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Abstract

In this thesis we have simulated a liquid shock wave using Non-Equilibrium Molec-
ular dynamic (NEMD) simulations and the Navier-Stokes (N-S) equations. The new ap-
plication of the N-S equations combined an Equation of state (EOS) for the Lennard-
Jones/spline (LJ/s) fluid, a transport coefficient equation for argon, the spatial FORCE
flux, and an ordinary differential equation (ODE) integrator to solve a transient shock.
The methodologies both yielded similar profiles, but with some characteristic differences.
The N-S equations had a sharper shock front, a lower measurable heat flux and a lower
temperature in the boundary layer. The sharper shock front, compared to NEMD and
experimental methods, has been a characteristic of the N-S equations in previous work.

By utilizing the simulation data, shock wave properties were calculated. First, the
shock wave position was determined using the definition of the Gibbs equimolar surface.
The speed of sound was determined to be v∗sound = 4.7 using the EOS, the Mach number
was computed for both methods, and showed that the wave was moving at M ≈ 2. The
Excess internal energy- and entropy density were determined and the surface temperatures
were found to be T s∗N−S = 3.2 for the N-S equations and T s∗NEMD = 2.82± 0.184 for the
NEMD simulations.

The excess entropy production of the liquid shock wave was determined using five dif-
ferent methods, including a newly developed method named the Macro Entropy Method
(MEM). All of the methods yielded similar results using the N-S equations, whereas the
methods would differ more for the NEMD simulations. It was also observed that the N-S
equations had a similar excess entropy production to the NEMD simulations, even when
the N-S equations did not include bulk viscous contributions. This was discussed in detail,
some of the main points being the dissipation in the FORCE flux, sharpness of the shock
front, the accuracy of the EOS, the assumption of local equilibrium and the size of the
NEMD simulations.

To check the accuracy of the EOS, the EOS functions for pressure, internal energy
and enthalpy were compared with NEMD data which showed that the EOS underesti-
mated the properties in the shock front, likely due to the assumption of local equilibrium.
Uncertainty of the position of the shock front and computation of error bars were also
reviewed.
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Sammendrag

Vi har simulert en sjokkbølge i væskefase ved bruk av Non-Equilibrium Molecular dy-
namics (NEMD) og Navier-Stokes (N-S) ligningene. Den nye anvendelsen av N-S lignin-
gene kombinerte en tilstandslikning (EOS) for et Lennard-Jones/spline (LJ/s) fluid, en
transportkoeffisientligning for argon, den romlige FORCE-fluksen og en ordinær differ-
ensialligning (ODE) integrator for å løse et dynamisk sjokk. De to metodene ga lignende
profiler, men hadde noen karakteristiske forskjeller. N-S likningene hadde en skarpere
sjokkfront, lavere målbar varmefluks og lavere temperatur der sjokket ble skapt. Den
skarpere sjokkfronten, sammenlignet med NEMD og eksperimentelle metoder, har vært
karakteristisk for N-S-ligningene i tidligere arbeid.

Ved å utnytte simuleringsdataene ble sjokkbølgeegenskaper funnet. Først ble posisjo-
nen til sjokkbølgen bestemt ved å bruke definisjonen av Gibbs ekvimolare overflate. Ly-
dhastigheten ble bestemt til å være v∗sound = 4.7 ved bruk av tilstandslikningen. Mach-
tallet ble beregnet for begge metodene, og viste at bølgen beveget seg medM ≈ 2. Excess
indre energi- og entropitetthet ble bestemt og overflatetemperaturene ble bestemt til å være
T s∗NS = 3.2 for N-S ligningene og T s∗NEMD = 2.82± 0.184 for NEMD-simuleringene.

Excess entropiproduksjon av sjokkbølgen ble bestemt ved hjelp av fem forskjellige
metoder, inkludert en nyutviklet metode kalt Macro Entropy Method (MEM). Alle meto-
dene ga lignende resultater ved bruk av N-S ligningene, mens metodene fluktuerte mer for
NEMD-simuleringene. Det ble også observert at N-S ligningene hadde en lignende ex-
cess entropiproduksjon som NEMD-simuleringene, selv om N-S-ligningene ikke inklud-
erte bulkviskositet. Dette ble diskutert i detalj, der noen av hovedpunktene var dissipasjon
på grunn av FORCE-fluksen, skarpheten til sjokkfronten, nøyaktigheten til EOSen, an-
takelsen om lokal likevekt og størrelsen på NEMD-simuleringene.

