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A B S T R A C T

Infants who are born with heart defects may need catheter inter-
vention or heart surgery as treatment. Such interventions can cause
air bubbles to be introduced into the bloodstream. These events can
cause clogged arteries or other more severe issues for the patient and
can potentially be fatal. Consequently, a method for detecting the
extent and locations of air bubbles situated in the bloodstream is cru-
cial for the treatment of the complication that may result from air
embolism. By utilizing the NeoDoppler system for the ultrasound
analysis of the cerebral blood flow, accompanied with the EarlyBird
software, higher intensities of the ultrasound signal can be recognized
as air bubbles by analyzing the Color M-Mode image and Doppler
spectrogram.

In clinical research, air bubbles are detected by manually search-
ing the Color M-Mode image and Doppler spectrogram for areas of
higher intensities. This process is very time-consuming and can re-
sult in mixed results depending on which criteria are used for the
detection and by whom the detection is performed. Preferably, the
detection process should also be performed multiple times and by
different people to verify the result. In this project, the aim is to de-
velop an algorithm that performs automatic detection of air emboli
in the cerebral circulation to increase the efficiency of the detection
process and assist the human observer in the clinical environment.

The algorithm starts the detection process by prepping the ultra-
sound signal with a lowpass filter. Furthermore, the algorithm is
checked for artifacts. Then, the actual detection process is performed
by analyzing one depth at a time. For each depth, the background sig-
nal is estimated. Each point of the recording with an intensity higher
than a chosen threshold above the background signal will be detected.
Then, the detections will go through a correction process, as some of
the bubbles detected might be noticeable over multiple depths.

For the training and testing of the algorithm, there were in total 650

recordings included in this project. For the training of the algorithm,
68 of the recordings were used, involving one patient during tran-
scatheter intervention and one patient during heart surgery. Manual
detections of the recordings are also included for the ability to mea-
sure the performance of the algorithm. The training set had 75 detec-
tions, where 23 of the detections were false positive, and 78 detections
were missed in comparison with manual detections.

For the test set, a total of 582 recordings was included, consisting of
26 different patients, 14 patients during catheter intervention, and 12

patients during heart surgery. In total, 351 detections were obtained,
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where 241 of these were false detections and 259 were missed detec-
tions.

The strict criteria for the detection of air bubbles used in this al-
gorithm might be the reason for the large amount of missed detec-
tions, as well as artifacts present in the ultrasound signal and an in-
agreement of the emboli-to-blood ratio of the detections made by the
algorithm and the emboli-to-blood ratio estimated for the manual de-
tections included for comparison.
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S A M M E N D R A G

Når spedbarn er født med hjertesvikt eller en annen form for de-
fekt i hjertet kan det være nødvendig med kateterintervensjon eller
hjertekirurgi. Slike inngrep kan føre til at luftbobler blir introdusert
inn i blodstrømmen. En slik situasjon kan føre til tette arterier eller
andre mer alvorlige komplikasjoner, og kan potensielt være dødelig.
Av den grunn er det et stort behov for en metode for deteksjon av om-
ganget av og posisjonene til luftbobler som befinner seg i blodårene,
ettersom dette kan være til stor hjelp til behandlingen av komplikasjo-
nene som kan medfølge luftembolisme. Ved analyse av analyse av Co-
lor M-mode-bildet og Doppler spektrogrammet visualusert gjennom
systemet NeoDoppler og programvaren EarlyBird, kan ekkosignaler
av bobler gjenkjennes som høyere intensiteter i blant ultralydsignaler
av blodet.

I klinisk forskning detekteres luftbobler ved å manuelt søke etter
høyere intensiteter i Color M-mode-bildet og Doppler spektrogram-
met. Dette er en prosess som ikke bare er svært tidkrevende, men
som også kan resultere i varierende resultater, ettersom deteksjonen
kan baseres på ulike kriterier og variere avhengig av hvem som ut-
fører deteksjonen. Helst skal også deteksjonen utføres opp til flere
ganger og av ulike personer for en verifisering av resultatet.

Dette prosjektet har som mål å utvikle en algoritme for automatisk
deteksjonen av luftbobler. Målet er å lage en algoritme som gjør pro-
sessen av deteksjon mer effektiv, slik at den muligens kan assistere
the menneskelige observatøren i the kliniske settinger.

Algoritmen starter med å lavpassfiltrere ultralydsignalet for raske
fluktuasjoner i signalet. Videre sjekker algoritmen ultralydsignalet for
artefakter. Deretter kan selve deteksjon begynne, og gjøres ved ana-
lyse av en dybde om gangen. For hver dybde vil bakgrunnssignalet
bli estimert, slik at en deteksjonsterskel kan bli satt. Ethvert tidspunkt
av lydsignalet med en amplitude over deteksjonsterskelen vil bli de-
tektert. Videre vil algoritmen gjennomføre en korrigering av deteksjo-
nene, ettersom boblenesignalene kan strekke seg over flere dybder og
føre til flere deteksjoner av samme boble.

For treningen og testingen av algoritmen er det inkludert 650 ul-
tralydopptak. For treningssettet er 68 av lydopptakene inkludert, og
involverer to pasienter, én fra kateterintervensjon og én fra hjerteki-
rurgi. Manuelle deteksjoner er også inkludert i prosjekter, ettersom de
skal brukes for en sammenlikning med de deteksjonene algoritmen
utfører og bidra til å avgjøre deteksjonsevnen til algoritmen. Trenings-
settet hadde totalt 75 deteksjoner, der 23 av deteksjonene var falske
positive, og 78 var savnede deteksjoner som man kunne finne blant
de manuelle deteksjonene.
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For testsettet utførte algoritmen var 582 ultralydopptak inkludert,
der opptakene var fra 26 forskjellige pasienter. 14 av pasientene var
fra kateterintervensjon og 12 pasienter var fra hjertekirurgi. Det ble
totalt detektert 351 deteksjoner i testsettet. Av disse var 241 detek-
sjoner falske, og 259 av de manuelle deteksjonene var savnet blant
algoritmenes deteksjoner.

Hovedårsakene til den store andelen med falske deteksjoner og sav-
nede deteksjoner inkluderer strenge kriterier for hva som kan gjen-
kjennes som et boblesignal, samt artifakter som er tilstede i opptaket.
videre kan også uoverenstemmelsen mellom kalkulert emboli-til-blod
ratio (EBR) av de automatiske deteksjonene og de manuelle deteksjo-
nene forklare et svakere resultat.
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1
I N T R O D U C T I O N

1.1 background and motivation

Infants with heart defects, such as congenital heart disease (CHD),
undergoing surgery or intervention treatment are at risk of getting air
bubbles in their bloodstream. These events occur rarely but can cause
severe damage and potentially be fatal events. Being able to detect
these occurrences is therefore crucial. Developing a method for the
automatic detection of air emboli can help save time and create an
overview of the air bubbles present in a patient’s blood vessels and
help the clinicians decide what procedures to proceed with.

Of infants with CHD, around 25% have critical heart defects. This
often results in the infants needing intervention or surgery within
the first year of life. When infants with CHD go through transcatheter
cardiac intervention or surgery, there is a risk of the formation of
gaseous emboli in the blood vessels. [13] The emboli can potentially
clog the arteries or other more severe complications. If the emboli are
in the cerebral circulation, they can cause severe neurological deficit.
In the worst case, they can lead to death.

Because it is low cost, easy to use, and non-invasive, diagnostic
ultrasound is commonly used in medical diagnosis. An image of the
body’s interior can be composed based on the scatter and reflection
of the ultrasound waves. With ultrasound Doppler, the movement of
body fluids can be measured, enabling blood flow analysis with any
air bubbles that may be situated in the blood vessel.

In experimental research, Transcranial Doppler (TCD) has been used
for the detection of emboli for decades. [13] The detection of bubbles
has traditionally been carried out by clinicians by manually searching
for higher intensities in the color m-mode (CMD) and Doppler spec-
trum. Not only can the results vary depending on who is performing
the detection and on what criteria has been used for distinguishing
the air bubbles from the blood signal, but the process of manually
detecting can also be time-consuming. Preferably, the process should
also be verified by counting multiple times and by different clinicians.
Thus, this is not a process that is possible to do in real-time, creating
the need for a method to detect air emboli automatically.

With an algorithm for automatic detection of air emboli, time can
be saved, and an overview of the emboli present can be obtained. Fur-
thermore, it will also reduce the possible source of error depending
on who is performing the detection. An algorithm will objectively
detect bubbles in the same manner, as the criteria for detection can
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4 introduction

be set equal for all procedures. The advantages of an algorithm for
automatic emboli detection include a more effortless and less time-
consuming detection process in clinical research. With an algorithm
of fast running time, the automatic detection can potentially enter rou-
tine clinical practice and guide additional diagnostic and therapeutic
decisions.

1.1.1 Literature Review

The attempt to improve the methods for detection of air emboli thro-
ugh the use of ultrasound is a process that has been going on for
several decades. There are a lot of different methods that have been
tested out, as the motivation for achieving automatic detection of em-
boli is of a great deal.

The use of TCD in the research on embolism in the cerebral cir-
culation dates at least back to 1993, when Markus, Loh, and Brown
performed their study on “Computerized Detection of Cerebral Em-
boli and Discrimination from Artifact Using Doppler ultrasound.”
They used TCD for the detection of circulating cerebral emboli in both
sheep and patients. Their detection algorithm was based on the stud-
ied characteristics of a bell-shaped increase in the relative power am-
plitude associated with emboli and the differing characteristics of the
symmetrical bidirectional intensity increase associated with artifacts.
They found that the detection of emboli and artifacts was successful.
However, distinguishing artifacts from emboli was more challenging
and gave a less promising result. [14]

In 2000, Cullinane et al. performed the study “Evaluation of New
Online Automated Embolic Signal Detection Algorithm, Including
Comparison With Panel of International Experts.” In the study, they
have applied TCD from the middle cerebral artery for an evaluation of
an automatic detection algorithm. The algorithm uses a conventional
fast Fourier transform (FFT) with a Hanning function and is a single-
gated method, meaning that the algorithm only analyzes the signal at
one depth. The background signal is calculated as an average over the
FFT with 750 seconds before and after each event. A 2D median filter
finds the background level, and all events are compared to this level.
Any event with an intensity of 3 dB or higher than the background
level is further analyzed as embolic signal candidates. The further
analysis is based on different characteristics in the frequency domain.
From Cullinane et al.’s previous work, they have found that time or
frequency disorder tends to be low for emboli and high for artifacts.
These results are implemented into their study to distinguish embolic
signals from artifacts. [6]

Guepie et al. tests out a different method for the automatic detec-
tion of emboli in their study on “Sequential emboli detection from
ultrasound outpatient data” from 2019. Their method involves using
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a single-gated detection algorithm followed by a classification algo-
rithm. The detection algorithm is based on the ratio between the
high intensity transient signals (HITS) and the estimated blood flow
power, as they call HITS-to-blood ratio (HBR). Any HBR with a value
above a set amount of decibels (dB) will be detected. Furthermore,
eight features are calculated using the HITS signals and the Doppler
spectrogram. These features are further given to the classification al-
gorithm, consisting of three different supervised machine learning
algorithms.[8]

Different from the two previously mentioned studies, Kjelsaas’s
study on Detection of Air Emboli in the Brain of Neonates by Ultrasound
Doppler from 2020 is based on a multi-gated detection algorithm, mean-
ing that the algorithm involves several depths for the analysis. The
algorithm detects bubbles based on analysis of the power signal of
the ultrasound recording, given depth by depth. Kjelsaas estimates
the background signal of the given depth by finding the median of
the power signal. Then, a threshold is set by the sum of the back-
ground signal and the chosen emboli-to-blood ratio (EBR) in decibels
(dB). Kjelsaas tested out EBR values from 8 dB to 9.5 dB. Any part
of the power signal with higher amplitude than the threshold will be
detected. Then, the number of detections will be corrected for dupli-
cates, as some bubbles may appear in several depths. [11]

The recordings included in Kjelsaas’s study are gathered from Leth-
Olsen et al.’s study on Detection of Cerebral High Intensity Transient Sig-
nals by NeoDoppler During Cardiac Catheterization and Cardiac Surgery in
Infants where Leth-Olsen et al. has manually detected bubbles in the
ultrasound recordings, by looking at intensity increases of the CMD

and by analysis of the Doppler spectrogram. The recordings are of
31 patients scheduled for transcatheter intervention or heart surgery.
[13] Of these, Kjelsaas included 405 recordings, with 16 patients dur-
ing catheter intervention and two patients during heart surgery. The
test set of the algorithm resulted in 82.4% of the detections being false
positives. The

In order to evaluate the results of the algorithm, Kjelsaas has also
included detections performed manually by Leth-Olsen et al. in her
project. From the comparison of the test set with the manual detec-
tions, Kjelsaas found that 82.4% of the algorithm’s detections were
false positives. These were primarily due to cyclic variations with
the heart frequency, which were not present in the training set for
the algorithm, possibly being the cause of the algorithm’s inability to
compensate for these effects. Possible future improvements included
implementing functions that handle the different situations causing
false positives or limiting the algorithm to only aim to detect larger
bubbles.
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1.2 aims of study

This study aims to develop an algorithm for detecting air emboli in
the cerebral circulation. An automatic method for the detection of air
embolism can help clinicians save time when searching for air bubbles
and possibly, if promising enough, replace the human observer in the
clinical environment. Hence, a more specific goal is to develop an
algorithm of a short enough running time in order to be able to use
the algorithm in real-time.

For this project, recordings and associated data on manual detec-
tions will be included from Leth-Olsen et al.’s study on Detection of
Cerebral High Intensity Transient Signals by NeoDoppler During Cardiac
Catheterization and Cardiac Surgery in Infants, similar to Kjelsaas. Thus,
further aims of this study are to improve the results from Detection of
Air Emboli in the Brain of Neonates by Ultrasound Doppler by Kjelsaas,
by creating an algorithm that can handle the effects that caused Kjel-
saas errors in her result. That includes a focus on detecting bubbles
of larger sizes and a solution for the algorithm to handle situations
with cyclic variation with the heart frequency.

1.3 outline of the report

This report consists of six chapters. Beginning with the introduction,
the background and motivation for this project are presented, along
with the aims of the study. Then, the theory is presented to form the
basis of the project. The third chapter presents and describes the algo-
rithm developed in detail. Furthermore, the equipment, recordings,
and methods used for developing and evaluating the algorithm are
described. The results of both the training and the testing of the algo-
rithm are presented in the next chapter, followed by a discussion of
the results. Finally, conclusions are drawn in the last chapter, along
with possible future improvements of the algorithm.
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T H E O RY

This chapter will present the theory pertinent to the project. Start-
ing off the chapter is the theory on the possible complications of air
embolism. Then, the ultrasound technology used is presented before
discussing the acoustic effects of blood and bubbles.

2.1 air emboli complications

When air enters the cerebral circulation, it can potentially obstruct
the blood flow, causing severe damage and, in the worst case, be
fatal. A plug of clot, fat, air or other material not consisting of blood
that obstructs the blood flow in the blood vessel is defined as an
embolism. [17] Air embolism is one of the different types of embolism
and consists of one or more bubbles of gas enclosed within the blood
vessels and occurs when air is introduced to the vascular system.

Air embolism can occur due to various circumstances. These range
from diving and childbirth to trauma and surgeries. In general, air
emboli can only occur when a connection exists between air and the
vascular system. For instance, this happens when the veins or arteries
are exposed to air. For the air to flow into the vascular system, there
must be a pressure gradient enabling the flow of air into the blood
vessels. The pressure gradient force naturally drives air from higher
pressure areas to lower pressure areas. [7] Generally, the pressure in
blood vessels is higher than the atmospheric pressure. However, in
some areas of the body, the pressure is lower than in the atmosphere,
typically the head and neck region. Consequently, these areas will be
more prone to air emboli during intervention [7]. There is a range
of clinical situations where air can enter the blood flow, including
trauma, barotrauma, central line placement, interventional radiology
procedures, central line placement and removal, and some types of
surgery such as cardiac and neurosurgery [16].

There are three different types of air embolism. When air bubbles
enter the veins, they are called venous emboli. These are generally of
no harm, as they are usually stopped at the lungs. However, venous
emboli always have the potential to become arterial emboli if there ex-
ists a connection between the two systems, for example, when there is
a hole in the septum of the heart, and the pressure gradient allows for
a flow of air between the two systems. The arterial emboli is a more
harmful type of air emboli and are emboli situated in the arteries. As
the arteries carry blood away from the heart and to the rest of the
body, emboli in these vessels might prevent oxygenated blood from
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reaching target organs. This can cause ischemia, which is a deficiency
in tissue that can cause reduced oxygen supply to the tissue or infarc-
tion in any organ with limited blood supply. [23] Furthermore if the
arterial emboli reach the cerebral circulation, these emboli are rather
referred to as cerebral emboli, as they are a far more dangerous type
of air emboli. A blockage of cerebral arteries obstruct the essential
blood supply to the brain, which is crucial for its functionality and
vital processes. [16] [2]

The complications due to air in the vascular system are determined
by the air emboli’s volume, rate, and location. The physiological ef-
fects may range from asymptomatic to cardiovascular disease and
death. An air embolus might obstruct the blood flow. Oxygen is trans-
ported around the body through the blood vessels. If blood flow is
blocked due to air emboli, oxygen transportation is prevented. The
body’s tissues and organs need oxygen. Consequently, the prevention
of oxygen supply might cause the death of body tissue. In addition,
prevention can cause the organ to lose some or all of its function. If
the prevention is affecting the vital organs of the body, such as the
brain and the heart, the situation can become extremely harmful. Air
embolism in the cerebral circulation can cause a neurological deficit.
The neurological symptoms included focal motor deficits, sensorium
changes, and visual and sensory deficits. Worst-case scenarios include
coma, stroke, and death. [20]

2.2 ultrasound technology

Sound waves with frequencies above 20 kHz are known as ultrasonic
sound waves, or more commonly known as ultrasound (US). Ultra-
sound can be applied in many different fields, and in this project, the
application of ultrasound in medicine will be relevant. Ultrasound is
commonly used in medical diagnosis because of its low cost, appli-
cability, and non-invasiveness. Diagnostic ultrasounds typically use
sound waves with a frequency between 2 to 10 MHz. Through the
scatter and reflection of sound, an image of the body’s interior is
formed.

The ultrasound waves are produced in part called the transducer.
The transducer is a part of the ultrasound device and contains piezo-
electrics, an active element made of special ceramic crystal materials.
As voltage is applied, the thin metal electrodes surrounding the piezo-
electrics will cause a mechanical displacement in the crystal, produc-
ing sound waves. As the sound waves propagate through layers of dif-
ferent acoustic impedance, the sound waves will be partly reflected
and transmitted. When the returning echoes hit the transducer, the
piezoelectric material will cause the echoes to turn back into electric
signals. Following, the electric signals will enter a chain of signal pro-
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cessing, transforming the electric signals into an ultrasound image.
[1]

2.2.1 Ultrasound Doppler

Ultrasound Doppler is a type of ultrasound technique, where US

waves are used to image objects of movement—measuring sound
waves that are reflected from moving objects. This technique is based
on the Doppler effect.

The Doppler effect was discovered by Christian Andreas Doppler,
explaining the change of the perceived frequency of an emitted wave
due to a moving source or moving observer. [22] Given that the propa-
gation velocity is constant, the effect is valid for both electromagnetic
waves and sound waves. As the source moves in the direction of the
wave propagation, an increase of the frequency in the direction of
wave propagation will occur. Similarly, there will be a decrease in the
frequency in the opposite direction. The Doppler effect has become
of practical importance in many fields, including ultrasound. By em-
ploying the Doppler effect in the field of ultrasound, it is possible to
create ultrasound images of the movement of tissue and body fluids,
such as blood flow.

