VNF Descriptors (VNFDs),
NS Descriptors (NSDs) and Network Slice Templates (NSTs) [OSMa]. NFV-SOL006,
is not backward compatible with SOL005 which causes need for translation to use
projects created pre-OSM version 9. To be able to be up to date with the OSM
community, we choose to use OSM version 10. We make the selection intending to
make our work repeatable and usable in the state-of-the-art version of the software.

12 2. METHODOLOGY

The impact of choosing version 10 is that we need to rewrite descriptors and charms
from related work to reuse functionality for the practical part of the thesis.

2.2.3 WireGuard

We have chosen WireGuard as the VPN software to use in this thesis. IPsec and
OpenVPN are similar software solutions that, in addition to WireGuard, are well-
known VPN solutions that use state-of-the-art cryptography. However, as WireGuard
is used in Haga’s master thesis [Hag20], we will benefit from the previous work done
in the thesis. The performance measurements carried out in the work of Haga and
Donenfeld show that WireGuard performs well compared to other VPN solutions when
it comes to throughput and latency [Hag20, Don17]. The performance measurements
from these studies build up under our hypothesis that WireGuard is suitable to use
in a 5G and beyond context.

2.2.4 Juju Charms

To deploy Day1-2 operations, Juju will be used [OSMe]. There are two ways of using
Juju charms in OSM. Native charms runs the operations in a VNF independent
of other VNFs and controllers. On the other hand, Proxy charms use a central
controller to manage the actions. The VCA controller is normally installed as an
integrated part of OSM. The controller most commonly uses Secure Shell (SSH) to
configure and run commands in VNFs. There are some differences in the coding
part of the different types among which libraries to use in the OSM integration.
Therefore, it is preferable to use only one type in the thesis. Proxy charms enable
some additional functionality as relations between nodes for scaling, management, and
cross-service dependencies [Ltdb]. The previous work of both Dreibholz [Dre20], and
Haga [Hag20], uses proxy charms. To reuse previous work and explore the additional
proxy-functionalities, we will use proxy charms as our method for deploying charms.

2.3 Lab Setup

We have had the intention of having a lab environment to be as realistic as possible
based on the suggestion of Esmaeily et al. [EKG20, EK21]. However, the lab
environment has some differences from the suggested test-bed because of available
resources.

The main building components for the overall lab environment is OSM as the NFV
MANO, and MicroStack as the VIM. We have had access to two VIMs during the
work with the thesis. One VIM having the NFVI directly on the physical hardware,
while the other VIM being on top of an already cloud-based/virtual infrastructure.
The resources for the VIMs have been 56virtual Central Processing Units (vCPUs),

2.3. LAB SETUP 13

Figure 2.1: Software to ETSI NFV MANO framework slicing [EKG20].

126GB Random Access Memory (RAM) and 915GB storage for the first and 9vCPUs,
32GB RAM and 150GB storage for the other one. The relations between the different
components and related products are shown in Figure 2.1.

With limited hardware to run on at the start, with only having the second-mentioned
VIM available, we were limited to what NSs we could build. We struggled with the
OAI EPC, in particular the Home Subscriber Server (HSS) application because of
the limited resources. With limited resources, the success rate for building the HSS
database was low. The overall deploy time was also high, causing a timeout in OSM
when running Day-1 operations.

After a while, we got access to a separate infrastructure where we installed a fresh
Ubuntu 18.04 instance. To enable the new server as a VIM, we installed MicroStack
and connected OSM to it. We also established a connection to the other VIM
to prepare for multi-site deployments. From OSM we have had access to both
MicroStack instances and have therefore been able to deploy NSs on both VIMs.

14 2. METHODOLOGY

To connect the MicroStack instance as a VIM in OSM we ran the commands in
Listing 2.1. The same commands were used for both VIM connections, only changing
the name and IP address.

osm vim−cr ea t e −−name a2ntnu_microstack −−user admin −−
↪→ password <password> −−auth_url https ://< ip address
↪→ >:5000/v3/ −−tenant admin −−account_type openstack

osm vim−update a2ntnu_microstack −−con f i g ’ { use_f loat ing_ip :
↪→ ␣True} ’

osm vim−update a2ntnu_microstack −−con f i g ’ { i n s e cu r e : ␣True} ’

Listing 2.1: Instantiation of VIM in OSM.

For connecting OSM to multiple VIMs, we needed to adjust the network settings on
one of the MicroStack instances. The management network on the VIM should be
reachable from the VCA. As we have had a co-located OSM and Juju VCA controller,
we should be able to reach both the VIM Application Programming Interface (API)
and the VNFs management network from the OSM VM. MicroStack comes with a
predefined subnet, 10.20.20.0/24, which works fine for a single-VIM setup. However,
to enable multi-VIM usage, we have changed the subnet of the second MicroStack
instance to avoid network conflicts. To achieve this we change the IP address of
the interface on the second VIM with the command, ifconfig br−ex 10.21.21.2/24,
to set the new IP address. We also needed to change the config file of Horizon,
the web Graphical User Interface (GUI) module of MicroStack, by replacing the
old IP address with the new in the file /var/snap/microstack/common/etc/horizon/
local_settings.d/_05_snap_tweaks.py.

Lastly, we connected the VIMs with a WireGuard tunnel. Connecting the VIMs was
done to make VNFs connect across VIMs. Therefore, VNF application data goes
through a double, nested WireGuard tunnel when testing WireGuard between VNFs
in the multi-site setup. The bandwidth between the two MicroStack instances is
limited by the ISP given to 200Mbps.

Chapter3Background and Related Work

This chapter consists of three sections. In the first section, we explain topics related
to essential aspects of this thesis. The second section introduces several relevant
papers and works to this thesis. Finally, the third section describes how we have
gained knowledge of the OSM framework through attending their OSM Hackfests.

3.1 Background Theory

3.1.1 4G Networks

The transition from 4G to 5G networks consists of introducing new KPIs and network
components to achieve them. Still, 4G components will exist in a 5G context, as a
NSA solution, at least until the MNOs migrate over to full 5G SA networks.

Figure 3.1: EPS architecture [BVA+18].

15

16 3. BACKGROUND AND RELATED WORK

Another name for 4G networks is EPS. The EPS consists of the EPC and the Evolved-
Universal Terrestrial RAN (E-UTRAN) [Sau14]. The E-UTRAN is more commonly
known under the name Long Term Evolution (LTE). The different components in
the EPS and their relations are shown in Figure 3.1. The HSS provides the database
where subscriber information is stored [BVA+18]. Further, the HSS connects to
one or more MMEs. To locate an UE a network is divided in multiple Tracking
Area Codes (TACs) representing geographical areas. The MME is the component
responsible for handling mobility features in the EPS. This includes keeping control
of a UEs Tracking Area (TA) and supporting handover between eNBs. In the
authentication of UEs, the MME is involved to allow and verify access to the network.
The MME communicates over the S1-C interface towards the eNBs and through the
S6a interface to the HSS.

eNBs are autonomous units responsible for the wireless part of the network. Therefore,
the eNB performs the direct communication for providing network service to UEs.
In addition to the air interface, Uu, to the UEs and the S1-C interface going to the
MME, the eNB connects to the Serving Gateway (SGW) through the S1-U interface.
The function of the S1-U interface compared to the S1-C interface is the user data,
such as IP traffic, which is sent directly to the SGW. On the other hand, control
data that is essential for the cellular network, like location updates, goes over the
S1-C interface.

The role of both the SGW and the PDN Gateway (PGW) is to handle user data by
routing traffic. The difference is that the SGW is the connection point for the eNB
to route data to while the PGW routes traffic to other (external) networks. Other
networks could for instance be other Radio Access Technologys (RATs), MNOs or
IP networks such as IP Multimedia System (IMS) services and the Internet. There
is also a difference between the SGW and the PGW in the additional control and
tunnel setup, done by the SGW.

The subscriber information for a UE consists of information used by the network to
authenticate the UE to offer its services. A UE is assigned a global unique identifier,
International Mobile Subscriber Identity (IMSI). The IMSI is constructed using
the Public Land Mobile Network (PLMN) and an operator unique id, the Mobile
Subscription Identification Number (MSIN). The MNO also assigns a phone number
to the subscriber, the Mobile Station International Subscriber Directory Number
(MSISDN). The network, on the other hand, also uses identifiers to be recognized
internally and by UEs. The primary network identifier is the PLMN. The PLMN
consists of the Mobile Country Code (MCC) representing the country of network and
the Mobile Network Code (MNC), a designated code for the MNO normally given by
the telecommunication authorities in a country. When connecting to a network the
UE does two mutual authentications, one for the Access Stratum (AS) between the

3.1. BACKGROUND THEORY 17

UE and the eNB and one for the Non-Access Stratum (NAS) terminated at the MME.
The Universal Integrated Circuit Card (UICC) in the UE and the HSS store keys
used in the authentication process, known as Authentication and Key Agreement
(AKA). During the AKA, the UE sends its IMSI to the eNB. The eNB then forwards
the IMSI to the MME which asks the HSS for derived keys from the operator key
and the shared secret key, K, stored in the HSS and UICC. The derived keys are
then used to challenge the UE to check if it has the same keys as the HSS.

3.1.2 Towards and Beyond 5G Networks

Control and User Plane Separation (CUPS) was introduced in 3GPPs release 14 [PS].
Separating user data from the control plane allows processing user data in other
places than the core. CUPS continues in beyond 5G to improve flexibility and
support new use case scenarios. This is shown in Figure 3.2 where the two new
5GC components, Session Management Function (SMF) and User Plane Function
(UPF) handle the control and user data previously sent to the gateway and MME
components in the EPC.

Figure 3.2: 4G and 5G core network components comparison [Ope].

The architecture of 5G networks is flexible, and it depends on the desired functionality.
An example of a non-roaming reference architecture of the 5GS is shown in Figure 3.3.
The figure places the components in three levels. The user plane components at the
bottom of the figure, and the control plane NFs in the middle and top section [ETS20].
The control plane is built up as a Service Based Architecture (SBA) with Service
Based Interface (SBI) to access the NFs. The name for the SBI is used to connect to
the various user plane NFs. Between the control and user plane are the names of the
different interfaces. These are similar to the interfaces in the EPS. The use of SBI in

18 3. BACKGROUND AND RELATED WORK

the control plane differs from the point-to-point-based interfaces of the user plane.
In both Figure 3.2 and Figure 3.3 three important components are placed centrally,
the UPF, the SMF and the Access and Mobility Management Function (AMF).

Figure 3.3: 5GS reference architecture [ETS20].

The role of the SMF is to handle multiple UE related actions and manage its sessions,
such as IP address allocation and control policy functionality. This is the control
plane functionality done by the SGW and PGW in the EPS. The user plane part of
the SGW and PGW is handled by the UPF, with routing and forwarding as its main
tasks. The AMF together with the SMF terminates the NAS signaling between the
UE and the core. The AMF is also responsible for mobility management and it acts
as a security anchor for the UE by keeping intermediate keys, communicating with
the Unified Data Management (UDM), and being responsible for access authorization
and authentication. The SMF, AMF and UPF are the base components in the 5GC
with the rest being added dependent on the service. To have a functional network,
additional NFs are needed. The functionality for the other NFs in Figures 3.2 and
3.3 are briefly described below.

– The RAN is responsible for the wireless part of the network as in earlier
RATs [EKM22]. The gNodeB (gNB) holds the same functionality as the eNB
in LTE networks.

– The UDM together with the Authentication Server Function (AUSF) handle
functionality similar to the HSS in the EPC. While the AUSF manages the
incoming authentication request and policies, the UDM stores the subscriber
information. The AUSF controls the communication to the UDM and AMF.

3.1. BACKGROUND THEORY 19

– Managing network slices in 5G has introduced multiple new components. The
Network Slice Selection Function (NSSF) holds control over the network slices
and routes UEs to desired network slices and AMFs. To allocate the UE to a
network slice, the NSSF checks if the UE is allowed to connect to the it.

– Service Communication Proxys (SCPs) can operate on different levels to route
and forward messages to NFs or other SCPs. Some examples of usage include
load balancing, monitoring, and communication security.

– The Network Slice Specific Authentication and Authorization Function (NSSAAF)
handles the communication to external Authentication, Authorization and Ac-
counting (AAA) servers for network slices.

– The Network Repository Function (NRF) provides functionality to discover
services and maintains profiles for NFs and SCPs as well as their status and
health.

– The Network Exposure Function (NEF) communicates between internal and
external networks by translating and securing messages at the border of the
networks. The NEF also keeps track of information about NF capabilities
which it can make available for other internal or external parties.

– The Policy Control Function (PCF) handles various rules in the network. For
instance mobility management to provide QoS and access control to NFs.

Figure 3.4: KPI comparison between 4G and 5G networks [ETSd].

A comparison of the KPIs of 4G and 5G networks is visualized in Figure 3.4. 20Gbps
peak data rate, lower latency, and an increase of 10 to 100 times for user data
rates are examples of the increased demands of 5G networks shown in the figure.

20 3. BACKGROUND AND RELATED WORK

In a service-oriented network, different services require different performance. The
use-case scenarios in 5G networks can be categorized in three main categories: eMBB,
URLLC, and mMTC. The KPIs cover all these scenarios. An eMBB slice can,
for instance, be suitable for high data rates, but not necessarily low latency. To
differentiate between the different requirements, ETSI has specified a list of 5G
QoS Identifier (5QI) [ETS20]. The 5QI specifies the priority and requirements of a
network slice.

3.1.3 Isolation Theory

A network slice can be understood as an E2E logical network on top of a shared
infrastructure [BAMH20], i.e. NSIs can be created on-demand, mutually isolated
from other NSIs. While NSIs are isolated from each other, NFs in an NSI can be
shared across NSIs and to be cross-domain. One NSI can therefore use functionality
of other NSIs. The focus on sharing application services enables the creation of
service-oriented networks.

Figure 3.5: MANO of isolated network slices using a shared infrastruc-
ture [GOLH+20].

Figure 3.5 illustrates the separation of NSIs by showing a shared part of data centers,
radio resources and transport networks [GOLH+20]. The different tenants are then

3.1. BACKGROUND THEORY 21

given resources from the shared part of the different domains. The resources are
isolated from the other tenants, meaning that one tenant only will use the assigned
logical resources. As application usage can vary, assigning physical resources to
given network slices may be ineffective in isolating physical resources. An alternative
to physical isolation is logical isolation. For logical isolation, a physical resource
distributes over multiple network slices. While the tenant managers control their
logical resources, the network slices access the physical resource using access schemes.
Prioritization of tenants to ensure QoS can be done in different ways while using
logical isolation. For example using virtual Local Area Network (VLAN) tagging.

Using shared infrastructure opens for security issues through the different security di-
mensions, Confidentiality, Integrity and Availability (CIA). Gonzales et al. [GOLH+20]
look at security in an isolation context using three dimensions. The three dimensions
are performance, security, and dependability. For the performance dimension, NSIs
should have enough resources available to fulfill its KPIs. Furthermore, enough
resources should be available regardless of the activity of other NSIs. A network
slice delivering an URLLC application should, as an example, not be affected by
other NSIs network traffic. The security dimension of Gonzales et al. includes the
CIA triad. An attack in either of the CIA directions in one NSI should not affect
others. For example, having malicious activity breaching the confidentiality in a NF
in one NSI should not enable the adversary to attack other NSIs running on the
same shared infrastructure. The same principle is also valid for the dependability
dimension. Hardware or software failure in one NSI should not cause errors across
other NSIs.

Figure 3.5 also shows the two levels of management for realizing network slicing,
provider and tenants management. Provider management describes supervising
the set up of network slices on the physical infrastructure. To create network
slices, allocating the resources needed for an E2E composition of the slice must
be done [GK19]. For instance, it is the provider manager responsible for setting
up the connection between the NFV MANO and VIM. On the other hand, tenant
management describes the administration done within a NSI. Tenant management
includes setting up the applications and configuration of VNF into NSs. OSM supports
differentiating in management level by its Role-based Access Control (RBAC) [OSMi].
A manager can control one or more tenants as shown in Figure 3.5. One manager
controls tenants A, B, and C in the figure, while tenant D gets controlled by a
separate tenant manager. Figure 3.5 shows the separation of managers with the
dotted line around “Tenant D.”

22 3. BACKGROUND AND RELATED WORK

3.1.4 OSM Descriptor Language

OSM uses Yet Another Next Generation (YANG) data models to describe how
objects are created. For objects like NSD files with YAML syntax, compliant with
ETSI NFV-SOL are used [ETSc]. In addition to the SOL descriptors used directly
in VNFDs, NSD and NSTs, other SOL descriptions regulate other building blocks
like the descriptors folder structure. The different SOL descriptors and how they are
related in the NFV architecture are shown in Figure 3.6. The version for VNFDs,
NSDs, and NSTs used in OSM version 9, 10 and 11 is SOL006 [ETSa]. Older SOL
versions are not directly transferable to SOL006.

Figure 3.6: SOL specifications supporting the different parts in the NFV Architec-
ture Framework [ETSc].

While ETSI NFV-SOL006 is a description of how to build the data models, OSM is
a software using it. A description of OSMs information model is therefore necessary
to know how and what OSM impelement NFV-SOL006. References [OSMc, OSMf,
OSMd] show the keywords of the information model that can be used for respectively
NSD, VNFD and NST.

3.1. BACKGROUND THEORY 23

3.1.5 OSM Onboarding

OSM onboarding describes the LCM of NFs. The operations phase in Figure 3.7
includes the OSM terminology of Day-0, Day-1 and Day-2 operations. Day-0 actions
and the release phase matches. Further is the deploy phase matching OSM Day-1
actions, and Day-2 matches the operational phase in the figure. Monitoring in OSM
is done during the whole life cycle for NSs [OSMe]. Contrarily is the manager and
developer work done before the deployment part of the development phases of Figure
3.7. Within OSM the descriptor, validation, and packaging phases are accomplished
by having standardized ways of describing and packing objects as described in Section
3.1.4. OSM validates these when modified to avoid errors. However, OSM do not
support the emulating and testing phase of Day1-2 operations. Other tools OSM must
be introduced separately for the Continuous Integration/Continuous Deployment
(CI/CD) for these phases.

Figure 3.7: Steps of lifecycle management of services in a 5G and CI/CD con-
text [Groa].

There are two ways of deploying Day-1 operations in OSM, either using Helm charts
or Juju charms. Helm charts, being a packet manager for Kubernetes, can be used
when building KNFs [OSMe]. Juju on the other hand can be used for both KNF,
directly in VNF and on NS level [OSMc, OSMf]. Juju charms have two modes of
operation. Either native inside a VNF or by using a proxy charm where a central
controller, VCA, connects to the VNF through their management interface to run the
instructed commands. By default proxy charms in OSM use SSH for the VCA to VNF
connection [OSMe]. In both native and proxy charms, Juju uses Python scripts to

24 3. BACKGROUND AND RELATED WORK

perform intended actions for both Day-1 and Day-2 operations. To reference actions
in the VNFD or NSD, the developer must place a folder including configuration and
the charms script alongside the descriptor files. The Juju config files use YAML
syntax to describe metadata and the actions implemented in the Python code. To
connect the Python code in proxy charms with OSM a specified python library,
charms.osm.sshproxy, is used [OSMb].

The OSM End User Advisory group has made a white paper to show how OSM can be
used in real-world applications [Grob]. Even with 5G being focused on cloud-native
infrastructure, Physical Network Functions (PNFs) will likely still be in use for several
scenarios. OSM supports integrating PNFs alongside VNFs and CNFs to manage
and orchestrate hybrid E2E networks. In the paper, CI/CD is discussed as a future
feature that is currently under evaluation and development. A proposed architecture
of the CI/CD pipeline for NFV development is also discussed. The main parts of
this architecture are a separated VIM as NFV test infrastructure before it goes into
production. Streamlining descriptor development, code review and automated build
and test suite are some of the potential advantages of CI/CD. The steps in a CI/CD
cycle overlap with the steps for LCM in Figure 3.7 [Inc]. Development of a CI/CD
architecture for NFV in OSM will therefore likely improve LCM of NS.

3.1.6 WireGuard

WireGuard is a VPN software that intends to be a compact and faster alternative to
other popular VPN software like IPSec and OpenVPN [Don]. The original version
described in paper [Don17] totals under 4000 lines except for cryptography libraries.
The limited code lines and configuration options intend to make WireGuard fast and
avoid user-caused configuration errors. WireGuard has been included in the Linux
kernel since version 5.6 [Tor]. In other words, the underlying libraries for installing
and using WireGuard get preloaded in OS images with kernel version 5.6 and higher.
After initial setup, the WireGuard protocol opens up for full mobility and flexibility,
which means that both the server and client can move to another IP address. The
other part will then update the peer’s location by verifying the incoming public key.

Unlike IPSec, WireGuard users cannot choose their cryptography configuration.
Instead of the user choosing cryptography parameters, WireGuard has selected
state-of-the-art cryptography prior. The cryptographic protocol is pre-defined using
ChaCha20 for symmetric encryption, with Poly 1305 providing the authentication
in the protocol. The peers are assigned one private and one public key from key
generating. The elliptic curve, Curve25519, is used for the key creation. While the
private key stays at the owner, the public key gets transferred to the other peer(s) to
make them able to verify data encrypted with the private key.

3.2. RELATED WORK 25

The VPN tunnel uses the handshake procedure shown in Figure 3.8. The connection
setup depends on the workload of the responder receiving the initial message. Either
the responder answers with a response message to enable the session or with a cookie
reply message. In the case of receiving a cookie reply message, the initiator must send
a new handshake initialization. During the handshake procedure, the participants
verify that the traffic received is from a previously received public key added in
WireGuard’s key routing table. If the public key matches during the handshake
process, symmetric session keys are generated. WireGuard then uses the symmetric
keys to encrypt the transport data. While connected, the peers will regularly refresh
the symmetric keys to provide perfect forward secrecy.

Figure 3.8: Handshake procedure in WireGuard [Don17].

3.2 Related Work

Studying different aspects of the 5G sphere is a focus area for several recent studies.
This thesis itself builds on previous work, in particular, the code given in the work
of Haga and Dreibholz [Hag20, Dre20]. To get an overview of other work relevant to
the topics of 5G MANO in general, OSM, isolation and security in 5G are therefore
helpful.

3.2.1 Towards 5G Network Slice Isolation with WireGuard and
Open Source MANO

The master thesis of Simen Haga [Hag20] compares WireGuard to other VPN
solutions like IPSec and OpenVPN. Further, Haga et al. [Hag20, HEKG20] study

26 3. BACKGROUND AND RELATED WORK

how to use OSM to deploy WireGuard in a NS and give a demo of this. The demo
uses two VNFs which are accessible through a management network. In addition,
a data network is created for the WireGuard tunneling between the VNFs. The
network diagram for the NS is shown in Figure 3.9. Providing peer connectivity is
done using Day-2 operations. To retrieve the necessary keys for the peer setup, the
manager must manually collect the public keys from the VNFs.

Figure 3.9: Network connection in the NS of Haga et al. [Hag20].

The master thesis has some key findings that are relevant to this thesis. The first is
that OSM can manage and orchestrate WireGuard to secure communication between
VNFs. Further, tests in the thesis show that WireGuard gives better throughput and
lower latency than OpenVPN.

3.2.2 5G VINNI

In the 5G VINNI project, Dreibholz has deployed the EPC in OSM using OAI. The
work is described in paper [Dre20]. The supporting code for the paper is available on
GitHub [Ser]. As shown in Figure 4.10 different EPC components and the interfaces
between them are implemented as VDUs in a single VNF. One of the goals for the
study is to have a base core network ready for further future expansion. One of the
extensions suggested is to include a MEC setup.

The project also looks at the radio part of LTE using OAI for the implementation of
eNB and an actual modem for UE. An Ettus USRP B210 Software-Defined Radio
(SDR) was used for the eNB. The UE was connected over the air using a Huawei
E392 USB modem on a laptop. The paper presents throughput measurements for the

3.2. RELATED WORK 27

Figure 3.10: Architecture of SimulaMet EPC VNF [Dre20].

UE connectivity to the EPC. A download speed of around 11Mbps, and an upload
speed of around 4Mbps were measured using SCTP in one direction. The paper’s
throughput measurements for TCP were 0.3Mbps and 4.5Mbps for download and
upload speed. The low download throughput for TCP is an unexpected result. The
paper addresses the result but does not conclude the low throughput. However, it
points out that there might be a software bug with OAI or the setup. As written
in the conclusion section, deployment of OAI can be an error-prone task. When
OAI first is set up, using OSM with charms helps to deploy the NS in the same way
every time. Preparation of a working configuration is done in templates of NSDs
and VNFDs. The templating can therefore reduce errors compared to installing OAI
manually.

3.2.3 Service Function Chaining in 5G and Beyond Networks:
Challenges and Open Research Issues

SDN and NFV technologies open up for a flexible way of chaining services together.
SF Chaining (SFC) is described as the way of connecting and ordering SFs together.
Using the mentioned technologies, SFC is introduced in mobile networks. For instance,
SFC can be used for granular policy control or QoS optimization. SDN enables
forwarding of data traffic in a dynamical and flexible way. As described in section
3.1.4 the NFV orchestration enables creation of the virtualized SFs, VNFs, and
connectivity between them used in SFC.

28 3. BACKGROUND AND RELATED WORK

Several challenges for SFC are identified in the paper of Hantouti et al. [HBT20].
Different challenges regarding MANO, composition of SF into chains, QoS and
security are studied. For the security challenges, authentication and classification of
data traffic along with trust internally and between SF components are important
aspects for the SFC operations. A key concern when it comes to security in an SFC
context is networks managed by different operators. The paper suggests encrypted
tunnels and encapsulation as a countermeasure. Operators should use encrypted
data tunnels to provide packets’ integrity and prevent bypassing of policies.

3.2.4 5G Multi-access Edge Computing: Security, Dependability,
and Performance

The paper [NGO21] by Nencioni et al. looks at challenges regarding security, de-
pendability, and performance using MEC in 5G networks. A key finding is that there
have been multiple studies of security in a 5G MEC environment, however, with
the dependability as a less studied facet. To be reliable, URLLC applications have
dependability requirements with the use of MEC. Therefore, the paper points out the
few studies of dependability as contradictory. The paper further addresses software
and hardware errors as challenges regarding dependability.

MEC security challenges are categorized into three levels in the paper, general
challenges, system-level, and host level. Further, Nencioni et al. compare the
composition of an NFV-based NS with SFC used in association with SDN. Figure
3.11 illustrates the system and host level and shows the connectivity between different
components. The components of the MANO part of the figure overlap with those
represented in Figure 2.1. On the other hand are the application and infrastructure
parts of Figure 3.11 expressed with more specific MEC parts.

At the host level, the paper addresses challenges regarding VNF management, VNF
applications, VIM, data-plane and NFVI. Some of the described challenges are
physical security and malicious activity running alongside in a shared environment.
Further, the paper discusses challenges using virtualized hardware. For instance,
is resource usage both in computation and network an example of a virtualized
environment challenge.

For the topic of shared virtualized networks, the paper addresses challenges related
to the overhead caused by cryptographic protocols. Overhead in, for instance, VPNs
may introduce both potential performance and security issues. The latter originated
by verticals not using security features to become lightweight and improve other
performance.

3.2. RELATED WORK 29

Figure 3.11: MEC-in-NFV architecture presented in two levels with deployed
applications and their management and orchestration [NGO21].

Geographic areas related to MEC security is another topic discussed in the paper. One
potential security advantage of having smaller geographical areas are the resistance of
Distributed DoS (DDoS) attacks. By using MEC with narrow coverage, it is possible
to limit the attack geographically.

For the MEC system-level, challenges regarding LCM and MANO are addressed. As a
reference to components used in this thesis, OSM introduces LCM by using cloud-init
and Juju. In the paper, Nencioni et al. suggest a combination of centralized and
decentralized defense mechanisms to encounter system-level challenges. Intercommu-
nication between MEC and LCM systems is one example where a combination of
centralized and decentralized countermeasures is applicable. Other examples include
hardening of the MANO, MEC platform and VMs.

One of the general challenges mentioned is trust between stakeholders. An example
where this is a challenge is between MNOs. Further, virtualization technologies in
NFV, SDN and network security are technologies that bring their challenges to the
table. Finally, to finish the general challenges, a specific risk raised for network
security is the data transit between the edge and the core.

30 3. BACKGROUND AND RELATED WORK

3.2.5 5G Core Network Security Issues and Attack Classification
from Network Protocol Perspective

The paper [Kim20] by Hwankuk explores new security threats introduced with 5G
networks and classifies several potential attacks. Using a common infrastructure
with logically separated resources between network slices introduces the risk of
attacks from one slice to another if not properly isolated. The paper suggests that
an attacker could eavesdrop or tamper with data in other slices without proper
encryption. Possible vulnerabilities for the different protocols used are a major part
of the paper. New protocols required for inter-operations may introduce new security
issues. Further, the use of a SBA and APIs generally inherits vulnerabilities known
from other IP networks. For GPRS Tunnelling Protocol (GTP) traffic, man-in-the-
middle and DoS are mentioned as possible attacks in the control and user plane.
Using protocols designed for closed internal environments introduces other challenges.
Issues such as non-encryption, unauthenticated packets with unknown origin, and
errors requiring manual fixes are examples of challenges for these protocols.

Further, the paper addresses the security of different parts introduced by 5G networks.
Some of the topics mentioned are MEC, 5G RAN, Internet of Things (IoT) traffic
and software-based infrastructure through SDN and NFV technology. In addition,
the paper discusses several improvements as an improvement of the 5G standard
compared to earlier cellular technologies. These include improved IMSI capture
prevention and Security Edge Protection Proxy (SEPP) functionality between MNOs
and other domains. In total, the paper summarizes five security issues related to the
development of 5G networks. The five issues are listed below.

– DDoS caused by vulnerable IoT devices.
– Coverage of cells and RAN failure.
– Monitoring and protection of decentralized devices.
– Proper isolation of shared physical infrastructure.
– Reliability and security of third-party applications and their API connections
to the internal core network.

3.2.6 Virtualized Cellular Networks with Native Cloud
Functions

In the master thesis [Gon21] by Gonzales, OSM is used to show how it can deploy
5G NFs using different techniques. The thesis focuses on creating container images
and deploying CNFs by compiling development done in the Open-VERSO project.
The complexity with this approach is moved to the image creation itself, making
Day-1 actions more basic.

Two open source projects, free5GC and open5GS, that implement the 5GC are used
to achieve the PoC. After preparing K8s images, OSM is used to orchestrate the

3.2. RELATED WORK 31

deployment. The NSs created in the thesis consist of a single VNF with a single KNF
inside. To configure the KNFs, Helm charts are used as Day-1 operations method.
After the deployment of the NSs, a simulated gNB and UE are added in the lab to
test E2E connectivity.

3.2.7 A Secure Link-Layer Connectivity Platform for Multi-Site
NFV Services

Comparable to this thesis, Vidal et al. [VNL+21] addresses secure communication
between NFVIs using OSM. The paper introduces a PoC of a platform, L2S, to
provide secure link-layer connectivity between NSs at multiple sites. In the PoC, a
VNF with switch functionality at each site to provides the cross-NFVI connection.
Open vSwitch with VXLAN is the main part in the L2S VNF solution, performing
the switching. To secure the link between VNFs, Vidal et al. uses IPsec as VNFs
solution. Figure 3.12 shows the lab setup used in the paper. Multiple NSs can
route their traffic through the switch. For instance, is site B in the figure serving
two NSs. The L2S are creating secure tunnels between the NFVIs to abstract the
lower layer networking for the other VNFs. To add configuration parameters like
VLAN identifiers and cryptographic keys OSM must be supplied together with the
instantiation for automatic setup of the tunnel.

Figure 3.12: Multi-site L2S connectivity [VNL+21].

In addition to validating the functionality, performance measurements through the
L2S are done in the paper. The measurements are done both with and without
encryption and from one to four vCPUs. When introducing the L2S without en-
cryption, the throughput drops from around 15Gbps to 1.13Gbps. The bare Open
vSwitch throughput is measured similar also when adding more vCPUs. When
adding IPsec, the throughput reduces. Depending on the number of vCPU and
Maximum Transmission Unit (MTU) size, the lowest measured throughput with

32 3. BACKGROUND AND RELATED WORK

IPsec was around 550Mbps, and the highest around 1.05Gbps, converging towards
the unsecured throughput.

3.3 OSM Hackfests

The OSM community regularly has conferences to show examples of usage, extend
knowledge for the users, and encourage the use of OSM. During the work with the
thesis, there were two Hackfest conferences and one OSM ecosystem day that we
attended. All of these were online. The Hackfests were focused on practical skills,
while the ecosystem day presented new features and examples of usage. We have
used the Hackfests to gain hands-on experience in the preliminary work of the thesis.

The first Hackfest we attended focused on building Day-1 and Day-2 operations
for specific components, like routing with VyOS and DNS resolution with Pow-
erDNS [vyo, BV., OSMh]. The second Hackfest focused on building OAI using their
5GC implementation. The job for the participants of the Hackfest was to experiment
with OAI in different teams. First, without using OSM, then write the necessary
description files and extend the deployment with Day1-2 actions. The OAI 5GC
was prepared ready to build using a Juju charmed KNFs. The Juju charm came
preconfigured with relationships between the different components was prepared in
the Juju charm. To build a working NS, the different groups at the Hackfest had to
prepare multiple K8s pods within a single VNF to use the Juju charm.

Chapter4Implementations

This chapter will describe how we have carried out our practical work. In particular,
is the chapter addressing how we have created the descriptors and Juju charms to
build use cases used in answering the research questions. The chapter also includes
verification of the functionality at different development stages.

4.1 Intended End-state

To get a realistic architecture to deploy WireGuard as VPNaaS in it, we want to
extend the NS described in chapter 2 [Ser]. For testing purposes, we need to have a
UE connecting to the EPS. The UE will trigger the use of realistic protocols and
interfaces in both the control and user planes.

Figure 4.1: Target network architecture.

Figure 4.1 shows the overall architecture for the NS we want to build. The black lines
between the VNFs are the direct network between the components. The red dotted
lines illustrate the WireGuard tunnel we want to deploy on top of the black-lined
interfaces. The blue lines show the management interfaces needed to communicate
out of the NS. The management interfaces are used for the OSM and the Juju VCA

33

34 4. IMPLEMENTATIONS

to access the VNFs for deploying Day-0 to Day-2 operations. The management
interfaces are also the route to external networks to access Internet resources. Since
all virtual networks are SDN-based on the MicroStack VIM, all external traffic to or
from VNFs goes through the virtual router in MicroStack.

4.2 Adapting Previous Work

As described in section 3.2 deploying NSs for both WireGuard and OAI has been
done separately by others earlier. However, both the work of Haga in [Hag20] and
Dreibholz in [Ser] require some changes to function in our lab environment. The most
important change is the descriptor language. Rewriting the work of the two NSs is
important to extend the functionality and eventually answer our research questions.

4.3 WireGuard NS

To establish a WireGuard NS, we use the outcome of Haga’s master thesis. Since the
NS of that thesis was built to support OSM version 8 it utilizes the NFV descriptor
SOL005. We must therefore update both the VNFD and the NSD to support OSM
version 10 SOL006 descriptor language.1

The architecture with a NS consisting of two similar VNFs with one VDU is kept in
our modification. The networking includes two networks - one management network
to reach the VNFs from outside the NS and one data network to demonstrate the
WireGuard functionality. The rewrite will reuse the network architecture.

We changed the folder layout and the supporting scripts for Juju charms to comply
with the current structure recommended for proxy charms. For the charm func-
tionality itself, we keep it as is. Retaining the charm includes performing the key
generating and initial configuration as Day-1 operations. Peer connectivity is then
manually configured as Day-2 operations using the addpeer action. The input to the
action is the peer’s public key and the network information behind the peer. Listing
4.1 shows the code snippet where the charm function creates the WireGuard base
configuration.

de f on_generateconf ig_act ion (s e l f , event) :
. . .
proxy = s e l f . get_ssh_proxy ()
gateway_ip = s e l f . model . c on f i g [" ssh−hostname "]
cmd = [’ echo␣−e␣ " [I n t e r f a c e] \ nAddress␣=␣{}\ nListenPort ␣=␣

↪→ 51820\ nPrivatekey ␣=␣$ (sudo␣ cat ␣/ e tc /wireguard /
↪→ pr ivatekey) " ␣ | ␣ sudo␣ tee ␣/ e tc /wireguard /wg0 . conf ’ . format
↪→ (gateway_ip)]

1https://github.com/sondrki/TTM4905/tree/main/basic_wg_ns

4.4. OAI EPC 35

r e su l t , e r r = proxy . run (cmd)
. . .

Listing 4.1: Content of the on_generateconfig_action function in charm code to
create inital WireGuard configuration.

Table 4.1 represents basic information for the different VNFs in the NS. The amount
of vCPU and RAM is virtually allocated at the VIM.

Table 4.1: VNF information of WireGuard NS.

VNF name OS number of amount of storage (GB)
vCPU RAM (GB)

vWireGuard_vnf1 ubuntu18.04 1 1.0 10
vWireGuard_vnf2 ubuntu18.04 1 1.0 10

4.4 OAI EPC

The first step we took in order to rewrite the NS from Dreibholz [Ser], was to build
the base structure of the NS.2 The NS was structured by preparing the transition
from one VNF with multiple VDUs to multiple VNFs. After the transition, the new
NS architecture we created consists of four VNFs running different components of
the EPC. The four components each running in its own VNF are HSS, MME, Service
Packet Gateway-User plane (SPGW-U) and Service Packet Gateway-Control plane
(SPGW-C).

