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Abstract

Entity matching (EM) aims to reduce the entropy between two different data sources by
identifying which records refer to the same real-world entity. Typically, many proposed
blocking approaches require sufficient human expert involvement and/or a large amount of
labeled data, however often unavailable for EM applications to achieve useful models. In
this work, we propose TopKDAL, a deep learning-based approach targeting a low-resource
setting through a combination of active learning (AL) with pre-trained transformer lan-
guage models (TPLM). TPLMs are a promising approach towards hands-off blocking to
obtain semantically meaningful sentence embeddings and the ability to learn where to
pay attention between the records. Doing so, TPLMs unveil similarities between entities.
We incorporate active learning to select informative examples to fine-tune a TPLM and
to cope with labeled data scarcity. In this way, we investigate how to reduce the required
labeling effort while maintaining the model accuracy and the blocking performance.

Experiments on five EM benchmark datasets showed the effectiveness of TopKDAL with
respect to pair completeness (PC), reduction rate, and running time. We found ac-
tive learning strategies yield better results with an order of magnitude fewer labeled
examples compared to a supervised Baseline trained on all available data. TopKDAL
demonstrates best performance with Imbalanced-Partition-2 and Balanced-Uncertainty.
Balanced-Uncertainty consumes an initial balanced training set, which contributes to
kick-start the active learning performance and reduces the risk for cold start problems.
However, it is an extra overhead required to unlock the potential with a balanced start-
ing strategy. Towards mitigating biases, Random-P/N yield competitive performance
towards the more advanced query sampling strategies when it is trained initially on an
imbalanced initial training set. Our proposed TopKDAL requires no design decisions from
a human and features are learned from the data. Fine-tuning hyperparameters are still
recommended to optimize the model performance.
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Sammendrag

Entitetsgjenkjenning har som mål å redusere entropien mellom to ulike datakilder ved å
identifisere hvilke record som refererer til de samme entitetene i virkeligheten. Vanligvis
krever mange foresl̊atte blokkeringsmetoder tilstrekkelig menneskelig domenekunnskap
og/eller en stor mengde merkede data, imidlertid er dette ofte utilgjengelig for app-
likasjoner i entitetsgjenkjenning for å oppn̊a nyttige blokkeringmodeller. I dette arbeidet
foresl̊ar vi TopKDAL, en dyplæringsbasert tilnærming som er rettet mot en situasjon
med begrenset mengde merkede data ved å kombinere aktiv læring med forh̊andstrente
transformer spr̊aksmodeller. Disse spr̊akmodellene er en lovende tilnærming for å oppn̊a
semantisk meningsfulle embeddings og muligheten til å lære hvor man skal fokusere mel-
lom records. Ved å gjøre det avslører transformer modellene likheter mellom entitetene.
Vi bruker aktiv læring for å velge informative eksempler for å finjustere en transformer
spr̊akmodell og for å takle knapphet p̊a merkede data. P̊a denne måten undersøker vi
hvordan arbeidet med merking av data kan reduseres, samtidig som modellnøyaktigheten
og blokkeringsytelsen opprettholdes.

Eksperimenter med fem referansedatasett for entitetsgjenkjenning viser effektiviteten til
TopKDAL med hensyn p̊a pairs completeness (PC), reduction rate (RR) og kjøretid. Vi
fant at aktive læringsstrategier gir bedre resultater med en størrelsesorden færre merkede
eksempler sammenlignet med en supervised baseline som er trent p̊a alle tilgjengelige
data. TopKDAL oppn̊adde den beste ytelsen med Imbalanced-Partition-2 og Balanced-
Uncertainty. Balanced-Uncertainty trenes basert p̊a et balansert treningssett i starten,
som bidrar til å forbedre den aktive læringsytelsen og redusere risikoen for kaldstart-
problemer. Imidlertid kreves dette ekstra implementasjon for å muliggjøre potensialet
med en balansert start strategi. For å redusere biases ble Random-P/N-strategien trent
med et ubalansert treningssett som gir konkurransedyktig ytelse mot de mer avanserte
prøvetaking strategiene. V̊ar foresl̊atte TopKDAL krever ingen menneskelige designbeslut-
ninger, og features læres fra dataene. Finjustering av hyperparametere anbefales fortsatt
for å optimalisere modellytelsen.
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Chapter 1

Introduction

This chapter presents the motivation, problem outline and goals of the thesis. Then,
our contributions, approach, and main results are presented. Lastly, the structure of the
thesis is described.

1.1 Background and Motivation

During the last decade, data-generating has boomed due to their primarily distributed way
of being produced. Companies of any size, individual users, sensors, and automatic ex-
traction tools have contributed a constantly increasing volume of diverse, heterogeneous,
inconsistent, and noisy information. Today, the rise of big data poses new challenges.
Volume requires techniques to scale to millions of entities, while variety calls for entity
matching techniques that can cope with schema heterogeneity. One challenge related to
big data in entity matching is that more extensive datasets require efficient parallel tech-
niques. More heterogeneity involves unstructured, unclean, incomplete data and diverse
data types. Data quality is reduced further due to the frequent use of heterogeneous
names, abbreviations, and missing values. Consequently, determining matches between
records is difficult because relevant data can be spread over thousands of data sources.

A common obstacle is that data resides in many different systems which do not share a
standard data format, common attribute names, or unique identifier between the entities.
Working across several data sources is essential to gain value outtakes from the company’s
data. For exemplifying the problem domain, a classic situation industrial companies can
face in their business is the crucial aspect of identifying and establishing the relationship
between an object in 3D drawings and its related sensors’ time series data. For instance,
the 3D drawings showing the pump components might be stored in data source A at a
factory such as an oil platform. Their related time-series data from pump components’
pressure, temperature, and power sensors are stored in another data source B. The prob-
lem arises if these two systems A and B do not have any unique identifier which indicates
their relationships. On the other hand, it will be an open question for the reader why the
industrial companies have not stored all their data in one data platform to be prepared
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for utilizing their data in more applications and decisions. Such applications can predict
the optimal combination of pump parameters to minimize the environmental emissions
of CO2 or support the field engineer during pump maintenance with available time series
data for the surrounding components belonging to the pump itself. In many industrial
companies, the solution has been to manually find and combine related data between data
sources. This task can be extremely time-consuming at the factory with potentially thou-
sands of sensors and equipment. It showcases the call for new data integration methods
related to industry settings. This problem domain is known as entity matching (EM). It
aims to reduce the entropy, leveraging the value of data source silos by identifying which
records from two different data sources refer to the same real-world entity. The problem
domain of the entity matching system might seem to be solvable and straightforward at
first glance. However, the examples of matches and non-matches illustrated in Table 1.1
show the opposite, and it symbolizes only as an example of several challenges the industry
is facing in terms of data integration. It is, however, far from nontrivial to systematically
make matches out of this panoply of information in data sources at a large scale.

Table 1.1 shows the four possible combinations of matching pairs based on the given
records in Table A and Table B. As observed from the table, it can be hard and ambiguous
to identify which records refer to the same entity based on the attribute ′name′ caused
by no apparent unique identifier is present. To exemplify, ”010-10823-00”, ”101093600”
and ”101082300” could be examples of possible identifiers. Unfortunately, some records
do not have that types of unique numbers at all. The records can also have several
words in common, e.g., ”garmin vehicle suction cup”, even without being a matching
record pair. As seen from the given gold standard, record A1 and record B1 are labeled
as match, which means these records refer to the same real-world entity. These records
represent examples of the challenges our proposed approach is facing when all information
is stored in one string instead of being categorized into several attributes. This problem
is not present in relational databases since both tables A and B would have an attribute
column with common unique identifiers indicating any relations between the records.

Today, many proposed entity matching techniques demand very high resources that limit
their applicability to large-scale problems, except when utilizing powerful cloud infras-
tructure. Fussy matching approaches cause it, basically caused by having a quadratic
complexity to compare all records to be matched with each other. Multiple blocking and
matching algorithms can be applied in combined workflows to achieve sufficient matching
quality, which requires more resources to solve the problem. In entity matching, blocking
techniques are typically the key component for unlocking entity matching tasks on large
and very large datasets, such as industrial datasets.

Our research will focus on the blocking process, also known as the candidate selection step.
Many people think entity matching is a binary classification problem without necessarily
reflecting on the blocking process as a crucial part of achieving matching. Therefore,
it is essential to explain the purpose of blocking and matching. The entity matching
workflow is a system consisting of two parts: (1) The candidate selection step determining
the entities worth comparing, and (2) the candidate matching step, or simply matching
comparing the selected entities to determine whether they represent the same real-world
object or not. While the candidate matching step involves a time-consuming pairwise
comparison of entities, the candidate selection step can be divided into two categories
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Table 1.1: The illustration represents the entity matching problem in identi-
fying matches from non-matches in the textual public dataset Abt-Buy. (a)
Table A shows records in Abt, and (b) Table B shows records in Buy. (c)
Table Matches addresses the annotation between the four possible combina-
tions of pairs as the gold standard. The objective of blocking is to collect as
many matching examples as possible while removing non-matching examples
from the initial set consisting of all possible combinations of record pairs. It
is equivalent to reduce the size of Cartesian Product, A x B.

(a) Table A: Abt

id Name

A1 garmin 010-10823-00 black nuvi 660 vehicle suction cup mount 0101082300
A2 garmin vehicle suction cup mount 0101093600

(b) Table B: Buy

id Name

B1 garmin suction cup mount 010-10823-00
B2 garmin vehicle suction cup mount

(c) Matches: Abt-Buy

Pid Name

A1-B1 True
A1-B2 False
A2-B1 False
A2-B2 False

depending on their purpose. First, blocking aims to identify entity pairs that are likely
to match, where the candidate set is reduced to only perform comparisons between the
most likely matching entities. On the other hand, filtering aims to remove pairs that
are guaranteed to no match quickly, resulting in a candidate set containing more certain
matching entities. Despite blocking and filtering has a common goal, blocking might
operate without knowledge of the matching step and filtering needs because two entities
match if their similarity measure exceeds a predetermined threshold[Papadakis et al.,
2019].

Hence, the motivation for this work comes from the demand for more efficient blockers on
large-scale datasets to achieve a suitable candidate set upfront before performing match-
ing. We hope to unveil beneficial relationships between entities in a low-resource setting
by combining transformer pre-trained language models with active learning for blocking.
This is also the primary starting point for designing our blocking approach.

This thesis aims to evaluate blocking to cheaply remove obvious non-matches from matches
before more detailed and expensive record pair comparisons in terms of matching are per-
formed on the datasets. That said, the first hurdle of blocking has been to understand and
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get an overview of the datasets and then subsequently selecting the subset of the data,
that is of interest, by using traditional blocking techniques. In terms of machine learn-
ing, this has usually involved using researchers or domain experts to handcraft features
manually. Therefore, fortunately, it is highly beneficial when deep learning can extract
features automatically out-of-the-box. Deep neural networks can learn which features are
essential and which ones are less or not important at all. As a result, a suitable combina-
tion of features are discovered faster than a human doing feature engineering, especially
for complex tasks.

1.2 Research Goals and Questions

The research in this thesis aims to develop a deep active learning-based approach for
blocking investigating the combination of using pre-trained language models (TPLM) and
active learning strategies. The goal of this thesis is to evaluate if there are any rewards
related to combining active learning with TPLMs as a strategy when performing the
candidate selection step or so-called blocking. The performance is evaluated by reducing
the size of the candidate set while maximizing the pairs completeness (PC) score at a low
labeling budget.

Goal Within the context of transformers for blocking in entity matching, evaluate to what
extent active learning can reduce the labeling effort.

In order to achieve this goal we have to (1) construct a model architecture based on
Transformers with respect to ignore non-matching record pairs in the datasets in question
from the candidate set, and (2) build the model architecture to enable unlocking the
potential of active learning as a strategy to reduce the labeling effort for data-hungry
deep learning models, and (3) evaluate the performance related to our proposed approach
and identify their challenges. We defined three main research questions that need to be
answered.

1.2.1 Application of Transformers

RQ1 How can Transformers be used to improve the blocking performance in entity match-
ing?

The first research question addresses how TPLM can be leveraged for enabling efficient
hands-off blocking tasks in entity matching. We wish to find a model architecture lever-
aging TPLM to improve the blocking performance and prepare this blocking approach for
active learning strategies.
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1.2.2 Application of Active Learning

RQ2 How does active learning with transformers perform for blocking with respect to
labeling effort, i.e. the number of labels?

Transformers pre-trained language models are data-hungry deep learning models and
require more labeled data and training time than classical machine learning models. This
research question aims to address how the blocking performance is dependent on the
amount of labeled data in a low-resource setting when active learning is combined with
TPLM. In this case, a low-resource setting is defined to have a labeling budget within
1000 labeled instances.

1.2.3 Challenges with Transformers and Active Learning

RQ3 What are the challenges in combining active learning and Transformer pre-trained
models (TPLM) with respect to blocking in an entity matching system?

The last research question addresses the challenges related to using active learning with
TPLMs in the blocking step in EM. This aspect is important to better understand how
our proposed approach impacts the blocking task, and useful to identify further work in
this field of research.

1.3 Research Contributions

This thesis provides two main contributions of the work, and they are as follows:

C1 We present TopKDAL, a blocking approach based on pre-trained language models
(LMs) such as BERT. To the best of our knowledge, TopKDAL is the first blocking
solution that leverages deep active learning (DAL) with pre-trained Transformer-
based LMs to obtain deeper language understanding for the candidate selection step
in a low-resource setting. TopKDAL learns progressively from the updated input
training sets selected by active learning query sampling strategies within a limited
labeling budget of 1000 examples. We evaluate the effectiveness of TopKDAL on five
benchmark EM datasets with varying degrees of textual and structured difficulty and
domains. Across various real-world datasets, TopKDAL yields an improvement on PC
scores by 0.7-3% for imbalanced initial training set and 1.2-1.9% for balanced initial
training set over active learning-based baseline sampling randomly. It demonstrates
the effectiveness of TopKDAL with DistilBERT as TPLM. Our best performing ap-
proaches outperform non-active learning baseline by using an order of magnitude
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fewer labels. Imbalanced-P-2 consumes 360-840 labeled examples and Balanced-P-
4 consumes 200-700 labeled examples of a labeling budget within 1000 examples to
reach or surpass the performance the model achieves by training on the whole dataset.
In this case, it considers the hard datasets Amazon-Google, Walmart-Amazon, and
Abt-Buy. Towards hands-off blocking in EM, our proposed TopKDAL requires no
design decisions from a human and features are learned from the data. Fine-tuning
hyperparameters are recommended to optimize the model performance. Input data
still needs to be labeled by an human. This approach is applicable independently of
the matching step in an entity matching system.

C2 Our experimental results show that a balanced initial seed as a starting strategy
can effectively tackle the cold start problem, even when the label budget is limited.
With availability using a balanced instead of an imbalanced initial training set, a
kick-start is instantiated for the model performance gaining a higher initial PC score
as reward. However, the experiments show that the initial difference in PC score
between training set distributions becomes a marginal difference after active learning
over at most 1000 labeled data. Given an imbalanced starting strategy and Random-
P/N, a balanced random sampling of positive and negative examples to mitigate
biased learning seems to be competitive with more advanced active learning strategies,
which depends on searching a more guided learning by selecting high-confident and
low-confident examples.

1.4 Approach

This thesis aims to evaluate how active learning, in combination with TPLMs, can be
applied for blocking in entity matching. To the best of our knowledge, we are the first to
combine active learning with Sentence Transformers for performing the candidate selection
step in blocking.

Our research questions are answered by designing a blocking approach involving two
components: (1) Blocking strategy and (2) active learning strategy. Experiments by
combining these two strategies are applied to evaluate how the query sampling strategies
can reduce the labeling effort for blocking while maintaining the model performance.
After each active learning iteration, the Sentence Transformer restarts the model instead
of training the transformer model using only newly selected examples. Within a limited
labeling budget of 1000 labels, the active sampling strategies try to choose better examples
for the model to improve the pair completeness (PC) score and reduce the total time
consumption.

The query strategies include existing classical active learning methods, Uncertainty, Partition-
2, and Partition-4, in which the two latter is created for deep learning and active learning.
Additionally, we test the query sampling strategies High Confident Positives and Nega-
tives, Random Positives and Negatives, and Partition-4 with a positive boost to challenge
Uncertainty, Partition-2, and Partition-4. Query sampling experiments are restricted to
the two TPLM’s DistilBERT and RoBERTa to see how their model size impacts time
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usage. Balanced or unbalanced initial training sets are applied in the experiments to test
the impact initial class distributions have on blocking performance. The experiments are
evaluated on five public datasets, commonly used to benchmark EM systems. The re-
sults are benchmarked against the non-active learning supervised baseline, and the active
learning-based supervised baseline.

1.5 Results

Figure 1.1 showing active learning strategies yield better results than a supervised Base-
line. In our experiments, TopKDAL demonstrated best performance with Imbalanced-
Partition-2 and Balanced-Uncertainty to gain the highest PC score across five real-world
datasets. After 1000 labeled instances, Imbalanced-Partition-2 and Balanced-Uncertainty
outperformed Baseline across the five datasets on average with 0.027 and 0.018, respec-
tively, where Balanced-Uncertainty yielded on average a PC score of 0.952 and outper-
formed Imbalanced-Partition-2 with 0.012 higher PC score (1.3%). Balanced-Unceratinty
consuming an initial 50/50 distribution training set contributing to kick-start the active
learning performance and reduce the risk for cold start problems.

On the dataset Abt-Buy, we found that the combinations Imbalanced-Partition-2 and
Balanced-Uncertainty outperformed Baseline-Max performance in PC score after approx-
imately 360 labeled instances and approximately 260 labeled instances, respectively. As
seen from Figure 1.1, this improvement corresponds to 2.1 % and 1.5 % of total 17223
labeled instances for Abt-Buy. DistilBERT as TPLM reached an iteration time of on
average 2-3 minutes. Combined with a limited labeling budget reduced to an order of
magnitude fewer labeled examples than the Baseline-Max, TopKDAL proves that the
combination of Sentence Transformers and active learning strategies is a valid option to
consider for blocking in EM.

The semi-supervised strategy Partition-2 aiming for a balanced set of low confident and
high confident examples delivered a significant improvement in PC score over the AL
iterations, although it started with imbalanced initial training set 0.144 behind Balanced-
Uncertainty. After 20 AL iterations, Imbalanced-Uncertainty ended up only on average
0.012 behind Balanced-Uncertainty, despite for the fact that the automatically labeled
high-confidence examples were exposed for incorrectly labeling. A weakness to consider
with Balanced-Uncertainty is volatile performance due to the fact it samples low confident
examples over AL iterations.

Our approach TopKDAL shows the challenge to mimic the actual similarity between
record pairs in the model architecture when combining TPLM with informative active
learning query sampling strategies. In our approach, when leveraging the Softmax func-
tion to normalize the output of a network to a probability distribution over the predicted
output classes, it affects the doubt record pairs negatively. In addition, our work supports
a call for more research related to optimizing initial class distributions in the training set,
query sampling strategies, pre-trained language models, and hyperparameters properly,
as a unified system to maximize blocking performance.
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Figure 1.1: Iterative PC score for (a) Imbalanced-Partition-2 and (b)
Balanced-Uncertainty with respect to the amount of labeled instances for Abt-
Buy dataset. DistilBERT has been used as TPLM. Baseline-Max, Baseline-1/2
and Baseline-1/4 indicate the PC score after 100%, 50% and 25% of the dataset
total size was labeled. On average across the datasets, (a) Partition-2 yielded
the best performance on an imbalanced initial seed, and (b) Uncertainty
performed best on a balanced initial seed. Both approaches outperformed
Baseline-Max after 1000 labeled instances. For Abt-buy dataset, Imbalanced-
Partition-2 and Balanced-Uncertainty outperformed Baseline-Max perfor-
mance in PC score after approximately 360 labeled instances and approxi-
mately 260 labeled instances respectively, corresponding to 2.1 % and 1.5 %
of the total size of Abt-Buy dataset with 17223 labeled instances. As ob-
served, the PC score differences between the query sampling strategies and
Baseline were greater in magnitude when starting with an imbalanced ini-
tial seed. However, Balanced-Uncertainty approach has unstable PC score
performance over the AL iterations as a weakness.

1.6 Thesis Outline

This thesis is composed of eight chapters. A short description of what each chapter
contains is as follows:

Chapter 1 - Introduction The first chapter explains the background and motivation of
the thesis, in addition to describing the goals and the underlying research questions
this thesis seeks to answer. Research contributions and the approach for proceeding
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to solve these questions are presented. Last, the overall results and structured of
the thesis are described.

Chapter 2 - Background This chapter presents a theoretical overview of the methods
used in this thesis. This involves terminology and concepts related to entity match-
ing, Transformer pre-trained language models, and active learning strategies. In
addition, evaluation metrics for evaluating our approach are presented.

Chapter 3 - Related work The third chapter gives an overview of publish papers re-
lated to our research in this thesis.

Chapter 4 - Data The published datasets used in the experiments for validating our
proposed approach are described here.

Chapter 5 - Method This chapter presents our design choices, proposed approach, the
experimental setup, and evaluation metrics for evaluating our approach.

Chapter 6 - Results This chapter shows the results from the the experiments based on
our proposed approach and observations among these results.

Chapter 7 - Discussion This chapter discusses the results, comparisons, and interpre-
tations. It also discusses some of difficulties and challenges.

Chapter 8 - Conclusion and Further Work The final chapter concludes our thesis
with respect to the research questions outlined in the introduction. Last, thoughts
in terms of recommendations and suggestions for further work is presented.
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Chapter 2

Background Theory

2.1 Entity Matching

2.1.1 Entity Matching Problem

Entity matching (EM) has been extensively studied for decades since it was first reported
in 1946 [Dunn, 1946, Christophides et al., 2020, Christen, 2012a], and it is a crucial
process for data integration and data cleaning [Köpcke and Rahm, 2010]. In the literature,
the term entity matching1 is often referred by many different names. Consequently, it
has resulted in inconsistency as some refer to the same problem, while others are slight
variations, specializations, or generalizations of the EM problem [Barlaug and Gulla,
2020].

The problem definition can be derived by defining two data sources A and B. A has
the attributes (A1, A2, ..., An), and each attribute has records which are expressed as
a = (a1, a2, ..., an) ∈ A. Similarly, B has the attributes (B1, B2, ..., Bn), and each attribute
has records denoted as b = (b1, b2, ..., bn) ∈ B. Furthermore, the problem definition can
be divided into finding matches within each data source or finding matches across two
data sources. However, for the two entity collections A and B, if ai and bi refer to the
same real-world entity, they match successfully, and the entity records can be denoted as
ai ≡ bi. In this work, the objective is to find matches across two data sources.

Definition 2.1.1 (Entity Matching). In entity collections A and B, record pairs match
if ai = bi refer to the same real-world entity. Matching entities are also called duplicates.
The objective of Entity Matching (EM) is to find all matching entities within an entity
collection or across two or more entity collections [Papadakis et al., 2019].

A data source is defined as a set of attributes with records, while a record is a tuple

1Entity matching has many similar name variations. EM is also referred to as entity matching, data
matching, string matching, fuzzy join, duplicate detection, re-identification, entity resolution, data link-
ing, approximate string matching, similarity join, merge-purge, record linkage, reference reconciliation,
fuzzy matching, deduplication, object identification or duplicate identification [Barlaug and Gulla, 2020].
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following a defined schema of attributes. Although attributes can have metadata (e.g., a
name) associated with themselves, it does not affect the equality between the attributes.
So, the tuple of attributes (A1, A2, ..., An) can be expressed as the schema of the data
source A and correspondingly for B. Furthermore, two record sets can have different
schemas, and the attributes can have any data type other than strings.

The entity matching (EM) methods can be classified into categories, Clean-Clean EM,
Dirty-Clean EM, and Dirty-Dirty EM, given two input entity collections, A and B. In
Clean-Clean EM, both A and B are duplicate-free entity collections. In Dirty-Clean EM,
A is a duplicate-free entity collection, and B is a dirty entity collection. In Dirty-Dirty
EM, both A and B are dirty entity collections. Duplicate-free is present if there is no
duplicate record in A and B. Otherwise, it is said to be dirty.

2.1.2 Blocking vs. Matching Problem Domain

Figure 2.1 shows two sets of entities denoted as A and B, assuming two distinct datasets,
where there are 1:1, 1-n, m-1, n-m, or none relationships between entities in A and B.
M = A ∩ B is the intersection set of matched entities appearing in both A and B, and
U = (A∪B)\M is the set of non-matched entities appearing in either A or B, but not in
both. When putting U and M together, it cover the entire entity space as illustrated in
Figure 2.1. In edge cases, when there are two duplicate datasets denoted as A and A′, B
can be replaced by ′A. Doing so, entity matching across two duplicate datasets may also
call for an upfront blocking process.

First, the non-matching entities appearing in the space U are what the blocking techniques
seek to identify and then ignore as much as possible of this space.. In entity matching,
the space U is only a collection of non-matching entities. The lower and upper boundary
of the space U is derived by Equation 2.1

||A| − |B|| ≤ |U | ≤ |A|+ |B| (2.1)

Second, the maximum possible number of matching entities are represented to the size
of the smaller set of A or B. With respect to performing blocking and matching, the
purpose is to keep as must matching entities as possible in the entity space M . In
practice, this situation is represented when the smaller set is a proper subset of the larger
one, which also results in the minimum number of non-matched entities. Moreover, the
lower boundary of M is expressed when no entities appear in both sets, i.e. the minimum
number of matched entities is zero. In this situation the number of non-matched entities
corresponds to the sum of the entities in both sets. The lower and upper boundary of the
space M is expressed formally Equation 2.2.