There are different types of Ultrasound Doppler: Continuous Flow
Doppler CW, Pulsed Wave Doppler PW, Color Flow Doppler, and
Power Doppler. The most common type of Ultrasound Doppler for
quantitatively imaging is CW and PW, while Color Flow Doppler is
more suited for qualitatively using. CW Doppler emits a continuous
ultrasound wave during the ultrasound. Consequently, the transducer
of a CW Doppler only uses half of the transducer for transmission, al-
lowing the other half to receive returning echoes continuously. As the
transducer is continuously transmitting and receiving sound waves
from all depths at all times, the CW Doppler has no range of resolu-
tion. Oppositely, the PW Doppler uses the whole transducer surface
for transmission of sound waves and for receiving returning echoes,
as it emits short pulses of sound waves. In addition, this opens up the
possibility to image at specific depths. [18]

With ultrasound Doppler being able to image moving objects, it
has become an essential tool in various clinical applications. In this
report, the PW Doppler has been applied for the observation of the
cerebral circulation and any air bubbles that might be situated within
it. Doppler signal from blood and bubbles of the cerebral circulation
is obtained by scanning through the cranium, also called transcranial
Doppler ultrasound (TCD).
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2.2.2 Doppler Signal from Bubbles and Blood

With the application of PW Doppler, the continuous measurement
of blood flow is possible. By placing the transducer probe above an
artery at an angle different from 90 degrees, blood and any air bub-
bles can then be observed. With the angle φ of the path the bubble is
passing the ultrasound beam at and the diameter dt of the ultrasound
beam being known, as shown in Figure 2.1, the velocity of the bubble
can be calculated. For each pulse the ultrasound beam sends while
the bubble travels inside the ultrasound beam, the sound wave will
be reflected back as an echo to the transducer, as shown in Figure 2.1.

Transducer

10 mm

dt

Bubble
path

dz

φ

Figure 2.1: The path of a bubble crossing the ultrasound beam from the
transducer.

By observing the IQ signal, one can observe the magnitude of the
intensity of the Doppler signal of the bubble being more prominent
than for the Doppler signal of the surrounding blood. This is dis-
played in Figure 2.2, where the real part of an IQ signal is displayed.
The cause of the difference in acoustic intensities is due to the blood
and air having a different acoustic impedance. A medium’s acous-
tic impedance (Z) is defined as the product of the density (ρ) of the
medium and the speed of sound (c) in the medium.

Z = ρ · c (2.2.1)

When encountering an interface of different acoustic impedance, sound
waves are scattered. The scattering will cause the sound waves to be
partly reflected and partly transmitted, according to how big the dif-
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ference in acoustic impedance is. The greater the difference in acous-
tic impedance is, the bigger the reflection fraction.

Reflection fraction =

(
Z2 −Z1
Z2 +Z1

)2
(2.2.2)

With the acoustic impedance of blood and other bodily tissues being
much more similar than the acoustic impedance of air, a larger por-
tion of the sound waves will be reflected by air than by blood. [19]
Thus, the signals from bubbles can be differentiated from the signals
from blood because of higher intensities in the signal.

Figure 2.2: Doppler signal of blood containing an air bubble, where the red
mark indicates the maximum intensity of the signal. Reprinted
from Kjelsaas on her work on Detection of Air Emboli in the Brain
of Neonates by Ultrasound Doppler. [11]

2.3 acoustics

Even with known details about the structure of the biological media,
the scattered signal from an incident ultrasound signal can be difficult
to fully interpret, as the structure of the biological media is very com-
plex. The theory presented in the following section is gathered from
previous work on Estimation of Air Bubbles in The Cerebral Circulation
in Newborns By Ultrasound Doppler Technique. [12]

For an incident plane sound wave, the time-averaged total power,
P̄t, is the sum of the scattered and absorbed power, and defines the
total scattering cross-section. The total scattering cross-section, σt is
defined as the time-averaged total power, P̄t, per time-averaged inci-
dent intensity, Ī, and is equivalent to the area of the incident plane
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wave that contains an amount of incident power equal to the time-
averaged total power.

σt =
P̄t

Ī
(2.3.1)

In the same way, the scattering cross section is defined as the time-
averaged scattered total power, P̄s, per time-averaged incident inten-
sity, Ī.

σ(θ,φ) =
P̄s(θ,φ)

Ī
(2.3.2)

The differential scattering cross section gives the variation of scattered
power per unit solid angle. Thus, the differential scattering cross sec-
tion of 180 degrees defines the backscattered cross section. [5]

σb = σ(π, 0) =
P̄s(π, 0)
Ī

(2.3.3)

A method for modelling spherical and cylindrical scatters by acous-
tic waves, is the boundary method, initially used by Rayleigh. The
simple model for the scatter of small objects is called Rayleigh scatter-
ing, and is valid for objects with dimensions much smaller than the
acoustic wavelength

d� λ or ka� 1, (2.3.4)

where d is the particle diameter, λ is the wavelength of the incident
wave, k = 2π

λ is the acoustic wavenumber, and a is the particle ra-
dius. [9] Oppositely, particles with a diameter close to the wavelength
will experience a scattering influenced by resonance and other scat-
tering effects. This scattering-type is referred to as anisotropic or non-
Rayleigh scattering. [15] From the book The Theory of Sound, Rayleigh
gives a model for the scatter of sound from small objects. [21] For-
mulated as the scattering cross-section, the model has the expression

σ = 4πa2(ka)4
[(
K−K0
3K

)2
+
1

3

(
ρ− ρ0
2ρ+ ρ0

)2]
(2.3.5)

where ρ, ρ0 are the densities of the particle and the surrounding
medium, K, K0 are the bulk moduli of the particle and the surround-
ing medium. The bulk modulus gives the resistance the substance
have to compression. From Equation (2.3.5), the scattering cross sec-
tion’s dependence on the particle size and frequency is shown. The
scattering cross-section is proportional with a6 and k4, which means
that the cross-section increases by the frequency to the 4

th power. [9]
With the Rayleigh approximation of scattering being valid for ob-

jects of small sizes compared to the acoustic wavelength, the approx-
imation is suited for the scattering of blood cells and air bubbles in
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the blood vessels. However, as the approximation excludes resonance
and sound absorption, it might not be the most suited model for de-
scribing the scattering of bubbles. Yet, the Rayleigh model for scatter-
ing can still give an idea of the scattering mechanisms and properties
causing scatter of sound and exhibits how the bubble is a powerful
scatterer.

2.3.1 Scattering of Blood

At lower frequencies, and consequently larger wavelengths, the di-
mensions of a red blood cell RBC will be much smaller than the wave-
length. Under these circumstances, Rayleigh scattering is a good ap-
proximation for the RBC. The scattering cross section is then given by
(2.3.5). With the RBC having a compressibility of K = 0.3911 GPa−1

and a density of ρ = 1078 kg/m3, and the surrounding fluid being
plasma and having a compressibility of K0 = 0.4421 GPa−1 and a
density of ρ0 = 1004.6 kg/m3, the scattering cross section is given as
in (2.3.6), where a is the radius of the RBC.

σ = 4πa2(ka)2 · 2.06942 · 10−3 (2.3.6)

A measure for the number and size of RBC in the blood is given by
hematocrit HCT levels, and give the percentage of the RBC in the total
blood volume of a person. For men, a normal HCT level is around 40

- 58 %, and for women, it is around 36 - 48%. [3]
When estimating the scattering by the distribution of RBC in blood

volumes, there are multiple factors affecting the scattering. These in-
clude the whether or not the distribution is random or organized,
because an organized distribution can cause interference. Another
factor is the dimensions of the scatterers, if there are scatterers of
different size, shapes, or acoustic properties. In addition, if the scat-
terers are moving, these non-stationary scatterers can cause a Doppler
shift in the frequency. With an HCT level smaller than 2%, indicating
a low number of scatterers, the scattered power becomes directly pro-
portional to the density of scatterers. In the opposite situation, an
increasing HCT level creates a decreasing averaged distance between
the scatterers. As the decreased distance makes the scatterers’ move-
ment correlated, it results in a profound effect on the scattered power.
[5]

The scattered power for a scattering volume of discrete scatterers or
spatially fluctuating acoustic properties is expected to vary in terms
of the incident intensity and scattering volume. A value describing
the scattering strength of distribution of scatterers when hit by a
plane harmonic wave is the differential scattering coefficient εd. As-
suming that the element volume is of significant size in order to be
a representative distribution of scatterers, the differential scattering
cross-section is defined as the time-averaged scattered power P̄s(θ,φ)
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Figure 2.3: Comparison of experimental measurements for the backscatter-
ing coefficient ε versus hematocrit Hwith theoretical predictions.
Reprinted from Foundations of Biomedical Ultrasound by Cobbold.
[5]

in the direction (θ,φ) per unit solid angle divided by the product of
the time-averaged incident intensity Ī and the element volume of scat-
terers dV . The coefficient is given in (2.3.7), and is a measure of the
scattering strength of a distribution of scatterers when hit by a plane
harmonic wave. [5] Furthermore, the backscattering coefficient ε can
be defined in (2.3.8), as the differential scattering coefficient of 180

degrees, and as the backscattered cross-section per volume.

εd(θ,φ) =
P̄s(θ,φ)
Ī · dV

(2.3.7)

ε = εd(π, 0) =
σb
dV

(2.3.8)

2.3.2 Scattering of Bubbles

With the Rayleigh approximation neglecting resonance, a model to
consider for the scattering of bubbles is the linear oscillator. For do-
ing so, the oscillation amplitude must be small relative to the equi-
librium radius of the bubble. An analogy to the mechanical oscillator
can be useful when modeling the bubble as a linear oscillator. The
spring in the mechanical oscillator can be drawn a parallel to the gas
pressure inside the bubble, the mass of a mechanical oscillator to the
mass of the surrounding liquid being displaced, and the friction of a
mechanical oscillator to the radiation resistance of the bubble.

The scattering of bubbles can be modeled as a harmonic oscilla-
tor. Hoff viewed the bubble as a harmonic oscillator in his report
on Acoustic Characterization of Contrast Agents for Medical Ultrasound
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Imaging, and a greater part of the theory deducted in this section is
obtained from his work. [9]

The harmonic oscillator representation of the bubble can explain
how oscillating bubbles get resonance frequency traits under linear
conditions. Bubbles of small sizes in the ultrasound field will start
to vibrate. By the bubble radius r, the resonance frequency fr can be
determined

fr =
1

r

√
3γp̄i
ρ0

, (2.3.9)

where γ is the specific heat of the gas, ī is the average pressure inside
the bubble, and ρ0 is the density of blood. As the wavelength of the
ultrasound signal is larger than the bubble radius, the bubble’s sur-
rounding pressure will oscillate around a mean value defined by the
resonance radius r.

Oscillation is often regarded as a adiabatic process, meaning that
there is no heat transport, when considering the compression of gas in
acoustics. This is not the case for all bubbles of all sizes and frequen-
cies. For bubbles of sizes of micrometers and frequencies at Mega-
hertz, the oscillation is closer to isothermal. Hence, modelling the
compression as a polytropic process can be of bigger convenience, as
it describes the expansion and compression process, including heat
transfer. For an ideal gas, the polytropic process is given as

pVκ = constant ⇐⇒ dp

p
= −κ

dV

V
, (2.3.10)

where κ is the polytropic index and varies according to the thermody-
namic process. [10] The polytropic index is κ = 1 for the isothermal
process, and κ = γ for isentropic processes. The adiabatic constant
γ is the γair = 1.40 for air. The bulk modulus K can be given by the
polytropic index

K = κpe, (2.3.11)

where pe is the equilibrium pressure.
When the bubble oscillates, there are minor volume changes ∆V

around an equilibrium volume V0. The momentarly radius a(t) can
be through the equilibrium radius ae and the radial displacement
ξ(t).

a(t) = ae + ξ(t), |ξ|� ae (2.3.12)

The radial displacement is much smaller than the radius of the bub-
ble, and can be used to express the change in volume

∆V = 4πa2ξ, (2.3.13)
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where the bubble’s volume is V = 4
3πa

2. With a change in volume,
comes a change in the pressure inside the bubble. With the polytropic
expression given in Equation (2.3.10), the pressure can be given as

∆p = p− pe ⇐⇒ ∆p = −
3κpe

a
ξ (2.3.14)

Pressure is defined as force per area. Hence, the force can be given as

Fs =

∫ ∫
S

psdS = 4πa2ps = −12πaκpeξ = −sξ, (2.3.15)

where s = 12aκpe is the spring constant. Thus, the bubble compres-
sion follows Hooke’s law.

When the bubble oscillates, the surrounding liquid is set in motion,
and inertia is introduced to the system. There is also interia added
from the mass of the gas in the bubble. However, as the interisa intro-
duced by the surrounding liquid is much larger in comparison, this
addition of interia can be neglected. For the calculation of the inertia,
the pressure field ps radiation from the oscillating bubble can be used.
The pressure field is a diverging spherical wave with a radial varia-
tion and is given by the pressure ps(a) at the surface of the bubble.

ps(r) = ps(a)
a

r
ei(ωt−kr). (2.3.16)

The relation between the velocity u of the surrounding liquid and the
pressure p is given by the Euler equation with the non-linear term

ρ
∂u

∂t
= −∆p. (2.3.17)

At the bubble surface, u → ξ̇ and r → a, and Equation (2.3.17) be-
comes

ρ ˙̇ξ = −
∂ps

∂r
=
ps(a)

a
(1+ ika). (2.3.18)

As the pressure ps radiated from the bubble is given as

ps(a) = ρa
1− ika

1+ (ka)2
iωξ̇ ≈ ωρa(ka+ i)ẋi, ka� 1, (2.3.19)

the force Fm on the bubble surface from the liquid motion can be
calculated as in Equation (2.3.20). By expressing the force with the
mechanical impedance Zm, the force Fm is given by the radiation
resistance R and the radiation reactance ωm in Equation (2.3.21).

Fm = −4πa2ps = −4πa3ρω(ka+ i)ẋi (2.3.20)

Fm = −Zmẋi = −(Rξ̇+m ˙̇ξ) = −(R+ iωm)ξ̇. (2.3.21)
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From Equation (2.3.20) and (2.3.21), the effective mass m of the oscil-
lating bubble is given as

m = 4πa3ρ, (2.3.22)

equaling three times the mass of the bubble at 43πa
3ρ.

There are multiple causes to the damping of the oscillations of
the bubble. The main causes are the radiation resistance, viscosity in
the surrounding liquid, and heat transport between the gas and sur-
rounding liquid. The frictional force causing the damping is given in
Equation (2.3.23). The mechanical resistance R of the oscillating bub-
ble equals the sum of the three mechanisms producing the damping
R = Rc + Rη + RTh.

FR = −Rξ̇ (2.3.23)

Radiation introduces dampening of the oscillating bubble because
the bubble loses energy as sound energy is radiated. The radiation
resistance Rc is given by the impedance Zm in Equation (2.3.24).

Rc = Re(Zm) = 4πa2ρc(ka)2 (2.3.24)

Due to viscosity in the surrounding liquid, the oscillating bubble of
micrometers experience a mechanical resistance. The viscosity is cal-
culated from the viscous stress-tensor TL = −pL − 4η

ȧ
a , which is the

radial stress at the bubble surface, and where η is the shear viscosity.
The radial stress introduces a viscous force Fη on the bubble surface,
displayed in Equation (2.3.25). Together with Equation (2.3.23), the
viscous resistance can be recognized.

Fη = −4πa24η
ξ̇

a
= −16πaηξ̇ = −Rηξ̇ ⇐⇒ Rη = 16πaη (2.3.25)

The remaining cause of damping of the oscillating bubble is the
heat transfer between gas in the bubble and the surrounding liquid.
Assuming a constant temperature of the surrounding liquid, the ther-
mal resistance is given in Equation (2.3.26), with Φ being the velocity
potential, defined by u = ∆Φ.

RTh =
12πape

ω
Im
(

1

Φ(a,ω)

)
(2.3.26)

By balancing the forces at the bubble surface, the equation of mo-
tion is found. The forces include the inertia from the surrounding
liquid Fm, the damping from frictional forces FR, the stiffness from
the gas Fs, and the driving acoustic pressure pi(t). The equation of
motion is qiven in Equation (2.3.27).

Fm + FR + FS =

∫ ∫
S

pi(t)dS (2.3.27)
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As the expressions of the forces are inserted, the differential equa-
tion for the radial displacement ξ is given in Equation (2.3.28). The
frequency domain is found by taking the Fourier transform, and is
given in Equation (2.3.29).

m ˙̇ξ+ Rξ̇+ sξ = −4πa2pi (2.3.28)

(−ω2 + iωωrδ+ω
2
r)ξ̂(ω = −

1

ρa
p̂i(ω) (2.3.29)

The angular resonance frequency ωr is given by ωr = s
m = 3κpe

a2ρ
. The

damping constant δ is given by the angular resonance frequency as
δ = R

ωrm
, and equals the sum of the different factors for damping

δ = δc + δη + δTh. From the Equaion (2.3.29), the expression for the
radial displacement is given as

ξ̂(ω) =
1

ρaω2r

p̂i(ω)

(ω/ωr)2 − 1− iω/ωrδ
. (2.3.30)

The sound pressure ps radiated at the surface of the bubble in the
frequency domain is found by taking the Fourier transform of Equa-
tion (2.3.32), as shown in (2.3.31). Combining the (2.3.32) and (2.3.31),
the relation between the radiated pressure p̂s and incident pressure
is given in (??).

p̂s(a,ω) = aρ ˙̇ξ
1

1+ ika
≈ −ω2aρx̂i(ω) (2.3.31)

p̂s(a,ω) =
Ω2

1−Ω2 + iωδ
pi(ω), Ω =

ω

ωr
, (2.3.32)

Ω is the normalized frequency.
With the scattering cross section being the scattered power per in-

cident sound intensity, the scattering cross section can be expressed
by the ratio between the pressure amplitudes of the incoming and
scattered field.

σs(a,ω) = 4πa2
∣∣∣∣ps(a,ω)

pi(ω)

∣∣∣∣2 (2.3.33)

σs(d,ω) = πd2
Ω4

(1−Ω2)2 + (Ωδ)2
,

Ω =
ω

ωr
, ωr =

s

m
=
3κpe

(d2 )
2ρ

.
(2.3.34)

The relation between the two pressure amplitudes gives the scattering
cross-section, displayed in (2.3.34), where d = 2a is the diameter of
the bubble.
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2.3.3 Emboli-to-Blood Ratio

Information about emboli can be found from the Doppler US signal
as the air bubble pass through the part of the blood vessel inside
the ultrasound beam. Information about the volume of the emboli
can be estimated based on the ratio between the peak amplitude of
the Doppler signal from the emboli to the amplitude of the back-
ground blood Doppler signal, which often is estimated from parts of
the signal with no emboli present. The ratio is defined as the emboli-
to-blood ratio (EBR). [17] The EBR ratio can be estimated through the
isonation of a blood vessel with an US wave of a single frequency, and
if the HCT-level and blood vessel diameter is known.

From the pressure p at a distance D from the transducer probe and
the acoustic impedance Z0 of the medium the wave is propagating
through, the acoustic incident intensity ID can be defined.

ID =
p2

Z0
=
p2

ρ · c
(2.3.35)

By the use of (2.3.35), the acoustic intensity of an air bubble with a
diameter of dbubble = 100 µm that is at a distance D = 3 cm from the
transducer probe can be calculated.

With an acoustic pressure of p = 100 kPa at distance D from the
probe, the acoustic incident intensity at the bubble’s position is ID =

6493.51 W m−2. The calculated acoustic incident intensity is based on
the approximation that the density of blood is close to the density of
water ρblood ≈ ρwater = 1000 kg m−3, and that the mean propagation
speed of sound in human tissue is 1540 m s−1. [1]

With the assumption that shape of a bubble is a geometrically per-
fect sphere, the scattering cross section of a bubble with radius rbubble

is given in (2.3.36). With a radius of rbubble = dbubble/2 = 50 µm, the
scattering cross section becomes σbubble = 7.85 · 10−9 m2.

σbubble = πr2bubble. (2.3.36)

With the scattering cross section being defined as the time-averaged
scattering power in backward direction per time-averaged incident
intensity, the total acoustic power Pbubble from the bubble can be ex-
pressed as in (2.3.37), and found to be Pbubble = 51.0 µW. [5]

Pbubble = ID · σbubble (2.3.37)

Based on the assumption of a perfect geometric sphere, the acoustic
power will scatter with an even distribution along a larger sphere.
By dividing the total acoustic power Pbubble over an area σD of a
sphere of radius equal to the distance from the probe, rD = D = 3cm,
the acoustic intensity of the reflected signal can be estimated to be
Ibubble = 4.51 · 10−3W m−2.