For å sjekke nøyaktigheten til tilstandslikningen ble EOS-funksjonene for trykk, intern
energi og entalpi sammenlignet med NEMD-data. Dette viste at EOS undervurderte egen-
skapene i sjokkfronten, sannsynligvis på grunn av antakelsen om lokal likevekt. Usikker-
het rundt posisjonen til sjokkfronten og beregning av usikkerhet ble også gjennomgått.
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Chapter 1
Introduction

A shock wave is a sudden, almost discontinuous change in temperature, pressure and
density travelling at supersonic speed [2]. Shock waves are highly irreversible and the
amount of energy carried by the wave is substantial. They are therefore often generated
in explosions like those from IEDs (improvised explosive devices), lightning or objects
moving faster than the speed of sound, such as jet planes or bullets. The phenomenon has
been of interest in several fields due to its applications and destructive properties. Shock
waves have been utilized in medicine, where they can disintegrate kidney stones [3] and
in the industry, where shock waves are used in processes such as explosive welding and
sandal wood oil extraction [4]. They are also highly relevant in aerodynamics, where the
study of shock-wave phenomena are one of the most important aspects of understanding
supersonic flows [2]. Thus, understanding the behavior of the shock wave and its almost
discontinuous profiles could benefit a vast array of scientific fields. Understanding how
energy is converted and entropy produced in a shock wave could prove vital, for exam-
ple in medicine, where carelessly applied shock waves were shown to damage hips and
potentially damage large vessels and nerves[3].

Shock waves have been has analysed extensively in the fields of physics before, this
recount will therefore limit itself to a more general history of shock waves and focus
on research that have utilized the Navier-Stokes (N-S) equations and Molecular dynamic
(MD) simulations. We start with Ernst Mach. Mach was the first to photograph a speeding
bullet in 1887 [1], capturing an image of the shock front. He was the first to recognize
the real nature of shock waves in air and his subsequent research would access a new field
in physics, the field of supersonic flow of gases [5]. The Rankine-Huginot conditions,
developed in the late 19th century, managed to describe the conditions for a shock wave
in one dimension [6, 7]. By considering a dissipative fluid, a shock wave was treated
as a surface of discontinuity where mass, momentum and energy were conserved [8].
In the Rankine-Huginot conditions the shock properties were described in terms of the
properties before (upfront) and behind (downstream) the shock front, these equations gave
a macroscopic description of the shock wave, but did not describe details like energy
dissipation in the shock front. Details about the shock front were expanded upon in the
20th century by the use of hydrodynamic theories. Work by Becker managed to determine
the shock wave thickness while Jouget and Chapman found that a detonation wave is
compromised of a supersonic shock wave followed by a sonic combustion wave [8, 9,
10, 11]. There was a peaked interest for shock waves during and after the second world
war, which led to significant progress in the understanding of gaseous and liquid shock
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waves e.g. the work by Friedlander[12] on the diffraction effects of planar sound pulses,
for work done during world war 2 and after see Chapter 3 Krehl [13] for a chronological
review which stretches to the early 00s.

Throughout the study of shock waves, researchers have utilized the conservative equa-
tions [13], which are equations describing the conservation of mass, momentum and en-
ergy. An extension of the conservative equations, the Navier-Stokes equations, which
include viscous and conductive contributions [14], was first implemented by Becker on
non-weak shock waves in 1921 [9]. The Navier-Stokes equations have since then been
utilized and discussed to a significant degree, work done using the equations found that
the thickness of the shock front was thinner compared to experimental data [15], and
questions regarding the consistency between the entropy profile and the second law of
thermodynamics were raised [16]. A proposed improvement to the N-S equations have
been the Burnett equations [13]. Work by Pham-Van-Diep and coworkers found that when
comparing the Navier-Stokes equations to the Burnett equations, the latter was more ac-
curate for higher Mach numbers [17]. In addition, work modelling transient shocks found
the Burnett equations predicted better results, although the methods were found to be
numerically unstable for fine meshes [18]. With the expansion of computational fluid dy-
namics (CFD), transient shocks could be modelled numerically using the Navier-Stokes
equations [14, 19]. The field has led to the development of numerous methods e.g. stable
centered numerical differencing methods, such as the FORCE and WENO flux which can
be used to solve discontinuous phenomena [19, 20]. With the field of available techniques,
CFD has provided new insight and has already been applied to complex phenomena such
as the modelling of bubble collapse and multi-phase flows with the presence of shock
waves [21, 22].

Moving to the mid-20th century, another computational method proved useful for the
study of shock waves. Shock waves, being incredibly fast phenomena, could be ana-
lyzed using molecular dynamic (MD) simulations. Shock wave simulations were first
performed in one dimension in 1966 by Tsai and Becket [23], then at the start of the
1970s simulations were expanded to a three dimensional Lennard-Jones system and sub-
sequently to a Lennard-Jones fluid in the late 70s and early 80s [24]. MD simulations,
together with Direct Simulation Monte Carlo (DSCM) methods, provided a connection
between experimental and theoretical methods [15], the exact thickness of the shock front
was determined by Hoover [25] in 1979. Subsequent work compared Non-Equilibrium
Molecular dynamic (NEMD) simulations with the Navier-Stokes equations where it was
found that the N-S equations described shock waves reasonably well, although the shock
front was found to be thinner [26]. DSCM methods have been in good agreement with
NEMD simulations. Comparisons between DSCM, NEMD, and the Navier-Stokes equa-
tions found that DSCM and NEMD gave nearly identical results while the N-S profiles
had a narrower shock front once more [27]. Holian, intrigued by the results, investigated
whether the discrepancy between the N-S equations and other simulation methods could
be solved by using the temperature in the direction of shock propagation Txx, instead
of the average temperature, and found the results to agree better with the NEMD and
DSCM data, thus finding a possible reason for the N-S equations having thinner gradi-
ents [24, 28]. NEMD simulations are highly accurate but the method has limitations e.g.
only being able to simulate systems for a few nanoseconds and requiring large systems to
simulate gases. This is not necessarily a problem when studying shock waves due to their
speed, but it does limit NEMD to smaller systems and longer calculation times [29, 24].