0 ≤ |M | ≤ min(|A|, |B|) (2.2)

To summarize, the blocking algorithms aim to filter out U to simplify the work for the
matching algorithms to classify the record pairs within M if and only if M > 0.
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A B

M

U

M: Intersection set of matched entities, M = A∩B, in sets A and B 
U: Disjunctive union is set of non-matched entities, U = (A∪B) \ M, in sets A and B  

Figure 2.1: Illustration of entity matching problem domain with two sets of
entities A and B. Entities appear in both sets are showed in the intersection
M , and entities appear in either A or B are showed in the disjunctive union U .
The edge case when there are 1-1 and/or 1-n relations across two duplicate
datasets A and A′, A′ can replace B in the illustration. Doing so, the need for
blocking is still present, especially for a large-scale dataset.

2.1.3 Time Complexity

In a situation where two data sets, A and B, are to be matched, potentially each record
from A has to be compared with all records from B. The number of possible record pair
comparisons are equal to the Cartesian product of the size of the two data sets, |A|× |B|.
Moreover, when deduplicating one of the two datasets, the number of possible record pairs
is |A|× (|A|−1)/2. In an entity matching system, the performance bottleneck is typically
the expensive comparison of attributes between pairs of records. For large datasets, it can
often be unfeasible to perform comparisons between all pairs due to the computational
complexity of Θ(n2).

For instance, the naive brute force approach by performing pairwise comparisons on two
datasets consisting of 1000 000 records each results in 1012 (1 trillion) record pair compar-
isons. If each comparison uses 1µs, the computational time is approximately 11,6 days.
On the other hand, it is unlikely that all pairs match in these two datasets. By reducing
the number of comparisons to 109 (1 billion) based on blocking criteria, the computation
time can be reduced to approximately 17 minutes if each comparison still uses 1µs. Thus,
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the motivation of finding efficient blocker(s) are high in entity matching problems.

2.1.4 Challenges in Entity Matching

Table 2.1 shows some typical challenges faced during binary classification in entity match-
ing. These modified datasets about iPad products are generated from two online electronic
product stores. There is only a match between ’A2’ and ’B1’ among four possible record
pairs across datasets A and B. A match indicates records corresponding to the same
entity in the real world, while the other three pairs are classified as non-matches.

No common identifier Each dataset has no identifier, often referred to as primary keys,
to automatically join rows across the datasets.

Concatenated attributes Dataset A has concatenated several attribute fields com-
pared to Dataset B. To exemplify, the attributes ’Name’ and ’Type’ in A contains
information corresponding to the attribute values for the fields ’Name’, ’Model’ and
’Type’ in B.

No unified schema The datasets can have the same attribute name, but they contain
different attribute values. The attribute ’Name’ addresses the challenge of which
attribute fields should be used to find matching record pairs.

Inconsistent attribute data types Dataset A has defined the ’Price’ field as an integer
and Dataset B as a float.

Missing / additional information Datasets contain often missing values or additional
information making the datasets dissimilar. In this case, the field ’Producer’ are
used in the schema B, but it is excluded in A. Missing values are referred to as ’NA’,
observed in the field ’Price’ in B. Missing or additional information can result in
difficulty to identify a matching record pair.

Quadratic complexity Comparisons between two datasets introduce a Cartesian prod-
uct of possible record pairs in magnitude. As seen from Table 2.1, there exists only
one matching record pairs among four possible pairs. As described in Section 2.1.3,
this time complexity increases for each row item added to the datasets. For instance,
by increasing the number of examples in each dataset with two records, the number
of possible matches increases with 16
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Table 2.1: Illustration of entity matching challenges faced between Dataset
A and Dataset B regarding iPad products from Apple. Inconsistent schemas
and attribute values contribute to difficulties in comparisons between Dataset
A and Dataset B for identifying matching record pairs. In this case, the rows
A2 and B1 refers to the same iPad model, while the other iPad models have
non-matches.

(a) Dataset A

Pid Name Price Type

A1 iPad Air 10.5” Retina display with True Tone 4th gen. $599 tablet
A2 iPad 12.9-inch Liq. Retina True Tone Pro gen. 5th $1099 smart tablet

(b) Dataset B

Pid Name Model Type Producer Price

B1 iPad Pro 5th gen. smart tablet 12.9” Apple NOK10990.00
B2 iPad mini 5th generation 7.9-inch tablet Apple NA

(c) Matches: Dataset A-Dataset B

Pid Match

A1-B1 False
A1-B2 False
A2-B1 True
A2-B2 False

2.2 Entity Matching Process

In entity matching, there exists many different workflows due to no agreed process about
how to perform the step-wise task[Barlaug and Gulla, 2020, Konda et al., 2016]. Figure 2.2
shows entity matching reference model. It is often described as a process consisting of
five major steps with corresponding subtasks and subproblems[Barlaug and Gulla, 2020].

The entity matching (EM) process refers to the problem definition introduced in Sec-
tion 2.1.1, and blocking problem domain, as we investigate in this work, is presented in
Section 2.1.2. Typically, the process assumes two data sources as input, but it could be
generalized to multiple data sources. A single source, as previously described, can be man-
aged as a special case in entity matching. We denote that this process is machine-oriented,
and therefore, it is not involved any iterative human interactions or feedback loops in the
EM workflow. However, based on the survey by Barlaug and Gulla [2020], there were not
any human-in-the-loop techniques tightly coupled to the process. We therefore introduce
the traditional EM workflow as a reference model.

Data preprocessing The first step is data preprocessing, essential to obtain consistent
and similar formats across the data sources before they are used in downstream
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Figure 2.2: The traditional EM workflow can be described with five major
steps according to overview by Barlaug and Gulla [2020]. Step 1) Data pre-
processing. The data from two data sources A and B are preprocessed with
cleaning and transformations to obtain a similar format. Step 2) Schema
matching relates semantically similar attributes in the two datasets. Step 3)
Blocking is used as a strategy to ignore non-matching record pairs to reduce
the quadratic number of possible matching record pairs. Step 4) Record-pair
comparison is computes as string metrics for all candidate pairs. Step 5) Clas-
sification defines whether a record pair is a match or non-match. Note that
active learning with human-in-the-loop and TPLM aspects are not considered
in the illustration. At high level, our research is considering the sub-problems
and the sub-tasks from data sources to blocking output.

tasks. This step involves transformations such as removing unwanted characters,
handling missing values, normalization values, and feature extraction. Preprocessing
step needs to be customized based on the domain and the specific data sources. Due
to this crucial step for data integration tasks, Barlaug and Gulla [2020] and Christen
[2012a] highlight also several other data preprocessing aspects.

Schema Matching Schema matching is the task of identifying semantically related at-
tributes, and which attributes should be compared to one another based on their
attribute values and metadata [Barlaug and Gulla, 2020]. This step is often in-
terleaved with the preprocessing step when transforming the data sources into the
same schema format. Traditional, schema matching [Rahm and Bernstein, 2001, A.
et al., 2017] can be investigated manually, supervised or unsupervised [Barlaug and
Gulla, 2020].

Blocking Blocking is used as a strategy to reduce the quadratic number of possible
matching record pairs. The objective is to remove as many negative matching
record pairs as possible, while achieving a high pairs completeness score due to
true positive matches successfully retrieved. In the end, the blocker outputs a
candidate set consisting of possible matching record pairs, which often requires
upfront to perform the record pair comparison and classification. A more detailed
coverage of blocking methods are described in Chapter 3 and it can reviewed in the
comprehensive survey of blocking by Papadakis et al. [2019].
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Table 2.1 illustrates an entity matching process, in which all combinations of possible
record pairs are present. A efficient blocking step would have ignored the record
pairs A1-B1, A1-B2, and A2-B2 before a binary classification.

Record Pair Comparison In the record-pair comparison, when the number of candi-
date record pairs has been reduced to a doable amount, string metrics are computed
for all candidate pairs. This pairwise comparison of (a, b) ∈ C turns typically into a
similarity vector S consisting of numerical values, which each value expresses the de-
gree of similarity between records within two specific attributes[Barlaug and Gulla,
2020]. Different types of similarity measures can be applied for each record pair
depending on their corresponding data types, such as age, time, and date. Sim-
ilarity value is often a normalized value ranging between 0 and 1 [Konda et al.,
2016]. Clue related to which attributes to compare is often seen during the schema
matching step. Barlaug and Gulla [2020] highlight which proposed approaches have
used record comparisons up-to-now.

Classification Lastly, binary classification is the last step. It is performed on all pairs
in the candidate set to classify the record pairs as match or non-match based on the
similarity vector S. Here, if |S| = 1, we can use a simple threshold. If |S| > 1, it
requires more elaborate methods [Barlaug and Gulla, 2020]. In recent years, match-
ing algorithms leveraging handcrafted rules, supervised and unsupervised machine
learning approaches, deep-learning techniques, active learning strategies, and crowd-
sourcing have been used [Ren et al., 2020], in particular to improve the matching
performance while reducing the run time. We refer to Barlaug and Gulla [2020] for
further explanations related to proposed classification methods.

Table 2.1 shows an example of a binary classification task between dataset A and B,
each source consists of two records. The dataset ’Matches’ shows the corresponding
labels obtained from the binary classification, and it is referred to as M in the
reference model. The record pair A2-B1 is classified as a match.

As the purpose of this work is to investigate and improve the blocking performance of
combining AL with TPLM, we focus on the blocking step in the entity matching process
hereafter.

2.3 Active learning

Active Learning (AL) is natural to investigate as it has gradually received more attention
during the recent years due to limits to the applicability of deep learning (DL) methods in
low-resource entity matching scenarios [Kasai et al., 2019]. The performance of DL models
suffer significantly compared to other traditional machine learning algorithms when only
a limited amount of labeled data is available [Kasai et al., 2019]. DL requires instead
the data acquisition and high-quality labeling of large datasets, which consumes a lot of
manpower and high levels of domain expertise[Ren et al., 2020].
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AL aims to reduce the labeling cost by orders of magnitude while retaining the powerful
learning ability of Deep Learning (DL) and reaching target performance level accuracy
more quickly. For this reason, Deep Active Learning (DAL) has emerged and the break-
throughs of DL have been focused on various fields with the large number of the publicly
labeled datasets[Ren et al., 2020]. AL applies the DL model itself for selecting the data
from the entire unlabeled dataset, which the model will learn most from. The only chal-
lenge is determining what those examples are. The purpose of active learning can be
stated as

Definition 2.3.1 (Active learning). Active learning aims to maximize the performance of
the machine learning or deep learning model’s gain with respect to minimizing the required
labeling of samples from the unlabeled datasets [Ren et al., 2020].

In EM, active learning can be appropriate because the availability of unlabeled data is
high and acquiring labeled data by the Oracle, i.e. a human annotator, is time-consuming
or difficult to identify a suitable set of labeled data. In practice, the decision of query
each specific label depends on whether the achievement of querying the label is greater
than the cost of obtaining that information[Settles, 2009, Meduri et al., 2020].

2.3.1 Query Problem Scenarios

There are many active learning query sampling strategies proposed to select unlabeled
instances for different problem scenarios. Settles [2009] categories these active learning
(AL) scenarios into 1) pool-based active learning, 2) membership query synthesis, and 3)
stream-based selective sampling.

Pool-based active learning [Lewis, 1995] is the most well-known scenario for active learning.
In this sampling method, the algorithm tries to select the best query samples based on
the evaluation and ranking of instances in the dataset. An overview of the pool-based AL
process combined with deep learning model is showed in Figure 2.3. In the pool-based
active learning setting, where there is a set of labeled data L and a set of unlabeled data
U . The active learner algorithm is often initially trained on a fully labeled part of the
training set to determine which instances would be most beneficial to add to the training
set L before the model is trained on the updated dataset.

As real-world EM problems, the pool-based active learning is suitable to cover the poten-
tial matches in the unlabeled pool while the labeled examples are collected in the labeled
set L. Each time the learner evaluates the unlabeled set U , the query sampling strategy
selects a set of examples to be labeled by the Oracle before they are added to the labeled
set L. The drawback is the amount of memory the method can require [Settles, 2009].
Pool-based sampling can hereafter be assumed if not otherwise is mentioned.

In Stream-based selective sampling, also known as selective sampling, the learner scans the
set of instances sequentially to perform an independent judgment to decide if each instance
in the data stream should query the Oracle to label the instance [Settles, 2009]. In this
way, the sampling method assumes that retrieving an unlabeled instance is inexpensive,
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while the labeling itself of the instances has a cost. Hence, the learner have to evaluate
each instance informativeness measures or compute if the instances are located within the
model’s region of uncertainty. These instances are ambiguous to the learner and can then
be queried. This approach has a natural disadvantage that involves lack of guarantee to
stay within the labeling budget.

Membership query synthesis allows the learner to request any unlabeled instances within
the input space for labeling. The learner can also generate synthetic data to be labeled by
Oracle. In this way, the method is compatible with problems where it is easy to generate
a data instance. The downside is that syntactic instances can be hard to label for the
Oracle [Settles, 2009].

2.3.2 Active Learning Process

Active Learning is an iterative process used to select a set of examples by using a prede-
fined query sampling strategy. These examples are passed to the Oracles to be labeled.
A model is trained to enable prediction scores among the unlabeled data [Settles, 2009,
Christen, 2012b, Kasai et al., 2019, Ren et al., 2020, Meduri et al., 2020].

Figure 2.3 shows this human-in-the-loop process. First, active learning starts with a few
labeled samples, often known as an initial training set. Then, the model starts training
on these labeled data before the unlabeled data is predicted. In each iteration, the Oracle
labels the examples retrieved by the query sampling strategy. The newly labeled examples
are then added to the set of labeled training data, which is used to train the model in
the next iteration [Settles, 2009]. This AL loop continues until a predefined stop criteria
are reached. This stop criteria can be either an upper boundary of maximum number
of iterations, a performance target, time usage limitation, or no more unlabeled data is
available [Settles, 2009].

In the early AL iterations, a challenge can typically be low model accuracy and low
performance scores. However, the query sampling strategy can still select unlabeled ex-
amples even though it might be some mismatches related to predictions of the record pairs
[Shao et al., 2019]. Section 2.4 and Section 5.3 present several different query sampling
strategies.

2.3.3 Active Learning Definitions and Concepts

Figure 2.4 introduces the active learning concepts used in our experiments. Labeling
budget is the maximum number of labeled examples in the training set after every AL
iteration is finished. This labeling budget defines the upper boundary for the labeling
work the Oracle needs to perform, The model aims to achieve target performance of
Baseline-Max within that labeling budget, denoted with 1000 labeled instances in the
illustration. Baseline-Max is the non-active learning based approach trained on 100 %
of the total training set.
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Figure 2.3: Workflow of pool-based active learning combined with deep learn-
ing model. First, model trains on a few labeled examples, often known as an
initial training set. Then, the model performs prediction on unlabeled data.
Next, an AL query algorithm applies to select examples from the unlabeled
set to be labeled by the Oracle. The newly labeled data is added to the train-
ing set. Lastly, the model restarts and retrains based on the updated labeled
training set. The AL loop continues until the stop criteria is reached.

As seen from the figure, the labeling budget is divided into the initial training set and
an updated training set. The initial training set is the labeled data the pre-trained
transformer language model (TPLM) is instantiated with, whereas the updated training
set is the training data fed into the TPLM in each AL iteration.

For every AL iteration, the query sampling strategy selects and adds new examples into
the updated training set. A passive query sampling strategy represents the perfor-
mance of baseline given random sampling, whereas an active query sampling strategy
indicates the performance of hand-picked active learning strategies. Our chosen active
learning sampling strategies are described in Chapter 5. The size of the initial train-
ing set has to be fine-tuned properly to require a minimum amount of labeled instances
before starting the active learning loop, as illustrated by the black arrows at 200 labeled
instances. A suboptimal size and distribution of the initial training set can activate a cold
start problem , which means the model yields a performance score at approximately zero
on the y-axis. Next, an unstable model might perform unusable probability predictions
of the record pairs.
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Figure 2.4: Illustration showing the most important AL concepts used in our
experiments.

2.4 Active Learning Query Sampling Strategy

Query sampling is an essential strategy for acquiring training data in deep learning ap-
plications to achieve better performance with relatively fewer but representative training
examples. In practice, it is often infeasible and expensive to obtain large amounts of
manually labeled examples [Shao et al., 2019]. To seek to overcome this challenge, active
learning has been studied with respect to how to effectively select fewer labeled examples
to training set for the deep learning model while achieving similar or greater performance
[Ren et al., 2020].

Historically, various active learning strategies have been proposed from different per-
spectives [Settles, 2009]. It involves uncertainty sampling [Yang et al., 2015], query-by-
committee [Seung et al., 1992], and expected model change [Cai et al., 2017]. On the other
hand, the research related to DAL methods focuses primarily only on the uncertainty-
based methods. One reason is that DL requires least effort to be integrated with the
uncertainty-based AL query sampling strategies [Ren et al., 2020]. By leveraging the
information from the previous labeled examples, query sampling strategies tries to re-
trieve the most informative or representative examples from the unlabeled training set
by posing queries and then asking labels from an Oracle [Deng et al., 2018, Maystre and
Grossglauser, 2017].
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Hence, we have also chosen to focus on uncertainty-based AL and informativeness to
select unlabeled examples. It seems reasonable as uncertainty sampling[Lewis, 1995] is
also the simplest and most commonly used strategy[Settles, 2009]. We argue that the
likelihood of successfully unlock AL as a strategy with TPLM for blocking increases if we
start with well-known query sampling methods. Furthermore, Ren et al. [2020] believes
that uncertainty-based methods will continue to dominate in the future. To date, we refer
to Ren et al. [2020] for a comprehensive review of DAL strategies covering other fields
than EM. Chapter 5 describes our query sampling strategies in detail.

Unfortunately, which query strategies perform best depend on the datasets being sampled
from and the deep learning learning model chosen. In common, none of strategies cover
a one-fit-all solution - another challenge faced in active learning. Hence, it is still difficult
for a specific task to determine its best-suited one. In the recent years, such limitation
has introduced meta-learning algorithms[Hsu and Lin, 2015, Konyushkova et al., 2017].

2.4.1 Uncertainty Sampling

Uncertainty sampling is one of the most used active learning approaches [Lewis, 1995]. It is
constructed to select the instances the model is the least certain of as the most informative
instances based on probabilistic confidence [Settles, 2009]. The idea is to improve the
model by learning more from uncertain labeled instances than certain labeled instances.
The former is characterized as difficult instances to learn for the model, while the letter
is more easy instances. Softmax can be used to normalize the output from the network to
a probability distribution over predicted output classes. The instances with a probability
score close to 0.5 are either low confident positives (LCP) or low confident negatives
(LCN) dependent on the probability score is above 0.50 or not, respectively. A positive
certain instance is represented by a probability score close to 1.0, and close to zero for a
negative certain instance. Normally, the terms uncertain and certain instances correspond
to low-confidence and high-confidence instances, respectively[Kasai et al., 2019].

The drawback related to uncertainty sampling is the selecting of samples that are similar
to each other. These selected samples have often similar features [Yang et al., 2015].
Another issue of uncertainty sampling approaches is that they have no functionality to
consider the diversity in the training set, typically present in imbalanced class distribution
datasets[Ertekin et al., 2007].

Due to entity matching is a binary classification task, it can be derived that the uncertainty
sampling models least confident sampling, margin sampling and entropy are equivalent
in nature, while these models are not equivalent for multi-class tasks. Hence, we only
present least confident sampling.

Least Confidence Sampling

Least confidence sampling selects the instance with lowest prediction score among its most
likely label predictions. Let us define the query method as θ(x), the function defines how
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Figure 2.5: Comparison of different query sampling strategies. 24 examples
are selected in each of strategies (b) random sampling, (c) uncertainty sam-
pling, and (d) diversity sampling, where red colored dots are matches and
blue colored dots are non.matches [Shao et al., 2019].

informative each instance x is. The least confident instances are selected to be labeled by
Oracle, which can be derived by

θLC(x) = argmax
x

1− Pθ(ŷ|x) (2.3)

where ŷ = argmax
y

Pθ(y|x) is the class label with highest probability under the model θ.

y denotes all possible class labels, and x denotes all unlabeled instances in the unlabeled
pool U [Settles, 2009]. The downside related to this query sampling strategy is that the
model only leverage the instance with most likely class, the other instances are neglected.
More detailed descriptions can be found in Settles [2009].

2.4.2 Diversity Sampling

Diversity sampling is another paradigm in active learning [Xu et al., 2007], and this
approach is complementary to uncertainty sampling. It aims to select representative
samples based on different types of examples with different features, as illustrated in
Figure 2.5. Here, diversity sampling prefers dissimilar examples from different groups of
classes in contrast to uncertain samples that are often similar to each other [Yang et al.,
2015].
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In situations where the deep learning model should select among n different groups, this
diversity sampling approaches are beneficial. The downside of considering only strategies
that achieve diversity in sampling may lead to increased labeling costs, especially if a
significant number of currently selected samples have low information content. On the
other hand, uncertainty sampling alone often leads to sampling bias, which means selected
sample is not representative of the distribution of unlabeled datasets [Shao et al., 2019].

Several proposed query strategies have additional studied a combination of the uncertainty
and diversity of query sampling strategies to seek for a balance of properties between these
strategies [Zhdanov, 2019, Yin et al., 2017, Shui et al., 2020, Ash et al., 2020].

2.4.3 Meta-Learners

Meta-learning is an alternative to overcome the obstacles of finding the best query sam-
pling strategies. Driven by the target to automate the query sampling process of active
learning approaches, meta-learners seek to learn the best active learning strategy instead
of using a particular pre-defined active learning strategy [Shao et al., 2019].

As we chose to focus on building a deep learning model in low resource setting, it is
essential to choose correct active learning strategy and meta-learning algorithms seem to
be beneficial. However, the drawback of these generalized meta-learning models is that
they still require sufficient training data, whilst active learning typically starts with fewer
labeled samples before it gradually adds more labeled samples over the AL iterations
[Shao et al., 2019]. Consequently, a small number of labeled samples are applied to train
a meta-learning model at the beginning, which unfortunately increases the probability
of poor model performance in terms of instabilities and overfitting [Shao et al., 2019].
Those aspects were not wanted in our proposed approach and integrating meta-learning
algorithms were left to further work.

2.4.4 Challenges of Active Learning

The purpose of active learning (AL) seems as a relevant strategy by reducing the labeling
cost while maintaining the performance at a similar level. At the same time, there are
some challenges related to the AL [Ren et al., 2020].

Processing pipeline inconsistency. There is inconsistency in the processing pipeline be-
tween AL and DL. Many AL methods are based on training of classifiers, and the query
strategies are primarily utilized with respect to fixed feature representations. In deep
learning, on the other hand, feature learning and classifier training are jointly optimized,
and it should not be treated as two separate problem as explained in Wang et al. [2017].

Choice of query sampling strategy. One of the main challenges of AL is how to select
the best query sampling strategy to apply. As a consequence, Ren et al. [2020] states
that ”meta-learning algorithms for active learning are emerging as a promising paradigm
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for learning the best active learning strategy”. However, the current meta-learning based
active learning approaches still require a sufficient training set, in contrast to the nature of
active learning which typically starts with a smaller number of labeled examples. Thus,
poor performance in terms of instabilities and overfitting has been observed by using
meta-learning model when trained on that smaller number of labeled examples [Ren et al.,
2020].

Time usage labeling vs. AL iteration time. An Oracle is an essential key to unlock the
potential of AL at all. A person needs to act as an Oracle, and in many situations the
person is also replaced by a domain expert if the domain-specific dataset is challenging.
On the other hand, the Oracle has a waiting time corresponding to the iteration time from
the model start training until the query sampling strategy has selected the new samples
passed over to the Oracle. Consequently, there is a trade-off of how long the iteration
time can last and which training set size, hardware and DL model can be put together as
combinations.

Implementation complexity. A DAL approach for blocking needs to be divided into two
parts, namely, DL model training method and the AL query strategy on unlabeled dataset.
Currently, there is no framework released to fill the gap between these parts for blocking.
Regarding the AL query strategy, it is required to manage the input and output from the
Oracle, and the support of query sampling strategies. The Oracle needs a user-friendly
interface to label the examples for fulfilling having human-in-a-loop. Next, the new labeled
examples have to be inserted into labeled training set L, and the DP model is retrained
on the updated training set. Consequently, a DAL approach requires much more effort
to configure compared to standard supervised learning. In supervised learning all the
training data is initially labeled and used to train the model corresponding to one-step
AL loop.

Feature extraction. In deep learning it is not needed to craft meaningful feature extraction
according to many machine learning models. Feature Extraction is usually quite complex
and requires detailed knowledge of the problem domain. DL with TPLM can learn an
implicit representation of the raw data directly on their own, and the domain experts’
work is therefore reduced to conducting labels on the examples in the AL iterations. The
challenge is related to explainability of the DL model, namely, how to interpret whether
the examples are matching or non-matching record pairs [Barlaug and Gulla, 2020].

2.5 Deep Learning

In the deep learning (DL) field, many architectures exist, and they are all based on Arti-
ficial neural networks (ANN) with specific optimizations for certain problems. Recurrent
Neural Networks (RNN) are built for sequential data and are popular for Natural Lan-
guage Processing (NLP). With the rise of deep learning in NLP, several works introduced
new techniques such as word embeddings and attention to entity matching [Mudgal et al.,
2018, Ebraheem et al., 2019]. One of the advantages of such deep learning models is
no need for handcrafted features. However, it also requires a large amount of data to
optimize a massive number of parameters in the network [Ren et al., 2020].
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Recently, Zhao and He [2019] proposed a transfer-learning approach to entity matching
(EM), which leverage pre-trained EM models from large-scale production knowledge bases.
The next year, Brunner and Stockinger [2020] applied transformer architectures for entity
matching. As described in Chapter 3, several EM papers have leveraged the advantages
of transformers for the matching step and achieved state-of-the-art results. However, less
attention has been on using transformers for doing the blocking. In our work, Transformers
are applied in the experiments to solve the blocking problem in entity matching.

We will only focus on relevant DL aspects related to our performed experiments to limit
the scope in the following sections.