Ibubble =
Pbubble

σD
=
Pbubble

4πr2D
. (2.3.38)
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In a similar manner, the acoustic intensity of the reflected signal
from blood at the same distance D from the transducer probe can be
calculated. For a blood vessel of radius r = 0.85 mm at an angle of
θ = 45°relative to the transducer probe, the sample volume shaped
as a cylindrical disk with elliptical flat ends and height h = c

2
Np
f0

can be considered. The elliptical flat end will have a semiminor axis
equal to the radius r of the blood vessels, while the semimajor axis
will be equal to r/ cos θ. From the expressions of the semimajor and
semiminor axis, the area Aellipse of the ellipses can be calculated as
shown in (2.3.39). With a frequency of f0 = 7.8MHz, and a number
of samples Np = 10, an expression for the sample volume is given in
(2.3.40).

Aellipse = π
r2

cos θ
. (2.3.39)

dV = Aellipse · h = π
r2

cos θ
· c
2

Np

f0
(2.3.40)

Then, the sample volume equals 3.17 · 10−9 m2. As the blood vessel
is located at a distance D from the transducer, the acoustic incident
intensity at the blood vessel is ID, and the pressure is p.

Assuming normal hematocrit levels in the blood, the HCT level is
set equal to 40. The backscattering coefficient ε is defined by the to-
tal backscattering intensity, incident intensity and elementary volume
of scatterers. With HCT= 40, the backscattering coefficient equals
ε1(HCT) = 7.0 · 10−4 m−1, obtained at a frequency of f1 = 7.5 MHz.
Assuming Rayleigh scattering of the RBC, the backscattering coeffi-
cient is given by (2.3.41).

ε = ε1(HCT) ·
f40
f41

(2.3.41)

Pblood = ID · ε · dV (2.3.42)

Thus, the total acoustic power of the volume sample of the blood
vessel can be calculated, with the use of (2.3.42), to be Pblood = 1.69 ·
10−8 W. The intensity of the reflected signal from the blood vessel
can then be calculated through (2.3.43)

Iblood =
Pblood

σD
, (2.3.43)

to be Iblood = 1.49 · 10−6 W m−2.
With the intensity of the signal from the bubble Ibubble being equal

to 4.51 · 10−3W m−2, and the intensity of the signal from the blood
Iblood in the blood vessel inside the ultrasound beam being equal
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to 1.49 · 10−6 W m−2, EBR can be calculated in dBs as presented in
(2.3.44). The resulting EBR is equal to 34.8 dB.

EBR = 10 · log10
Ibubble

Iblood
(2.3.44)

In reality, the observed signal of the bubble will equal the total of
the ultrasound signal from the bubble, blood and background noise.
Consequently, consideration of the measured emboli-to-blood ratio
MEBR might be more convenient instead of the EBR. An expression
for the MEBR is given in (2.3.45). [4]

MEBR = 10 · log10
Ibubble + Iblood

Iblood
. (2.3.45)

The approximation was used by Chung et al. in their paper on Size
Distribution of Air Bubbles Entering the Brain During Cardiac Surgery,
and later by Lam in her paper on Estimation of Air Bubbles in The
Cerebral Circulation in Newborns By Ultrasound Doppler Technique, and
might be closer to an actual received ultrasound signal from blood
with an air bubble. Although it might be a closer approximation, it is
not an exact representation of the actual ultrasound signal. In Figure
2.4, the estimation of the relation between the bubble diameter and
the MEBR from (2.3.45) is displayed.

Figure 2.4: Relation between bubble diameter and measured emboli-to-
blood ratio (MEBR), here the measured embolic signal is the signal
from both the emboli and the blood. The figure is reprinted from
Lam’s paper on Estimation of Air Bubbles in The Cerebral Circulation
in Newborns By Ultrasound Doppler Technique. [12]
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With an MEBR approximation, the signal taken into account will
be the sum of the signal from the bubble and blood, as well as any
noise present in the signal. The signal-to-noise ratio (SNR) describes
the ratio between the blood signal and the noise signal and is defined
as the ratio between the power signal of the two, as shown in (2.3.46).

SNR = 10 · log10
PS
PN

(2.3.46)

The blood signal consist of white noise of a root mean square (RMS)
amplitude of 0 dB, equaling an amplitude of rmsnoise = 1. With SNR
= 12 dB, the amplitude of blood is equal to rmsblood = 10

12
20 . The

expected RMS amplitude of the signal including both the blood and
the noise is given in (2.3.47).

rmsb =
√

rms2noise + rms2blood. (2.3.47)

Denoting the IQ signal from blood and noise as IQb, and the IQ
signal from the bubble as IQe, the measured signal from the bubble
is assumed to be the maximum value of the envelope of the total
signal, which is the maximum of the magnitude of the sum of the
signals as shown in (2.3.48). [12]

|IQb + IQe|
2 = (IQ∗

b + IQ∗
e) · (IQb + IQe)

= |IQb|
2 + |IQe|

2 + 2 · re(IQ∗
b + IQe),

(2.3.48)

In Figure ??, an example of the envelope of such an IQ signal contain-
ing a single bubble. Through (2.3.49),MEBR can be estimated and is a
representation of what is actually being measured when estimating
MEBR from the received US signal of blood containing an air bubble.
P̂b is the mean value of the squared IQ signal of the time positions
without the bubble.

MEBR = 10 · log10
max(|IQb + IQe|2)

P̂b
, (2.3.49)

Predicting the maximum value of (2.3.48) is not simple since the IQ
signal IQb of the blood is a Gaussian signal. Thus, the first and third
terms of (2.3.48) can easily get sporadically large values. However,
the maximum value of (2.3.48) will approach |IQe|2 for large values
of EBR.



Part III

A L G O RT I H M





3
A L G O R I T H M F O R T H E D E T E C T I O N O F E M B O L I

The complete algorithm for the detection of emboli is in the ap-
pendix. The algorithm was developed in Matlab and consisted of
several different variables, functions, and loops. The outline of the
algorithm developed in this project is displayed in Figure 3.1.

Starting the algorithm is the loading of the ultrasound recording
that is desired to analyze. Information from the record is stored in the
struct rec for easy handling in the coming functions. From the record-
ing, further information about the ultrasound signal is extracted and
saved in another struct called sig. This struct includes the power sig-
nal, time and depth axis, and size of sample volume. Furthermore,
the power signal is low pass filtered, and the Doppler shift is cal-
culated. Following this step is a function for locating time positions
with artifacts in the ultrasound signal that will be excluded from the
detection function, which is the next step. The function for detecting
embolic signals is done for one depth at a time, and at the beginning
of each detection, an estimation of the background signal is calcu-
lated through the function estimateBgs(). Since the detections are
performed depth by depth, and the bubbles signals usually distend
over several depths, a function to correct for duplicate detections is
performed. A function called changeFormat() is performed in order
to get the detections in the same format as the detections done by the
clinicians for easy comparison. Furthermore, the overview of the man-
ual detections is gathered from the excel files. All the detections of a
ratio above the chosen threshold are extracted for comparison with
the detections done by the algorithm. The comparison is performed
by the compare() function. Finally, the results are stored in excel-files.

3.1 low-pass filter

The extracted power signal from the recording is low-pass filtered
early on in the algorithm before any analysis is performed. The pur-
pose of this step is to remove any fast fluctuations of the signal. Con-
sequences of this process include minimizing the impact of false pos-
itives. The filtering removes the fast fluctuations of the signal, which
can cause the algorithm to detect false positives. However, the filter-
ing also cause a small reduction the amplitude of the peaks of bubble
signals. On the contrary, as the filtering eases the fast fluctuations in
the signal, it also minimizes the chance of a signal of a single bubble
being recognized as several bubbles. The filtering also helped achieve
a more precise locating of artifact positions.

27



28 algorithm for the detection of emboli

Listing 1: Low-Pass Filtering of the Power Signal

prf = 1/sig.tIncr;

[b,a] = butter(2,fc/(prf/2)); % Butterworth filter of 2nd
↪→ order

sig.pow_dB = filter(b,a,sig.pow_dB,[],2);

3.2 search of time positions with artifacts

There are several types of artifacts that can affect an ultrasound im-
age. The image in Figure 3.2 displays the Color M-Mode image of
an ultrasound signal with artifacts and bubbles. The artifacts can be
recognized at the time positions around 431 seconds and 434-435 sec-
onds. Compared to the bubbles that can be found around 432-433

seconds, this type of artifact is easy to discriminate from the intensity
increase of the signal due to the bubble.

Diathermy can typically introduce artifacts in the ultrasound im-
age, causing straight lines down along all of the depths of the CMD.
Motion artifacts can also cause artifacts in the uppermost depths.
Probe movement can cause artifacts, especially in the shallower depths.
X-ray and other electronic equipment can also cause mild continuous
artifacts. Because of artifacts existing in the recordings, the algorithm
must have a method for distinguishing between if peaks in the signal
are actual bubble signals or just artifacts.

In order to avoid motion artifacts causing false positives in the algo-
rithm, a decision was made to exclude the first eight sample volumes
from the top of the recording from being included in the analysis of
the algorithm. This decision was made because the motion artifacts
usually only appear in the uppermost depths of the ultrasound im-
age. Furthermore, the eight first sample volumes correspond to about
the first 10 mm of the recording. Usually, there are no veins or arter-
ies this close to the surface. In addition, there has not been observed
any emboli in these depths of all the recordings of the training of the
algorithm.

Throughout the development process of the algorithm, several dif-
ferent methods for detecting possible artifacts in the ultrasound sig-
nal were tested out. Some methods involved distinguishing between
artifacts and bubbles after performing general detections for all ar-
eas of the signal above a certain threshold, while other methods in-
volved detecting the artifacts before detection and excluding these
areas when running the detection function.

One possible way of detecting the distinguishing between artifacts
and bubbles was to introduce a demand for the peaks to hold a di-
agonal manner in the Color M-mode image. With the bubbles being
in the blood vessels, there is expected a movement of the bubble that
will cause it to appear as a diagonal line in the Color M-mode, as
opposed to the artifacts, that will have lines in the Color M-mode of
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a more straight nature. As this algorithm’s detection is based on the
amplitude of the signal, this would mean looking for peaks that are
close to each other in time positions but not precisely at the same
time position in depths right after each other to find the diagonals.
This method was used for categorizing the detections made by the al-
gorithm after the detection function. All time positions in each depth
with an amplitude above the chosen threshold are detected in the de-
tection function. Then, the artifact check would happen in the next
part of the algorithm, where the algorithm goes through all the detec-
tions performed and categorize them as either an artifact or bubble.
The categorization was based on how close detections in different
depths were to each other, and if they were close enough to might
be considered as the detections of the same bubble, it would remove
the detection with the lowest amplitude of the two in order to correct
the amount of counted bubbles. If the detections were even closer in
time, to be categorized as lying straight after one another, the detec-
tion would be categorized as an artifact, and both detections would
be removed. This method turned out to be challenging to implement
in a manner that gave good results. Having too strict demands for
diagonality caused some of the bubbles with straighter-looking sig-
nals to go undetected, and having less strict demands caused many
artifacts to be classified as bubbles. It also caused the algorithm to
mistake artifacts for bubbles and bubbles for artifacts, giving an over-
all wrong detection.

Another attempt was to break down the categorization part into
two steps. Among the detections of embolic signals, the first step was
to search for artifacts, then check for duplicates of bubbles. Firstly,
the received detections were checked to see if they were close to each
other in both depth and time. If they were, the mean of their time
positions would be calculated and compared to the subsequent de-
tection that would lie close to these two detections in time in other
depths. If that detection also lay close in time, it would be added
to the calculation of the meantime position of the current artifacts,
added to a count, and so on until it went empty of close detections.
If the count of the detections from different depths lying at approxi-
mately the same time positions then was above a certain number of
detections, for example, 10, they would be classified as an artifact,
and they would all be removed from the list of detections to be fur-
ther checked for as duplicates detections of already detected bubbles.
However, this method did not give excellent results. Even though the
artifacts would show straight lines across all depths in the CMD, not
all of the correspondings peaks of the amplitude would necessary
be above the threshold, causing not all depths of the artifact to get
a detection from the detections function. Thus, when looking for de-
tections close to each other, they might be further apart, causing the
algorithm to classify them as bubbles wrongly.
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Then, we tried doing an artifact search at the beginning of the al-
gorithm, instead of simultaneously as the bubble detection and cor-
rection, as mentioned earlier. This method was based on calculating
the mean of the power signal from each depth. The primary pur-
pose of doing so is to catch the prominent artifacts throughout all
or most of the depths. By taking the mean of the power signal over
the depths, time positions with artifacts will have peaks in most of
the depths, and the resulting mean power will as well. While for bub-
ble signals, there are only peaks in the power signal in some depths,
and the mean power signal will not have as prominent peaks as for
the artifacts. Setting a certain threshold, all time positions where the
amplitude of the mean power signal is above the threshold will be
saved. Further down the algorithm, when it is time for the detection
function, these time positions will not be included for evaluation.

Lastly, the function estimate the variables startInd and endInd,
which will be stored in the struct sig and used for setting what time
position further the algorithm should start and stop the analysis. For
recordings with, for example, zero artifacts, the variables startInd

and endInd will be the first and last time position of the recording.
However, if there are artifacts at the beginning or end of the recording,
like situations where the ultrasound probe might be turned on after
the recording has started, the analysis will start after the artifact at
the beginning, shorting down the running time of the algorithm.

Listing 2: Function for Locating Time Positions with Artifacts

function [art, sig] = findArtLoc(sig, rec, threshArt, N_art)

fileName = rec.fileName;

pow_dB = sig.pow_dB;

t = sig.t;

5

meanPow = mean(pow_dB,1);

meanmean = 4;

artLoc1 = meanPow>(movmedian(meanPow,N_art)*(1+threshArt));

artLoc2 = meanPow<meanmean;

10 artLoc = zeros(1,length(meanPow));

for i = 1:length(meanPow)

if (artLoc1(i)==1) || (artLoc2(i)==1)

artLoc(i) = 1;

15 end

end

sig.startInd = 1;

while (artLoc(sig.startInd)==1)

20 if (sig.startInd == length(artLoc))

break

end

sig.startInd = sig.startInd + 1;

end

25
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sig.endInd = length(artLoc);

while (artLoc(sig.endInd)==1)

if (sig.endInd == 1)

break

30 end

sig.endInd = sig.endInd - 1;

end

artTime0 = artLoc .* t;

35 art = struct();

art.artTime = artTime0(artTime0~=0);

art.artCount = length(art.artTime);

end

3.3 estimation of the background signal

The method for detecting embolic signals in the algorithm is based
on finding peaks of high amplitude where the amplitude is of a
certain amount of decibel (dB) above the background power signal,
being the Doppler signal of blood. For doing so, the background
signal must first be calculated. This is done through the function
estimateBgs(). In the estimation of the background signal, any peaks
in the power signal must be excluded from the calculation to avoid
getting a too high background signal. This is done by calculating
a threshold where all peaks above shall be excluded from the esti-
mation. The threshold was calculated as the moving median of the
power signal times 140%. The time positions with amplitudes above
the threshold were removed from the calculation and replaced with
values using the inbuilt Matlab function fillmissing(). Finally, the
background signal was calculated using a moving mean method for
each time position of the power signal by using the N number of
points before and after the current time position.

The function is run for each depth inside the function detectEmb().
However, the function only estimates the background signal if the
power signal is not classified as pulsative. In depths with pulsatile
blood flow, the amplitude of the power signal, whether there are bub-
bles present or not, will have amplitudes of a wide range of decibel
(dB). This is shown in Figure 3.3, the difference between a normal
and pulsatile blood flow. This estimates the background signal non-
representative and further causes a lot of false-positive detections. In
order to avoid this situation, the standard deviation of the power sig-
nal is calculated. All depths where the power signal has a standard
deviation above a certain value, the estimated background signal will
be assigned the value NaN. When moving forward in the algorithm,
detection of the power signal in a depth will only be initiated if the
background signal is not equal to NaN.

Listing 3: Function for Estimation of The Background Power Signal
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function [bgs_n,counts,centers] = estimateBgs(rec,sig,pow_n,n,N)

fileName = rec.fileName;

t = sig.t; zIncr = sig.zIncr;

5 % Exclude inadequate depths from being included in detection
nbins = 10;

[counts, centers] = hist(pow_n, nbins);

highSpread = (sum(counts>(sum(counts)*0.05))) >= (nbins/2);

10 % Check if highSpread:
if highSpread

bgs_n = NaN;

else

% Exclude start and end points from being used in
↪→ estimation of bgs

15 pow_fix = pow_n;

iStart = max([sig.startInd,30]); % 30 timepoints * tIncr
↪→ = 0.1 s

iEnd = min([sig.endInd,(length(t)-30)]);

for i = 1:length(pow_n)

20 if (i<iStart) || (i>iEnd)

pow_fix(i) = NaN;

end

end

pow_fix = fillmissing(pow_fix,’movmean’,N);

25

% Exclude peaks from estimation of bgs
bgs_pos = pow_fix < (movmedian(pow_fix,N)*1.4);

hollow_bgs = pow_fix;

30 for i = 1:(length(pow_fix)-1)

if bgs_pos(i)==0

hollow_bgs(i)=NaN;

end

end

35

filled_bgs = fillmissing(hollow_bgs, ’movmean’, N);

bgs_n = movmean(filled_bgs, N);

end

end

In this function, the power signal is analyzed for embolic signals.
At the beginning of the function, several variables are created, ready
to store the results from the search. The detection function uses a
single-gated method for finding the embolic signals, meaning that
the search process happens at one depth at a time. However, the de-
tection function will search all depths, and duplicate detections of
the same bubble will later be corrected in the algorithm, making the
whole algorithm a multi-gated algorithm. From earlier in the algo-
rithm, in the function artLoc(), two variables startInd and endInd
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were found. Based on what is the maximum of startInd and 30 time
positions (roughly equals 0.1 seconds), the search for embolic signals
begin at this point, and similarly, based on what is the minimum of
endInd and 30 time positions from the end, the search ends at this
point for each depth. For each depth, the estimateBgs()-function is
called, and the background signal for that depth is estimated. As ear-
lier mentioned, if the estimateBgs()-function finds that the power
signal has an amplitude range of high spread, like for example is of
pulsatile blood flow, the estimation is set equal to NaN. Before begin-
ning the search, the detection function will check if the estimation
of the background signal was set to NaN. If so, the function will not
search for embolic signals in this depth and move on to the next
depth. However, if the estimation is not equal to NaN, the process of
detection will carry on. The function iterates through the time points
of the signal’s amplitude in that depth. If the time difference between
the current time point being analyzed and the closest time position
with a detected artifact is below a chosen variable artWidth, the al-
gorithm will move on to the next time position. If not, the analysis
will move on to check if this time point has an amplitude above the
threshold, which is the sum of the estimated background signal and
chosen EBR in dB. If so, it will save this time position and continue to
check for how long the amplitude stays above the threshold and if the
distance to the closest artifact is above a certain artWidth. Simultane-
ously, it will also update a variable called bubLength to keep track of
the bubble length in time. When either the amplitude of the thresh-
old drops below the threshold or the distance to the closest artifact
becomes smaller than the chosen artWidth, the algorithm will check
if the bubble length is above the expected length of a bubble signal,
calculated from the Doppler shift. If so, the highest amplitude of the
time interval analyzed will be stored in a list called bubSig_n at the
corresponding time point, and a variable keeping track of the number
of detections, called embCount will be iterated by one. The script will
continue this method throughout the time points of the amplitude of
the signal from the current depth until it reaches the endInd.