Even with the large amount of research done on shock waves there are still aspects of
the shock wave left to explore. In an article by Hafskjold and coworkers it was pointed
out there were few papers concerned with the energy dissipation and entropy production
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of shock waves, even when the phenomenon is known to be highly irreversible, thus, they
investigated these features using NEMD simulations of a gaseous Lennard-Jones/spline
fluid (LJ/s) [30]. In addition to computing shock position, speed and surface temperature,
four different methods for computing the excess entropy were used, two of them used the
local entropy production and two considered the shock front as a surface of discontinuity.
The methods were found to be in good agreement, though the methods using the surface
of discontinuity were deemed to be more robust. Since the article was published, van
Westen and Coworkers have developed a new equation of state (EOS) for the LJ/s fluid.
Known as the uv-Theory, the EOS has shown excellent agreement with NEMD results
compared to other perturbation theories [31]. The EOS can be accessed and utilized with
the Python module Thermopack to compute properties such as internal energy, entropy
and pressure [32].

Access to the in-house NEMD code by Hafskjold and the new EOS for the LJ/s fluid
presented new opportunities which this thesis work has explored. The first was to simulate
a shock wave in a liquid phase LJ/s fluid using NEMD and, with the help of the EOS,
derive the surface properties and compute the entropy production of the liquid shock. This
was done to investigate whether the methods used for the gas phase shock would hold for
the liquid phase. The second opportunity was to independently model a transient liquid
shock wave using the Navier-Stokes equations with the new EOS, a stable numerical flux
known as the FORCE flux, and an Ordinary Differential Equation (ODE) integrator. This
was done to make a comparative analysis between the NEMD and N-S equations and test
whether the methods for determining shock properties and entropy production would work
with a continuous description. In addition to the main goals, we developed another method
for determining the excess entropy production called the Macro Entropy Method (MEM),
tested the agreement between NEMD and the uv-theory for internal energy, enthalpy and
pressure, and investigated the error analysis of the NEMD simulations.

The thesis is split into the following Sections: theory, method, results and discussion,
conclusion and future work. In the theory section the relevant theory will be reviewed,
starting with general theory shock waves, we move to the necessary equations in NEMD
and the formulation of the N-S equations and end with theories utilized in both methods
i.e., the determination of excess- and transport properties and methods for determining
the entropy production. The method section is shaped similarly to the theory section but
will focus on the implementation of the theories mentioned using computational methods.
The results section will compare the two methods starting with the general profiles of
temperature, pressure, fluid velocity, and density. Then a comparison of shock position
and speed followed by a comparison of excess properties and surface temperature. Once
the surface properties have been computed we present the entropy production methods
one at a time and end with a comparison of all the methods. In addition, we will look
at the agreement between NEMD and the uv-theory and investigate the error analysis of
NEMD. Lastly, the conclusion and future work will be summarizing the work done and
contain a discussion of new avenues for future research, such as the modelling of gas
phase LJ/s fluid, testing other numerical fluxes, and implementing contributions such as
the bulk viscosity.
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Chapter 2
Theory

2.1 General shock wave theory

Figure 2.1: A picture of a bullet surrounded by a white parabole shock wave [1].

A shock wave is characterized by a pressure-dependent, supersonic velocity of prop-
agation and the formation of a steep wave front with abrupt changes in all its thermo-
dynamic quantities [8]. It has a sharp and almost discontinuous change in temperature,
pressure and density. Figure 2.1 shows a bullet passing through the air generating a shock
wave, the wave front is the white parabolic line in front of the bullet and the two straight
lines behind it. The wave front is the area where the sudden change in stress, density, and
temperature is located.

When working with shock waves it is useful to have knowledge of a certain dimen-
sionless number and fluid properties. These are the Mach number and the speed of sound
respectively. The speed of sound is the distance travelled per unit of time by a sound wave
which is propagated by molecular collisions [2]. This property depends on temperature
and the medium through which the sound wave propagates. For example, in regular air
the speed of sound is around 343 m/s [33], but in water the speed of sound is 1500 m/s
[34]. In terms of the thermodynamic properties, the speed of sound can be defined as:

v2sound =
Cp
Cv

(
∂p

∂ρ

)
T

(2.1)
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2.2 Non-Equilibrium Molecular Dynamics Simulations of a blast

where p is the pressure while Cp and Cv are the heat capacities at constant pressure
and volume respectively [30]. Knowing the speed of sound can give information on the
heat capacities and it enables us to calculate the Mach number.