2.5.1 Recurrent Neural Networks and Long Short-Term Mem-
ory (LSTM) Challenges

Recurrent neural network (RNN) architectures have dominated the the Natural Lan-
guage Processing (NLP) field until Transformers were introduced [Brunner and Stockinger,
2020]. The most popular proposed approaches have been seq2seq [Sutskever et al., 2014,
Brunner and Stockinger, 2020] and encoder-decoder architectures [Cho et al., 2014, Brun-
ner and Stockinger, 2020], which consists of one RNN for the encoder and one RNN for
the decoder. Even though RNN seems to be suitable for building representations of se-
quential text data, Long Short-Term Memory (LSTM) was introduced to mitigate several
limitations.

In RNN, it is difficult to utilize the parallelization computation on GPUs caused by input
data needs to be passed sequentially processed one after the other, i.e. the inputs of the
previous state is needed to make any operation on the current state. This obstacle makes
it difficult to take benefit of modern hardware, which results in longer training time than
a simple feed forward network [Brunner and Stockinger, 2020]. In addition, RNN has a
sub-optimal transferring of knowledge from the source sentence to the target sentence,
also known as the bottleneck problem [Bahdanau et al., 2016]. Relevant information is
lost when it is passed through a recurrent neural network in long sequences of recurrent
connections. Lastly, RNNs struggles to retain longer term dependencies. This behavior is
due to the Vanishing Gradient problem, and it can cause problems when the early parts
of the input sequence contain important contextual information. In addition, long range
dependencies are hard to learn with RNNs, even though LSTMs and GRU (gate recurrent
unit) architectures should tackle it. Vaswani et al. [2017] described this effect by the path
length between two tokens, e.g. two words in a sentence, which is the number of steps
the signal has to flow through the network. The longer the path, the harder to learn a
dependency.

To the rescue to solve the problem of Vanishing gradient and Long term dependency in
RNN, Long Short-Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997] networks
were proposed. It is a modified version of recurrent neural networks, which makes it
easier to remember past data in memory. On the other hand, LSTM also struggles when
sentences are too long due to the challenge of keeping the context of a word that is far
away from the current word.
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These challenges have been the motivation of the development of transformers, in par-
ticular parallelization of sequential data. With RNN encoder, a sentence is passed one
word after the other. The current word hidden state has dependencies in the previous
words hidden state. The word embeddings are generated one time step at a time. With
transformer encoder, on the other hand, there is no concept of time step for the input
data. All words of the sentence are determined by the word embeddings simultaneously
[Hernández and Amigó, 2021].

2.5.2 Attention Mechanism

To overcome the bottleneck problem, [4] and [70] proposed a new technique called at-
tention. Attention was introduced as a mechanism to master the bottleneck problem
[Bahdanau et al., 2016, Vaswani et al., 2017]. Vaswani et al. [2017] proposed Transformer
architecture that eliminates sequential processing and recurrent connections. It relies only
on self-attention mechanism to capture the global dependencies between input and out-
put. Transformer architecture achieved significant parallel processing and shorter training
time without any recurrent component [Hernández and Amigó, 2021].

Attention involves answering what part of the input data is important to focus on. The
analogy to understand self-attention is the brains’ ability to understand how much each
word is related to every word in the same sentence. This is represented in the attention
vector and it is computed in the attention block. For every word we can have an attention
vector generated, which captures the contextual relationships between words in the sen-
tence. Each time the model predicts an output word, it only uses parts of an input where
the most relevant information is concentrated instead of an entire sentence [Hernández
and Amigó, 2021].

To exemplify, a word can be represented as a weighted combination of the words in its
proximity. Brunner and Stockinger [2020] explain self-attention by using the word ”it”
and the sentence ”The animal did not cross the street because it was too tired”. For
the human brain, it is intuitive that the word ”it” in a sentence can be represented by
the words ”The”, ”animal”, and ”street” in the same sentence. When the attention
mechanism is applied, a language model can be trained to pay attention to relevant words
in its proximity accordingly [Brunner and Stockinger, 2020].

2.5.3 Transformers

Brunner and Stockinger [2020] was the first to approach entity matching with modern
transformer architectures. In this architecture, the recurrent connections are redundant
and can be removed. It also removes the computational bottleneck caused by the RNN’s
long backpropagation path. In this way, it allows for a much higher degree of paralleliza-
tion and faster training. There are several advantages related to using transformers. It
reduces the computational time when using pre-trained models instead of doing heavy
training on low resource hardware. There are also more than 2,000 pre-trained models
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published to transfer the learning ability from. In addition, the transformers utilizes
attention mechanisms to overcome the drawback of information loss caused in previous
approaches.

As input, the transformer applies a sequence of tokens. The first obstacle is to convert
the sentences into relevant and useful sequence of tokens to be ingested into the model
architecture of the transformer. There are two common modes to fine-tune a transformer,
either paired mode and single mode [Jain et al., 2021]. While a paired mode is typical
used for matching, single mode is often applied for blocking applications. For each token
the transformer can output a fixed dimensional contextual embedding. The hundreds of
million parameters used in Transformer are pre-trained using large amounts of unlabeled
text corpus. In turn, each token is assigned an embedding that captures its semantics in
the context of the current sentence. These highly contextual embeddings have demon-
strated robustness to spelling mistakes, and abbreviations, and provide state-of-the-art
performance on dirty datasets for entity matching (EM) tasks [Brunner and Stockinger,
2020, Li et al., 2020]. This improvement is achieved by inserting a task-specific layer on
top of the transformer to obtain a fine-tuned EM task-specific objective.

Vaswani et al. [2017] introduces the model architecture Transformer build only with at-
tention mechanisms. The challenge of the previously approaches are described in Sec-
tion 2.5.1. Corresponding to Long Short-Term Memory(LSTM), Transformer is also an
architecture to transform one sequence into another sequence using encoder and decoder.
However, Transformer differs from the previous models because attention mechanisms
can completely replace the recurrent network modules like GRU and LSTM[Brunner and
Stockinger, 2020].

(a) Transformer (b) Multi-Headed Attention

Figure 2.6: Transformer architecture as illustrated by Vaswani et al. [2017].
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In Vaswani et al. [2017], there can be multiple encoders and decoders stacked on top of
each other. Encoder and decoder consists of N = 6 encoder blocks followed by the same
number of decoder blocks. A encoder block and decoder block are represented inside Nx
module illustrated to the left and right in Figure 2.6a, respectively.

In the encoder, it can be seen that each layer of those N=6 identical layers has 2 sub-
layers. The first sub- layer is a multi-head self-attention mechanism, and the second is
a position-wise fully connected feed-forward network [Vaswani et al., 2017]. There are
residual connections around each sub-layer and a normalization layer to ensure stable
training. The output data has the same dimension model of 512 for each sub-layers.

The decoder, on the other hand, consists of the 3 sub-layers masked multi-head attention,
multi-head attention and a feed forward layer. These sub-layers are illustrated to the
right in Figure 2.6a. Each sub-layer has layer normalization. Each decoder block is
mostly identical to an encoder block. The only significant addition is a masked multi-
head attention. The masked multi-head attention is used to mask the next token in the
sentence to prevent the model from looking at the future word. Then, the model can
predict the next word without looking at the original text word in the sequence. If not
doing so, it would not be any learning, it would only output the next word.

In both the encoder and the decoder, the multi-head attention layer uses scaled dot prod-
uct attention as a core of performing complex computations. This multi-head attention
is showed in Figure 2.6b. All parameters of this multi-headed attention mechanism are
learned through standard backpropagation. Feed forward neural network is applied to
every one of the attention vectors. In practice, these feed forward nets are used to trans-
form the attention vector into a form that is digestible by the next encoder block, decoder
block or a linear layer, as showed in Figure 2.6a. At the end of the decoder, a Softmax
and linear layer is added on top of the decoder. Here, the number of neurons in linear
layers is equal to the number of words in the output sentence [Vaswani et al., 2017].

Raw text cannot be used directly, hence, the input and output are passed through the
embedding layer to learn context-independent word embeddings for each token. Then,
the positional encoding is concatenated to the embedded representation of n-dimensional
vector space to give each word positional information between the words and sentences.
This positional encoding are added after input embedding for the encoder and after the
output embedding for decoder to remember the token’s order in the sequence.

The downsides related to transformer architecture are limited of only handling fixed-length
text strings. The raw text data needs to be split into a defined number of segments before
being fed into the model as input. While the positional embedding is periodic and the
multi-headed attention can be computed on any sequence length, Transformer models
generally struggle when encountering sentences longer than those seen during training.
The reason is that since it has never seen such long-term dependencies before, it cannot
represent them correctly, and therefore, it underperforms [Dai et al., 2019].
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2.5.4 Pre-trained Language Models

Transformer based Pretrained Language Models (TPLM) involves typically pre-trained
learning models such as BERT [Devlin et al., 2019], DistillBERT [Sanh et al., 2020],
XLNet [Yang et al., 2020], and RoBERTa [Liu et al., 2019]. These pre-trained learn-
ing models have demonstrated to work well on various domains and EM tasks [Brunner
and Stockinger, 2020]. On the other hand, there exists other language models such as
OpenAI’s Generative Pretrained Transformers (GPT). GPT-3, an gigantic autoregressive
language model pre-trained LM with an enormous 175 billion parameters, is a unidirec-
tional language model unlike BERT models [Brown et al., 2020]. Currently, no published
EM works have evaluated language models such as GPT-2 and GPT-3. However, GPT-3
incurs practical inconvenience caused by the model size and significant compute resources
that is required [Brown et al., 2020].

Bidirectional Encoder Representations from Transformers (BERT) is a multi-layer bidi-
rectional transformer encoder, pre-trained on 16 GB data consisting of 3.3 billion words
from Wikipedia and BooksCorpus. BERT use Transformer, an attention mechanism that
learns contextual relations between words in a text. Transformer has two separate mech-
anisms, an encoder that reads the text input and a decoder that produces a prediction for
the task. In BERT, on the other hand, only the encoder mechanism is required because
the purpose is to create a language model. During pre-training, the model is trained
on unlabeled data over different pre-training tasks. Then, BERT model is fine-tuned by
first initializing with the pre-trained parameters before the parameters are fine-tuned to
a task-specific objective based on labeled data[Devlin et al., 2019].

Historically, the one-directional language model approaches, like LSTM, were limited to
have the ability of reading text input sequentially, either left-to-right or right-to-left, that
also could bias tokens towards a certain meaning until a complete sentence was reached.
The introduction of Transformers unlocked the potential of reading in both directions at
once so-called bidirectionally[Devlin et al., 2019]. BERT takes advantage of this bidirec-
tional technique during pre-trained when using Masked Language Modeling (MLM) and
Next Sentence Prediction (NSP). Language Modeling is the task of predicting the next
token based on a given sequence of tokens. In masked language modeling, a percentage
of input tokens are randomly masked with a [MASK] token, and it is only those masked
tokens that are predicted bidirectionally. In this way, the model learns to reconstruct
the original data using the entire sequence of tokens. As the input representation for the
encoder, the sequence can be a single sentence or a pair of sentences separated by the
separator token [SEP] and starting with a special classification token [CLS]. In addition,
positional embeddings are used to remember the position of a token in the sentence.

In BERT, a Next Sentence Prediction (NSP) language task is added to the training
process. In this step, BERT is trained to perform Next Sentence Prediction tasks that
require an understanding of the relationship between sentences. The model receives two
sentences A and B as input, and it has to predict if the sentence B is the next sentence
for A [Devlin et al., 2019].

RoBERTa introduces improved performance by using the more training data combined
with correct hyperparameters [Liu et al., 2019]. They showed that BERT was signifi-
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cantly undertrained and proposed minor changes to improve performance to match or
exceed existing models. To exemplify, RoBERTa yields 2-20% improvement over BERT
by increasing the training data to five English-language corpora with a total size of over
160 GB of text, 16 GB BERT and 144 GB additional data. In addition, Liu et al. [2019]
demonstrated that longer training duration and the additional data led to the better per-
formance. They also found that the learning rate was increased when the batch size was
increased above 256, which was BERT’s batch size. Another important changes to im-
prove the performance were to remove the next sentence prediction (NSP) loss and to use
the model input maximum size of 512 tokens, i.e. full attention span, during pre-training
to better learn long-range dependencies [Brunner and Stockinger, 2020].

DistilBERT represents a BERT distillation, a smaller, cheaper and faster pre-trained lan-
guage model than BERT instead of aiming at improving the model results itself[Sanh
et al., 2020]. There are several approaches to reduce the model size with respect to main-
tain the performance approximately unchanged: 1) Quantization, 2) weights pruning, or
3) distillation. DistilBERT has chosen knowledge distillation, where a smaller model is
trained based on learning from the original model behaviorSanh et al. [2020]. In compar-
ison to the original BERT model, DistilBERT has only 3% degradation from BERT at
the same time reducing the model size by 40% and improving to be 60% faster.

2.6 Evaluation Metrics

We are interested in the following performance measures to evaluate our proposed ap-
proach. Once the entity blocker algorithm has been applied, an approach for evaluating
the performance of blocking schema s is needed. There are several ways to evaluate
the entity blocking algorithm [Christen, 2012b, Papadakis et al., 2015, Shao et al., 2018,
Papadakis et al., 2019]. First, the blocking performance can be characterized by its effec-
tiveness and its efficiency[Efthymiou et al., 2020].

Definition 2.6.1 (Effectiveness). Entity matching aims to achieve a high-quality match
result with respect to recall and precision. This means all real corresponding entities and
no others entities should be included in the result. In blocking, this quality measure is
measured by using Pair Completeness (PC) and Pair Quality (PQ).

Definition 2.6.2 (Efficiency). Entity matching aims to improve the efficiency of EM
process by adopting blocking algorithms to reduce the search space. EM should be fast
even for voluminous datasets. In blocking, this quality measure is measured by using the
reduction ratio (RR).

Before defining the blocking performance quality measures, it is required to define the
terminology. A pair of tuples that are placed into the same block is called true positive
(TP), if it refers to a match. Otherwise, it is defined to be false positive (FP). Furthermore,
a pair of records is called a false negative (FN) if it refers to a match while the record
pairs are placed into two different blocks. Thus, TP(s), FN(s), and FN(s) are denoted to
the numbers of true positives, false positives, and false negatives in the blocks generated
by s, respectively. Further, the quality measures of blocking algorithms are defined and
described.
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Definition 2.6.3 (Blocking Performance). Given block collections A and B, blocking aims
to cluster similar entities into a block collection bc such that PC(bc), PQ(bc) and RR(bc)
are simultaneously maximized.

Reduction Ratio (RR) quantifies the extent to which the blocking scheme reduces the
number of candidate pairs. In other words, it indicates the relative reduction of the
comparison search space. The quality of the reduction is not taken into account in RR,
meaning how many record pairs from the symmetric difference U, A4B and how many
from matches from intersection M, A∩B are removed by blocking[Christen, 2012a]. It is
illustrated in Figure 2.1. RR can be expressed by

RR = 1− Nb

|A| × |B|
, RR ∈ [0, 1] (2.4)

where Nb is the number of record pairs produced by a blocking algorithm, meaning the
number of record pairs not removed by blocking. The term |A| × |B| is the Cartesian
product or the total number of comparisons.

An RR close to 1.0 indicates that candidate set has been significantly reduced, while an
RR close to 0.0 indicates that the reduction achieved by the blocking scheme was small.
RR can be computed although the ground truth of the datasets are unknown.

Pair Completeness (PC) of a blocking scheme s is the number of true positives TP(s),
meaning TP(s) + FN(s), which measures the rate of true matches remained in blocks.
PC can be calculated by using

PC =
TP (s)

TP (s) + FN(s)
, PC ∈ [0, 1] (2.5)

where TP(s) is the number of true positives and FN(s) is the number of false negatives
in the block. Pair completeness can be seen as being analogous to recall. The PC value
is between 0 and 1, which is directly proportional to the effectiveness of the algorithm.
The ground truth of the datasets are required to compute PC.

Pair Quality (PQ) of the blocking schema is the number of true positives TP(s) divided
by the total number of record pairs that are placed into the same block, meaning TP(s)
+ FP(s), which measures the rate of true positives in blocks. PQ can be expressed by

PQ =
TP (s)

TP (s) + FP (s)
, PQ ∈ [0, 1] (2.6)

where TP(s) is the number of true positives and FP is the number of false positives in the
block. The ground truth of the datasets are required to compute PQ. A high PQ value
means blocker is efficient and generates mostly true matched record pairs. On the other
hand, a low PQ value means a large number of non-matches are also generated.
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F1-score is defined as the the harmonic mean of pairs completeness (PC) and pair quality
(PQ) [Simonini et al., 2016, Christen, 2012b]. This metric can be expressed by,

F1(bc) =
2× PC(bc)× PQ(bc)

PC(bc) + PQ(bc)
(2.7)

This quality measure can be useful to compare block collections that present different
values of both PC and PQ.

Unfortunately, there are a trade-off between the quality measures for selecting blocking
schemes caused by they are often competing. For instance, PC and PQ are negatively
correlated in many applications, as well as RR and PQ [Christen, 2012b]. There are also
a trade-off between RR and PC, in other words, between the number of removed record
pairs and the number of missed true matches. As a consequence of no blocking algorithms
are perfect, the blocking process will remove record pairs from M , both true matches and
true non-matches. Several factors such as dirty data, misspellings, natural variations,
synonyms, missing values, etc, are affecting the quality measures. Furthermore, it is
important to recognize that blocking will also influence the quality measures used in the
matching process.

Shao et al. [2018] states there are different blocking schemes being preferred in differ-
ent situations. For instance, a crime investigation aims to match individuals to a large
databases of people, a high PC would be desired to increase the likelihood that poten-
tial criminals are included for investigation. On the other hand, in public health studies
aiming to find matches corresponding to a patient with certain medical conditions, a high
PQ is required to only include patients that do have the medical condition under study
[Christen, 2012a].
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Chapter 3

Related Work

In this chapter, we present some previous works relevant to our thesis. This thesis concerns
the intersection of several distinct research fields, deep learning (DL), active learning (AL),
and Entity Matching (EM). Hence, there are few previously published works related to
our thesis as a whole. In blocking, Deep Active Learning (DAL) is not covered in the
research to perform candidate set selection, except for the recently published work by
Jain et al. [2021]. Currently, the proposed Ditto [Li et al., 2020], SentenceBERT [Reimers
and Gurevych, 2019], DTAL [Kasai et al., 2019], and DIAL [Jain et al., 2021] are the
most relevant work to our approach. However, several approaches, such as Zhang et al.
[2020] and Ebraheem et al. [2019], suffer from not reporting their blocking performance
results on the EM benchmark datasets presented in Chapter 4, which in turn would define
a Baseline for comparing our proposed approach against. Ditto and DIAL focus instead
to evaluate their approach as a unified entity matching system with a blocking-matching
combination to achieve target performance with respect to F1-score [Li et al., 2020, Jain
et al., 2021].

At a high level, these works can be separated into approaches that 1) use deep learning
for blocking [Zhang et al., 2020, Ebraheem et al., 2019], 2) EM work leveraging TPLM
as a strategy [Reimers and Gurevych, 2019, Li et al., 2020, Jain et al., 2021], and 3)
EM approaches that unlocking the potential of active learning as a strategy [Kasai et al.,
2019]. These three categories of related work will now be accounted for in turn.

3.1 Traditional Blocking Methods

Traditional blocking methods are of interest to better understand which blocking ap-
proaches have been extensively studied over several decades. Previous work solutions
have tackled the blocking problem by proposing various methods such as handcrafted
blocking rules, unsupervised clustering, crowdsourcing and machine learning [Christen,
2012b, McCallum et al., 2000, Fisher et al., 2015, Wang et al., 2016, Li et al., 2020].

In practice, a key-based blocking methods with human effort involvement are still mostly
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used. These techniques use a key to partition the entities into separate blocks. This
approach is beneficial to restrict matching to only the entities in the same block [Christen,
2012b]. Köpcke and Rahm [2010] categorizes traditional blocking algorithms between
overlapping and disjoint methods. Overlapping method is determining overlapping blocks
of entities. These methods can result in an entity to be matched to multiple blocks, in
which leads to increased pair completeness compared to disjoint methods. These methods
lead also to increased overhead. Disjoint methods build mutually exclusive blocks by
assigning each entity to one block. It is typically implemented by using sorting or hash-
based on the key. In these blocking methods, a sub-optimal key results in overselection
of non-matching record pairs, implying decreasing efficiency. The situation is even worse
if the particular key is sorting out the true matching record pairs, and as a result, it
increases the fraction of non-matches in the candidate set C. The key is determined
manually or semi-automatically based on the datasets. Traditional blocking methods also
involve q-gram blocking [Papadakis et al., 2015], and sorted neighborhood [Hernández
and Stolfo, 1995].

Another blocking strategy is known as filtering, which apply simple string similarity met-
rics and a threshold value to remove negative matches. An example is to use Jaccard
similarity with a threshold value of 0.4.

Some other methods, MinHash blocking [Liang et al., 2014] is used to obtain a fuzzy
match on attributes. However, it often results in many unaffordable candidate pairs.
Meta-blocking [Papadakis et al., 2014a,b, 2016a, Simonini et al., 2016] tries to reduce
Pair-Entity ratio (P/E) to achieve a small ratio of the number of candidate pairs to the
number of entities by introducing, between blocking and matching, extra steps to prune
the candidate pairs. However, their proposed approach is orthogonal to our work. We refer
to Papadakis et al. [2016b, 2019] for a comprehensive comparison of existing blocking and
filtering methods. Additionally, there is still a high demand for democratizing blocking
by reducing the human involvement in labeling data, find correct blocking functions,
performing feature engineering, and tuning parameters [Ebraheem et al., 2019].

3.2 Deep Learning for Blocking

Deep Learning has been used to tackle the blocking task in entity matching [Zhang et al.,
2020, Ebraheem et al., 2019]. In particular, DeepER and AutoBlock are of interest to
better understand what Ditto improved in their work.

Ebraheem et al. [2019] proposes DeepER, a system that needs less labeled data by using
the knowledge of matching record pairs. They have designed an approach that consid-
ers both syntactic and semantic similarities based on distributed representation vectors
(DR), a fundamental concept in deep learning (DL). Compared to the traditional block-
ing methods, feature engineering and parameter tuning are not required. Ebraheem et al.
[2019] use recurrent neural networks (RNNs) with long short term memory (LSTM) hid-
den units to encode each record to a DR vector. For each record in the dataset A, their
blocking approach retrieves the candidates with the highest cosine similarity scores from
the dataset B by using an approximate nearest neighbor search on vector representations.
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In this way, the candidate set is reduced to including records with their approximate
nearest neighbors. In addition, they propose a locality sensitive hashing (LSH) based
blocking approach that consider all the tokens with all attributes of a record to produce
smaller blocks.

Zhang et al. [2020] introduced AutoBlock, it improves deep learning-based EM models
by pre-training the EM model on an extra task of entity type detection. In contrast to
DeepER, they implement multiple alignment layers for token-level, attribute-level, entity-
level comparisons to incorporate finer-grained similarity calculation between records. Au-
toBlock assumes some knowledge about the data beforehand, and therefore strong at-
tributes are used, such as model number for products to produce labeled data. Both
AutoBlock and DeepER use Locality Sensitive Hashing (LSH) for retrieval.

A weakness related to AutoBlock is that it requires insight about the datasets to identify
strong attributes, essential to produce labeled data. Advantageous, Transformers do not
necessarily need to have any such assumptions beforehand to start learning the trans-
former network. Hence, an initial training set can instead be instantiated randomly, and
an Oracle are labeling these instances as either matches or non-matches.

Lastly, Zhang et al. [2020] and Ebraheem et al. [2019] suffer from not reporting their
blocking performance results on the EM benchmark datasets presented in Chapter 4.
This leads to the difficulty of evaluating their weaknesses and blocking performance di-
rectly with our proposed approach and experimental results. In general, it is a call for
establishing a comprehensive benchmark survey of blocking methods based on these EM
benchmark datasets and a belonging test framework with proposed blocking methods to
date, suggested as further work in Section 8.2.

3.3 Deep Learning with TPLM for Blocking

Li et al. [2020] investigates a similar approach for blocking as used in DeepER in their
proposed solution called Ditto in a high-resource setting. Ditto is of interest and related
to our work due to its application of TPLM for blocking. Ditto’s solution consists of
two high-level components to leverage of pre-trained language model (TPLM), encoding
each record with Sentence-BERT [Reimers and Gurevych, 2019], and similarity search. A
pre-trained language model (TPLM) is fine-tuned on labeled data according to Sentence-
BERT [Reimers and Gurevych, 2019]. By fine-tuning the TPLM on labeled data, they
obtain an embedding vector representing each record in Dataset A and Dataset B from the
trained transformer model. Next, the candidate set is selected by doing a similarity search
of likely matching pairs of records, retrieving the top-k approximate nearest neighbors by
using blocked matrix multiplication [Abuzaid et al., 2019]. Li et al. [2020] reports that
Ditto reduces the number of likely record pairs in the candidate set from 10 million to
0.6 million. A basic blocking method based on heuristic rules instead obtained 10 million
record pairs. As a model assumption, they simplify their evaluation to only involve
similarity search according to match each record with k = 10 to achieve the top ten
most similar records in the candidate set. Additionally, Li et al. [2020] claim that their
blocking approach in ”Ditto reduces the total time for matching from 6.49 hours to 1.69
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hours on a single-GPU machine”, which shows an accelerating of the EM process by 3.8x
with TPLM-based blocking. This observation also showcases the potential of performance
improvements by integrating an efficient blocking step as a task in the entity matching
process. However, Ditto does not report any blocking performance results with respect
pairs completeness and reduction rate.

According to Li et al. [2020], they have chosen to retrieve k = 10 nearest neighbors for
each record. The choice of k is an essential factor that influences the size of the candidate
set. In addition, it affects the overall pair completeness of the system. A small candidate
set can result in low pairs completeness and, and a large candidate set can inadvertently
cause low pair quality (i.e. precision). The risk of missing out true matching record pairs
increases when k decreases. In our approach, it also seems reasonable to use top-k nearest
neighbors search instead of filtering based on a similarity threshold because identifying
the threshold parameter for each dataset is quite difficult and impractical. In particular,
the performance can deteriorates drastically as a comparison of dense attributes [Zhu
et al., 2018].