The implementation of Dreibholz in [Dre20] specifies most of its parameters using a
large configuration file during instantiation. However, to avoid possible sources of
errors, we included the variables inside the VNFDs directly.

After deploying the base NS, we noticed that we had to adjust the IP address
configuration to use static IP addresses for the internal interfaces of the NS. When
creating the NS by initializing it with additional parameters, we achieved setting
the intended network configuration. Listing 4.2 exposes the necessary parameters in
the additional file to set the IP addresses. The listing also includes the actual IP
addresses we have used in the NS. To assign these static IP addresses, we also had
to specify the network configuration in the NSD. As an example, Listing 4.3 displays
the composition for the S6a interface in the NSD.

2https://github.com/sondrki/TTM4905/tree/main/oai_epc_ns

36 4. IMPLEMENTATIONS

vld :
− name : mgmtnet

vim−network−name : test
vnfd−connect ion−point−r e f :
− member−vnf−index−r e f : " 1 "

vnfd−connect ion−point−r e f : hss−ens4
ip−address : " 1 72 . 1 6 . 6 . 1 29 "

− member−vnf−index−r e f : " 2 "
vnfd−connect ion−point−r e f : mme−ens4
ip−address : " 1 7 2 . 1 6 . 6 . 2 "

− member−vnf−index−r e f : " 2 "
vnfd−connect ion−point−r e f : mme−ens5
ip−address : " 1 72 . 1 6 . 1 . 1 02 "

− member−vnf−index−r e f : " 3 "
vnfd−connect ion−point−r e f : spgwc−ens4
ip−address : " 1 72 . 55 . 55 . 101 "

− member−vnf−index−r e f : " 3 "
vnfd−connect ion−point−r e f : spgwc−ens5
ip−address : " 1 72 . 1 6 . 1 . 1 04 "

− member−vnf−index−r e f : " 4 "
vnfd−connect ion−point−r e f : spgwu−ens4
ip−address : " 1 72 . 55 . 55 . 102 "

Listing 4.2: Additional VLD configurations for OAI EPC.

nsd :
. . .
d f :
− id : <name o f deployment f l a vou r (df)>

v i r tua l −l ink−p r o f i l e :
− id : s6a

v i r t ua l −l ink−desc−id : s6a
v i r t ua l −l ink−protoco l−data :

l3−protoco l−data :
ip−ve r s i on : ipv4
c i d r : 1 72 . 16 . 6 . 0 /24
dhcp−enabled : true

Listing 4.3: S6a network configuration in NSD.

The keys name and vim-network-name in Listing 4.2 specify the mapping between
the name used for the management network in the NSD and the actual name for the
management network at the VIM. The configuration after vnfd-connection-point-ref
in the same listing is used to set static IP addresses. The identifier, member-vnf-index-

4.4. OAI EPC 37

ref specifies the internal VNF numbering in the NSD while vnfd-connection-point-ref
is the interface name used in the NSD.

After creating the intended base NS, we started the transition from the old to the new
recommended structure for the Juju charms to perform the Day1-2 operations [OSMj].
Due to some struggles with different libraries from the old structure, we decided
to use the template for the Python code we had successfully created during initial
testing with OSM. We, therefore, copied the required Python functions from the
original OAI EPC NS, to the working template [Ser]. The VNFs for MME, SPGW-U
and SPGW-C were coming up as expected after the transformation. For the HSS,
we needed to make additional adjustments to install it without errors.

OAI and in particular the HSS have multiple dependencies which must finish in the
correct order to function appropriately. While reproducing the implementation of
the OAI EPC we experienced that we had to make adjustments to the charm code.
Therefore, we added steps in the code for error handling to wait for dependencies to
be completed and catch exceptions. With the modifications, we experienced a higher
success rate of deploying OAI properly.

Cassandra version 2.1, as the database used in Dreibholz’s version of the HSS VNF, is
an old version of the Cassandra database software [Foub]. When installing Cassandra
from the package manager, we ended up with the newer version 3. However, the
more recent version is incompatible with the provided setup script. Therefore, to
avoid recreating the database setup scripts, we installed version 2 by adding the
repository and the packet’s signature in the cloud-init file.

We have also experienced that having enough resources available for the Cassandra
setup is essential. After a service restart, we have observed that it normally takes
several minutes before Cassandra is ready. When we tried to initialize the HSS VNF
with 2 vCPUs and 6GB RAM the HSS charm failed consequently. To encounter the
failing HSS, we made two changes. First, we moved the installation of Cassandra
from inside a charm action to using cloud-init. Then Cassandra is installed when the
Juju actions configure the HSS. Secondly, we waited 180 seconds to restart Cassandra
in the charm code. With reduced resources, Cassandra would, however, still fail.
After also changing the available resources for the VNF to 3 vCPUs and 6GB RAM
the HSS installation has mostly succeeded.

With the changes to the HSS, we got a functioning NS with completed installation
for all four VNFs. At the Juju VCA a successful installation is represented by
the configuration completion messages in Figure 4.2. The figure also shows the
components Juju creates for the VNFs with machines, applications, and the units
performing the operations.

38 4. IMPLEMENTATIONS

Figure 4.2: Juju status for working OAI NS.

After deploying the NS, we tested the connectivity on the S6a interface by send-
ing ICMP packets from the HSS to the MME. Figure 4.3 displays the successful
connectivity by receiving answer packets. At the same time as we performed the
connectivity tests, we listened for ICMP packets at the NFVI. Figure 4.4 shows that
we can observe the ICMP packets going in the virtual network when monitoring
the network traffic at the server running the MicroStack VIM. This can be seen by
looking at the allocated IP addresses and the use of the ICMP protocol. Table 4.2
shows the resources used in the final version of the OAI NS.

Figure 4.3: Ping from HSS to MME over the S6a interface.

4.5. JUJU RELATIONS 39

Figure 4.4: Listening for ICMP messages on the NFVI.

Table 4.2: VNF information of OAI NS.

VNF name OS number of amount of storage (GB)
vCPU RAM (GB)

HSS ubuntu18.04 3 6.0 20
MME ubuntu18.04 2 4.0 20

SPGWU ubuntu18.04 1 3.0 20
SPGWC ubuntu18.04 2 3.0 20

4.5 Juju Relations

OSM in combination with its included features has several possibilities of extending
the WireGuard implementation in section 4.3. In this section, we will go through
our further development of the VPNaaS solution.

When using Juju proxy charms, OSM creates a single Juju machine with an as-
sociated Juju application for each VNF. By default, the applications do not have
any connectivity between them. Internally in the application, the VCA and the
VDU establish a relationship named proxypeer in the OSM charms. The provided
libraries from charms.osm3 offer the necessary support for running Day1-2 actions
over the connection. In addition to the mandatory proxypeer relation, the charm
developer can connect other Juju applications using the Juju framework. We wanted
to see if we could use Juju relations to pass the necessary information to set up the
WireGuard peering. Ideally, the peer setup gets configured without manual steps.

Figure 4.5 illustrates the relationship between the different parts of the charm
structure. OSM communicates with one or more VIMs to deploy VNFs. Co-located

3https://github.com/charmed-osm/charms.osm

40 4. IMPLEMENTATIONS

Figure 4.5: Overview of juju relation setup using OSM.

with OSM is the VCA. The VCA creates Juju machines, applications, and units
represented with the Juju icon centrally in the figure. The Juju machines and their
units perform the Day1-2 actions specified in the OSM descriptors using the proxypeer
relation. To transfer additional user-defined information between Juju units, we
specify an arbitrary Juju relation. The relation is created by appending the charm
configuration and NSD. When the relation is created or changed, it triggers an
action similar to Day1-2 operations. The VNFs can then use this action to transfer
information to the VCA. The opposite VNF can then retrieve the values. The peers
can transfer and receive values for both Juju units at the VCA.

The peer connections in the file metadata.yaml located in the charm folder specify
the name of the connections of the interface. The name of the interface key must be

4.5. JUJU RELATIONS 41

the same on both sides of the relation. Listings 4.4 and 4.5 show the setup for the
VCA and VNF connectivity and the HSS and MME Juju application relationships.
For the S6a interface we have chosen interfaces6a as the name to the interface key.
Juju has two types of relationships, peers or provides/requires pairs [Ltdc]. The
provides/requires relation expects the provider to make information available.

On the other hand, peer relation causes a mutual response in the application. We
started using provide/require pairs to pass information in the development process.
This relationship type has been successful for us, and we have continued to use the
provides/requires pairs. It is likely that also peer connectivity would work for sharing
WireGuard connection information.

name: h s s c h a rm
. . .
peers :

proxypeer :
i n t e r f a c e : p r o x y p e e r

r equ i r e s :
i n t e r f a c e s 6 a :

i n t e r f a c e : i n t e r f a c e s 6 a

Listing 4.4: Addition to Juju configuration file metadata.yaml for the HSS VNF to
provide relation between the HSS and MME VNFs.

name: mmecharm
. . .
peers :

proxypeer :
i n t e r f a c e : p r o x y p e e r

prov ides :
i n t e r f a c e s 6 a :

i n t e r f a c e : i n t e r f a c e s 6 a

Listing 4.5: Addition to Juju configuration file metadata.yaml for the MME VNF
to provide relation between the HSS and MME VNFs.

When adding the same interface name in metadata.yaml on both sides of the peer,
the relationship can be established manually using the command juju add-relationship
<application 1> <application 2>. To make OSM carry out the setup of relationship
beyond proxypeer we need some additions to the NSD. Listing 4.6 shows the necessary
configuration in the NSD to set up the relationship between the HSS and the MME.
In the relation list the entity ID specifies the VNF. The endpoint is the common
name between the two VNFs specified in the interface key in metadata.yaml.

42 4. IMPLEMENTATIONS

E P C _ n s d w g . yaml

nsd :
nsd :
- de s c r i p t i o n : NS b a s e d on S imu l aMe t

↪→ O p e n A i r I n t e r f a c e E v o l v e d P a c k e t Co r e NS
df :
- id : d e f a u l t −d f
. . .
ns−con f i gu r a t i on :

r e l a t i o n :
- name: r e l a t i o n

e n t i t i e s :
- id : ’1 ’

endpoint : i n t e r f a c e s 6 a
- id : ’2 ’

endpoint : i n t e r f a c e s 6 a

Listing 4.6: NSD relation configuration to provide a relation between the HSS and
MME VNFs.

To send variables from one side of the relation to the other, we wait for the relationship
to change. Initializing the relationship triggers both a created and change action. If
the peers generate no new information, the on_<relation_name>_changed-action
will not trigger after the initial phase. The Juju relationship establishes before the
Day1-2 actions finish in our VNFs. We, therefore, need a variable we can regularly
update to keep triggering the action until the dependencies of the WireGuard
configuration finish.

For the Day1-2 actions, variables are inputted through the VNFD. We have not
found a way to transfer variables from OSM to the relation actions. To transfer
the variables between VNFs, we have stored the variables in files where the relation
actions can pick them up. The variables can then be put on either of the two
application sides at the VCA. In our code we transfer the variables to the application
associated with the opposite VNF. The wg-ready variable is set to indicate when the
peer has finished the WireGuard configuration and is ready to stop the keep-alive of
the relation-change action. The code line event. relation .data[self .model.unit][‘‘
wg−ready’’] = ‘‘True’’ sets the data retrieved on VNF 1 on the VNF 2 application.
VNF 2 can then read the data with the code line event. relation .data[self . unit].
get (‘‘ wg−ready’’). Figures 4.6 and 4.7 show the bi-direction variable transfer as
observed from the Juju units. The counter updates regularly to keep the relation

4.6. COMBINING ELEMENTS 43

alive while waiting for the dependencies to finish. wg-peer, wg-listenport, wg-subnet
and wg-pubkey provide the necessary information to add a WireGuard peer. The
last user-defined variable in the figure is the wg-peered used to tell the peer that it
has finished configuring the peer at its side. The other data variables in the figures
are created by Juju.

Figure 4.6: Variables from HSS peer at Juju unit for MME.

Figure 4.7: Variables from MME peer at Juju unit for HSS.

To summarize will the user variables shown in Figures 4.6 and 4.7 establish the
WireGuard peer. With the Juju relationship implementation, we have automatically
established the information exchanged between VNFs.

4.6 Combining Elements

The next step after having functional NSs for WireGuard and OAI is to combine
them and start to explore different aspects of OSM to extend the functionality. We

44 4. IMPLEMENTATIONS

also want to test the setup’s performance with and without WireGuard. In the first
test, we want to add a WireGuard tunnel between two of the EPC components in
OAI before extending to the rest of the interfaces. To route the application data
into the WireGuard tunnel, we must change the network configuration. To make
Cassandra, the HSS database available, we create a local dummy interface that is
always reachable. Adding the new interface causes a change in the Juju charm of the
HSS. To avoid changing the application configuration of the HSS and MME, we reuse
the original IP address. Therefore, we must change the IP addresses for the tunnel
external endpoints to avoid conflicts. Changes of the variables using the external
IP addresses of the HSS and MME are done in the VNFD. Updates of the network
specification in the NSD are also required. Using a subnet equal to the dummy IP
address of the Cassandra database in the tunnel makes the S6a traffic go through
the WireGuard tunnel.

In the Python code to translate actions in actions.yaml to Python functions we
add self.framework.observe(self.on.test_action, self.on_test_action) in the __init__
function of the proxy charm class. In the example test is the name of the ac-
tion specified in the actions.yaml file in the charm folder with the first parameter
self.on.test_action referring to the action. It is worth mentioning that the appended
_action is not part of the name in the actions.yaml file. The second parameter
self.on_test_action is the name of the Python function [OSMk].

The steps to add the VPN tunnel are summarized in the list below.
– Append actions for Wireguard in Jujus actions.yaml file. This is copied from
the WireGuard NS.

– Copy the WireGuard functions from the WireGuard NS - generatekeys, config,
wireguardup, addpeer, deletepeer and wgrestart.

– Add a self.framework.observe in the __init__ function of the HSSProxyCharm
class for all the WireGuard functions.

– Add Day-1 (initial) and Day-2 config-primitives in the VNFD

When deploying the NS we get the same VM instances in MicroStack as for the OAI
NS. The virtual hardware configuration of the VNFs is equal to the information in
Table 4.2. The MicroStack representation of the virtual network topology is shown in
Figure 4.8 while Figure 4.9 shows how the VMs of the EPC and their corresponding
information is represented in MicroStack. In Figure 4.8 the various networks are
represented as colored posts and the VNFs as squares with a computer icon. In
addition is, the virtual router providing connectivity to external networks, such as the
Internet, represented as a square with arrows. The router and VNFs are connected
to the network named test. For external access, the VNFs are then assigned floating
IP addresses on the external network via their connection to the test network. The
topology is the same for the NSs with and without WireGuard implemented but with

4.7. ADDING ENB AND UE TO THE NS 45

different IP addresses. In Figure 4.9, the name of the VMs is created by the name
used in the instantiation with OSM, and the name and number the VNFs have in the
NSD and VNFDs. Further information given in the figure is the OS, IP addresses for
the different interfaces of the VNFs, resource flavor, and the state of operation for
the VMs. A dropdown menu with several operations like assigning network interfaces
manually and creating snapshots is on the right-hand side of Figure 4.9.

Figure 4.8: Network setup of the EPC NS in MicroStack.

4.7 Adding eNB and UE to the NS

To create a realistic environment for testing in a cellular network context we should
include authentic traffic. With OAI-based implementation of eNB and UE we can
create traffic using protocols used in actual cellular networks. To keep everything
within the MicroStack environment we use a virtual OAI UE.

The eNB and UE are then attached to the EPC NS described in section 4.4. We
add the eNB as a VNF and keep the UE as a VM unmanaged by OSM. When
connecting the two components to the EPC, the setup corresponds with the intended
architecture in Figure 4.1. Figure 4.10 shows the finished NS as represented in the
OSM web GUI.4

4https://github.com/sondrki/TTM4905/tree/main/oai_eps_ns

46 4. IMPLEMENTATIONS

Figure 4.9: VNF instances of OAI EPC components in MicroStack with WireGuard
tunnels implemented.

The reasoning behind adding only the eNB in the NS is that we will focus on the
network connectivity in the core network. The user data from the UE will go through
the S1-U interface via the eNB. In our implementation we will therefore add one
eNB VNF to the NS to establish a WireGuard tunnel programmatically between the
eNB and SPGW-U.

The eNB VNF is prepared using the SPGW-C charm and descriptors as a template. To
fit the eNB application, we change the installation and configuration procedure in the
charm. For the installation of the UE and eNB applications, we use equal commands.
Listing 4.7 gives the used commands. The first command in the listing downloads
the OAI project code while the following prepares and installs the application. The
installation includes libraries used to simulate the air interface, Uu.

c o m m a n d s use to i n s t a l l eNB and UE
g i t c lone https : // g i t l a b . e u r e c om . f r / o a i /

↪→ o p e n a i r i n t e r f a c e 5 g . g i t
cd opena i r i n t e r f a c e 5 g /
source oaienv
cd cmake_targets /

4.7. ADDING ENB AND UE TO THE NS 47

. / bui ld_oai −I −−phy_simulators

. / bui ld_oai −w SIMU −−UE −−eNB

Listing 4.7: eNB installation commands.

Figure 4.10: Architecture of the network shown in OSM web GUI.

Figure 4.11: Subscribers in the HSS Cassandra database.

After installation we configure the UE and eNB accordingly to connect to the EPC.
In the HSS installation the script named data_provisioning_users populates the
database with default subscribers. Figure 4.11 shows the information for the first
subscribers in the Cassandra database. To get appropriate authentication parameters,

48 4. IMPLEMENTATIONS

we pick one of the available subscribers in the database. The MCC and MNC we
have used are based on the default PLMN of OAI. To configure the UICC we need
to specify the PLMN, MSIN, the keys K and OPc and MSISDN. This information
is set in the file ue_eurecom_test_sfr.conf at the eNB. The complete file in our
implementation is presented in appendix C. To replace the default configuration with
the new, we run the command conf2uedata.

For the eNB we configure the PLMN, TAC and IP address for the MME. We also
specify which network interfaces allocated for S1-U and S1-C. The TAC must be
one of the allowed TACs in the file mme.conf at the MME. Unlike the UE we do all
configuration in the Juju charm.

When included in the NS the eNB connects successfully to the EPC. Starting the
eNB is performed in the Juju action responsible for the configuration. An excerpt of
the log for the MME application is shown in Figure 4.12. The log shows a successful
connection of the eNB seen as the connected eNB line in the statistics changes.

After deploying the new NS with the eNB we manually connect the UE. To connect
the UE to the virtual network created for the Uu interface we use the attach interface
action located under the action column in MicroStacks web GUI. After verifying the
configuration we start the UE simulation with the command RFSIMULATOR=<mme
ip> ./lte-uesoftmodem -C 2685000000 -r 50 –rfsim. We check that it connects to the
EPC by reading the MME log. In Figure 4.13, the UE has successfully connected.
In addition to the eNB connected as shown in Figure 4.12, Figure 4.13 presents one
new UE that has been attached and connected since the last statistic update at the
MME. Table 4.3 includes the resources for the NS described in this section and the
UE VM.

Table 4.3: VNF information of OAI NS with RAN.

VNF name OS number of amount of storage (GB)
vCPU RAM (GB)

HSS ubuntu18.04 4 8.0 20
MME ubuntu18.04 2 4.0 20

SPGWU ubuntu18.04 1 3.0 20
SPGWC ubuntu18.04 3 4.0 30
eNB ubuntu18.04 4 8.0 20
UE ubuntu18.04 2 4.0 20

After creating the NS without WireGuard tunnels between the VNFs we add the
necessary configuration.5 We use the approach described in Section 4.5 to create

5https://github.com/sondrki/TTM4905/tree/main/oai_eps_wg_nst

4.7. ADDING ENB AND UE TO THE NS 49

Figure 4.12: Logs on MME showing successful connection of eNB.

automatic setup of the VPN tunnels. This procedure confirms full secured service
automation provisioning by integrating WireGuard capability in OSM. Relations

50 4. IMPLEMENTATIONS

Figure 4.13: UE and eNB connected to the EPC.

can be seen in OSM after an NS is created. Figure 4.14 shows how the relations in
the EPS NS with WireGuard tunnels is presented in OSM. Both the proxypeer and
arbirary relations are listed in the figure for the different Juju units that are created
for the NS.

Figure 4.14: Relations in OAI EPC with WireGuard tunnel between components
as seen from the OSM web GUI.

The resources for the OAI EPS NS is the same both with and without WireGuard
tunnels implemented. Therefore, Table 4.3 also refers to the resources allocated
for the VNFs and UE for the NS described in this section with WireGuard tunnels
implemented.

4.8. DOUBLE RESOURCES 51

4.8 Double Resources

To check how the designated resources affect our results, we create a NS with the
double amount of vCPU and RAM of the OAI EPS NS. Except for the change of
resources, the implementation of the NS is equal to the NS at end-state in Section
4.7.6 The measurements on this NS will help verify the other results and show
eventual major changes in performance when the resources change. The resources
for the VNFs are given in Table 4.4. As earlier, the UE is not included in the NSD.
We have therefore kept the resources for the UE.

Table 4.4: VNF information of OAI NS with RAN, doubled resources and Wire-
Guard connection between components.

VNF name OS number of amount of storage (GB)
vCPU RAM (GB)

HSS ubuntu18.04 8 16.0 20
MME ubuntu18.04 4 8.0 20

SPGWU ubuntu18.04 2 6.0 20
SPGWC ubuntu18.04 6 8.0 30
eNB ubuntu18.04 8 16.0 20
UE ubuntu18.04 2 4.0 20

4.9 Network Slice Template

In the last development step of the thesis we add the EPS NS into a NST.7 The
NSTs consist of a single NS, the OAI EPS NS with WireGuard described in section
4.7. The resources are kept equal to Table 4.3.

The slice-service-type key in the NST is only descriptive indicating the use case type
of the network slice [OSMe]. However, the quality-of-service key is related to the 5QI
describing characteristics of the traffic flow [ETS20]. However, to actually implement
priority and quality assurance for the NSI, we also need to specify other parameters
like the Packet Delay Budget (PDB) to build the QoS profile[OSMg]. To observe
how this affects our NS we make two NSTs. The first NST as a URLLC slice type
with ID 3. For the second NST, we use eMBB as the slice type with quality-of-service
ID 6. In addition is the QoS parameters in Listing 4.8 used in the NST.

eMBB NST :
qua l i ty−of−s e r v i c e :

id : 6
6https://github.com/sondrki/TTM4905/tree/main/oai_eps_wg_double
7https://github.com/sondrki/TTM4905/tree/main/oai_eps_wg_nst

52 4. IMPLEMENTATIONS

resource−type : GBR
p r i o r i t y −l e v e l : 2
packet−delay−budget : 1 0 0 # ms
de fau l t−max−data−burst : 1 3 5 4

URLLC NST :
qua l i ty−of−s e r v i c e :

id : 3
resource−type : d e l a y − c r i t i c a l −GBR
p r i o r i t y −l e v e l : 1
packet−delay−budget : 1 # ms

Listing 4.8: QoS parameters for the NSIs.

To create the NSTs we first configure connection points in the NSD that should be
accessible at NST level. The Service Access Point Descriptor (SAPD) connection
points are used to provide network(s) from the NS available as management or shared
network(s) between NSs in the NST. Listing 4.9 includes the necessary configuration
to enable the management network, mgmtnet, in the NS as an external management
network for the NST. In the listing the SAPD is exposed to allow for data transfer
externally via the NSI to the NS and further to the VNFs [ETSa]. The is-shared-nss
key specifies if the subnet is shareable between NSIs. In our case it is set to false
because we only use one NS in our NST.

To deploy the NST we change NS with NSI and NST in the instantiation, resulting
in the following command, osm nsi−create −−nsi_name oaiepc_nst −−nst_name
oai_epcwg_embb_nst −−vim_account a2ntnu_microstack. The configuration file
parameter used for the NS implementation are not used as the parameters are inserted
directly into the NST.

NS d e s c r i p t o r
sapd :
- id : mgmtcp

v i r tua l −l ink−desc : mgmtnet

NST d e s c r i p t o r
n e t s l i c e −subnet :
- id : OAI−EPC_nsdwg

i s −shared−nss : f a l s e
d e s c r i p t i o n : n e tw o r k s l i c e t em p l a t e f o r OAI

↪→ EPC w i t h WireGuard
nsd−r e f : OAI−EPC_nsdwg

4.10. MULTI-SITE DEPLOYMENT 53

. . .
n e t s l i c e −vld :
- id : mgmtcp

mgmt−network : true
name: mgmtcp
nss−connect ion−point−r e f :
- nsd−connect ion−point−r e f : mgmtcp

nss−r e f : OAI−EPC_nsdwg
type : ELAN

Listing 4.9: Connection points shared between NS and NST.

4.10 Multi-site Deployment

The OSM guide [OSMe] gives an example on how to deploy a NS on different VIMs.
The guide is written for an older version of OSM, but OSM version 10 can use the
same method. The interfaces between VNFs need to be accessible from both VIMs.
In our case we need to change the internal network interfaces between VNFs to be
management interfaces. For testing purposes we split out the HSS to a separate VIM
from the other VNFs. To have a working S6a interface we configure the S6a network
in the NSD to use management network instead of creating an NS internal network.
In the instantiating of the NS we specify where the different VNFs will be created.8
List 4.10 shows this with the HSS, member-vnf-index: “1”, being created at vim
microstack while the other VNFs are created on the VIM named a2ntnu_microstack.

wim_account: Fa l se
vnf :

- member−vnf−index : " 1 "
vim_account: m i c r o s t a c k

- member−vnf−index : " 2 "
vim_account: a 2 n t n u_m i c r o s t a c k

- member−vnf−index : " 3 "
vim_account: a 2 n t n u_m i c r o s t a c k

- member−vnf−index : " 4 "
vim_account: a 2 n t n u_m i c r o s t a c k

- member−vnf−index : " 5 "
vim_account: a 2 n t n u_m i c r o s t a c k
. . .

Listing 4.10: Additional instantiating parameters for the multi-site deployment.

8https://github.com/sondrki/TTM4905/tree/main/oai_eps_multisite

54 4. IMPLEMENTATIONS

The command for deployment a multi-site NS is similar to the creation of single site
NSs. Only one VIM account is specified, being the primary one. We ran the command,
osm ns−create −−ns_name oaiepc_multivim2 −−nsd_name OAI−EPC_nsdwg_multi
−−vim_account a2ntnu_microstack −−config_file paramswg_multivim.yaml
to deploy the multi-site NS. The VNFs’ resource information is given in Table 4.5.

To set up a WireGuard peer configuration, we use the endpoint IP address of the peer.
In the multi-site deployment, this is the management interface. For OpenStack and
MicroStack, the management interfaces use Dynamic Host Configuration Protocol
(DHCP) to assign IP addresses dynamically. To get the automatic WireGuard
establishment, we need to get the dynamically allocated addresses transferred to the
peer. The provided charm code obtains the management IP address and uses it in
the setup if a gateway IP is not specified.

Table 4.5: VNF information of multi-site OAI NS with RAN and WireGuard
connection between components.

VNF name (VIM) OS number of amount of storage
vCPU RAM (GB) (GB)

HSS ubuntu18.04 4 8.0 20
(microstack)

MME ubuntu18.04 2 4.0 20
(a2ntnu_microstack)

SPGWU ubuntu18.04 1 3.0 20
(a2ntnu_microstack)

SPGWC ubuntu18.04 3 4.0 30
(a2ntnu_microstack)

eNB ubuntu18.04 4 8.0 20
(a2ntnu_microstack)

Chapter5Results and Observations

The following chapter will present our results when testing the NSs and NSIs we have
built. The results commented on in this section are the main findings regarding how
introducing WireGuard affects the performance and networking between VNFs. The
complete outputs from the performance tests are available in appendix F. Since we
utilize the results for observation and not benchmark purposes, we used the results
as-is from the measurements tools.

5.1 Network Traffic

In this section we will present the results regarding the network flow with and without
a WireGuard tunnel between components.

Figure 5.1: Traffic on S6a interface without VPN.

55

56 5. RESULTS AND OBSERVATIONS

In Figure 5.1 we have done a tcpdump at the MicroStack server. Since the VIM
creates the virtual networks in the NSs, it is also able to listen for traffic going in the
same networks. In the figure, we see a screenshot from Wireshark. The upper third
in the figure shows seven packets of different protocols going over the S6a interface.
The middle and the bottom section show the information in one of the packets using
the DIAMETER protocol. The IMSI, hostnames and realms for the MME and
HSS are information presented in the packet as shown in the bottom section of the
figure. While doing the tcpdump we used the NS with the EPS without WireGuard,
described in Section 4.7.

Figure 5.2: Traffic on S6a interface with WireGuard deployed.

In Figure 5.2 we repeat listening with tcpdump on the S6a interface. However, we
deploy a new NS to introduce WireGuard tunneling in the EPS. The new NS is
the same as described in Section 4.7 with WireGuard connectivity. Different from
Figure 5.1 we no longer see the DIAMETER protocol with its clear text data. All
data except link layer discovery ARP messages are packed and transferred inside the
WireGuard tunnel, as shown in the upper figure’s section.

5.2 Performance Monitoring

Gnocchi, being the component in OpenStack handling the telemetry, is not included
in MicroStack [Foua]. The inbuilt monitoring functionality at VIM level in OSM can
therefore not be used together with MicroStack out of the box. Juju is able to monitor
on VNF and VDU level through the VCA. However, monitoring measurements with
the VCA only happens every five minutes. We have also had issues setting up this

5.2. PERFORMANCE MONITORING 57

monitoring. Therefore, we have manually monitored the system load in our tests
when encountering unexpected results.

5.2.1 Throughput

When testing the throughput, we did a combination of executing iPerf3 with and
without specified MTU. In our deployments, we have seen that WireGuard sets the
MTU size to 1362 bytes for the tunnel interfaces. iPerf3 defaults to an MTU size of
1500 bytes. However, iPerf3 can, for several occasions, automatically discover and use
the MTU size of an interface. Automatic discovery works in our VNFs. The MTU
size has therefore been the same for both approaches and has not affected the results.

iPerf3 can be used to measure high-performance environments. For connectivity
between different VNFs, we have measured stable throughput at around 20Gbps with
some exceptions at around 14Gbps. For instance, it is the measurement for the S6a
interface in the NS with double resources for the VNFs averaging to 14.6Gbps. Based
on our measurements, the internal networking of the MicroStack instance is around
20Gbps, with peak performance up to 30Gbps. The average throughput has been
consistent for the unencrypted connection comparing the measurements with default
MTU size of 1500 bytes and when reducing to 1362 bytes. Other applications out of
our control that are using the VIMs resources may be one reason why the bandwidth
variates. Internal iPerf3 mechanisms could be another reason. However, the raw
throughput is still high enough to affect the WireGuard throughput significantly.

The difference in throughput for the S6a, S1-U, and S1-C interfaces when using
WireGuard is notable. The S1-U and S1-C measurements are similar. However, the
throughput measurements for the S6a interface are notably lower. All tests have
consistently shown the same, leading us toward resource allocation and other loads
in the VNF as a possible reason. The HSS is the component with the most assigned
resources, but from the implementation, we know that the Cassandra database can
be resource-demanding. When checking the performance in the MME and HSS VNFs
after the throughput test, we find the resource consumption being higher than for
the other components, but still under 1% load over the last 5 minutes of test time
for iPerf3.

Table 5.1 summarizes the throughput measurements for the different deployments
with WireGuard. The OAI EPS NS with and without WireGuard is described in
Section 4.9. Further, is the NS named Double resources described in Section 4.8.
The NST for the URLLC and eMBB network slices are described in Section 4.9. We
have tested with workload on the NS separately and simultaneously for the same
interface with the suffix respectively being separate and simultaneous in the table.

58 5. RESULTS AND OBSERVATIONS

Table 5.1: Throughput measurements over WireGuard for different NSs and VNFs.

NS name/ S6a S1-C S1-U UE
description connectivity

(bps) (bps) (bps) (bps)
OAI EPS NS 21.7G 1.61M

without WireGuard
Double resources (14.6, 19.2)G 18.7G

without WireGuard
OAI EPS NS 918M 1.02G (1.43, 1.44)G 1.65M

with WireGuard
Double resources 1.07G 1.46G 2.19G 1.70M

URLLC slice separate 811M 1.12G 1.43G
eMBB slice separate (767, 1050)M 1.05G 1.48G

URLLC slice (798, 1050)M 973M 1.41G
simultaneous
eMBB slice (823, 1060)M 993M 1.47G
simultaneous

When doubling the resources, the measured throughput for the WireGuard tunnels
is consequently higher. For example, over the S6a interface, the throughput ranges
between 800 and 900Mbps to 1.1Gbps observed over 10 minutes for the NS with
similar and double resources as in Table 4.1. For the S1-U interface, we observe the
same. After doubling the resources, the observed throughput over the S1-U interface
changes from between 1.4Gbps and 1.5Gbps to 2.2Gbps.

The UE application provides significantly lower results in the case of throughput.
The NSs we have used in testing the UE connectivity are the EPS NSs with and
without WireGuard, described in Section 4.7 and the double resources NS described in
Section 4.8. The throughput is stable between 1.6Mbps and 1.7Mbps for all three test
scenarios with E2E connectivity to the external interface on the SPGW-U. 1.7Mbps
is lower than the measurements of Dreibholz in [Dre20], but still representative
compared to the observations we have made for the other interfaces. The Uu
interface is, therefore, the bottleneck of the lab environment.

When comparing the throughput between the NSIs, we have not seen any major
differences. For the S1-U, S6a, and S1-C interfaces of the first deployment of the
eMBB slice while testing the URLLC network slice simultaneously, we measured
throughput in the WireGuard tunnel as 1.47Gbps, 0.82Gbps, and 0.99Gbps. For
the URLLC network slice over the same interfaces were observed to be 1.41Gbps,
0.80Gbps, and 0.97Gbps.

5.2. PERFORMANCE MONITORING 59

The difference between putting load from iPerf3 on one NSI at a time versus both
simultaneously gives some slight differences. For example, we measured an average
of 0.77Gbps on the S6a interface for the eMBB slice running the measurements
alone, slightly lower than the 0.82Gbps when co-running with the URLLC slice. For
the URLLC network slice, we observed an average of 0.81Gbps for the separate
measurement and 0.80Gbps simultaneous with the eMBB slice. However, we ran
the measurements two times. The second time with a new deployment of the NSTs.
In the second test, we measured higher throughput with around 1.05Gbps for both
slices over the S6a interface with WireGuard. The difference between running one
NSI alone and simultaneous with another is minor. The minor differences may also
be dependent on the NSI. However, we have not measured with throughput totaling
close to the internal networking performance of the MicroStack server, which may
give other results.

5.2.2 Latency

The average latency approximately doubles when comparing the EPS NS with and
without WireGuard. For the S6a and S1-C with and without WireGuard in the NS
described in Section 4.7, the factor is 2.12 for both interfaces, 0.805 ms/0.379 ms =
2.12 and 0.881 ms/0.416 ms = 2.12. In the NS with double resources the observed
factors are 0.960 ms/0.041 ms = 23.41 on the S6a interface and 0.946 ms/0.393 ms =
2.41 on the S1-C interface. Another way of viewing the data is that the average extra
delay is around 600ms, ((0.805 ms−0.379 ms) + (0.881 ms−0.416 ms) + (0.960 ms−
0.041 ms) + (0.946 ms− 0.393 ms))/4 = 0.591 ms. However, the average latency on
both interfaces with WireGuard is higher with more resources. We expected lower
latency when doubling the resources as seen for the measurement without WireGuard.
We have observed differences from one deployment to another for other measurements.
Differences between deployments could also be the case here. We nevertheless observe
that all measurements are lower than 1ms. Latency measurements for the different
deployments are gathered in Table 5.2.

When measuring the latency in the NSIs, the latency drops compared to the NSs
initialized without the NST superstructure. For example, the observed latency on
the S1-C interface goes from 0.881ms to 0.819ms for the eMBB slice and 0.836ms
for the URLLC network slice. For the S1-U interface, we observe the same going
from 0.784ms to 0.667ms and 0.709ms in the NSIs. Finally, on the S6a interface,
the latency is similar with 0.805ms compared to 0.857ms and 0.778ms.

60 5. RESULTS AND OBSERVATIONS

Table 5.2: Latency measurements over WireGuard for different NSs and VNFs.

NS name/ S6a S1-C S1-U
description (ms) (ms) (ms)

OAI EPS NS without WireGuard 0.379 0.416 0.631
Double resources without WireGuard 0.041 0.393 0.351

OAI EPS NS with WireGuard 0.805 0.881 0.784
Double resources 0.960 0.946 0.889

URLLC slice separate 0.843 0.837 0.733
eMBB slice separate 0.874 0.746 0.737

URLLC slice simultaneous 0.778 0.836 0.709
eMBB slice simultaneous 0.857 0.819 0.667

5.2.3 Service Response Time

To check if introducing WireGuard affects the service response time in the EPS,
we connect the UE to the EPS. We have seen from the other observations that the
Uu interface is our bottleneck. Therefore, we observe the forwarded data on the
MME to find out if the response time for the HSS changes. Wireshark has built-in
functionality of measuring Service Response Time (SRT) of the Diameter protocol.
In Figures 5.3 and 5.4, ten successful registrations of the UE to the network are
done. Figure 5.5 shows one additional registration where the connection on the Uu
interface timed out, with a total of eleven connections to the HSS.