The Mach number is a dimensionless number represented by the ratio of a local ve-
locity v to the speed of sound vsound.

M =
v

vsound
(2.2)

Knowing the Mach number of a shock wave gives information about how fast and
how strong it is e.g. if a shock wave has a Mach number which is larger than 1, the shock
is moving at supersonic speeds, meaning it will move faster than the speed of sound [2].

2.2 Non-Equilibrium Molecular Dynamics Simulations of
a blast

Non-Equilibrium Molecular Dynamics (NEMD) Simulations is a computer technique de-
signed to study transport processes. It does this by solving the Newton’s equation of mo-
tion for particles in a system. The particles will collide with each other and the systems
walls, subsequently the transport properties are calculated from the mechanical properties
from that set of colliding particles. In this project we will utilize boundary driven NEMD,
where gradients are applied to a system by perturbation of its boundaries [35].

The considered system may consist of a number of particles N in a rectangular box of
volume V = LxLyLz . The volume is determined by setting the molar density as:

ρ = V
NA
N

= LxLyLz
NA
N

(2.3)

where NA is Avogadros number. Typically, these simulations are used to determine
transport properties in the x-direction so the axial length is larger than the lateral lengths
i.e. Lx > Ly = Lz . Each of the particles within this box will have a pair potential with
the other particles. Particles that are to close will repel each other while those distant
will attract each other. The pair potential NEMD utilizes to describe this is the Lennard-
Jones/spline potential which is based on the Lennard-Jones potential[35]:

uij = 4ϵij

[(
σij
rij

)12

−
(
σij
rij

)6
]

(2.4)

Where uij is the potential between a particle i and j, ϵij is the minimum potential
between the particles, rij is the distance between the particles and σij is the distance
between the particles when the potential is equal to zero.

For the Lennard-Jones/spline potential, which is more time efficient compared to the
Lennard-Jones potential, the pair potential is set to zero for particles that are a certain
distance from each other r > rc. Unlike cut-off Lennard-Jones potential the Lennard-
Jones/Spline potential obtains a continuous description of equilibrium and non-equilibrium
properties by having a spline distance rs = (26/7)1/6σij and a spline potential[35]:

uij = 4ϵij

[(
σij
rij

)12

−
(
σij
rij

)6
]

r ≤ rs

uij = αij(rij − rc)
3 + βij(rij − rc)

2 rs ≤ r ≤ rc

(2.5)

Wherein αij and βij are defined as;
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2.2 Non-Equilibrium Molecular Dynamics Simulations of a blast

αij = −387072

61009

ϵij
r3s

βij = −24192

3211

ϵij
r2s

(2.6)

the cut off distance is set to be rc = (67/48)rs.
In NEMD, linear response theory is utilized to derive the transport coefficients. The

molar flux for a component k in a layer ν can be computed as:

Jk,ν =
ρk,νvk,ν
NA

=
Nlayers
V NA

∑
i∈k,i∈layers

vi (2.7)

Where Nlayers is the number of layers in the system, vk,ν is the average velocity for a
given layer and vi is the velocity of a particle i. The temperature of each layer is computed
from the average kinetic energy according to the equipartition principle:

3

2
kTνNν =

3

2
kTν

∑
i∈layers

Nk,ν =
1

2

∑
i∈layers

mi

∣∣vi − vν
∣∣2 (2.8)

in which k is the boltzmann constant andmi is the mass of particle i. The temperature
in a shock wave will have different values in the x-, y- and z-direction and can be written
as a tensorial quantity [30] i.e. the diagonal components can be written as:

Tν,αα =
1

(Nν − 1)k

∑
i∈ν

mv2i,α (2.9)

Here vi,α is the velocity in direction α. The temperature in the shock direction is corrected
to

Tν,xx =
1

(Nν − 1)k

∑
i∈ν

mv2i,α − m

k
v2ν (2.10)

The pressure in a direction α is found by time averaging the microscopic pressure
tensor.

pν,αβ =
Nlayers
V

∑
i∈layers

mivv,αvi,β +
∑
i ̸=j

Fij,αrij,β

 (2.11)

Here vi,α is the velocity of particle i in direction α, Fij,α is the force exerted on
particle i from particle j in direction α, and rij,β is the component of the vector from
particle j to particle i in direction β. The overall pressure p can computed as the average
over the diagonal pressure components i.e.

pν =
1

3
(pν,xx + pν,yy + pν,zz) (2.12)

The measurable heat flux J’q,ν cannot be computed directly since it is not a mechanical
property, it can however be computed with the total heat flux Jq,ν where

J’q,ν = Jq,ν −
∑
i∈k

HkJk,ν (2.13)

Hk is the partial molar enthalpy of a component k. The total heat flux can be computed
in terms of mechanical properties in the form:
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2.3 The Navier-Stokes equations

Jq,ν =
Nlayers
V

∑
i∈layers

[
1

2
miv

2
i + ϕi

]
vi +

1

2

∑
i ̸=i

[vi · Fij ]rij

 (2.14)

Where ϕi is the potential energy of particle i in the field of all of the other particles,
Fij is the force acting on particle i due to j.