On top of the transformer network for blocking, Ditto has added a classification layer with
Softmax loss to unlock for co-embedding likely matching and non-matching record pairs.
In this way, Softmax transforms the embedding vectors in the embedding space to normal-
ize the transformer network’s output to a probability distribution over predicted output
classes. Consequently, the transformation might influence the difficult non-matches, of-
ten the doubt cases, by moving their representation in the embedding space from a doubt
case to a more certain case. Ditto’s model architecture seems to not compensate for the
fact that many non-matching record pairs in datasets can have some degree of similarity.
This disadvantage might affect a blocking approach combining TPLM and active learning
strategies more negatively than a non-active learning approach with TPLM isolated.

There are several weaknesses related to Ditto’s TPLM approach in a high resource setting.
They assume labeled datasets are available. Unfortunately, they do not take advantage of
an active learning strategies to reduce the labeling cost. Consequently, the availability of
labeled data needs to be sufficient to fine-tune the TPLM properly for the task-objective.
Additionally, Ditto did not report their PC score performance and reduction rate on the
EM benchmark datasets.

3.4 Deep Active Learning with TPLM for Blocking

and EM

Currently, Jain et al. [2021] published April 2021 the most recent work within deep active
learning for a entity matching system. They propose Deep Indexed Active Learning
(DIAL) based upon DTAL [Kasai et al., 2019]. Compared to AutoBlock, DIAL does not
require any insight into the dataset beforehand. In contrast to Ditto, DIAL combines
AL with TPLM to improve the performance in a blocking-matching combination in EM.
As previously described, Ditto uses similarity search by blocked matrix multiplication
[Abuzaid et al., 2019], and DIAL uses the similarity Search FAISS to retrieve nearest
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neighbors [Johnson et al., 2021].

Jain et al. [2021] apply AL with TPLM and propose to integrate the blocking process
in the active learning loop. The matching process is trained in an AL loop. DIAL
differs to our research as we focus on solving the blocking process by combining AL with
TPLM isolated from the matching process. Jain et al. [2021] claims that the blocking
and the matching process can simultaneously leverage the advantages of using the newly
labeled record pairs in the AL loop. In addition, they trained a committee on top of the
transformer network to unlock the potential of the query strategy index-by-committee.
From their method, they consider models for matching and blocking as separate systems,
and they create a committee of multiple embeddings [Jain et al., 2021].

DIAL is evaluating their co-embed blocking and matching on several benchmark datasets
as a unified entity matching system. It outperforms previous matching state-of-the-art
results for entity matching, but it suffers from not reporting the blocking performance
on the EM benchmark datasets. Additionally, they demonstrate how to leverage TPLM
on a multilingual dataset [Jain et al., 2021]. Since DIAL was published in April 2021, it
was intentionally not identified any weaknesses of their approach, and therefore, it is not
addressed in our design choices.

3.5 Deep Transfer Active Learning for EM

Kasai et al. [2019] proposed approach Deep Transfer Active Learning (DTAL) to tackle
EM in a low resource scenario, where the availability of labeled data is low. DTAL is
of interest and related to our work due to its application of active learning in a low-
resource setting. Contrary to Ditto, DTAL does not apply TPLMs in the matching
process and does not address learning a blocker according to our research goal. Instead,
DTAL combines transfer learning and active learning to target the low-resource setting
for matching step in EM. The AL strategies used can be utilized in our work since DTAL
uses independent TL and AL methods working even though the source datasets for TL
are unavailable.

DTAL learns a transferable model from a high-resource setting, which is further adapted
to a target dataset using active learning. Hence, their TL approach needs domain-related
labeled target datasets, often with similar content as the source dataset, if TL should
be applied. The approach learns a neural network architecture by integrating active
learning strategies such as uncertainty sampling or partitioning sampling. These ac-
tive learning strategies select informative examples from the target dataset to train the
transferred model on. Combining TL and AL with traditional deep learning approaches
demonstrates competitive performance with previous state-of-the-art matching methods
on public benchmark datasets for EM with an order of magnitude fewer labels.

As mentioned in their work, Kasai et al. [2019] exploit AL query sampling strategy de-
signed for DL models and EM as a task. The active learning strategies try to select a
balanced set of positive and negative record pairs based on the model’s predictions. Next,
they divide the record pairs into two partitions, consisting of likely positive examples in
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one partition if prediction ≥ 0.50 and likely negative examples in the other partition if
prediction ≤ 0.50. In this way, the query sampling strategy then selects record pairs
with the lowest entropy from both partitions, so-called high-confidence positives (HPC)
and negatives (HCN), as a treatment to prevent overfitting in the network [Wang et al.,
2017]. In addition, the query strategy selects the record pairs with the highest entropy,
denoted as low confident positive (LCP) and negative (LCF) record pairs, as a treatment
to improve pair completeness and pair quality [Qian et al., 2017].

According to their described algorithm, an Oracle labels LCP and LCN pairs while HCP
and HCN pairs are labeled unsupervised using the model’s predictions to define their
corresponding labels. The purpose of the strategy is to leverage semi-supervised learning
to feed twice as many record pairs into the model. An Oracle labels half of the record pairs,
and the remaining half of the record pairs are labeled by the model’s predictions. Their
idea is to achieve enough labeled training data to train data-hungry DL models properly
for the specific-task. They argue that the advantage of better performance gained from an
increased training size is more significant than the disadvantage from potentially incorrect
labeling of record pairs caused by the model’s predictions.

A limitation of these active learning informative query strategies is their use of model
predictions to select examples for the model in the matching step [Kasai et al., 2019].
Previously proposed blocking methods are not prepared for making a probability distri-
bution over predicted output classes based on the record pairs in the candidate set. Lastly,
we want to point out that their experimental results are evaluating the matching step in
EM.

3.6 Earlier Work Summarized

Li et al. [2020] applied TPLM for their blocking approach in a high-resource setting, as-
suming a sufficient amount of labeled data was available. Unfortunately, data acquisition
and annotation consumes a lot of manpower, and as a result, high level of domain exper-
tise is required. In EM, deep learning models can be unfeasible to apply for blocking if
the labeling effort cannot be reduced to a low-resource setting. We argue that Ditto has
several weaknesses in that they 1) do not consider that a realistic blocking scenario with
a limited amount of labeled data. Ditto needs substantial labeling effort upfront before
the learning of the TPLM models can start to reach target performance. 2) When Soft-
max is used in Ditto’s model architecture, they do not separate between dissimilar record
pairs and record pairs with some degree of similarity. 3) Previously proposed blocking
approaches [Ebraheem et al., 2019, Zhang et al., 2020, Li et al., 2020] are not prepared
to integrate novel informative active learning strategies based on model predictions for
TPLM-based blocking approaches.

In a low-resource setting, our proposed method addresses all three challenges jointly by: 1)
Introducing active learning (AL) combined with TPLM to reduce the labeling cost while
maintaining the blocking performance at a similar level as a high-resource setting. The
availability of labeled data needs to be sufficient to fine-tune the TPLMs properly for the
task-objective. 2) Considering record pairs represented as doubt cases in the embedding
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space more accurately to treat the negatively effects caused by Softmax. 3) Unlocking
the potential for leveraging novel informative active learning query sampling strategies
to select examples more efficiently with respect to train TPLMs. In our approach, we
apply the partition sampling strategies [Kasai et al., 2019] as described in Section 3.5,
and uncertainty sampling [Lewis, 1995]. Chapter 5 introduces our design choices to bridge
this gap.
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Chapter 4

Data

The following chapter covers the structure and content of the public EM benchmark
datasets used to evaluate the experiments.

4.1 Public Datasets

The datasets used to validate our approach are five of the most used public available
datasets for benchmarking entity matching [Li et al., 2020], presented in Table 4.1. These
widely applied datasets1 are utilized among others in various types of EM experiments
performed by Jain et al. [2021], Li et al. [2020], Mudgal et al. [2018] and Kasai et al.
[2019].

These public datasets are pre-blocked, the number of labeled record pairs is less than the
Cartesian product, as the datasets are prepared to evaluate matching processes as a task.
Consequently, we have to reproduce the Cartesian product to prepare these datasets for
our blocking step. It will, unfortunately, result in unlabeled and labeled record pairs in
the candidate set, which needs to be handled as our active learning strategy can only take
advantage of labeled examples.

These datasets exist in several versions in published papers depending on pre-processing
and the split factor used for train, test, and validation sets. In this version of datasets,
there are fixed splits for train, validation, and test set with a ratio of 3:1:1. Mudgal et al.
[2018] investigated the advantages and limitations of DL models when applied to various
EM tasks and categorized the datasets into structured, textual, and dirty data to better
separate the DL performance over the datasets. In our case, we only evaluate textual
and structured datasets according to Jain et al. [2021], Li et al. [2020]. Structured and
textural record pair examples can be found in Table 4.3.

1https://github.com/anhaidgroup/DeepMatcher/blob/master/Datasets.md

https://github.com/anhaidgroup/DeepMatcher/blob/master/Datasets.md
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4.1.1 Dataset Overview

The datasets consist of five tables, records A (A), records B (B), train, test and validation.
A and B represent entities from two different sources. To exemplify, using the dataset
Walmart-Amazon, A contains products from Walmart and B contains products from
Amazon. All of these data are originally created from existing websites containing data
of things like books, electronics, and products.

Table 4.1 shows dataset statistics. Amazon-Google contains software data from Amazon
and Google. As observed from Table 4.3, the dataset is structured and not very tex-
tual with short strings. Amazon dataset has less missing values with approximately 4.87
% missing values than Google dataset with 29.65 %. DPLP-ACM has bibliographic
data from DBLP and ACM, and it has few missing values. Compared to Amazon-
Google, DPLP-ACM has more wordy attribute values. DBLP-GoogleScholar contains
bibliographic data from DBLP and Google Scholar, where it contains less wordy strings
than DPLP-ACM. Note that Google Scholar has significant amounts of missing values.
Walmark-Amazon contains product data from Walmark and Amazon. Walmart-Amazon
has some missing values, and the word count is on average more or less comparable to
DBLP-GoogleScholar and DPLP-ACM. Abt-Buy is defined as a textual dataset, contain-
ing product data from abt.com and buy.com, respectively. The datasets Abt and Buy
have a high concentration of missing values, and Abt has significant longer strings than
Buy.

Table 4.1: Statistics of the five real-world datasets in the experiments. Column
’type’ denotes data types categorized into structured and textual. Domain
shows data content are split into four domains.

∣∣Size
∣∣ indicates the number of

labeled pairs in the dataset.
∣∣Matches

∣∣ represents the number of positive pairs,
i.e. marked as a match in the dataset.

∣∣Attribute
∣∣ represents the number of

attributes in the dataset being matched. Missing values, NA(A) and NA(B),
refer to the fraction of missing values in the Dataset A and B, respectively.
Word counting, WC(A) and WC(B), denote the average number of words
in Dataset A and Dataset B. In this case, attribute values for each row are
concatenated, and numerical values are ignored. Additionally, the datasets
are categorized as easy+ and hard∗.

Type Dataset Domain Size |Attribute| |matches| NAA [%] NAB [%] WCA WCB

Structured

Amazon-Google* software 11460 1167 3 4.87 29.65 8.10 8.20
DBLP-ACM+ citation 12363 222 4 0.00 0.15 18.30 21.80

DBLP-Scholar+ citation 28707 5347 4 4.10 19.37 16.20 18.80
Walmart-Amazon* electronics 10242 962 5 2.33 9.41 14.20 15.2

Textual Abt-Buy* product 9575 1028 3 20.44 28.79 47.10 17.10

We chose to partition these datasets into two categories, easy and hard, which also showed
in Table 4.1. The former consists of mostly structured datasets and has less noise in
terms of missing information or typos. Therefore, it can be expected to achieve higher
performance on datasets categorized as easy. The challenging datasets, denoted as hard in
Table 4.1, have typically unstructured attributes and corresponding noisy attribute values.
This characteristic is often seen in datasets consisting of product descriptions and natural
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language. On these ”hard” datasets, it is expected that our approach will struggle much
more to achieve high performance. As our experimental results will demonstrate later,
our approach can get better results on DPLP-ACM and DBLP-GoogleScholar. According
to traditional blocking, the easy datasets are also the data that requires less extensive
effort from a domain expert to do data cleansing, feature engineering, and so on.

Table 4.3 shows matching and non-matching record pairs examples from the five tested
datasets. Both matching and non-matching record pairs are showed with various degrees
of similarity between Table A and B for each dataset.

4.1.2 Training, Validation, and Test Set

Each labeled datasets are split into the subsets Train, Validation, and Test by using a split
ratio 3:1:1. Further, Train, Test and Validation each contain three attributes: ltable id,
rtable id and label. ltable id and rtable id referred to records in Dataset A and Dataset
B, respectively. Label is defined to be 0 for non-matching and 1 for matching record pairs
between Dataset A and Dataset B.

Table 4.2 shows positive rate for Train, Test and Validation for every dataset according to
the split 3:1:1, respectively. The positive rate across the datasets varies at most with ap-
proximately 9.24 %. While Walmart-Amazon has the fewest matches with approximately
9.38 %, DBLP-GoogleScholar has the highest positive rate with approximately 18.62 %
matches. The positive rate is an essential indicator to track because the query sampling
strategies can be influenced by running out of matching pairs in the AL iterations. Addi-
tionally, the amount of record pairs varies significantly across the datasets, Abt-Buy has
9575 record pairs while DBLP-GoogleScholar has almost three times more with 28707
record pairs.

The label budget rate is derived by labeling budget of 1000 examples over the total number
of record pairs in the respective datasets. As seen from Table 4.2, our labeling budget
represents between 5.81 % and 17.41 % of the total size of the dataset, a significant
reduction in labeling cost from a high resource setting to a low resource setting.

Table 4.2: The respective labeled datasets are split into three subsets of la-
beled pairs; train, validation, and test by using a split ratio 3:1:1. The positive
rate among the train, validation, and test within each data sets are approxi-
mately constant. Additionally, the number of positive record pairs over total
number of record pairs are showed regarding train, validation, and test sets.
Last, the labeling budget rate are computed corresponding to significant re-
duction in labeling cost.

Dataset
Pos. Rate Train Test Validation Total Label Budget Rate

[%Pos] [Pos/Tot] [Pos/Tot] [Pos/Tot] [Pos/Tot] [%Budget/Total]
Amazon-Google 10.17 699/6874 234/2293 234/2293 1167/11460 14.55
DBLP-ACM 17.96 1332/7417 444/2473 444/2473 2220/12363 13.48
DBLP-GoogleScholar 18.62 3207/17223 1070/5742 1070/5742 5347/28707 5.81
Walmart-Amazon 9.38 576/6144 193/2049 193/2049 962/10242 16.28
Abt-Buy 10.73 616/5743 206/1916 206/1916 1028/9575 17.41
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Table 4.3: Examples of matching and non-matching record pair from the five
tested datasets.

(a) Abt-Buy

Match Table Name Description Price

True

A monster icarplay wireless 250
fm transmitter with autoscan
for ipod and iphone aipfmch250

monster icarplay
wireless 250 fm
transmitter with
autoscan (...)

100.0

B monster a ip fm-ch 250 icarplay
wireless 250 fm transmitter for
ipod & iphone aipfm-ch250

NA NaN

False

A escort passport radar and laser
detector black finish 8500

escort passport
x50 radar and
laser detector
8500 x-band (..)

313.95

B escort passport 9500ix
radar/laser detector

NA 439.99

(b) DBLP-ACM

Match Table Title Authors Venue Year

True

A application servers : born-
again tp monitors for the
web ? ( panel abstract )

c. mohan sigmod con-
ference

2001

B application servers ( panel
session ) : born-again tp
monitors for the web

c. mohan , larry
cable , matthieu
devin , scott diet-
zen , pat helland ,
dan wolfson

international
conference
on man-
agement of
data

2001

False

A the sift information dis-
semination system

tak w. yan , hec-
tor garcia-molina

acm trans .
database syst
.

1999

B duplicate removal in infor-
mation system dissemina-
tion

tak w. yan , hec-
tor garcia-molina

very large
data bases

1995
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(c) Amazon-Google

Match Table Title Manufacturer Price

True

A instant immersion italian v2 .0
( large box )

topics entertain-
ment

29.99

B topics entertainment instant
immersion italian 2.0

NA 17.55

False
A printmaster 17 platinum by en-

core software
encore software 39.99

B printmaster ( r ) platinum 16 NA 39.97

(d) DBLP-GoogleScholar

Match Table Title Authors Venue Year

True

A automated reso-
lution of semantic
heterogeneity
in multidatabases

m bright , a hurson , s
pakzad

acm trans .
database syst .

1994

B automated reso-
lution of semantic
heterogeneity in
multi-databases

ar huroson , s pakzad acm transactions
on database sys-
tems ,

NA

False

A building and
customizing data-
intensive web
sites using weave

k yagoub , d florescu ,
v issarny , p valduriez

vldb 2000

B caching strategies
for data-intensive
web sites

k yagoub , d florescu ,
v issarny , p valduriez

vldb , 2000

(e) Walmart-Amazon

Match Table Title ModelNo Category Brand Price

True

A home portable stereo
alarm clock with ipod
dock gunmetal

electronics - gen-
eral

ihome ih16g 49.73

B home ih16 portable
speaker system for
ipod gray

speaker systems ihome ih16gxc 40.99

False

A griffin ipod touch 4g
screen care kit 3 pack

mp3 accessories arkon gb0191313.3

B griffin gb01909 screen
care kit for ipod nano
6g 3 pack

griffin technology gb01909 12.11



48 Public Datasets



Chapter 5

Method

In this chapter we describes our approach TopKDAL, Top-K based Deep Active Learning
solution for blocking as an entity matching task. First, the blocking strategy is introduced
and then active learning strategy is explained. Lastly, the experimental setup is presented.

5.1 Blocking Strategy

5.1.1 Design Choices

We identified several challenges and limitations based on previous work in Chapter 3 and
our empirical testing of various approaches for identifying a subset of the Cartesian Prod-
uct, a so-called candidate set, that contains likely matching record pairs. Consequently,
TopKDAL introduced three important design choices based on leveraging transformer
pre-trained language models for blocking. The model is learned in an active learning loop
in a low-resource setting. As follows, we outline each of these design choices.

• Design choice 1) Top-k vs. Threshold Selection
Top-k search retrieves the k most similar pairs between all records using a specific
record as a reference. The candidate set will consist of the pairs retrieved from the
top-k search. The alternative is to set a parameter threshold. If this parameter is
identified, then the candidates will be all pairs of records with similarities above
this particular threshold. We chose top-k search to separate matching record pairs
from non-matches, and as a result, avoid the burden to find a suitable threshold to
achieve the same objective. In addition, top-k search seemed to be the most applied
approach in the previous works.

A challenge is to evaluate blocking performance on benchmark datasets when top-
k search retrieves a candidate set consisting of labeled and unlabeled examples.
As mentioned in Chapter 4, we have to recall that our benchmark datasets for
training, validation, and test datasets are labeled after a pre-blocking schedule.
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Per definition, those datasets are originally intended for evaluating matching steps
rather than blocking steps. The burden of exposing the domain expert for even
more time-consuming labeling of records was not a cost of man-hours we could
defend in a production setting for the companies1. In advance of a top-k search,
it is also impossible to predict which pairs of records will end up in the candidate
set as output from the blocker. Hence, it is also challenging to forecast which pairs
of records should be labeled beforehand. Consequently, we chose to filter out these
unlabeled examples from the candidate set as a treatment for missing labels. The
reason is that our query sampling strategies are prepared to select only labeled
examples. This treatment was reasonable because the selected instances for each
active learning iteration have to be labeled somehow by an Oracle.

• Design choice 2) Choice of Loss Function vs. Query Sampling Strategy
Loss function choice is a critical component to fine-tune the model. It also deter-
mines how our embedding model works for the specific downstream task. To fine-
tune the transformer network, we wanted somehow to affect our network to have
similar record pairs closer in the embedding vector space while dissimilar record
pairs should be further apart in the embedding space. That property indicated the
characteristics of choosing a loss function such as TripletLoss. On the other hand,
our system constraints of using informative query sampling strategies in the active
learning loop indicated a transformation was needed to map the distribution of sim-
ilarities in the embedding space to a probability distribution ranging between 0 and
1. Consequently, we decided to apply Softmax as our loss function to provide such
a scale.

• Design choice 3) Mimic Record Similarities in Pre-blocked Benchmark
Datasets
The datasets are initially pre-blocked, as a result, it should be expected some sim-
ilarity between the non-matching pairs. Forcing these pairs to converge towards a
target of zero would be a false representation of the similarities. Hence, soft labels
were a crucial component to set lower target for non-matches at a value above 0 to
mimic some degree of pair similarity present between the records in the datasets.

5.1.2 Our Solution

According to our design choices, the main idea was to develop a deep learning methodology
based on transformer-based pre-trained models (TPLMs) to leverage their strength of
highly contextualized embeddings to provide better language understanding and semantics
in words. Compared to conventional word embeddings methods (e.g. GloVE [Pennington
et al., 2014], word2vec[Mikolov et al., 2013], and FastText[Bojanowski et al., 2017]), our
approach TopKDAL is constructed to take benefit of these pre-trained language models
by adding task-specific layers on top of the TPLM and fine-tuned for our task-specific
objective to greatly improve the performance. Sadly, there is no single training strategy
that works for all use-cases in entity matching. Instead, which training strategy to use

1For blocking, the optimal benchmark datasets have labeled all pairs of records. Currently, it is seldom
datasets are completely labeled making evaluating of blocking approaches more difficult compared to
matching approaches.
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greatly depends on our available data and on our target task. We train on labeled data
for updating the weights in the transformer network to produce meaningful embeddings
for the records. This training involves a memory-intensive process of fine-tuning millions
of parameters for the task based on a sequence of tokens as input to the transformer. The
matching objective is to precisely classify matching and non-matching pairs of records
while blocking attempts to separate the similarities between matching and non-matching
record pairs to maximize the number of matching pairs in the candidate set C. An
entity matching system has both blocking and matching capacities such as DIAL[Jain
et al., 2021] and DITTO[Li et al., 2020], this could affect our blocking approach regarding
which TPLM to use for the experiments since it might be simpler to use a single TPLM
for a complete entity matching system. However, TopKDAL has not taken these entity
matching system considerations into account in the design. Our approach has only been
evaluated as an isolated unit to maximize blocking performance.

Encoding Records to Embeddings for Suiting Transformers

In blocking, the paired mode2 commonly used in a matching task on every record pair in
the Cartesian Product is not recommended [Jain et al., 2021, Li et al., 2020]. Instead,
we separately encode each record according to a single mode[Jain et al., 2021, Reimers
and Gurevych, 2019]. For each record pair, we then passed separately the records in
dataset A and the records from dataset B through the transformer network, which yields
the embedding E(x) for record x in dataset A and the embedding E(x) for record x in
dataset B. The similarity of these embeddings was computed using cosine similarity, and
the result was evaluated by comparing to the gold standard.

To obtain a embeddings E(x1), ..., E(xn) for record x in Dataset A or Dataset B, we fed
record x into the pre-trained transformer network such as RoBERTa, and DistilBERT
according to

[CLS], x1...xn, [SEP ] (5.1)

where x1...xn denotes the input tokens of the record x, CLS is a special start token,
and SEP is a special separator token. According to Li et al. [2020], the each record
x = (attri, vali)1≤i≤k can be serialized as

s(x) = [COL]attr1[V AL]val1...[COL]attrk[V AL]valk (5.2)

where [COL] and [VAL] are special tokens to denote the start of attribute name and
attribute value, respectively. The serialized record s(x) is inserted in Equation 5.3 as

[CLS], s(x), [SEP ] (5.3)

2In paired mode, the transformer feeds a token concatenation of two records for all record pairs in the
dataset.
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Note that each record s(x) is serialized individually in contrast to a matching setting
serializing a candidate pair s(x, x′) instead. Table 5.1 illustrates the challenge of convert-
ing a record x to a representation s(x) that our chosen individual language model layer,
such as RoBERTa and DistilBERT, can interpret to preserve the information given in the
attribute names and values derived by the dataset Abt-Buy.

Table 5.1: Encoding of two individual records from dataset Abt-Buy. These
records are also presented in Table 4.2.

Table Encoded Record
Abt [COL] name [VAL] onster icarplay wireless 250 fm transmitter with autoscan for

ipod and iphone aipfmch250 [COL] description [VAL] emonster icarplay wireless
250 fm transmitter with autoscan (...) [COL] price [VAL] 100.0

Buy [COL] name [VAL] monster a ip fm-ch 250 icarplay wireless 250 fm transmitter
for ipod [COL] description [VAL] NULL [COL] price [VAL] NULL

The language model produces contextualized word embeddings for all input tokens, x1...xn,
of the record x. Concerning various sequence lengths of input tokens, we limit the layer
by defining that records with greater than 512 input tokens were truncated. However, this
was not observed as an issue for our datasets. We used a pooling layer to get a fixed-sized
output representation of vector u(x). This fixed-sized, d = 512, dimensional contextual
embeddings E(x1), ..., E(xn) was obtained from the multiple layers of self-attention in
the transformer network, and the embedding of the record x, E(x), was computing by
averaging all contextualized word embeddings the language model produced. We used
the default pooling strategy called MEAN as Reimers and Gurevych [2019], it is derived
as

E(x) =
1

n

n∑
i=1

E(xi) (5.4)

to achieve a fixed 512 output vector E(x) independent of the lengths of the record.

Further, as we separately computes E(x) for every record in Dataset A and B to map
variables length input tokens to a fixed-sized dimensional contextual embeddings, we
then needed to evaluate whether a pair of records were a match or non-match. For a pair
of records (a, b) between Dataset A and B, we took the concatenation of the embedding
E(a) of record a, E(b) of record b and the absolute difference between the two embeddings
|E(a)−E(b)| [Reimers and Gurevych, 2019]. Each concatenation of a pair of records was
forwarded to a linear layer.