When the analysis of one depth is finished, the count of bubbles is
added to an overall count for the whole recording, called embCount_-

all. The list bubSig_n is also stored in an overall list for the record-
ing, called bubSig_all, at the index matching the depth it represents.
The same is done for the estimated background signal of the current
depth, bgs_n in the overall list, called bgs_all. From the list bubSig_n,
three other lists for the depth is also created, timeIdx_n with the time
of the different detections in seconds, bubAmp_n with the amplitudes
of all the detections, and Ibub_n with the index of all the detections
in time points. All of these three are also stored in an overall list cor-
respondingly. All of the above-mentioned overall lists are stored in
the struct res for further analysis.
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Listing 4: Function for the Detection of Bubble Signals

function [res] = detectEmb(sig,rec,art,EBRmin,n0,N,artWidth)

pow_dB = sig.pow_dB; nd = sig.nd;

tIncr = sig.tIncr; t = sig.t;

zIncr = sig.zIncr; T = sig.T;

5 startInd = sig.startInd; endInd = sig.endInd;

artTime = art.artTime;

res = struct(); % Save results in struct

10 bubSig_all = {}; bgs_all = {};

thresh_all = {}; embCount_all = 0;

timeIdx_all = {}; bubAmp_all = {};

Ibub_all = {};

15 iStart = max([startInd,30]); % 30 timepoints * tIncr = 0.1 s
iEnd = min([endInd,(length(t)-30)]);

for n = n0:nd

pow_n = pow_dB(n,:);

[bgs_n,counts,centers] = estimate_bgs(rec,sig,pow_n,n,N);

20 bgs_all{n} = bgs_n;

thresh = bgs_n + EBRmin;

thresh_all{n} = thresh;

bub_sig_n = NaN([1 length(pow_n)]);

bub = 0;

25 emb_count = 0;

if (~isnan(bgs_n)) % Ensures the signal from depth n is
↪→ adequate
j = 1;

for i=iStart:iEnd

30 ti = i*tIncr;

[minVal, closestIndex] = min(abs(artTime-ti));

closestArtTime = artTime(closestIndex);

expectedLength = round(T(n,i)/tIncr);

bubLength = 0;

35 if abs(closestArtTime - ti) > artWidth

if (i>=j) && (pow_n(i)>thresh(i)) &&(j<=iEnd)

j = i;

bubLength = 1;

tj = ti;

40 while (pow_n(j)>thresh(j)) &&

↪→ (abs(closestArtTime-tj)>artWidth)

↪→ && (j<iEnd)

bubLength = bubLength + 1;

j = j + 1;

tj = j*tIncr;

[minVal,closestIndex]=min(abs(artTime-

↪→ tj));

45 closestArtTime = artTime(closestIndex)

↪→ ;

end
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if bubLength > expectedLength

bub = bub + 1;

[val, idx] = max(pow_n(i:j));

50 idx = idx + (i-1);

bub_sig_n(idx) = val;

emb_count = emb_count + 1;

end

end

55 end

end

end

embCount_all = embCount_all + emb_count;

60 bubSig_all{n} = bub_sig_n;

Ibub = find(~isnan(bubSig_all{n}));

Ibub_all{n} = Ibub;

timeIdx = Ibub * tIncr;

65 timeIdx_all{n} = timeIdx;

bubAmp = bub_sig_n(~isnan(bub_sig_n));

bubAmp_all{n} = bubAmp;

end

res.bubSig_all = bubSig_all;

70 res.bgs_all = bgs_all;

res.thresh_all = thresh_all;

res.embCount_all = embCount_all;

res.timeIdx_all = timeIdx_all;

res.bubAmp_all = bubAmp_all;

75 res.Ibub_all = Ibub_all;

end

3.4 function for the correction of duplicate detections

Because this is a multi-gated algorithm, there is a need for a func-
tion to correct for detections of the same bubble appearing in several
depths. That is the purpose of the function correctDuplicates().

The functions iterate through all the detections made in detectEmb

through a double for-loop, making sure to be able to compare each de-
tection with each other. The function checks how far apart the detec-
tions are in both time and depth for each pair of detections. It checks
if the two detections are close diagonal distance, further diagonal dis-
tance, or very close horizontal distance. There are set different criteria
for these. If they are, the detection with the highest amplitude will be
kept, and the other will be removed. Then, the algorithm continues
in the same manner until it has iterated through all the detections
previously made. The struct res is updated with the lists.

Listing 5: Function for the Correction of Duplicate Detections

function res = correctDuplicates(sig,res,tMinD,tMaxD,tMinN,zMin,

↪→ zMax)
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timeIdx_all = res.timeIdx_all;

bubAmp_all = res.bubAmp_all;

bubCount_all = res.embCount_all;

5

nd = sig.nd; zIncr = sig.zIncr; tIncr = sig.tIncr;

for n1 = 1:nd

tBub1 = timeIdx_all{n1};

10 for n2 = 1:nd

tBub2 = timeIdx_all{n2};

for i = 1:length(tBub1)

for j = 1:length(tBub2)

tDiff = abs(tBub1(i)-tBub2(j));

15 zDiff = abs(n1*zIncr-n2*zIncr);

bub1exists = ~isnan(timeIdx_all{n1}(i));

bub2exists = ~isnan(timeIdx_all{n2}(j));

% remove duplicates of same bubble in close
↪→ diagonal direction

20 if (n1~=n2) && (zDiff<zMin) &&

↪→ (tDiff<tMinD) && (bub2exists) &&

↪→ (bub1exists)

if (bubAmp_all{n1}(i)<bubAmp_all{n2}(j))

timeIdx_all{n1}(i) = NaN;

bubAmp_all{n1}(i) = NaN;

bubCount_all = bubCount_all - 1;

25 else

timeIdx_all{n2}(j) = NaN;

bubAmp_all{n2}(j) = NaN;

bubCount_all = bubCount_all - 1;

end

30

% remove duplicates of same bubbles in
↪→ further diagonal distance

elseif (n1~=n2) && (zDiff>=zMin) &&

↪→ (zDiff<zMax) && (tDiff>tMinD) &&

↪→ (tDiff<tMaxD) && (bub2exists) &&

↪→ (bub1exists)

if (bubAmp_all{n1}(i)<bubAmp_all{n2}(j))

timeIdx_all{n1}(i) = NaN;

35 bubAmp_all{n1}(i) = NaN;

bubCount_all = bubCount_all - 1;

else

timeIdx_all{n2}(j) = NaN;

bubAmp_all{n2}(j) = NaN;

40 bubCount_all = bubCount_all - 1;

end

% remove duplicates of same bubble in
↪→ horizontal direction

elseif (n1==n2) && (i~=j) && (tDiff<tMinN) &&

↪→ (bub2exists) && (bub1exists)
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45 if (bubAmp_all{n1}(i)<bubAmp_all{n2}(j))

timeIdx_all{n1}(i) = NaN;

bubAmp_all{n1}(i) = NaN;

bubCount_all = bubCount_all - 1;

else

50 timeIdx_all{n2}(j) = NaN;

bubAmp_all{n2}(j) = NaN;

bubCount_all = bubCount_all - 1;

end

end

55 end

end

end

end

res.timeIdx_all = timeIdx_all;

60 res.bubAmp_all = bubAmp_all;

res.bubCount_all = bubCount_all;

res.tMinD = tMinD;

res.tMaxD = tMaxD;

res.tMinN = tMinN;

65 res.zMin = zMin;

res.zMax = zMax;

end
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Recording

Low-Pass Filtering

findArtLoc()

detectBub()

estimateBgs()

Calculate Doppler Shift

M-mode image with
detections

Save result to file

Data source

correctDuplicates()

Check the recording for artifacts, and
locate these time positions. These will
be excluded from further analysis.

Search the power signal for air bubbles
depth by depth. Before performing
detection, the background signal is
estimated through the estimateBgs()
function for each depth.

Correct the number of detections,
remove duplicate detections of the
same bubble.

Load the power signal [dB] from the
recording

Plot the final detections in the Color
M-Mode.

Calculate the Doppler shift in order to
calculate the expected length of a
bubble signal.

Decrease the effect of fast fluctuations
in the power signal.

Figure 3.1: Diagram of the algorithm for automatic detection of air bubbles.
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Figure 3.2: Color M-Mode (CMD) of a ultrasound signal containing artifacts
and bubble. The artifacts are located at around 431 s and 435 s,
while the bubbles are located between 432 and 433 s.
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Figure 3.3: Histogram of the amplitudes of a power signal with normal
blood flow in 3.3a and pulsatile blood flow in 3.3b.
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M E T H O D S

In this chapter, the methods used in this project will be
presented. The chapter starts with a description of the
recordings and patients included in this project. Further-
more, the ultrasound composition and equipment will be
described. Finally, the chapter finishes with the descrip-
tion of the algorithm developed.
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M E T H O D S

In this chapter, the methods used in this project will be presented.
The chapter starts with a description of the recordings and patients in-
cluded in this project. Furthermore, the ultrasound composition and
equipment will be described. Finally, the chapter finishes with a de-
scription of the algorithm developed.

4.1 patients and recordings

In this project, actual US recordings have been included for both the
training and testing of the algorithm. The recordings included were
taken at Oslo University Hospital (OUS). The recordings included
are gathered from Leth-Olsen et al. from their study on Detection
of Cerebral High Intensity Transient Signals by NeoDoppler During Car-
diac Catheterization and Cardiac Surgery in Infants. The study was a col-
laboration between the Department of Pediatric Cardiology at Oslo
University Hospital (OUS) in Oslo and the ultrasound group at the
Norwegian University of Science and Technology (NTNU). The 31

patients included in the study were neonates and infants of less than
one year of age with CHD who were scheduled for transcatheter inter-
vention or cardiac surgery with cardiopulmonary bypass (CPB).

In total, 28 of the patients from the study have been included in
this project. Three of the patients from Leth-Olsen et al.’s study, pa-
tients 1, 6, and 18 from the catheter intervention, were excluded from
the results because of various difficulties and disruptions with the
US recordings. Therefore, these three patients are also excluded from
this project. Of the 28 patients included, 15 (54%) of the patients
had catheter interventions, and 13 (46%) of the patients had cardiac
surgery with CPB. The patients had a median age of 3.2 months, rang-
ing from 0.1 to 8 months old.

There were 650 recordings in total. The length of the recordings
ranges from 60 seconds to 30 minutes, depending on the type of in-
tervention and the purpose of the intervention.

4.2 ultrasound composition

4.2.1 NeoDoppler Ultrasound System

The ultrasound system used in this project is called the NeoDoppler
and is a non-invasive ultrasound Doppler system which is an US

technology for continuous measurements of cerebral blood flow in
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neonates or newborns. The system is developed by the Ultrasound
Group at the Department of Circulation and Medical Imaging at
NTNU in Trondheim, Norway. The ultrasound system consists of a
small, lightweight probe, an ultrasound scanner, and a PC with a user
interface. The ultrasound probe has a diameter of 10 mm and oper-
ates at a frequency of 7.8 MHz. The pulse is transmitted at a rate of 8

kHz, as it emits plane waves that cover a cylindrical shape of depths
up to 38 mm and a diameter equal to the diameter of the probe. The
sample volumes are 1.5770 mm in depth and 0.0025 s in width.

The equipment aims to reduce brain injury in premature infants
and critically ill neonates by monitoring cerebral blood flow, which is
performed through the open fontanelles infants have. By placing the
probe on top of the fontanelles, it is possible to measure the blood
flow continuously. The ultrasound system consists of the ultrasound
probe, the ultrasound module with a power supply, and a computer
with software for processing and displaying the data. The software is
further described in the next section.

4.2.2 EarlyBird Software

The software EarlyBird was developed for the NeoDoppler Ultra-
sound system and is intended to be used for the non-invasive measur-
ing of cerebral circulation. The system presents the raw data from the
ultrasound transducer probe and scanner as both a Color M-Mode
image and a Doppler spectrum that can be analyzed. The system
includes several adjustable parameters, such as the gain and the dy-
namic range, which opens up for dynamic filtering, making it possi-
ble to search bubbles and emboli in the blood flow at multiple depths
simultaneously. The multi-gated system is helpful for the recognition
of bubbles that appear at different depths at different times and or
that stretch in time or depth. The image of the software is displayed
in Figure 4.1.

4.3 manual detections

In order to evaluate whether the algorithm is making accurate detec-
tions or not, data on manual detections are included in the project.
For all the recordings included in this project, which are the same as
Leth-Olsen et al. used in their study, Leth-Olsen et al. has performed
manual detections of detected air bubbles in the recordings. These
will be used in the algorithm to compare with the detections the algo-
rithm gets. The manual detections, also called high intensity transient
signals (HITS), were based on an "embolic signature" in the Color M-
Mode (CMD) with corresponding high intensity in the Doppler spec-
trogram. The detection process was performed after the intervention
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Figure 4.1: EarlyBird Software

and with the use of EarlyBird Software and MatLab. The recordings
are visualized in Earlybird with CMD and Doppler spectrogram.

Together with the use of the script called bubCount_Manual.m, writ-
ten by Hans Torp, the HITS were detected manually in EarlyBird,
and further information about the detections was calculated from
the script. The script is included in the appendix. For each detection
marked manually in EarlyBird CMD, the script saves the time and
depth position of the HITS. Then, a small rectangular area around
the manual detection will be analyzed. The highest amplitude within
this area will be stored, and the background level is estimated from
the power signal of the same depth by taking the mean of the time
positions of the power signal where the power signal is lower than the
median of the power signal plus two times the standard deviation of
the power signal. Then, the EBR of the HITS can easily be calculated
by subtracting the background level from the amplitude in dB. The
resulting format on the data on the manual detections performed by
Leth-Olsen et al. are displayed in Figure 4.2.

Figure 4.2: Manual detections performed by Leth-Olsen et al.

4.4 the algorithm for the detection of air emboli

4.4.1 Training the algorithm

The algorithm was created in Matlab, based on similar principles of
the algorithm Kjelsaas used for the algorithm developed in the study
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on Detection of Air Emboli in the Brain of Neonates by Ultrasound Doppler.
[11]

At the beginning of the development of the algorithm, the value of
some parameters was chosen by conjecture. Hence, for the training of
the completed algorithm, these parameters were further adjusted to
find the combination of values of the parameters that gave the best
result. These parameters are displayed in Table 1 with an associated
description of the parameter.

The start depth (n0) was trained for n0 = 7 and n0 = 8, equaling
depths at 11-13 mm from the surface. These values were chosen for
the training as there usually are no arteries above these depths, as
well as the superior depths being more exposed to motion artifacts.
The parameter N was trained for values between 100 to 4069 samples,
corresponding to 0.25 - 10 seconds. The value Nartwastunedforvaluesbetween250to10000samples, correspondingto0.6−
25seconds.FortheparametercalledthreshArt, thealgorithmwastrainedforvaluesbetween25%−

60%.FortheparametersartWidth, tMinD, tMaxDandtMinN, theyweretrainedforvaluesbetween0.05−
0.8seconds.TheparameterszMinandzMaxweretrainedforvaluesbetween3−
13mm.Finally, thelastparameterstdLimwastrainedforvaluesof3to5dB.ThelastparameterlistedinTable1, istheEBRmin,whichsetsthethresholdforthedetection.Thevaluewaschosentosetequalto15dB, sinceairbubblesofanEBRlargerthan15dBarecharacterizedaslargebyLeth−
OlsenEtal.intheirstudyonDetection of Cerebral High Intensity Transient Signals by NeoDoppler During Cardiac Catheterization and Cardiac Surgery in Infants,andtheaimofthedetectionofthealgorithminthisprojectistodetectmainlylargeairemboli.[13]

4.4.2 Comparison of The Results of The Algorithm with The Manual De-
tections Performed by Clinicians

All the recordings included in this project have been collected by clini-
cians Martin Leth-Olsen and Siri-Ann Nyrnes from St. Olavs Hospital
in Trondheim, Norway. In addition, they have also gone through all
the recordings and manually detected the bubbles with time, depth,
amplitude, and amplitude ratio in dB. By taking advantage of this,
the algorithm can use this data to compare with after the detections of
the algorithm are performed to evaluate the detection’s performance.
In Listing ?? is the function used to evaluate the performance of the
detection.

In a similar manner to the correctDuplicates()-function, this func-
tion uses a double for-loop to iterate through all the automatic detec-
tions and all the manual detections. For each pair of automatic and
manual detection, the algorithm calculates how far apart the detec-
tions are from each other in time and depth. First, all detections are
compared looking at a close diagonal distance. Then, if any are still
not matched, the algorithm compares within a larger diagonal dis-
tance, now with a demand that the distance also must be larger than
a certain distance, to ensure the bubble detection is not straight. If the
detections passes the criteria for being the same detection, the auto-
matic detections are added to the lists called tCorrect and zCorrect,
and the manual detections are added to the lists called tChecked and
zChecked. They are also removed from the list containing the detec-
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Figure 4.3: Color M-Mode image with the detections done by the algorithm
(turquoise circles) compared to those manually counted (green
stars).

tions up for analysis. The final results will be stored in a struct called
comp.

The manual detections included in the algorithm are filtered based
on the EBR of the detections. An inclusion threshold is calculated
to be the chosen EBRmin value of the algorithm, including a margin
of 30%. The margin is added because the calculation of the EBR is
calculated in different methods and thus, is expected to differ in value.
With an EBRmin equal to 15 dB, the inclusion threshold is equal to 10.5
dB.

4.4.3 Optimal parameters

In order to decide on which combination of parameters obtained the
most promising result, a calculation was performed based on how
many correct, false, and missed detections the different combinations
achieved. For each set of parameters, the ratio of correct detections
(%correct) was calculated by dividing the number of correct detec-
tions by the number of manual detections. The ratio for the missed
detections (%missed) was calculated in a similar manner by dividing
the number of missed detections by the total number of manual detec-
tions. The ratio of false detections (%false) was calculated by dividing
the number of false detections by the total number of detections ob-
tained by the algorithm. Lastly, the performance (P) was evaluated
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by the difference of the ratios, %correct - (%missed + %false), was
calculated for all the different sets of parameters.

From a clinical perspective, it is beneficial to obtain the smallest
ratio of missed detections. Thus, the set of parameters was ranked
by the lowest ratio of missed detections. Amongst the highest-ranked
sets of parameters, the set of parameters with the highest value for
performance (P) was chosen as the best performing set of parameters.
These parameters will be further used in the test set.
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variable description

n0

Number of samples of depths from the top to
start the detection at

N
Number of points to include in the moving
mean calculation of the background signal

N_art
Number of points to include in the moving
mean calculation of findArtLoc() function

treshArt
The percentage of the moving mean calculation

of the findArtLoc() function to create the
threshold

artWidth
Minimum distance in seconds a detection can

have to an artifact detection

tMinDiag
The minimum distance two detections can have

in seconds in order to be classified as the
detection of the same bubble

tMaxDiag
The maximum distance two detections can have

in seconds in order to be classified as the
detection of the same bubble

tMinNorm
The minimum distance two detections can have

in seconds in order to be classified as the
detection of the same bubble

zMin
The minimum distance two detections can have
in depth in mm in order to be classified as the

detection of the same bubble

zMax
The maximum distance two detections can have
in depth in mm in order to be classified as the

detection of the same bubble

stdLim
Maximum standard deviation of the amplitudes

of a power signal of one depth in dB

EBRmin
The minimum ratio between the peak and the

background signal a detection must have in dB

Table 1: Variables used in the algorithm with associated descriptions.
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All of the following results are color-coded. Turquoise color repre-
sents detections and calculations performed by the algorithm. Green
color represents detections and calculations performed by clinicians,
and is used in comparison for verification of correctness in detection
and for a measure of performance.

5.1 training the algorithm

5.1.1 Optimal parameters of the algorithm

After the process of training the algorithm, the combination of the val-
ues of the parameters that were found to give the best performance
was the combination displayed in Table 2. The full overview of all
combinations tested out is in the appendix. By using this particular
set of values for the different parameters, the algorithm has a cut-
off frequency fc of 20.3 Hz. Further, the detection process will begin
at the 8

th sample volume from the top, roughly equal to a depth
at 12.6 mm. For the estimation of the background signal, N = 500

samples before and after the current sample was included in the cal-
culation for that sample. 500 time samples equal about 1.23 seconds.
The same number of samples, N_art = 500, was used in order to es-
timate a signal for locating artifacts. This signal is multiplied by 1+
threshArt= 1.3 = 130%. Further, any time positions closer than 0.1
seconds to a detected artifact will not be included in the detection
part of the algorithm. For the detections that are made, they will be
checked for whether or not they are of the same bubble as any of
the other detections. This analysis will be based on the criteria of the
bubbles having a time distance shorter than tMinDiag = 0.2 seconds
and a depth distance shorter than zMin = 7.88 mm. Another criteria
that can give the classification as detections of the same bubble, is the
time distance being between tMinDiag and tMaxDiag = 0.6 s simulta-
neously as the distance in depth is between zMin and zMax = 18.14
mm. The last possibility for two detections to possibly be classified
as of the same bubble is if the time distance is smaller than tMinNorm

= 0.075 seconds if the detections are at the same depth. Lastly, any
depth where the power signal has a standard deviation larger than 4

dB will be excluded from the analysis.
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variable value comment

fc 20.3 Hz

n0 8 samples Equals 12.6 mm

N 500 samples Equals 1.23 seconds

N_art 500 samples Equals 1.23 seconds

threshArt 0.3 s Equals 30 %

artWidth 0.1 s

tMinDiag 0.2 s

tMaxDiag 0.6 s

tMinNorm 0.075 s

zMin 5 samples Equals 7.88 mm

zMax 11.5 samples Equals 18.14 mm

stdLim 4 dB

Table 2: The combination of the values of the different parameters used for
the training set that gave the most promising performance.