All these properties are computed in dimensionless numbers where the particle mass
m, σ and ϵ are used as characteristic mass, length and energy. See Table A.1 in the
Appendix for conversions. With the potential- and kinetic energy NEMD can compute
the specific internal energy u and specific enthalpy h.

u∗ν = u∗pot,ν +
3

2
T ∗
ν (2.15)

Where u∗pot,ν is the dimensionless specific potential energy, which is computed for a
layer ν by summing the potential energy of each particle ϕi and dividing by the amount of
particles in the layer Nν , the superscript * is the dimensionless version of a property. The
specific enthalpy can then be computed using the internal energy, pressure and density

h∗ν = u∗ν +
p∗ν
ρ∗ν

(2.16)

Note that specific energies are per particle and not per mole.

2.3 The Navier-Stokes equations
The theory behind the Navier-Stokes equations is presented, starting with a derivation of
the pressure tensor, then a formulation of the equations, and lastly a short description of
the Finite Volume method (FVM) and numerical stability. Note that we refer to the N-S
equations as an extension of the Euler equations [14] with diffusive fluxes and not to the
momentum equation, which is often called the Navier-Stokes equation.

2.3.1 The pressure tensor
The pressure tensor will play a role in both the modeling and the computation of the en-
tropy production. In order to elaborate on the pressure tensor each term must be regarded
in the correct dimensions as a tensor, vector or scalar contribution. The pressure tensor
can be written as

P = pδ +Π (2.17)

Where p is the pressure scalar, δ is the Kronecker delta and Π is the viscous pressure
tensor [36]. The viscous pressure tensor Π for a fluid is given as

Π = −η
(
∇v + (∇v)T − 2

3
(∇ · v)I

)
− ζ(∇ · v)I (2.18)

in which η is the shear viscosity, (∇v)T is the transpose of the velocity gradient, I is
the identity matrix and ζ is the bulk viscosity. The velocity gradient can be expressed as
a tensor in the form
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2.3 The Navier-Stokes equations

∇v =


∂vx
∂x

∂vx
∂y

∂vx
∂z

∂vy
∂x

∂vy
∂y

∂vy
∂z

∂vz
∂x

∂vz
∂y

∂vz
∂z

 (2.19)

Writing out the viscous pressure tensor in tensor notation then yields

Π = −η




2∂vx
∂x

∂vy
∂x + ∂vx

∂y
∂vz
∂x + ∂vx

∂z

∂vy
∂x + ∂vx

∂y 2
∂vy
∂y

∂vz
∂y +

∂vy
∂z

∂vz
∂x + ∂vx

∂z
∂vz
∂y +

∂vy
∂z 2∂vz

∂z

− (
2

3
− ζ)

(
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

)
I


(2.20)

Describing this in tensorial terms yields a symmetric viscous tensor. Note that the bulk
viscosity is often low for a monoatomic fluids and have often been neglected, but work
with shock waves have shown that the inclusion of the bulk viscosity more accurately
described the shock front [37]. The second term only contributes to the diagonal and will
not affect the symmetry. This gives an expression for the viscous stresses in the system.

As we will be studying a shock wave propagating in the x-direction we simplify the
equation to one dimension, which yields a pressure tensor normal to the shock front that
has the form:

Pxx = p−
(
4

3
η + ζ

)
∂v

∂x
(2.21)

2.3.2 The Navier-Stokes equations
The Navier-Stokes equations, stems from the conservation equations that describe the
conservation of mass, momentum and energy. A general description of the equations can
be written as

∂(ρψ)

∂t
+∇(ρvψ) +∇ · J = S (2.22)

where ψ is the conserved quantity like mass, momentum or energy and S is a source/sink
term. The equation consists of three terms: accumulation in the system i.e. the transient
term ∂(ρψ)

∂t , transfer into and out of the system which are the convection ∇(ρvψ) and flux
term ∇ · J, and a source/sink term S where the quantity is either generated or lost e.g. a
component lost or produced in a chemical reaction [38].