Figure 5.3: Diameter SRT statistics on MME without WireGuard tunneling.

Figure 5.4: Diameter SRT statistics on MME with WireGuard tunneling.

5.3. MEASUREMENTS OF THE MULTI-SITE NS 61

Figure 5.5: Diameter SRT statistics on MME without WireGuard tunneling -
double resource NS.

The SRT observed on the MME is totaling the network latency to and from the
HSS and the response time of the HSS application. The average SRT for both NSs
with WireGuard connectivity have a lower average value than the NS without VPN
tunnel. The SRT values for the different NSs are shown in Figure 5.4 for the OAI
EPS NS, Figure 5.5 for the NS with double resources, and Figure 5.3 for the NS
without WireGuard. The latter is averaging on an SRT of 6.156ms. The SRT is also
higher for the NS with double resources which is 5.607ms compared to 5.377ms for
the EPS NS with resources as presented in Table 4.3. This indicates that the SRT
for the HSS varies too much on a small number of connections. However, testing
with more attachments is ineffective in our lab environment because of manual set
up and tear down of the UE. With the attachments we have done, we have not seen
any negative effect on the SRT with and without WireGuard.

5.3 Measurements of the Multi-site NS

As mentioned in chapter 2, the two VIMs connect with a WireGuard tunnel over a
bandwidth of 200Mbps. We have therefore reduced the MTU size for our throughput
test with iPerf3 to 1500 B − (1500 B − 1346 B) ∗ 2 = 1224 bytes.

Both the throughput and latency are affected by the additional WireGuard tunnel.
In general, the latency with the multi-site setup is significantly higher than with
our other measurements. We also observe a higher average time difference for our
latency test. The difference is 19.769 ms − 18.355 ms = 1.414 ms with a factor of
19.769 ms/18.355 ms = 1.01. However, the deviation and the maximum response
time are higher for WireGuard measurements than single-site observations. A more
dedicated connection might therefore give more stable results. For the throughput
tests, we observe a reduction of 179 Mbps−156 Mbps = 23 Mbps on average compared
to the S6a throughput on the single-site EPS NS with WireGuard. The variance
is 161 Mbps − 145 Mbps = 16 Mbps for the nested WireGuard measurement with
60 seconds intervals averaging on 156Mbps. The variance is significantly higher
than the variance of 180 Mbps− 175 Mbps = 5 Mbps for the single-site WireGuard
tunnel. Therefore, we recommend a more controlled lab environment for more stable

62 5. RESULTS AND OBSERVATIONS

measurements, both throughput, and latency-wise. However, because of available
VIMs’ resources, we have concentrated on how we can use OSM to deploy a multi-site
NS with WireGuard and not focused on optimizing the performance tests in this
thesis.

A difference with the multi-site throughput measurement compared to the single-site
tests is the location we run the iPerf3 server. Because we were not able to connect
with the iPerf3 server using the floating IP address of a VNF we ran the iPerf3 server
on it. Running the iPerf3 measurement against the microstack VM and not a VNF
causes lack of routing and forwarding from the VIM to the VNF on one of the sides
of the connected VNFs. However, based on the other scenarios that we have done
measurements, we believe that the possible missing latency and reduced throughput
is negligible.

Chapter6Discussion

In the following sections, we will give our thoughts on the setup, development process,
and results given in Chapter 5. During the development process in the thesis, we
have gained knowledge on the process of working with OSM and WireGuard. Firstly,
we will share our thoughts on the development of WireGuard using OSM. Then, we
will discuss how lifecycle of VNFs with WireGuard as a VPNaaS can be done. Lastly,
we will discuss the results of our performance measurements.

6.1 Charms in OSM

To answer the research question of how OSM can support WireGuard as a VPNaaS,
we have made practical tasks with OSM and Juju charms. Ease of charm development
and modification is subjective, and it depends on the developer’s skills. To make
the development process more accessible, the OSM community have an extensive
repository of examples. However, several deprecated VNF packages and examples
may give a higher threshold for reusing charms and doing charm development in
OSM. For instance, the transition from SOL005 to SOL006 in this thesis was an
error-prone task. OSM provides a tool for translating older descriptors that we have
not used in this thesis. Using the transition tool could probably ease some of the
work. However, updated examples would still be a good addition.

As stated in section 4.7, moving network traffic to go inside the VPN tunnel requires
changes to connection interfaces and charms. To ease the creation of new NF the
developer should be aware of the necessary changes when introducing a VPN. On
the one hand, making the interface available outside of the tunnel reveals the traffic
as seen in Figure 5.1. On the other hand, not making the interface available may
cause issues for applications. For instance, waiting for the WireGuard configuration
to finish may cause the application to fail if it needs the WireGuard interface to be
available. Therefore, before deployment to a production environment, we recommend
proper testing when introducing VPNaaS.

63

64 6. DISCUSSION

One way to combine the advantages of both keeping the configuration as is and
adding VPN functionality to provide confidentiality or network traversal is to have a
WireGuard VDU. The VDU could either be a separate VNF or a VDU connected
through an internal network. The WireGuard VDU could then act as a proxy to
other NFs. However, including a VDU brings further complexity in other ways
by adding routes and connectivity through the WireGuard proxy. Probably, the
application VDU(s) can be as it is if the WireGuard VDU performs most of the
routing. Appending a VDU will also require additional resources fixed to the new
VDU. A separate VDU for WireGuard differs from our approach where WireGuard
uses the resources in the application VDU. As we have focused on adding WireGuard
to the existing architecture of the NFs, testing a dedicated WireGuard VDU has not
been in the scope of our development.

Figure 6.1: Comparison of WireGuard implemented in a single VDU and a multi-
VDU VNF with a dedicated WireGuard VDU.

Figure 6.1 shows how a multi-VDU setup might look like. The encrypted tunnel and
belonging configuration are displayed in red. Further, the unencrypted connection
interfaces are in black, and the VNF management network is in blue. The figure
focuses on two of the VNFs we have used in our NS to demonstrate the idea, the

6.2. LIFECYCLE FOR A VPNAAS 65

MME and the HSS. We have then extended the same architecture to the other
interfaces. A possible solution for a dedicated WireGuard VDU can be masquerading
the IP address of the VNF application. This is illustrated in the upper NS in Figure
6.1. The WireGuard VDUs in the figures imitate the application IP addresses for
the opposite VNF. In that way the MME and HSS application get answer from the
expected IP address. At the same time, the network traffic gets routed into the VPN
tunnel. In comparison is the single VDU solution we have used in this thesis shown
in the bottom OAI WG NS of Figure 6.1. For the solution used in this thesis, we
have changed the internal VDU to enable the WireGuard tunnel. The complexity of
routing is therefore added directly in the charm actions.

We believe that both techniques described above to provide WireGuard as a VPNaaS
will work. However, the multi-VDU setup must be tested by anyone who will
follow this approach. The developer must also change the VNFDs and NSDs in
both approaches. However, we believe the changes will arguably be larger in the
multi-VDU setup. Since both approaches require additional configuration, we see
the single-VDU as the simplest solution to implement. However, depending on the
charm and potential changes to it, there might be applications where the multi-VDU
solution suits better than VNFs or CNFs with a single VDU.

6.2 Lifecycle for a VPNaaS

Using Juju relations with OSM supplies a way to transfer information across VNFs.
We have shown that setting up WireGuard peers with few to no manual steps is
possible with Juju relations in OSM. To be used as a service, it should be easy for a
developer to add WireGuard to VNFs. With our work, we have some requirements
to add WireGuard to a VNF. The first requirement is the use of proxy charms. For
native charms, the VCA dealing with Juju relations is not presented. A generalized
solution that may work for both proxy and native charms is using a separate Key
Management System (KMS). For native charms, the distribution of other information
like the gateway IP address must then use a similar distributed system or manual
input. The second requirement is the relation between two VNFs that must be in the
form of a provides/requires pair. We have also experienced some instability regarding
the first-time connection of the WireGuard tunnel. A restart of the interface may
therefore be needed.

WireGuard supports peer mobility. However, the initial connection uses the endpoint
where the peer is accessible. We use pre-defined IP addresses to set up the peer
connection in our implementation. The VMs in MicroStack do not know their
associated floating IP addresses at OS level. For a multi-site deployment with
floating IP addresses, the VNF should have a way to transfer its external addresses
to its peer. The OSM, VIM, and VCA triplet can retrieve the management address

66 6. DISCUSSION

of a VNF to perform its actions. The Juju VCA obtains the floating IP address
of the management interface using self.model.config[“ssh-hostname”] in the VCA
proxypeer connection where self is inherited from the SSHProxyCharm library. We
can then use the management interfaces as connection points between VNFs. The
provided code already does this. However, the code in a more complex network setup
adjustments is needed to add additional interfaces with WireGuard tunnel.

We have faced several challenges in our experiments regarding exception handling
when actions from other tasks have not yet been finished. Day1-2 Juju actions run
sequentially. An action can then be dependent on a prior. However, we have not
found a way to stack cloud-init, Juju relations, and regular Juju actions in the same
way. Because the Juju actions depend on the initial cloud-init setup of username,
password, and SSH access cloud-init always starts its Day-0 tasks first. Juju Day1-2
actions can then begin after the basic cloud-init tasks finish. However, when running
package updates with cloud-init, we have seen that the package manager is not ready
when we need it in the charms. Day-1 actions depending on the packet manager
should therefore use it cautiously or add additional functionality to wait for cloud-init.

Further, we have not found a way to synchronize Day1-2 with relation-charm actions.
If the relation-charm depends on tasks finished from the Day-1 operations, we need
additional logic in the relation-charm function. For instance, is the relation-changed
function in our implementation depending on WireGuard files created during Day-1
actions. For WireGuard as a VPNaaS, moving the functionality in the Day-1 initial
configuration primitives to the relation function will reduce the exchange back and
forth between VNFs. The sending back and forth using a counter is introduced to
trigger the relation-change action regularly. While waiting for dependencies to finish,
the relationship is typically not changed when needed. The WireGuard peering will
then never start. To keep the relation-change action running when the dependencies
are complete, we need a way to keep the relation exchanging data to keep it up. Our
way to solve this has been to use a counter on both sides that regularly updates to
keep the connection active. Even though this works, we would prefer a more stable,
inbuilt functionality to synchronize the tasks and start the relation-change action at
our signal.

A way to bypass the dependencies of Day-1 charms could be to input parameters into
the relation function. However, we have not found a way to input these similarly to
the other charms. Instead, we have stored the parameter input from Day-1 actions
in files. Then, we can read the files to pick up the parameters in the relation-change
function and transmit the parameters to the other peer. From our perspective,
deeper integration of Juju relations in OSM could help with both synchronization
and parameter inputs.

6.3. KEY MANAGEMENT 67

With the tests we have performed with our code, we suggest deploying WireGuard
as a VPNaaS with the steps described in the list below. Appendix E shows the full
additional configuration needed for the different stages.

1. Add installation of WireGuard package in cloud-init.

2. Add actions in the charm file, actions.yaml.

3. Add relations in metadata.yaml.

4. Include the Python code in appendix D. Be sure to change the name of the
relation both in the __init__ function where relation in and in the Python
function itself. Relation in interface_relation_changed should be the name of
the relation.

5. Append actions to the VNFD. If the VPN tunnel should be created as a
Day-1 operation the actions should be in initial-config-primitive in the day1-2
section. For actions intended to be run as Day-2 actions actions should be in
the config-primitive section of the day1-2 section.

6. Day-2 actions such as further configuration and maintenance can be done using
Day-2 operations in OSM. Relevant Day-2 avtions can be to restart WireGuard,
add or delete peers.

The few steps for adding WireGuard in the VNFD to establish connection between
two VNFs demonstrate the use of WireGuard as a VPNaaS. However, there are
possibilities to make the code and process smoother. Introducing a KMS and further
testing of the provided code we have developed are potential ways to make a more
robust solution. The PoC demonstrated in this thesis confirms that OSM consists
of tools that enable an automated way of making the WireGuard tunnel ready in
complex and realistic VNFs.

6.3 Key Management

Key distribution is often a topic that requires extra attention when setting up a
VPN. Manually transferring keys between services requires no extra logic but can
be a tedious job when setting up several VPN tunnels. The EPS NSs used in this
thesis is one example of a network with multiple connections. Manually peering all
the interfaces in the NS will be time-consuming. While waiting for a tenant manager
to set up the tunnels, the cellular network does not provide any service to a UE
because of the dependencies between components. The complexity and amount of
workload can lead to the tenant manager skipping VPN tunneling on parts or the
whole NS. A KMS, on the other hand, will provide a central repository of keys. OSM

68 6. DISCUSSION

does not provide a KMS function. The manager must therefore provide functionality
outside the OSM framework. This thesis has solved the key management with a
non-standard third option. Using Juju relations, we can transfer the public keys
between the peers of the WireGuard connection. In this way, we can create new keys
for every instantiation of a VNF. Using the Juju relation approach requires the use
of proxy charms. For native charms, both manual transfer and using a KMS are
possible alternatives.

The SSH connection between the VNFs and VCA should provide confidentiality of
the keys and metadata transfer of the Juju peer. However, the provider manager
controlling the VCA could get access to this information. The provider manager will,
in that case, already have credentials to the VNFs via the access to the Juju units.
Therefore, the provider manager can retrieve this information and the private key.
An adversary without access to the VCA may obtain the public key and external
connection points in other ways. For instance, if using an insecure connection protocol
during the information transfer of Juju relations. However, due to the key structure
and protocol of WireGuard described in Section 3.1.6, the attacker does not have
the necessary information from the exchange over the Juju relation to compromise
the WireGuard tunnel.

WireGuard provides forward secrecy for data going in the tunnel, meaning that
previous session data is secure even if an attacker gets the private key. Still, an
attacker may find a peer’s connection history by retrieving the private key. We only
have one peer connecting on each interface for the lab used in the thesis making
the connected peers obvious without knowing the keys. For more connected peers,
finding the public key would be trivial for the attacker as handshakes occur with
a few minutes interval based on the information in the paper [Don17]. Hiding the
identity of the peer is a general limitation of WireGuard. Therefore, providing the
public key over the Juju relation will not introduce a significantly higher risk than
manual transfer. Other sensitive data is already shared in the peered relationship
between the VCA and a VNF. Hence, we do not consider exchanging setup data for
WireGuard over Juju to decrease security.

6.4 Performance

With OSM creating virtual networks on the VIM, multiple network slices can use
the same internal IP address range without being able to communicate across slices.
In our lab environment, we have had a lot of reused IP addresses that have not
conflicted with each other. For example, is the IP addresses similar on the S6a,
S1-C, S1-U, and SXab for all NSs and NSIs deployment with WireGuard we have
deployed. For the management interface, the different VNFs can communicate across
NSIs. Users with access to the VIM also can listen on all of the virtual networks.

6.4. PERFORMANCE 69

With SFC on one or multiple VIMs, WireGuard can therefore be used to provide
confidentiality of network traffic between VNFs. The hiding of information in the
transition adding WireGuard from Figure 5.1 to 5.2 demonstrates this capability.
We have shown that implementing WireGuard tunneling with OSM in a NS or NSI
running other primary applications is possible, and it provides confidentiality for
data running in the networks.

We have observed throughput and latency changing more when redeploying a NS
than the differences measured between the methods/scenarios. The measurements
done in Chapter 5 should therefore be seen as observations in a smaller number of
scenarios and not definite results for introducing WireGuard with OSM. The total
throughput in all measurements with WireGuard has been significantly lower than
the internal NFVI bandwidth. We have therefore not seen the inconsistent differences
we have measured for the raw NFVI throughput when doing our WireGuard tunnel
measurements. However, the WireGuard result depends on the resources available
for the VNFs. We have observed that changing resources impacts the WireGuard
throughput from our measurements. A developer should therefore be aware of
resources and the load of the VNFs before deploying a production-ready NS.

The KPIs for latency in 5G specify a control plane latency of 10-20ms and E2E
latency of lower than 1ms for the data plane for URLLC use cases. The SRT includes
both the data transportation over the network and the work done at the NF. In
general, we have observed that we can use WireGuard within both URLLC and
eMBB related KPIs. The diagram in Figure 6.2 compares the different latency
measurements we have done to the 1ms KPI and each other.

The control plane latency depends on the number of chained services and eventually
communication between VIMs. With a fast internal network, most of the overhead
from WireGuard comes from computing the encryption and packing the original
packets into the WireGuard protocol. We had therefore expected the latency of the
data over WireGuard to be lower with double vCPU resources. The performance,
however, varies much in the NS with double resources, and we cannot conclude that
the amount of resources does not affect latency. Hence, adding WireGuard will add a
cost but is usable for multiple use cases. As we observe that the latency on the S1-C
interface for the two NSIs to be lower than the pure NSs deployments, monitoring
the workload in the VNFs and QoS indicators may be usable for tuning the latency.

For the KPIs regarding throughput, 100Mbps data rate for the users is satisfying
within the measured results. Usually, multiple users should be expected for a gNB,
UPF or SPGW-U. With 2.2Gbps throughput as our highest measure, the network
can serve a total of 2200 Mbps/100 Mbps = 22 devices with 100Mbps per user. 5G
network expects more connected devices but smaller cells for high bandwidth usage.

70 6. DISCUSSION

S6a S1-CS1-U

0.4

0.6

0.8

1
1ms latency KPI

[m
s]

EPS NS
without
WireGuard

EPS NS
with
WireGuard

Double
resources

URLLC
slice

eMBB
slice

Figure 6.2: Latency comparison for different interfaces with WireGuard.

Also, not all devices will likely use the maximum data rate simultaneously. The UE
implementation in our lab is, for instance, only able to use approximately 1.7Mbps
in the uplink. Therefore, using WireGuard connectivity can likely serve more than 22
devices of data plane traffic between NFs. The diagram in Figure 6.3 comparing the
throughput for the different instantiations shows that the measurements are higher
than the 100Mbps Downlink user data rate KPI.

The performance roadmap for WireGuard lists several actions that could increase the
performance, including bandwidth [Don17]. Based on our observation WireGuard
still needs to make additional efforts to support performance close to the peak
performance KPI. However, we have shown that WireGuard can support applications
dependent on data rate in the Gbps scale. The comparison in Figure 6.3 also shows
how the UE has been the bottleneck of our lab in regards to throughput.

We have seen some tendencies that introducing NSIs may affect latency and through-
put of NSs. The differences between the two NSIs we have tested are, however, low
and not consistent. The marginal differences make it challenging to conclude how
much different NSIs are affected, if any.

6.4. PERFORMANCE 71

S6a S1-U S1-C UE->SPGW-U

0

500

1,000

1,500

2,000

2,500

100Mbps
downlink user data

rate KPI

[M
bp

s]

EPS NS
with WireGuard Double resources URLLC slice eMBB slice

Figure 6.3: Throughput comparison for different interfaces with WireGuard.

Throughput measurements show some differences between the two NSIs. A com-
parison between the different throughput measurements is shown in the diagram of
Figure 6.4 to illustrate the minor differences. When we ran the iPerf3 measurements
over WireGuard, the throughput totaled around 3Gbps. 3Gbps is significantly lower
than the internal networking, measured to be stable at around 20Gbps. Therefore,
the queue should not be overwhelming, even though there might be a need to priori-
tize at times. Furthermore, the average latencies are lower than the specified QoS
parameters. Therefore, the observations for both the latency and the throughput
measurements are as expected.

For future work, producing a higher total load and using other values of the values
defining QoS and 5QI could help with clarifying how the NSIs get prioritized. As we
have observed for the NS deployments, the performance varies between instantiations.
For instance, for the S6a interface in Figure 6.4 the NSIs we have deployed and tested
a second time went from a throughput of around 800Mbps to 1.1Gbps.

72 6. DISCUSSION

S6a S1-U S1-C

800

1,000

1,200

1,400

1,600

[M
bp

s]

URLLC slice
alone

eMBB slice
alone

URLLC slice
simultaneous

eMBB slice
simultaneous

Figure 6.4: Throughput comparison with WireGuard for NSIs measured separately
and simultaneously.

Chapter7Conclusion and Future Work

7.1 Conclusion

In this thesis, we have studied WireGuard as a VPNaaS deployed with OSM in
beyond 5G context. Designing and effectuating several test cases have helped us
answering our research questions. This section concludes our findings.

The use of WireGuard to guarantee slice isolation requires knowledge of the applica-
tion in the NFs. The tenant manager or developer should design the outgoing data
flow of NFs to route traffic over the WireGuard tunnel and not directly between peers.
To achieve this, reconfiguration of the inter-working in a VNF or making architecture
decisions for the data flows is necessary. The architecture should, in both cases, be
able to chain services through the VPN tunnel and avoid application failure while
waiting for establishing of the VPN tunnel. With proper configuration, we have
observed that WireGuard can be used to guarantee slice isolation by tunneling and
securing network connections.

In this thesis, we have measured throughput and latency in different scenarios. We
have verified the applicability of WireGuard in a shared virtualized environment.
The performance of WireGuard in our lab depended on resources and configuration
of the NSs. The total SRT between NFs depends on the network latency between
the NFs, the overhead added by WireGuard, and the SRT of the NFs applications.
To support high-performance NSs, the developer should be aware of the effect of
tuning resources and the additional overhead WireGuard introduces in the SFC. We
have not measured data rates close to the peak data rate specified of the KPIs. For
network slices where this is crucial, for instance, eMBB slices, the current version of
WireGuard with our setup is not suitable. However, for other 5G KPIs for throughput
and latency based on our operations, our observation has shown that WireGuard can
be suitable for numerous applications. This includes both URLLC and eMBB slices.

The use of OSM to perform the deployment and orchestration of WireGuard in

73

74 7. CONCLUSION AND FUTURE WORK

network slices has been the significant construction task of this thesis. We have
used the construction of descriptors and charms to answer the research question on
how OSM supports WireGuard as a VPNaaS. Charms in OSM provide flexibility
in running Day1-2 operations of the developers’ choices. Implementing WireGuard
in addition to other applications is, in our opinion, straightforward for developers
with basic knowledge of proxy charms and experience with coding in Python. With
relations and built-in functionality in OSM, it is possible to deploy VNFs with
WireGuard rapidly in an automated way. From our observations and development
process, we reckon OSM to be able to support WireGuard as a VPNaaS.

To summarize, we have found out that WireGuard is usable for verticals in a shared
environment to secure information between NFs. OSM supports deploying WireGuard
as a VPNaaS with various inbuilt methods. We have shown that Juju relations are
feasible for automating a VPNaaS setup. To build network slices fulfilling verticals
terms regarding throughput, latency, and security, the developer should design the
WireGuard tunnel with appropriate resources and in a way that routes the outgoing
data flow of NFs inside the VPN tunnel.

7.2 Future Work

In this thesis, we have provided a PoC of how WireGuard can be used as VPNaaS
with OSM in 5G and beyond 5G networks. However, we could have followed several
other paths to provide and expand the test environment even more realistically.
Therefore, there are other scenarios and benchmarking tests that are possible to do
for exploring the applicability of WireGuard in an NFV environment further. Below
are several suggestions of topics for future work extending our study.

– Deploy WireGuard connectivity between the UE and multiple NSIs.
– Add or replace the core network part of this thesis with 5GS components.
– Appending a distributed KMS for WireGuard deployed by OSM using a third-
party application.

– Use the scalability feature of VNFs in OSM to deploy more WireGuard peers
and see how multiple connections affect performance.

– Study further differences of 5QI in slices deployed from OSM. For instance
with other QoS parameters in OSM and with higher load.

References

[3GPa] 3GPP. Release 16. https://www.3gpp.org/release-16. Accessed: 22.12.2021.

[3GPb] 3GPP. Release 17. https://www.3gpp.org/release-17. Accessed: 22.12.2021.

[All] OpenAirInterface Software Alliance. Openairinterface. https://openairinterface.
org/. Accessed: 04.01.2022.

[BAMH20] Alcardo Alex Barakabitze, Arslan Ahmad, Rashid Mijumbi, and Andrew Hines.
5g network slicing using sdn and nfv: A survey of taxonomy, architectures and
future challenges. Computer Networks, 167:106984, 2020.

[BFG+17] Bego Blanco, Jose Oscar Fajardo, Ioannis Giannoulakis, Emmanouil Kafetza-
kis, Shuping Peng, Jordi Pérez-Romero, Irena Trajkovska, Pouria Sayyad Kho-
dashenas, Leonardo Goratti, Michele Paolino, and Evangelos Sfakianakis. Tech-
nology pillars in the architecture of future 5g mobile networks: Nfv, mec and sdn.
Computer Standards & Interfaces, 54, 01 2017.

[BV.] PowerDNS BV. Powerdns welcome! powerdns.com. Accessed: 28.12.2021.

[BVA+18] Annasamy Bagubali, Tanmay Verma, Anurag Anand, V Prithiviraj, and
Partha Sharathi Mallick. Performance analysis of handover schemes in heteroge-
neous networks. Journal of Circuits, Systems and Computers, 27(11):1850177,
2018.

[DEM+] Jon Dugan, Seth Elliott, Bruce A. Mah, Jeff Poskanzer, and Kaustubh Prabhu.
iperf - the ultimate speed test tool for tcp, udp and sctp. https://iperf.fr/.
Accessed: 03.01.2022.

[Don] Jason A. Donenfeld. Wireguard. https://www.wireguard.com/. Accessed:
12.04.2021.

[Don17] Jason A Donenfeld. Wireguard: next generation kernel network tunnel. In NDSS,
pages 1–12, 2017.

[Dre20] Thomas Dreibholz. Flexible 4g/5g testbed setup for mobile edge computing
using openairinterface and open source mano. In Workshops of the international
conference on advanced information networking and applications, pages 1143–1153.
Springer, 2020.

75

https://www.3gpp.org/release-16
https://www.3gpp.org/release-17
https://openairinterface.org/
https://openairinterface.org/
powerdns.com
https://iperf.fr/
https://www.wireguard.com/

76 REFERENCES

[EK21] Ali Esmaeily and Katina Kralevska. Small-scale 5g testbeds for network slic-
ing deployment: A systematic review. Wireless Communications and Mobile
Computing, 2021, 2021.

[EKG20] Ali Esmaeily, Katina Kralevska, and Danilo Gligoroski. A cloud-based sdn/nfv
testbed for end-to-end network slicing in 4g/5g. In 2020 6th IEEE Conference on
Network Softwarization (NetSoft), pages 29–35. IEEE, 2020.

[EKM22] Ali Esmaeily, Katina Kralevska, and Toktam Mahmoodi. Slicing scheduling for
supporting critical traffic in beyond 5g. In 2022 IEEE 19th Annual Consumer
Communications Networking Conference (CCNC), pages 637–643, 2022.

[ETSa] ETSI. Etsi gs nfv-sol 006 v2.7.1. https://www.etsi.org/deliver/etsi_gs/NFV-SOL/
001_099/006/02.07.01_60/gs_nfv-sol006v020701p.pdf. Accessed: 03.01.2022.

[ETSb] ETSI. Multi-access edge computing (mec). https://www.etsi.org/technologies/
multi-access-edge-computing. Accessed: 22.12.2021.

[ETSc] ETSI. Network functions virtualisation (nfv). https://www.etsi.org/technologies/
nfv/nfv. Accessed: 03.01.2022.

[ETSd] ETSI. Why do we need 5g? https://www.etsi.org/technologies/mobile/5g.
Accessed: 22.12.2021.

[ETS20] ETSI. System architecture for the 5g system (5gs). Technical Report TS 123 501
V16.6.0, ETSI, October 2020.

[FKGG19] Mathias Kjolleberg Forland, Katina Kralevska, Michele Garau, and Danilo Glig-
oroski. Preventing ddos with sdn in 5g. In 2019 IEEE Globecom Workshops (GC
Wkshps), pages 1–7, 2019.

[Foua] Open Infrastructure Foundation. Gnocchi. https://wiki.openstack.org/wiki/
Gnocchi. Accessed: 21.12.2021.

[Foub] The Apache Software Foundation. Downloading cassandra. https://cassandra.
apache.org/_/download.html. Accessed: 20.11.2021.

[GK19] Danilo Gligoroski and Katina Kralevska. Expanded combinatorial designs as tool
to model network slicing in 5g. IEEE Access, 7:54879–54887, 2019.

[GOLH+20] Andres J Gonzalez, Jose Ordonez-Lucena, Bjarne E Helvik, Gianfranco Nencioni,
Min Xie, Diego R Lopez, and Pål Grønsund. The isolation concept in the 5g
network slicing. In 2020 European Conference on Networks and Communications
(EuCNC), pages 12–16. IEEE, 2020.

[Gon21] Iria Miguez Gonzalez. Virtualized cellular networks with native cloud functions.
Master’s thesis, Telecommunications Engineering School (Universida de Vigo),
2021.

[GP] 5G-PPP. Key performance indicators. https://5g-ppp.eu/kpis/. Accessed:
12.04.2021.

https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/006/02.07.01_60/gs_nfv-sol006v020701p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/006/02.07.01_60/gs_nfv-sol006v020701p.pdf
https://www.etsi.org/technologies/multi-access-edge-computing
https://www.etsi.org/technologies/multi-access-edge-computing
https://www.etsi.org/technologies/nfv/nfv
https://www.etsi.org/technologies/nfv/nfv
https://www.etsi.org/technologies/mobile/5g
https://wiki.openstack.org/wiki/Gnocchi
https://wiki.openstack.org/wiki/Gnocchi
https://cassandra.apache.org/_/download.html
https://cassandra.apache.org/_/download.html
https://5g-ppp.eu/kpis/

REFERENCES 77

[Groa] 5G PPP Architecture Working Group. View on 5g architecture. https://5g-ppp.
eu/wp-content/uploads/2020/02/5G-PPP-5G-Architecture-White-Paper_final.
pdf. Accessed: 07.01.2022.

[Grob] OSM End User Advisory Group. Osm in action. https://osm.etsi.org/images/
OSM_EUAG_White_Paper_OSM_in_Action.pdf. Accessed: 12.01.2022.

[Hag20] Simen Haga. Virtualized cellular networks with native cloud functions. Master’s
thesis, Norwegian University of Science and Technology (NTNU), 2020.

[HBT20] Hajar Hantouti, Nabil Benamar, and Tarik Taleb. Service function chaining in
5g amp; beyond networks: Challenges and open research issues. IEEE Network,
34(4):320–327, 2020.

[HEKG20] Simen Haga, Ali Esmaeily, Katina Kralevska, and Danilo Gligoroski. 5g network
slice isolation with wireguard and open source mano: a vpnaas proof-of-concept.
In 2020 IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN), pages 181–187. IEEE, 2020.

[Inc] GitHub Inc. Ci/cd explained. https://resources.github.com/ci-cd/. Accessed:
12.01.2022.

[KGFG19] Katina Kralevska, Michele Garau, Mathias Førland, and Danilo Gligoroski.
Towards 5g intrusion detection scenarios with omnet++. In Meyo Zongo, Antonio
Virdis, Vladimir Vesely, Zeynep Vatandas, Asanga Udugama, Koojana Kuladinithi,
Michael Kirsche, and Anna Förster, editors, Proceedings of 6th International
OMNeT++ Community Summit 2019, volume 66 of EPiC Series in Computing,
pages 44–51. EasyChair, 2019.

[Kim20] Hwankuk Kim. 5g core network security issues and attack classification from
network protocol perspective. J. Internet Serv. Inf. Secur., 10(2):1–15, 2020.

[Ltda] Canonical Ltd. cloud-init documentation. https://cloudinit.readthedocs.io/en/
latest/index.html. Accessed: 03.11.2021.

[Ltdb] Canonical Ltd. Juju. juju.is. Accessed: 01.12.2021.

[Ltdc] Canonical Ltd. Relations. https://juju.is/docs/sdk/relations. Accessed:
28.01.2022.

[NGO21] Gianfranco Nencioni, Rosario Giuseppe Garroppo, and Ruxandra F. Olimid. 5g
multi-access edge computing: Security, dependability, and performance. CoRR,
abs/2107.13374, 2021.

[Ope] OpenAirInterface. 5g core network. https://openairinterface.org/
oai-5g-core-network-project/. Accessed: 18.04.2021.

[OSMa] ETSI OSM. Annex 3: Osm information model. https://osm.etsi.org/docs/
user-guide/11-osm-im.html. Accessed: 26.12.2021.

https://5g-ppp.eu/wp-content/uploads/2020/02/5G-PPP-5G-Architecture-White-Paper_final.pdf
https://5g-ppp.eu/wp-content/uploads/2020/02/5G-PPP-5G-Architecture-White-Paper_final.pdf
https://5g-ppp.eu/wp-content/uploads/2020/02/5G-PPP-5G-Architecture-White-Paper_final.pdf
https://osm.etsi.org/images/OSM_EUAG_White_Paper_OSM_in_Action.pdf
https://osm.etsi.org/images/OSM_EUAG_White_Paper_OSM_in_Action.pdf
https://resources.github.com/ci-cd/
https://cloudinit.readthedocs.io/en/latest/index.html
https://cloudinit.readthedocs.io/en/latest/index.html
juju.is
https://juju.is/docs/sdk/relations
https://openairinterface.org/oai-5g-core-network-project/
https://openairinterface.org/oai-5g-core-network-project/
https://osm.etsi.org/docs/user-guide/11-osm-im.html
https://osm.etsi.org/docs/user-guide/11-osm-im.html

78 REFERENCES

[OSMb] ETSI OSM. Day 1: Vnf services initialization. https://osm.etsi.org/docs/
vnf-onboarding-guidelines/03-day1.html. Accessed: 03.01.2022.

[OSMc] ETSI OSM. etsi-nfv-nsd. http://osm-download.etsi.org/repository/osm/
debian/ReleaseTEN/docs/osm-im/osm_im_trees/etsi-nfv-nsd.html. Accessed:
22.11.2021.

[OSMd] ETSI OSM. etsi-nfv-nst. http://osm-download.etsi.org/repository/osm/debian/
ReleaseELEVEN/docs/osm-im/osm_im_trees/nst.html. Accessed: 22.11.2021.

[OSMe] ETSI OSM. etsi-nfv-vnfd. https://osm.etsi.org/docs/user-guide/05-osm-usage.
html#advanced-instantiation-using-instantiation-parameters. Accessed:
22.11.2021.

[OSMf] ETSI OSM. etsi-nfv-vnfd. http://osm-download.etsi.org/repository/osm/
debian/ReleaseTEN/docs/osm-im/osm_im_trees/etsi-nfv-vnfd.html. Accessed:
22.11.2021.

[OSMg] ETSI OSM. nst.yang. https://osm.etsi.org/gitweb/?p=osm/IM.git;a=blob;f=
models/yang/nst.yang. Accessed: 10.02.2022.

[OSMh] ETSI OSM. Osm hackfests. osm.etsi.org/wikipub/index.html/OSM_Hackfests.
Accessed: 28.12.2021.

[OSMi] ETSI OSM. Osm platform configuration. https://osm.etsi.org/docs/user-guide/
06-osm-platform-configuration.html. Accessed: 09.01.2021.

[OSMj] ETSI OSM. Starting with juju bundles. https://osm.etsi.org/docs/
vnf-onboarding-guidelines/05-quickstarts.html#starting-with-juju-bundles. Ac-
cessed: 30.12.2021.

[OSMk] ETSI OSM. Vnf onboarding guidelines. https://osm.etsi.org/docs/
vnf-onboarding-guidelines/. Accessed: 12.04.2021.

[OSMl] ETSI OSM. What is osm? https://osm.etsi.org/. Accessed: 03.01.2022.

[PS] Frank Yong Yang Peter Schmitt, Bruno Landais. Control and user plane separation
of epc nodes (cups). https://www.3gpp.org/cups. Accessed: 04.01.2022.

[Sau14] Martin Sauter. From GSM to LTE-Advanced. John Wiley & Sons Incorporated,
2 edition, 2014.

[Ser] Amazon Web Services. 5gvinni oai ns. https://github.com/simula/5gvinni-oai-ns.
Accessed: 03.04.2021.

[Tor] Linus Torvalds. Linux kernel source tree. https://git.kernel.
org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
bd2463ac7d7ec51d432f23bf0e893fb371a908cd. Accessed: 16.01.2022.