5.1.2 The Training Set

For the training set, a total of 68 recordings were used. Two patients
were included in the training set, one from catheter intervention (CI)
and one from heart surgery (HS). 26 of the recordings are from patient
5 from CI, and the other 42 recordings were from patient 3 from HS.

In Table 3, an overview of the detections achieved when using the
combination of parameters shown in 2, is displayed. The table dis-
plays the overview of how many bubbles were detected by the al-
gorithm compared to the manually counted by clinicians, as well as
displays the overview of correct, missed, and false detections. The
overview is both displayed per patient and type of medical interven-
tion and as a grand total.

From the recordings of the catheter intervention from patient 5, the
algorithm detected a total of 22 bubbles, compared to the 62 detec-
tions manually counted by clinicians. Of the detections performed
by the algorithm, 18 (81.8%) of the 22 detections were classified as
correct, as they matched with 18 (29%) of the 61 manual detections.
Consequently, 4 (18.2%) of the automatic detections were categorized
as false, and 44 (71%) of the manual detections were missed.

For the heart surgery, with the recordings of patient 3, there were
in total 53 detections counted by the algorithm. Of the automatic de-
tections, 34 (63.2%) were correctly counted, while 19 (35.8%) of the
detections did not match with any of the manually counted bubbles.
Of the 68 manual detections, 34 (50%) was detected by the algorithm
as well, whereas the other 34 (50%) were missed.
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In total, the algorithm detected 75 bubbles in the training set, where
52 (69.3%) were correctly detected and 23 (30.6%) were false detec-
tions. Only 52 (40%) of the 130 manual detections were revealed,
while 78 (60%) of the manual detections were missed.

training set

patient auto. manu. correct missed false

nr . detected detected

CI: 5 22 62 18 44 4

HS: 3 53 68 34 34 19

Total 75 130 52 78 23

Table 3: The results of the detections of the test set. CI - Catheter interven-
tion, HS - Heart surgery.

In Figure 5.1, the distribution of the EBR of the correct detections
are presented. For these detections, the figure displays the distribu-
tion of the EBR calculated by the algorithm in turquoise and the EBR

calculated by the clinicians in green.
The EBR distribution of the missed detections of the training set are

displayed in Figure 5.2. As these bubbles are missed by the algorithm,
there are only EBR values estimated by the clinicians.

The false detections and the associated EBR values of the training
set are displayed in Figure 5.3. With no matching manual detections
for the false detections, there are only EBR values calculated through
the algorithm.

5.2 testing the algorithm

The results of the test set are shown in the following figures.

5.2.1 Test set

Of the 650 recordings included in this project, 582 of them were in-
cluded in the test set. From CI, there were included 14 different pa-
tients and 247 recordings. A total of 370 recordings from 12 different
patients were included from the HS.

Displayed in Table 4 is an overview of the detections achieved when
running the algorithm on the test set. The table displays the overview
of how many bubbles were detected by the algorithm compared to the
manually counted by clinicians, as well as displays the overview of
correct, missed, and false detections. The overview is both displayed
per patient, per type of medical intervention, and as a grand total.

From the recordings of the CI, a total of 86 detections were obtained.
Of these detections, 57 (66.3%) of the 86 detections were classified
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Figure 5.1: The emboli-to-blood ratio (EBR) in decibels (dB) of the correct de-
tections of the test set.

Figure 5.2: The emboli-to-blood ratio (EBR) in decibels (dB) of the missed
manual detections of the test set.
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as correct, as they matched with 57 (33.1%) of the 172 manual de-
tections. Consequently, 29 (33.7%) of the automatic detections were
categorized as false, and 115 (66.9%) of the manual detections were
missed.

For the heart surgery, there were in total 265 detections counted by
the algorithm. Of the automatic detections, 53 (20%) were correctly
counted, while 212 (80%) of the detections did not match with any
of the manually counted bubbles. Of the 197 manual detections, 53

(26.9%) was detected by the algorithm as well, whereas the other 144

(73.1%) were missed.
In total, the algorithm detected 351 bubbles in the test set, where

110 (31.3%) were correctly detected, and 241 (68.7%) were false detec-
tions. Only 110 (29.8%) of the 369 manual detections were revealed,
while 259 (70.2%) of the manual detections were missed.

In Figure 5.4, the distribution of the EBR of the correct detections of
the test set are presented. For these detections, the figure displays the
distribution of the EBR calculated by the algorithm in turquoise and
the EBR calculated by the clinicians in green.

The EBR distribution of the missed detections of the test set are
displayed in Figure 5.5. As these bubbles are missed by the algorithm,
there are only EBR values estimated by the clinicians.

The false detections and the associated EBR values of the test set
are displayed in Figure 5.6. With no matching manual detections for
the false detections, there are only EBR values calculated through the
algorithm.

5.2.2 Test set with all manual detections included

For both the training and testing of the algorithm, there are only
included manual detections of an EBR larger than the set inclusion
threshold, which is equal to 10 dB for EBRmin equal to 15 dB. How-
ever, for analytic purposes, a comparison of the algorithm against the
entire list of manual detections of the test set is included.

The results of the test set when comparing the detections made by
the algorithm with all the manual detections are displayed in Table
5. The table displays the overview of how many bubbles were de-
tected by the algorithm compared to all manual detections, as well
as displays the overview of correct, missed, and false detections. The
overview is both displayed per patient, per type of medical interven-
tion, and as a grand total.

With all the manual detections included, 65 (75.6%) of the 86 detec-
tions were classified as correct, as they matched with 65 (23.5%) of the
277 manual detections. Thus, 21 (24.5%) of the automatic detections
were categorized as false, and 212 (76.5%) of the manual detections
were missed.
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Figure 5.3: The emboli-to-blood ratio (EBR) in decibels (dB) of the false man-
ual detections of the test set.

Figure 5.4: The emboli-to-blood ratio (EBR) in decibels (dB) of the correct de-
tections of the test set.
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Figure 5.5: The emboli-to-blood ratio (EBR) in decibels (dB) of the missed
manual detections of the test set.

Figure 5.6: The emboli-to-blood ratio (EBR) in decibels (dB) of the false man-
ual detections of the test set.
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Including manual detections of no filtering, 56 (21.1%) of the detec-
tions from HS were correctly counted, while 209 (78.9%) of the detec-
tions did not match with any of the manually counted bubbles. Of
the 578 manual detections, 56 (9.7%) were detected by the algorithm
as well, whereas the other 522 (90.3%) were missed.

To sum up, with all manual detections included, the algorithm cor-
rectly detected 121 (34.5%) of 351 detections, while the other 230

(65.5%) were false detections. Only 121 (14.2%) of the 855 manual
detections were revealed, while 734 (85.8%) of the manual detections
were missed.

In Figure 5.7, the distribution of the EBR of the correct detections of
the test set are presented. For these detections, the figure displays the
distribution of the EBR calculated by the algorithm in turquoise, and
the EBR of the manual detections that were detected by the algorithm
and calculated by the clinicians in green.

The EBR distribution of the missed detections of the test set are
displayed in Figure 5.8. As these bubbles are missed by the algorithm,
there are only EBR values estimated by the clinicians.

The false detections and the associated EBR values of the test set
are displayed in Figure 5.9. With no matching manual detections for
the false detections, there are only EBR values calculated through the
algorithm.

5.3 running time

The running time of the algorithm is presented in the section. For
all recordings used for both the training set and test set, the time
the algorithm uses to analyze the recording is saved. In addition, the
duration of the recording is also saved, as longer recordings might
cause the algorithm to use a longer time to analyze the recording.

Both the duration of the recordings and the average running time
of the algorithm are displayed in Table 7 for the training set and in
Table 8. In the tables, the average running time per 60 seconds is
also given, along with the number of recordings used to calculate the
average, giving the significance of the numbers. The calculation of the
running time is per 60 seconds in order to make the average running
time of the different duration of the recordings comparable.

As shown in Table 7, the average running time per 60 seconds for
the training set was equal to 7.6 seconds per 60 seconds, equaling a
running time of about 12.7 % of the length of the recording.

For the test set, however, the average running time per 60 seconds
was equal to 3.3 seconds per 60 seconds, as shown in Table 8. Thus,
the running time equals about 6% of the length of the recording.
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Figure 5.7: The emboli-to-blood ratio (EBR) in decibels (dB) of the correct de-
tections of the test set when all of the manual detections are
included.

Figure 5.8: The emboli-to-blood ratio (EBR) in decibels (dB) of the missed
manual detections of the test set when all of the manual detec-
tions are included.
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test set

patient auto. manu. correct missed false

nr . detected detected

Catheter intervention

2 3 6 3 3 0

3 9 12 4 8 5

4 2 11 2 9 0

7 3 6 0 6 3

8 0 1 0 1 0

9 0 6 0 6 0

10 1 3 0 3 1

11 0 0 0 0 0

12 0 0 0 0 0

13 10 17 8 9 2

14 0 0 0 0 0

15 55 89 38 51 17

16 2 18 1 17 1

17 1 3 1 2 0

Total 86 172 57 115 29

Heart surgery

1 26 10 3 7 23

2 30 17 14 3 16

4 17 5 1 4 16

5 7 11 4 7 3

6 18 22 7 15 11

7 113 5 1 4 112

8 0 2 0 2 0

9 11 50 11 39 0

10 17 48 3 45 15

11 6 6 4 2 2

12 15 11 4 7 11

13 4 10 1 9 3

Total 265 197 53 144 212

Grand
Total

351 369 110 259 241

Table 4: The results of the detections of the test set.
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test set with all manual detections

patient auto. manu. correct missed false

nr . detected detected

Catheter intervention

2 3 7 3 3 0

3 9 29 4 8 5

4 2 13 2 9 0

7 3 12 0 6 3

8 0 1 0 1 0

9 0 9 0 6 0

10 1 7 0 3 1

11 0 0 0 0 0

12 0 0 0 0 0

13 10 24 8 16 2

14 0 0 0 0 0

15 55 148 46 102 9

16 2 19 1 18 1

17 1 8 1 7 0

Total 86 277 65 212 21

Heart surgery

1 26 21 3 18 23

2 30 41 17 24 13

4 17 5 1 22 16

5 7 23 4 32 3

6 18 36 7 67 11

7 113 74 1 4 112

8 0 31 0 31 0

9 11 112 11 101 0

10 17 72 3 69 15

11 6 61 4 57 2

12 15 24 4 20 11

13 4 78 1 77 3

Total 265 578 56 522 209

Grand
Total

351 855 121 734 230

Table 5: The results of the detections of the test set with all manual detec-
tions included.
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test set

auto. all manu. detected manu. detected > 15 db

tot. tot. % miss % false tot. % miss % false

CI 86 277 76.5% 24.5% 172 66.9% 33.7%

HS 265 578 90% 78.9% 197 73.1% 80%

Tot 351 855 85.9% 65.5% 369 70.2% 68.7%

Table 6: Comparison of the result of the test set when including different
amounts of the manual detections. Explanation of the abbrevations:
CI = Catheter intervention, HS = Heart surgery, Auto. = Automatic
detections, Manu. = Manual detections, Tot. = Total number of de-
tections, %Miss = number of missed detections divided by total
number of manual detections, %False = number of false detections
divided by total number of automatic detections.

Figure 5.9: The emboli-to-blood ratio (EBR) in decibels (dB) of the false man-
ual detections of the test set when all of the manual detections
are included.
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training set

length of average avg . running number of

recording running time time per 60 s recording

[s] [s] [s] [#]

< 60 0.3 5.7 8

60 4.7 4.7 41

180 93.8 31.3 8

300 14.2 2.8 21

900 33.7 2.2 8

1340 29.2 1.3 1

1800 121.5 4.1 1

Total 20.4 7.6 68

Table 7: Average running time of the different lengths of the recordings from
the training set.

test set

length of average avg . running number of

recording running time time per 60 s recording

[s] [s] [s] [#]

< 60 1.3 5.6 80

60 2.2 2.2 383

60 - 300 21.1 9.8 29

300 14.2 2.8 21

300 - 900 165.2 13.7 6

900 69.6 4.6 38

900 - 1800 65.2 3.4 3

1800 72.9 2.4 22

Total 12.5 3.3 582

Table 8: Average running time of the different lengths of the recordings from
the test set.
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6.1 the training set

From the training set, the algorithm detected a smaller number of
detections than the manual detections. The results revealed that the
algorithm performed a relatively exact detection rate, with 69.3% of
all the automatic detections being correct, 81.8% for the CI and 63.2%
for the HS. Thus, around 30% of the detections were categorized as
false positives. However, when comparing the automatic detections
with the manual detections, only 40% of the automatic detections
in total were matched with the detections obtained by the clinicians.
This results in a ratio where 60% of the detections are missed, which
is not preferable from a medical point of view.

When looking at Figure 5.2, it is observed that a majority of the
missed detections have an estimated EBR between 10 and 15 dB. Con-
sequently, if there had not been added a margin for the set threshold
of which manual detections that was included, and thus, only the
manual detections with an EBR above 15 dB would have been in-
cluded, the amount of missed detections would have been reduced
from 78 (40%) to 46 (35.4%), as 32 of the missed detections were be-
low 15 dB. However, observing the Figure 5.1, it would also reduce
the number of correct detections, from 52 (69.3%) to 33 (44%) correct
detections, because 19 of the manual detections the algorithm also
detected had an estimated EBR calculated by the clinicians that were
below 15 dB, which is the chosen threshold. Thus, it can be argued
that the algorithm performs better with a margin at the inclusion
threshold for the manual detections.

From Figure 5.3, it is observed that most of the EBR of the false
detections are between 15 to 17 dB, having an EBR right above the
threshold value. This suggests that these false detections might have
barely reached the cut. Possibly, by training the algorithm on even
more combinations of the value of the parameters, it might separate
out these false detections.

The difference of the algorithm’s performance between the record-
ings from the CI and HS are also of significance. Although the to-
tal number of manually counted detections is roughly close for the
two patients, the number of detections performed by the algorithm
is quite different. For the CI and patient 3, the number of detected
bubbles is much smaller for the algorithm than the number of man-
ual detections. However, the ratio of correct detections made by the
algorithm is high. For patient 5 of HS, the opposite is true. The num-
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ber of detections obtained by the algorithm is closer to the amount
manually detected, yet, the ratio of false positives is larger. The dif-
ference in the recordings of the two patients might be too significant
for the algorithm to achieve a solution that would give promising re-
sults for both of the categories. When training the algorithm, some
of the recordings of patient 5 from CI containing most of the manual
detections were difficult for the algorithm to detect without loosen-
ing up on the strict criteria of excluding possible areas with artifacts.
If doing so, in order to be able to detect the bubbles of these record-
ings, it would cause more of the artifacts present in the recordings of
patient 3 from HS to be wrongly detected as bubbles. Thus, with the
best performance of the training set as an average of the performance
of the two patients, it can have resulted in an intermediate solution
for both of the cases. Consequently, caused some missed detections
for patient 5 and simultaneously caused false detections for patient 3

in the form of artifacts.

6.2 the test set

For the test set, the algorithm detected almost as many bubbles as
there are manual detections of the test set. However, the algorithm
detected almost half the amount of manual detections for the patients
of CI and detected a more considerable amount than the manual de-
tections for the patients of HS.

The results of the test set show a large reduction in how exact the
detection rate is, compared to the training set, with only 33.1% of all
the automatic detections being correct. The numbers are 66.3% for the
CI and 20% for the HS. Thus, around 68.7% of the detections were cat-
egorized as false positives. However, when comparing the automatic
detections with the manual detections, only 29.8% of the automatic
detections in total were matched with the detections obtained by the
clinicians. This results in a ratio where 70.2% of the detections are
missed, which is an even less preferable percentage compared to the
training set.

Observing Figure 5.5, the distribution of the sizes of the EBR of the
missing detections has a similar trend as for the training set. Even
larger for the test set than the training set is the amount of missed
detections with an estimated EBR below 15 dB. In fact, there are 105

detections with an EBR below 15 dB, around 40% of the total missed
detections. Thus, changing the filtering on the included manual de-
tections from 15 dB with a margin to a firm limit of 15 dB and above
would reduce the amount of missed detections significantly, from
70.2% to around 42%. Again, changing the criteria for which man-
ual detections will be included for comparison of performance would
also introduce a reduction of the amount of correct automatic detec-
tions, from 33.1% to 24%. This is visible from Figure 5.4. However, the
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reduction of correct automatic detections is small in comparison with
the reduction of missed manual detections. Thus, a change of criteria
could significantly improve the measurement of the performance of
the algorithm on the test set.

From Figure 5.6, the distribution of EBR of the false detections is
shown. Similar to the training set, a larger part of the detections have
an EBR right above 15 dB. Further suggesting that these detections
might have been filtered out if the resulting estimate for the back-
ground signal was calculated a bit differently. In addition, it indicates
the importance of the estimation of the background signal for the
detection process.

6.3 the test set including all manual detections

When comparing the detections obtained by the algorithm to all of
the manual detections, without any lower limit for the EBRs included,
11 of the detections that earlier were classified as false are now classi-
fied as correct. By comparing Figure 5.4 with Figure 5.7, it is observed
that these 11 detections have an EBR value much lower than 15 dB
when calculated for the manual detections. From the same figure, it
is observed that these detections have EBR values above 15 dB when
calculated by the algorithm. Thus, when only including manual de-
tections above the inclusion threshold of 15 dB with a margin of 30%,
some of the detections the algorithm performs are classified as false,
even though they match with some of the manual detections, caus-
ing a higher percentage of false positives, as shown in Table 6. This
is possibly caused by the fact that the method for estimating the EBR

is different for the manual detections and the automatic detections,
causing variations of the resulting EBR of each detection. With differ-
ent methods of calculation, it is expected for the values of the different
methods to differ. However, when the results differ as greatly as they
do for this situation, it makes it more difficult to measure the perfor-
mance of the algorithm based on the comparison with the manual
detections. By having a filter on the manual detections included for
comparison, the numbers of false detections and missed detections
are less representative of the actual performance of the algorithm.

6.4 sources of error

The algorithm had a significantly better performance for the training
set than for the test set. This can be due to the training set being
much smaller than the test set. With a testing set of only 10% of all
the recordings included in the project, it might not be enough for the
algorithm to be trained for all the different possible cases of ultra-
sound recordings, explaining why the algorithm performed signifi-
cantly better for the training set. By having a larger training set, the
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algorithm might give a better performance of the test set, but then
again, a larger test set gives a more accurate representation of the
performance of the algorithm.

The poor performance was due to many false positives and missed
detections. The number of false positives was significantly higher for
the recordings during heart surgery than for the recordings from tran-
scatheter intervention. Consequently, a large amount of the false pos-
itives are probably due to artifacts being mistaken for air bubbles by
the algorithm, as recordings of HS are more exposed to artifacts than
under catheter intervention.

Although the ratio of false detections was high in this project, it
was still lower than the ratio of false detections from Kjelsaas’s study.
However, in Kjelsaas’s study, only two patients during heart surgery
were included. Thus, a comparison with the results from Kjelsaas will
be more representative when only including the results from the pa-
tients during catheter intervention. While the ratio of false positives
was around 82% in Kjelsaas’s study, it was 33.7% for the recordings
of catheter intervention in this study. This suggests that the increase
of a higher threshold for the detection, along with a method for han-
dling cyclic variations, has successfully reduced the number of false
positives.

The large ratio of missed detections can be explained by the dif-
ference in how the EBR is calculated by the algorithm and how it is
calculated for the manual detections. For the manual detections, EBR
is calculated as the highest EBR-value close to the area where Leth-
Olsen et al. has marked a detection in the Color M-mode image. As
seen in Figure 4.3, the position of the manually marked detections
does not, in most cases, match the position of the automatic detection
precisely. As observed from Figure 5.4, the detections that were de-
tected by both the Leth-Olsen et al. and by the algorithm, there is a
clear difference in the calculated EBR of the algorithm and the manual
detections. When including all the detections performed manually, in-
dependent of EBR size, the number of matching detections between
the algorithm and the manual detections increases, meaning that de-
tections that Leth-Olsen et al. have estimated to have EBR below 15

dB were detected by the algorithm. Since the algorithm filters out the
manual detections below 15 dB, it explains why some of the bubbles
are classified as missed.