Based on inspiration from the work of Reimers and Gurevych [2019], a linear layer was
added after concatenating of the embeddings. The simplified linear layer was an unini-
tialized layer. Hence, it was dependent on available labeled training data.
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Training Objective of Classification Layer

The output from the linear layer was forwarded to a classification layer with Softmax.
The classification layer fulfilled two objectives. 1) The first objective was to use Softmax
to transform the embedding space to normalize the network’s output to provide a prob-
ability distribution over predicted output classes in the range [0, 1]. It was essential to
unlocking the potential of active learning as a strategy for blocking. We must recall that
query sampling strategies need model prediction probabilities to select examples from the
unlabeled pool. 2) The second objective was to introduce Softmax to have the ability
to evaluate the corresponding loss in the model during training on the labeled datasets.
Negative log-likelihood was applied here.

Doing so, Softmax pushed the highest identified values to converge towards the target
value 1, typically matching record pairs. Correspondingly, Softmax pushed non-matches
to converge towards the target value 0. By default, the lower target value of Softmax is
0. As described in design choice 1), we could observe that the non-matching record pairs
in the pre-blocked benchmark datasets had some similarities. Hence, we used soft labels
to mimic this fact into the model architecture by changing the lower target value from
being 0 to be minimum 0.1. This seemed reasonable as the remaining record pairs in the
pre-blocked benchmark dataset were meant for evaluating matching approaches.

In TopKDAL, we chose the Binary Cross-Entropy Loss with Logits3 because the model
achieved better numerical stability and model performance compared to using the Cross-
Entropy Loss alone. In this way, we took advantage of the log-sum-exptrick for numerical
stability in Binary Cross-Entropy Loss with Logits (BCEWithLogits) by combining Soft-
max layer with a BCELoss in one single class.

5.2 Active Learning Strategy

Active learning strategy was the second component required to develop our approach
TopKDAL. The overall active learning algorithm used in the query sampling strategies is
explained here. The evaluation metrics used to report the results are previously described
in Section 2.6.

5.2.1 Active Learning Algorithm

In the experiments, the query sampling strategies were tested one-by-one by using the
following active learning algorithm described stepwise. Figure 5.1 highlights the main
operations performed by TopKDAL during active learning iterations, and clearly describes
the data flow.

3A detailed derivation of BCEWithLogits can be found here: https://pytorch.org/docs/master/

generated/torch.nn.BCEWithLogitsLoss.html#torch.nn.BCEWithLogitsLoss

https://pytorch.org/docs/master/generated/torch.nn.BCEWithLogitsLoss.html#torch.nn.BCEWithLogitsLoss
https://pytorch.org/docs/master/generated/torch.nn.BCEWithLogitsLoss.html#torch.nn.BCEWithLogitsLoss
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Figure 5.1: A simplified deep active learning process for our proposed Top-
KDAL. Four concepts of sets are applied for the ongoing bookkeeping of record
pairs in the active learning loop. The original training set, T , is not considered
in the illustration. Before active learning loop started, we selected examples
from T to the initial training set L0. During the active learning loop, the
newly selected examples are added to the updated training set L. Unlabeled
data in the pool, U = T −L−L0, consists of the remaining record pairs unseen
for the model during the active learning process. The unlabeled data in U
achieved prediction scores from the model after each AL iteration, which the
query sampling strategy used as a decision basis to select K new instances to
label.

1. Initialization of training set. All models were initialized with an initial training
set, L0, of 200 labeled record pairs from the original training set, T , before the
active learning loop started. The model was trained on L0 to generate prediction
scores on the record pairs in unlabeled data pool U .

Two starting strategies were tested, either a balanced and an imbalanced initial
training set. Imbalanced initial training set was conducted of 200 randomly selected
record pairs in T , in which the positive rate is assumed to be approximately as
described in Table 4.1. Balanced initial training set was represented by selecting
100 positives and 100 negatives record pairs randomly from T , summed up to 200
selected record pairs.

2. Active learning procedure. After initialization of training set L0, each active
learning (AL) query strategy started to train the transformer pre-trained language
model on L0. The query strategy could then select new examples from U based on



Method 55

the model’s prediction scores. The unlabeled pool, U , is a function of the differ-
ence between T and L in each AL iteration. Before each iteration, the model was
restarted and initialized with the origin weights from the TPLM. Then, it started
the training of model on the updated training set L. Next, the query strategy could
select new examples again with respect to model’s new prediction scores. In every
iteration, the newly selected examples from the query strategy were removed from
U and added to L. All examples in L were labeled by the Oracle (see annotator
below). The active learning iterations continued until the stop criteria was reached.

Important note: Top-k search generated pairs of all records in the training set L,
and as result, we implemented a filter such that the query sampling strategies could
only retrieve labeled record pairs located in L ∩ Ttrain. This was required to fulfill
the requirement of assigning a label to all pairs of records selected by the query
strategies.

3. Model evaluation. After each AL iteration, the model was evaluated on the test
set, Dtest, with respect to evaluation metrics described in Section 2.6. We kept the
Dtest unchanged for each iteration, and the results from each iteration are what is
reported in Chapter 6. The evaluation step on the Dtest used a top-K search to
retrieve the record pairs with highest degree of similarity to the candidate set. It
is important to keep in mind that the evaluation step after each AL iteration was
independent of the prediction step performed inside the active learning loop.

4. Stop criteria. The AL iterations continued according to this procedure until the
stop criteria was met. In our experiment, the stop criteria was set to a labeling
budget of 1000 record pairs, S = 1000, for achieving the experimental run time
within a reasonable time usage. The query strategies were dependent on the model’s
prediction scores to select K examples in each iteration. It was no guarantee to reach
1000 labeled examples. The number of AL iteration, I, was derived by

S − L0

K
= I (5.5)

In our experiments, this amounted to 20 iterations because we set the sampling size
to K = 40 examples in each iteration. This value of K was set by the experiences
observed in Kasai et al. [2019], and our empirical testing on computational run time
by varying the sampling size K and hyperparameters in the experiments. In fact,
Equation 5.5 indicates increasing computation total run time when decreasing K
due to an increasing number of iterations are required to reach S = 1000 labeled
examples. Every experiment used an initial training set of 200 examples as described
previously.

5. Annotator. As annotator, also known as the Oracle, we used the respective labeled
datasets as a gold standard. In the training set, the Oracle manually labeled the
examples, or more precisely, we used the gold standard as labels for the examples to
mimic an Oracle doing labeling. In the prediction step, the labels for the training
set was not available for the model.
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5.3 Evaluated Query Sampling Strategies

Our approach TopKDAL is evaluated on 3 non-active learning-based experiments and
7 active learning-based experiments. Those seven active learning methods include one
supervised baseline, three existing query sampling strategies, and our three new query
sampling strategies.

5.3.1 Supervised Baseline

Currently, there are no previously published works that leverage deep active learning
(DAL) approaches for blocking, and as a result, there is no natural point of comparison
other than using two types of supervised baselines to evaluate our proposed TopKDAL
and active learning query sampling strategies. These two supervised baselines are natural
baselines to apply for evaluating a DAL approach for the first time within blocking.

Supervised Baseline with Active Learning. This active-learning based supervised
Baseline, hereafter denoted as Baseline, used a query sampling strategy of naively sam-
pling record pairs randomly for every active learning iteration, a standard often used in
supervised learning strategies. The purpose was to establish a Baseline as benchmark
target to evaluate the different active learning strategies compared to the performance of
random query sampling strategy. In published research, it has been less attention of com-
bining active learning (AL) with TPLM for blocking in entity matching. Consequently,
to the best of our knowledge, there are no benchmarks to compare TopKDAL with either
it comes to fine-tuning of hyperparameters, choice of language models or performance.
Therefore, this optimization should be investigated in further work, as explained in Chap-
ter Section 8.2.

This Baseline was implemented based on the active learning procedure as explained in
Section 5.2.1, in which initially trained the model on Linit before selecting K = 40 random
record pairs labeled by the Oracle in each AL iteration. For every K new received record
pairs added to training set L, the model was restarted and retrained on the updated
training set L in each iteration. This AL loop continues until the stop criterion was
reached, determined in Section 5.2.1.

Supervised Baseline with Non-Active Learning. We choose also to compare our
proposed method against non-active learning-based Baseline to identify sufficient training
set sizes for the model with respect to PC score, particular important to identify for the
most difficult datasets. These baselines were run by 1/1, 1/2, and 1/4 of the training
set size by applying random choice without replacement4. The non-active learning-based
Baseline trained on the entire training set is denoted Baseline-Max, Baseline-1/2 trained
on 50% of the training set, and the last Baseline-1/4 trained on 25% of the training set. In
the two last Baselines, the record pairs consisting the training set are selected randomly
with an approximate true positive rate estimated in Table 4.2.

4Documentation of Numpy random choice can be found at https://numpy.org/doc/stable/

reference/random/generated/numpy.random.choice.html.

 https://numpy.org/doc/stable/reference/random/generated/numpy.random.choice.html.
 https://numpy.org/doc/stable/reference/random/generated/numpy.random.choice.html.
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5.3.2 Existing Query Sampling Strategies

We chose to evaluate three well-known existing query sampling strategies on TopKDAL.
These methods are used in previous active learning based work in entity matching [Kasai
et al., 2019, Jain et al., 2021].

Margin-Based Sampling (Uncertainty sampling)

Margin-based sampling is a well-known query sampling strategy in active learning (AL)
[Meduri et al., 2020], and uncertainty seemed to be essential as a strategy in our ex-
periments. This query strategy aims to select the k most uncertain, also known as low
confident, record pairs based on the model predictions on the unlabeled set U . In each
AL iteration, k record pairs closest to 0.50 in model’s predictions are selected. There
are no requirements to achieve a balanced set of low confident positives (LCP) and low
confident negatives (LCN), which can result in LCNs are only selected in cases where
model’s predictions are less than 0.5. It can be noted that the terms low-confident record
pairs and uncertain record pairs are used interchangeably.

The objective of testing margin-based sampling as a query sampling strategy was to
evaluate the impact of low confident (LC) record pair compared to other strategies, such
as Partition-2 and Partition-4, involving both LC and high confident (HC) record pairs
or only HC record pairs.

Partition Sampling

Partition sampling is a tested query sampling strategy used in combination with deep
learning and active learning (DAL) for entity matching (EM) by Kasai et al. [2019]. Their
observation claimed that the model would be more resistant to overfitting by selecting
high confident (HC) and low confident (LC) examples. This guided approach of sampling
was also observed to improve precision and recall in a low resource setting. Instead, we
chose to test this query sampling strategy with respect to our TopKDAL for blocking in
a low resource setting. We implemented two partition strategies inspired by Kasai et al.
[2019].

Partition-2 According to Kasai et al. [2019], Partition-2 is a semi-supervised learning
method leveraging pseudo labels based on a labeled data model to add confident predicted
unlabeled data to the training set. The purpose is to increase the size of the training set
by inserting initially unlabeled data to improve the model accuracy. The semi-supervised
strategy aims to select a balanced set of record pairs consisting of k high confident neg-
atives (HCN) in an unsupervised manner, and k low-confidence positives (LCP), and k
low-confident negatives (LCN). In our experiments, k = 20 to ensure 40 manually labeled
examples across every query sampling strategy in the experiments.

We implemented Partition-2 by partitioning the record pairs in the unlabeled pool U into
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two subsets. One subset consisted of positive model prediction while the other subset
consisted of negative model prediction scores. By sorting these subsets based on the pre-
diction scores, we could efficiently select k low-confident positives from the first subset
and low-confident negatives from the second subset. These k LCPs and k LCNs were the
record pairs the model was most uncertain about based on its predictions, and it was la-
beled manually by the Oracle. In addition, among these originally unlabeled record pairs
in U , it was selected k HCP and k HCN based on the most certain model predictions.
In contrast to LCP and LCN, these HCPs and k HCNs were automatically labeled unsu-
pervised in terms of their corresponding model predictions. This resulted in 40 manually
labeled examples, 40 unsupervised labeled examples, and in total 80 labeled examples
returned from each iteration for Partition-2.

Partition-4 We implemented Partition-4 to have a partition sampling method considering
labeling only based on the Oracle. Partition-4 aims to select a balanced set of record pairs
composed of k high confident positives (HCP), k high confident negatives (HCN), k low-
confidence positives (LCP), and k low-confident negatives (LCN). In our experiments, k
is set to 10 to let each of the four partitions in Partition-4 contain 10 record pairs.

In practice, Partition-4 works by partitioning the record pairs in the unlabeled pool U
into two subsets, where the positive model predictions are placed in one subset while the
negative model predictions are placed in the other subset. These two subsets are sorted
based on their prediction scores. Then, we find the k and k lowest prediction scores
in the subset of positives corresponding to HCP and LCP, respectively. The similar
procedure was followed to find LCN and LCN in the subset of negatives. In contrast to
Partition-2, the Oracle manually labels HCP, HCN, LCP and LCN in Partition-4. Thus,
the drawback of Partition-4 is incorrectly labeling of record pairs by the Oracle. We used
the gold standard to mimic the labeling by the Oracle, hence, that was not an issue in
our experiments. A illustration describing the nuances in the query sampling Partition-4
and Partition-2 compared to Margin-based can be seen in Figure 5.2.

5.3.3 Our Introduced Query Sampling Strategies

We developed three new query sampling strategies inspired by the existing query sampling
strategies. The purpose was to cover the missing counterparts to the existing query
sampling methods to gain better understand about how these methods are affecting our
TopKDAL over the AL iterations.

High Confident Positives/Negatives

High Confident Positives/Negatives, hereafter denoted as HC-P/N, tries to select a bal-
anced set consisting of k high confident positives (HCP) and k high confident negatives
(HCN), in which k = 20 in our experiments. The objective of testing this query sampling
strategy as a counterpart to margin-based sampling is to understand better the impact
of feeding the model with high confident (HC) record pairs instead of low confident (LC)
record pairs.
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Random Positives/Negatives

Random Positives/Negatives, abbreviated as Random-P/N, aims to evaluate how query
sampling informativeness impacts the model in terms of using guided learning based on HC
and LC model’s predictions. In Random-P/N experiments, the method selects a balanced
set of k = 20 positive and k = 20 negative examples randomly from the unlabeled pool,
U , with respect to whether their predictions have a value ≥ 0.50 or value < 0.50.

Partition-4 Based Positive Boost

Partition-4 based Positive Boost, shortly named P-4-3xPB, is a modified Partition-4 ap-
proach designed to allow three times more HCP than HCN record pairs, twice as many
HCP record pairs compared to Partition-4. This configured class distribution of positives
and negatives is seldom present in the datasets. In our experiments, each iteration se-
lected K = 40 record pairs, and in the best case P-4-3xPB selects HCP = 15, LCP = 10,
LCN = 10, and HCN = 5 given sufficient model predictions covering the whole prob-
ability distribution in the interval [0, 1]. This query sampling strategy aims to evaluate
if increasing the number of HCPs while decreasing the number of HCNs is beneficial to
improve model performance in achieving higher PC scores.

5.3.4 Query Sampling Strategies Compared

Table 5.2 shows how the passive and active query sampling strategies select different types
of knowledge for the model. As illustrated in Figure 5.2, Partition-2 achieves twice as
many labeled record-pairs compared to the other query sampling methods, which gives at
most 800 additional labeled instances after 20 iterations, or 80% more labeled instances
in training set, compared to the other query sampling strategies. However, half of the
record-pairs during the AL loop might also be incorrectly labeled due to the pseudo
labeling of HCP and HCN given the assumption that the Oracle always labels LCPs and
LCNs correctly. We chose to include both Partition-2 and Partition-4 in our experiments
to identify the effect of semi-supervised learning. Last, it can be mentioned that Random-
P/N is the only query sampling strategy selecting a balanced set by sampling positive
and negative examples randomly.

Table 5.2: Comparison between active learning query sampling strategies.

Passive QSS Active Query Sampling Strategies (QSS)

Class ratio Class Type Sampling Strategy Baseline Uncertainty HC-P/N Random-P/N P-4 P-2 P-4-3xPB

50/50
Positives

High Confident - - X - X - X
Uncertainty - X - - X X X

Random - - - X - - -

Negatives
Random - - - X - - -

Uncertainty - X - - X X X
High Confident - - X - X - X

Random Pos/Neg Random X - - - - - -
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Oracle

Step 2: Select Sample Query Strategy Step 3: Perform Labeling by
Oracle Management

Step 4: Train Model on Labeled
Training Set, L

Step 1: Perform Predictions on
Unlabeled Pool Set, U

Labeled Train, L

pid Match

4 True
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6 False

Margin-Based Strategy

pid Predictions Type

4 0.665 LCP

9 0.555 LCP
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3 0.990

4 0.665
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5 0.499

6 0.455
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(a) Margin-based query sampling strategy. This method selects only low confident
positives (LCP) and low confident negatives (LCN) instances during the query
sampling. Last, the Oracle labels the instances selected by the query.

Oracle

Step 2: Select Sample Query Strategy Step 3: Perform Labeling by
Oracle Management

Step 4: Train Model on Labeled
Training Set, L

Step 1: Perform Predictions on
Unlabeled Pool Set, U

Unlabeled Pool, U

pid Predictions

8 0.999

3 0.990

4 0.665

9 0.555

5 0.499

6 0.455

2 0.111

7 0.099

Labeled Train, L

pid Match
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5 False
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Partition-4 Strategy

pid Predictions Type

8 0.999 HCP

9 0.555 LCP

5 4.999 LCN

7 0.099 HCN

(b) Partition-4 query sampling strategy. The method selects high confident positives
(HCP), high confident negatives (HCN), low confident positives (LCP), and low
confident negatives (LCN). As illustrated, all the selected instances are labeled by
the Oracle.
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Oracle

Step 2: Select Sample Query Strategy Step 3: Perform Labeling by
Oracle Management

Step 4: Train Model on Labeled
Training Set, L

Step 1: Perform Predictions on
Unlabeled Pool Set, U

Unlabeled Pool, U

pid Predictions

8 0.999

3 0.990

4 0.665

9 0.555

5 0.499

6 0.455
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Labeled Train, L

pid Match

4 True
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5 False

6 False
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Partition-2 Strategy
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Partition-2 Strategy
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(c) Partition-2 query sampling strategy. The method selects high confident posi-
tives (HCP), high confident negatives (HCN), low confident positives (LCP), and
low confident negatives (LCN). In contrast to Partition-4, only the LCP and LCN
selected instances are labeled by the Oracle while HCP and HCN instances got
their labels according to their assigned predictions.

Figure 5.2: Comparison of the query sampling strategies (a) Margin-based,
(b) Partition-4, and (c) Partition-2. In the illustration, each query sampling
strategy has an Oracle labeling four record pair, given the assumption K = 4.
With respect to this assumption, Partition-2 achieves twice as much labeled
record-pairs. However, in the worst case, half of the record-pairs might also
be incorrectly labeled due to wrong prediction-based labeling. It is assumed
the Oracle always labels correctly.
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5.4 Experiments Setup

5.4.1 Datasets

Our proposed approach is validated on five real-world, publicly available and widely used
datasets desribed in Chapter 4. These five datasets are already pre-blocked making the
datasets mainly suitable and prepared for evaluating an isolated matching step. In our
case, these blocked datasets define methodology constraints in our design choices and
blocking approach with respect to being able to evaluate our TopKDAL on these datasets
with their corresponding test sets Dtest.

These five datasets are categorized into two domains, Walmart-Amazon, Amazon-Google,
and Abt-Buy are product datasets, whereas DBLP-ACM and DBLP-Scholar are citation
datasets. Abt-Buy is a textual dataset, whereas the other four are structured datasets.
Chapter 4 provides more information regarding the datasets. As our motivation in Sec-
tion 1.1, there may be scenarios where the record pairs between the datasets are incom-
parable, making rule based blocking methods infeasible. Our proposed TopKDAL with
TPLM can also manage such scenarios.

5.4.2 Experiment Implementation Details

There are several hyperparameters and system constraints to consider in our experiments.
In many cases, it is not a matter of course that the TPLMs give correct class predictions
out-of-the-box. As experienced in our experiments, it was needed to fine-tune the pre-
trained language model (TPLM) to task-specific data to achieve suitable model predic-
tions. Active learning was used to iteratively select and ingest relevant record pairs into
the transformer model architecture.

Hardware/Computing. We performed the evaluation of our approach TopKDAL on
the NTNU IDUN computing cluster [Själander et al., 2020]. The cluster has more than 70
nodes and 90 GPGPUs. Each node contains two Intel Xeon cores, at least 128 GB of main
memory, and is connected to an Infiniband network. Half of the nodes are equipped with
two or more Nvidia Tesla P100 or V100 GPGPUs. Storage is provided by two storage
arrays and a Lustre parallel distributed file system.

All of our experiments used a hardware environment consisting of Dell PE740 with In-
tel Xeon Gold 6132 CPU with 28 cores. Experiments were run with exclusively privi-
leges on this hardware environment with a single NVIDIA Tesla V100 16 GB GPU and
Python/3.8.6-GCCcore-10.2.0 and CUDA/11.1.1-GCC-10.2.0. Thus, every experiment on
the nodes did not share any resources on the hardware environment with others during
our experimental runs.

Libraries/Tools. All experiments used PyTorch 1.7.1, deep learning framework, [Paszke
et al., 2019], and sentence transformers library 0.4.1 by Huggingface [Wolf et al., 2020] to
train and test TPLM combined with active learning for blocking.
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Experimental reproducibility. All experiments have been run three times and aver-
aged over their three results to validate the experimental results with respect to standard
deviation and variance. In Section 6.2, the geometric average / mean and standard
deviation from the performed experiments are showed. A requirement was to perform re-
producible experimental results, thus, each experiment used a predefined random seed list
to handle the randomization equally across the experiments. Our way of solving this was
to set the experimental run 1, 2, and 3 to apply 1, 2, and 3 as a random seed, respectively.

Transformer Pre-trained Language Model (TPLM) and Hyperparemters. We
used both the pre-trained language model RoBERTa [Liu et al., 2019] and DistilBERT
[Sanh et al., 2020] in our experiments with a careful selection of hyperparameters.

The hyperparameter choices were based on our specified hardware environment. In the
empirical testing of hyperparameters, it was set as a system constraint to have 200 sampled
examples in the initial training set, and select 40 examples for every iteration until 1000
examples were reached in total. We chose to hold the hyperparameters unchanged across
the experiments and the datasets. It was observed by decreasing the epochs below our
choice, the model trained on 200 initial labeled examples struggled to achieve a PC score
above zero. Unfortunately, this resulted in unusable predictions for our query strategies
in the beginning of active learning iterations and locked the potential of using active
learning as a strategy. Thus, we chose to extend the empirical testing related to find a
suitable number of epochs because it was a trade-off in achieving better initial PC scores
by increasing the number of epochs at the expense of higher iteration time. In addition,
these observations were affected by sizes and the architecture of the language models.

Kasai et al. [2019] used 20 epochs in their experiments and Li et al. [2020] used 10, 15, or
40 epochs dependent on the size of the datasets the model was tested on. Instead, after
empirical testing, we trained TPLM based on RoBERTa on 20 epochs with a training and
evaluation batch size of 32, and TPLM with DistilBERT was trained on 12 epochs with a
training and evaluation batch size of 32. The larger language model RoBERTa required
more training to be numerical stable in the experiments.

Additionally, our model used mainly default configuration settings based on Reimers and
Gurevych [2019]. For the classification layer, we have chosen AdamW, Adam with Weight
Decay, optimizer to a learning rate of 1e-3 and the weight decay to 0.01 [Loshchilov and
Hutter, 2019].

Our proposed approach is independent of the choice of pretrained LM, and TopKDAL
can potentially perform even better by using other pre-trained language models. More
in-depth hyperparameter evaluations could have been performed with respect to using
TPLM for blocking in a low resource setting, however, these investigations are considered
as further work.

Active Learning. All experiments conducted 20 iterations of active learning, with a
labeling budget of S = 1000. We start the experiments with an initial labeled training set
containing either (1) imbalanced set of 200 record pairs sampled randomly or (2) balanced
set of |Tp| = 100 positive and |Tn| = 100 negative record pairs sampled randomly. In
these initial training sets, the random sampling was performed by selecting pairs from
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the training set T for the respective datasets. As explained previously, all results are
averaged over their three experimental runs.

Top-k Search. We used top-k search with k = 10 to retrieve ten pairs of records with
the highest cosine similarity score for each record in Table A and Table B. In our case, we
implemented a top-k search to take O(n2) time as only small datasets were considered in
the experiments. However, a top-k search can be implemented more time efficient than
O(n2)[Yang and Kitsuregawa, 2011].

Choice of Candidate Set Size. After empirical testing we achieved high PC score with
a candidate set size based on a top-k search with k = 10. The size of candidate is an
important factor that influences the overall PC of the system. A small candidate set can
lead to low PC and a large candidate set can inadvertently result in low precision [Jain
et al., 2021, Li et al., 2020].

Performance Validation. We validate the blocking performance with respect to pair
completeness (PC) score and reduction rate as described in Section 2.6. PC score is
computed based on matching record pairs retrieved by our proposed approach and the
gold standard consisting of all matching record pairs in Dtest.



Chapter 6

Results

This chapter presents the experimental results. First, the performance of our proposed
blocking approach TopKDAL is showed for six informative query sampling strategies
over active learning iterations. In addition, the model performance stability and time
consumption are reported.

We have chosen to only describe the experimental results on the smaller, cheaper and
faster TPLM DistilBERT. Results from RoBERTa experiments are added to show the
challenge to train a larger TPLM to achieve a stable model with high performance. Our
results and findings will be discussed in Chapter 7, and complete sets of the experimental
results are attached in Appendix 8.2.3.

6.1 Performance of Query Sampling Strategies

All experiments have been validated over three experimental runs on the datasets accord-
ing to Section 5.4.2, and the average result over these three runs are what is reported as
results. Furthermore, the query sampling strategies have been deterministic seeded, which
indicates the experiments initially are trained on identical randomly sampled examples.
The objective was to aim for identical experimental setups and environmental run condi-
tions for every experiment, resulting in training the experiments on the same randomly
sampled examples in the initial training set at the same hardware. Consequently, we can
observe from Figure 6.1 that all experiments with imbalanced training set have equal PC
scores at 200 labeled instances in the plots. The corresponding starting points related to
PC scores are seen for the experiments fed with the balanced initial training sets. Given
the system constraint on 200 labeled instances in the initial training set size1, the initial
PC scores were only dependent on the ratio of positive and negative examples in the
training sets and the TPLM preference, either DistilBERT and RoBERTa.