[TT19] Dinesh Taneja and SS Tyagi. Factors impacting the performance of data trans-
ferred via vpn. International Journal of Innovative Technology and Exploring
Engineering, 8:2962–2966, 2019.

https://osm.etsi.org/docs/vnf-onboarding-guidelines/03-day1.html
https://osm.etsi.org/docs/vnf-onboarding-guidelines/03-day1.html
http://osm-download.etsi.org/repository/osm/debian/ReleaseTEN/docs/osm-im/osm_im_trees/etsi-nfv-nsd.html
http://osm-download.etsi.org/repository/osm/debian/ReleaseTEN/docs/osm-im/osm_im_trees/etsi-nfv-nsd.html
http://osm-download.etsi.org/repository/osm/debian/ReleaseELEVEN/docs/osm-im/osm_im_trees/nst.html
http://osm-download.etsi.org/repository/osm/debian/ReleaseELEVEN/docs/osm-im/osm_im_trees/nst.html
https://osm.etsi.org/docs/user-guide/05-osm-usage.html#advanced-instantiation-using-instantiation-parameters
https://osm.etsi.org/docs/user-guide/05-osm-usage.html#advanced-instantiation-using-instantiation-parameters
http://osm-download.etsi.org/repository/osm/debian/ReleaseTEN/docs/osm-im/osm_im_trees/etsi-nfv-vnfd.html
http://osm-download.etsi.org/repository/osm/debian/ReleaseTEN/docs/osm-im/osm_im_trees/etsi-nfv-vnfd.html
https://osm.etsi.org/gitweb/?p=osm/IM.git;a=blob;f=models/yang/nst.yang
https://osm.etsi.org/gitweb/?p=osm/IM.git;a=blob;f=models/yang/nst.yang
osm.etsi.org/wikipub/index.html/OSM_Hackfests
https://osm.etsi.org/docs/user-guide/06-osm-platform-configuration.html
https://osm.etsi.org/docs/user-guide/06-osm-platform-configuration.html
https://osm.etsi.org/docs/vnf-onboarding-guidelines/05-quickstarts.html#starting-with-juju-bundles
https://osm.etsi.org/docs/vnf-onboarding-guidelines/05-quickstarts.html#starting-with-juju-bundles
https://osm.etsi.org/docs/vnf-onboarding-guidelines/
https://osm.etsi.org/docs/vnf-onboarding-guidelines/
https://osm.etsi.org/
https://www.3gpp.org/cups
https://github.com/simula/5gvinni-oai-ns
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=bd2463ac7d7ec51d432f23bf0e893fb371a908cd
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=bd2463ac7d7ec51d432f23bf0e893fb371a908cd
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=bd2463ac7d7ec51d432f23bf0e893fb371a908cd

REFERENCES 79

[VNL+21] Ivan Vidal, Borja Nogales, Diego Lopez, Juan Rodríguez, Francisco Valera, and
Arturo Azcorra. A secure link-layer connectivity platform for multi-site nfv
services. Electronics, 10(15), 2021.

[vyo] vyos.io. Vyos.io. vyos.io. Accessed: 28.12.2021.

[Wie14] Roel J Wieringa. Design science methodology for information systems and software
engineering. Springer, 2014.

[YYSCP20] Girma M. Yilma, Zarrar F. Yousaf, Vincenzo Sciancalepore, and Xavier Costa-
Perez. Benchmarking open source nfv mano systems: Osm and onap. Computer
Communications, 161:86–98, 2020.

vyos.io

AppendixAPreparation of MicroStack

This appendix shows the command line history from our installation of MicroStack.
After the initial installation, we add two OS images for Ubuntu 18.04 and Ubuntu
20.04. Lastly, we show the commands we have used to adjust the VIMs to cooperate
and route VNF traffic to get Internet connectivity.

Common for both i n s t an c e s :
7 sudo snap i n s t a l l microstack −−devmode −−edge
8 sudo microstack i n i t −−auto −−con t r o l
9 sudo snap get microstack c on f i g . c r e d e n t i a l s . keystone−

↪→ password
10 microstack launch c i r r o s −n test
12 ssh −i /home/ sondrk i / snap/microstack /common/ . ssh /

↪→ id_microstack c i r ros@10 . 2 0 . 2 0 . 2 5 3
13 sudo i p t a b l e s −L
14 wget https : // cloud−images . ubuntu . com/ b i on i c / cur rent / b ion ic

↪→ −server−cloudimg−amd64 . img
15 mkdir images
16 mv bion ic−server−cloudimg−amd64 . img images /
17 microstack . openstack image c r e a t e −−f i l e images / b ion ic−

↪→ se rver−cloudimg−amd64 . img −−pub l i c −−conta iner−format=
↪→ bare −−disk−format=qcow2 ubuntu18 .04

18 sudo s y s c t l net . ipv4 . ip_forward=1
19 wget https : // cloud−images . ubuntu . com/ f o c a l / cur rent / f o ca l −

↪→ se rver−cloudimg−amd64 . img
20 mv fo ca l −server−cloudimg−amd64 . img images /
21 microstack . openstack image c r e a t e −−f i l e images / f o ca l −

↪→ se rver−cloudimg−amd64 . img −−pub l i c −−conta iner−format=
↪→ bare −−disk−format=qcow2 ubuntu20 .04

22 sudo snap get microstack con f i g . c r e d e n t i a l s . keystone−
↪→ password

81

82 A. PREPARATION OF MICROSTACK

Extra command for VIM " microstack " :
sudo i p t a b l e s −t nat −A POSTROUTING −s 10 . 20 . 20 . 1/24 ! −d

↪→ 10 . 20 . 2 0 . 1 /24 −j MASQUERADE # do not run when working
↪→ with mult i−s i t e connec t ions

Extra commands for VIM " a2ntnu_microstack " :
sudo i f c o n f i g br−ex 10 . 21 . 21 . 2 /24
sudo nano /var /snap/microstack /common/ etc / hor i zon /

↪→ l o c a l_ s e t t i n g s . d/_05_snap_tweaks . py # change from
↪→ 1 0 . 20 . 2 0 . 1 to the new IP address 1 0 . 2 1 . 21 . 2

sudo sys t emct l r e s t a r t snap . microstack . ∗
sudo i p t a b l e s −t nat −A POSTROUTING −s 10 . 21 . 21 . 2/24 ! −d

↪→ 10 . 21 . 2 1 . 2 /24 −j MASQUERADE # do not run when working
↪→ with mult i−s i t e connec t ions

Listing A.1: Command line history from installation and setup of Microstack VIMs.

AppendixBPreparation of OSM VM

Following are the commands we have used to install OSM and add VIMs.

wget https : // osm−download . e t s i . org / f tp /osm−10.0−ten / insta l l_osm .
↪→ sh

chmod +x insta l l_osm . sh
. / insta l l_osm . sh −c k8s −t r e l e a s e t e n 2>&1 | t ee osm_insta l l_log .

↪→ txt

osm vim−cr ea t e −−name microstack_a2 −−user admin −−password <
↪→ password> −−auth_url https ://< ip address >:5000/v3/ −−tenant
↪→ admin −−account_type openstack

osm vim−update a2ntnu_microstack −−con f i g ’ { use_f loat ing_ip : ␣True
↪→ } ’

osm vim−update a2ntnu_microstack −−con f i g ’ { i n s e cu r e : ␣True} ’

Listing B.1: Command line history from OSM intallation.

83

AppendixCCreation of UE VM

The appendix includes the command line history when installing the OAI UE and
the configuration file to adjust the UE to our implementation.

C.1 Command Line History
sudo apt update && sudo apt upgrade && sudo apt−get i n s t a l l

↪→ subver s i on g i t
g i t c l one https : // g i t l a b . eurecom . f r / oa i / op ena i r i n t e r f a c e 5 g . g i t
cd op ena i r i n t e r f a c e 5 g /
source oaienv
cd cmake_targets /
. / bui ld_oai −I −−phy_simulators
. / bui ld_oai −w SIMU −−UE −−eNB
cd l t e_bui ld_oa i / bu i ld /
sudo nano . . / . . / . . / opena i r3 /NAS/TOOLS/ue_eurecom_test_sfr . conf
/home/ubuntu/ op ena i r i n t e r f a c e 5 g / t a r g e t s / bin / conf2uedata −c

↪→ . . / . . / . . / opena i r3 /NAS/TOOLS/ue_eurecom_test_sfr . conf −o .
sudo RFSIMULATOR=192.168 .249 .1 . / l t e −uesoftmodem −C 2685000000 −r

↪→ 50 −−r f s im

Listing C.1: Command line history for UE VM.

C.2 ue_eurecom_test_sfr.conf
L i s t o f known PLMNS
PLMN: {

PLMN0: {
FULLNAME=" Test ␣network " ;
SHORTNAME="OAI4G" ;
MNC=" 01 " ;
MCC=" 001 " ;

PLMN1: {

85

86 C. CREATION OF UE VM

FULLNAME="NTNU␣ t e s t n e t " ;
SHORTNAME=" t e s t n e t " ;
MNC=" 95 " ;
MCC=" 208 " ;

} ;
} ;

UE0 :
{

USER: {
IMEI=" 356113022094149 " ;
MANUFACTURER="EURECOM" ;
MODEL="LTE␣Android␣PC" ;
PIN=" 0000 " ;

} ;
SIM : {

MSIN=" 1234500808 " ;
USIM_API_K=" 449C4B91AEACD0ACE182CF3A5A72BFA1" ;
OPC=" 9245 cd6283cc53ce24ac1186a60dee6b " ;
MSISDN=" 880000001 " ;

} ;

Home PLMN S e l e c t o r wi th Access Technology
HPLMN= " 20895 " ;

User c o n t r o l l e d PLMN S e l e c t o r wi th Access Technology
UCPLMN_LIST = () ;

Operator PLMN L i s t
OPLMN_LIST = (" 00101 " , " 20895 ") ;

Operator c o n t r o l l e d PLMN S e l e c t o r wi th Access Technology
OCPLMN_LIST = (" 22210 " , " 21401 " , " 21406 " , " 26202 " , " 26204 ") ;

Forbidden plmns
FPLMN_LIST = () ;

L i s t o f Equ i va l en t HPLMNs
#TODO: UE does not connect i f se t , to be f i x e d in the UE
EHPLMN_LIST= ("20811" , "20813") ;
EHPLMN_LIST= () ;

} ;

Listing C.2: Content of modified ue_eurecom_test_sfr.conf.

AppendixDWireGuard Charm

This appendix displays the addition needed for the Python code in Juju proxy
charms to implement WireGuard as a VPNaaS. The code must be combined with
the descriptor files of Appendix E to work.

import l o gg ing
from time import s l e e p
from random import rand int

l o gg e r = logg ing . getLogger (__name__)

class HSSProxyCharm(SSHProxyCharm) :

def __init__(s e l f , framework , key) :
WireGuard a p p l i c a t i o n
s e l f . framework . observe (s e l f . on . generatekeys_act ion , s e l f .

↪→ on_generatekeys_action)
s e l f . framework . observe (s e l f . on . generatewgconf ig_act ion ,

↪→ s e l f . on_generateconf ig_act ion)
s e l f . framework . observe (s e l f . on . wgup_action , s e l f .

↪→ on_wireguardup_action)
s e l f . framework . observe (s e l f . on . wgaddpeer_action , s e l f .

↪→ on_addpeer_action)
s e l f . framework . observe (s e l f . on . wgdelpeer_action , s e l f .

↪→ on_delpeer_action)
s e l f . framework . observe (s e l f . on . wgrestart_act ion , s e l f .

↪→ on_wgrestart_action)
s e l f . framework . observe (s e l f . on . inte r face_re lat ion_changed

↪→ , s e l f . _on_interface_relat ion_changed)

87

88 D. WIREGUARD CHARM

WireGuard r e q u i r e r c o n f i g
def on_generatekeys_action (s e l f , event) :

e r r = ’ ’
r e s u l t = ’ ’
wgifname = ’ ’
try :

wgifname = event . params [’wg−i n t e r f a c e ’]
except :

wgifname = "wg0"
try :

proxy = s e l f . get_ssh_proxy ()
cmd = [’ sudo␣ t e s t ␣−f ␣/ e tc /wireguard / publ i ckey {}␣&&␣

↪→ echo␣ " $FILE␣ e x i s t s . " ’ . format (wgifname)]
r e su l t , e r r = proxy . run (cmd)

except :
pass

i f len (r e s u l t) > 5 :
event . s e t_ r e s u l t s ({ ’ outout ’ : r e s u l t })

else :
try :

proxy = s e l f . get_ssh_proxy ()
cmd = [’wg␣genkey␣ | ␣ sudo␣ tee ␣/ e tc /wireguard /

↪→ pr ivatekey {}␣ | ␣wg␣pubkey␣ | ␣ sudo␣ tee ␣/ e tc /
↪→ wireguard / publ i ckey {} ’ . format (wgifname ,
↪→ wgifname)]

r e su l t , e r r = proxy . run (cmd)
event . s e t_ r e s u l t s ({ ’ outout ’ : r e s u l t })

except :
event . f a i l (’command␣ f a i l e d : ’ + e r r)

def on_generateconf ig_act ion (s e l f , event) :
e r r = ’ ’
try :

proxy = s e l f . get_ssh_proxy ()
gateway_ip = ’ ’
try :

gateway_ip = event . params [’ gateway−ip ’]
i f not gateway_ip :

gateway_ip = s e l f . model . c on f i g [" ssh−hostname "
↪→]

except :
gateway_ip = s e l f . model . c on f i g [" ssh−hostname "

↪→]
wgifname = ’ ’
l i s t e n p o r t = ’ ’

89

try :
wgifname = event . params [’wg−i n t e r f a c e ’]

except :
wgifname = "wg0"

try :
l i s t e n p o r t = event . params [’ l i s t e n p o r t ’]

except :
l i s t e n p o r t = " 51820 "

subnet_of_tunnel = event . params [’ tunnel−subnet ’]
endpoint = event . params [’ endpoint ’]
cmd = [’ echo␣−e␣ " [I n t e r f a c e] \ nAddress␣=␣{}\

↪→ nListenPort ␣=␣{}\ nPrivatekey ␣=␣$ (sudo␣ cat ␣/ e tc /
↪→ wireguard / pr ivatekey {}) " ␣ | ␣ sudo␣ tee ␣−a␣/ e tc /
↪→ wireguard /{} . conf ’ . format (endpoint , l i s t e np o r t ,
↪→ wgifname , wgifname)]

r e su l t , e r r = proxy . run (cmd)
cmd = [’ echo␣−e␣ "{}" ␣ | ␣ sudo␣ tee ␣/ e tc /wireguard /

↪→ gateway_ip{} ’ . format (gateway_ip , wgifname)]
r e su l t , e r r = proxy . run (cmd)
cmd = [’ echo␣−e␣ "{}" ␣ | ␣ sudo␣ tee ␣/ e tc /wireguard / subnet

↪→ {} ’ . format (subnet_of_tunnel , wgifname)]
r e su l t , e r r = proxy . run (cmd)
cmd = [’ echo␣−e␣ "{}" ␣ | ␣ sudo␣ tee ␣/ e tc /wireguard /

↪→ l i s t e n p o r t {} ’ . format (l i s t e npo r t , wgifname)]
r e su l t , e r r = proxy . run (cmd)

event . s e t_ r e s u l t s ({ ’ outout ’ : r e s u l t })
except :

event . f a i l (’command␣ f a i l e d : ’ + e r r)

def on_wireguardup_action (s e l f , event) :
e r r = ’ ’
wgifname = ’ ’
try :

wgifname = event . params [’wg−i n t e r f a c e ’]
except :

wgifname = "wg0"
try :

proxy = s e l f . get_ssh_proxy ()
cmd = [’ sudo␣wg−quick ␣up␣{} ’ . format (wgifname)]
r e su l t , e r r = proxy . run (cmd)
event . s e t_ r e s u l t s ({ ’ outout ’ : r e s u l t })

except :
event . f a i l (’command␣ f a i l e d : ’ + e r r)

90 D. WIREGUARD CHARM

def on_addpeer_action (s e l f , event) :
e r r = ’ ’
try :

proxy = s e l f . get_ssh_proxy ()
i f s e l f . model . un i t . i s_ l eade r () :

peer_public_key = event . params [’ peer−publ i ckey ’]
gateway_ip = s e l f . model . c on f i g [" ssh−hostname "]
subnet_behind_tunnel = event . params [’ subnet−

↪→ behind−tunne l ’]
wgifname = ’ ’
l i s t e n p o r t = ’ ’
try :

wgifname = event . params [’wg−i n t e r f a c e ’]
except :

wgifname = "wg0"
try :

l i s t e n p o r t = event . params [’ l i s t e n p o r t ’]
except :

l i s t e n p o r t = " 51820 "
publ ic_endpoint = event . params [’ publ ic−endpoint ’]
cmd = [’ sudo␣wg␣ s e t ␣{}␣ peer ␣{}␣ al lowed−ip s ␣ {} ,{} ␣

↪→ endpoint ␣ {} :{} ␣ p e r s i s t e n t −keepa l i v e ␣25 ’ .
↪→ format (wgifname , peer_public_key ,
↪→ gateway_ip , subnet_behind_tunnel ,
↪→ public_endpoint , l i s t e n p o r t)]

r e su l t , e r r = proxy . run (cmd)
cmd = [’ sudo␣ ip ␣−4␣ route ␣add␣{}␣dev␣{} ’ . format (

↪→ gateway_ip , wgifname)]
r e su l t , e r r = proxy . run (cmd)
cmd = [’ sudo␣ ip ␣−4␣ route ␣add␣{}␣dev␣{} ’ . format (

↪→ subnet_behind_tunnel , wgifname)]
r e su l t , e r r = proxy . run (cmd)
cmd = [’ sudo␣wg−quick ␣ save ␣{} ’ . format (wgifname)]
r e su l t , e r r = proxy . run (cmd)
event . s e t_ r e s u l t s ({ ’ outout ’ : r e s u l t })

except :
event . f a i l (’command␣ f a i l e d : ’ + e r r)

else :
event . f a i l (" Unit ␣ i s ␣not␣ l e ade r ")

def on_delpeer_action (s e l f , event) :
e r r = ’ ’
try :

proxy = s e l f . get_ssh_proxy ()
peer_public_key = event . params [’ peer−publ i ckey ’]

91

subnet_behind_tunnel = event . params [’ subnet−behind−
↪→ tunne l ’]

wgifname = ’ ’
try :

wgifname = event . params [’wg−i n t e r f a c e ’]
except :

wgifname = "wg0"
cmd = [’ sudo␣wg␣ s e t ␣{}␣ peer ␣{}␣remove ’ . format (

↪→ wgifname , peer_public_key)]
r e su l t , e r r = proxy . run (cmd)
cmd = [’ sudo␣ ip ␣−4␣ route ␣ de l ␣{}␣dev␣{} ’ . format (

↪→ subnet_behind_tunnel , wgifname)]
r e su l t , e r r = proxy . run (cmd)
cmd = [’ sudo␣wg−quick ␣ save ␣{} ’ . format (wgifname)]
r e su l t , e r r = proxy . run (cmd)
event . s e t_ r e s u l t s ({ ’ outout ’ : r e s u l t })

except :
event . f a i l (’command␣ f a i l e d : ’ + e r r)

def on_wgrestart_action (s e l f , event) :
e r r = ’ ’
try :

proxy = s e l f . get_ssh_proxy ()
wgifname = ’ ’
try :

wgifname = event . params [’wg−i n t e r f a c e ’]
except :

wgifname = "wg0"
try :

cmd = [’ sudo␣ sys t emct l ␣ r e s t a r t ␣wg−quick@ {} .
↪→ s e r v i c e ’ . format (wgifname)]

r e su l t , e r r = proxy . run (cmd)
except :

cmd = [’ sudo␣wg−quick ␣down␣{} ’ . format (wgifname)]
r e su l t , e r r = proxy . run (cmd)
cmd = [’ sudo␣wg−quick ␣ s t a r t ␣{} ’ . format (wgifname)]
r e su l t , e r r = proxy . run (cmd)
event . s e t_ r e s u l t s ({ ’ r e s t a r t e d ␣wg0 ’ : r e s u l t })

except :
event . f a i l (’command␣ f a i l e d : ’ + e r r)

def _on_interface_relat ion_changed (s e l f , event) : # change to
↪→ c o r r e c t j u j u i n t e r f a c e name
INPUT c o r r e c t wireguard i n t e r f a c e name :

92 D. WIREGUARD CHARM

wgifname = "wg0"
s e l f . wgre l a t i on (event , wgifname)

def wgre l a t i on (s e l f , event , wgifname) :
#l o g g e r . debug ("RELATION DATA: { } " . format (d i c t (event .

↪→ r e l a t i o n . data [event . un i t])))
#parameter = event . r e l a t i o n . data [event . un i t] . g e t ("

↪→ parameter ")
#i f parameter :
s e l f . model . un i t . s t a t u s = Ac t i v eS ta tu s (" Parameter

↪→ r e c e i v e d : { } " . format (parameter))
proxy = False
proxypass = False
try :

proxy = s e l f . get_ssh_proxy ()
proxypass = True

except :
s l e e p (5)
c = randint (1 ,10000)
event . r e l a t i o n . data [s e l f . model . un i t] [" counter "] = str

↪→ (c)
proxypass = False

i f proxypass :
e r r = ’ ’
r e s u l t = ’ ’
r eady int = 0
sshready = event . r e l a t i o n . data [event . un i t] . get ("wg−

↪→ ready ")
sshready_unit = event . r e l a t i o n . data [s e l f . un i t] . get ("

↪→ wg−ready ")
i f not sshready :

sshready = " Fal se "
i f not sshready_unit :

sshready_unit = " Fal se "
peered = event . r e l a t i o n . data [s e l f . model . un i t] . get ("wg

↪→ −peered ")
i f not peered :

peered = " Fal se "
i f " True " not in sshready or " True " not in peered or

↪→ " True " not in sshready_unit :
c = randint (1 ,10000)
event . r e l a t i o n . data [s e l f . model . un i t] [" counter "] =

↪→ str (c)
r e s u l t = ’ ’

93

leader_pubkey = event . r e l a t i o n . data [event . un i t] .
↪→ get ("wg−pubkey ")

l e ad e r_ l i s t e npo r t = event . r e l a t i o n . data [event .
↪→ uni t] . get ("wg−l i s t e n p o r t ")

leader_gwip = event . r e l a t i o n . data [event . un i t] . get
↪→ ("wg−gwip ")

leader_subnet = event . r e l a t i o n . data [event . un i t] .
↪→ get ("wg−subnet ")

i f not peered :
peered = " Fal se "

i f leader_pubkey and leader_gwip and
↪→ l eader_subnet and l e ad e r_ l i s t e npo r t :
i f " True " not in peered :

proxy = s e l f . get_ssh_proxy ()
cmd = [’ echo␣−e␣ " [Peer] \ nPublicKey␣=␣{}\

↪→ nAllowedIPs␣=␣{}\nEndpoint␣=␣ {} :{} "
↪→ ␣ | ␣ sudo␣ tee ␣−a␣/ e tc /wireguard /{} .
↪→ conf ’ . format (leader_pubkey ,
↪→ leader_subnet , leader_gwip , str (
↪→ l e ad e r_ l i s t e npo r t) , wgifname)]

r e su l t , e r r = proxy . run (cmd)
event . r e l a t i o n . data [s e l f . model . un i t] ["wg−

↪→ peered "] = "True "
try :

cmd = [’ sudo␣wg−quick ␣down␣{} ’ . format
↪→ (wgifname)]

r e su l t , e r r = proxy . run (cmd)
cmd = [’ sudo␣ sys t emct l ␣ s t a r t ␣wg−

↪→ quick@ {} . s e r v i c e ’ . format (
↪→ wgifname)]

r e su l t , e r r = proxy . run (cmd)
except :

pass
#event . r e l a t i o n . data [s e l f . un i t] . update ({"

↪→ wg−peered " : " True "})

send pubkey and o ther v a r i a b l e s back to l e a d e r
r e s u l t = ’ ’
try :

cmd = [’ sudo␣ t e s t ␣−f ␣/ e tc /wireguard / publ i ckey
↪→ {}␣&&␣echo␣ " $FILE␣ pre sent " ’ . format (
↪→ wgifname)]

r e su l t , e r r = proxy . run (cmd)
except :

94 D. WIREGUARD CHARM

event . r e l a t i o n . data [s e l f . un i t] . update ({ "
↪→ r e l a t i on −jo in ed " : " f a i l e d 1 " })

i f len (r e s u l t) > 5 :
#t r y :
cmd = [’ sudo␣ cat ␣/ e tc /wireguard / publ i ckey {} ’ .

↪→ format (wgifname)]
r e su l t , e r r = proxy . run (cmd)
ready int += 1
event . r e l a t i o n . data [s e l f . model . un i t] ["wg−

↪→ pubkey "] = r e s u l t
#event . r e l a t i o n . data [s e l f . un i t] . update ({"

↪→ wgpeer−pubkey " : r e s u l t })
#excep t :
event . r e l a t i o n . data [s e l f . un i t] . update ({"

↪→ r e l a t i o n −jo ined " : " f a i l e d 2 "})
else :

try :
cmd = [’wg␣genkey␣ | ␣ sudo␣ tee ␣/ e tc /

↪→ wireguard / pr ivatekey {}␣ | ␣wg␣pubkey␣
↪→ | ␣ sudo␣ tee ␣/ e tc /wireguard / publ i ckey
↪→ {} ’ . format (wgifname , wgifname)]

r e su l t , e r r = proxy . run (cmd)
cmd = [’ sudo␣ cat ␣/ e tc /wireguard / publ i ckey

↪→ {} ’ . format (wgifname)]
r e su l t , e r r = proxy . run (cmd)
ready int += 1
event . r e l a t i o n . data [s e l f . model . un i t] ["wg−

↪→ pubkey "] = r e s u l t
except :

pass
#event . r e l a t i o n . data [s e l f . un i t] . update ({"

↪→ wgpeer−pubkey " : r e s u l t })
#event . r e l a t i o n . data [s e l f . un i t] . update ({"

↪→ ready " : " True "})
r e s u l t = ’ ’
try :

cmd = [’ sudo␣ t e s t ␣−f ␣/ e tc /wireguard /
↪→ gateway_ip{}␣&&␣echo␣ " $FILE␣ pre sent " ’ .
↪→ format (wgifname)]

r e su l t , e r r = proxy . run (cmd)
except :

pass
i f len (r e s u l t) > 5 :

cmd = [’ sudo␣ cat ␣/ e tc /wireguard /gateway_ip{} ’
↪→ . format (wgifname)]

95

r e su l t , e r r = proxy . run (cmd)
event . r e l a t i o n . data [s e l f . model . un i t] ["wg−gwip

↪→ "] = r e s u l t
#event . r e l a t i o n . data [s e l f . un i t] . update ({"

↪→ wgpeer−gwip " : r e s u l t })
r eady int += 1

r e s u l t = ’ ’
try :

cmd = [’ sudo␣ t e s t ␣−f ␣/ e tc /wireguard / subnet {}␣
↪→ &&␣echo␣ " $FILE␣ present " ’ . format (
↪→ wgifname)]

r e su l t , e r r = proxy . run (cmd)
except :

pass
i f len (r e s u l t) > 5 :

cmd = [’ sudo␣ cat ␣/ e tc /wireguard / subnet {} ’ .
↪→ format (wgifname)]

r e su l t , e r r = proxy . run (cmd)
event . r e l a t i o n . data [s e l f . model . un i t] ["wg−

↪→ subnet "] = r e s u l t
#event . r e l a t i o n . data [s e l f . un i t] . update ({"

↪→ wgpeer−subnet " : r e s u l t })
r eady int += 1
#i f r eady in t >= 3:
event . r e l a t i o n . data [s e l f . un i t] . update ({"

↪→ ready " : " True "})
else :

pass
r e s u l t = ’ ’
try :

cmd = [’ sudo␣ t e s t ␣−f ␣/ e tc /wireguard /
↪→ l i s t e n p o r t {}␣&&␣echo␣ "$FILE␣ pre sent " ’ .
↪→ format (wgifname)]

r e su l t , e r r = proxy . run (cmd)
except :

pass
i f len (r e s u l t) > 5 :

cmd = [’ sudo␣ cat ␣/ e tc /wireguard / l i s t e n p o r t {} ’
↪→ . format (wgifname)]

r e su l t , e r r = proxy . run (cmd)
event . r e l a t i o n . data [s e l f . model . un i t] ["wg−

↪→ l i s t e n p o r t "] = r e s u l t
#event . r e l a t i o n . data [s e l f . un i t] . update ({"

↪→ wgpeer−l i s t e n p o r t " : r e s u l t })
r eady int += 1

96 D. WIREGUARD CHARM

i f r eady int >= 4 and " True " in peered :
event . r e l a t i o n . data [s e l f . model . un i t] ["wg−

↪→ ready "] = "True "
cmd = [’ sudo␣wg−quick ␣down␣{} ’ . format (

↪→ wgifname)]
r e su l t , e r r = proxy . run (cmd)
cmd = [’ sudo␣wg−quick ␣up␣{} ’ . format (wgifname)

↪→]
r e s u l t , e r r = proxy . run (cmd)

Listing D.1: Python code to share WireGuard data between peers.

AppendixEVPNaaS Additions to Descriptor
Files

This appendix lists the additions needed for different files to support WireGuard as a
VPNaaS. The Python charm code to support the additions are given in Appendix D

cloud - init . yaml
. . .
packages :

- wireguard

Listing E.1: Additional configuration in cloud-init for implementing WireGuard as
a VPN-as-a-Service.

a c t i o n s . yaml
. . .
generatekeys :

de s c r i p t i o n : " generates ␣ wireguard ␣ keys "
generatewgconf ig :

de s c r i p t i o n : " generates ␣ wireguard ␣ config "
params:

tunnel−subnet :
de s c r i p t i o n : " subnets ␣ the ␣ other ␣ side ␣

↪→ should ␣ allow ␣ for ␣ in ␣ Allowed ␣ IPs "
type : s t r i n g
de f au l t : " "

requ i red :
- tunnel−subnet

wgup:
de s c r i p t i o n : " bring ␣ up ␣ wireguard "

wgaddpeer:
de s c r i p t i o n : " add ␣ peer ␣ to ␣ wireguard ␣ config "
params:

peer−publ i ckey :

97

98 E. VPNAAS ADDITIONS TO DESCRIPTOR FILES

de s c r i p t i o n : " publickey ␣ of ␣ a ␣ peer "
type : s t r i n g
de f au l t : " "

subnet−behind−tunnel :
de s c r i p t i o n : " subnet ␣ to ␣ allow ␣ from ␣ other ␣

↪→ side ␣ of ␣ the ␣ wg ␣ tunnel "
type : s t r i n g
de f au l t : " "

wg−i n t e r f a c e :
de s c r i p t i o n : " interface ␣ name "
type : s t r i n g
de f au l t : " wg0 "

l i s t e n p o r t :
de s c r i p t i o n : " port ␣ to ␣ listen ␣ on "
type : s t r i n g
de f au l t : " 51820 "

requ i red :
- peer−publ i ckey
- subnet−behind−tunnel

wgdelpeer :
de s c r i p t i o n : " delete ␣ peer ␣ from ␣ wireguard ␣ config "

wgres tar t :
de s c r i p t i o n : " restarts ␣ the ␣ wireguard ␣ service "
params:

wg−i n t e r f a c e :
de s c r i p t i o n : " interface ␣ to ␣ restart "
type : s t r i n g
de f au l t : " wg0 "

Listing E.2: Additional configuration in action.yaml charm file for implementing
WireGuard as a VPN-as-a-Service.

m e t a d a t a . yaml - p r o v i d e r side
. . .
p rov ides :

r e l a t i o np r ov i d e r :
i n t e r f a c e : r e l a t i o n # must be equal on both

↪→ require and provider side

m e t a d a t a . yaml - r e q u i r e side
. . .
r e qu i r e s :

99

r e l a t i o n r e q u i r e :
i n t e r f a c e : r e l a t i o n # must be equal on both

↪→ require and provider side

Listing E.3: Additional configuration in metadata.yaml charm file for implementing
WireGuard as a VPN-as-a-Service.

vnfd . yaml
. . .

lcm−operat ions−con f i gu r a t i on :
operate−vnf−op−con f i g :

day1−2:
- id : v n f d \ _id

j u ju :
charm: name # name of charm given in

↪→ metadata . yaml and normally also the
↪→ folder name

i n i t i a l −con f ig−pr im i t i v e :
. . .

- seq : ’2 ’
name: g e n e r a t e k e y s
execut ion−environment−r e f : v n f d \ _id

- seq : ’3 ’
name: g e n e r a t e w g c o n f i g
execut ion−environment−r e f : v n f d \ _id
parameter :
- name: t u n n e l −s u b n e t

value : ’ 192.168.248.0/24 ’ # WireGuard
↪→ subnet the peer should allow data
↪→ from

- name: g a t eway −i p
value : ’ 10.21.21.57 ’ # external

↪→ connection point
- name: e n d p o i n t

value : ’ 192.168.248.157/24 ’ # internal
↪→ IP address to use for WireGuard

- name: wg− i n t e r f a c e
value : ’ wg0 ’ # interface name . Not

↪→ mandatory . Used in case of
↪→ multiple WireGuard tunnels .

- name: l i s t e n p o r t

100 E. VPNAAS ADDITIONS TO DESCRIPTOR FILES

value : ’ 51820 ’ # Port external
↪→ connection point is listening on .
↪→ Not mandatory . Used in case of
↪→ multiple WireGuard tunnels .

- seq : ’4 ’
name: wgup # Brings up the WireGuard

↪→ interface
parameter :
- name: wg− i n t e r f a c e

value : ’ wg0 ’
execut ion−environment−r e f : v n f d \ _id

con f i g−pr im i t i v e : # Manual steps . Day -2
↪→ operations

- name: w g addp e e r
parameter :
- name: p e e r −p u b l i c k e y

data−type : STRING
de fau l t−value : ’ ’

- name: s u bn e t −beh i nd −t u n n e l
data−type : STRING
de fau l t−value : ’ 192.168.0.0/16 ’

- name: p u b l i c _ e n d p o i n t
data−type : STRING
de fau l t−value : ’ 192.168.0.1/24 ’

- name: w g d e l p e e r
- name: w g r e s t a r t

Listing E.4: Additional configuration in VNFd for implementing WireGuard as a
VPN-as-a-Service.

AppendixFPerformance Measurements

The following appendix shows the full log output for the performance tests we have
done. The distilled results are presented in Chapter 5. We have split the appendix
into sections based on the different use cases.

F.1 Single Network Services with and Without WireGuard
Connectivity

The following measurements are done using the NSs described in Section 4.7. A
separate deployment is done for the OAI EPS NS with WireGuard implemented and
the plain EPS NS without WireGuard tunneling.

eNB: i p e r f 3 −B 192 . 168 . 248 . 157 −c 192 . 168 . 248 . 159 −M 1362 −t 600
↪→ −i 60

SPGW−U: sudo i p e r f 3 −s −B 192 . 168 . 248 . 159

ubuntu@enb :~ $ i p e r f 3 −B 192 . 168 . 248 . 157 −c 192 . 168 . 248 . 159 −M
↪→ 1362 −t 600 −i 60

Connecting to host 192 . 168 . 248 . 159 , port 5201
local 192 . 168 . 248 . 157 port 49461 connected to 192 . 168 . 248 . 159

↪→ port 5201
I n t e r v a l Trans fe r Bandwidth Retr Cwnd

0.00 −60.00 sec 10 .0 GBytes 1 .44 Gbits / sec 305 1 .51 MBytes
60.00 −120.00 sec 9 .98 GBytes 1 .43 Gbits / sec 436 1 .54 MBytes

120.00 −180.00 sec 9 .98 GBytes 1 .43 Gbits / sec 674 1 .54 MBytes
180.00 −240.00 sec 9 .95 GBytes 1 .42 Gbits / sec 731 1 .52 MBytes
240.00 −300.00 sec 10 .1 GBytes 1 .45 Gbits / sec 362 1 .54 MBytes
300.00 −360.00 sec 9 .97 GBytes 1 .43 Gbits / sec 600 1 .10 MBytes
360.00 −420.00 sec 9 .98 GBytes 1 .43 Gbits / sec 364 1 .54 MBytes
420.00 −480.00 sec 9 .88 GBytes 1 .42 Gbits / sec 117 1 .54 MBytes
480.00 −540.00 sec 10 .0 GBytes 1 .44 Gbits / sec 201 1 .54 MBytes
540.00 −600.00 sec 9 .96 GBytes 1 .43 Gbits / sec 576 1 .54 MBytes

101

102 F. PERFORMANCE MEASUREMENTS

− −
In t e r v a l Trans fe r Bandwidth Retr

0.00 −600.00 sec 99 .9 GBytes 1 .43 Gbits / sec 4366 sender
0.00 −600.00 sec 99 .9 GBytes 1 .43 Gbits / sec r e c e i v e r

Listing F.1: Performance on S1-U over WireGuard tunnel for the EPS NS with
WireGuard.

eNB: i p e r f 3 −B 192 . 168 . 248 . 157 −c 192 . 168 . 248 . 159 −t 600 −i 60
SPGW−U: sudo i p e r f 3 −s −B 192 . 168 . 248 . 159

ubuntu@enb :~ $ i p e r f 3 −B 192 . 168 . 248 . 157 −c 192 . 168 . 248 . 159 −t 600
↪→ −i 60

Connecting to host 192 . 168 . 248 . 159 , port 5201
local 192 . 168 . 248 . 157 port 53007 connected to 192 . 168 . 248 . 159

↪→ port 5201
I n t e r v a l Trans fe r Bandwidth Retr Cwnd

0.00 −60.00 sec 10 .1 GBytes 1 .45 Gbits / sec 207 1 .51 MBytes
60.00 −120.00 sec 10 .1 GBytes 1 .45 Gbits / sec 539 1 .51 MBytes

120.00 −180.00 sec 10 .0 GBytes 1 .43 Gbits / sec 81 2 .30 MBytes
180.00 −240.00 sec 10 .1 GBytes 1 .45 Gbits / sec 614 1 .51 MBytes
240.00 −300.00 sec 9 .83 GBytes 1 .41 Gbits / sec 419 1 .51 MBytes
300.00 −360.00 sec 9 .93 GBytes 1 .42 Gbits / sec 88 1 .51 MBytes
360.00 −420.00 sec 10 .0 GBytes 1 .43 Gbits / sec 123 1 .51 MBytes
420.00 −480.00 sec 10 .1 GBytes 1 .45 Gbits / sec 793 1 .56 MBytes
480.00 −540.00 sec 10 .1 GBytes 1 .44 Gbits / sec 465 1 .56 MBytes
540.00 −600.00 sec 10 .1 GBytes 1 .44 Gbits / sec 472 1 .44 MBytes
− −
In t e r v a l Trans fe r Bandwidth Retr

0.00 −600.00 sec 100 GBytes 1 .44 Gbits / sec 3801 sender
0.00 −600.00 sec 100 GBytes 1 .44 Gbits / sec r e c e i v e r

Listing F.2: Performance on S1-U over WireGuard in the EPS NS with default
MTU of iPerf3 (1500 bytes).

eNB: i p e r f 3 −B 192 . 168 . 247 . 101 −c 192 . 168 . 247 . 12 −t 600 −i 60
MME: sudo i p e r f 3 −s −B 192 . 168 . 247 . 12

ubuntu@enb :~ $ i p e r f 3 −B 192 . 168 . 247 . 101 −c 192 . 168 . 247 . 12 −t 600
↪→ −i 60

Connecting to host 192 . 168 . 247 . 12 , port 5201
local 192 . 168 . 247 . 101 port 60471 connected to 192 . 168 . 247 . 12 port

↪→ 5201
I n t e r v a l Trans fe r Bandwidth Retr Cwnd

0.00 −60.00 sec 9 .29 GBytes 1 .33 Gbits / sec 390 1 .04 MBytes
60.00 −120.00 sec 7 .12 GBytes 1 .02 Gbits / sec 84 1 .11 MBytes

F.1. SINGLE NETWORK SERVICES WITH AND WITHOUT WIREGUARD
CONNECTIVITY 103

120.00 −180.00 sec 8 .04 GBytes 1 .15 Gbits / sec 10 1 .94 MBytes
180.00 −240.00 sec 7 .95 GBytes 1 .14 Gbits / sec 57 1 .33 MBytes
240.00 −300.02 sec 7 .94 GBytes 1 .14 Gbits / sec 12 1 .14 MBytes
300.02 −360.00 sec 8 .39 GBytes 1 .20 Gbits / sec 11 893 KBytes
360.00 −420.00 sec 7 .93 GBytes 1 .13 Gbits / sec 126 1 .07 MBytes
420.00 −480.00 sec 4 .65 GBytes 665 Mbits/ sec 12 952 KBytes
480.00 −540.00 sec 4 .29 GBytes 614 Mbits/ sec 10 1 .18 MBytes
540.00 −600.00 sec 5 .39 GBytes 772 Mbits/ sec 12 1 .13 MBytes
− −
In t e r v a l Trans fe r Bandwidth Retr

0.00 −600.00 sec 71 .0 GBytes 1 .02 Gbits / sec 724 sender
0.00 −600.00 sec 71 .0 GBytes 1 .02 Gbits / sec r e c e i v e r

Listing F.3: S1-C throughput with WireGuard in the OAI EPS NS.