Lastly, another reason why there might be a mismatch between the
detections performed by the algorithm and the manual detections
is because of how the algorithm corrects the final number of detec-
tions. Because the algorithm is multi-gated, but the detection process
is done one depth at a time, it has to include a step for the correc-
tion of duplicates. Bubble signals might stretch over several depths.
Thus, the amplitude of the power signal might also be above the EBR
threshold in several depths, causing several detections of the same
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bubble. By eliminating detections that are close in depth and time,
the duplicate detections are corrected. This might cause missed de-
tections if there are multiple bubbles situated very closely. Then, the
algorithm might mistake these for being the signal of the same bub-
ble. The opposite situation might also occur, that the algorithm might
end with several detections of a single bubble. This can occur when
a bubble signal stretch over a longer distance in depth than what is
accounted for in the algorithm. Thus, some detections might be clas-
sified as false, even though there is an actual bubble signal at the
location of the detection.

6.5 running time

From Table 7 and Table 8, an overview of the running time of the
recordings of the training set and the test set is presented. The av-
erage running time per 60 seconds was 7.6 seconds for the training
set. On the other hand, the average running time per 60 seconds for
the test set is only 3.3 seconds. The reason for the test set perform-
ing on a lower average running time can be explained by the number
of recordings. Both the training set and the test set have around 7-
8 records that have an average running time per 60 seconds of more
than 10 seconds. However, for the test set, there are even more record-
ings with lower running time, making the outliers in running time
less significant. Thus, mainly the result of the test set should be used
for the evaluation of the running time of the algorithm. As seen from
Table 8, there are some situations where the algorithm can use up
to 1/6 of the record time. These situations often involve records with
durations longer than 60 seconds, and of many artifacts, as every loca-
tion with artifacts is checked when performing the detection process
of the algorithm. The contrary is also true, that for some cases, such
as with pulsatile blood flow the running time of the algorithm will be
shortened because fewer depths must go through the detection pro-
cess. Thus, one can conclude that the average running time for the
algorithm is quite fast.
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7
C O N C L U S I O N

The developed algorithm in this project detects air bubbles in the
cerebral circulation based on the amplitude of the power signal of
ultrasound recordings depth by depth. Any point of the power signal
with an amplitude above a set EBR threshold will be detected.

The algorithm developed in this project was adjusted according to a
training set of 68 recordings from two patients, where one patient was
during transcatheter intervention, and the other patient was during
heart surgery. The results of the training set were 75 detections in
total, where 22 of the detections were from the catheter intervention,
and 53 were from heart surgery. Of the 75 detections, 69.3% were
correct, and 30.6% were false. The algorithm also missed 40% of the
manual detections counted by Leth-Olsen et al.

For the testing of the algorithm, 582 recordings were included,
where 247 of the recordings were during transcatheter intervention
from 14 different patients, and 370 of the recordings were during
heart surgery from 12 different patients. In total, the algorithm de-
tected 351 bubbles in the test set, where 31.3% of the detections were
correct. The ratio for false detections was 68.7%, and 70.2% of the
manual detections were missed.

The results of the training set are far better than the results of the
test set. The reason for this might be the ratio between the training
set and the test set. Still, both the training set and the test set had a
large amount of missed detections and false detections, partly due to
artifacts and strict descriptions of how a signal of air emboli should
be. However, the number of correct detections and false detections
were improved when comparing the detections of the algorithm with
all of the manual detections, and not only the manual detections with
a calculated EBR above the inclusion threshold of 10.5 dB, revealing
a significant mismatch between the calculated EBR of the manual de-
tections and the EBR of the automatic detections. Consequently, the
measurement of the performance of the automatic detections in com-
parison with the manual detections becomes less representative.

The algorithm created by Kjelsaas in her study has a detection pro-
cess based on similar principles and the same recordings as in this
project. However, a lower EBR threshold was used in her study than
the 15 dB used in this project. With a higher EBR threshold used in this
project, the results have been improved in comparison with the results
of Kjelsaas’ algorithm, suggesting that a focus on larger emboli gives
better performance than including search of smaller bubbles as well.
Furthermore, the ratio of false positives is significantly lower than
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in Kjelsaas’s study. Included in this project is a method for handling
cyclic variations, which were Kjelsaas’s primary cause of the false de-
tections, making it possible to conclude that the method for handling
cyclic variations has successfully reduced the number of false posi-
tives. However, the trade-off of the reduction in false detections has
caused an increase in missed detections.

The average running time of the test set was 6%. This suggests a
very fast running time and makes the algorithm eligible for use in
real-time.

7.1 future work and improvements

For the achievement of a better performance of the algorithm devel-
oped in this project, some possibilities include training the algorithm
on even more combinations of the values of the adjustable param-
eters in the algorithm. Furthermore, better performance of the test
set might be obtained by training the algorithm on a larger size of
the training set, making the algorithm more familiar with even more
various cases of ultrasound recordings.

The ratio of false detections might also be reduced by the imple-
mentation of machine learning in the form of image recognition. This
proposal is inspired from Guepie et al.’s study on “Sequential emboli
detection from ultrasound outpatient data,” which is previously men-
tioned in the literature review, which combines the use of a single-
gated detection algorithm with the use of a classification algorithm.
The detection detects all positions of the signal where the intensity
is higher than a chosen threshold. Then, the classification algorithm
handles the discrimination of artifacts and air bubbles through the
use of machine learning with the recognition of features from the
Color M-Mode and the Doppler spectrogram. The same idea imple-
mented with machine learning of classification of artifacts and air
bubbles in the Color M-Mode image be able to improve the results
when combined with the algorithm for detection of air emboli.
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A P P E N D I X

This chapter includes the Matlab scripts used in this project.

a.1 the algorithm for the detection for air emboli

This section includes the complete algorithm for the detection of air
emboli in the cerebral circulation developed in this project. The algo-
rithm is displayed in Listing 6.

Listing 6: The Algorithm For The Detection of Air Emboli

% BubbleInspect

%% Set input variables
% cut−off frequency

5 fc = 20.3; %20.3
% n0 = Start depth for detection
n0 = 8; % 8 % 7
% N = number of points to calculate the movmean of background

↪→ signal
N = 500; %250; 500; 1000; 2500, 4069,

10 % N_art = number of points to calculate the movmean of artefact
↪→ treshold

N_art = 500; %250, 500, 1000, 2500, 5000, 10000
% percentage of backgroundsignal to use for artefact calculation
threshArt = 0.3; % 0.5 %0.25 % pr v 0.25, 0.40, 0.5, 0.6, 0.75
% minArt_tDist = minimum time distance for it to be an artefact

15 artWidth = 0.1; % 0.2 %0.10 %0.05 pr ve fra 0.01, 0.05, 0.1,
↪→ 0.15, 0.2

tMinD = 0.2; %0.2 % seconds
tMaxD = 0.60; %0.6 % seconds
tMinN = 0.075; %0.075% seconds

20 zMin = 5; %5 % mm
zMax = 11.5; %11.5 % mm

stdLim = 4; % 3, 3.5, 4
% EBRmin = set threshold value

25 EBRmin = 15; % 15, 17.5, 20, 22.5, 20

%% Load folder with recordings
PathName = uigetdir(cd);

if isequal(PathName,0), return; end

30 cd(PathName);

fInfo = dir(’20*.mat’);

NRec = length(fInfo);
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% Remove last path−folder for easy patient number access
35 if (strfind(PathName,’Kirurgi’)~=0)

PathName = PathName(1:(strfind(PathName,’Kirurgi’)-2));

elseif (strfind(PathName,’Pre’)~=0)

PathName = PathName(1:(strfind(PathName,’Pre’)-2));

elseif (strfind(PathName,’Post’)~=0)

40 PathName = PathName(1:(strfind( PathName,’Post’)-2));

end

%% Begin looping through record by record
Detected = 0;

45 Manual = 0;

Correct = 0;

Missed = 0;

False = 0;

50 wholeLoop = tic;

for nRec = (1):NRec

oneLoopTime = tic;

disp(newline);

fileName = fInfo(1).name;

55 disp(fileName);

load(fileName,’Cmmode’,’p’);

% Struct with recording info
rec = struct(’PathName’,PathName,’fileName’,fileName,’cmmode’

↪→ ,Cmmode,’p’,p);

60

%% −−−−−−−−−−−−−−−−−−−−−−−−− Get signal details
↪→ −−−−−−−−−−−−−−−−−−−−−−−

% Struct with signal info
sig = struct();

% Pow in dB for all depths
65 sig.pow_dB = rec.cmmode.dBStep*double(rec.cmmode.PdB);

[nd,nt] = size(sig.pow_dB); % Depth, timepoints
sig.nd = nd;

depthInd= 1:nd; % Get depths
sig.z = rec.cmmode.depthAx*1000; % Get depth axis in

↪→ [mm]
70 sig.t = double(rec.cmmode.timeAx); % Get time

↪→ axis in [s]
sig.zIncr = sig.z(2)-sig.z(1); % Get depth incr in [mm]
sig.tIncr = sig.t(2)-sig.t(1); % Get time incr in [s]

%% −−−−−−−−−−−−−−−−−−−−−−−− Low pass filter
↪→ −−−−−−−−−−−−−−−−−−−−−−−−−−−

75 prf = 1/sig.tIncr;

%fc = 20.3;
[b,a] = butter(2,fc/(prf/2)); % Butterworth filter of 2

↪→ nd order
%sig.pow_dB = filter(b,a,sig.pow_dB,[],2);
%figm = figure(26);
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80 %imagesc(sig.t,sig.z,sig.pow_dB); colormap gray;
%title(fileName(1:15) + ": M−Mode"); % of Filtered signal");
%xlabel("Time [s]"); ylabel("Depth [mm]");

%% −−−−−−−−−−−−−−−−−−−−− Calculate Doppler Shift
↪→ −−−−−−−−−−−−−−−−−−−−−−

85 sig.vel = double(rec.cmmode.fi)/128*double(rec.cmmode.

↪→ vNyquist); %max value +/−128
sig.cb = 1570; sig.f0 = 7812500; %From Eb
sig.fd = (2*sig.f0*sig.vel)/sig.cb; sig.T = abs(10./sig.fd);

%%
%[bgs_n] = estimateBgs(rec,sig,sig.pow_dB(22,:),22,N,stdLim);

↪→ %19,7
90

%% −−−−−−−−−−−−−−−−−−−−−−−−−− Find artifacts
↪→ −−−−−−−−−−−−−−−−−−−−−−−−−−

[art, sig] = findArtLoc(sig,rec,threshArt,N_art);

95 %% −−−−−−−−−−−−−−−−−−−− Detect embolic signals
↪→ −−−−−−−−−−−−−−−−−−−−−−−−

%detecStart = tic; % 500 = 1.22 sec, to
↪→ hjertebank

res = detectEmb(sig,rec, art, EBRmin, n0, N, artWidth, stdLim

↪→ );

100 %% −−−−−−−−−−−−−−−−−−−−−−− Get manually detected
↪→ −−−−−−−−−−−−−−−−−−−−−−

manu = getManual(rec, sig, res, EBRmin, n0);

%% −−−−−−− Draw detected embolic signals VS manually detected
↪→ −−−−−−−−−

105 %drawDetections(rec,sig,EBRmin,auto0,manu,"Before");

% −−−−−−−−−−−−−−−−−−−−−− Check for duplicates
↪→ −−−−−−−−−−−−−−−−−−−−−−−−

%tic;
res = correctDuplicates(sig,res,tMinD,tMaxD,tMinN,zMin,zMax);

110 %toc;

% −−−−−−−−−−−−− Draw detected embolic signals in cmmode
↪→ −−−−−−−−−−−−−−

[auto,TableBub]=changeFormat(sig,rec,res,fc,n0,N,N_art,

↪→ threshArt,artWidth,stdLim,EBRmin);

drawDetections(rec, sig, EBRmin, auto, manu, "After");

115

%% −−−−−−−−−−−−−−−−−−−−−−−−− Compare results
↪→ −−−−−−−−−−−−−−−−−−−−−−−−−−

comp = compare(res,auto,manu,tMinD,tMaxD,zMin,zMax);

%comp = newCompare(res,auto,manu,tMinD,tMaxD,zMin,zMax);
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%toc;
120

%% −−−−−−−−−−−−−−−−−−−−−−−−−−− Save 2 excel
↪→ −−−−−−−−−−−−−−−−−−−−−−−−−−−

%saveRec2excel(rec, auto, TableBub);
%saveManual2Excel(rec,comp,EBRmin);

125

%% Save this recordings’ counts
De = res.bubCount_all;

Ma = manu.manCount;

Co = length(comp.tCorrect);

130 Mi = length(comp.tMissed);

Fa = length(comp.tFalse);

pasNum = (str2num(PathName((end-1):end))); % vurdere bytte
↪→ til str2double for raskere ytelse

tRec = rec.cmmode.timeAx(end);

if (strfind(PathName,’Kat’)~=0)

135 type = 1;%’Kat’;
else

type = 2;%’Kir’;
end

140 fileLocStr=’/Users/mytamlam/Dropbox/2021_MyLamProsjekt/Kode’;

fname = fullfile(fileLocStr,’

↪→ OverviewDetections_test_w_all_manual.xlsx’);

tOneLoop = toc(oneLoopTime);

disp("Time: "+tOneLoop);

if (isfile(fname))

145 TableP = readtable(fname,’Sheet’,2);

newRow = {type,pasNum,{rec.fileName},fc,n0,N,N_art,

↪→ threshArt,artWidth,tMinD,tMaxD,tMinN,zMin,zMax,

↪→ stdLim,EBRmin,De,Ma,Co,Mi,Fa,tRec,tOneLoop};

newTableP = [TableP;newRow];

newTableP.Properties.VariableNames={’type’,’pasNum’,’

↪→ fileName’,’fc’,’n0’,’N’,’N_art’,’threshArt’,’

↪→ artWidth’,’tMinDiag’,’tMaxDiag’,’tMinNorm’,’zMin’,

↪→ ’zMax’,’stdLim’,’EBRmin’,’Detected’,’Manual’,’

↪→ Correct’,’Missed’,’False’,’tRec’,’runT’};

writetable(newTableP, fname, ’Sheet’, 2);

150 disp(’Updated table with this rec.’);

else

TableP = table(type,pasNum,{rec.fileName},fc,n0,N,N_art,

↪→ threshArt,artWidth,tMinD,tMaxD,tMinN,zMin,zMax,

↪→ stdLim,EBRmin,De,Ma,Co,Mi,Fa,tRec,tOneLoop);

TableP.Properties.VariableNames={’type’,’pasNum’,’

↪→ fileName’,’fc’,’n0’,’N’,’N_art’,’threshArt’,’

↪→ artWidth’,’tMinDiag’,’tMaxDiag’,’tMinNorm’,’zMin’,

↪→ ’zMax’,’stdLim’,’EBRmin’,’Detected’,’Manual’,’

↪→ Correct’,’Missed’,’False’,’tRec’,’runT’};

writetable(TableP, fname, ’Sheet’, 2);

155 disp(’Created table.’);
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end

%% −−−−−−−−−−−−−−−−−−−−−−− Update total count
↪→ −−−−−−−−−−−−−−−−−−−−−−−−−

160 Detected = Detected + res.bubCount_all;

Manual = Manual + manu.manCount;

Correct = Correct + length(comp.tCorrect);

Missed = Missed + length(comp.tMissed);

False = False + length(comp.tFalse);

165 %toc;
end

endWholeLoop = toc(wholeLoop);

disp("Total time: "+endWholeLoop);

170 %% Save overview of recordings of Pasient X to excel
% vurdere bytte til str2double for raskere ytelse
pasNum = (str2num(PathName((end-1):end))); % vurdere bytte til

↪→ str2double for raskere ytelse
if (strfind(PathName,’Kat’)~=0)

type = 1;%’Kat’;
175 else

type = 2;%’Kir’;
end

fileLocStr=’/Users/mytamlam/Dropbox/2021_MyLamProsjekt/Kode’;

fname = fullfile(fileLocStr,’OverviewDetections_test_w_all_manual

↪→ .xlsx’);

180 if (isfile(fname))

TableP = readtable(fname,’Sheet’,1);

newRow = {type,pasNum,fc,n0,N,N_art,threshArt,artWidth,tMinD,

↪→ tMaxD,tMinN,zMin,zMax,stdLim,EBRmin,Detected,Manual,

↪→ Correct,Missed,False};

newTableP = [TableP;newRow];

newTableP.Properties.VariableNames={’type’,’pasNum’,’fc’,’n0’

↪→ ,’N’,’N_art’,’threshArt’,’artWidth’,’tMinDiag’,’

↪→ tMaxDiag’,’tMinNorm’,’zMin’,’zMax’,’stdLim’,’EBRmin’,’

↪→ Detected’,’Manual’,’Correct’,’Missed’,’False’};

185 writetable(newTableP, fname, ’Sheet’, 1);

disp(’Updated table.’);

disp(’------------------------------------------’);

else

TableP = table(type,pasNum,fc,n0,N,N_art,threshArt,artWidth,

↪→ tMinD,tMaxD,tMinN,zMin,zMax,stdLim,EBRmin,Detected,

↪→ Manual,Correct,Missed,False);

190 TableP.Properties.VariableNames={’type’,’pasNum’,’fc’,’n0’,’N

↪→ ’,’N_art’,’threshArt’,’artWidth’,’tMinDiag’,’tMaxDiag’

↪→ ,’tMinNorm’,’zMin’,’zMax’,’stdLim’,’EBRmin’,’Detected’

↪→ ,’Manual’,’Correct’,’Missed’,’False’};

writetable(TableP, fname, ’Sheet’, 1);

disp(’Created table.’);

disp(’------------------------------------------’);

end
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195 load handel;

%beep;
sound(y,Fs);

%% FUNCTIONS
200

% FIND ARTIFACT LOCATIONS
function [art, sig] = findArtLoc(sig,rec,threshArt,N_art)

fileName = rec.fileName;

pow_dB = sig.pow_dB;

205 t = sig.t;

meanPow = mean(pow_dB,1); %(1:7,:),1);
meanmean = 4;%mean(meanPow)*(1−(thresh_val)+.10);
artLoc1 = meanPow>(movmedian(meanPow,N_art)*(1+threshArt));

210 artLoc2 = meanPow < meanmean; %movmeanBgs < meanmean;
artLoc = zeros(1,length(meanPow));

for i = 1:length(meanPow)

if (artLoc1(i)==1) || (artLoc2(i)==1)

215 artLoc(i) = 1;

end

end

sig.startInd = 1;

220 while (artLoc(sig.startInd)==1)

if (sig.startInd == length(artLoc))

break

end

sig.startInd = sig.startInd + 1;

225 end

sig.endInd = length(artLoc);

while (artLoc(sig.endInd)==1)

if (sig.endInd == 1)

230 break

end

sig.endInd = sig.endInd - 1;

end

235 artTime0 = artLoc.*t;

art = struct();

art.artTime = artTime0(artTime0~=0);

art.artCount = length(art.artTime);

240 %figgi = figure(1); %str2double(fileName(12:15)));
%plot(t,meanPow,’color’, [.59, .82, .83]); hold on;
%yline(meanmean,’−−’,’color’,[.96 .67 .40]); hold on;
%plot(t,movmedian(meanPow,N_art)*(1+threshArt)); hold off;
%title(fileName(1:15) + ": Mean power of all depths");

245 %legend("Power signal", "Meanmean", "Artifact treshold");% "
↪→ Meanmean");%, "Artifact location");
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end

% ESTIMATE BACKGROUND SIGNALS
function [bgs_n] = estimateBgs(rec, sig, pow_n, n, N, stdLim)

250 t = sig.t; zIncr = sig.zIncr; fileName = rec.fileName;

% Exclude inadequate depths from being used in detection
%nbins = 5;
%[counts, centers] = hist(pow_n,nbins);

255 %figure();
%bar(centers,counts,’FaceColor’,’[.18, .46, .47]’);
%title(fileName(1:15)+" Histogram depth "+n*zIncr);
%xlabel(’Amplitude [dB]’);

260 %highSpread = (sum(counts>(sum(counts)*0.05))) >= (nbins/2);
STD = std(pow_n);

disp(STD);

highSpread = STD > stdLim;