At the point of 200 labeled instances, the six tested query sampling strategies select records

1Our empirical analysis indicated PCscore > 0 for all experiments when 200 labeled instances were
used as initial training set size.
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to label. As a function of the respective sampling objectives for the query strategies as
explained in Section 5.2, it is observed that their PC scores start to differ from baseline
over AL iterations.

6.1.1 Comparison of Initial Training Set Class Distributions

At 200 labeled instances, we observe from Table 6.1 that using DistilBERT as TPLM
trained on a pre-selected balanced initial training set performed best achieving the highest
PC score in 5 out of 5 datasets. For DistilBERT as TPLM, the balanced initial training
set consisting of 50/50 positive and negative labeled instances sampled randomly has on
average 0.144% higher initial PC score across the datasets than the imbalanced initial
training set. For our TopKDAL, the initial PC scores indicate satisfactory performance
when using DistilBERT as TPLM, with PC scores varying between 0.325-0.975.

Table 6.1 showcases the initial PC scores gained from the two starting strategies before the
active learning experiments start looping. In this low-resource setting, a balanced training
set seems beneficial for kick-starting performance yielding a higher PC score and reducing
the likelihood for cold start problems. This observation also shows how TPLMs should
be trained initially in a low-resource setting, assuming the situation before active learning
algorithms start working. An important question that arises from these observations
is how those 50/50 initial training set distributions can be pre-selected with less data-
hungry ML models combined with active learning. In that case, the performance gained
from these imbalanced training sets of 200 instances is the benchmark to target.

6.1.2 Comparison of Query Sampling Strategies over 1000 La-
beled Instances

First, several baselines are represented in the results. The active learning-based Baseline
is colored blue in the plots. Baseline-Max indicates the PC score when training TPLM on
all available training data, Baseline-1/2 denotes training on half of the available training
data, and Baseline-1/4 uses 25 % of the training data. In all plots, these three non-
active learning approaches are marked with red dashed lines. Baseline-Max results in the
maximum PC score the model can achieve. Hence, it is also our benchmark target to
reach or surpass during the active learning iterations.

Table 6.2 reports the performance after 20 active learning iterations based on evaluating
our model on the test set Dtest for each of the five datasets. For both starting strategies,
Table 6.2 shows TopKDAL is robust enough to be competitive with Baseline. However,
the performance for the query sampling strategies varies depending on initial training set
distributions. TopKDAL outperforms Baseline over the active learning iterations when
consuming as little as 1.3-14.6% of the total size of training datasets. This observation is
further presented in Table 6.3. As expected, our AL methods improve their performance
with an increasing number of examples over the active learning iterations. The final PC
score for all the query sampling strategies is reported in Table 6.2. Two reasons cause the
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Table 6.1: Snapshot of initial PC score at 200 labeled instances when trained
on balanced or imbalanced initial training set using either DistilBERT or
RoBERTa as TPLM. From the results, the balanced initial training set trained
on DistilBERT outperforms the imbalanced set with on average 0.144 higher
PC score. The highest scores with respect to TPLM are highlighted.

Passive Query Sampling Strategies (QSS)

TPLM Initial Training Set Dataset Random

D
is

ti
lB

E
R

T

Imbalanced

Amazon-Google 0.822
DBLP-ACM 0.950

DBLP-Scholar 0.822
Walmart-Amazon 0.832

Abt-Buy 0.325
Mean 0.750

Balanced

Amazon-Google 0.933
DBLP-ACM 0.975

DBLP-Scholar 0.872
Walmart-Amazon 0.933

Abt-Buy 0.759
Mean 0.894

R
oB

E
R

T
a

Imbalanced

Amazon-Google 0.410
DBLP-ACM 0.966

DBLP-Scholar 0.784
Walmart-Amazon 0.484

Abt-Buy 0.202
Mean 0.5692

Balanced

Amazon-Google 0.739
DBLP-ACM 0.985

DBLP-Scholar 0.917
Walmart-Amazon 0.611

Abt-Buy 0.430
Mean 0.7364

improvements: (1) the ability of TopKDAL to leverage the learned semantic relationships
in the input data, and (2) a model architecture customized for maximizing PC score.

Two best performing query sampling strategies. We find that Imbalanced-Partition-
2 and Balanced-Uncertainty provide gains over native random query sampling as a baseline
strategy and beat all other strategies by a significant margin to show their effectiveness
as query sampling strategies. Imbalanced-Partition-2 yields on average 0.027 higher PC-
score than Baseline after 1000 labeled instances when the model is trained on an im-
balanced training set. Given a balanced initial training set, Balanced-Uncertainty is the
best performing query sampling strategy achieving on average 0.018 higher PC score than
Baseline.

Imbalance vs. balance starting strategy at 200 labeled instances. We wanted to
investigate how the varying class ratio of training data impacts TopKDAL performance.
We used a positive to negative ratio of 1:1 in the initial training set as a counterpart to the
imbalanced training set for this understanding. From the results at 200 labeled instances,
the balanced set yielded on average with a 0.144 higher PC score than the imbalanced
training set. Therefore, it tends to be beneficial to aim for an initial training set consisting
of a 50/50 ratio between positive and negative examples, at least in situations where the
model struggles initially to achieve a PC score > 0 corresponding to cold start problems.
Balanced starting strategy trained the model initially with a true positive rate of 50%,
and the idea was to maintain TPR over AL iterations. Opposite, the imbalanced starting
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strategy trained the model with TPR randomness, and idea was to increase the TPR over
AL iterations. TPR progress related to query sampling strategies are further discussed in
Section 7.2.3.

Imbalanced vs. balanced starting strategy at 1000 labeled instances. At the
beginning of the active learning process, we observe from Figure 6.1 that query sam-
pling strategies with imbalanced starting strategy are not performing at a similar level as
balanced starting strategy. As the number of examples increases, we observe that these
strategies catch up with the approaches with the balanced started strategy and yield de-
cent performance as showed in Table 6.2. This phenomenon can be attributed to the fact
that randomly sampling an imbalanced training sets may not be the most informative
ones, and as a result, the learned decision boundary tends to be inaccurate. However, as
the number of examples in the training set increases the balanced starting strategy tends
to lose its edge, the initial difference in PC score of 0.144 between the balanced and the
imbalanced training set reduces to 0.012 after the AL iterations were finished. Over the
active learning iterations, Figure 6.2 shows that the imbalanced starting strategy yields
converging model stability while a balanced starting strategy continue to fluctuate. At
1000 labeled instances, 3 out of 6 query strategies yield a higher PC on average with
pre-selecting an imbalanced instead of an initial balanced training set.

Imbalanced-Partition-2 can be pointed out to improve its PC score more rapidly and
converges faster given an imbalanced initial training set, as showed in Section 8.2.3. At
the same time, it can be seen that the other query strategies had a slower performance
improvement in PC score. With a balanced starting strategy as showed in Figure 6.1, we
cannot see the same progress related to Partition-2. One subtle problem we encountered
is how to sample an initial training set with 50/50 distribution in practice that is not
detrimental to learning good embeddings for blocking.

Models trained on a balanced distributed training set prefer uncertain examples to improve
their performance rather than high confident examples. In comparison, a model trained
on an imbalanced distributed training set gains more reward and better performance
using partition sampling as a query sampling strategy. In both cases, high confident
positive and negative examples seem to be the query sampling strategy having the most
negligible advantageous impact on the model compared to the other AL strategies. Further
experiments showed that P-4-3xPB does improve the model performance of TopKDAL
compared to Baseline, when boosting the selected number of positive examples. However,
P-4-3xPB achieves still insignificant impact on the model performance when it is compared
to Imbalanced-Uncertainty and Balanced-P-2.

Random-P/N - A counterpart against the other query strategies. As a counter-
part against the other query strategies, Random P/N strategy was chosen to wipe away
the informativeness gained from selecting positive and negative least confident and high
confident examples. As observed, Random-P/N based on the imbalanced set achieves
higher PC score than Baseline, but it achieves lower PC score than Baseline on the bal-
anced set. However, this unexpected contraction was marginal with 0.003 lower PC score
than Baseline. We believe the success of Imbalanced-Random-P/N is due to the principle
of choosing unlabeled examples that are both informative and representative, and as a
result, the learned decision boundary tends to be accurate.
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Outstanding balanced kick-start resulted in decreasing PC score from 200
examples in Walmart-Amazon. In dataset Walmart Amazon, Figure 6.1e, we can
surprisingly observe a decreasing PC score between 200-1000 examples after being kick-
started with a balanced starting strategy ever after running these experiments three times.
The model do not manage to maintain the initial excellent performance over the active
learning strategies, indicating that the model initially has been trained too confident in
retrieving doubt cases into the candidate set instead of filtering out false negatives. How-
ever, it is important to remember that the model might be affected by a class distribution
mismatch between an initial balanced training set and imbalanced test set. This result is
a reminder that training the model with an increasing number of labeled examples does
not necessarily yield a higher performance reward.

High reduction rate achieved. Reduction rate varies approximately between 0.90-1.00
across the datasets, which significantly reduces the size of the candidate set. Combined
with the resulting high PC scores in the outputted candidate sets for every dataset,
a decent collection of potential matching record pairs is prepared before starting the
matching step.

No query sampling strategy achieved 100% PC score on hard datasets. It
might be caused by several factors such as incorrect labeled data in test sets and/or the
challenge to identify the most difficult true positive examples for the model. Here, it is
important to investigate why these remaining positive examples are difficult to learn for
the model in further work.

Blocking performance on hard datasets. TopKDAL seems to need several iterations
to reach Baseline-Max for the hard datasets, which seems reasonable because the model
needs to perform a sufficient number of gradient steps as the added linear layer on top of
transformer architecture is uninitialized.



70 Performance of Query Sampling Strategies

Table 6.2: Snapshot of final PC score after 1000 labeled instances tested with
DistilBERT or RoBERTa as TPLM for balanced or unbalanced initial training
set. The table shows a comparison of the tested query sampling strategies after
20 iterations of active learning, in which the strategies with the highest PC
score is highlighted. The following abbreviations are used: HC-P/N = High
Confident Positives and Negatives, Random-P/N = Random Positives and
Negatives, P-4 = Partition-4, P-2 = Partition-2, and P-4-3xPB = Partition-4
3xPosBoost. Section 5.3 describes each query sampling strategy in detail.
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(a) Imbalanced(left) and balanced(right) initial training set with DistilBERT: PC
score with respect to labeled instances for Abt-Buy.
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(b) Imbalanced(left) and balanced(right) initial training set with DistilBERT: PC
score with respect to labeled instances for dataset Amazon-Google.

200 400 600 800 1000

Labeled Instances [#]

0.90

0.92

0.94

0.96

0.98

1.00

Pa
irs

C
om

pl
et

en
es

s
[-]

DBLP-ACM

200 400 600 800 1000

Labeled Instances [#]

0.90

0.92

0.94

0.96

0.98

1.00

Pa
irs

C
om

pl
et

en
es

s
[-]

DBLP-ACM

(c) Imbalanced(left) and balanced(right) initial training set with DistilBERT: PC
score with respect to labeled instances for dataset DBLP-ACM.
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(d) Imbalanced(left) and balanced(right) initial training set with DistilBERT: PC
score with respect to labeled instances for dataset DBLP-GoogleScholar.
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(e) Imbalanced(left) and balanced(right) initial training set with DistilBERT: PC
score with respect to labeled instances for dataset Walmart-Amazon.

Figure 6.1: PC score after each active learning iteration based on TopKDAL
performance with the different query sampling strategies. By evaluating Dis-
tilBERT as TPLMs on balanced and imbalanced initial training sets, it seems
TopKDAL with DistilBERT as TPLM trained on balanced initial training set
outperforms the other combinations after 1000 labeled instances. Initially, all
experiments started with 200 sampled instances. Then, the query strategies
aimed to label 40 examples in each active learning iteration as explained in
Section 5.2.1. The red dashed lines show Baselines with non-active learning
applied with 25%, 50%, and 100% of the training set size. The total number
of examples in the training set is showed inside the parenthesis.
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Query Sampling Strategies Compared to Baseline-Max

Table 6.3 shows that several query sampling strategies reached or surpassed the Baseline-
Max after a significantly lower labeling budget than the size of the entire training set.
As seen from Abt-Buy, Partition-2 reached Baseline-Max after 360 labeled examples for
the imbalanced training set and after 260 labeled examples for the balanced training
set, which corresponds to only 2.1 % and 1.5% of the total dataset size for Abt-Buy,
respectively. These results indicate the advantage of starting with an initial balanced
training set distribution as a starting strategy in a low resource setting.

From Table 6.3, Partition-2 and Uncertainty seem to be the query sampling strategies with
the highest probability of outperforming Baseline-Max, where Balanced-Partition-2 often
needs fewer labeled instances than Imbalanced-Uncertainty. Our TopKDAL demonstrates
its effectiveness in reaching PC scores of Baseline-Max, especially on the hard datasets
Amazon-Google, Walmart-Amazon, and Abt-Buy. These intersection points between the
query sampling strategies and Baseline-Max are showed in Figure 6.1 and Section 8.2.3,
where Baseline-Max is denoted with dashed red lines. On the easy datasets, DBLP-ACM
and DBLP-Scholar, the query sampling strategies often require more than 1000 examples
to outperform Baseline-Max performance. Hence, active learning as a strategy seems to
have a higher likelihood to reach Baseline-Max performance on hard datasets within the
labeling budget.

Table 6.3: Labeling effort analysis based on active learning and DistilBERT
as TPLM: DistilBERT and active learning query sampling strategies are com-
pared with Baseline-Max to evaluate the number of labeled instances required
to reach Baseline-Max PC-score. The query strategy with the highest reduc-
tion in the number of labeled instances required to reach the performance of
Baseline-Max is highlighted. The percent of required training set size over
the total training set size is denoted in the parenthesis.

Passive QSS Active Query Sampling Strategies (QSS)

Initial Training Set Dataset Baseline-Max Random Uncertainty HC-P/N Random-P/N P-4 P-2 P-4-3xPB

Unbalanced

Amazon-Google 6874 - 880 (12.8%) - - - 840 (12.2%) -
DBLP-ACM 5743 - 840 (14.6%) - - - 420 (7.3%) -

DBLP-Scholar 6144 - - - - - - -
Walmart-Amazon 7417 880 (11.7 %) 480(6.5%) - - - - -

Abt-Buy 17223 740 (4.3 %) 400 (2.3%) 480 (2.7%) 445 (2.6%) 480 (2.8%) 360 (2.1%) 460 (2.7%)

Balanced

Amazon-Google 6874 825 (12.0%) 760 (11.1%) - 720 (10.5%) 720 (10.5%) 700 (10.2%) 760 (11.1%)
DBLP-ACM 5743 - - - - - - -

DBLP-Scholar 6144 - - - - - - -
Walmart-Amazon 7417 200 (2.7%) 200 (2.7%) 200 (2.7%) 200 (2.7%) 200 (2.7%) 200 (2.7%) 200 (2.7%)

Abt-Buy 17223 270 (1.57%) 270 (1.57%) 295 (1.7%) 275 (1.3%) 280 (1.6%) 260 (1.5%) 280 (1.6%)

6.2 Model Performance Stability

Figure 6.2 shows the standard deviation of PC score for Abt-Buy. We have performed
three experimental runs to compute standard deviation, where the random seed was
modified for each run according to the procedure explained in Section 5.4.2. As expected,
we can observe that Baseline and Random-P/N have the highest standard deviation after
2-3 AL iterations for both starting strategies. The PC-score standard deviations achieved
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for the non-active learning Baseline-Max, Baseline 1/2, and Baseline-1/4 are lower and
more stable than the active learning strategies’ models.

At 200 labeled instances, the balanced initial training set has a lower standard deviation
of PC score for 5 out of 5 tested datasets than an imbalanced initial training set. After
200 labeled instances, the model stability converges over the AL iterations. Surprisingly,
the model stability seems to be significantly more stable for query sampling strategies
with imbalanced seed, and the query sampling strategies themselves are more dependent
on the initial class distribution than expected regarding model stability. This observation
assumes that the query sampling strategies obtain to select 50/50 distributions over every
AL iterations. If not, the observed effects might be caused by decreasing true positive
rate (TPR) for the balanced training set and increasing TPR for the imbalanced training
set over the AL iterations. This effect is discussed in Chapter 7. The Abt-Buy dataset
shows TopKDAL converges more rapidly to a PC score standard deviation below 0.05 for
the imbalanced initial training set. Query sampling strategies started with a balanced
initial training set violate more in amplitude, even at 1000 labeled instances for HC-P/N,
P-4, and Random-P/N. We can observe that the query sampling strategies using the
imbalanced initial training set as starting strategy reached the same stability as Baseline-
1/4 at approximately 700 labeled instances. Additional results of the PC score standard
deviation can be found in Section 8.2.3.
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(a) Unbalanced random initial training set with LM DistilBERT: Standard Devia-
tion of Pair completeness with respect to labeled instances for the dataset Abt-Buy.
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(b) Balanced 50/50 initial training set with LM DistilBERT: Standard deviation of
Pair completeness with respect to labeled instances for the dataset Abt-Buy.

Figure 6.2: PC score standard deviation over an increasing number of labeled
instances. Query sampling strategies use DistilBERT as TPLM. At 200 labeled
instances, the balanced initial training set achieves a lower PC score standard
deviation over the active learning iterations in 5 out of 5 datasets. After
700-1000 labeled instances for Abt-Buy, the imbalanced initial training set
seems to stabilize below 0.05, while the balanced initial training set violates
more in amplitude over the AL iterations. The standard deviation has been
computed from 3 experimental runs. PC score related to different query
sampling strategies are explained in Section 6.1.2, and the overall performance
is reported in Table 6.2.
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6.3 Iteration Time Consumption

Our proposed TopKDAL demonstrates computational efficiency by reducing the time
complexity from Θ(n2) to a linear running time O(n) for all datasets tested, indepen-
dent of which query sampling strategy was applied. From the experimental results, we
observe that both DistilBERT and RoBERTa behave quite similar over AL iterations.
P-2 strategy has often more rapidly increase in the iteration time compared to the other
query strategies. All experiments achieve linear running time over AL process although
the top-k search computes similarity values for all record pairs in the training set. It
indicates that the quadratic complexity caused by top-k search is insignificant compared
to the training time itself.

As described in Chapter 5, we emphasize that the iteration time consumption reported
after each iteration in the plots represent the cumulative training time. In the plots, we
have excluded the time usage to setup the initial training sets to only show time usage over
the active learning iterations. For all datasets, it was not found any significant deviation in
time usage between the two starting strategies sampling examples into the initial training
set. Each iteration time represents the time to train the model on all examples at the
particular active learning iteration instead of training the model on only the new record
pairs added to the updated training set. The learning model was consequently restarted
and retrained after each active learning iteration. For the Oracle, iteration time indicates
the waiting time before start query the Oracle to label the new selected examples.

As expected, RoBERTa was slower than DistilBERT caused by a larger language model
requiring a higher number of epochs and more training data to achieve a stable model
with high accuracy. Since the size of language model DistilBERT is pre-trained with
approximately 10 times less training data than RoBERTa, it also affects the iteration
time significantly. For dataset Abt-Buy, the iteration time varies between 2-3 minutes for
DistilBERT and between 5-7 minutes for RoBERTa. It indicates around 1.5x-3.5x higher
iteration time for RoBERTa compared to a lighter and faster LM as DistilBERT. The
time usage related to our experiment runs seems reasonable as we also chose exclusive
privileges to avoid shared resource loads in the test environment with others. Despite all
experiments being run on the test environment by using exclusive privileges, as explained
previously, the iteration time consumption could have been affected by minor load dis-
turbances in the test environment. Hence, these results should be interpreted keeping
this in mind. A more detailed description of our experimental setup can be found in Sec-
tion 5.4.2. In many datasets, RoBERTa as TPLM struggled to reach 1000 examples due
to predicted positive examples in the unlabeled pool was exhausted. For RoBERTa, this
effect seems to be a bigger issue for the imbalanced starting strategy than the balanced
starting strategy, especially for the datasets Abt-Buy and Walmart-Amazon. It might
indicate that RoBERTa requires an even higher number of epochs to improve the model’s
predictions. Section 8.2.3 shows the iteration time when the imbalanced starting strategy
is applied to DistilBERT and RoBERTa for the respective datasets.
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(a) LM DistilBERT with the balanced starting strategy: Iteration time with respect
to labeled instances for dataset Abt-Buy at epochs=12. Section 8.2.3 shows the
iteration time when the starting strategy is replaced by random initial strategy.
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(b) LM RoBERTa with the balanced starting strategy: Iteration time with respect
to labeled instances for dataset Abt-Buy at epochs=20. Section 8.2.3 shows the
iteration time with random starting strategy.

Figure 6.3: Iteration time comparison between DistilBERT and RoBERTa
at balanced starting strategy. The iteration time in the graphs represent
the cumulative training time indicating an iteration time between 2-3 minutes
using DistilBERT and between 5-7 minutes for RoBERTa. The learning model
was consequently restarted and retrained after each active learning iteration.
All examples in the training set were used during retraining instead of training
the model on only the new record pairs in the updated training set. The model
demonstrates computational efficiency by reducing the time complexity from
Θ(n2) to a linear running time O(n) for all datasets tested.
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Chapter 7

Discussion

This chapter discusses our findings and observations related to the results obtained from
our TopKDAL approach.

7.1 Application of Transformers in Blocking

The first research questions address how TPLM can be leveraged for enabling efficient
hands-off blocking tasks in entity matching. This blocker strategy component is also
essential to prepare for unlocking the potential of using active learning as a strategy,
which up-to-now has not been applicable in combination with active learning strategies.

7.1.1 Model Architecture Trade-offs

Table 7.1 lists several interesting identified strengths and limitations related to our ap-
proach TopKDAL. We chose to fine-tuning the transformers built on pre-trained Distil-
BERT or RoBERTa for the task based on labeled data, as it updates all attention weights
and layers in TPLM network, for achieving a versatile approach with high performance.
As a result, it yields useful sentence embeddings and reduces significantly the training time
in our blocking strategy, in contrast to if we have used BERT out-of-the-box[Reimers and
Gurevych, 2019].

Our model architecture was constructed for semantic similarity search as well as providing
probability distribution capacity for doing predictions. The purpose of using similarity
search was to efficiently enable evaluation of similarity measures on all pairs of records
corresponding to the Cartesian Product. In the networks, every record was encoded
to derive semantically meaningful record embeddings1. While BERT uses attention to
compare directly both sentences (records), e.g. word-by-word comparison [Reimers and
Gurevych, 2019], TopKDAL mapped each record from an unseen topic to a vector space

1With semantically meaningful it means that semantically similar sentences are closer in vector space.
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where similar record pairs were closer and dissimilar pairs were further apart. We always
used cosine-similarity score as similarity measure to compare the similarity between two
sentence embedding, according to Reimers and Gurevych [2019].

Among these record pairs, a top-k approximate nearest neighbor search was performed
for every record. The k most similar record pairs with the highest cosine similarity
score from each record were added to the candidate set. The drawback of this semantic
similarity search related to informative active learning strategies is the lacking capability
for making probability predictions, an essential component to apply informativeness-based
active learning strategies. To solve this challenge, we integrated Softmax in TopKDAL to
provide probability predictions for the record pairs retrieved for the respective records in
the training set. However, we have to recall that our benchmark datasets were pre-blocked,
in which means the benchmark datasets only consist of a labeled subset compared to size
of all record pairs in the Cartesian Product. To mimic a realistic blocking setting for
evaluating our TopKDAL, it was fundamental to generate a Cartesian Product between
every record in the training set at each AL iteration. On the other hand, this introduced
another drawback in terms of a training set consisting of both labeled and unlabeled record
pairs caused by the approximate nearest neighbor top-k search. As previously described,
the query sampling algorithms used in the active learning loop could only handle labeled
record pairs to mimic an human-in-the-loop. Consequently, it was necessarily to design
a solution that filtered out the unlabeled record pairs before we could applied a query
sampling strategy to select a set of examples at each iteration. However, it was not
investigated to obtain any advantages by using unlabeled record pairs.

Towards explainable blocking and the important aspect to build responsible technolo-
gies, TopKDAL has not to date the capability to explain the reason two records have
obtained matching outcome in the candidate set, it applies to both true positives and
false positives. For the application users, it might be challenging to interpret and explain
why TopKDAL made a particular prediction. In datasets where the TopKDAL achieves
low PC score, it is essential to understand why the model is predicting the outcomes
incorrectly between the record pairs. Thirumuruganathan et al. [2019] investigated the
existing gap between explaining classifier prediction methods and EM, and they stated
that a direct application of those methods are not suited for EM. We believe that methods
explaining classifying predictions made in EM should have the capability to describe a
global explanation and local explanation. The global explanation should have the capabil-
ity to explain how matching decisions in TopKDAL are performed in general, and a local
individual explainability for outcomes in the candidate set such as why one individual is
denoted as a potential candidate for mortgage[Lundberg et al., 2019]. A question to ad-
dress is whether the blocking step and/or the matching step should present user-friendly
textual explanations or identify relevant facts related to the outcomes. However, we can
guess that an individual that is incorrectly filtered out caused by the blocking step and
rejected to obtain the mortgage will ask for justification due to the refusal. Another ques-
tion that can be raised is how TopKDAL can guarantee algorithmic fairness if unwanted
biases are implicitly captured in deep learning models from the training data.

Lastly, we attribute the computational efficiency of TopKDAL to TPLM architecture,
achieving linear running time O(n) for all benchmark datasets despite the problem com-
plexity is θ(n2). One can reason that model training time dominates the total time usage
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while the quadratic top-k search time (see comment in Section 5.4.2) is insignificant com-
pared to model training time. In practice, a low model training time corresponds to a
shorter waiting-time for Oracle and more frequently beneficial labeling of new examples
by Oracle.