UE: i p e r f 3 −B 1 2 . 1 . 1 . 2 −c 192 . 168 . 222 . 15 −M 1362 −t 600 −i 60
SPGW−U: sudo i p e r f 3 −s −B 192 . 168 . 222 . 15

ubuntu@ue :~ $ i p e r f 3 −B 1 2 . 1 . 1 . 2 −c 192 . 168 . 222 . 15 −M 1362 −t 600
↪→ −i 60

Connecting to host 192 . 168 . 222 . 15 , port 5201
local 1 2 . 1 . 1 . 2 port 52253 connected to 192 . 168 . 222 . 15 port 5201
I n t e r v a l Trans fe r Bandwidth Retr Cwnd

0.00 −60.00 sec 10 .8 MBytes 1 .52 Mbits/ sec 168 17 .1 KBytes
60.00 −120.00 sec 11 .1 MBytes 1 .56 Mbits/ sec 165 15 .8 KBytes

120.00 −180.00 sec 11 .1 MBytes 1 .55 Mbits/ sec 198 23 .7 KBytes
180.00 −240.00 sec 11 .9 MBytes 1 .67 Mbits/ sec 223 11 .9 KBytes
240.00 −300.00 sec 12 .2 MBytes 1 .70 Mbits/ sec 178 15 .8 KBytes
300.00 −360.00 sec 11 .7 MBytes 1 .64 Mbits/ sec 183 34 .3 KBytes
360.00 −420.00 sec 12 .5 MBytes 1 .75 Mbits/ sec 203 29 .0 KBytes
420.00 −480.00 sec 12 .2 MBytes 1 .70 Mbits/ sec 180 19 .8 KBytes
480.00 −540.00 sec 12 .0 MBytes 1 .68 Mbits/ sec 306 18 .5 KBytes
540.00 −600.00 sec 12 .6 MBytes 1 .76 Mbits/ sec 144 47 .5 KBytes
− −
In t e r v a l Trans fe r Bandwidth Retr

0.00 −600.00 sec 118 MBytes 1 .65 Mbits/ sec 1948 sender
0.00 −600.00 sec 118 MBytes 1 .64 Mbits/ sec r e c e i v e r

Listing F.4: Performance between UE and SPGW-U over Uu (10MHz) and
WireGuard in the EPS NS with WireGuard.

MME: i p e r f 3 −B 172 . 1 6 . 6 . 2 8 −c 172 . 1 6 . 6 . 1 28 −M 1362 −t 600 −i 60
HSS : sudo i p e r f 3 −s −B 172 . 1 6 . 6 . 1 28
ubuntu@mme:~ $ i p e r f 3 −B 172 . 1 6 . 6 . 2 8 −c 172 . 1 6 . 6 . 1 29 −M 1362 −t

↪→ 600 −i 60
Connecting to host 1 72 . 1 6 . 6 . 1 2 9 , port 5201

104 F. PERFORMANCE MEASUREMENTS

local 172 . 1 6 . 6 . 2 8 port 46581 connected to 172 . 1 6 . 6 . 1 29 port 5201
I n t e r v a l Trans fe r Bandwidth Retr Cwnd

0.00 −60.00 sec 5 .92 GBytes 848 Mbits/ sec 14 934 KBytes
60.00 −120.00 sec 6 .34 GBytes 908 Mbits/ sec 64 1 .03 MBytes

120.00 −180.00 sec 6 .32 GBytes 904 Mbits/ sec 21 1 .28 MBytes
180.00 −240.00 sec 6 .59 GBytes 943 Mbits/ sec 45 998 KBytes
240.00 −300.00 sec 6 .62 GBytes 947 Mbits/ sec 148 1 .24 MBytes
300.00 −360.00 sec 6 .87 GBytes 983 Mbits/ sec 11 1 .35 MBytes
360.00 −420.00 sec 6 .60 GBytes 944 Mbits/ sec 12 889 KBytes
420.00 −480.00 sec 5 .94 GBytes 850 Mbits/ sec 11 1 .02 MBytes
480.00 −540.00 sec 6 .55 GBytes 938 Mbits/ sec 11 957 KBytes
540.00 −600.00 sec 6 .41 GBytes 918 Mbits/ sec 10 1 .10 MBytes
− −
In t e r v a l Trans fe r Bandwidth Retr

0.00 −600.00 sec 64 .1 GBytes 918 Mbits/ sec 347 sender
0.00 −600.00 sec 64 .1 GBytes 918 Mbits/ sec r e c e i v e r

Listing F.5: Throughput on S6a with WireGuard in the OAI EPS NS.

MME: i p e r f 3 −B 192 . 1 6 8 . 8 . 2 −c 192 . 168 . 8 . 1 29 −M 1362 −t 600 −i 60
HSS : sudo i p e r f 3 −s −B 192 . 168 . 8 . 1 29

ubuntu@mme:~ $ i p e r f 3 −B 192 . 1 6 8 . 8 . 2 −c 192 . 168 . 8 . 1 29 −M 1362 −t
↪→ 600 −i 60

Connecting to host 192 . 1 68 . 8 . 1 29 , port 5201
local 192 . 1 6 8 . 8 . 2 port 46009 connected to 192 . 168 . 8 . 1 29 port 5201
I n t e r v a l Trans fe r Bandwidth Retr Cwnd

0.00 −60.00 sec 157 GBytes 22 .5 Gbits / sec 0 3 .15 MBytes
60.00 −120.00 sec 155 GBytes 22 .3 Gbits / sec 0 3 .15 MBytes

120.00 −180.00 sec 148 GBytes 21 .1 Gbits / sec 0 3 .15 MBytes
180.00 −240.00 sec 162 GBytes 23 .2 Gbits / sec 1 3 .15 MBytes
240.00 −300.00 sec 145 GBytes 20 .8 Gbits / sec 0 3 .15 MBytes
300.00 −360.00 sec 150 GBytes 21 .5 Gbits / sec 1 3 .15 MBytes
360.00 −420.00 sec 147 GBytes 21 .1 Gbits / sec 1 3 .15 MBytes
420.00 −480.00 sec 151 GBytes 21 .6 Gbits / sec 0 3 .15 MBytes
480.00 −540.00 sec 143 GBytes 20 .5 Gbits / sec 1 3 .15 MBytes
540.00 −600.00 sec 156 GBytes 22 .3 Gbits / sec 0 3 .15 MBytes
− −
In t e r v a l Trans fe r Bandwidth Retr

0.00 −600.00 sec 0 .00 (nu l l) s 21 .7 Gbits / sec 4 sender
0.00 −600.00 sec 0 .00 (nu l l) s 21 .7 Gbits / sec r e c e i v e r

Listing F.6: Throughput on S6a in the OAI EPS NS without WireGuard.

OAI EPS NS with WireGuard :
eNB: ping −q −i 0 .2 −c 1000 −I wg2 192 . 168 . 247 . 12

F.1. SINGLE NETWORK SERVICES WITH AND WITHOUT WIREGUARD
CONNECTIVITY 105

ubuntu@enb :~ $ ping −q −i 0 .2 −c 1000 −I wg2 192 . 168 . 247 . 12
PING 192 . 168 . 247 . 12 (1 92 . 1 6 8 . 2 4 7 . 1 2) from 192 . 168 . 247 . 111 wg2 :

↪→ 56(84) bytes o f data .

−−− 192 . 168 . 247 . 12 ping s t a t i s t i c s −−−
1000 packets transmitted , 1000 rece ived , 0% packet l o s s , time

↪→ 202341ms
r t t min/avg/max/mdev = 0 .517/0 . 881/2 . 111/0 .161 ms

OAI EPS NS without WireGuard :
eNB: ping −q −i 0 .2 −c 1000 −I ens4 192 . 168 . 7 . 1 02
ubuntu@enb :~ $ ping −q −i 0 .2 −c 1000 −I ens4 192 . 168 . 7 . 1 02
PING 192 . 168 . 7 . 1 02 (1 9 2 . 1 6 8 . 7 . 1 0 2) from 192 . 168 . 7 . 1 01 ens4 :

↪→ 56(84) bytes o f data .

−−− 192 . 168 . 7 . 1 02 ping s t a t i s t i c s −−−
1000 packets transmitted , 1000 rece ived , 0% packet l o s s , time

↪→ 203770ms
r t t min/avg/max/mdev = 0 .243/0 . 416/1 . 991/0 .085 ms

Listing F.7: Latency on S1-C run on two EPS NS with and without WireGuard.

OAI EPS NS with WireGuard :
ubuntu@enb :~ $ ping −q −i 0 .2 −c 1000 −I wg2 192 . 168 . 247 . 12
PING 192 . 168 . 247 . 12 (1 92 . 1 6 8 . 2 4 7 . 1 2) from 192 . 168 . 247 . 111 wg2 :

↪→ 56(84) bytes o f data .

−−− 192 . 168 . 247 . 12 ping s t a t i s t i c s −−−
1000 packets transmitted , 1000 rece ived , 0% packet l o s s , time

↪→ 203387ms
r t t min/avg/max/mdev = 0 .440/0 . 784/1 . 873/0 .156 ms

OAI EPS NS without WireGuard :
ubuntu@enb :~ $ ping −q −i 0 .2 −c 1000 −I ens4 192 . 168 . 7 . 1 02
PING 192 . 168 . 7 . 1 02 (1 9 2 . 1 6 8 . 7 . 1 0 2) from 192 . 168 . 7 . 1 01 ens4 :

↪→ 56(84) bytes o f data .

−−− 192 . 168 . 7 . 1 02 ping s t a t i s t i c s −−−
1000 packets transmitted , 1000 rece ived , 0% packet l o s s , time

↪→ 203796ms
r t t min/avg/max/mdev = 0 .209/0 . 364/0 . 631/0 .064 ms

Listing F.8: Latency on S1-U with and without WireGuard in the EPS NS.

106 F. PERFORMANCE MEASUREMENTS

OAI EPS NS with WireGuard :
MME: ping −q −i 0 .2 −c 1000 −I wg0 172 . 1 6 . 6 . 1 28

ubuntu@mme:~ $ ping −q −i 0 .2 −c 1000 −I wg0 172 . 1 6 . 6 . 1 28
PING 172 . 1 6 . 6 . 1 28 (1 7 2 . 1 6 . 6 . 1 2 8) from 172 . 1 6 . 6 . 2 8 wg0 : 56(84)

↪→ bytes o f data .

−−− 172 . 1 6 . 6 . 1 28 ping s t a t i s t i c s −−−
1000 packets transmitted , 1000 rece ived , 0% packet l o s s , time

↪→ 203508ms
r t t min/avg/max/mdev = 0 .523/0 . 805/2 .748/0 .127 ms

OAI EPS NS without WireGuard :
MME: ping −q −i 0 .2 −c 1000 −I ens4 192 . 168 . 8 . 1 29

ubuntu@mme:~ $ ping −q −i 0 .2 −c 1000 −I ens4 192 . 168 . 8 . 1 29
PING 192 . 168 . 8 . 1 29 (1 9 2 . 1 6 8 . 8 . 1 2 9) from 192 . 1 6 8 . 8 . 2 ens4 : 56(84)

↪→ bytes o f data .

−−− 192 . 168 . 8 . 1 29 ping s t a t i s t i c s −−−
1000 packets transmitted , 1000 rece ived , 0% packet l o s s , time

↪→ 203833ms
r t t min/avg/max/mdev = 0 .221/0 . 379/2 .109/0 .090 ms

Listing F.9: Latency on S6a with and without WireGuard in the EPS NS.

UE: i p e r f 3 −B 1 2 . 1 . 1 . 2 −c 192 . 168 . 222 . 88 −M 1362 −t 600 −i 60
SPGW−U: sudo i p e r f 3 −s −B 192 . 168 . 222 . 88

ubuntu@ue :~ $ i p e r f 3 −B 1 2 . 1 . 1 . 2 −c 192 . 168 . 222 . 88 −M 1362 −t 600
↪→ −i 60

Connecting to host 192 . 168 . 222 . 88 , port 5201
local 1 2 . 1 . 1 . 2 port 57223 connected to 192 . 168 . 222 . 88 port 5201
I n t e r v a l Trans fe r Bandwidth Retr Cwnd

0.00 −60.00 sec 11 .7 MBytes 1 .64 Mbits/ sec 199 18 .5 KBytes
60.00 −120.00 sec 12 .1 MBytes 1 .68 Mbits/ sec 219 19 .8 KBytes

120.00 −180.00 sec 12 .1 MBytes 1 .68 Mbits/ sec 200 19 .8 KBytes
180.00 −240.00 sec 11 .4 MBytes 1 .60 Mbits/ sec 211 11 .9 KBytes
240.00 −300.00 sec 11 .9 MBytes 1 .66 Mbits/ sec 188 15 .8 KBytes
300.00 −360.00 sec 11 .8 MBytes 1 .65 Mbits/ sec 183 21 .1 KBytes
360.00 −420.00 sec 12 .0 MBytes 1 .68 Mbits/ sec 198 21 .1 KBytes
420.00 −480.00 sec 11 .4 MBytes 1 .60 Mbits/ sec 231 18 .5 KBytes
480.00 −540.00 sec 9 .27 MBytes 1 .30 Mbits/ sec 216 13 .2 KBytes
540.00 −600.00 sec 11 .9 MBytes 1 .67 Mbits/ sec 174 33 .0 KBytes
− −

F.2. TWO DIFFERENT NETWORK SLICE INSTANCES 107

I n t e r v a l Trans fe r Bandwidth Retr
0.00 −600.00 sec 116 MBytes 1 .61 Mbits/ sec 2019 sender
0.00 −600.00 sec 115 MBytes 1 .61 Mbits/ sec r e c e i v e r

Listing F.10: UE throughput to SPGW-U in the EPS NS without WireGuard.

F.2 Two Different Network Slice Instances

The following section shows the results for the measurements done using the NSTs
described in Section 4.9.

F.2.1 Running Tests on Only One NSI at a Time

eMBB descripted slice:

MME: i p e r f 3 −B 172 . 1 6 . 6 . 2 8 −c 172 . 1 6 . 6 . 1 29 −M 1362 −t 600 −i 60
HSS : sudo i p e r f 3 −s −B 172 . 1 6 . 6 . 1 29

ubuntu@mme:~ $ i p e r f 3 −B 172 . 1 6 . 6 . 2 8 −c 172 . 1 6 . 6 . 1 29 −M 1362 −t
↪→ 600 −i 60

Connecting to host 1 72 . 1 6 . 6 . 1 2 9 , port 5201
local 172 . 1 6 . 6 . 2 8 port 44409 connected to 172 . 1 6 . 6 . 1 29 port 5201
I n t e r v a l Trans fe r Bandwidth Retr Cwnd

0.00 −60.00 sec 5 .20 GBytes 745 Mbits/ sec 13 1 .08 MBytes
60.00 −120.00 sec 5 .46 GBytes 782 Mbits/ sec 14 1 .19 MBytes

120.00 −180.00 sec 5 .33 GBytes 762 Mbits/ sec 12 834 KBytes
180.00 −240.00 sec 5 .42 GBytes 777 Mbits/ sec 10 1 .19 MBytes
240.00 −300.00 sec 5 .44 GBytes 779 Mbits/ sec 14 1 .18 MBytes
300.00 −360.00 sec 5 .40 GBytes 773 Mbits/ sec 12 832 KBytes
360.00 −420.00 sec 5 .35 GBytes 766 Mbits/ sec 13 974 KBytes
420.00 −480.00 sec 5 .30 GBytes 758 Mbits/ sec 10 1 .12 MBytes
480.00 −540.00 sec 5 .25 GBytes 752 Mbits/ sec 11 1 .06 MBytes
540.00 −600.00 sec 5 .45 GBytes 780 Mbits/ sec 12 858 KBytes
− −
In t e r v a l Trans fe r Bandwidth Retr

0.00 −600.00 sec 53 .6 GBytes 767 Mbits/ sec 121 sender
0.00 −600.00 sec 53 .6 GBytes 767 Mbits/ sec r e c e i v e r

Listing F.11: S6a throughput with WireGuard in the eMBB descripted slice.

ubuntu@mme:~ $ i p e r f 3 −B 172 . 1 6 . 6 . 2 8 −c 172 . 1 6 . 6 . 1 29 −M 1362 −t
↪→ 600 −i 60

Connecting to host 1 72 . 1 6 . 6 . 1 2 9 , port 5201
local 172 . 1 6 . 6 . 2 8 port 34199 connected to 172 . 1 6 . 6 . 1 29 port 5201
I n t e r v a l Trans fe r Bandwidth Retr Cwnd

108 F. PERFORMANCE MEASUREMENTS

0.00 −60.00 sec 7 .37 GBytes 1 .06 Gbits / sec 12 1 .02 MBytes
60.00 −120.00 sec 7 .50 GBytes 1 .07 Gbits / sec 10 1 .12 MBytes

120.00 −180.00 sec 7 .58 GBytes 1 .08 Gbits / sec 11 1 .03 MBytes
180.00 −240.00 sec 7 .64 GBytes 1 .09 Gbits / sec 10 1 .20 MBytes
240.00 −300.00 sec 7 .20 GBytes 1 .03 Gbits / sec 11 1 .23 MBytes
300.00 −360.00 sec 7 .41 GBytes 1 .06 Gbits / sec 11 1 .33 MBytes
360.00 −420.00 sec 7 .40 GBytes 1 .06 Gbits / sec 11 1 .01 MBytes
420.00 −480.00 sec 7 .28 GBytes 1 .04 Gbits / sec 10 1 .13 MBytes
480.00 −540.00 sec 6 .74 GBytes 964 Mbits/ sec 11 1 .14 MBytes
540.00 −600.00 sec 6 .98 GBytes 999 Mbits/ sec 11 1 .04 MBytes
− −
In t e r v a l Trans fe r Bandwidth Retr

0.00 −600.00 sec 73 .1 GBytes 1 .05 Gbits / sec 108 sender
0.00 −600.00 sec 73 .1 GBytes 1 .05 Gbits / sec r e c e i v e r

Listing F.12: S6a throughput with WireGuard in the eMBB slice - run 2.

ubuntu@enb :~ $ i p e r f 3 −B 192 . 168 . 247 . 111 −c 192 . 168 . 247 . 12 −t 600
↪→ −i 60

Connecting to host 192 . 168 . 247 . 12 , port 5201
local 192 . 168 . 247 . 111 port 46667 connected to 192 . 168 . 247 . 12 port

↪→ 5201
I n t e r v a l Trans fe r Bandwidth Retr Cwnd

0.00 −60.00 sec 7 .57 GBytes 1 .08 Gbits / sec 869 1 .09 MBytes
60.00 −120.00 sec 7 .73 GBytes 1 .11 Gbits / sec 10 1 .05 MBytes

120.00 −180.00 sec 7 .50 GBytes 1 .07 Gbits / sec 10 1 .29 MBytes
180.00 −240.00 sec 7 .25 GBytes 1 .04 Gbits / sec 17 1 .10 MBytes
240.00 −300.00 sec 6 .96 GBytes 997 Mbits/ sec 10 1 .25 MBytes
300.00 −360.00 sec 6 .90 GBytes 987 Mbits/ sec 11 1 .11 MBytes
360.00 −420.00 sec 7 .56 GBytes 1 .08 Gbits / sec 10 1 .12 MBytes
420.00 −480.00 sec 7 .04 GBytes 1 .01 Gbits / sec 116 1 .27 MBytes
480.00 −540.00 sec 7 .29 GBytes 1 .04 Gbits / sec 11 1 .16 MBytes
540.00 −600.00 sec 7 .36 GBytes 1 .05 Gbits / sec 10 1 .21 MBytes
− −
In t e r v a l Trans fe r Bandwidth Retr

0.00 −600.00 sec 73 .1 GBytes 1 .05 Gbits / sec 1074 sender
0.00 −600.00 sec 73 .1 GBytes 1 .05 Gbits / sec r e c e i v e r

Listing F.13: S1-C throughput with WireGuard in the eMBB slice.

Unencrypted i n t e r f a c e :
MME: ping −q −i 0 .2 −c 1000 −I ens4 192 . 168 . 8 . 1 29

ubuntu@mme:~ $ ping −q −i 0 .2 −c 1000 −I ens4 192 . 168 . 8 . 1 29
PING 192 . 168 . 8 . 1 29 (1 9 2 . 1 6 8 . 8 . 1 2 9) from 192 . 1 6 8 . 8 . 2 ens4 : 56(84)

↪→ bytes o f data .

F.2. TWO DIFFERENT NETWORK SLICE INSTANCES 109

−−− 192 . 168 . 8 . 1 29 ping s t a t i s t i c s −−−
1000 packets transmitted , 1000 rece ived , 0% packet l o s s , time

↪→ 203767ms
r t t min/avg/max/mdev = 0 .218/0 . 411/1 . 559/0 .111 ms

In s i d e WireGuard tunne l :
MME: ping −q −i 0 .2 −c 1000 −I wg0 172 . 1 6 . 6 . 1 29

ubuntu@mme:~ $ ping −q −i 0 .2 −c 1000 −I wg0 172 . 1 6 . 6 . 1 29
PING 172 . 1 6 . 6 . 1 29 (1 7 2 . 1 6 . 6 . 1 2 9) from 172 . 1 6 . 6 . 2 8 wg0 : 56(84)

↪→ bytes o f data .

−−− 172 . 1 6 . 6 . 1 29 ping s t a t i s t i c s −−−
1000 packets transmitted , 1000 rece ived , 0% packet l o s s , time

↪→ 202988ms
r t t min/avg/max/mdev = 0 .503/0 . 874/1 . 498/0 .123 ms

Listing F.14: S6a latency in the eMBB slice.

eNB: ping −q −i 0 .2 −c 1000 −I wg2 192 . 168 . 247 . 12

ubuntu@enb :~ $ ping −q −i 0 .2 −c 1000 −I wg2 192 . 168 . 247 . 12
PING 192 . 168 . 247 . 12 (1 92 . 1 6 8 . 2 4 7 . 1 2) from 192 . 168 . 247 . 111 wg2 :

↪→ 56(84) bytes o f data .

−−− 192 . 168 . 247 . 12 ping s t a t i s t i c s −−−
1000 packets transmitted , 1000 rece ived , 0% packet l o s s , time

↪→ 203594ms
r t t min/avg/max/mdev = 0 .402/0 . 746/1 . 932/0 .153 ms

Listing F.15: Latency on S1-C in the eMBB slice.

eNB: ping −q −i 0 .2 −c 1000 −I wg2 192 . 168 . 247 . 12

ubuntu@enb :~ $ ping −q −i 0 .2 −c 1000 −I wg2 192 . 168 . 247 . 12
PING 192 . 168 . 247 . 12 (1 92 . 1 6 8 . 2 4 7 . 1 2) from 192 . 168 . 247 . 111 wg2 :

↪→ 56(84) bytes o f data .

−−− 192 . 168 . 247 . 12 ping s t a t i s t i c s −−−
1000 packets transmitted , 1000 rece ived , 0% packet l o s s , time

↪→ 202846ms
r t t min/avg/max/mdev = 0 .517/0 . 866/4 . 935/0 .192 ms

Listing F.16: S1-C latency in WireGuard tunnel in the eMBB slice - run 2.

110 F. PERFORMANCE MEASUREMENTS

ubuntu@enb :~ $ ping −q −i 0 .2 −c 1000 −I wg0 192 . 168 . 248 . 159
PING 192 . 168 . 248 . 159 (192 . 1 68 . 2 48 . 1 59) from 192 . 168 . 248 . 157 wg0 :

↪→ 56(84) bytes o f data .

−−− 192 . 168 . 248 . 159 ping s t a t i s t i c s −−−
1000 packets transmitted , 1000 rece ived , 0% packet l o s s , time

↪→ 203664ms
r t t min/avg/max/mdev = 0 .413/0 . 737/1 .930/0 .142 ms

Listing F.17: S1-U latency in WireGuard tunnel in the eMBB slice.

eNB: i p e r f 3 −B 192 . 168 . 248 . 157 −c 192 . 168 . 248 . 159 −t 600 −i 60
SPGW−U: sudo i p e r f 3 −s −B 192 . 168 . 248 . 159

ubuntu@enb :~ $ i p e r f 3 −B 192 . 168 . 248 . 157 −c 192 . 168 . 248 . 159 −t 600
↪→ −i 60

Connecting to host 192 . 168 . 248 . 159 , port 5201
local 192 . 168 . 248 . 157 port 34533 connected to 192 . 168 . 248 . 159

↪→ port 5201
I n t e r v a l Trans fe r Bandwidth Retr Cwnd

0.00 −60.00 sec 10 .7 GBytes 1 .53 Gbits / sec 203 1 .58 MBytes
60.00 −120.00 sec 10 .3 GBytes 1 .47 Gbits / sec 208 1 .55 MBytes

120.00 −180.00 sec 10 .3 GBytes 1 .48 Gbits / sec 396 1 .53 MBytes
180.00 −240.00 sec 10 .2 GBytes 1 .46 Gbits / sec 459 1 .40 MBytes
240.00 −300.00 sec 10 .6 GBytes 1 .51 Gbits / sec 227 1 .51 MBytes
300.00 −360.00 sec 10 .5 GBytes 1 .50 Gbits / sec 433 1 .56 MBytes
360.00 −420.00 sec 10 .3 GBytes 1 .48 Gbits / sec 221 1 .42 MBytes
420.00 −480.00 sec 10 .3 GBytes 1 .48 Gbits / sec 555 1 .42 MBytes
480.00 −540.00 sec 10 .2 GBytes 1 .47 Gbits / sec 266 1 .38 MBytes
540.00 −600.00 sec 10 .2 GBytes 1 .46 Gbits / sec 217 1 .56 MBytes
− −
In t e r v a l Trans fe r Bandwidth Retr

0.00 −600.00 sec 104 GBytes 1 .48 Gbits / sec 3185 sender
0.00 −600.00 sec 104 GBytes 1 .48 Gbits / sec r e c e i v e r

Listing F.18: S1-U throughput with WireGuard tunnel in the eMBB slice.

Measured between management i n t e r f a c e s o f SPGW−U and eNB in eMBB
↪→ de s c r i p t ed s l i c e :

SPGW−U: i p e r f 3 −B 192 . 168 . 9 . 1 59 −c 192 . 1 68 . 9 . 5 7 −t 600 −i 60
eNB: sudo i p e r f 3 −s −B 192 . 1 68 . 9 . 5 7

ubuntu@spgw−u :~ $ i p e r f 3 −B 192 . 168 . 9 . 1 59 −c 192 . 1 68 . 9 . 5 7 −t 600
↪→ −i 60

Connecting to host 1 92 . 1 6 8 . 9 . 5 7 , port 5201

F.2. TWO DIFFERENT NETWORK SLICE INSTANCES 111

local 192 . 168 . 9 . 1 59 port 43735 connected to 192 . 1 68 . 9 . 5 7 port
↪→ 5201

I n t e r v a l Trans fe r Bandwidth Retr Cwnd
0.00 −60.00 sec 116 GBytes 16 .6 Gbits / sec 0 3 .01 MBytes

60.00 −120.00 sec 113 GBytes 16 .1 Gbits / sec 0 3 .01 MBytes
120.00 −180.00 sec 115 GBytes 16 .4 Gbits / sec 0 3 .01 MBytes
180.00 −240.00 sec 115 GBytes 16 .4 Gbits / sec 0 3 .01 MBytes
240.00 −300.00 sec 117 GBytes 16 .8 Gbits / sec 0 3 .01 MBytes
300.00 −360.00 sec 115 GBytes 16 .5 Gbits / sec 0 3 .01 MBytes
360.00 −420.00 sec 115 GBytes 16 .4 Gbits / sec 0 3 .01 MBytes
420.00 −480.00 sec 116 GBytes 16 .6 Gbits / sec 0 3 .01 MBytes
480.00 −540.00 sec 115 GBytes 16 .5 Gbits / sec 0 3 .01 MBytes
540.00 −600.00 sec 117 GBytes 16 .7 Gbits / sec 0 3 .01 MBytes
− −
In t e r v a l Trans fe r Bandwidth Retr

0.00 −600.00 sec 0 .00 (nu l l) s 16 .5 Gbits / sec 0 sender
0.00 −600.00 sec 0 .00 (nu l l) s 16 .5 Gbits / sec r e c e i v e r

eNB workload when running throughput measurement :
Tasks : 109 to ta l , 1 running , 57 s l e ep ing , 0 stopped , 0 zombie
%Cpu(s) : 0 . 1 us , 0 . 1 sy , 0 . 0 ni , 99 .8 id , 0 . 0 wa , 0 . 0 hi , 0 . 0 s i ,

↪→ 0 .0 s t
KiB Mem: 8167500 to ta l , 1200084 f r e e , 133388 used , 6834028 bu f f /

↪→ cache
KiB Swap : 0 to ta l , 0 f r e e , 0 used . 7728040 av a i l Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
1 root 20 0 77976 9160 6684 S 0 .0 0 .1 0 : 1 1 . 3 8 systemd

SPGW−U workload when running throughput measurement :
top − 08 : 00 : 15 up 5 days , 1 : 23 , 1 user , load average : 0 . 14 , 0 . 36 ,

↪→ 0 .24
Tasks : 86 to ta l , 1 running , 45 s l e ep ing , 0 stopped , 0 zombie
%Cpu(s) : 0 . 0 us , 0 . 3 sy , 0 . 0 ni , 99 .0 id , 0 . 7 wa , 0 . 0 hi , 0 . 0 s i ,

↪→ 0 .0 s t
KiB Mem: 3073036 to ta l , 191844 f r e e , 276592 used , 2604600 bu f f /

↪→ cache
KiB Swap : 0 to ta l , 0 f r e e , 0 used . 2603872 av a i l Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
1838 root 20 0 20 .000 t 186264 11028 S 0 .3 6 .1 1 : 0 2 . 8 9 spgwu

Reverse :
eNB: i p e r f 3 −B 192 . 168 . 222 . 59 −c 192 . 168 . 222 . 37 −t 600 −i 60

112 F. PERFORMANCE MEASUREMENTS

SPGW−U: sudo i p e r f 3 −s −B 192 . 168 . 222 . 37

ubuntu@enb :~ $ i p e r f 3 −B 192 . 168 . 222 . 59 −c 192 . 168 . 222 . 37 −t 600 −
↪→ i 60

Connecting to host 192 . 168 . 222 . 37 , port 5201
local 192 . 168 . 222 . 59 port 53303 connected to 192 . 168 . 222 . 37 port

↪→ 5201
I n t e r v a l Trans fe r Bandwidth Retr Cwnd

0.00 −60.00 sec 120 GBytes 17 .2 Gbits / sec 0 3 .02 MBytes
60.00 −120.00 sec 114 GBytes 16 .3 Gbits / sec 0 3 .02 MBytes

120.00 −180.00 sec 131 GBytes 18 .8 Gbits / sec 0 3 .02 MBytes
180.00 −240.00 sec 135 GBytes 19 .3 Gbits / sec 0 3 .02 MBytes
240.00 −300.00 sec 132 GBytes 18 .8 Gbits / sec 0 3 .02 MBytes
300.00 −360.00 sec 128 GBytes 18 .4 Gbits / sec 0 3 .02 MBytes
360.00 −420.00 sec 132 GBytes 18 .9 Gbits / sec 0 3 .02 MBytes
420.00 −480.00 sec 119 GBytes 17 .0 Gbits / sec 0 3 .02 MBytes
480.00 −540.00 sec 121 GBytes 17 .3 Gbits / sec 0 3 .02 MBytes
540.00 −600.00 sec 117 GBytes 16 .8 Gbits / sec 0 3 .02 MBytes
− −
In t e r v a l Trans fe r Bandwidth Retr

0.00 −600.00 sec 0 .00 (nu l l) s 17 .9 Gbits / sec 0 sender
0.00 −600.00 sec 0 .00 (nu l l) s 17 .9 Gbits / sec r e c e i v e r

Listing F.19: S1-U throughput outside tunnel in the eMBB slice.

eNB: sudo i p e r f 3 −s −B 192 . 168 . 222 . 59
SPGW−U: i p e r f 3 −B 192 . 168 . 222 . 37 −c 192 . 168 . 222 . 59 −M 1362 −t 600

↪→ −i 60

ubuntu@spgw−u :~ $ i p e r f 3 −B 192 . 168 . 222 . 37 −c 192 . 168 . 222 . 59 −M
↪→ 1362 −t 600 −i 60

Connecting to host 192 . 168 . 222 . 59 , port 5201
local 192 . 168 . 222 . 37 port 52241 connected to 192 . 168 . 222 . 59 port

↪→ 5201
I n t e r v a l Trans fe r Bandwidth Retr Cwnd

0.00 −60.00 sec 101 GBytes 14 .5 Gbits / sec 0 3 .02 MBytes
60.00 −120.00 sec 98 .8 GBytes 14 .1 Gbits / sec 0 3 .02 MBytes

120.00 −180.00 sec 98 .8 GBytes 14 .1 Gbits / sec 0 3 .02 MBytes
180.00 −240.00 sec 100 GBytes 14 .4 Gbits / sec 0 3 .02 MBytes
240.00 −300.00 sec 101 GBytes 14 .4 Gbits / sec 0 3 .02 MBytes
300.00 −360.00 sec 101 GBytes 14 .5 Gbits / sec 0 3 .02 MBytes
360.00 −420.00 sec 101 GBytes 14 .4 Gbits / sec 0 3 .02 MBytes
420.00 −480.00 sec 98 .8 GBytes 14 .2 Gbits / sec 0 3 .02 MBytes
480.00 −540.00 sec 98 .4 GBytes 14 .1 Gbits / sec 0 3 .02 MBytes
540.00 −600.00 sec 101 GBytes 14 .4 Gbits / sec 0 3 .02 MBytes
− −

F.2. TWO DIFFERENT NETWORK SLICE INSTANCES 113

I n t e r v a l Trans fe r Bandwidth Retr
0.00 −600.00 sec 1000 GBytes 14 .3 Gbits / sec 0 sender
0.00 −600.00 sec 1000 GBytes 14 .3 Gbits / sec r e c e i v e r

Sample o f r e s ou r c e usage in VNFs :
SPGW−U:
top − 08 : 12 : 05 up 5 days , 1 : 35 , 1 user , load average : 0 . 21 , 0 . 36 ,

↪→ 0 .30
Tasks : 85 to ta l , 1 running , 45 s l e ep ing , 0 stopped , 0 zombie
%Cpu(s) : 0 . 0 us , 0 . 3 sy , 0 . 0 ni , 98 .3 id , 1 . 3 wa , 0 . 0 hi , 0 . 0 s i ,

↪→ 0 .0 s t
KiB Mem: 3073036 to ta l , 190020 f r e e , 278152 used , 2604864 bu f f /

↪→ cache
KiB Swap : 0 to ta l , 0 f r e e , 0 used . 2602312 av a i l Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
1838 root 20 0 20 .000 t 187720 11028 S 0 .3 6 .1 1 : 0 3 . 3 4 spgwu

eNB:
top − 08 : 13 : 06 up 5 days , 1 : 34 , 1 user , load average : 0 . 08 , 0 . 36 ,

↪→ 0 .38
Tasks : 109 to ta l , 1 running , 57 s l e ep ing , 0 stopped , 0 zombie
%Cpu(s) : 0 . 0 us , 0 . 1 sy , 0 . 0 ni , 99 .9 id , 0 . 0 wa , 0 . 0 hi , 0 . 0 s i ,

↪→ 0 .0 s t
KiB Mem: 8167500 to ta l , 1199608 f r e e , 133848 used , 6834044 bu f f /

↪→ cache
KiB Swap : 0 to ta l , 0 f r e e , 0 used . 7727580 av a i l Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
8688 ubuntu 20 0 44552 4016 3348 R 0 .3 0 .0 0 : 0 0 . 0 8 top

Listing F.20: S1-U throughput between management interfaces in the eMBB slice.