265 % Check if highSpread, then exclude fromd estimation
if highSpread

bgs_n = NaN;

%disp(bgs_n);
else

270 % Exclude start and end points from being used in
↪→ estimation of bgs

pow_fix = pow_n;

iStart = max([sig.startInd,30]); % 30 timepoints * tIncr
↪→ = 0.1 s

iEnd = min([sig.endInd,(length(t)-30)]);

275 for i = 1:length(pow_n)

if (i<iStart) || (i>iEnd)

pow_fix(i) = NaN;

end

end

280 pow_fix = fillmissing(pow_fix,’movmean’,N);

% Exclude peaks from estimation of bgs
bgs_pos = pow_fix < (movmedian(pow_fix,N)*1.4); %(

↪→ medfilt1(pow_n, N)*1.4);
hollow_bgs = pow_fix;

285

for i = 1:(length(pow_fix)-1)

if bgs_pos(i)==0

hollow_bgs(i)=NaN;

end

290 end

% fill the removed parts by neighbouring means
filled_bgs = fillmissing(hollow_bgs, ’movmean’, N);

% calculate the moving mean of the background signal
bgs_n = movmean(filled_bgs, N);
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295

%figure();
%plot(t,pow_n,’color’, [.59, .82, .83]); hold on;
%%plot(t,pow_fix); hold on;
%%plot(t,movmedian(pow_fix,N)); hold on;

300 %plot(t,movmedian(pow_fix,N)*1.4); hold on;
%plot(t,bgs_n,’color’, [.18, .46, .47]); hold on;
%plot (t,bgs_n+15,’color’,[.96 .67 .40]);hold off;
%title(fileName(1:15)+" Calculation of bgs signal in

↪→ depth "+n*zIncr);
%%legend("Power signal","pow fix","Movmedian", "Movmedian

↪→ * 1.4", "Bgs", "Bgs+15");% "medfilt1", "Meanmean
↪→ ");%, "Artifact location");

305 %legend("Power signal","Bgs","bgs+15");
end

end

% DETECT EMBOLIC SIGNALS
310 function [res] = detectEmb(sig,rec,art,EBRmin,n0,N,artWidth,

↪→ stdLim)

pow_dB = sig.pow_dB; nd = sig.nd;

tIncr = sig.tIncr; zIncr = sig.zIncr;

t = sig.t; T = sig.T;

startInd = sig.startInd; endInd = sig.endInd;

315 artTime = art.artTime;

%minBubLength = 2;
%artWidth = 0.05;

% Create struct to save results
320 res = struct();

bubSig_all = {}; bgs_all = {};

thresh_all = {}; embCount_all = 0;

timeIdx_all = {}; bubAmp_all = {};

325 Ibub_all = {};

iStart = max([startInd,30]); % 30 timepoints * tIncr = 0.1 s
iEnd = min([endInd,(length(t)-30)]);

for n = n0:nd

330 %disp("n " + n);
pow_n = pow_dB(n,:);

[bgs_n] = estimateBgs(rec, sig, pow_n, n, N, stdLim);

bgs_all{n} = bgs_n;

thresh = bgs_n + EBRmin;

335 thresh_all{n} = thresh;

bub_sig_n = NaN([1 length(pow_n)]);

bub = 0;

emb_count = 0; % Count of embolic signals for
↪→ depth n

check_bgs = (~isnan(bgs_n));

340

if (any(check_bgs)) % Skip depth if pulsative signal
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j = 1;

for i=iStart:iEnd % Avoid searching in
↪→ the far ends of the signal
% find closest value in list of artifact time

↪→ positions:
345 ti = i*tIncr;

[minVal, closestIndex] = min(abs(artTime-ti));

closestArtTime = artTime(closestIndex);

expectedLength = round(T(n,i)/tIncr);

bubLength = 0;

350 if (abs(closestArtTime - ti) > artWidth)% Ensure
↪→ not close to artifact
if (i >= j && pow_n(i)>thresh(i) && j<=iEnd)

j = i;

bubLength = 1;

tj = ti;

355 while (pow_n(j) > thresh(j)) && (abs(

↪→ closestArtTime-tj)>artWidth) && (j<

↪→ iEnd)

bubLength = bubLength + 1;

j = j + 1;

tj = j*tIncr;

[minVal, closestIndex] = min(abs(

↪→ artTime-tj));

360 closestArtTime = artTime(closestIndex)

↪→ ;

end

if bubLength > expectedLength %/
↪→ minBubLength
bub = bub + 1;

[val, idx] = max(pow_n(i:j)); % get
↪→ peak index and value

365 idx = idx + (i-1);

bub_sig_n(idx) = val; % save
↪→ power of bub peak to correct
↪→ index

emb_count = emb_count + 1; % add
↪→ 1 bubble to count

end

end

370 end

end

end

embCount_all = embCount_all + emb_count;

375 bubSig_all{n} = bub_sig_n;

figure(); %ax(1)=subplot(2,1,1);
plot(t, pow_n, ’color’, [.59, .82, .83]); hold on; %

↪→ lysturkis
plot(t, bgs_n, ’color’, [.18, .46, .47]); hold on; %

↪→ morkturkis
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380 plot(t, thresh, ’color’, [.84,.87,.49]); hold on; %gr nn
plot(t, bub_sig_n, ’oy’,’MarkerSize’,12,’MarkerEdgeColor’

↪→ ,[.96,.67,.40]); %[0.27,0.73,0.75]);
hold off;

title("Amplitude of signal in depth " + n*zIncr + " mm");

xlabel("Time [s]"); ylabel("Power [dB]");

385 lgd = legend("Power signal", "Filtered bgsignal w/

↪→ movmean of " + N + " points", "Threshold", "

↪→ Detected");

%lgd = legend("Power signal", "Filtered background signal
↪→ ", "Threshold", "Detected");

lgd.Location = ’southeast’;

% Print text with bubbles
390 % find() gives index−number

Ibub = find(~isnan(bubSig_all{n}));

Ibub_all{n} = Ibub;

timeIdx = Ibub * tIncr;

timeIdx_all{n} = timeIdx;

395 bubAmp = bub_sig_n(~isnan(bub_sig_n));

bubAmp_all{n} = bubAmp;

end

res.bubSig_all = bubSig_all;

400 res.bgs_all = bgs_all;

res.thresh_all = thresh_all;

res.embCount_all = embCount_all;

res.timeIdx_all = timeIdx_all;

res.bubAmp_all = bubAmp_all;

405 res.Ibub_all = Ibub_all;

end

% CORRECT DUPLICATES
function res = correctDuplicates(sig,res,tMinD,tMaxD,tMinN,zMin,

↪→ zMax)

410 timeIdx_all = res.timeIdx_all;

bubAmp_all = res.bubAmp_all;

bubCount_all = res.embCount_all;

nd = sig.nd; zIncr = sig.zIncr; tIncr = sig.tIncr;

415

for n1 = 1:nd

tBub1 = timeIdx_all{n1};

for n2 = 1:nd

tBub2 = timeIdx_all{n2};

420 for i = 1:length(tBub1)

for j = 1:length(tBub2)

tDiff = abs(tBub1(i) - tBub2(j)); % && (n1~=
↪→ n2)

zDiff = abs(n1*zIncr-n2*zIncr);

bub1exists = ~isnan(timeIdx_all{n1}(i));

425 bub2exists = ~isnan(timeIdx_all{n2}(j));
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% remove duplicates of same bubble in close
↪→ diagonal direction

if (n1~=n2) && (zDiff<zMin) && (tDiff<tMinD)

↪→ && (bub2exists) && (bub1exists)

if (bubAmp_all{n1}(i) < bubAmp_all{n2}(j)

↪→ )

430 timeIdx_all{n1}(i) = NaN; bubAmp_all{

↪→ n1}(i) = NaN;

bubCount_all = bubCount_all - 1;

else

timeIdx_all{n2}(j) = NaN; bubAmp_all{

↪→ n2}(j) = NaN;

bubCount_all = bubCount_all - 1;

435 end

% remove duplicates of same bubbles in
↪→ further diagonal

% distance
elseif (n1~=n2) && (zDiff>=zMin) && (zDiff<

↪→ zMax) && (tDiff>tMinD) && (tDiff<tMaxD

↪→ ) && (bub2exists) && (bub1exists)

440 if (bubAmp_all{n1}(i) < bubAmp_all{n2}(j)

↪→ )

timeIdx_all{n1}(i) = NaN; bubAmp_all{

↪→ n1}(i) = NaN;

bubCount_all = bubCount_all - 1;

else

timeIdx_all{n2}(j) = NaN; bubAmp_all{

↪→ n2}(j) = NaN;

445 bubCount_all = bubCount_all - 1;

end

% remove duplicates of same bubble in
↪→ horizontal direction

elseif (n1==n2) && (i~=j) && (tDiff<tMinN) &&

↪→ (bub2exists) && (bub1exists)

450 if (bubAmp_all{n1}(i) < bubAmp_all{n2}(j)

↪→ )

timeIdx_all{n1}(i) = NaN; bubAmp_all{

↪→ n1}(i) = NaN;

bubCount_all = bubCount_all - 1;

else

timeIdx_all{n2}(j) = NaN; bubAmp_all{

↪→ n2}(j) = NaN;

455 bubCount_all = bubCount_all - 1;

end

end

end

end

460 end

end
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res.timeIdx_all = timeIdx_all;

res.bubAmp_all = bubAmp_all;

res.bubCount_all = bubCount_all;

465 res.tMinD = tMinD;

res.tMaxD = tMaxD;

res.tMinN = tMinN;

res.zMin = zMin;

res.zMax = zMax;

470 end

% CONVERT TO EXCEL FORMAT
function [auto,TableBub]=changeFormat(sig,rec,res,fc,n0,N,N_art,

↪→ threshArt,artWidth,stdLim,EBRmin)

bubAmp_all = res.bubAmp_all; bgs_all = res.bgs_all;

475 PathName = rec.PathName; Ibub_all = res.Ibub_all;

tIncr = sig.tIncr;

zIncr = sig.zIncr;

nd = sig.nd;

480 if (strfind(PathName,’Kat’)~=0)

type = 1;%’Kat’;
else

type = 2;%’Kir’;
end

485

tb = [];

zb = [];

AmpdB = [];

%Amplitude = [];
490 Background_dB = [];

Ratio_dB = [];

for n = 1:nd

for i = 1:length(bubAmp_all{n})

495 if (~isnan(bubAmp_all{n}(i)))

ind = Ibub_all{n}(i);

zb(end+1) = n * zIncr;

tb(end+1) = ind * tIncr;

AmpdB(end+1) = bubAmp_all{n}(i);

500 %Amplitude(end+1) = 10^(AmpdB(end)/10);
Background_dB(end+1) = bgs_all{n}(ind);

Ratio_dB(end+1) = AmpdB(end)-Background_dB(end);

end

end

505 end

auto = struct();

tb = transpose(tb);

510 tNum = Sec2dateNum(tb,rec);

zb = transpose(zb);

AmpdB = transpose(AmpdB);
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%Amplitude = transpose(Amplitude);
Background_dB = transpose(Background_dB);

515 Ratio_dB = transpose(Ratio_dB);

SingleBubbles = (string(datestr(tNum,’YYYY:mm:dd:HH:MM:SS:FFF

↪→ ’)));

type = type .* ones(length(tb),1);

pasNum = (str2num(rec.PathName((end-1):end)));

pasNum = pasNum .* ones(length(tb),1);

520 fileName = repmat({rec.fileName},length(tb),1);%.*ones(length
↪→ (tb),1);

fc = fc .* ones(length(tb),1);

n0 = n0 .* ones(length(tb),1);

N = N .* ones(length(tb),1);

N_art = N_art * ones(length(tb),1);

525 threshArt = threshArt .* ones(length(tb),1);

artWidth = artWidth .* ones(length(tb),1);

tMinD = res.tMinD .* ones(length(tb),1);

tMaxD = res.tMaxD .* ones(length(tb),1);

tMinN = res.tMinN .* ones(length(tb),1);

530 zMin = res.zMin .* ones(length(tb),1);

zMax = res.zMax .* ones(length(tb),1);

stdLim = stdLim .* ones(length(tb),1);

EBRmin = EBRmin .* ones(length(tb),1);

535

TableBub = table(type,pasNum,fileName,fc,n0,N,N_art,threshArt

↪→ ,artWidth,tMinD,tMaxD,tMinN,zMin,zMax,stdLim,EBRmin,

↪→ SingleBubbles,tNum,zb,AmpdB,Background_dB,Ratio_dB);

auto.tb = tb; auto.zb = zb;

auto.AmpdB = AmpdB; auto.Ratio_dB = Ratio_dB;

540 end

% GET INFO ON MANUAL DETECTIONS
function manu = getManual(rec, sig, res, EBRmin, n0)

PathName = rec.PathName; fileName = rec.fileName;

545 tIncr = sig.tIncr; zIncr = sig.zIncr;

pow_dB = sig.pow_dB;

% vurdere bytte til str2double for raskere ytelse
pasNum = int2str(str2num(PathName((end-1):end))); % vurdere

↪→ bytte til str2double for raskere ytelse
if (strfind(PathName,’Kat’)~=0)

550 type = ’Kat4e_1/Pas’;

else

type = ’Kir4e_2/Pas’;

end

fileLocStr=[’/Users/mytamlam/Dropbox/BubbleCountwRatio/’,type

↪→ , pasNum];

555 mFileName = fullfile(fileLocStr,[fileName(1:16),’Hits.xlsx’])

↪→ ;

tb_M = []; zb_M = []; AmpdB_M = []; Ratio_dB = [];

if (isfile(mFileName))
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myTableBub = readtable(mFileName,’Sheet’,1);

if ~isempty(myTableBub)

560 if isfield(table2struct(myTableBub),’SingleBubles’)

include = myTableBub.Ratio_dB > (EBRmin-EBRmin

↪→ *0.3);

tb_M1 = myTableBub.tb(include==1);

zb_M = myTableBub.zb(include==1);

tb_M = dateNum2sec(tb_M1, rec);

565 AmpdB_M = myTableBub.AmpdB(include==1);

Ratio_dB = myTableBub.Ratio_dB(include==1);

end

end

end

570 manu = struct(’tb’,tb_M,’zb’,zb_M,’AmpdB’,AmpdB_M, ’manCount’

↪→ ,length(tb_M));

manu.Ratio_dB = Ratio_dB;

manu.fileName = mFileName;

end

575

% DRAW DETECTIONS VS MANUAL DETECTIONS
function drawDetections(rec,sig,EBRmin,auto, manu,state)

fileName = rec.fileName;

pow_dB = sig.pow_dB;

580 t = sig.t; z = sig.z;

tb = auto.tb; zb = auto.zb;

tb_M = manu.tb; zb_M = manu.zb;

figNum = str2num(fileName(10:15));

585 if (~isempty(tb_M)) && (~isempty(tb)) % both exist
figm = figure(figNum);

imagesc(t,z,pow_dB); colormap gray; hold on;

p1 = plot(tb,transpose(zb),’o’,’MarkerSize’,12,’LineWidth

↪→ ’, 1.5);

p1.Color = ’[.27,.73,.75]’; hold on;

590 p2 = plot(tb_M,zb_M,’* ’,’MarkerSize’,12,’LineWidth’,1.5)

↪→ ;

p2.Color = ’[.74,.82,.15]’; hold off;

title(fileName(1:16)+" M-Mode, EBRmin = "+EBRmin+", "+

↪→ state);

xlabel("Time [s]"); ylabel("Depth [mm]");

legend("Detected bubbles", "Manually detected bubbles");

595 %saveas(figm, (fileName(1:16) + ’ M−Mode EBRmin ’ +
↪→ EBRmin));

elseif (~isempty(tb_M)) % only manual detec
figm = figure(figNum);

imagesc(t,z,pow_dB); colormap gray; hold on;

600 p2 = plot(tb_M,zb_M,’*’,’MarkerSize’,12,’LineWidth’,1.5);

p2.Color = ’[.74,.82,.15]’; hold off;

title(fileName(1:16)+" M-Mode, EBRmin = "+EBRmin+", "+

↪→ state);
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xlabel("Time [s]"); ylabel("Depth [mm]");

legend("Manually detected bubbles");

605 %saveas(figm, (fileName(1:16) + ’ M−Mode EBRmin ’ +
↪→ EBRmin));

elseif (~isempty(tb)) % only auto detec

figm = figure(figNum);

610 imagesc(t,z,pow_dB); colormap gray; hold on;

p1 = plot(tb,transpose(zb),’o’,’MarkerSize’,12,’LineWidth

↪→ ’,1.5);

p1.Color = ’[.27,.73,.75]’; hold off;

title(fileName(1:16)+" M-Mode, EBRmin = "+EBRmin+", "+

↪→ state);

xlabel("Time [s]"); ylabel("Depth [mm]");

615 legend("Detected bubbles");

%saveas(figm, (fileName(1:16) + ’ M−Mode EBRmin ’ +
↪→ EBRmin));

%disp(’There were zero manually counted bubbles.’);

620 else

disp(’There were zero bubbles detected, both by the

↪→ algorithm and manually.’);

end

end

625 % DRAW ONLY DETECTIONS
function figm = drawOnlyDetections(figNum,state,tb,zb)

global fileName; global EBRmin; global t; global z; global

↪→ pow_dB;

%ob = guidata(figh);
figm = figure(figNum); %ax(1) = subplot(2,1,1); % Plot

↪→ m−mode
630 imagesc(t,z,pow_dB); colormap gray; hold on;

plot(tb,transpose(zb),’o’,’MarkerSize’,12,’MarkerEdgeColor’,

↪→ [.27, .73, .75], ’LineWidth’, 1.5); hold off; %, ’
↪→ MarkerFaceColor’, ’r’

title(fileName(1:16) + " M-Mode, " + "EBRmin = " + EBRmin +

↪→ ", " + state); xlabel("Time [s]"); ylabel("Depth [mm

↪→ ]");

legend("Detected bubbles");

end

635

% COMPARE DETECTIONS
function comp = compare(res,auto,manu,tMinD,tMaxD,zMin,zMax)

bubCount_all = res.bubCount_all;

manCount = manu.manCount;

640 tb = auto.tb; tb_M = manu.tb;

zb = auto.zb; zb_M = manu.zb;

amp = auto.AmpdB; amp_M = manu.AmpdB;

Ratio = auto.Ratio_dB; Ratio_M = manu.Ratio_dB;
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645 tCorrect = [];

zCorrect = [];

rCorrect = [];

aCorrect = [];

tFalse = [];

650 zFalse = [];

rFalse = [];

aFalse = [];

tMissed = [];

zMissed = [];

655 rMissed = [];

aMissed = [];

tChecked = [];

zChecked = [];

rChecked = [];

660 aChecked = [];

if (~isempty(tb)) % exists detections
if (~isempty(tb_M)) % exists manually counted

for i = 1:length(tb)

665 for j = 1:length(tb_M)

tDiff = abs(tb(i) - tb_M(j));

zDiff = abs(zb(i) - zb_M(j));

if (tDiff<tMinD) && (zDiff<zMin) && (~isnan(

↪→ tb_M(j))) && (~isnan(tb(i)))

tCorrect(end+1) = tb(i);

670 zCorrect(end+1) = zb(i);

rCorrect(end+1) = Ratio(i);

aCorrect(end+1) = amp(i);

tChecked(end+1) = tb_M(j);

zChecked(end+1) = zb_M(j);

675 rChecked(end+1) = Ratio_M(j);

aChecked(end+1) = amp_M(j);

tb_M(j) = NaN; tb(i) = NaN;

zb_M(j) = NaN; zb(i) = NaN;

amp_M(j) = NaN; amp(i) = NaN;

680 Ratio_M(j) = NaN; Ratio(i) = NaN;

end

end

end

for i = 1:length(tb)

685 for j = 1:length(tb_M)

tDiff = abs(tb(i) - tb_M(j));

zDiff = abs(zb(i) - zb_M(j));

if (tDiff>=(tMinD-0.1)) && (tDiff<tMaxD) && (

↪→ zDiff>=zMin-1) && (zDiff<zMax) && (~

↪→ isnan(tb_M(j))) && (~isnan(tb(i)))

tCorrect(end+1) = tb(i);

690 zCorrect(end+1) = zb(i);

rCorrect(end+1) = Ratio(i);

aCorrect(end+1) = amp(i);
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tChecked(end+1) = tb_M(j);

zChecked(end+1) = zb_M(j);

695 rChecked(end+1) = Ratio_M(j);

aChecked(end+1) = amp_M(j);

tb_M(j) = NaN; tb(i) = NaN;

zb_M(j) = NaN; zb(i) = NaN;

amp_M(j) = NaN; amp(i) = NaN;

700 Ratio_M(j) = NaN; Ratio(i) = NaN;

end

end

end

tFalse = tb(~isnan(tb));

705 zFalse = zb(~isnan(zb));

rFalse = Ratio(~isnan(Ratio));

aFalse = amp(~isnan(amp));

tMissed = tb_M(~isnan(tb_M));

zMissed = zb_M(~isnan(zb_M));

710 rMissed = Ratio_M(~isnan(tb_M));

aMissed = amp_M(~isnan(amp_M));

disp([’** Detected: ’, num2str(res.bubCount_all)]);

disp([’** Manually detected: ’, num2str(manCount)]);

disp([’** Correct: ’, num2str(length(tCorrect))]);

715 disp([’** False: ’, num2str(length(tFalse))]);

disp([’** Missed: ’, num2str(length(tMissed))]);

else % doesn’t exists manually
↪→ counted
tFalse = tb;

zFalse = zb;

720 rFalse = Ratio;

aFalse = amp;

disp([’** Detected: ’, num2str(res.bubCount_all)]);

disp([’** Manually detected: ’, num2str(manCount)]);

disp(’Only automatic detections, no manually.’);

725 disp([’** False: ’, num2str(length(tFalse))]);

disp([’** Missed: ’, num2str(length(tMissed))]);

end

else % doesn’t exist
↪→ detections
if (~isempty(tb_M)) % exists manually counted

730 tMissed = tb_M;

zMissed = zb_M;

rMissed = Ratio_M;

aMissed = amp_M;

%disp(’** Detected: 0 ’);
735 disp([’** Detected: ’, num2str(res.bubCount_all)]);

disp([’** Manually detected: ’, num2str(manCount)]);

disp(’Only manual detections, no automatic.’);

disp([’** Missed: ’, num2str(length(tMissed))]);

else % doesn’t exists manually
↪→ counted

740 disp([’** Detected: ’, num2str(res.bubCount_all)]);

disp([’** Manually detected: ’, num2str(manCount)]);
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disp(’No detections at all, both automatic and manual

↪→ .’);

%disp(’** Manually detected: 0’);
end

745 end

comp = struct(’tCorrect’,tCorrect,’zCorrect’,zCorrect,’

↪→ rCorrect’,rCorrect);

comp.tFalse = tFalse; comp.zFalse = zFalse; comp.rFalse =

↪→ rFalse;

comp.tMissed = tMissed; comp.zMissed = zMissed; comp.rMissed

↪→ = rMissed;

comp.tChecked = tChecked; comp.zChecked = zChecked; comp.