Table 7.1: Identified strengths and limitations in our approach TopKDAL.

Strengths Limitations
Prepared for informative active-learning
query sampling strategies such that la-
beled training data is not an impedance
for the adoption of such a blocking ap-
proach. Model architecture provides prob-
ability predictions to identify informative
examples in the unlabeled training dataset

Sub-optimal configured to handle doubt
cases in the embedding space due to Soft-
max function affects the embeddings neg-
atively.

Versatile blocking approach for different
pre-trained LMs to be fine-tuned using
labeled data. Pre-trained LMs derive
semantically meaningful sentence embed-
dings, resulting in immensity of language
understanding and ability to learn where
to pay attention between the records.
TopKDAL is easy to apply to different do-
mains, whether it is about bibliographic
or product data. Apart from changing
base transformer to multilingual BERT
base model and constructing labeled seed
sets, the model architectures of TopKDAL
might remain the same to perform block-
ing on multilingual datasets2[Jain et al.,
2021].

Not responsible and explainable approach
yet. There are no capability to explain the
reasons to matching or non-matching out-
comes between two records[Stoyanovich
et al., 2020, Monroe, 2018]. In practice,
the blocking step can impact the lives
of people as it can incorrectly eliminate
acceptable individuals from receiving a
mortgage or job seekers are not further
considered as job seekers for a job. In
blocking, any automation related to can-
didate set selection in mortgage or hiring
processes should be explainable to obtain
trust and fairness for the applicants.

Tunable blocking performance. Size of
retrieved candidate set can be varied
by increasing or decreasing approximate
k nearest neighbors using top-k search.
Smaller TPLM or faster hardware are pre-
ferred to reduce the iteration time.

Weak query sampling performance if mod-
eled is not trained sufficient which can am-
plify the amount of non-matching predic-
tions and further contribute to deteriora-
tion in the model performance. As a re-
sult, the blocking step can miss out on im-
portant regions in the product space lead-
ing to low PC score.

Demonstrates computational efficiency
achieving linear running time O(n) for all
benchmark datasets tested, even though
the problem complexity is θ(n2). Model
training dominates the time usage.

No transfer learning adaption from other
datasets supported yet to kick-starting
TopKDAL, i.e. no transferable represen-
tations from multiple source datasets, nei-
ther with or without active learning.

TopKDAL with TPLM and active learn-
ing demonstrates promising PC score with
respect to labeling effort in a low-resource
setting.

TopKDAL do not guarantee algorithmic
fairness caused by unwanted biases can be
implicitly captured in deep learning mod-
els from the training data.
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7.1.2 Comparison between TopKDAL and Traditional Blocking
Methods

Traditionally, performing blocking on a dataset requires the assistance of domain experts
to identify a number of hand-crafted tuning and design choices. This can involve man-
ual tasks such as selection of appropriate blocking functions, attribute selection, feature
engineering, selection of appropriate similarity functions and thresholds, hyperparameter
tuning for ML models, and so on. To exemplify its challenge, blocking rules can agree
about the attribute values in 2-3 attributes, and the comparison between these attributes
seems realistic. However, the attribute values can be very dissimilar in the other at-
tributes. In addition, traditional blocking methods do not capture lexical patterns as
obtained from the attention vectors in the shallow layers of transformer-based models, or
syntactic and semantic meaning which is determined in the deeper layers. Last, but not
least, prior blocking methods are hard to tune for maximizing pairs completeness score
(i.e. recall). That said, the common denominator of the traditional blocking methods
has been their obstacle to leverage any of the configurations obtained on one dataset and
further apply these setups as-is to new datasets.

We can observe without much difficulty that TopKDAL for blocking obviates many of
these issues. There are several beneficial properties compared to traditional blocking
methods. First, we enable to reduce the involvement of domain experts from the tasks
described above, and TopKDAL requires minimal input from the domain expert, except
for labeling examples during AL loop. Secondly, TopKDAL has significant flexibility to
encode the records as they are proposed in the actual schema of datasets. Transformer
architecture does not require data preprocessing such that two records need to have the
same schema or to perform schema matching before encoding the records. Instead, Top-
KDAL learns what is the important attributes for blocking automatically without manual
feature engineering, and any inconsistencies in the datasets such as corrupted and missing
values are also handled. Lastly, TopKDAL is a solution that handles incomparable record
pairs between datasets due to its deeper language understanding, infeasible for rule-based
blocking methods. Towards hands-off blocking, TopKDAL demonstrates a versatile block-
ing approach working across different datasets and domains as frictionless as possible. As
the best of our knowledge, it is not published any work or experimental results directly
comparable to our approach TopKDAL on the benchmark datasets described in Chapter 4.

7.1.3 Comparison between using Transformers in Blocking vs.
Matching in Entity Matching

In entity matching, TopKDAL shares some similarities with the matching step. However,
there are several differences as highlighted in Table 7.2.

In blocking, we ideally want to avoid doing binary classification with Softmax, and in-
stead, rank similar record pairs to achieve a high pair completeness score. Softmax is a
classification loss that wants, in this case, the cosine similarity to be as low as possible
when record pairs do not match and as high as possible when the ones match. Thus, the
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ideal is that embeddings to matching records are similar and that embeddings to those
that do not match are as far apart as possible. Softmax tends to squeeze away nuances
in how similar record pairs are. It is essential to preserve semantically similarity inputs
close together in the embedding space to achieve a better decision basis.

As described in Section 5.1.1, our proposed TopKDAL shows the challenge to mimic the
actual similarity between record pairs in the model architecture when combining TPLM
with informative active learning query sampling strategies. When leveraging Softmax to
normalize the output of a network to a probability distribution over the predicted output
classes, it affects the doubt record pairs negatively.

As explained previously, triplet margin loss function determines the relative similarity ex-
isting between records, in which provides several enhancements related to handling doubt
cases in the embedding space. On the other hand, the challenge related to triplet loss
is difficulty to find the threshold separating matches from non-matches for each dataset.
This results in difficulty to combine triplet margin loss function and informative active
learning strategies. Hence, we need to design strategies that can identify the threshold
separating matches from non-matches to unlock the potential of combining triplet loss
with active learning strategies. With that in mind, we can attempt to design suitable
active learning strategies for triplet margin loss.
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Table 7.2: Comparison of the properties between Blocking vs. Matching.

Blocking Matching
Fast approximate nearest neighbor top-k
search implementation required to reduce
candidate set size efficiently, co-embed
matches that correspond to the same real-
world entity and pruning away unlikely
pairs from the Cartesian product.

Binary classification task-objective.
Hence, no top-k search is required. All
candidate pairs are classified to either
matches or non-matches.

In a blocking setting, Softmax function-
ality is leveraged to normalize the out-
put of a network to a probability distribu-
tion over the predicted output classes and
unlock the potential using active learn-
ing as a strategy. However, Softmax af-
fects the doubt record pairs negatively.
Soft labels is often necessarily to set lower
target above 0 for mimic some similarity
present between all pairs in the real-world
datasets.

Softmax functionality can be used as-
is. No soft labels required to change
the lower or upper target for non-matches
or matches, respectively, because trans-
formations of embedding do not effect
negatively to the task objective to sepa-
rate precisely non-matching from match-
ing record pairs.

In blocking step, maximizing PC score is
not always the situation. To exemplify,
a crime investigation aims to match in-
dividuals to a large databases of people,
a high PC would be desired to increase
the likelihood that potential criminals are
included for investigation. On the other
hand, in public health studies aiming to
find matches corresponding to a patient
with certain medical conditions, a high
PQ score required to only include patients
that do have the medical condition un-
der study [Christen, 2012a]. PC and PQ
are negatively correlated in many applica-
tions.

In matching step, maximizing F1 score
is often the task-objective. Therefore,
finding the correct blocking algorithm is
critical for many EM applications as the
matching step is affected by the candidate
set from the blocking step.

Individually input record representation
obtain its encoding(single mode).

Concatenated input record representa-
tion of r and s to obtain candidate
pair (r, s), a joint representation encod-
ing(paired mode).

7.2 Active Learning as a Strategy in Blocking

Research question 2 is related to how active learning with transformers perform for block-
ing as a function of labeling effort, in which the labeling effort involves to investigate the
number of labeled instances required.
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We have highlighted how our proposed TopKDAL, combining a blocking strategy with
an active learning strategy, improves the PC score compared to non-active learning based
Baseline-Max and active learning based Baseline. TopKDAL demonstrate its capability of
achieving PC scores at a similar level based on a limited labeling budget of maximum 1000
labeled instances, and simultaneous achieving a reduction in the total time consumption
using DistilBERT instead of RoBERTa as TPLM.

7.2.1 Active Learning with Transformers in a Low-Resource En-
vironment

As discussed previously in Chapter 5, we adopted uncertainty sampling and partition
sampling as existing methods for our active learning strategies. In addition, we tested
our three new active learning approaches. Here, we show some of the effects considering
these methods for a balanced starting strategy observed to have more significant model
instabilities than the imbalanced starting strategy. All query sampling strategies had the
same initial balanced training set of positive and negative examples and accordingly have
the same initial PC score.

Uncertainty and HC-P/N strategies impact on the model decision boundary.
Figure 6.1 shows TopKDAL performance on least confident sampling (Uncertainty) and
high confident sampling (HC-P/N) contribute to the volatile performance in PC score over
the AL iterations, such as a sudden drop in PC score at 650 labeled examples for the hard
dataset Walmart-Amazon and at 680 labeled examples for the hard dataset Amazon-
Google. First, Uncertainty sampling might select a significant fraction of doubt cases,
mostly uncertain non-matches. In some AL iterations, the sudden drop might be caused
by the model do not make correct predictions, and select non-representative outliers that
affect the transformer model negatively. We have to recall that transformer model is
restarted and retrained on the updated training set after each AL iteration. Hence, such
new examples must somehow have a significant impact during training of the transformer
model as evaluation on the test set results in a decreasing PC score. Secondly, the
bad performance of the query sampling strategy HC-P/N might indicate the transformer
model has trained the decision boundary to be too confident, and as a result, it struggles
to separate least confident and difficult non-matching record pairs from matching record
pairs. Those effects highlight the advantages related to partition sampling a balanced set
with the least confident and high confidence examples, in particular after starting with
an imbalanced seed.

Unexpected Performance with Pseudo Labeling in Partition-2. Partition-2,
Partition-4 and Uncertainty are quite similar query strategies, as described in Chapter 5,
where the latter is a semi-supervised method. As Partition-2 could train on twice as
many new examples in every iteration, we expected to achieve a significant improvement
in PC score for this query strategy compared to Partition-4 and Uncertainty. Although
Partition-2 yielded better performance on imbalanced seeds than balanced seeds, it is
still an unanswered question why pseudo labeling of examples has a minor impact than
expected on the model performance. One can reason that it can be caused by incorrectly
labeling high confidence examples. However, those query sampling strategies had more
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similar blocking performance than expected.

Faster Convergence and Higher Asymptote with Active Learning. We eval-
uated if the informative query sampling strategies improves the blocking performance
based on our TPLM approach. Table 7.3 shows the best performing results. The results
matched our intuition that for the challenging datasets, query sampling strategies helped
to boost the PC score, whilst for the easy datasets, it had small effect or no effect at all
related to surpass the PC score above Baseline-Max. Table 6.3 showed the labeling cost
was dramatically reduced when active learning query strategies was applied compared to
Baseline. Thus, we advice that in general, it is beneficial to use active query sampling
strategies. From the experimental results, there are only minor variations between the
different query sampling strategies. In some cases, TopKDAL showcases a more rapid
increase in PC score when query sampling strategies were used compared to Baseline, in
particular for the unbalanced starting strategy presented in Section 8.2.3. In this way, we
argue that active learning query sampling strategies have a greater impact to improve the
blocking performance when the transformer model starts with an imbalanced seed than
a balanced seed. From our experimental results, TopKDAL achieves in some cases an
even higher target performance than Baseline-Max, i.e. a higher PC score asymptote, in
particular for the hard datasets Abt-Buy, Amazon-Google and Walmart-Amazon within
a labeling budget of 1000 examples. In practice, a faster convergence in PC score results
in less time spent labeling for the human-in-the-loop.

Reduced Successfully the Labeling Effort. As seen in Table 6.3, TopKDAL achieved
competitive performance across five real-world datasets by using an order of magnitude
less number of labeled examples than the entire training set. Our labeling budget repre-
sents 5.81-17.41% of the total size of the datasets. Doing so, less training data to label
in blocking step corresponds to a shorter training time for TopKDAL and a shorter total
time required for retrieving a candidate set to the matching step. Our approach reached
or surpassed the PC score for Baseline-Max on fewer labeled examples with a balanced
initial training set and Uncertainty as a query sampling method than with an imbalanced
initial training set and Partition-2. On the former, TopKDAL reached Baseline-Max after
200-700 labeled examples for the hard datasets Abt-Buy, Amazon-Google, and Walmart-
Amazon. In comparison, this corresponds to a training set size of 1.5-10.2% of the total
training set size used by Baseline-Max.

Towards mitigating biases. We attribute Random-P/N strategy started with an im-
balanced initial training set as our best query sampling strategy choice towards mitigating
biases. Table 7.3 shows the imbalanced-Random-P/N strategy yielded competitive perfor-
mance at the same level as the other query sampling strategies across the five real-world
datasets. There are several reasons to why we believe this strategy might be beneficial. (1)
Historically, random sampling has mitigated the likelihood of selecting biased examples
in the training set to cause biased learning. However, unwanted biases can be implic-
itly captured in transformer models from the training data. (2) Random-P/N unlocks
new blocking opportunities and simplifies how we can mimic the similarities of records in
model architecture. Such a query sampling strategy only needs to identify the threshold
separating similar examples from dissimilar examples.
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7.2.2 Starting Strategy of the Initial Training Data

As seen from the experimental results in Chapter 6, seven query sampling strategies with
a balanced starting strategy yielded a higher initial PC score than the seven experiments
based on the imbalanced starting strategy, including random sampling as baseline. These
two starting scenarios were inspired by Ein-Dor et al. [2020], which investigated active
learning methods for BERT-based binary text classification on real-world scenarios with
limited labeling budget and imbalanced datasets.

At 200 labeled examples, we can observe from Table 7.3 that the improved initial PC score
might be gained by learning from an increase number of informative positive examples.
One can reason that the transformer model has obtained a kick-start learning after a
50/50 distribution of 100 positive and 100 negative informative examples. In particular,
the transformer model seems to find the decision boundary separating matching and non-
matching record pairs with fewer labeled examples, i.e. less labeling cost, compared to
the imbalanced starting strategy. Both starting strategies selected the examples randomly
to be independent on uncertainty and diversity sampling, and no transformer models or
classic machine learning models were involved in this initial sampling process. In this
way, we determined the class distribution targets for the initial seed, essentially to avoid
cold start problems and kick-start the active learning process for our TopKDAL at a
higher initial PC score. As a result, the query sampling methods with a balanced starting
strategy have a greater likelihood to achieve a higher PC score over the AL iterations.

Table 7.3: Comparison of PC score between best performing active learn-
ing strategies and Baseline with DistilBERT as TPLM. Overall, after 1000
labeled examples, the recommended combination from the results are a bal-
anced training set as starting strategy combined with Uncertainty as query
sampling strategy. The following abbreviation is used in the table: P-2 =
Partition-2, Random-P/N = Random Positives and Negatives.

Initial Starting Strategy Best Performing Query Sampling Strategies (QSS)

Initial Training Set Dataset Random Baseline Random-P/N Uncertainty P-2

Imbalanced

Amazon-Google 0.822 0.927 0.952 (+0.025) 0.926 (-0.001) 0.954 (+0.027)
DBLP-ACM 0.950 0.991 0.996 (+0.005) 1.00 (+0.009) 1.00 (+0.009)

DBLP-Scholar 0.822 0.962 0.989 (+0.027) 0.989 (+0.027) 0.993 (+0.031)
Walmart-Amazon 0.832 0.862 0.872 (+0.010) 0.877 (+0.015) 0.865 (+0.003)

Abt-Buy 0.325 0.824 0.883 (+0.059) 0.867 (+0.043) 0.890 (+0.066)
Mean 0.750 0.913 0.938 0.932 0.940

Balanced

Amazon-Google 0.933 0.967 0.964 (-0.003) 0.973 (+0.006) 0.973 (+0.006)
DBLP-ACM 0.975 0.987 0.998(+0.011) 0.999 (+0.012) 0.999 (+0.012)

DBLP-Scholar 0.872 0.971 0.983 (+0.012) 0.992 (+0.021) 0.988 (+0.017)
Walmart-Amazon 0.933 0.883 0.883 0.895(+0.012) 0.876 (-0.007)

Abt-Buy 0.894 0.862 0.828 (-0.034) 0.900 (+0.038) 0.901(+0.039)
Mean 0.894 0.934 0.931 0.952 0.947

A downside to the balanced starting strategy is how an initial balanced training set can
be sampled efficiently among all record pairs between two datasets, in many situations
dominating the fraction of non-matching record pairs. In large-scale industrial datasets,
the challenge of identifying matching record pairs to obtain a 50/50 class distribution
in initial training set might be time consuming work. In general, it will be a trade-off
between the cost of adding extra overhead to obtain a balanced starting strategy and
the improvements gained as a higher initial PC score. As seen from Table 6.2, a trans-
former model starting with a balanced strategy was successful in the beginning of the
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AL iterations. However, as a result of inaccurate predictions, a transformer model with
imbalanced starting strategy seems to catch up with a transformer model. In many situa-
tions, a more straightforward imbalance starting strategy mindset might be the preferred
solution to minimize extra overhead

7.2.3 Comparing True Positive Rate and Starting Strategy

We chose the dataset Abt-Buy to showcase how true positive rate acts for the two starting
strategies. In theory, recall that we expected 50/50 sampling of positives and negatives
via query sampling strategies over the active learning iterations. Figure 7.1 indicates
models predict significant wrong in many cases, in particular for a balanced start point
because TPR is not maintained at approximately 0.50 over the AL iterations and the query
sampling strategies started with imbalanced start point have not reached approximately
(0.50∗800+0.1073∗200)/1000 = 0.42% matching examples in the Abt-Buy3 training set.

As expected, we can observe that Uncertainty strategy actually retrieves the fewest pos-
itive examples over the AL iterations for both an imbalanced and balanced seed. This
sounds reasonable as the query strategy selects the least confident examples and it is
the overweight of non-matching examples in the pool U . According to our P-4-3xPB
objective described in Section 5.3, partition sampling with three times as many HCP as
HCN examples increase TPR most with imbalanced starting strategy, and opposite, it
maintains better TPR for a balanced starting strategy. However, as showed in Table 6.2,
this boost in number of positive examples cannot be used as a treatment to outperform
Balanced-Uncertainty and Imbalanced-P-2.

Balanced-Uncertainty demonstrated the best results. One can reason that the model gains
the most advantage of training on least confident examples after being kick-started with
a balanced seed. Figure 7.1 shows Balanced-Uncertainty achieved the lowest fraction of
positive examples in the training set among the query sampling strategies after approxi-
mately 600-650 labeled examples while achieving the highest PC score. Even though the
model attempts to select 20 positive and 20 negative least confident examples for each
iteration during Balanced-Uncertainty, the TPR indicates the model selects even more
uncertain non-matching than matching examples. As a result, the transformer model
seems to improve blocking performance by better separating difficult positive and nega-
tive examples from each other during the evaluation of the test set. Such an observation
might indicate that the model should be trained with a balanced starting strategy cover-
ing half of the positive space randomly and other half of the negative space randomly as
a seed. Potentially, when starting with a balanced starting strategy, a positive side effect
of decreasing TPR over the AL iterations might be minor class distribution deviation
between training and test set.

In the opposite case, we observed that Imbalanced-P-2 strategy performed best with
imbalanced starting strategy. When the model is trained with an imbalanced training
set closer to the distribution in the source dataset, the model improves the blocking
performance mostly by selecting a balanced set based on partition sampling with pseudo

3All benchmark datasets consist of more than 500 matching record pairs according to Table 4.2
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labeling of high confident examples and labeling of least confident examples performed
by the Oracle. One can reason that the model seems to get reward from a twice as
large training size because TPR for Partition-4 is higher than for Partition-2. Overall,
we see that all query sampling strategies starting with an imbalanced initial set increase
their TPR over the AL iterations. In this case, an unwanted side effect is an increasing
deviation in the class distribution between the training and test set.

After 1000 labeled examples, it is interesting that TPR of almost every query sampling
strategy converges to approximately TPR of 0.26-0.36. This observation addresses the
problem with AL and TPLM if the model is not performing at a sufficient level. As
the query sampling depends on the model’s predictions, it can result in such a situation
that the model predicts all examples as non-matching examples. This way, if the query
strategy cannot select positive matches to label, it results in a decreased TPR in the
training set as observed in Figure 7.1. At a labeling budget below 1000 labeled examples,
Balanced-Uncertainty seems to be the preferred strategy for achieving a high TPR while
reaching a high PC score. More TPR results for the other datasets with DistilBERT as
TPLM can be found in Section 8.2.3.
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(a) True positive rate over 1000 labeled examples given an imbalanced initial train-
ing set distribution. The number of positive examples in the training set increases
over the active learning sampling iterations. The increase in TPR is caused by the
query strategy can find a high amount of positive examples in the pool U based on
model’s predictions.
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(b) True positive rate over 1000 labeled examples given a balanced initial training
set. The number of positive examples in the training set decreases over the active
learning sampling iterations. The reduction in TPR is caused by the query strategy
cannot find enough positive examples in the pool U based on model’s predictions
to maintain the initial 50/50 distribution.

Figure 7.1: True positive rate (TPR) for the query sampling strategies on
dataset Abt-Buy. The red dashed line denotes Baseline-Max trained on all
training data.
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7.3 Challenges

The third research question addresses the challenges of combining active learning and
Transformer pre-trained models (TPLM) for blocking in entity matching. Some challenges
we faced when developing our approach TopKDAL for blocking are also discussed.

7.3.1 Active Learning Needs Interactive Domain Expert

Active learning (AL) is not a suitable strategy to improve the blocking performance and
reduce the labeling effort related to TPLM if an interactive domain expert, who can label
the record pairs correctly, is not a part of the system. The critical component to unlock
the potential of AL in blocking is 1) the involvement of an interactive domain expert
and 2) a suitable user interface customized for the domain expert to perform labeling.
While the public datasets were pre-labeled in our benchmark datasets, active learning as
a strategy has a limited application domain in the real world if nobody can correctly and
efficiently label the datasets. Hence, the design of a labeling application for the domain
experts should have a straightforward interface. Next, the user interface needs to have
the functionality to make the labeling work process more manageable. Finally, the new
labeled examples should be passed to update the training set and injected into the model
in each active learning iteration.

How to solve the user interactive work process in active learning is not well researched.
Due to this complex obstacle about how active learning can be applied in a production
setting, it can be argued that many companies would mainly use the TPLM on smaller
labeled datasets. However, the research community should work with companies to com-
prehensively review how active learning can be used in an industrial setting such that our
proposed TopKDAL can be applied on large-scale industrial datasets.

7.3.2 Informativeness vs. Representativeness AL Strategies

An important aspect is identifying any fundamental weaknesses of using our active learn-
ing strategies to perform blocking in entity matching. Our work focused on the most
popular active learning approach to evaluate informativeness-based active learning strate-
gies, which involves querying the most informative instances. We chose informativeness
to represent the ability of a sample to reduce the generalization error of the adopted
classification model. In this way, we attempted to reduce the uncertainty related to the
classification model in the next AL iteration. Our tested approaches include Uncertainty,
P-4, P-2, HC-P/N, P-4-3xPos. The main weakness of these approaches is that they can-
not exploit the abundance of unlabeled data, and a few labeled examples solely determine
the selection of instances, consequently making it prone to sampling biases.

In our work, representativeness is not considered since it usually involves applying a
clustering method. It could exploit the underlying unlabeled data’s cluster structure to
select the most representative examples among the unlabeled data. The main weakness
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of representativeness-based approaches is that their performance heavily depends on the
quality of clustering results. In addition, it brings more complexity to our interpreta-
tions of results. However, the common problem of our informativeness active learning
approaches is that the query samples merely rely on scarce labeled data instead of using
the full advantage of the information of abundant unlabeled data. Therefore, evaluating
TopKDAL with an active learning sampling strategy approach that effectively fuses in-
formativeness and representativeness would be interesting as further work. The purpose
would be to ensure that the query samples possess the representativeness of the unlabeled
data and reveal the diversity of the labeled data.

7.3.3 Application in Industry

A question to address is how AL with TPLM can be applied to significantly reduce
labeling costs while improving PC scores in an industry setting. Our experimental setup
attempted to take into consideration real-world scenarios for blocking bounded time and
resource limitations. The purpose was to limit the iteration time spent over 20 rounds of
active learning. As a result, a shorter iteration time was achieved with a smaller TPLM
to gain a shorter waiting time for the Oracle between each time it could start labeling
new examples. For a company, the human domain expert involvement as an Oracle has
to be used efficiently in a AL loop. It means to maximize the time spent on labeling by
a human domain expert while reducing its waiting time because human domain experts
are often an expensive asset and a limited resource for the company. Therefore, we aim
to have a short time window between each labeling iteration, independent of how trivial
the labeling task can be perceived by the human domain expert. The most important is
to fill up the human domain experts’ available time as they also have many other work
tasks on their schedule.