HSS : 08 : 37 : 29 up 5 days , 2 : 01 , 1 user , load average : 0 . 32 ,
↪→ 0 . 07 , 0 .02

MME: 08 : 36 : 53 up 5 days , 2 : 00 , 1 user , load average : 0 . 08 ,
↪→ 0 . 03 , 0 .01

SPGW−U: 08 : 30 : 46 up 5 days , 1 : 53 , 1 user , load average : 0 . 01 ,
↪→ 0 . 29 , 0 .39

SPGW−C: 08 : 37 : 54 up 5 days , 2 : 01 , 1 user , load average : 0 . 00 ,
↪→ 0 . 00 , 0 .00

eNB: 08 : 30 : 18 up 5 days , 1 : 51 , 1 user , load average : 0 . 01 ,
↪→ 0 . 31 , 0 .43

Listing F.21: eMBB slice load average sample.

114 F. PERFORMANCE MEASUREMENTS

URLLC descripted slice:

MME: i p e r f 3 −B 172 . 1 6 . 6 . 2 8 −c 172 . 1 6 . 6 . 1 29 −M 1362 −t 600 −i 60
HSS : sudo i p e r f 3 −s −B 172 . 1 6 . 6 . 1 29

ubuntu@mme:~ $ i p e r f 3 −B 172 . 1 6 . 6 . 2 8 −c 172 . 1 6 . 6 . 1 29 −M 1362 −t
↪→ 600 −i 60

Connecting to host 1 72 . 1 6 . 6 . 1 2 9 , port 5201
local 172 . 1 6 . 6 . 2 8 port 38855 connected to 172 . 1 6 . 6 . 1 29 port 5201
I n t e r v a l Trans fe r Bandwidth Retr Cwnd

0.00 −60.00 sec 5 .44 GBytes 779 Mbits/ sec 12 1 .13 MBytes
60.00 −120.00 sec 5 .47 GBytes 783 Mbits/ sec 12 1 .04 MBytes

120.00 −180.00 sec 5 .78 GBytes 828 Mbits/ sec 11 970 KBytes
180.00 −240.00 sec 5 .53 GBytes 792 Mbits/ sec 12 922 KBytes
240.00 −300.00 sec 5 .68 GBytes 813 Mbits/ sec 11 1 .03 MBytes
300.00 −360.00 sec 5 .96 GBytes 853 Mbits/ sec 10 1 .07 MBytes
360.00 −420.00 sec 5 .87 GBytes 841 Mbits/ sec 12 844 KBytes
420.00 −480.00 sec 5 .52 GBytes 790 Mbits/ sec 11 1 .07 MBytes
480.00 −540.00 sec 5 .93 GBytes 849 Mbits/ sec 11 1 .15 MBytes
540.00 −600.00 sec 5 .47 GBytes 783 Mbits/ sec 12 920 KBytes
− −
In t e r v a l Trans fe r Bandwidth Retr

0.00 −600.00 sec 56 .7 GBytes 811 Mbits/ sec 114 sender
0.00 −600.00 sec 56 .7 GBytes 811 Mbits/ sec r e c e i v e r

Listing F.22: S6a throughput with WireGuard in the URLLC slice.

Command on MME: i p e r f 3 −B 172 . 1 6 . 6 . 2 8 −c 172 . 1 6 . 6 . 1 29 −M 1362 −t
↪→ 600 −i 60

HSS : sudo i p e r f 3 −s −B 172 . 1 6 . 6 . 1 29

ubuntu@mme:~ $ i p e r f 3 −B 172 . 1 6 . 6 . 2 8 −c 172 . 1 6 . 6 . 1 29 −M 1362 −t
↪→ 600 −i 60

Connecting to host 1 72 . 1 6 . 6 . 1 2 9 , port 5201
local 172 . 1 6 . 6 . 2 8 port 53531 connected to 172 . 1 6 . 6 . 1 29 port 5201
I n t e r v a l Trans fe r Bandwidth Retr Cwnd

0.00 −60.00 sec 7 .69 GBytes 1 .10 Gbits / sec 12 1 .25 MBytes
60.00 −120.00 sec 7 .21 GBytes 1 .03 Gbits / sec 11 1 .25 MBytes

120.00 −180.00 sec 7 .39 GBytes 1 .06 Gbits / sec 11 1 .23 MBytes
180.00 −240.00 sec 6 .98 GBytes 999 Mbits/ sec 12 1 .09 MBytes
240.00 −300.00 sec 7 .25 GBytes 1 .04 Gbits / sec 10 1 .37 MBytes
300.00 −360.00 sec 7 .24 GBytes 1 .04 Gbits / sec 21 1 .01 MBytes
360.00 −420.00 sec 7 .52 GBytes 1 .08 Gbits / sec 11 1 .02 MBytes
420.00 −480.00 sec 7 .53 GBytes 1 .08 Gbits / sec 11 1 .09 MBytes
480.00 −540.00 sec 7 .43 GBytes 1 .06 Gbits / sec 10 1 .40 MBytes
540.00 −600.00 sec 7 .32 GBytes 1 .05 Gbits / sec 12 1 .00 MBytes

F.2. TWO DIFFERENT NETWORK SLICE INSTANCES 115

− −
In t e r v a l Trans fe r Bandwidth Retr

0.00 −600.00 sec 73 .6 GBytes 1 .05 Gbits / sec 121 sender
0.00 −600.00 sec 73 .6 GBytes 1 .05 Gbits / sec r e c e i v e r

Listing F.23: S6a throughput with WireGuard in the URLLC slice.

MME:
ping −q −i 0 .2 −c 1000 −I wg0 172 . 1 6 . 6 . 1 29

ubuntu@mme:~ $ ping −q −i 0 .2 −c 1000 −I wg0 172 . 1 6 . 6 . 1 29
PING 172 . 1 6 . 6 . 1 29 (1 7 2 . 1 6 . 6 . 1 2 9) from 172 . 1 6 . 6 . 2 8 wg0 : 56(84)

↪→ bytes o f data .

−−− 172 . 1 6 . 6 . 1 29 ping s t a t i s t i c s −−−
1000 packets transmitted , 1000 rece ived , 0% packet l o s s , time

↪→ 203268ms
r t t min/avg/max/mdev = 0 .499/0 . 843/2 . 930/0 .137 ms

Listing F.24: S6a latency in the URLLC slice with WireGuard.

eNB: ping −q −i 0 .2 −c 1000 −I wg0 192 . 168 . 248 . 159

ubuntu@enb :~ $ ping −q −i 0 .2 −c 1000 −I wg0 192 . 168 . 248 . 159
PING 192 . 168 . 248 . 159 (192 . 1 68 . 2 48 . 1 59) from 192 . 168 . 248 . 157 wg0 :

↪→ 56(84) bytes o f data .

−−− 192 . 168 . 248 . 159 ping s t a t i s t i c s −−−
1000 packets transmitted , 1000 rece ived , 0% packet l o s s , time

↪→ 203644ms
r t t min/avg/max/mdev = 0 .394/0 . 733/1 . 938/0 .121 ms

Listing F.25: S1-U latency in the URLLC slice with WireGuard.

eNB: ping −q −i 0 .2 −c 1000 −I wg2 192 . 168 . 247 . 12

ubuntu@enb :~ $ ping −q −i 0 .2 −c 1000 −I wg2 192 . 168 . 247 . 12
PING 192 . 168 . 247 . 12 (1 92 . 1 6 8 . 2 4 7 . 1 2) from 192 . 168 . 247 . 111 wg2 :

↪→ 56(84) bytes o f data .

−−− 192 . 168 . 247 . 12 ping s t a t i s t i c s −−−
1000 packets transmitted , 1000 rece ived , 0% packet l o s s , time

↪→ 203001ms
r t t min/avg/max/mdev = 0 .492/0 . 837/5 . 323/0 .193 ms

Listing F.26: S1-C latency in WireGuard tunnel in the URLLC slice.

116 F. PERFORMANCE MEASUREMENTS

ubuntu@enb :~ $ ping −q −i 0 .2 −c 1000 −I ens4 192 . 168 . 7 . 1 02
PING 192 . 168 . 7 . 1 02 (1 9 2 . 1 6 8 . 7 . 1 0 2) from 192 . 168 . 7 . 1 01 ens4 :

↪→ 56(84) bytes o f data .

−−− 192 . 168 . 7 . 1 02 ping s t a t i s t i c s −−−
1000 packets transmitted , 1000 rece ived , 0% packet l o s s , time

↪→ 203792ms
r t t min/avg/max/mdev = 0 .215/0 . 364/0 .690/0 .071 ms

Listing F.27: S1-C latency outside VPN tunnel in the URLLC slice.

ubuntu@enb :~ $ ping −q −i 0 .2 −c 1000 −I ens5 192 . 168 . 9 . 1 59
PING 192 . 168 . 9 . 1 59 (1 9 2 . 1 6 8 . 9 . 1 5 9) from 192 . 1 68 . 9 . 5 7 ens5 : 56(84)

↪→ bytes o f data .

−−− 192 . 168 . 9 . 1 59 ping s t a t i s t i c s −−−
1000 packets transmitted , 1000 rece ived , 0% packet l o s s , time

↪→ 203789ms
r t t min/avg/max/mdev = 0 .196/0 . 367/1 .364/0 .088 ms

Listing F.28: S1-U latency outside tunnel in the URLLC slice.

eNB: i p e r f 3 −B 192 . 168 . 248 . 157 −c 192 . 168 . 248 . 159 −t 600 −i 60
SPGW−U: sudo i p e r f 3 −s −B 192 . 168 . 248 . 159
ubuntu@enb :~ $ i p e r f 3 −B 192 . 168 . 248 . 157 −c 192 . 168 . 248 . 159 −t 600

↪→ −i 60
Connecting to host 192 . 168 . 248 . 159 , port 5201
local 192 . 168 . 248 . 157 port 49755 connected to 192 . 168 . 248 . 159

↪→ port 5201
I n t e r v a l Trans fe r Bandwidth Retr Cwnd

0.00 −60.00 sec 9 .69 GBytes 1 .39 Gbits / sec 287 1 .24 MBytes
60.00 −120.00 sec 9 .99 GBytes 1 .43 Gbits / sec 321 1 .15 MBytes

120.00 −180.00 sec 9 .82 GBytes 1 .41 Gbits / sec 263 1 .34 MBytes
180.00 −240.00 sec 9 .89 GBytes 1 .42 Gbits / sec 6 1 .33 MBytes
240.00 −300.00 sec 10 .2 GBytes 1 .47 Gbits / sec 225 1 .33 MBytes
300.00 −360.00 sec 10 .0 GBytes 1 .43 Gbits / sec 191 1 .60 MBytes
360.00 −420.00 sec 9 .89 GBytes 1 .42 Gbits / sec 321 1 .60 MBytes
420.00 −480.00 sec 10 .2 GBytes 1 .45 Gbits / sec 265 1 .60 MBytes
480.00 −540.00 sec 10 .1 GBytes 1 .45 Gbits / sec 2 1 .53 MBytes
540.00 −600.00 sec 10 .2 GBytes 1 .46 Gbits / sec 130 1 .53 MBytes
− −
In t e r v a l Trans fe r Bandwidth Retr

0.00 −600.00 sec 100 GBytes 1 .43 Gbits / sec 2011 sender
0.00 −600.00 sec 100 GBytes 1 .43 Gbits / sec r e c e i v e r

Listing F.29: S1-U throughput in WireGuard tunnel in the URLLC slice.

F.2. TWO DIFFERENT NETWORK SLICE INSTANCES 117

ubuntu@enb :~ $ i p e r f 3 −B 192 . 168 . 247 . 111 −c 192 . 168 . 247 . 12 −t 600
↪→ −i 60

Connecting to host 192 . 168 . 247 . 12 , port 5201
local 192 . 168 . 247 . 111 port 33125 connected to 192 . 168 . 247 . 12 port

↪→ 5201
I n t e r v a l Trans fe r Bandwidth Retr Cwnd

0.00 −60.00 sec 7 .91 GBytes 1 .13 Gbits / sec 12 1 .40 MBytes
60.00 −120.00 sec 7 .97 GBytes 1 .14 Gbits / sec 11 1 .13 MBytes

120.00 −180.00 sec 7 .46 GBytes 1 .07 Gbits / sec 18 1 .06 MBytes
180.00 −240.00 sec 7 .81 GBytes 1 .12 Gbits / sec 34 1 .02 MBytes
240.00 −300.00 sec 7 .65 GBytes 1 .10 Gbits / sec 10 1 .36 MBytes
300.00 −360.00 sec 7 .64 GBytes 1 .09 Gbits / sec 11 1 .31 MBytes
360.00 −420.00 sec 8 .01 GBytes 1 .15 Gbits / sec 28 1 .38 MBytes
420.00 −480.00 sec 8 .05 GBytes 1 .15 Gbits / sec 11 1 .01 MBytes
480.00 −540.00 sec 7 .89 GBytes 1 .13 Gbits / sec 11 1 .22 MBytes
540.00 −600.00 sec 7 .74 GBytes 1 .11 Gbits / sec 10 1 .28 MBytes
− −
In t e r v a l Trans fe r Bandwidth Retr

0.00 −600.00 sec 78 .1 GBytes 1 .12 Gbits / sec 156 sender
0.00 −600.00 sec 78 .1 GBytes 1 .12 Gbits / sec r e c e i v e r

Listing F.30: S1-C throughput in WireGuard tunnel in the URLLC slice.

F.2.2 Running Tests Simultaneously on NSIs to See Any
Difference in Performance

The tests are done doing the same measurement in both NSIs at the same time.

Command for MME in eMBB s l i c e : ping −q −i 0 .2 −c 1000 −I wg0
↪→ 172 . 1 6 . 6 . 1 29

ubuntu@mme:~ $ ping −q −i 0 .2 −c 1000 −I wg0 172 . 1 6 . 6 . 1 29
PING 172 . 1 6 . 6 . 1 29 (1 7 2 . 1 6 . 6 . 1 2 9) from 172 . 1 6 . 6 . 2 8 wg0 : 56(84)

↪→ bytes o f data .

−−− 172 . 1 6 . 6 . 1 29 ping s t a t i s t i c s −−−
1000 packets transmitted , 1000 rece ived , 0% packet l o s s , time

↪→ 203075ms
r t t min/avg/max/mdev = 0 .474/0 . 857/2 . 099/0 .150 ms

Command for MME in URLLC s l i c e : ping −q −i 0 .2 −c 1000 −I wg0
↪→ 172 . 1 6 . 6 . 1 29

ubuntu@mme:~ $ ping −q −i 0 .2 −c 1000 −I wg0 172 . 1 6 . 6 . 1 29
PING 172 . 1 6 . 6 . 1 29 (1 7 2 . 1 6 . 6 . 1 2 9) from 172 . 1 6 . 6 . 2 8 wg0 : 56(84)

↪→ bytes o f data .

118 F. PERFORMANCE MEASUREMENTS

−−− 172 . 1 6 . 6 . 1 29 ping s t a t i s t i c s −−−
1000 packets transmitted , 1000 rece ived , 0% packet l o s s , time

↪→ 203539ms
r t t min/avg/max/mdev = 0 .388/0 . 778/1 .871/0 .135 ms

Listing F.31: S6a latency with WireGuard.

eNB in eMBB s l i c e : ping −q −i 0 .2 −c 1000 −I wg0 192 . 168 . 248 . 159

ubuntu@enb :~ $ ping −q −i 0 .2 −c 1000 −I wg0 192 . 168 . 248 . 159
PING 192 . 168 . 248 . 159 (192 . 1 68 . 2 48 . 1 59) from 192 . 168 . 248 . 157 wg0 :

↪→ 56(84) bytes o f data .

−−− 192 . 168 . 248 . 159 ping s t a t i s t i c s −−−
1000 packets transmitted , 1000 rece ived , 0% packet l o s s , time

↪→ 203709ms
r t t min/avg/max/mdev = 0 .376/0 . 667/1 .733/0 .148 ms

eNB in URLLC s l i c e : ping −q −i 0 .2 −c 1000 −I wg0 192 . 168 . 248 . 159

ubuntu@enb :~ $ ping −q −i 0 .2 −c 1000 −I wg0 192 . 168 . 248 . 159
PING 192 . 168 . 248 . 159 (192 . 1 68 . 2 48 . 1 59) from 192 . 168 . 248 . 157 wg0 :

↪→ 56(84) bytes o f data .

−−− 192 . 168 . 248 . 159 ping s t a t i s t i c s −−−
1000 packets transmitted , 1000 rece ived , 0% packet l o s s , time

↪→ 203688ms
r t t min/avg/max/mdev = 0 .417/0 . 709/4 .310/0 .178 ms

Listing F.32: S1-U latency with WireGuard in two NSIs measured simultaneously.

eNB eMBB:
ping −q −i 0 .2 −c 1000 −I wg2 192 . 168 . 247 . 102
ubuntu@enb :~ $ ping −q −i 0 .2 −c 1000 −I wg2 192 . 168 . 247 . 102
PING 192 . 168 . 247 . 102 (192 . 1 68 . 2 47 . 1 02) from 192 . 168 . 247 . 111 wg2 :

↪→ 56(84) bytes o f data .

−−− 192 . 168 . 247 . 102 ping s t a t i s t i c s −−−
1000 packets transmitted , 1000 rece ived , 0% packet l o s s , time

↪→ 203196ms
r t t min/avg/max/mdev = 0 .531/0 . 819/2 .410/0 .138 ms

URLLC:
ping −q −i 0 .2 −c 1000 −I wg2 192 . 168 . 247 . 102
ubuntu@enb :~ $ ping −q −i 0 .2 −c 1000 −I wg2 192 . 168 . 247 . 102

F.2. TWO DIFFERENT NETWORK SLICE INSTANCES 119

PING 192 .168 . 247 . 102 (192 . 1 68 . 2 47 . 1 02) from 192 . 168 . 247 . 111 wg2 :
↪→ 56(84) bytes o f data .

−−− 192 . 168 . 247 . 102 ping s t a t i s t i c s −−−
1000 packets transmitted , 1000 rece ived , 0% packet l o s s , time

↪→ 203304ms
r t t min/avg/max/mdev = 0 .512/0 . 836/5 . 858/0 .196 ms

Listing F.33: S1-C latency with WireGuard in two NSIs measured simultaneously.

Command for eNB in eMBB s l i c e : i p e r f 3 −B 192 . 168 . 248 . 157 −c
↪→ 192 . 168 . 248 . 159 −t 600 −i 60

Command for SPGW−U in eMBB s l i c e : sudo i p e r f 3 −s −B
↪→ 192 . 168 . 248 . 159

ubuntu@enb :~ $ i p e r f 3 −B 192 . 168 . 248 . 157 −c 192 . 168 . 248 . 159 −t 600
↪→ −i 60

Connecting to host 192 . 168 . 248 . 159 , port 5201
local 192 . 168 . 248 . 157 port 54567 connected to 192 . 168 . 248 . 159

↪→ port 5201
I n t e r v a l Trans fe r Bandwidth Retr Cwnd

0.00 −60.00 sec 10 .2 GBytes 1 .46 Gbits / sec 580 1 .53 MBytes
60.00 −120.00 sec 10 .4 GBytes 1 .49 Gbits / sec 348 1 .53 MBytes

120.00 −180.00 sec 10 .3 GBytes 1 .47 Gbits / sec 264 1 .53 MBytes
180.00 −240.00 sec 10 .3 GBytes 1 .48 Gbits / sec 206 1 .53 MBytes
240.00 −300.00 sec 10 .2 GBytes 1 .46 Gbits / sec 212 1 .53 MBytes
300.00 −360.00 sec 10 .2 GBytes 1 .47 Gbits / sec 14 1 .53 MBytes
360.00 −420.00 sec 9 .99 GBytes 1 .43 Gbits / sec 163 1 .53 MBytes
420.00 −480.00 sec 10 .3 GBytes 1 .48 Gbits / sec 565 1 .53 MBytes
480.00 −540.00 sec 10 .3 GBytes 1 .47 Gbits / sec 350 1 .13 MBytes
540.00 −600.00 sec 10 .3 GBytes 1 .48 Gbits / sec 9 1 .62 MBytes
− −
In t e r v a l Trans fe r Bandwidth Retr

0.00 −600.00 sec 103 GBytes 1 .47 Gbits / sec 2711 sender
0.00 −600.00 sec 103 GBytes 1 .47 Gbits / sec r e c e i v e r

Sample o f workload on eNB when running the throughput measurement
↪→ :

Tasks : 115 to ta l , 1 running , 59 s l e ep ing , 0 stopped , 0 zombie
%Cpu(s) : 0 . 7 us , 0 . 3 sy , 0 . 0 ni , 98 .8 id , 0 . 2 wa , 0 . 0 hi , 0 . 0 s i ,

↪→ 0 .1 s t
KiB Mem: 8167500 to ta l , 302264 f r e e , 1046496 used , 6818740 bu f f /

↪→ cache
KiB Swap : 0 to ta l , 0 f r e e , 0 used . 6785260 av a i l Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+

↪→ COMMAND

120 F. PERFORMANCE MEASUREMENTS

24996 root 20 0 1477892 940512 29400 S 6 .0 11 .5 259 : 36 . 65 l t e −
↪→ softmodem

Command in eNB in URLLC s l i c e : i p e r f 3 −B 192 . 168 . 248 . 157 −c
↪→ 192 . 168 . 248 . 159 −t 600 −i 60

Command in SPGW−U in URLLC s l i c e : sudo i p e r f 3 −s −B
↪→ 192 . 168 . 248 . 159

ubuntu@enb :~ $ i p e r f 3 −B 192 . 168 . 248 . 157 −c 192 . 168 . 248 . 159 −t 600
↪→ −i 60

Connecting to host 192 . 168 . 248 . 159 , port 5201
local 192 . 168 . 248 . 157 port 45247 connected to 192 . 168 . 248 . 159

↪→ port 5201
I n t e r v a l Trans fe r Bandwidth Retr Cwnd

0.00 −60.00 sec 9 .67 GBytes 1 .38 Gbits / sec 65 1 .54 MBytes
60.00 −120.00 sec 9 .58 GBytes 1 .37 Gbits / sec 122 1 .54 MBytes

120.00 −180.00 sec 9 .91 GBytes 1 .42 Gbits / sec 173 1 .54 MBytes
180.00 −240.00 sec 9 .78 GBytes 1 .40 Gbits / sec 171 1 .54 MBytes
240.00 −300.00 sec 9 .92 GBytes 1 .42 Gbits / sec 580 1 .54 MBytes
300.00 −360.00 sec 9 .79 GBytes 1 .40 Gbits / sec 169 1 .43 MBytes
360.00 −420.00 sec 9 .81 GBytes 1 .40 Gbits / sec 323 1 .54 MBytes
420.00 −480.00 sec 9 .92 GBytes 1 .42 Gbits / sec 408 1 .33 MBytes
480.00 −540.00 sec 9 .91 GBytes 1 .42 Gbits / sec 397 1 .53 MBytes
540.00 −600.00 sec 9 .89 GBytes 1 .42 Gbits / sec 182 1 .53 MBytes
− −
In t e r v a l Trans fe r Bandwidth Retr

0.00 −600.00 sec 98 .2 GBytes 1 .41 Gbits / sec 2590 sender
0.00 −600.00 sec 98 .2 GBytes 1 .41 Gbits / sec r e c e i v e r

Sample o f workload on eNB when running the throughput measurement
↪→ :

Tasks : 115 to ta l , 1 running , 59 s l e ep ing , 0 stopped , 0 zombie
%Cpu(s) : 0 . 9 us , 0 . 5 sy , 0 . 0 ni , 98 .4 id , 0 . 2 wa , 0 . 0 hi , 0 . 0 s i ,

↪→ 0 .0 s t
KiB Mem: 8167500 to ta l , 269228 f r e e , 1043232 used , 6855040 bu f f /

↪→ cache
KiB Swap : 0 to ta l , 0 f r e e , 0 used . 6788528 av a i l Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+

↪→ COMMAND
25717 root 20 0 1543508 940432 29400 S 5 .6 11 .5 179 : 16 . 43 l t e −

↪→ softmodem

Listing F.34: S1-U throughput in WireGuard tunnel measured simultaneously for
NSIs.

F.2. TWO DIFFERENT NETWORK SLICE INSTANCES 121

eNB in eMBB s l i c e : i p e r f 3 −B 192 . 1 68 . 9 . 5 7 −c 192 . 168 . 9 . 1 59 −t 600
↪→ −i 60

SPGW−U in eMBB s l i c e : sudo i p e r f 3 −s −B 192 . 168 . 9 . 1 59

ubuntu@enb :~ $ i p e r f 3 −B 192 . 1 68 . 9 . 5 7 −c 192 . 168 . 9 . 1 59 −t 600 −i
↪→ 60

Connecting to host 192 . 1 68 . 9 . 1 59 , port 5201
local 192 . 1 68 . 9 . 5 7 port 57997 connected to 192 . 168 . 9 . 1 59 port

↪→ 5201
I n t e r v a l Trans fe r Bandwidth Retr Cwnd

0.00 −60.00 sec 127 GBytes 18 .2 Gbits / sec 0 3 .12 MBytes
60.00 −120.00 sec 123 GBytes 17 .6 Gbits / sec 0 3 .12 MBytes

120.00 −180.00 sec 125 GBytes 17 .8 Gbits / sec 0 3 .12 MBytes
180.00 −240.00 sec 127 GBytes 18 .2 Gbits / sec 0 3 .12 MBytes
240.00 −300.00 sec 126 GBytes 18 .1 Gbits / sec 0 3 .12 MBytes
300.00 −360.00 sec 127 GBytes 18 .1 Gbits / sec 0 3 .12 MBytes
360.00 −420.00 sec 126 GBytes 18 .1 Gbits / sec 0 3 .12 MBytes
420.00 −480.00 sec 128 GBytes 18 .3 Gbits / sec 0 3 .12 MBytes
480.00 −540.00 sec 129 GBytes 18 .4 Gbits / sec 0 3 .12 MBytes
540.00 −600.00 sec 123 GBytes 17 .7 Gbits / sec 0 3 .12 MBytes
− −
In t e r v a l Trans fe r Bandwidth Retr

0.00 −600.00 sec 0 .00 (nu l l) s 18 .1 Gbits / sec 0 sender
0.00 −600.00 sec 0 .00 (nu l l) s 18 .1 Gbits / sec r e c e i v e r

eNB in eMBB s l i c e : i p e r f 3 −B 192 . 1 68 . 9 . 5 7 −c 192 . 168 . 9 . 1 59 −t 600
↪→ −i 60

SPGW−U in eMBB s l i c e : sudo i p e r f 3 −s −B 192 . 168 . 9 . 1 59

ubuntu@enb :~ $ i p e r f 3 −B 192 . 1 68 . 9 . 5 7 −c 192 . 168 . 9 . 1 59 −t 600 −i
↪→ 60

Connecting to host 192 . 1 68 . 9 . 1 59 , port 5201
local 192 . 1 68 . 9 . 5 7 port 49537 connected to 192 . 168 . 9 . 1 59 port

↪→ 5201
I n t e r v a l Trans fe r Bandwidth Retr Cwnd

0.00 −60.00 sec 147 GBytes 21 .0 Gbits / sec 0 3 .02 MBytes
60.00 −120.00 sec 139 GBytes 19 .9 Gbits / sec 0 3 .02 MBytes

120.00 −180.00 sec 145 GBytes 20 .7 Gbits / sec 0 3 .02 MBytes
180.00 −240.00 sec 151 GBytes 21 .7 Gbits / sec 0 3 .02 MBytes
240.00 −300.00 sec 155 GBytes 22 .2 Gbits / sec 0 3 .02 MBytes
300.00 −360.00 sec 157 GBytes 22 .4 Gbits / sec 0 3 .02 MBytes
360.00 −420.00 sec 150 GBytes 21 .5 Gbits / sec 0 3 .02 MBytes
420.00 −480.00 sec 156 GBytes 22 .4 Gbits / sec 0 3 .02 MBytes

122 F. PERFORMANCE MEASUREMENTS

480.00 −540.00 sec 152 GBytes 21 .7 Gbits / sec 0 3 .02 MBytes
540.00 −600.00 sec 148 GBytes 21 .2 Gbits / sec 0 3 .02 MBytes
− −
In t e r v a l Trans fe r Bandwidth Retr

0.00 −600.00 sec 0 .00 (nu l l) s 21 .5 Gbits / sec 0 sender
0.00 −600.00 sec 0 .00 (nu l l) s 21 .5 Gbits / sec r e c e i v e r

Listing F.35: S1-U throughput outside tunnel measured simultaneously on NSIs.

MME in eMBB s l i c e : i p e r f 3 −B 172 . 1 6 . 6 . 2 8 −c 172 . 1 6 . 6 . 1 29 −M 1362
↪→ −t 600 −i 60

HSS in eMBB s l i c e : sudo i p e r f 3 −s −B 172 . 1 6 . 6 . 1 29

ubuntu@mme:~ $ i p e r f 3 −B 172 . 1 6 . 6 . 2 8 −c 172 . 1 6 . 6 . 1 29 −M 1362 −t
↪→ 600 −i 60

Connecting to host 1 72 . 1 6 . 6 . 1 2 9 , port 5201
local 172 . 1 6 . 6 . 2 8 port 41141 connected to 172 . 1 6 . 6 . 1 29 port 5201
I n t e r v a l Trans fe r Bandwidth Retr Cwnd

0.00 −60.00 sec 5 .76 GBytes 824 Mbits/ sec 12 998 KBytes
60.00 −120.00 sec 5 .82 GBytes 833 Mbits/ sec 10 916 KBytes

120.00 −180.00 sec 5 .78 GBytes 827 Mbits/ sec 10 1 .06 MBytes
180.00 −240.00 sec 5 .85 GBytes 837 Mbits/ sec 10 1 .12 MBytes
240.00 −300.00 sec 5 .73 GBytes 820 Mbits/ sec 11 910 KBytes
300.00 −360.00 sec 5 .66 GBytes 810 Mbits/ sec 9 1 .23 MBytes
360.00 −420.00 sec 5 .86 GBytes 838 Mbits/ sec 11 910 KBytes
420.00 −480.00 sec 5 .85 GBytes 837 Mbits/ sec 10 1 .03 MBytes
480.00 −540.00 sec 5 .68 GBytes 813 Mbits/ sec 10 1 .14 MBytes
540.00 −600.00 sec 5 .50 GBytes 787 Mbits/ sec 12 991 KBytes
− −
In t e r v a l Trans fe r Bandwidth Retr

0.00 −600.00 sec 57 .5 GBytes 823 Mbits/ sec 105 sender
0.00 −600.00 sec 57 .5 GBytes 823 Mbits/ sec r e c e i v e r

MME in URLLC s l i c e : i p e r f 3 −B 172 . 1 6 . 6 . 2 8 −c 172 . 1 6 . 6 . 1 29 −M 1362
↪→ −t 600 −i 60

HSS in URLLC s l i c e : sudo i p e r f 3 −s −B 172 . 1 6 . 6 . 1 29

ubuntu@mme:~ $ i p e r f 3 −B 172 . 1 6 . 6 . 2 8 −c 172 . 1 6 . 6 . 1 29 −M 1362 −t
↪→ 600 −i 60

Connecting to host 1 72 . 1 6 . 6 . 1 2 9 , port 5201
local 172 . 1 6 . 6 . 2 8 port 50831 connected to 172 . 1 6 . 6 . 1 29 port 5201
I n t e r v a l Trans fe r Bandwidth Retr Cwnd

0.00 −60.00 sec 5 .57 GBytes 798 Mbits/ sec 11 1 .10 MBytes
60.00 −120.00 sec 5 .74 GBytes 821 Mbits/ sec 11 778 KBytes

120.00 −180.00 sec 5 .56 GBytes 796 Mbits/ sec 10 968 KBytes

F.2. TWO DIFFERENT NETWORK SLICE INSTANCES 123

180.00 −240.00 sec 5 .58 GBytes 799 Mbits/ sec 10 961 KBytes
240.00 −300.00 sec 5 .44 GBytes 779 Mbits/ sec 11 870 KBytes
300.00 −360.00 sec 5 .53 GBytes 791 Mbits/ sec 10 1 .09 MBytes
360.00 −420.00 sec 5 .71 GBytes 817 Mbits/ sec 10 1 .09 MBytes
420.00 −480.00 sec 5 .59 GBytes 801 Mbits/ sec 11 885 KBytes
480.00 −540.00 sec 5 .57 GBytes 797 Mbits/ sec 10 919 KBytes
540.00 −600.00 sec 5 .47 GBytes 783 Mbits/ sec 10 1 .18 MBytes
− −
In t e r v a l Trans fe r Bandwidth Retr

0.00 −600.00 sec 55 .8 GBytes 798 Mbits/ sec 104 sender
0.00 −600.00 sec 55 .8 GBytes 798 Mbits/ sec r e c e i v e r

Listing F.36: S6a throughput with WireGuard tunnel in two NSIs measured
simultaneously.

eMBB s l i c e :
ubuntu@mme:~ $ i p e r f 3 −B 172 . 1 6 . 6 . 2 8 −c 172 . 1 6 . 6 . 1 29 −M 1362 −t

↪→ 600 −i 60
Connecting to host 1 72 . 1 6 . 6 . 1 2 9 , port 5201
local 172 . 1 6 . 6 . 2 8 port 40759 connected to 172 . 1 6 . 6 . 1 29 port 5201
I n t e r v a l Trans fe r Bandwidth Retr Cwnd

0.00 −60.00 sec 7 .61 GBytes 1 .09 Gbits / sec 12 1 .32 MBytes
60.00 −120.00 sec 7 .53 GBytes 1 .08 Gbits / sec 11 1 .02 MBytes

120.00 −180.00 sec 7 .74 GBytes 1 .11 Gbits / sec 11 963 KBytes
180.00 −240.00 sec 7 .63 GBytes 1 .09 Gbits / sec 10 1 .09 MBytes
240.00 −300.00 sec 7 .76 GBytes 1 .11 Gbits / sec 10 1 .30 MBytes
300.00 −360.00 sec 7 .64 GBytes 1 .09 Gbits / sec 10 1 .41 MBytes
360.00 −420.00 sec 7 .48 GBytes 1 .07 Gbits / sec 12 993 KBytes
420.00 −480.00 sec 7 .27 GBytes 1 .04 Gbits / sec 10 1 .14 MBytes
480.00 −540.00 sec 6 .97 GBytes 998 Mbits/ sec 11 1 .07 MBytes
540.00 −600.00 sec 6 .65 GBytes 952 Mbits/ sec 11 1 .08 MBytes
− −
In t e r v a l Trans fe r Bandwidth Retr

0.00 −600.00 sec 74 .3 GBytes 1 .06 Gbits / sec 108 sender
0.00 −600.00 sec 74 .3 GBytes 1 .06 Gbits / sec r e c e i v e r

URLLC s l i c e :
ubuntu@mme:~ $ i p e r f 3 −B 172 . 1 6 . 6 . 2 8 −c 172 . 1 6 . 6 . 1 29 −M 1362 −t

↪→ 600 −i 60
Connecting to host 1 72 . 1 6 . 6 . 1 2 9 , port 5201
local 172 . 1 6 . 6 . 2 8 port 50013 connected to 172 . 1 6 . 6 . 1 29 port 5201
I n t e r v a l Trans fe r Bandwidth Retr Cwnd

0.00 −60.00 sec 7 .58 GBytes 1 .09 Gbits / sec 12 1 .02 MBytes
60.00 −120.00 sec 7 .50 GBytes 1 .07 Gbits / sec 10 1 .10 MBytes

120.00 −180.00 sec 7 .48 GBytes 1 .07 Gbits / sec 10 1 .19 MBytes

124 F. PERFORMANCE MEASUREMENTS

180.00 −240.00 sec 7 .58 GBytes 1 .09 Gbits / sec 10 1 .25 MBytes
240.00 −300.00 sec 7 .67 GBytes 1 .10 Gbits / sec 10 1 .31 MBytes
300.00 −360.00 sec 7 .50 GBytes 1 .07 Gbits / sec 10 1 .29 MBytes
360.00 −420.00 sec 7 .36 GBytes 1 .05 Gbits / sec 10 1 .32 MBytes
420.00 −480.00 sec 7 .10 GBytes 1 .02 Gbits / sec 11 1 .05 MBytes
480.00 −540.00 sec 7 .12 GBytes 1 .02 Gbits / sec 10 1 .25 MBytes
540.00 −600.00 sec 6 .64 GBytes 950 Mbits/ sec 11 1006 KBytes
− −
In t e r v a l Trans fe r Bandwidth Retr

0.00 −600.00 sec 73 .5 GBytes 1 .05 Gbits / sec 104 sender
0.00 −600.00 sec 73 .5 GBytes 1 .05 Gbits / sec r e c e i v e r

Listing F.37: S6a throughput with WireGuard tunnel - run 2.