The conservation equations are quite intuitive and serve as good equations for math-
ematical modelling, though they can often require some dimensional simplifications to
be less computationally demanding to model. In order to compare a modelled result to
NEMD simulations, the system must remain compressible and transient. Since the shock
travels in the axial direction, the x-dimension is warranted. By applying assumptions such
as symmetry and that the average velocity remains unchanged in the y− and z direction
since the shock wave propagates in the axial direction, leads to the vectorized conservation
equations on the form:

∂Q

∂t
+
∂F (Q)

∂x
= S (2.23)
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2.3 The Navier-Stokes equations

where Q is a vector of the conserved variables density ρ, momentum ρv and total energy
E[19].

Q =


ρ

ρv

E

 (2.24)

E is given as E = ρ
(
u+ v2

2

)
. The vector F (Q) can be seen as the vector of fluxes for

the system and can be written as

F (Q) =


ρv

ρv2 + p

v(E + p)

 (2.25)

Lastly there are the source terms, or the diffusive fluxes S(Q), which consist of viscous
and conductive contributions.

S(Q) =


0

∂
∂x

(
4
3η

∂v
∂x

)
∂
∂x

(
4
3ηv

∂v
∂x

)
+ ∂

∂x

(
k ∂T∂x

)
 (2.26)

Note that the bulk viscosity ζ is not included in the source term as it was not incorporated
in the N-S equations.

This set of partial differential equations (PDEs) is too difficult to solve analytically,
thus, we chose to apply a spatial discretization scheme and integrated in time using an
ODE integrator.

2.3.3 The Finite Volume Method and numerical stability
For the numerical formulation we chose a Finite Volume Method (FVM) as an approxi-
mation of the integral conservation law. Starting from the one-dimensional scalar conser-
vation equation, where the source term can be incorporated into the flux, yields

∂Q

∂t
+
∂F (Q,∇Q)

∂x
= 0 (2.27)

By integrating over the control volume ∆x = xi+ 1
2
− xi− 1

2
, see appendix A.1 for the

derivation, yields the semi-numerical formulation:

∂Q

∂t
= −

Fi+1/2 − Fi−1/2

∆x
(2.28)

To define the flux F we utilize the FORCE flux by Toro [19]. The FORCE flux is
the arithmetic average of the Lax–Friedrichs flux and the two–step Lax–Wendroff flux
and possesses several desirable qualities, it is unconditionally stable and does not require
knowledge of the systems eigenvalues which in turn makes it ideal for a shock wave with
a LJ/s fluid, but the flux is known to be quite dissipative, which could affect profiles
[19, 39]. The flux is formulated in Chapter 3.

For the temporal integration, we will utilize an explicit Runge Kutta 5th order integra-
tor. Explicit methods are often more time efficient [40], but are in turn less numerically
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stable, which puts restrictions on the temporal and spatial grid size for the modelled phe-
nomena. For the Navier-Stokes equations there are two restrictions, a convective- and a
diffusive condition. The convective contribution is known as the Courant–Friedrichs–Lewy
(CFL) condition and can be formulated as follows. The solution remains numerically sta-
ble given that:

∆t < CFLmax ·
∆x

maxk,n=1 |λk|
(2.29)

where CFLmax is the maximum CFL number, often given as CFL = v∆t
∆x where v is the

magnitude of the velocity, based on the integration method, ∆t is the transient grid length
∆t = ti+1 − ti and λk are the eigenvalues of the Jacobian of the inviscid fluxes [41]. The
diffusive condition can be formulated as

∆t <
∆x2

2D
(2.30)

Where D is the diffusion coefficient [41]. Though this thesis won’t contain a stability
analysis, these conditions should be kept in mind as they put restrictions on choice of the
temporal and spatial grid.

2.4 Excess properties
A way of determining the properties of a shock wave is to consider it as a surface. The
shock front, similar to the interface between two phases, has sharp gradients between its
adjacent bulk phases and is shallow in thickness. Using the assumption that thermody-
namic relations between surface variables remain valid locally even when the system is
overall out of equilibrium it becomes possible to treat the shock front as an autonomous
thermodynamic system [42].

The properties of the shock wave, such as the surface temperature T s, can thus be
computed by determining the excess densities of the surface. Excess densities can be
defined by choosing the position l of a dividing surface in the interfacial region and then
extrapolate the bulk densities to the dividing surface. The integral over the difference
between the actual density minus the extrapolated densities defines the excess densities:

ρsi =

∫ b

a

[
ρi − ρdiΘ(l − x)− ρui Θ(x− l)

]
dx (2.31)

Here a and b are positions in the adjacent bulk phases, Θ is the Heaviside function and
the superscripts d and u are the extrapolated bulk densities downstream and upstream of
the surface. A visualisation of this is shown in Figure 2.2.
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Figure 2.2: Visualisation used for determining the Gibbs equimolar surface. The dark dotted line is
the extrapolated upstream bulk density and the red line is the extrapolated downstream bulk density.
The cyan, black and blue axis lines are a, l and b respectively.