There are several ways to involve the domain expert in that AL loop. Labeling record
pairs individually by an Oracle is one approach. A more optimal approach is to query the
Oracle regarding regular expressions to find matches in the dataset. A regular expression
needs to identify something in common between the record pairs in the candidate set.
To exemplify, it might be that all records with the attribute value ”7030 Trondheim”
in the attribute name ’post address ’ have to match. In this way, the Oracle can label
larger batches of examples per time unit by applying these regular expressions systemat-
ically on the unlabeled data. A challenge of using TPLM in the heavy asset industry is
getting certification on a deep learning model, which TopKDAL depends on. Without a
certification, TopKDAL is worth nothing because the company needs to understand the
model’s behavior. This understanding is essential when companies do not accept any false
positives or false negatives in their systems. In this case, AL can be a beneficial method
as it is a human-in-the-loop process where a domain expert can review and validate the
label of the record pairs.
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7.3.4 Pseudo Labeling and Semi-supervised Methods for Block-
ing

The second-best performing query strategy was imbalanced Partition-2. Although pseudo
labeling of high confident examples and semi-supervised methods can be relevant for ex-
tending the number of labeled data to reduce the human interaction in each active learn-
ing iteration, it could also introduce incorrectly labeled examples and model performance
problems. The reason is twofold. 1) It is essential not to alternate positive examples with
negative ones during labeling when the data availability is low and highly imbalanced.
2) An entity matching system might not accept any degree of false labeled positives in
its system. Particularly, if there are few positive examples available in total, these false
positives could affect the model performance negatively during training.

7.3.5 Selection of Transformer Pre-trained Language Model

As we have seen, one needs to adjust the language model size and fine-tuning training
time to reach a acceptable response time for human interaction in active learning. Thus,
it is not straightforward to find a suitable TPLM and its corresponding hyperparameters
appropriately fine-tuned on labeled data. As experienced with TopKDAL, there are a
huge amount of different TPLMs with different pre-trained objectives [Qiu et al., 2020].
However, there seems to be less attention to pre-trained language models for blocking or
matching in entity matching, except for Brunner and Stockinger [2020], who published
some work to benchmark several TPLMs on matching as a task. As observed in Figure 6.3,
the iteration time for dataset Abt-Buy varied between 2-3 minutes and 5-7 minutes for
DistilBERT and RoBERTa, respectively. This result was achieved after empirical test-
ing. Such empirical testing of TPLM and hyperparameters to define a comprehensive
benchmark of different TPLMs and hyperparameters are needed for blocking. This way,
it would be easier to identify which pre-trained language models works with a versatile
blocking approach. As experienced in our results, it could also be helpful to include how
TPLM is affected by different class distributions in the initial training set.

7.4 Alternative Blocking Approaches

Transfer active learning-based blocking with TPLM is an alternative solution to our active
learning with TPLM approach. The idea is based on Kasai et al. [2019] as stated that
transfer learning (TL) itself can achieve an additional increase in performance by incor-
porating active learning for doing matching. This approach can be developed by selecting
a TPLM from available language models. It can be used as the starting point before the
model is trained on labeled source datasets, which reducing the need for human interac-
tion. Then, the model can be applied to the target dataset. Many research institutions
release language models based on large and challenging datasets that may be applied as
well. It might be several advantages of using transfer active learning with TPLM com-
pared to our proposed TopKDAL. Some of the advantages could be 1) higher initial PC
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score competitive with our two starting strategies, 2) higher and steeper improvement rate
in performance than achieved here, 3) the converged performance of the trained model
might gain a higher asymptote, and 4) there is a minor need for an Oracle if the source
datasets are labeled. However, TL can be negatively affected by specific relationships in
the source datasets, particular if model learns relationships in the source datasets that
are negatively for the target dataset. To the best of our knowledge, a TAL-based blocking
approach with TPLM has not obtained any published research yet.



Chapter 8

Conclusion

8.1 Conclusion

We have presented TopKDAL, our blocking approach combines active learning with Trans-
former pre-trained language models. TopKDAL is a hands-off blocking approach on tab-
ular records, based on similarity-preserving representation learning and top-k nearest
neighbor search. Model architecture is based on Transformers with respect to ignore non-
matching record pairs in the datasets in question from the candidate set, and to enable
active learning as a strategy to reduce the labeling effort among data-hungry transformer
models. Through experiments conducted on five public entity matching datasets, we
showed that the blocking performance and query sampling strategies were depended on
the initial class distribution in the starting strategy. TopKDAL achieved competitive
PC scores with significant reduction in required training set sizes, demonstrating active
learning as a valid strategy to consider for TPLM-based blocking approaches.

RQ1 How can Transformers be used to improve the blocking performance in entity match-
ing??

We have presented TopKDAL, a versatile blocking approach for different pre-trained trans-
former language models (TPLM) to be fine-tuned on labeled data from the target dataset.
TPLMs derived semantically meaningful sentence embeddings, resulting in the immen-
sity of language understanding and ability to learn where to pay attention between the
records. Doing so, TPLMs unveiled similarities between entities. These similarities were
used as input in a top-k search to retrieve the most similar record pairs for each record
into a candidate set. Such a candidate set simplifies the binary classification performed
by a single matcher.

A simple classification layer on top of the powerful TPLM was used for unlocking the
potential of active learning (AL) as a strategy. This layer provided model predictions
among the record pairs retrieved in the candidate set, and enabled the application of
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informative query sampling strategies in an AL loop. In this way, we reduced the required
labeling effort by incorporating active learning to select informative examples to fine-
tune a TPLM. At the same time, we maintained the model accuracy and the blocking
performance where involvement of domain experts were simplified to only label record
pairs in the AL loop.

TopKDAL does not suffice to construct a unified entity matching system. Hence, the
blocking performance might be improved even more if the blocking step and the matching
step are jointly integrated and learned as a system. The performance improvement in one
can benefit the other, independent of where and how these examples are selected.

RQ2 How does active learning with transformers perform for blocking with respect to
labeling effort (i.e. the number of labels)?

In a low-resource setting with a labeling budget of 1000 examples, TopKDAL achieved
competitive performance on five real-world datasets by only using an order of magnitude
less number of labeled examples than training on an entire training set. Our labeling
budget represents 5.81-17.41% of the total size of the datasets. In practice, fewer examples
to label in the training set for the blocking model corresponds to a shorter total time
required to obtain a candidate set for a matching step in entity matching. How an
application of TopKDAL would perform in an industry setting is suggested as further
work.

Active learning with TPLM contributed to a more rapid increase in PC score and faster
convergence than Baseline. We found that the best-performing query sampling strategy
is depending on the initial training set the model was trained on. On an imbalanced
initial training set, the partition sampling strategy of pseudo labeling of high confident
examples and manually labeling low confident examples yielded on average 0.027 higher
PC score than Baseline after 1000 labeled instances. In this semi-supervised method, the
model was trained on a balanced set of twice as many examples per AL iteration. Given
a balanced initial training set, Uncertainty achieved the best performing query sampling
strategy on average 0.018 higher PC score than Baseline. Overall, the balanced initial
training set with trained on uncertain examples as the query sampling strategy achieved
on average a PC score of 0.947 across the five datasets.

Our approach reached or surpassed the PC score for Baseline-Max with fewer labeled
examples with Uncertainty as a query sampling method with a balanced starting strat-
egy than Partition-2 with an imbalanced initial training set. On the former, TopKDAL
reached Baseline-Max after 200-700 labeled examples for the hard datasets Abt-Buy,
Amazon-Google, and Walmart-Amazon. In comparison, this corresponds to a training
set size of 1.5-10.2 % of the total training set size used in Baseline-Max.

Given 200 labeled instances as an initial training set, our approach TopKDAL achieved
on average 0.144% higher initial PC score across the datasets with a balanced initial
training set than the imbalanced initial training set. This improvement indicates that a
balanced starting strategy can be used to kick-start TPLMs, in particular if the labeling
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budget is reduced to 200 examples in total. In addition, a balanced distribution seems
to be beneficial 1) to reduce the likelihood of a cold start problem, and 2) to avoid the
use of transfer learning from source datasets. However, our starting strategies are based
on random sampling of positive and negative examples. Hence, an initial training set
of 200 examples selected by combining the active learning query sampling strategy with
traditional machine learning methods might improve the initial PC score even more.

We found that the initial PC score based on a balanced initial training set initially could
not be caught up by TopKDAL with an imbalanced starting strategy. However, the
initial difference in PC score of 0.114 on average was reduced to 0.012 after 1000 labeled
examples. However, the model stability was significantly more stable for query sampling
strategies trained on imbalanced initial training set.

The experiments showed that the iteration time was significantly reduced when a smaller
TPLM was combined with a lower number of epochs compared to the larger language
model RoBERTa. In active learning, a shorter iteration time is beneficial to gain a shorter
waiting time between each labeling sequence.

RQ3 What are the challenges in combining active learning and Transformer pre-trained
models (TPLM) with respect to blocking in an entity matching system?

TopKDAL addressed several challenges of using AL with TPLM for blocking. Firstly,
which search algorithm should be used to retrieve matching record pairs from non-
matching record pairs. In our approach, we used top-k search. Secondly, A loss function
is interconnected with query sampling strategies. Hence, model architecture for blocking
needs to be designed for providing probability predictions of the record pairs for unlock-
ing the potential of active learning. Although active learning as a strategy introduces
extra overhead to setup, it reduces the labeling cost significantly in low-resource setting.
Lastly, record pairs categorized as doubt cases are difficult to mimic in the embedding
space with Softmax. An option to consider is to combine Triplet Loss and Random-P/N
based on threshold as a query sampling strategy. In this way, we can apply the TPLM’s
embeddings more directly when selecting examples to label. We believe further work in
this direction could lead to improvements for AL with TPLMs for blocking.

Currently, no specific TPLM is pointed out for blocking in entity matching. The avail-
ability of different TPLMs is high. Unfortunately, it is published few previous works
explaining which TPLMs and hyperparameters should be used. Our work has showed
some aspects of how hyperparameters, TPLM, initial training set distribution, and query
sampling strategies are interconnected with each other. When working with blocking on
larger datasets, such as industrial datasets, an optimization might be even more criti-
cal for reducing the iteration time. The consequence of having a sub-optimal choice of
parameter combinations might result in instability and unusable models.
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8.1.1 Industrial Application

TopKDAL unlocks several opportunities for industry companies of any size to investi-
gate relationships and similarities among record pairs across several data sources to gain
value outtakes from the company’s data by retrieving a candidate set consisting of likely
matches. TopKDAL is a proposed approach to companies’ call for improving blocking
performance in a low-resource setting, and to handle datasets consisting of constantly
increasing volumes of diverse, heterogeneous, inconsistent, and noisy information. Today,
a rise in heterogeneity data has resulted in even more unstructured, unclean, incomplete
data and diverse data types. Towards hands-off blocking TopKDAL demonstrates a ver-
satile blocking approach working across different datasets and domains as frictionless as
possible, in which the domain experts can apply their efforts to label the most informa-
tive data. TopKDAL, as a proposed solution, is a key component for companies to unlock
entity matching as a task on large and very large datasets, such as industrial datasets.

However, there are still several practical challenges the companies are facing before Top-
KDAL can be used. 1) Establish a solution related to involving an interactive domain
expert in an active learning loop. 2) There are no capability to explain the reasons to
matching or non-matching outcomes between two records. Hence, TopKDAL can be per-
ceived as a black-box when the companies do not understand the processes under the
hood. 3) TopKDAL does not guarantee algorithmic fairness caused by unwanted biases
can be implicitly captured in deep learning models from the training data. In this case,
TopKDAL needs to be tested to not be subject to anti-discriminatory laws in many coun-
tries.
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8.2 Further Work

There are several interesting avenues of research arising from the results of this thesis,
and some of those are described as recommendations for further work.

8.2.1 Extension of Our Work

Evaluate how model parameters impact each other and blocking performance
accuracy. As experienced during the blocking experiments, it is interconnected rela-
tionships between TPLMs, class distribution in training sets, hyperparameters and query
sampling strategies, and top-k nearest neighbor search. Comparing the relationships be-
tween these factors could also be of great interest, as this could shed some light on how to
target an optimal blocking model architecture with active learning query sampling strate-
gies. Related to TopKDAL, it could be relevant to obtain better insight into trade-offs
between iteration time, model performance accuracy, and tuning of k to apply for top-k
search1. For instance, a too high k could result in a sub-optimal top-k search retrieving
unnecessarily more non-matching examples in the candidate set C, impacting the size
of C, PC score, and RR for TopKDAL negatively. A comprehensive benchmark, as a
result of extensive testing such as Meduri et al. [2020], of TPLMs and AL query sampling
strategies on benchmark datasets for blocking could 1) draw more robust conclusions on
the TopKDAL performance, and 2) contribute to concrete guidelines as to what active
learning combinations will work well for blocking in EM.

Combine Data Augmentation and Active Learning to reduce the Labeling Ef-
fort. Inspired by Li et al. [2020], it could be interesting to combine data augmentation for
text with active learning to improve the TopKDAL blocking performance. Although data
augmentation shares the common goal with active learning of improving label efficiency
in TopKDAL, it is two different approaches. Active learning requires human interaction
in each AL iteration, whereas data augmentation has not that requirement. For instance,
data augmentation could expand the number of difficult examples in the training set to
force TopKDAL to learn on difficult examples. Additionally, transfer learning could also
be combined with the suggested approach. We believe further work in this direction,
combining these three approaches, could results in state-of-the-art results.

8.2.2 Practical Application in an Industry Setting

In answer to RQ3 of this thesis, we have discussed the challenges faced in combining AL
and TPLM for blocking. A natural next step is to review how TopKDAL can setup active
learning with a human-in-the-loop in an industry setting, and then combine TopKDAL
with a matching step to be applied as a unified EM system. Another important aspect to
consider is how to take advantage of a rise in novel query sampling strategies more closely
coupled with the properties of TPLMs. As presented in Chapter 5, we used informative

1Our experimental results used fixed k = 10 in the top-k approximate nearest neighbor search.
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query sampling strategies depending on model predictions to select the examples to label.
In turn, such novel query sampling strategies could potentially retrieve a better training
set over AL iterations than our used model agnostic query sampling strategies. Today, it
is difficult to directly evaluate the various applications of traditional blocking methods,
non-active learning blocking methods, and AL blocking methods. In an industry setting,
we believe a standardized test framework would simplify their burden of comparing ap-
plications of non-AL and AL-based blocking approaches, a challenge still remains today.
A test framework would need to incorporate AL strategies and evaluation metrics such as
iteration time and labeling time. Although TopKDAL is a promising approach for block-
ing, there are a series of hurdles that need to be overcome before a unified framework for
EM system can be deployed. In this case, a comprehensive benchmark of blocking meth-
ods for benchmark datasets would be beneficial to reproduce the approaches published
up-to-now and identify improvements among these blocking methods.

Towards leveraging TPLM-based approaches and investigating how seamlessly TopKDAL
can be applied across other domains and datasets compared to traditional blocking meth-
ods, it would also be interesting to evaluate our approach on multilingual datasets such as
Jain et al. [2021]. Towards industry setting settings, we also suggest to evaluate training
set with labeling noise against training set with no-noise. Most of the published researched
work assumes that the training data is perfectly labeled. However, TopKDAL needs to
show competitive results with fixed fractions of incorrectly labeled instances in the train-
ing set to be defined as a robust approach. This scenario is coming from the increasing
popularity of crowd-sourcing, which often can lead to incorrectly labeled matches and
non-matches in the labeled training set.

8.2.3 New Approaches for Blocking

Utilizing Transfer Learning for Blocking. The application of domain-specific TPLM
with AL should be evaluated to enhance the blocking performance while reducing the
labeling effort and iteration time usage. Every TPLM is of interest if they can reduce the
active learning iteration time, which means the time used to train the model and predict
the record pairs. As observed in our experimental results, a pre-trained smaller general-
purpose language model, such as DistilBERT, decreases the iteration time significantly
compared to a more prominent language representation model like RoBERTa. We expect
that pre-training TopKDAL on domain-specific or EM-specific source datasets upfront
might improve the blocking performance on the target datasets by increasing PC score
and potentially decreasing the training time. Another open question is whether it can be
beneficial to build language models meant for blocking and matching as tasks.

Combine Triplet Loss and a modified Random-P/N. Our experiments’ query sam-
pling strategies are mainly based on informative query sampling strategies based on model
predictions to select examples to label. Suppose a solution to find where the threshold
separating matches from non-matches could be achieved efficiently. In that case, we sug-
gest using cosine similarities between the record pairs in the embedding space combined
with sampling balanced positives and negatives randomly as a query strategy. Hopefully,
sampling a balanced class distribution over the active learning iteration would lead to
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1) enhanced model performance accuracy and reaching a higher PC score, and/or 2) de-
creased labeling effort. In this way, we can apply the TPLM’s embeddings more directly
when selecting examples to label [Jain et al., 2021]. We believe further work in this
direction could lead to improvements for AL with TPLMs for blocking.

Combine Triplet Loss and a modified Random-P/N. In this way, we can apply the TPLM’s
embeddings more directly when selecting examples to label [Jain et al., 2021]. We believe
further work in this direction could lead to improvements for AL with TPLMs for blocking
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Köpcke, H. and Rahm, E. (2010). Frameworks for entity matching: A comparison. Data
& Knowledge Engineering, 69(2):197–210.

Lewis, D. D. (1995). A sequential algorithm for training text classifiers: corrigendum and
additional data. ACM SIGIR Forum, 29(2):13–19.

Li, Y., Li, J., Suhara, Y., Doan, A., and Tan, W.-C. (2020). Deep entity matching with
pre-trained language models. Proceedings of the VLDB Endowment, 14(1):50–60.

Liang, H., Wang, Y., Christen, P., and Gayler, R. (2014). Noise-Tolerant Approximate
Blocking for Dynamic Real-Time Entity Resolution. In Hutchison, D., Kanade, T., Kit-
tler, J., Kleinberg, J. M., Kobsa, A., Mattern, F., Mitchell, J. C., Naor, M., Nierstrasz,
O., Pandu Rangan, C., Steffen, B., Terzopoulos, D., Tygar, D., Weikum, G., Tseng,
V. S., Ho, T. B., Zhou, Z.-H., Chen, A. L. P., and Kao, H.-Y., editors, Advances in
Knowledge Discovery and Data Mining, volume 8444, pages 449–460. Springer Interna-
tional Publishing, Cham.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer,
L., and Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining
Approach. arXiv:1907.11692 [cs]. arXiv: 1907.11692.

Loshchilov, I. and Hutter, F. (2019). Decoupled Weight Decay Regularization.
arXiv:1711.05101 [cs, math]. arXiv: 1711.05101.

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R.,
Himmelfarb, J., Bansal, N., and Lee, S.-I. (2019). Explainable AI for Trees: From Local
Explanations to Global Understanding. arXiv:1905.04610 [cs, stat]. arXiv: 1905.04610.

Maystre, L. and Grossglauser, M. (2017). Just Sort It! A Simple and Effective Approach
to Active Preference Learning. arXiv:1502.05556 [cs, stat]. arXiv: 1502.05556.



106 Bibliography

McCallum, A., Nigam, K., and Ungar, L. H. (2000). Efficient clustering of high-
dimensional data sets with application to reference matching. In Proceedings of the
sixth ACM SIGKDD international conference on Knowledge discovery and data min-
ing, KDD ’00, pages 169–178, Boston, Massachusetts, USA. Association for Computing
Machinery.

Meduri, V. V., Popa, L., Sen, P., and Sarwat, M. (2020). A Comprehensive Benchmark
Framework for Active Learning Methods in Entity Matching. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data, SIGMOD ’20,
pages 1133–1147, Portland, OR, USA. Association for Computing Machinery.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient Estimation of Word
Representations in Vector Space. arXiv:1301.3781 [cs]. arXiv: 1301.3781.

Monroe, D. (2018). AI, explain yourself. Communications of the ACM, 61(11):11–13.

Mudgal, S., Li, H., Rekatsinas, T., Doan, A., Park, Y., Krishnan, G., Deep, R., Arcaute,
E., and Raghavendra, V. (2018). Deep Learning for Entity Matching: A Design Space
Exploration. In Proceedings of the 2018 International Conference on Management of
Data, pages 19–34, Houston TX USA. ACM.

Papadakis, G., Alexiou, G., Papastefanatos, G., and Koutrika, G. (2015). Schema-agnostic
vs schema-based configurations for blocking methods on homogeneous data. Proceedings
of the VLDB Endowment, 9(4):312–323.

Papadakis, G., Koutrika, G., Palpanas, T., and Nejdl, W. (2014a). Meta-Blocking: Tak-
ing Entity Resolutionto the Next Level. IEEE Transactions on Knowledge and Data
Engineering, 26(8):1946–1960.

Papadakis, G., Papastefanatos, G., and Koutrika, G. (2014b). Supervised meta-blocking.
Proceedings of the VLDB Endowment, 7(14):1929–1940.

Papadakis, G., Papastefanatos, G., Palpanas, T., and Koubarakis, M. (2016a). Boosting
the Efficiency of Large-Scale Entity Resolution with Enhanced Meta-Blocking. Big
Data Research, 6:43–63.

Papadakis, G., Skoutas, D., Thanos, E., and Palpanas, T. (2019). Blocking and Filtering
Techniques for Entity Resolution: A Survey.

Papadakis, G., Svirsky, J., Gal, A., and Palpanas, T. (2016b). Comparative analysis
of approximate blocking techniques for entity resolution. Proceedings of the VLDB
Endowment, 9(9):684–695.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,
Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Rai-
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Shui, C., Zhou, F., Gagné, C., and Wang, B. (2020). Deep Active Learning: Unified
and Principled Method for Query and Training. arXiv:1911.09162 [cs, stat]. arXiv:
1911.09162.

Simonini, G., Bergamaschi, S., and Jagadish, H. V. (2016). BLAST: a loosely schema-
aware meta-blocking approach for entity resolution. Proceedings of the VLDB Endow-
ment, 9(12):1173–1184.
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(a) Random initial training set with LM DistilBERT.
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(b) Random initial training set with LM RoBERTa.
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(c) 50/50 initial training set with LM DistilBERT.

200 300 400 500 600 700 800 900 1000

Labeled Instances [#]

0.2

0.4

0.6

0.8

Pa
irs

C
om

pl
et

en
es

s
[-]

Abt-Buy

Baseline
Baseline-Max (5743.0)

Baseline-1/2 (2871.0)
Baseline-1/4 (1435.0)

Uncertainity
HC-P/N

Random-P/N
P-4

P-2
P-4-3xPB

(d) 50/50 initial training set with LM RoBERTa.

Figure A.1: Experimental results of pair completeness with respect to labeled
instances for dataset Abt-Buy.
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(a) Random initial training set with LM DistilBERT.
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(b) Random initial training set with LM RoBERTa.
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(d) 50/50 initial training set with LM RoBERTa.

Figure A.2: Experimental results of pair completeness with respect to labeled
instances for dataset Amazon-Google.
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(d) 50/50 initial training set with LM RoBERTa.

Figure A.3: Experimental results of pair completeness with respect to labeled
instances for dataset DBLP-ACM.
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(d) 50/50 initial training set with LM RoBERTa.

Figure A.4: Experimental results of pair completeness with respect to labeled
instances for dataset DBLP-GoogleScholar.
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(d) 50/50 initial training set with LM RoBERTa.

Figure A.5: Experimental results of pairs completeness with respect to labeled
instances for dataset Walmart-Amazon.
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(b) 50/50 initial training set with LM DistilBERT.

Figure B.1: Experimental results of train positive rate with respect to labeled
instances for dataset Abt-Buy.
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(b) 50/50 initial training set with LM DistilBERT.

Figure B.2: Experimental results of train positive rate with respect to labeled
instances for dataset Amazon-Google.
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(b) 50/50 initial training set with LM DistilBERT.

Figure B.3: Experimental results of train positive rate with respect to labeled
instances for dataset DBLP-ACM.
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(b) 50/50 initial training set with LM DistilBERT.

Figure B.4: Experimental results of train positive rate with respect to labeled
instances for dataset DBLP-GoogleScholar.
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Figure B.5: Experimental results of train positive rate with respect to labeled
instances for dataset Walmart-Amazon.
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(b) Random initial training set with LM RoBERTa.
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(d) 50/50 initial training set with LM RoBERTa.

Figure C.1: Experimental results of iteration time with respect to labeled
instances for dataset Abt-Buy.
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(d) 50/50 initial training set with LM RoBERTa.

Figure C.2: Experimental results of iteration time with respect to labeled
instances for dataset Amazon-Google.
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(d) 50/50 initial training set with LM RoBERTa.

Figure C.3: Experimental results of iteration time with respect to labeled
instances for dataset DBLP-ACM.
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(d) 50/50 initial training set with LM RoBERTa.

Figure C.4: Experimental results of iteration time with respect to labeled
instances for dataset DBLP-GoogleScholar.
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(d) 50/50 initial training set with LM RoBERTa.

Figure C.5: Experimental results of iteration time with respect to labeled
instances for dataset Walmart-Amazon.
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(b) Random initial training set with LM RoBERTa.
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(c) 50/50 initial training set with LM DistilBERT.
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(d) 50/50 initial training set with LM RoBERTa.

Figure D.1: Experimental results of PC score standard deviation with respect
to labeled instances for dataset Abt-Buy.
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(a) Random initial training set with LM DistilBERT.
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(b) Random initial training set with LM RoBERTa.
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(c) 50/50 initial training set with LM DistilBERT.
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(d) 50/50 initial training set with LM RoBERTa.

Figure D.2: Experimental results of PC score standard deviation with respect
to labeled instances for dataset Amazon-Google.
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(a) Random initial training set with LM DistilBERT.
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(b) Random initial training set with LM RoBERTa.
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(c) 50/50 initial training set with LM DistilBERT.
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(d) 50/50 initial training set with LM RoBERTa.

Figure D.3: Experimental results of PC score standard deviation with respect
to labeled instances for dataset DBLP-ACM.
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(a) Random initial training set with LM DistilBERT.
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(b) Random initial training set with LM RoBERTa.
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(c) 50/50 initial training set with LM DistilBERT.
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(d) 50/50 initial training set with LM RoBERTa.

Figure D.4: Experimental results of PC score standard deviation with respect
to labeled instances for dataset DBLP-GoogleScholar.
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(a) Random initial training set with LM DistilBERT.
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(b) Random initial training set with LM RoBERTa.
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(c) 50/50 initial training set with LM DistilBERT.
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(d) 50/50 initial training set with LM RoBERTa.

Figure D.5: Experimental results of PC score standard deviation with respect
to labeled instances for dataset Walmart-Amazon.
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