Throughput between management i n t e r f a c e s between SPGW−U and eNB
↪→ in eMBB s l i c e :

i p e r f 3 −B 192 . 168 . 222 . 37 −c 192 . 168 . 222 . 59 −M 1362 −t 600 −i 60
eNB: sudo i p e r f 3 −s −B 192 . 168 . 222 . 59

ubuntu@spgw−u :~ $ i p e r f 3 −B 192 . 168 . 222 . 37 −c 192 . 168 . 222 . 59 −M
↪→ 1362 −t 600 −i 60

Connecting to host 192 . 168 . 222 . 59 , port 5201
local 192 . 168 . 222 . 37 port 43597 connected to 192 . 168 . 222 . 59 port

↪→ 5201
I n t e r v a l Trans fe r Bandwidth Retr Cwnd

0.00 −60.00 sec 101 GBytes 14 .5 Gbits / sec 0 4 .01 MBytes
60.00 −120.00 sec 98 .7 GBytes 14 .1 Gbits / sec 0 4 .01 MBytes

120.00 −180.00 sec 100 GBytes 14 .3 Gbits / sec 0 4 .01 MBytes
180.00 −240.00 sec 98 .4 GBytes 14 .1 Gbits / sec 0 4 .01 MBytes
240.00 −300.00 sec 98 .2 GBytes 14 .1 Gbits / sec 0 4 .01 MBytes
300.00 −360.00 sec 100 GBytes 14 .3 Gbits / sec 0 4 .01 MBytes
360.00 −420.00 sec 100 GBytes 14 .3 Gbits / sec 0 4 .01 MBytes
420.00 −480.00 sec 99 .9 GBytes 14 .3 Gbits / sec 0 4 .01 MBytes
480.00 −540.00 sec 102 GBytes 14 .6 Gbits / sec 0 4 .01 MBytes
540.00 −600.00 sec 98 .1 GBytes 14 .0 Gbits / sec 0 4 .01 MBytes
− −
In t e r v a l Trans fe r Bandwidth Retr

0.00 −600.00 sec 997 GBytes 14 .3 Gbits / sec 0 sender
0.00 −600.00 sec 997 GBytes 14 .3 Gbits / sec r e c e i v e r

Throughput between management i n t e r f a c e s between SPGW−U and eNB
↪→ in URLLC s l i c e :

SPGW−U: i p e r f 3 −B 192 . 168 . 222 . 207 −c 192 . 168 . 222 . 165 −M 1362 −t
↪→ 600 −i 60

eNB: sudo i p e r f 3 −s −B 192 . 168 . 222 . 165

F.2. TWO DIFFERENT NETWORK SLICE INSTANCES 125

ubuntu@spgw−u :~ $ i p e r f 3 −B 192 . 168 . 222 . 207 −c 192 . 168 . 222 . 165 −M
↪→ 1362 −t 600 −i 60

Connecting to host 192 . 168 . 222 . 165 , port 5201
local 192 . 168 . 222 . 207 port 45307 connected to 192 . 168 . 222 . 165

↪→ port 5201
I n t e r v a l Trans fe r Bandwidth Retr Cwnd

0.00 −60.00 sec 143 GBytes 20 .5 Gbits / sec 0 3 .10 MBytes
60.00 −120.00 sec 150 GBytes 21 .5 Gbits / sec 0 3 .10 MBytes

120.00 −180.00 sec 152 GBytes 21 .8 Gbits / sec 0 3 .10 MBytes
180.00 −240.00 sec 164 GBytes 23 .6 Gbits / sec 0 3 .10 MBytes
240.00 −300.00 sec 159 GBytes 22 .7 Gbits / sec 0 3 .10 MBytes
300.00 −360.00 sec 162 GBytes 23 .1 Gbits / sec 0 3 .10 MBytes
360.00 −420.00 sec 160 GBytes 22 .9 Gbits / sec 0 3 .10 MBytes
420.00 −480.00 sec 152 GBytes 21 .7 Gbits / sec 0 3 .10 MBytes
480.00 −540.00 sec 167 GBytes 23 .8 Gbits / sec 0 3 .10 MBytes
540.00 −600.00 sec 158 GBytes 22 .6 Gbits / sec 0 3 .10 MBytes
− −
In t e r v a l Trans fe r Bandwidth Retr

0.00 −600.00 sec 0 .00 (nu l l) s 22 .4 Gbits / sec 0 sender
0.00 −600.00 sec 0 .00 (nu l l) s 22 .4 Gbits / sec r e c e i v e r

Listing F.38: S1-U throughput between management interfaces in two NSIs
measured simultaneously.

eMBB s l i c e :
ubuntu@enb :~ $ i p e r f 3 −B 192 . 168 . 247 . 111 −c 192 . 168 . 247 . 12 −t 600

↪→ −i 60
Connecting to host 192 . 168 . 247 . 12 , port 5201
local 192 . 168 . 247 . 111 port 44757 connected to 192 . 168 . 247 . 12 port

↪→ 5201
I n t e r v a l Trans fe r Bandwidth Retr Cwnd

0.00 −60.00 sec 6 .46 GBytes 925 Mbits/ sec 12 1 .17 MBytes
60.00 −120.00 sec 6 .66 GBytes 954 Mbits/ sec 12 908 KBytes

120.00 −180.00 sec 6 .84 GBytes 979 Mbits/ sec 14 1 .20 MBytes
180.00 −240.00 sec 7 .49 GBytes 1 .07 Gbits / sec 13 1 .37 MBytes
240.00 −300.00 sec 7 .19 GBytes 1 .03 Gbits / sec 11 1 .19 MBytes
300.00 −360.00 sec 7 .09 GBytes 1 .01 Gbits / sec 11 1 .07 MBytes
360.00 −420.00 sec 7 .29 GBytes 1 .04 Gbits / sec 89 1 .32 MBytes
420.00 −480.00 sec 6 .60 GBytes 944 Mbits/ sec 11 1 .31 MBytes
480.00 −540.00 sec 6 .57 GBytes 941 Mbits/ sec 12 1 .20 MBytes
540.00 −600.00 sec 7 .15 GBytes 1 .02 Gbits / sec 10 1 .29 MBytes
− −
In t e r v a l Trans fe r Bandwidth Retr

0.00 −600.00 sec 69 .3 GBytes 993 Mbits/ sec 195 sender
0.00 −600.00 sec 69 .3 GBytes 993 Mbits/ sec r e c e i v e r

126 F. PERFORMANCE MEASUREMENTS

URLLC s l i c e :
ubuntu@enb :~ $ i p e r f 3 −B 192 . 168 . 247 . 111 −c 192 . 168 . 247 . 12 −t 600

↪→ −i 60
Connecting to host 192 . 168 . 247 . 12 , port 5201
local 192 . 168 . 247 . 111 port 37809 connected to 192 . 168 . 247 . 12 port

↪→ 5201
I n t e r v a l Trans fe r Bandwidth Retr Cwnd

0.00 −60.00 sec 6 .19 GBytes 886 Mbits/ sec 13 1 .21 MBytes
60.00 −120.00 sec 6 .44 GBytes 922 Mbits/ sec 12 890 KBytes

120.00 −180.00 sec 6 .71 GBytes 961 Mbits/ sec 11 1 .16 MBytes
180.00 −240.00 sec 7 .47 GBytes 1 .07 Gbits / sec 10 1 .20 MBytes
240.00 −300.00 sec 7 .11 GBytes 1 .02 Gbits / sec 11 1 .03 MBytes
300.00 −360.00 sec 6 .87 GBytes 983 Mbits/ sec 11 1 .13 MBytes
360.00 −420.00 sec 6 .88 GBytes 984 Mbits/ sec 34 1 .25 MBytes
420.00 −480.00 sec 6 .59 GBytes 943 Mbits/ sec 11 1 .27 MBytes
480.00 −540.00 sec 6 .81 GBytes 975 Mbits/ sec 11 1 .05 MBytes
540.00 −600.00 sec 6 .93 GBytes 992 Mbits/ sec 10 1 .36 MBytes
− −
In t e r v a l Trans fe r Bandwidth Retr

0.00 −600.00 sec 68 .0 GBytes 973 Mbits/ sec 134 sender
0.00 −600.00 sec 68 .0 GBytes 973 Mbits/ sec r e c e i v e r

Listing F.39: S1-C throughput with WireGuard in two NSIs measured
simultaneously.

Command run in SPGW−U in eMBB s l i c e : ping −q −i 0 .2 −c 1000 −I
↪→ ens3 1 0 . 2 1 . 2 1 . 2

ubuntu@spgw−u :~ $ ping −q −i 0 .2 −c 1000 −I ens3 1 0 . 2 1 . 2 1 . 2
PING 10 . 2 1 . 2 1 . 2 (1 0 . 2 1 . 2 1 . 2) from 192 . 168 . 222 . 37 ens3 : 56(84)

↪→ bytes o f data .

−−− 10 . 2 1 . 2 1 . 2 ping s t a t i s t i c s −−−
1000 packets transmitted , 1000 rece ived , 0% packet l o s s , time

↪→ 203753ms
r t t min/avg/max/mdev = 0 .107/0 . 225/2 .765/0 .130 ms

Command run in SPGW−U in URLLC s l i c e : ping −q −i 0 .2 −c 1000 −I
↪→ ens3 1 0 . 2 1 . 2 1 . 2

ubuntu@spgw−u :~ $ ping −q −i 0 .2 −c 1000 −I ens3 1 0 . 2 1 . 2 1 . 2
PING 10 . 2 1 . 2 1 . 2 (1 0 . 2 1 . 2 1 . 2) from 192 . 168 . 222 . 207 ens3 : 56(84)

↪→ bytes o f data .

F.3. DOUBLE RESOURCES OF VCPU AND RAM 127

−−− 10 . 2 1 . 2 1 . 2 ping s t a t i s t i c s −−−
1000 packets transmitted , 1000 rece ived , 0% packet l o s s , time

↪→ 203786ms
r t t min/avg/max/mdev = 0 .110/0 . 216/3 . 344/0 .118 ms

Listing F.40: Measurement of latency between SPGW-U and Microstack VIM
router when measuring for two NSIs simultaneously.

Command run in SPGW−U toward eNB in eMBB s l i c e : ping −q −i 0 .2 −c
↪→ 1000 −I ens3 192 . 168 . 222 . 59

ubuntu@spgw−u :~ $ ping −q −i 0 .2 −c 1000 −I ens3 192 . 168 . 222 . 59
PING 192 . 168 . 222 . 59 (1 92 . 1 6 8 . 2 2 2 . 5 9) from 192 . 168 . 222 . 37 ens3 :

↪→ 56(84) bytes o f data .

−−− 192 . 168 . 222 . 59 ping s t a t i s t i c s −−−
1000 packets transmitted , 1000 rece ived , 0% packet l o s s , time

↪→ 203779ms
r t t min/avg/max/mdev = 0 .217/0 . 372/2 . 516/0 .107 ms

Command run in SPGW−U toward eNB in URLLC s l i c e : ping −q −i 0 .2 −
↪→ c 1000 −I ens3 192 . 168 . 222 . 165

ubuntu@spgw−u :~ $ ping −q −i 0 .2 −c 1000 −I ens3 192 . 168 . 222 . 165
PING 192 . 168 . 222 . 165 (192 . 1 68 . 2 22 . 1 65) from 192 . 168 . 222 . 207 ens3 :

↪→ 56(84) bytes o f data .

−−− 192 . 168 . 222 . 165 ping s t a t i s t i c s −−−
1000 packets transmitted , 1000 rece ived , 0% packet l o s s , time

↪→ 203789ms
r t t min/avg/max/mdev = 0 .193/0 . 386/2 . 456/0 .103 ms

Listing F.41: S1-U management interface latency.

F.3 Double Resources of vCPU and RAM

The measurements done in the following section uses the NS described in Section 4.8.

eNB: i p e r f 3 −B 192 . 168 . 248 . 157 −c 192 . 168 . 248 . 159 −M 1362 −t 600
↪→ −i 60

SPGW−U: sudo i p e r f 3 −s −B 192 . 168 . 248 . 159

ubuntu@enb :~ $ i p e r f 3 −B 192 . 168 . 248 . 157 −c 192 . 168 . 248 . 159 −M
↪→ 1362 −t 600 −i 60

Connecting to host 192 . 168 . 248 . 159 , port 5201

128 F. PERFORMANCE MEASUREMENTS

local 192 . 168 . 248 . 157 port 56551 connected to 192 . 168 . 248 . 159
↪→ port 5201

I n t e r v a l Trans fe r Bandwidth Retr Cwnd
0.00 −60.00 sec 14 .9 GBytes 2 .13 Gbits / sec 470 1 .44 MBytes

60.00 −120.00 sec 15 .0 GBytes 2 .14 Gbits / sec 751 1 .94 MBytes
120.00 −180.00 sec 15 .6 GBytes 2 .23 Gbits / sec 1166 1 .08 MBytes
180.00 −240.00 sec 15 .5 GBytes 2 .23 Gbits / sec 219 1 .52 MBytes
240.00 −300.00 sec 14 .8 GBytes 2 .12 Gbits / sec 1110 1 .52 MBytes
300.00 −360.00 sec 15 .1 GBytes 2 .16 Gbits / sec 892 968 KBytes
360.00 −420.00 sec 15 .2 GBytes 2 .18 Gbits / sec 1127 1 .48 MBytes
420.00 −480.00 sec 15 .2 GBytes 2 .18 Gbits / sec 573 1 .63 MBytes
480.00 −540.00 sec 16 .0 GBytes 2 .29 Gbits / sec 973 1 .58 MBytes
540.00 −600.00 sec 15 .8 GBytes 2 .26 Gbits / sec 867 1 .34 MBytes
− −
In t e r v a l Trans fe r Bandwidth Retr

0.00 −600.00 sec 153 GBytes 2 .19 Gbits / sec 8148 sender
0.00 −600.00 sec 153 GBytes 2 .19 Gbits / sec r e c e i v e r

Listing F.42: S1-U throughput in WireGuard tunnel in EPS NS with double
resources.

eNB: i p e r f 3 −B 192 . 1 68 . 9 . 5 7 −c 192 . 168 . 9 . 1 59 −t 600 −i 60
SPGW−U: sudo i p e r f 3 −s −B 192 . 168 . 9 . 1 59

ubuntu@enb :~ $ i p e r f 3 −B 192 . 1 68 . 9 . 5 7 −c 192 . 168 . 9 . 1 59 −t 600 −i
↪→ 60

Connecting to host 192 . 1 68 . 9 . 1 59 , port 5201
local 192 . 1 68 . 9 . 5 7 port 45627 connected to 192 . 168 . 9 . 1 59 port

↪→ 5201
I n t e r v a l Trans fe r Bandwidth Retr Cwnd

0.00 −60.00 sec 116 GBytes 16 .6 Gbits / sec 0 3 .08 MBytes
60.00 −120.00 sec 97 .4 GBytes 13 .9 Gbits / sec 0 3 .08 MBytes

120.00 −180.00 sec 104 GBytes 14 .9 Gbits / sec 0 3 .08 MBytes
180.00 −240.00 sec 137 GBytes 19 .7 Gbits / sec 0 3 .08 MBytes
240.00 −300.00 sec 142 GBytes 20 .3 Gbits / sec 0 3 .08 MBytes
300.00 −360.00 sec 117 GBytes 16 .7 Gbits / sec 0 3 .08 MBytes
360.00 −420.00 sec 157 GBytes 22 .5 Gbits / sec 0 3 .08 MBytes
420.00 −480.00 sec 147 GBytes 21 .1 Gbits / sec 0 3 .08 MBytes
480.00 −540.00 sec 145 GBytes 20 .7 Gbits / sec 0 3 .08 MBytes
540.00 −600.00 sec 146 GBytes 20 .9 Gbits / sec 0 3 .08 MBytes
− −
In t e r v a l Trans fe r Bandwidth Retr

0.00 −600.00 sec 0 .00 (nu l l) s 18 .7 Gbits / sec 0 sender
0.00 −600.00 sec 0 .00 (nu l l) s 18 .7 Gbits / sec r e c e i v e r

Listing F.43: S1-U throughput outside tunnel in EPS NS with double resources.

F.3. DOUBLE RESOURCES OF VCPU AND RAM 129

eNB: i p e r f 3 −B 192 . 168 . 247 . 101 −c 192 . 168 . 247 . 12 −t 600 −i 60
MME: sudo i p e r f 3 −s −B 192 . 168 . 247 . 12

ubuntu@enb : / usr / local / e tc / oa i$ i p e r f 3 −B 192 . 168 . 247 . 101 −c
↪→ 192 . 168 . 247 . 12 −t 600 −i 60

Connecting to host 192 . 168 . 247 . 12 , port 5201
local 192 . 168 . 247 . 101 port 54293 connected to 192 . 168 . 247 . 12 port

↪→ 5201
I n t e r v a l Trans fe r Bandwidth Retr Cwnd

0.00 −60.00 sec 10 .9 GBytes 1 .56 Gbits / sec 2954 1 .43 MBytes
60.00 −120.00 sec 9 .05 GBytes 1 .30 Gbits / sec 707 1 .22 MBytes

120.00 −180.00 sec 8 .88 GBytes 1 .27 Gbits / sec 738 1 .20 MBytes
180.00 −240.00 sec 10 .6 GBytes 1 .52 Gbits / sec 894 1 .15 MBytes
240.00 −300.00 sec 11 .0 GBytes 1 .58 Gbits / sec 1796 1 .22 MBytes
300.00 −360.00 sec 11 .0 GBytes 1 .58 Gbits / sec 2636 1 .13 MBytes
360.00 −420.00 sec 9 .89 GBytes 1 .42 Gbits / sec 994 1 .10 MBytes
420.00 −480.00 sec 9 .72 GBytes 1 .39 Gbits / sec 999 1 .47 MBytes
480.00 −540.00 sec 10 .4 GBytes 1 .48 Gbits / sec 2229 568 KBytes
540.00 −600.00 sec 10 .5 GBytes 1 .50 Gbits / sec 2148 1 .35 MBytes
− −
In t e r v a l Trans fe r Bandwidth Retr

0.00 −600.00 sec 102 GBytes 1 .46 Gbits / sec 16095 sender
0.00 −600.00 sec 102 GBytes 1 .46 Gbits / sec r e c e i v e r

Listing F.44: S1-C throughput with WireGuard in EPS NS with double resources.

MME: i p e r f 3 −B 172 . 1 6 . 6 . 2 8 −c 172 . 1 6 . 6 . 1 28 −M 1362 −t 600 −i 60
HSS : sudo i p e r f 3 −s −B 172 . 1 6 . 6 . 1 28

ubuntu@mme:~ $ i p e r f 3 −B 172 . 1 6 . 6 . 2 8 −c 172 . 1 6 . 6 . 1 28 −M 1362 −t
↪→ 600 −i 60

Connecting to host 1 72 . 1 6 . 6 . 1 2 8 , port 5201
local 172 . 1 6 . 6 . 2 8 port 43557 connected to 172 . 1 6 . 6 . 1 28 port 5201
I n t e r v a l Trans fe r Bandwidth Retr Cwnd

0.00 −60.00 sec 7 .84 GBytes 1 .12 Gbits / sec 18 1 .30 MBytes
60.00 −120.00 sec 8 .01 GBytes 1 .15 Gbits / sec 288 1 .30 MBytes

120.00 −180.00 sec 7 .86 GBytes 1 .13 Gbits / sec 265 945 KBytes
180.00 −240.00 sec 7 .17 GBytes 1 .03 Gbits / sec 547 1 .31 MBytes
240.00 −300.00 sec 7 .14 GBytes 1 .02 Gbits / sec 52 1 .27 MBytes
300.00 −360.00 sec 7 .45 GBytes 1 .07 Gbits / sec 201 1 .18 MBytes
360.00 −420.00 sec 6 .98 GBytes 1000 Mbits/ sec 11 1 .21 MBytes
420.00 −480.00 sec 7 .51 GBytes 1 .07 Gbits / sec 11 1 .18 MBytes
480.00 −540.00 sec 7 .33 GBytes 1 .05 Gbits / sec 11 1 .34 MBytes
540.00 −600.00 sec 7 .56 GBytes 1 .08 Gbits / sec 11 1 .16 MBytes
− −

130 F. PERFORMANCE MEASUREMENTS

In t e r v a l Trans fe r Bandwidth Retr
0.00 −600.00 sec 74 .9 GBytes 1 .07 Gbits / sec 1415 sender
0.00 −600.00 sec 74 .8 GBytes 1 .07 Gbits / sec r e c e i v e r

Listing F.45: S6a throughput in WireGuard tunnel in EPS NS with double
resources.

MME: i p e r f 3 −B 192 . 1 6 8 . 8 . 2 −c 192 . 168 . 8 . 1 29 −M 1362 −t 600 −i 60
HSS : sudo i p e r f 3 −s −B 192 . 168 . 8 . 1 29

ubuntu@mme:~ $ i p e r f 3 −B 192 . 1 6 8 . 8 . 2 −c 192 . 1 6 8 . 8 . 1 −M 1362 −t 600
↪→ −i 60

Connecting to host 1 9 2 . 1 6 8 . 8 . 1 , port 5201
local 192 . 1 6 8 . 8 . 2 port 49709 connected to 192 . 1 6 8 . 8 . 1 port 5201
I n t e r v a l Trans fe r Bandwidth Retr Cwnd

0.00 −60.00 sec 114 GBytes 16 .3 Gbits / sec 0 3 .14 MBytes
60.00 −120.00 sec 102 GBytes 14 .6 Gbits / sec 0 3 .14 MBytes

120.00 −180.00 sec 101 GBytes 14 .5 Gbits / sec 0 3 .14 MBytes
180.00 −240.00 sec 102 GBytes 14 .6 Gbits / sec 0 3 .14 MBytes
240.00 −300.00 sec 99 .7 GBytes 14 .3 Gbits / sec 0 3 .14 MBytes
300.00 −360.00 sec 99 .2 GBytes 14 .2 Gbits / sec 0 3 .14 MBytes
360.00 −420.00 sec 99 .4 GBytes 14 .2 Gbits / sec 0 3 .14 MBytes
420.00 −480.00 sec 101 GBytes 14 .4 Gbits / sec 0 3 .14 MBytes
480.00 −540.00 sec 100 GBytes 14 .4 Gbits / sec 0 3 .14 MBytes
540.00 −600.00 sec 100 GBytes 14 .4 Gbits / sec 0 3 .14 MBytes
− −
In t e r v a l Trans fe r Bandwidth Retr

0.00 −600.00 sec 1019 GBytes 14 .6 Gbits / sec 0 sender
0.00 −600.00 sec 1019 GBytes 14 .6 Gbits / sec r e c e i v e r

Listing F.46: S6a throughput outside tunnel in EPS NS with double resources.

MME: i p e r f 3 −B 192 . 1 6 8 . 8 . 2 −c 192 . 168 . 8 . 1 29 −M 1362 −t 600 −i 60
HSS : sudo i p e r f 3 −s −B 192 . 168 . 8 . 1 29

For run two , we de l e t ed the prev ious deployment and s t a r t ed f r e s h
↪→ with a new i n s t a n t i a t i o n .

ubuntu@mme:~ $ i p e r f 3 −B 192 . 1 6 8 . 8 . 2 −c 192 . 168 . 8 . 1 29 −t 600 −i 60
Connecting to host 192 . 1 68 . 8 . 1 29 , port 5201
local 192 . 1 6 8 . 8 . 2 port 54147 connected to 192 . 168 . 8 . 1 29 port 5201
I n t e r v a l Trans fe r Bandwidth Retr Cwnd

0.00 −60.00 sec 104 GBytes 14 .9 Gbits / sec 0 3 .15 MBytes
60.00 −120.00 sec 122 GBytes 17 .4 Gbits / sec 0 3 .15 MBytes

120.00 −180.00 sec 142 GBytes 20 .3 Gbits / sec 0 3 .15 MBytes
180.00 −240.00 sec 147 GBytes 21 .1 Gbits / sec 0 3 .15 MBytes

F.3. DOUBLE RESOURCES OF VCPU AND RAM 131

240.00 −300.00 sec 147 GBytes 21 .1 Gbits / sec 0 3 .15 MBytes
300.00 −360.00 sec 134 GBytes 19 .2 Gbits / sec 0 3 .15 MBytes
360.00 −420.00 sec 128 GBytes 18 .3 Gbits / sec 0 3 .15 MBytes
420.00 −480.00 sec 133 GBytes 19 .0 Gbits / sec 0 3 .15 MBytes
480.00 −540.00 sec 142 GBytes 20 .3 Gbits / sec 0 3 .15 MBytes
540.00 −600.00 sec 142 GBytes 20 .3 Gbits / sec 0 3 .15 MBytes
− −
In t e r v a l Trans fe r Bandwidth Retr

0.00 −600.00 sec 0 .00 (nu l l) s 19 .2 Gbits / sec 0 sender
0.00 −600.00 sec 0 .00 (nu l l) s 19 .2 Gbits / sec r e c e i v e r

Sample o f workload on the MME VNF when running the throughput
↪→ measurement :

top − 07 : 44 : 35 up 12 :24 , 1 user , load average : 0 . 36 , 0 . 44 , 0 .27
Tasks : 112 to ta l , 1 running , 60 s l e ep ing , 0 stopped , 0 zombie
top − 07 : 44 : 44 up 12 :24 , 1 user , load average : 0 . 30 , 0 . 43 , 0 .27
Tasks : 112 to ta l , 1 running , 60 s l e ep ing , 0 stopped , 0 zombie
%Cpu(s) : 0 . 1 us , 0 . 1 sy , 0 . 0 ni , 99 .8 id , 0 . 0 wa , 0 . 0 hi , 0 . 0 s i ,

↪→ 0 .0 s t
KiB Mem: 8167492 to ta l , 5774884 f r e e , 180288 used , 2212320 bu f f /

↪→ cache
KiB Swap : 0 to ta l , 0 f r e e , 0 used . 7680980 av a i l Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
7919 root 20 0 2477252 65744 11952 S 0 .3 0 .8 1 : 1 5 . 3 5 mme

Sample o f workload on the HSS VNF when running the throughput
↪→ measurement :

top − 07 : 45 : 24 up 12 :24 , 1 user , load average : 0 . 32 , 0 . 58 , 0 .38
Tasks : 144 to ta l , 1 running , 78 s l e ep ing , 0 stopped , 0 zombie
%Cpu(s) : 0 . 0 us , 0 . 0 sy , 0 . 0 ni , 99 .9 id , 0 . 0 wa , 0 . 0 hi , 0 . 0 s i ,

↪→ 0 .0 s t
KiB Mem: 16424316 to ta l , 9318308 f r e e , 4634508 used , 2471500 bu f f

↪→ / cache
KiB Swap : 0 to ta l , 0 f r e e , 0 used . 11424236 av a i l Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+
↪→ COMMAND

13893 cassand+ 20 0 6214336 4 .283 g 52772 S 0 .7 27 .3 4 : 4 1 . 9 1
↪→ java

Listing F.47: Run two of S6a throughput measurement outside VPN tunnel in
EPS NS with double resources.

132 F. PERFORMANCE MEASUREMENTS

ubuntu@enb :~ $ ping −q −i 0 .2 −c 1000 −I wg0 192 . 168 . 248 . 159
PING 192 . 168 . 248 . 159 (192 . 1 68 . 2 48 . 1 59) from 192 . 168 . 248 . 157 wg0 :

↪→ 56(84) bytes o f data .

−−− 192 . 168 . 248 . 159 ping s t a t i s t i c s −−−
1000 packets transmitted , 1000 rece ived , 0% packet l o s s , time

↪→ 202620ms
r t t min/avg/max/mdev = 0 .460/0 . 889/1 .968/0 .131 ms

Listing F.48: S1-U latency in WireGuard tunnel in EPS NS with double resources.

eNB: ping −q −i 0 .2 −c 1000 −I wg2 192 . 168 . 247 . 12

ubuntu@enb :~ $ ping −q −i 0 .2 −c 1000 −I wg2 192 . 168 . 247 . 12
PING 192 . 168 . 247 . 12 (1 92 . 1 6 8 . 2 4 7 . 1 2) from 192 . 168 . 247 . 111 wg2 :

↪→ 56(84) bytes o f data .

−−− 192 . 168 . 247 . 12 ping s t a t i s t i c s −−−
1000 packets transmitted , 1000 rece ived , 0% packet l o s s , time

↪→ 201791ms
r t t min/avg/max/mdev = 0 .550/0 . 963/1 .506/0 .157 ms

Listing F.49: S1-C latency in WireGuard tunnel in EPS NS with double resources.

eNB: ping −q −i 0 .2 −c 1000 −I wg2 192 . 168 . 247 . 12

ubuntu@enb :~ $ ping −q −i 0 .2 −c 1000 −I wg2 192 . 168 . 247 . 12
PING 192 . 168 . 247 . 12 (1 92 . 1 6 8 . 2 4 7 . 1 2) from 192 . 168 . 247 . 111 wg2 :

↪→ 56(84) bytes o f data .

−−− 192 . 168 . 247 . 12 ping s t a t i s t i c s −−−
1000 packets transmitted , 1000 rece ived , 0% packet l o s s , time

↪→ 202014ms
r t t min/avg/max/mdev = 0 .553/0 . 946/1 .956/0 .150 ms

Listing F.50: Run 2 of latency measurements on the S1-C interface in WireGuard
tunnel in EPS NS with double resources.

eNB: ping −q −i 0 .2 −c 1000 −I ens4 192 . 168 . 7 . 1 02

ubuntu@enb :~ $ ping −q −i 0 .2 −c 1000 −I ens4 192 . 168 . 7 . 1 02
PING 192 . 168 . 7 . 1 02 (1 9 2 . 1 6 8 . 7 . 1 0 2) from 192 . 168 . 7 . 1 01 ens4 :

↪→ 56(84) bytes o f data .

−−− 192 . 168 . 7 . 1 02 ping s t a t i s t i c s −−−

F.3. DOUBLE RESOURCES OF VCPU AND RAM 133

1000 packets transmitted , 1000 rece ived , 0% packet l o s s , time
↪→ 203789ms

r t t min/avg/max/mdev = 0 .232/0 . 393/2 . 221/0 .091 ms

Listing F.51: S1-C latency outside tunnel in EPS NS with double resources.

eNB: ping −q −i 0 .2 −c 1000 192 . 168 . 9 . 1 59

ubuntu@enb :~ $ ping −q −i 0 .2 −c 1000 192 . 168 . 9 . 1 59
PING 192 . 168 . 9 . 1 59 (1 9 2 . 1 6 8 . 9 . 1 5 9) 56(84) bytes o f data .

−−− 192 . 168 . 9 . 1 59 ping s t a t i s t i c s −−−
1000 packets transmitted , 1000 rece ived , 0% packet l o s s , time

↪→ 203793ms
r t t min/avg/max/mdev = 0 .194/0 . 351/0 . 652/0 .074 ms

Listing F.52: S1-U latency outside tunnel in EPS NS with double resources.

MME: ping −q −i 0 .2 −c 1000 −I wg0 172 . 1 6 . 6 . 1 28

ubuntu@mme:~ $ ping −q −i 0 .2 −c 1000 −I wg0 172 . 1 6 . 6 . 1 28
PING 172 . 1 6 . 6 . 1 28 (1 7 2 . 1 6 . 6 . 1 2 8) from 172 . 1 6 . 6 . 2 8 wg0 : 56(84)

↪→ bytes o f data .

−−− 172 . 1 6 . 6 . 1 28 ping s t a t i s t i c s −−−
1000 packets transmitted , 1000 rece ived , 0% packet l o s s , time

↪→ 201767ms
r t t min/avg/max/mdev = 0 .510/0 . 960/1 . 940/0 .148 ms

Listing F.53: S6a latency with WireGuard tunnel in EPS NS with double resources.

MME: ping −q −i 0 .2 −c 1000 −I ens4 192 . 168 . 8 . 1 29

ubuntu@mme:~ $ ping −q −i 0 .2 −c 1000 −I ens4 192 . 1 6 8 . 8 . 2
PING 192 . 1 6 8 . 8 . 2 (1 9 2 . 1 6 8 . 8 . 2) from 192 . 1 6 8 . 8 . 2 ens4 : 56(84)

↪→ bytes o f data .

−−− 192 . 1 6 8 . 8 . 2 ping s t a t i s t i c s −−−
1000 packets transmitted , 1000 rece ived , 0% packet l o s s , time

↪→ 203793ms
r t t min/avg/max/mdev = 0 .024/0 . 041/0 . 075/0 .010 ms

Listing F.54: S6a latency outside tunnel in EPS NS with double resources.

UE: i p e r f 3 −B 1 2 . 1 . 1 . 2 −c 192 . 168 . 222 . 137 −M 1362 −t 600 −i 60
SPGW−U: sudo i p e r f 3 −s −B 192 . 168 . 222 . 137

134 F. PERFORMANCE MEASUREMENTS

ubuntu@ue :~ $ i p e r f 3 −B 1 2 . 1 . 1 . 2 −c 192 . 168 . 222 . 137 −M 1362 −t 600
↪→ −i 60

Connecting to host 192 . 168 . 222 . 137 , port 5201
local 1 2 . 1 . 1 . 2 port 39103 connected to 192 . 168 . 222 . 137 port 5201
I n t e r v a l Trans fe r Bandwidth Retr Cwnd

0.00 −60.00 sec 13 .2 MBytes 1 .85 Mbits/ sec 173 25 .0 KBytes
60.00 −120.00 sec 12 .1 MBytes 1 .69 Mbits/ sec 206 21 .1 KBytes

120.00 −180.00 sec 12 .2 MBytes 1 .71 Mbits/ sec 184 27 .7 KBytes
180.00 −240.00 sec 12 .0 MBytes 1 .68 Mbits/ sec 203 25 .0 KBytes
240.00 −300.00 sec 12 .0 MBytes 1 .68 Mbits/ sec 130 108 KBytes
300.00 −360.00 sec 13 .0 MBytes 1 .82 Mbits/ sec 153 15 .8 KBytes
360.00 −420.00 sec 11 .6 MBytes 1 .62 Mbits/ sec 148 22 .4 KBytes
420.00 −480.00 sec 10 .8 MBytes 1 .51 Mbits/ sec 119 42 .2 KBytes
480.00 −540.00 sec 12 .8 MBytes 1 .79 Mbits/ sec 121 46 .1 KBytes
540.00 −600.00 sec 11 .4 MBytes 1 .60 Mbits/ sec 169 29 .0 KBytes
− −
In t e r v a l Trans fe r Bandwidth Retr

0.00 −600.00 sec 121 MBytes 1 .70 Mbits/ sec 1606 sender
0.00 −600.00 sec 121 MBytes 1 .69 Mbits/ sec r e c e i v e r

Listing F.55: S6a throughput with WireGuard in EPS NS with double resources.

HSS : 08 : 39 : 52 up 13 :19 , 1 user , load average : 0 . 01 , 0 . 02 , 0 .00
MME: 08 : 39 : 31 up 13 :19 , 1 user , load average : 0 . 08 , 0 . 02 , 0 .01
SPGW−U: 08 : 39 : 05 up 13 :17 , 1 user , load average : 0 . 00 , 0 . 00 ,

↪→ 0 .00
SPGW−C: 08 : 38 : 39 up 13 :18 , 1 user , load average : 0 . 00 , 0 . 00 ,

↪→ 0 .00
ENB: 08 : 40 : 19 up 13 :16 , 1 user , load average : 0 . 05 , 0 . 06 , 0 .01

Listing F.56: Sample of load average in VNFs after initial setup.

F.4 Multi-site Deployment

The following measurements are run using the NS and procedure described in Section
4.10.