Before computing excess densities a choice of dividing surface l is needed. This can
be the frequently used Gibbs equimolar surface or the surface of tension. The Gibbs
equimolar surface is defined as a geometrical plane going through points in the interfacial
region, similarly situated with conditions of adjacent matter. By definition, the surface l
is found by requiring that the excess particle density is zero:

0 =

∫ b

a

[
ρ− ρdΘ(l − x)− ρuΘ(x− l)

]
dx (2.32)

Knowing the Gibbs equimolar surface enables us to determine the shock wave posi-
tion, its velocity vs and, if the the speed of sound is known, the Mach number at a given
time. The velocity of the surface is given as:

vs(t) =
dl(t)

dt
(2.33)

The Gibbs equimolar surface also enables us to calculate excess densities such as the
excess enthalpy ρsh, internal energy ρsu and entropy ρss. The excess enthalpy and internal
energy density can be calculated directly from the NEMD using Eq. 2.31 while excess
entropy has to be computed using an equation of state. With the excess internal energy
and entropy we can determine the temperature of the surface T s. Using the integrated
form of the Gibbs equation for a surface [35] combined with the Gibbs-Duhem equation
yields:

dρsu = T sdρss + µsdρs (2.34)

where µ is the excess specific Gibbs energy. Given that the definition of the Gibbs
equimolar surface is ρs = 0 the surface temperature can be written as:

T s =
dρsu
dρss

(2.35)
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2.5 Perturbation theory

2.5 Perturbation theory
The equation of state that will be utilized for shock wave modeling and calculating shock
wave properties is a first order perturbation theory adapted for the Lennard-Jones/spline
potential known as the uv-theory [31].

The main idea of perturbation theory, put simply, is to write the potential as a sum
of two terms, the potential energy of the unperturbed system U0 and the perturbation U1

[43].

U = U0 + U1 (2.36)

Here, U0 represents a hard sphere potential while U1 represents an attractive potential.
It is then possible to write the residual Helmholtz free energy ares = A/(NSkT ) as a
summation of n-th order of a terms on the form [31],

ares = a0 +

n∑
i=1

∆aui (2.37)

Here a0 is the residual helholtz energy of the reference fluid of the intermolecular po-
tential while ∆aui is i-th order perturbation contribution due to the perturbation potential.

The first order uv-Theory is based on the observation that a first order expansion of
equation 2.37, when modified to recover the exact second-virial coefficientB2, will bound
the Helmholtz energy on the form:

∆av1 ≡ ∆au1 + (∆B2 −∆Bu12)ρ ⪅ ares − a0 (2.38)

wherein ∆B2 = B2 − B20 is the total perturbation contribution to the second virial
coefficient, B20 is second virial coefficient of the reference fluid and ∆B12 is the first
order contribution to the second virial coefficient. The superscript ’v’ indicates that the
first order pertubation term ∆aui is modified by the second order virial expansion.

This lower bound can be connected together with the rigorous upper bound given by
a first-order u-expansion which is the Gibbs Boguliubov inequality [44] thus yielding the
inequality:

∆av1 ⪅ ares − a0 ≤ ∆au1 (2.39)

The uv-theory consists of interpolating the Helmholtz energy between these bounds,
which gives

ares − a0 = ∆av1∆+ ϕu(∆au1 −∆av1)

= ∆av1 + (1− ϕu)(∆B2 −∆B21)ρ
(2.40)

Where the interpolation function ϕu(ρ, T ) ≤ 1 is known as the ”u-fraction”.
The implementation of the uv-theory on the LJ/s fluid is then done in the following

manner: The intermolecular potential is split into reference and perturbation term on the
form

u0(r) = uLJ/s(r)− uLJ/s(rsplit) r < rsplit

u0(r) = 0 r ≥ rsplit
(2.41)

Here u0 is the reference part while the pertubation part is given as:

w(r) = uLJ/s(r)− u0(r) (2.42)
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The splitting radius rsplit is the distance in which the LJ/s potential is at its minimum
rmin = 2(1/6)σ. In this Section, σ denotes the Lennard-Jones size parameter.

The Helmholtz energy of the reference fluid a0 is determined using the first order
Mayer-f expansion about the hard sphere fluid [44]:

a0 = aHSd − 2πρ

∫ ∞

0

yHSd (r)(e0(r)− eHSd (r)r2dr (2.43)

Starting within the integral, yHSd (r) = gHSd (r)/eHSd (r) and eHSd (r) = exp(−βuHSd (r))
define the cavity-correlation function [45]. The hard sphere fluid diameter d is based on
the Boltzman-factor criterion [46]:

d = σ

(
2

1 +
√
T ∗

)1/6

(2.44)

, lastly the term aHSd is obtained using the Carnahan and Starling equation of state [47]:

aHSd =
4η − 3η2

(1− η)2
(2.45)

where the packing fraction η was defined as η = (π/6)ρd3.
Moving to the perturbation terms, the first order perturbation term ∆au1 can be defined

in terms of the pair correlation function of the reference fluid

∆au1 = 2πρβ

∫ ∞

d′
ghsd′ (r)w(r)r

2dr (2.46)

Here, d′ is the effective hard-sphere diameter calculated by nullifying the integral terms in
equation 2.43 and ghsd′ is the pair-correlation of hard spheres. By numerically integrating
over a grid of 0 < ρ∗ < 1 and 0.2 < T ∗ < 10 yields empirical functions for ∆au1 and
∆Bu21, see [31] for the empirical equations of ∆au1 , ∆Bu21, B2 and B20.