↪→ rChecked = rChecked;

750 comp.aCorrect = aCorrect; comp.aChecked = aChecked; comp.

↪→ aMissed = aMissed;

comp.aFalse = aFalse;

end

function saveManual2Excel(rec,comp,EBRmin1)

755 fileName1 = rec.fileName; PathName = rec.PathName;

tCorrect = (comp.tCorrect)’;

zCorrect = (comp.zCorrect)’;

rCorrect = (comp.rCorrect)’;

aCorrect = (comp.aCorrect)’;

760 rFalse = (comp.rFalse);

tFalse = (comp.tFalse);

zFalse = (comp.zFalse);

aFalse = (comp.aFalse);

tMissed = (comp.tMissed);

765 zMissed = (comp.zMissed);

rMissed = (comp.rMissed);

aMissed = (comp.aMissed);

rChecked = (comp.rChecked)’;

tChecked = (comp.tChecked)’;

770 zChecked = (comp.zChecked)’;

aChecked = (comp.aChecked)’;

pasNum1 = (str2num(PathName((end-1):end))); % vurdere
↪→ bytte til str2double for raskere ytelse

if (strfind(PathName,’Kat’)~=0)

775 type1 = 1;%’Kat4e_1/Pas’;
else

type1 = 2;%’Kir4e_2/Pas’;
end

fileLocStr=’/Users/mytamlam/Dropbox/2021_MyLamProsjekt/Kode’;

780 fname = fullfile(fileLocStr,’

↪→ OverviewManualDetections_test_w_all_manual.xlsx’);

if (~isempty(tCorrect))

numC = length(tCorrect);

corrL = ones(numC,1);

785 type = type1.*corrL;
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pasNum = pasNum1.*corrL;

fileName = (repmat({fileName1},numC,1));

EBRmin = EBRmin1.*corrL;

corrTable = table(type,pasNum,fileName,EBRmin,tCorrect,

↪→ zCorrect,rCorrect);

790 if (isfile(fname))

coTable = readtable(fname, ’Sheet’, 1);

newCorrTable = [coTable;corrTable];

writetable(newCorrTable, fname, ’Sheet’, 1);

else

795 writetable(corrTable, fname, ’Sheet’, 1);

end

end

if (~isempty(tFalse))

numF = length(tFalse);

800 falsL = ones(numF,1);

type = type1.*falsL;

pasNum = pasNum1.*falsL;

fileName = (repmat({fileName1},numF,1));

EBRmin = EBRmin1.*falsL;

805 falsTable = table(type,pasNum,fileName,EBRmin,tFalse,

↪→ zFalse,rFalse);

if (isfile(fname))

fTable = readtable(fname, ’Sheet’, 2);

newFTable = [fTable;falsTable];

writetable(newFTable, fname, ’Sheet’, 2);

810 else

writetable(falsTable, fname, ’Sheet’, 2);

end

end

if (~isempty(tMissed))

815 numM = length(tMissed);

missL = ones(numM,1);

type = type1.*missL;

pasNum = pasNum1.*missL;

fileName = (repmat({fileName1},numM,1));

820 EBRmin = EBRmin1.*missL;

missTable = table(type,pasNum,fileName,EBRmin,tMissed,

↪→ zMissed,rMissed);

if (isfile(fname))

mTable = readtable(fname, ’Sheet’,3);

newMTable = [mTable;missTable];

825 writetable(newMTable, fname, ’Sheet’, 3);

else

writetable(missTable, fname, ’Sheet’, 3);

end

end

830 if (~isempty(tChecked))

num = length(tChecked);

checL = ones(num,1);

type = type1.*checL;

pasNum = pasNum1.*checL;
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835 fileName = (repmat({fileName1},num,1));

EBRmin = EBRmin1.*checL;

checTable = table(type,pasNum,fileName,EBRmin,tChecked,

↪→ zChecked,rChecked);

if (isfile(fname))

chTable = readtable(fname, ’Sheet’, 4);

840 newChTable = [chTable;checTable];

writetable(newChTable, fname, ’Sheet’, 4);

else

writetable(checTable, fname, ’Sheet’, 4);

end

845 end

end

% SAVE TO EXCEL
function saveRec2excel(rec, auto, TableBub)

850 fileName = rec.fileName; PathName = rec.PathName;

tb = auto.tb;

sheetNum = 1;

%switch EBRmin
% case 15

855 % sheetNum = 1;
% case 17.5
% sheetNum = 2;
% case 20
% sheetNum = 3;

860 % case 22.5
% sheetNum = 4;
% case 25
% sheetNum = 5;
%end

865 pasNum = int2str(str2num(PathName((end-1):end))); % vurdere
↪→ bytte til str2double for raskere ytelse

if (strfind(PathName,’Kat’)~=0)

type = 1;%’Kat4e_1/Pas’;
else

type = 2;%’Kir4e_2/Pas’;
870 end

%fileLocStr=[’/Users/mytamlam/Dropbox/BubbleCountwRatio/’,
↪→ type, pasNum];

fileLocStr=’/Users/mytamlam/Dropbox/2021_MyLamProsjekt/Kode’;

%fname = fullfile(fileLocStr,[fileName(1:16),’Detec.xlsx’]);
fname = fullfile(fileLocStr,’

↪→ OverviewDetections_test_w_all_manual.xlsx’);

875

if (~isempty(tb))

if (isfile(fname))

Table = readtable(fname, ’Sheet’, 3);

newTable = [Table;TableBub];

880 writetable(newTable, fname, ’Sheet’, 3);

else

writetable(TableBub, fname, ’Sheet’, 3);
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end

end

885 end

%function saveOverview2excel()

%end
890

% DRAW BUBBLES IN EARLYBIRD
function hBub = drawBubles(figh,hBub,tb,zb,marker)

if ~isempty(hBub),delete(hBub);end

895 CmAx = figh.UserData.hCm.Parent;

hold(CmAx,’on’);

hBub = plot(CmAx,tb,zb,marker,’MarkerSize’,12);

hold(CmAx,’on’);

end

900

% CONVERSION FROM DATENUM TO SECONDS
function t = dateNum2sec(tNum,rec)

cmmode = rec.cmmode;

t = (tNum-datenum(cmmode.date_time))*60*60*24;

905 %tDt=datetime(tNum,’ConvertFrom’,’datenum’);
end

% CONVERSION FROM SECONDS TO DATENUM
function tNum = Sec2dateNum(t,rec)

910 cmmode = rec.cmmode;

p = rec.p;

%t=(tNum−datenum(ob.acq_p.date_time))*60*60*24;
tNum = datenum(cmmode.date_time)+ (t+p.t0)/(60*60*24);

end

a.2 the algorithm for manual detection

This section contains the algorithm for performing manual detections
in the Color M-Mode image of the EarlyBird Software. This algorithm
was used for the manual detections performed by Leth-Olsen et al.
in his study on Detection of Cerebral High Intensity Transient Signals by
NeoDoppler During Cardiac Catheterization and Cardiac Surgery in Infants.
[13] The algorithm was developed by Hans Torp, and includes calcu-
lations of the position, amplitude and EBR of the manual detections
performed. The algorithm is listed in Listing 7.

Listing 7: The Algorithm for Manual Detections

% bubleCount − script for manual buble marker
% 2020.03.25 Hans Torp
% 2020.03.29 Cloud markers included
% 2020.04.05 Uncertain markers, and Amplitude included

5 % 2020.04.08 bugfix in bubleAmplitudes
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% 2020.04.14 bugfix; use string array in tables
% 2020.04.21 bugfix, prevent crash when clicking wrong panel+

↪→ questdialog
% 2020.04.22 read back from excel and plot markers
% 2020.05.03 read back from excel bugfix

10 % 2020.10.01 marking bubles in right Cmmode allowed
% 2021.01.07 Update excel files with backgound amplitudes
% 2021.01.22 Update current excel file with buble amplitudes and

↪→ background signals, with manual corrections
% 2021.09.11 Only single bubles

15 %% remove all buble marks. Run this first for new recording
if exist(’hBub’,’var’),delete(hBub);end

hBub=[];tb=[];zb=[];

%% mark bubles in left Cmmode image; hit return to finnish
20 % zoom/ pan and repeat this to mark all bubles

[tb,zb,hBub]=markBubles(figh,hBub,tb,zb,’oy’);

%% Write bublepos for single bubles to excel file
manualCor=1;

25 ob=guidata(figh);

fName=fullfile(ob.datapath,[ob.filename(1:16),’Hits.xlsx’]);

if ~isempty(tb)

TableBub=getSingleBublesTable(figh,tb,zb,manualCor);

writetable(TableBub,fName,’Sheet’,1);

30 end

%% Read back from excel and plot buble markers
% First remove all buble marks
if exist(’hBub’,’var’),delete(hBub);end

35 hBub=[];tb=[];zb=[];

ob=guidata(figh);

fName=fullfile(ob.datapath,[ob.filename(1:16),’Hits.xlsx’]);

40 myTableBub=readtable(fName,’Sheet’,1);

if ~isempty(myTableBub)

if isfield(table2struct(myTableBub),’SingleBubles’)

tb=myTableBub.tb;zb=myTableBub.zb;

hBub=drawBubles(figh,hBub,tb,zb,’oy’);

45 tbSec=dateNum2sec(figh,tb)

end

end

%% lokale funksjoner
50

function TableBub=getSingleBublesTable(figh,tb,zb,manualCor)

ob=guidata(figh);

[AmpdB,Amplitude,Background_dB,tm,zm]=bubleAmplitudes(figh.

↪→ UserData.Cmmode,tb,zb,manualCor);

tNum=datenum(ob.acq_p.date_time)+ tm/(60*60*24);
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55 Ratio_dB=AmpdB-Background_dB;

SingleBubles=string(datestr(tb,’YYYY:mm:dd:HH:MM:SS:FFF’));

TableBub=table(SingleBubles,tb,zb,AmpdB,Amplitude,Background_dB,

↪→ Ratio_dB);

end

60 function addBackGroundAllFiles(filename,manualCor)

%% Write bublepos, amplitudes and Background amplitude to all
↪→ excel files in folder

if nargin>0

searchStr=filename;

else

65 searchStr=’*.mat’;

manualCor=0;

end

excelStr=’Hits.xlsx’;

fldrInfo=dir(searchStr);

70 Nfiles=length(fldrInfo);

if Nfiles<1

disp(’No matching files found’);

return

end

75 for n=1:Nfiles

if fldrInfo(n).bytes>5e3

filename=fldrInfo(n).name;

filenameExcel=[filename(1:16),excelStr];

try

80 Tbub=readtable(filenameExcel,’Sheet’,1);

fileOk=isfield(table2struct(Tbub),’SingleBubles’);

catch

Tbub=[];

fileOk=0;

85 end

if fileOk

try

S=load(filename,’Cmmode’,’p’,’acq_p’);

fileOk=isfield(S,’Cmmode’);

90 catch

fileOk=0;

end

if fileOk

tb=Tbub.tb;zb=Tbub.zb;

95 [AmpdB,Amplitude,Background_dB,tm,zm]=

↪→ bubleAmplitudes(S.Cmmode,tb,zb,manualCor);

Ratio_dB=AmpdB-Background_dB;

SingleBubles=string(datestr(tb,’YYYY:mm:dd:HH:MM:

↪→ SS:FFF’));

TableBub=table(SingleBubles,tb,zb,AmpdB,Amplitude

↪→ ,Background_dB,Ratio_dB);

writetable(TableBub,filenameExcel,’Sheet’,1);

100 disp([’Updated file ’,filenameExcel]);

else
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disp([’Convert to new format: ’,filename]);

end

105 end

end

end

end

110 function [t2,z2,t,z]=bubleSignature(Cmmode,t1,z1)

B=0.01;

t=mean(t1);z=mean(z1);

dz=1e-3*(z1(2)-z1(1));

teta=atand(B/dz) %doppler angle
115 nz=find(1e3*Cmmode.depthAx>z,1);

nt=find(Cmmode.timeAx>t,1);

fi=double(Cmmode.fi(nz,nt))/127;

vz=-Cmmode.vNyquist/3/2*fi

Tt=B./(vz*tand(teta))

120 t2=t+[-Tt/2,Tt/2]

z2=z+1e3*[-dz/2,dz/2]

end

function [AdB,A,BackgrounddB,tm,zm]=bubleAmplitudes(Cmmode,tbub,z

↪→ ,manualCor)

125 % Buble signal amplitude. Corrected for attenuation
%Background calc included
if nargin<4,manualCor=0;end

Taverage=10;

att=0.3;%dB/cm/MHz
130 f0=7.8;%MHz

att_mm=2*att/10*f0;

%convert t to seconds
t0=datenum(Cmmode.date_time);

t=(tbub-t0)*24*60*60;

135 tm=zeros(size(t));

zm=zeros(size(t));

AdB=zeros(size(t));

BackgrounddB=zeros(size(t));

A=zeros(size(t));

140 It=-5:5;

It=-20:20;

Iz=-1:1;

Nz=size(Cmmode.PdB,1);

if isfield(Cmmode,’dBStep’), dBStep=Cmmode.dBStep;else dBStep=1;

↪→ end

145 dAx=1e3*Cmmode.depthAx;

dz=dAx(2)-dAx(1);

tAx=Cmmode.timeAx;

dt=tAx(2)-tAx(1);

Naverage=round(Taverage/dt/2);

150 for n=1:length(t)

if t(n)>0
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nz=find(dAx>(z(n)-dz/2),1);

nz=min(nz,Nz-1);

nt=find(Cmmode.timeAx>t(n),1);

155 Ppart=dBStep*double(Cmmode.PdB(nz+Iz,nt+It));

[AdB(n),nMax]=max(Ppart(:));nMax=nMax-1;

NNz=length(Iz);Nt=length(It);

Itm=floor(nMax/NNz)+nt-floor(Nt/2);

Izm=mod(nMax,NNz)+nz-floor(NNz/2);

160 tm(n)=tAx(Itm);

zm(n)=dAx(Izm);

ind1=max(1,Itm-Naverage);

ind2=min(size(Cmmode.PdB,2),Itm+Naverage);

P=dBStep*double(Cmmode.PdB(Izm,ind1:ind2));

165 Pm=median(P);

IndL=find(P<Pm+2*std(P));

BackgrounddB(n)=mean(P(IndL));

if manualCor

disp([num2str(n+1),’ ’,datestr(tbub(n))]);

170 tP=tAx(ind1:ind2);tP=tP-mean(tP);

figure(20);plot(tP,P,tP,0*P+BackgrounddB(n),tP(1)+

↪→ Taverage/2,AdB(n),’*’,’LineWidth’,2);

disp(’Mark buble peak; return to cancel’);figure(20)

↪→ ;[~,y]=ginput(1);

if ~isempty(y)

AdB(n)=y;

175 plot(tP,P,tP,0*P+BackgrounddB(n),tP(1)+Taverage

↪→ /2,AdB(n),’*’,’LineWidth’,2);

end

disp(’Mark background; return to cancel’);figure(20)

↪→ ;[~,y]=ginput(1);

if ~isempty(y)

BackgrounddB(n)=y;

180 plot(tP,P,tP,0*P+BackgrounddB(n),tP(1)+Taverage

↪→ /2,AdB(n),’*’,’LineWidth’,2);

end

pause(1);

end

else

185 AdB(n)=0;

BackgrounddB(n);

end

A(n)=10^((AdB(n)+att_mm*z(n))/20);

end

190 end

function hBub=drawBubles(figh,hBub,tb,zb,marker)

if ~isempty(hBub),delete(hBub);end

CmAx=figh.UserData.hCm.Parent; % getcurrentaxis
195 hold(CmAx,’on’);

hBub=plot(CmAx,tb,zb,marker,’MarkerSize’,12);

hold(CmAx,’on’);

end
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200 function [tb,zb,hBub]=markBubles(figh,hBub,tb,zb,marker)

%% mark bubles in left Cmmode image; hit return to finish
% zoom/ pan and repeat this to mark all bubles
[tb1,zb1] = ginput;

if tb1(1)<200

205 tb1=Sec2dateNum(figh,tb1);

end

t0=figh.UserData.hCm.XData(1);

t1=figh.UserData.hCm.XData(end);

zmin=figh.UserData.hCm.YData(2);

210 zmax=figh.UserData.hCm.YData(end-1);

coordOK=min(tb1)>t0 & max(tb1)<t1 & max(zb1)<zmax & min(zb1)>zmin

↪→ ;

if ~coordOK

errordlg(’One marker outside Color Mmode boudaries’);

return;

215 end

tb0=tb;zb0=zb;

tb=[tb;tb1];zb=[zb;zb1];

hBub=drawBubles(figh,hBub,tb,zb,marker);

SpAx=figh.UserData.hSp.Parent;

220 pan(SpAx,’xon’);

answer = questdlg(’Add new bubble markers?’,’’,’Yes’,’No’,’Yes’);

if strcmp(answer,’No’)

tb=tb0;zb=zb0;

hBub=drawBubles(figh,hBub,tb,zb,marker);

225 end

end

function t=dateNum2sec(figh,tNum)

%convert timeaxis tNum from detenum to seconds
230 ob=guidata(figh);

t=(tNum-datenum(ob.acq_p.date_time))*60*60*24;

%tDt=datetime(tNum,’ConvertFrom’,’datenum’);
end

235 function tNum=Sec2dateNum(figh,t)

%convert timeaxis tNum from detenum to seconds
ob=guidata(figh);

%t=(tNum−datenum(ob.acq_p.date_time))*60*60*24;
tNum=datenum(ob.acq_p.date_time)+ (t+ob.p.t0)/(60*60*24);

240 end
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