MME: i p e r f 3 −B 172 . 1 6 . 6 . 2 −c 172 . 1 6 . 6 . 1 28 −M 1362 −t 600 −i 60
HSS : sudo i p e r f 3 −s −B 172 . 1 6 . 6 . 1 28

ubuntu@mme:~ $ i p e r f 3 −B 172 . 1 6 . 6 . 2 −c 172 . 1 6 . 6 . 1 28 −M 1224 −t 600
↪→ −i 60

Connecting to host 1 72 . 1 6 . 6 . 1 2 8 , port 5201
local 1 7 2 . 1 6 . 6 . 2 port 43481 connected to 172 . 1 6 . 6 . 1 28 port 5201

F.4. MULTI-SITE DEPLOYMENT 135

I n t e r v a l Trans fe r Bandwidth Retr Cwnd
0.00 −60.00 sec 1 .02 GBytes 146 Mbits/ sec 510 328 KBytes

60.00 −120.00 sec 1 .01 GBytes 145 Mbits/ sec 115 496 KBytes
120.00 −180.00 sec 1 .12 GBytes 160 Mbits/ sec 61 665 KBytes
180.00 −240.00 sec 1 .13 GBytes 161 Mbits/ sec 67 634 KBytes
240.00 −300.00 sec 1 .11 GBytes 159 Mbits/ sec 688 627 KBytes
300.00 −360.00 sec 1 .11 GBytes 160 Mbits/ sec 133 489 KBytes
360.00 −420.00 sec 1 .11 GBytes 159 Mbits/ sec 73 645 KBytes
420.00 −480.00 sec 1 .11 GBytes 158 Mbits/ sec 251 621 KBytes
480.00 −540.00 sec 1 .12 GBytes 161 Mbits/ sec 69 628 KBytes
540.00 −600.00 sec 1 .08 GBytes 155 Mbits/ sec 87 615 KBytes
− −
In t e r v a l Trans fe r Bandwidth Retr

0.00 −600.00 sec 10 .9 GBytes 156 Mbits/ sec 2054 sender
0.00 −600.00 sec 10 .9 GBytes 156 Mbits/ sec r e c e i v e r

Listing F.57: S6a throughput between VIMs - with WireGuard (MME and HSS
management interfaces as endpoints).

Command run in the MME VNF in VIM 1 : i p e r f 3 −c 10 . 2 0 . 2 0 . 1 −t 600
↪→ −i 60

Command run in VM running MicroStack for VIM 2 : sudo i p e r f 3 −s −B
↪→ 1 0 . 2 0 . 2 0 . 1

ubuntu@mme:~ $ i p e r f 3 −c 10 . 2 0 . 2 0 . 1 −t 600 −i 60
Connecting to host 1 0 . 2 0 . 2 0 . 1 , port 5201
local 192 . 168 . 222 . 136 port 41184 connected to 1 0 . 2 0 . 2 0 . 1 port

↪→ 5201
I n t e r v a l Trans fe r Bandwidth Retr Cwnd

0.00 −60.00 sec 1 .25 GBytes 179 Mbits/ sec 199 557 KBytes
60.00 −120.00 sec 1 .25 GBytes 180 Mbits/ sec 89 596 KBytes

120.00 −180.00 sec 1 .25 GBytes 179 Mbits/ sec 85 632 KBytes
180.00 −240.00 sec 1 .22 GBytes 175 Mbits/ sec 87 480 KBytes
240.00 −300.00 sec 1 .25 GBytes 179 Mbits/ sec 52 620 KBytes
300.00 −360.00 sec 1 .23 GBytes 176 Mbits/ sec 93 553 KBytes
360.00 −420.00 sec 1 .25 GBytes 180 Mbits/ sec 73 513 KBytes
420.00 −480.00 sec 1 .24 GBytes 178 Mbits/ sec 58 561 KBytes
480.00 −540.00 sec 1 .26 GBytes 180 Mbits/ sec 69 604 KBytes
540.00 −600.00 sec 1 .25 GBytes 180 Mbits/ sec 99 472 KBytes
− −
In t e r v a l Trans fe r Bandwidth Retr

0.00 −600.00 sec 12 .5 GBytes 179 Mbits/ sec 904 sender
0.00 −600.00 sec 12 .5 GBytes 179 Mbits/ sec r e c e i v e r

Listing F.58: S6a throughput between VIMs - without WireGuard.

136 F. PERFORMANCE MEASUREMENTS

Command in MME VNF at VIM 1 towards management i n t e r f a c e o f HSS
↪→ VNF at VIM 2 : ping −q −i 0 .2 −c 1000 10 . 2 0 . 2 0 . 1 18

ubuntu@mme:~ $ ping −q −i 0 .2 −c 1000 10 . 2 0 . 2 0 . 1 18
PING 10 . 2 0 . 2 0 . 1 18 (1 0 . 2 0 . 2 0 . 1 1 8) 56(84) bytes o f data .

−−− 10 . 20 . 2 0 . 1 18 ping s t a t i s t i c s −−−
1000 packets transmitted , 1000 rece ived , 0% packet l o s s , time

↪→ 200589ms
r t t min/avg/max/mdev = 14 .962/18 .355/389 .972/17 .291 ms , p ipe 2

Listing F.59: S6a latency between VIMs - without WireGuard.

Command in MME VNF at VIM 1 towards WireGuard i n t e r f a c e o f HSS
↪→ VNF at VIM 2 : ping −q −i 0 .2 −c 1000 −I wg0 172 . 1 6 . 6 . 1 28

ubuntu@mme:~ $ ping −q −i 0 .2 −c 1000 −I wg0 172 . 1 6 . 6 . 1 28
PING 172 . 1 6 . 6 . 1 28 (1 7 2 . 1 6 . 6 . 1 2 8) from 172 . 1 6 . 6 . 2 wg0 : 56(84)

↪→ bytes o f data .

−−− 172 . 1 6 . 6 . 1 28 ping s t a t i s t i c s −−−
1000 packets transmitted , 1000 rece ived , 0% packet l o s s , time

↪→ 200589ms
r t t min/avg/max/mdev = 15 .293/19 .769/439 .485/18 .749 ms , p ipe 3

Listing F.60: S6a latency between VIMs - with WireGuard.

AppendixGResearch Paper

137

Providing network slice isolation with WireGuard in
beyond 5G

Sondre Kielland, Ali Esmaeily, Katina Kralevska, and Danilo Gligoroski
Dep. of Information Security and Communication Technology, Norwegian University of Science and Technology (NTNU)

Email: {sondrki, ali.esmaeily, katinak, danilo.gligoroski}@ntnu.no

Abstract—The introduction of network slicing in 5G networks
has authorized verticals to deploy their services alongside other
applications over a shared infrastructure. Nevertheless, security
is still one of the main challenges for shared infrastructure. In this
paper, we study how WireGuard can provide an encrypted VPN
tunnel as a service between network functions in 5G and beyond
setting. The Open Source Management and Orchestration entity
deploys and orchestrates the network functions into network
services and slices. We create multiple scenarios emulating a
real-life cellular network exposing VPN-as-a-Service between the
different network functions to secure and isolate network slices.
The performance measurements demonstrate from 0.8 Gbps to
2.5 Gbps throughput and under 1ms delay between network
functions using WireGuard. These measurements are aligned
with 5G key performance indicators, making WireGuard suited
to provide security in slice isolation in 5G and beyond networks.

Index Terms—OSM, WireGuard, VPN, NFV, 5G, Network slice

I. INTRODUCTION

The enrollment of 5G Non-Standalone (NSA) cellular net-
works is already in operation by Mobile Network Opera-
tors (MNOs). In developing 5G networks, several planned
functionalities will enable verticals to establish their services
with diverse Quality of Service (QoS) requirements on shared
physical infrastructure. Commercial products and new tech-
nologies in the 5G System (5GS) open up for MNOs and
verticals deploy their applications in an agile way. Provid-
ing End-to-End (E2E) services over isolated network slices
are key factors to empower multiple services on a shared
infrastructure. To develop agile 5G networks for support-
ing applications with different QoS requirements, Network
Function Virtualisation (NFV), Software-Defined Networking
(SDN) and Multi-Access Edge Computing (MEC) are essential
technologies [1]–[3].

An NFV Management and Orchestration (MANO) entity
connected to one or several Virtual Infrastructure Managers
(VIMs) is used to control and monitor the deployment of
Network Services (NSs) by employing necessary infrastructure
resources. For an agile network deployment, the NFV MANO
also administrates connections between Virtual Network Func-
tions (VNFs), including creation of virtual networks with help
of SDN. Therefore, instead of manually creating and connect-
ing the NSs together, the NFV MANO help verticals deploy
and control Network Function (NF) programmatically. With
its programmatic and reusable functionality a large amount of
NFs and NSs can be rapidly deployed on a single or multiple
VIMs.

Using multiple VIMs can be used with benefit for all three
main use cases in 5G, Ultra Reliable Low Latency Communi-
cation (URLLC), enhanced Mobile BroadBand (eMBB), and
Massive Machine-type Communication (mMTC) [4], [5]. For
instance can use of MEC reduce latency and decrease the
volume of network traffic going back to a core network.

Using hypervisors or cloud infrastructure that are rented
or shared is necessary to utilize resources efficiently for
financial and load distribution purposes. However, introducing
shared infrastructure also raises further security challenges.
Securing application data transferred over shared networks is
one example of a security challenge for shared environments.
A countermeasure that can be initiated against such security
concerns is operating Virtual Private Network (VPN) between
NFs. However, establishing VPN tunnels introduce additional
overhead. For applications dependent on low latency or high
throughput, the additional overhead may be problematic if it
affects the performance of the application.

Additional security characteristic can also be introduced for
NFs in NSs with the NFV MANO which is able to deploy
real-life applications in a programmatic way. By deploying
VPN tunneling feature between NFs and connecting them,
the confidentiality of application data can be achieved. Be-
sides, such secure tunneling contributes to isolate Network
Slice Instances (NSIs) and the provided NSs via the NSIs.
Nevertheless, this approach is only feasible if the VPN does
not introduce significant overhead violating QoS requirements.

How a VPN can be deployed between VNF in an automatic
mode to enhance security isolation between slices and how
the overhead may affect the performance isolation among
slices in a shared environment are not clearly specified. In
this paper, we use WireGuard to demonstrate an approach
to utilize a VPN application in a 5G environment with real-
life functionality. Open Source MANO (OSM) is employed to
orchestrate NSs and NSIs, and establish VPN tunnels between
the VNFs. Our approach exhibits how WireGuard deployed in
a virtualized environment can satisfy security, throughput, and
latency performance requirements.

Our contribution: In this paper, we present an integrated
WireGuard-OSM architecture that ensures security and per-
formance isolation between network slices. This integrated
architecture enables us to 1) Provide secured communication
between the involving VNFs of NSs and NSIs. Such capa-
bility, in turn, presents security isolation among slices. 2)
Besides, our architecture also provides performance isolation

138

between slices. The performance analysis tests confirm that
our integrated architecture fulfills the required KPI values
in terms of high throughput for the eMBB slices and low
latency for the URLLC slices according to their corresponding
QoS requirements. 3) Moreover, by employing open-source
solutions, our architecture also grants multi-site deployment,
showcasing more realistic service development scenarios.

II. RELATED WORK

As introduced in [6], the isolation concept between network
slices can be studied from security, performance, and depend-
ability aspects. In addition, the Confidentiality, Integrity and
Availability (CIA) triad is a widely used way of looking at
different security aspects. A shared infrastructure introduces
security challenges in all dimensions of the CIA triad. The key
for shared infrastructures is that an attack on or from another
party sharing the infrastructure should not affect others. This
definition of CIA is harmonic with the isolation concept in
network slicing. Other parties should also be unaffected when
it comes to performance and dependability, extending the
availability dimension. Workload, amount of resources, and
hardware or software failure of other NS should not reduce
the performance of an NF in a separate NS or NSI.

While 5G intends to fix some security issues present in
the previous generations of cellular networks, it also intro-
duces several new security threats. Some of them raised by
providing services via network slices. Paper [7] explores and
classifies different security challenges of 5G networks. Proper
isolation of logical resources is essential to avoid introducing
several new risks. Eavesdropping and tampering with data, for
instance, are two vectors an attacker could use to interfere with
security if application data is not properly encrypted.

An example of where NFV and SDN open up for new
functionality is in Service Function (SF) Chaining (SFC).
Hantouti et al. suggest that operators should deploy encrypted
tunnels as a way to establish trust between SFs to provide
packet integrity and prevent bypassing of policies [8].

Further, a specific use case to utilize shared infrastructure
is MEC. In [9], Nencioni et al. studies security, performance,
and in particular, dependability challenges when using MEC.

The work in [10] proposes a novel mutual authentication and
key establishment protocol utilizing proxy re-encryption. The
protocol grants specific authentication between components
of a network slice to enable secure connection protected
key establishment among component pairs for slice security
isolation. Paper [11] offers a secure keying scheme by adopt-
ing a multi-party computation strategy, which is appropriate
for network slicing architecture in the case that third-party
applications access the slices. This mechanism ensures the
satisfaction of use cases or devices in which the data is
collected.

Both Haga et al. in [12] and Vidal et al. in [13] focus on how
a VPN can be deployed using OSM. [12] demonstrates how
WireGuard can be added in VNFs and compares WireGuard
and OpenVPN performances. This practical work is carried
out using two VNFs in a single NS with manual configuration

of peer connectivity in WireGuard. For the peer setup, keys
and other necessary information are obtained manually.

Vidal et al. in [13] uses IPsec as VPN solution to provide
link-layer connectivity for multi-site deployments. In this
work, OSM is employed to deploy multiple NSs connected
through one VNF at each NFV Infrastructure (NFVI). These
VNFs handles the link layer abstraction for the other VNFs.
IPsec is used to secure the connection between the link layer
providing VNFs. Keys and connection parameters are supplied
by the operator when instantiating the NSI.

As evident from the mentioned papers, none of them
provides a secured service automation provisioning utilizing
complex and real-life NFs. This motivates us to integrate
WireGuard tunneling with OSM, which grants secure commu-
nication between the involving NFs to establish automated and
realistic network services. As a result, this system architecture
guarantees security and performance isolation between NSIs.

III. SYSTEM ARCHITECTURE

Day-0, Day-1, and Day-2 operations are terminologies used
in the OSM community referring to the stages of Life-Cycle
Management (LCM) of NFs. The steps of the operations
phase in Figure 1 are used to handle LCM of NFs via the
NF onboarding process and they closely link to Day-0 to
Day-2 operations. The construction of charms and descriptors
beforehand are illustrated in the development part of the figure.

Fig. 1. Steps for service lifecycle [14].

OSM has three inbuilt supporting applications for
LCM [15]. Cloud-init is responsible for the initial Day-0
operations like setting username and password. For Day-1
operations, Helm charts or Juju charms can be used, while
Day-2 operations are also possible with Juju. Another differ-
ence between Helm and Juju is that Helm is used solely for
Kubernetes-based Network Functions (KNFs), while Juju is
also usable at NS level and for VNFs that are not Kubernetes
(K8s) based [16], [17]. We have used cloud-init and Juju
charms for OSM onboarding in our implementations.

Further, Juju has two operation modes. Native charms run
operations directly inside a VNF. On the other hand, proxy
charms use a centrally placed controller, a VNF Configuration
and Abstraction (VCA), to manage the Day-1 and Day-
2 actions. The VCA connects to the VNFs through their
management interface and instructs the VNFs. The VCA-VNF

139

connection uses the Secure Shell (SSH) protocol by default. In
the paper, we have used proxy charms with a VCA installed
co-located and integrated with OSM. Both the VCA and OSM
should therefore be able to access the VNFs management
interface to execute their actions.

To build user-defined actions, Juju uses Python scripts.
The connection to the OSM instance is made through the
description files of the VNFs, NSs, Juju config files describing
metadata, and the available Day-1 and Day-2 actions. For the
OSM integration of proxy charms, the charms.osm.sshproxy
library is provided by OSM to take care of, among other tasks,
the basic Juju proxy peer setup.

In addition to running actions in VNFs, Juju can be used to
create relations between Juju units for management, scaling,
and for handling dependencies across VNFs. In this paper, we
will use Juju relations to transfer WireGuard peer information
between VNFs.

Figure 2 illustrates how we have used proxy charms and
relations in Juju to create a bridge for transferring information
between VNFs. The figure shows the architecture for the
multi-site demonstration. However, for the main performance
measurements, we have used a single-VIM, moving also the
Home Subscriber Server (HSS) into VIM 1. The architecture
for the single-VIM setup is as illustrated at the rightmost half
of the figure showing VIM 1.

Fig. 2. Interactions between elements in our Juju proxy implementation.

Distributing keys is a task that often requires manual steps
when establishing a VPN tunnel. Manual setup can be time-
consuming for dynamic environments or environments with
many interfaces to be secured. If the tenant manager needs
to do configuration, the NS is only usable after initializing
the VPN tunnels. However, if using the approach by Vidal
et al. and input the necessary information, including keys,
the application can start sending data immediately after Day-
1 actions have finished. A similar approach is using a Key
Management System (KMS). However, OSM does not pro-
vide such functionality. To use the KMS approach additional
functionality outside of the OSM framework must be added.

To perform key management, we have used a non-standard
approach using Juju relations with the requirement of using
proxy charms for our VNFs. By using Juju relations, we create
new individual keys for every new deployment for the different
interfaces and make the application of the NS usable directly
after the Day-1 tasks finish. Furthermore, with our approach,
the private keys are only stored inside the VNFs. The public
key and other necessary information for the peer setup get
automatically transferred to the peer.

IV. IMPLEMENTATION

Fig. 3. Architecture of our implementation.

To enable WireGuard in a realistic environment we have
created a NS with Evolved Packet System (EPS) components
from Open Air Interfaces (OAIs) [18]. We have then added
WireGuard connectivity on the different interfaces. Figure
3 shows the architecture we have employed. OSM is used
to communicate to a MicroStack VIM. The VIM is hosting
different VNFs, creating virtual networks and performing
routing of outgoing traffic from the VNFs represented with
the blue lines. A WireGuard tunnel is created automatically
between the VNFs on the interfaces in the NS, represented by
the red dotted lines. In addition to the primary VIM, we have
utilized a second VIM. The second VIM have been used to
explore the EPS NS deployment in multiple sites.

A. Development

The steps we have followed to prepare our deployments
are; composing a virtualized EPS, set up a mechanism
for automatic WireGuard peering, structuring NSs into
Network Slice Template (NST) packages, and lastly test
the WireGuard connectivity in a multi-site deployment. The
descriptors and charm code we have used are made available
on GitHub.1 In the following paragraphs, we further describe
the development steps to create the descriptors and scripts.

a) Composing a Virtualized EPS: In [19], Dreibholz
implements an Evolved Packet Core (EPC) with HSS, Mobility
Management Entity (MME), and a combined Serving Gateway
(SGW) and Packet Data Network (PDN) Gateway (PGW)
separated in two components, Service Packet Gateway-User
plane (SPGW-U) and Service Packet Gateway-Control plane
(SPGW-C), for user- and control-plane tasks respectively. To
extend this NS with real-life traffic we add a virtualized
eNodeB (eNB). Further, we create an User Equipment (UE)
in a Virtual Machine (VM) kept outside the NS. The UE is

1https://github.com/sondrki/TTM4905/

140

still able to connect to the eNB after instantiating the NS
with manual network setup in MicroStack. To establish the
air interface, Uu, we have compiled and used OAIs simulation
option. When connecting the UE to the eNB we have verified
that the different EPS components functions as expected and
provides service for the UE. The functionality includes that
the UE can connect to outer network through the SPGW-U
via the eNB. At this fist step of implementation, we have not
included WireGuard between the components.

We have chosen to build our NS spreading the EPS com-
ponents into separate VNFs. With this approach, we are able
to split out VNFs to other VIMs. By being able to extend
to multi-site environments, we can emulate a scenario where
other components, for instance, MEC is deployed closer to the
end-users. When adding WireGuard, the VNFs distributed to
remote sites should be able to communicate back to the core
securely.

b) Automatic WireGuard Peering: Manually setup can
be time-consuming for several interfaces in which we would
like to VPN tunnels. We use Juju relations for automatic
peering with no extra information given to the other side of the
peer at the time of instantiating the NS. The first step in the
automatic peering is establishing relationships between VNFs
on both sides. Then the paired VNFs retrieve information like
public key, endpoint, and listening port to communicate this
information for retrieval on the other side.

To establish WireGuard connectivity on all interfaces given
in Figure 3, we have changed the IP address configuration in
the components. Changing the interface addresses is necessary
to route application data over the VPN tunnel and at the same
time to ensure that applications inside the VNF have been
installed and started correctly even when waiting for the tunnel
establishment. Besides, to verify the NS with WireGuard, we
connect the UE and observe that it connects and gets PDN
service.

Further, to observe how resources affect the WireGuard
performance, we have prepared a copy of the EPS NS with
WireGuard connectivity with double resources.

c) NST Packaging: After having a working NS with
WireGuard connectivity between the interfaces, we include it
in two NSTs to observe if and how the performance is affected.
The two NSTs are prepared with different values for qual-
ity indicators corresponding to different 5G QoS Identifiers
(5QIs) [20]. The QoS parameters we have chosen are usable
for eMBB and URLLC applications respectively. Further, the
NST is prepared with only the management interface of the
VNFs being external connection points in the NSTs.

d) Multi-site Deployment: To verify that the automatic
peer setup also works in a multi-site condition, we have
separated the HSS VNF to a second VIM. When using
OpenStack/MicroStack, the external, floating IP address is
by default not known inside a VM. However, the VCA can
retrieve the management IP address to perform its actions. To
find the floating IP addresses of the VNFs, we use the same
function as Juju employs for its proxypeer connection between
a Juju unit at the VCA and the Virtual Deployment Unit

(VDU) in the VNF. After the endpoint IP address is found,
the MME and HSS connect automatically with WireGuard
connectivity, likewise in this scenario. A prerequisite for multi-
site WireGuard connectivity is to use a port opened in the
firewalls.

B. Proof of Concept for VPN-as-a-Service

With the automatic peering, we present a few-step procedure
to add WireGuard as a VPN-as-a-Service (VPNaaS). The
steps pursued in our proof of concept are summarized in
the following. The additions required for the different files,
referenced to use WireGuard as a VPNaaS, are available on
GitHub.2

1) Append installation of WireGuard in cloud-init.
2) Add name and parameters for Day-1 and Day-2 actions

in the actions.yaml file.
3) Add relations between VNFs in the metadata.yaml file.
4) Include the Python code to append the charm script.

The name of the relationship must correspond between
the name used in metadata.yaml and the listener in the

init function of the Python script.
5) Add the actions from actions.yaml into Day-1, Day-2

operations in the VNF Descriptor (VNFD). To create
the WireGuard tunnel as a Day-1 operation, the relevant
actions should be included in the initial-config-primitive
section in the VNFDs. Day-2 actions are placed in the
config-primitive section.

6) While the default implementation sets up the VPN, Day-
2 actions can be used for further configuration and
maintenance, for instance, if a new connection should
be added towards an NF.

V. PERFORMANCE EVALUATION

To observe how introducing WireGuard in a cellular net-
work in a 5G context, we have done performance tests in
multiple ways. We have done tests in both the control and user
plane, with and without WireGuard with both arbitrary data
and using the UE to generate realistic traffic in the network.
Since one UE is not producing a large number of packets
in the control plane, throughput measurements for the UE
are experienced to easiest create large amount packets using
realistic protocols in the user plane.

While only producing arbitrary data for high network load
in the control plane, we have measured the latency and Service
Response Time (SRT) in the control plane combining multiple
EPS components. In general, have we performed the following
tasks to test the performance in our NSs and NSIs.

• Observe SRT on the MME when a UE connects.
• Observe throughput and latency in the user plane with a

UE.
• Measure throughput and latency between components in

the EPS.

2https://github.com/sondrki/TTM4905/tree/main/vpnaas

141

A. Lab Environment

The primary VIM have been a server running MicroStack on
top with resources of 56 virtual Central Processing Units (vC-
PUs), 126 GB Random Access Memory (RAM) and 915 GB
storage. The second VIM used for multi-site deployment is
also running MicroStack but have less resources with the total
of 9 vCPUs, 32 GB RAM and 150 GB storage. For the EPS
NS a total of 14 vCPU, 27 GB RAM and 110 GB storage have
been utilized. According to the limiting ISP, the bandwidth
between the two NFVIs is specified to be 200 Mbps. For
VNFs to communicate across the VIMs a WireGuard tunnel
has been established between the NFVIs. Our measurement
shows a throughput between the MicroStack instances of
approximately 180 Mbps. When adding WireGuard on the S6a
interface for the multi-site deployment, a nested WireGuard
tunnel is therefore used. In addition is the internal throughput
of the NFVI where the primary VIM runs, measured to around
20 Gbps.

The resources we have used for the VNFs are assembled in
Table I. The resources are similar for all use cases we have
tested, except for the NS where we double the RAM and vCPU
for all VMs but the UE.

TABLE I
VNF INFORMATION OF THE OAI EPS NS.

VNF Operating System number of amount of storage
name virtual CPUs RAM (GB) (GB)
HSS ubuntu18.04 4 8.0 20

MME ubuntu18.04 2 4.0 20
SPGWU ubuntu18.04 1 3.0 20
SPGWC ubuntu18.04 3 4.0 30

eNB ubuntu18.04 4 8.0 20
UE ubuntu18.04 2 4.0 20

B. Observations

Before adding the VPN tunnels, we were able to capture
connection information like the International Mobile Sub-
scriber Identity (IMSI), network realms, and hostnames at
the VIM. However, after we introduce WireGuard, the only
information observable at the VIM is the use of the WireGuard
protocol and link-layer discovery messages.

For the control plane data flow we have observed how the
SRT is for the HSS application responding to a connecting
UE. When monitoring the HSS application SRT including
networking from the MME, we observed that the NS with
WireGuard was the one with the lowest average SRT. With ten
successful connections for the UE the SRT measured average
latency drops from 6.156 ms for the EPS without WireGuard
to 5.377 ms when WireGuard is added. When doubling the
resources on the EPS NS with WireGuard a SRT of 5.607 ms
is measured. Based on the other measurements, it is likely that
the HSS application itself is the delaying part. With a reduced
number of connections, we have not observed a negative effect
on the SRT when using WireGuard.

A comparison of the latency measurements done for the
different instances and interfaces is shown in Figure 4. The

red line in the figure indicates 1 ms, representing one of the
E2E Key Performance Indicator (KPI) supporting URLLC
applications in 5G. All single-site instances in the figure
are lower than the 1 ms line. However, adding WireGuard
introduces a visible overhead when comparing the NS without
WireGuard to the other instances in the figure. On the other
hand, we observe that the average latencies for the S1-C in-
terface in the NSIs are lower than for the other measurements.
The differences between instances and interfaces tell us that
the latency may be dependent on multiple factors like 5QI
parameters and workload of components in an NS.

S6a S1-CS1-U

0.4

0.6

0.8

1
1 ms

[m
s]

EPS NS
without
WireGuard

EPS NS
with
WireGuard

Double
resources

URLLC
slice

eMBB
slice

Fig. 4. Latency comparison for different interfaces with WireGuard.

Figure 5 compares the throughput between components with
WireGuard on the different interfaces across instances. The
red line represents the 100 Mbps Downlink user data rate
KPI. From the throughput comparison, we highlight three
main results. The first one is that the throughput changes
according to the available resources. When comparing the
NS with double resources to the others, we notice that the
throughput is higher with the double resources NS. A tenant
manager can therefore adjust the WireGuard performance by
tuning the resources. The second aspect we will highlight is
that the throughput of the UE measuring towards the SPGW-
U is significantly lower than the other measurements. The
throughput over the Uu and S1-U is measured to around
1.7 Mbps, while the average throughput for the S1-U alone
averages over 1 Gbps. We also measure the same for the NS
without WireGuard, making the Uu the bottleneck of our
EPS. The last highlight is the maximum throughput we have
measured when averaging over 10 minutes. For the NS with
double resources, we observed throughput of 2.2 Gbps. For
the other instances, a range from 770 Mbps to 1.48 Gbps is
measured.

The multi-site deployment is measured only over the S6a

142

S6a S1-U S1-C UE

0

1,000

2,000

100 Mbps

[M
b
p
s]

EPS NS
with WireGuard

Double
resources

URLLC
slice

eMBB
slice

Fig. 5. Throughput comparison for different interfaces with WireGuard.

S6a S1-U S1-C

800

1,000

1,200

1,400

[M
b
p
s]

URLLC slice
alone

eMBB slice
alone

URLLC slice
simultaneous

eMBB slice
simultaneous

Fig. 6. Throughput comparison with WireGuard for NSIs
- measured separately and simultaneously.

interface, which is the one that differs from the other NSs and
NSIs. The throughput is significantly lower and the latency
higher compared to the other instances as expected as the per-
formance is lower also without WireGuard between the VNFs.
However, we observe that WireGuard adds an overhead also
in this scenario. For the multi-site NS an average latency over
1000 ICMP packets went from 18.355 ms to 19.769 ms when
using WireGuard. For the average throughput, we observe
a reduction from 179 Mbps to 156 Mbps, which is expected
based on the given 200 Mbps bandwidth.

Figure 6 compares the throughput in the two NSIs. In the
figure, we also observe if there are differences when running

alone and with workload simultaneously. Like the other de-
ployments without an NST, we observe that the performance
can differ for the same NS or NSI when deploying a second
time. For instance, is the throughput of the S6a interface
changing from around 800 Mbps to 1.1 Gbps when we build
the NSIs as second time. In general, the differences between
the NSIs are only minor and inconsistent. All our observations
fulfill the requirements set in the QoS parameters. Therefore,
the results are as we expected.

When testing with putting a workload on the same logical
interface for the two NSIs simultaneously, we observe a total
throughput of approximately 3 Gbps. As 3 Gbps is significantly
lower than the internal networking of around 20 Gbps, we may
observe larger differences between the NSI based on their QoS
parameters when we close in on the internal networking limit.

VI. CONCLUSIONS

By using Juju relations and providing a proof of concept
for adding WireGuard as a VPNaaS we have shown that
WireGuard can be implemented with automatic peer setup
after instantiating. The performance measurements we have
done demonstrate that WireGuard is suitable for applications
with requirements corresponding to several of the 5G KPI
values. However, we have observed that the performance of
WireGuard is dependent on available resources. Therefore, a
tenant manager should be aware of how tuning can affect the
overall performance. We have observed that WireGuard can be
used as a VPNaaS in the context of 5G networks and beyond
to provide secure communication to support isolation.

We have identified several directions a new project can
derive from our project described in this paper. Replacing the
arbitrary Juju relations with a KMS, using 5G Core (5GC)
instead of EPC components, and adding multiple UEs are
some of the suggestions that can be valuable to study further.

REFERENCES

[1] B. Blanco, J. O. Fajardo, I. Giannoulakis, E. Kafetzakis, S. Peng,
J. Pérez-Romero, I. Trajkovska, P. Sayyad Khodashenas, L. Goratti,
M. Paolino, and E. Sfakianakis, “Technology pillars in the architecture
of future 5g mobile networks: Nfv, mec and sdn,” Computer Standards
and Interfaces, vol. 54, 01 2017.

[2] K. Kralevska, M. Garau, M. Førland, and D. Gligoroski, “Towards
5g intrusion detection scenarios with omnet++,” in Proceedings
of 6th International OMNeT++ Community Summit 2019, ser.
EPiC Series in Computing, M. Zongo, A. Virdis, V. Vesely,
Z. Vatandas, A. Udugama, K. Kuladinithi, M. Kirsche, and A. Förster,
Eds., vol. 66. EasyChair, 2019, pp. 44–51. [Online]. Available:
https://easychair.org/publications/paper/sNcK

[3] M. K. Forland, K. Kralevska, M. Garau, and D. Gligoroski, “Preventing
ddos with sdn in 5g,” in 2019 IEEE Globecom Workshops (GC Wkshps),
2019, pp. 1–7.

[4] ETSI, “Multi-access edge computing (mec),” https://www.etsi.org/
technologies/multi-access-edge-computing.

[5] ——, “Why do we need 5g?” https://www.etsi.org/technologies/mobile/
5g.

[6] A. J. Gonzalez, J. Ordonez-Lucena, B. E. Helvik, G. Nencioni, M. Xie,
D. R. Lopez, and P. Grønsund, “The isolation concept in the 5g network
slicing,” IEEE, pp. 12–16, 2020.

[7] H. Kim, “5g core network security issues and attack classification from
network protocol perspective.” J. Internet Serv. Inf. Secur., vol. 10, no. 2,
pp. 1–15, 2020.

143

[8] H. Hantouti, N. Benamar, and T. Taleb, “Service function chaining in
5g amp; beyond networks: Challenges and open research issues,” IEEE
Network, vol. 34, no. 4, pp. 320–327, 2020.

[9] G. Nencioni, R. G. Garroppo, and R. F. Olimid, “5g multi-access
edge computing: Security, dependability, and performance,” CoRR, vol.
abs/2107.13374, 2021. [Online]. Available: https://arxiv.org/abs/2107.
13374

[10] V. Sathi, M. Srinivasan, P. Kaliyammal Thiruvasagam, and
S. Chebiyyam, “A novel protocol for securing network slice component
association and slice isolation in 5g networks,” pp. 249–253, 10 2018.

[11] P. Porambage, Y. Miche, A. Kalliola, M. Liyanage, and M. Ylianttila,
“Secure keying scheme for network slicing in 5g architecture,” in 2019
IEEE Conference on Standards for Communications and Networking
(CSCN), 2019, pp. 1–6.

[12] S. Haga, A. Esmaeily, K. Kralevska, and D. Gligoroski, “5g network
slice isolation with wireguard and open source mano: A vpnaas proof-
of-concept,” IEEE, pp. 181–187, 2020.

[13] I. Vidal, B. Nogales, D. Lopez, J. Rodrı́guez, F. Valera, and
A. Azcorra, “A secure link-layer connectivity platform for multi-site
nfv services,” Electronics, vol. 10, no. 15, 2021. [Online]. Available:
https://www.mdpi.com/2079-9292/10/15/1868

[14] 5G-PPP Architecture Working Group, “View on 5g architecture,” https:
//tinyurl.com/2p9dxph4, accessed: 07.01.2022.

[15] ETSI OSM, “etsi-nfv-vnfd,” https://osm.etsi.org/docs/user-guide/
05-osm-usage.html.

[16] ——, “etsi-nfv-nsd,” https://tinyurl.com/26dt45xv.
[17] ——, “etsi-nfv-vnfd,” https://tinyurl.com/2p9yp7cr.
[18] O. S. Alliance, “Openairinterface,” https://openairinterface.org/,

accessed: 04.01.2022. [Online]. Available: https://openairinterface.org/
[19] T. Dreibholz, “Flexible 4g/5g testbed setup for mobile edge computing

using openairinterface and open source mano,” Caserta, Campania/Italy,
2020.

[20] ETSI, “System architecture for the 5g system (5gs),” ETSI, Tech.
Rep. TS 123 501 V16.6.0, October 2020. [Online]. Available:
https://tinyurl.com/2p8392jt

144

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Sondre Sørensen Kielland
Secure com

m
unication w

ith W
ireG

uard - VPN
-as-a-Service in beyond 5G

Sondre Sørensen Kielland

Secure communication with
WireGuard

VPN-as-a-Service in beyond 5G

Master’s thesis in Communication Technology
Supervisor: Katina Kralevska
Co-supervisor: Danilo Gligoroski, Ali Esmaeily
February 2022

M
as

te
r’s

 th
es

is

	List of Figures
	List of Tables
	Listings
	List of Acronyms
	Introduction
	Background and Motivation
	Problem Description
	Research Scope
	Contribution
	Hypothesis Statement
	Research Questions
	Tools and Resources
	OSM
	WireGuard
	MicroStack
	Cloud-init
	Juju
	iPerf3
	OpenAirInterface

	Thesis Structure

	Methodology
	Work Process
	Testing

	Tool Decisions
	VNF Architecture
	OSM Version
	WireGuard
	Juju Charms

	Lab Setup

	Background and Related Work
	Background Theory
	4G Networks
	Towards and Beyond 5G Networks
	Isolation Theory
	OSM Descriptor Language
	OSM Onboarding
	WireGuard

	Related Work
	Towards 5G Network Slice Isolation with WireGuard and Open Source MANO
	5G VINNI
	Service Function Chaining in 5G and Beyond Networks: Challenges and Open Research Issues
	5G Multi-access Edge Computing: Security, Dependability, and Performance
	5G Core Network Security Issues and Attack Classification from Network Protocol Perspective
	Virtualized Cellular Networks with Native Cloud Functions
	A Secure Link-Layer Connectivity Platform for Multi-Site NFV Services

	OSM Hackfests

	Implementations
	Intended End-state
	Adapting Previous Work
	WireGuard NS
	OAI EPC
	Juju Relations
	Combining Elements
	Adding eNB and UE to the NS
	Double Resources
	Network Slice Template
	Multi-site Deployment

	Results and Observations
	Network Traffic
	Performance Monitoring
	Throughput
	Latency
	Service Response Time

	Measurements of the Multi-site NS

	Discussion
	Charms in OSM
	Lifecycle for a VPNaaS
	Key Management
	Performance

	Conclusion and Future Work
	Conclusion
	Future Work

	References
	Preparation of MicroStack
	Preparation of OSM VM
	Creation of UE VM
	Command Line History
	ue_eurecom_test_sfr.conf

	WireGuard Charm
	VPNaaS Additions to Descriptor Files
	Performance Measurements
	Single Network Services with and Without WireGuard Connectivity
	Two Different Network Slice Instances
	Running Tests on Only One NSI at a Time
	Running Tests Simultaneously on NSIs to See Any Difference in Performance

	Double Resources of vCPU and RAM
	Multi-site Deployment

	Research Paper