With access to ∆au1 , ∆Bu21, B2 and B20 we can compute ∆av1 . This leaves the u-
fraction ϕu left to derive in order to determine the residual Helmholtz energy. Molecular
Dynamic simulations were used to determine ϕu based on the equation

ϕu =
aresMD − a0 −∆av1

∆au1 −∆av1
(2.47)

where aresMD is the residual Helmholtz energy computed using MD simulations. With
the results an ansatz function was proposed:

ϕu = tanh(c1ρ
∗ + c2ρ

∗c3 + c3ρ
∗c5) (2.48)

wherein ci denote correlated constants (see [31]).
With access to reference and perturbed variables the residual Helmholtz energy ares

can be computed using temperature and density. The helholtz energy will in turn, due
to the fundamental thermodynamic relations, allow us to compute entropy, pressure, en-
thalpy and internal energy.

In the work by van Westen and coworkers the conclusion, regarding the uv-theory,
was that the theory provided a promising alternative, proving to be more accurate than
other perturbation theories [31]. However, there were still room left for improvement,
especially concerning the determination of thermal properties such as the internal energy
and heat capacity. This was specifically for temperatures within 10 percent of the critical
temperature (1 ≤ β ≤ 1.25), where β = ϵ

kT . This could be relevant for the implemen-
tation of the EOS in the N-S equations, since the perturbation theory will be utilized to
determine temperature and pressure based on the internal energy.
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2.6 Models for viscosity and thermal conductivity

2.6 Models for viscosity and thermal conductivity
Modelling a LJ/s fluid with the Navier-Stokes equations requires equations for the fluids
transport properties, namely the shear viscosity η and thermal conductivity κ. The trans-
port properties also need to remain accurate within the temperature and density range of
the shock wave. In this work we have utilized a transport property model adapted for ar-
gon [48]. For the liquid phase, the transport equations were used due to their validity and
robustness for a wide array of densities and temperatures [48], though they had not been
compared to temperatures and densities as large as those which would be used to simulate
a shock wave in this work.

The viscosity and conductivity are defined as the sum of a dilute (η0,κ0) term, depen-
dent on temperature, and a residual term (ηr,κr), dependent on density and temperature.
The expression for the viscosity can be written as:

η = η0(T ) + ηr(τ, δ) (2.49)

in which τ = Tc

T and δ = ρ
ρc

are dimensionless variables based on the critical enhance-
ment of argon. The thermal conductivity is written in the same form, although it does
include a critical enhancement term which has omitted in this work due to the value being
computationally demanding.

The dilute terms uses Chapman-Enskog theory fitted to experimental data; the viscos-
ity is written as

η0 =
0.0266958

√
MmT

σArΩ(T ∗)
(2.50)

where Ω is the collision integral, σAr is the Lennard-jones size parameter of argon, and
Mm is the molar mass. The dilute viscosity is then used to derive the dilute conductivity:

κ0(T ) = N1

[
η0(T )

1µPa · s

]
+N2τ

t2 +N3τ
t3 (2.51)

In this equation Ni are coefficients of the collision integral and ti are fitted expo-
nents. The residual terms are empirical based equations and can be found, along with the
coefficients, in the work of Lemmon and Jacobsen [48].

A model for the bulk viscosity ζ was considered for the NEMD data. Originally
postulated to be zero [49], later work has found that the inclusion of the term leads to
more physically sound solutions, including for complex phenomena such as shock waves
where the inclusion of the bulk viscosity has led to a more accurate prediction of the shock
wave location and strength [37].

Since a model for the bulk viscosity of a LJ/s fluid has yet to be derived, a bulk
viscosity model for argon was used [50]. The model can be written as a function of
density:

ζ∗ =

(
ρ

ρc
− 1

)α1

+ α2 (2.52)

Where the coefficients αi depend on temperature:

αi = ai + bi · tanh
(
ci

(
T

Tc
− 1

))
(2.53)

Note that Tc and ρc are the critical temperature and density of argon, while ai, bi, and
ci are coefficients which can be found in the corresponding article [50]. It should also
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2.7 Deriving the entropy production

be noted that the transport coefficient equation was in good agreement with experimental
data, but were not compared to liquids with temperatures above the critical temperature.
The transport coefficient equation was fitted with the condition ζ ≥ 0 to ensure the equa-
tion remained physically valid, following the 2nd law of thermodynamics.

2.7 Deriving the entropy production
By the excess entropy production we refer to the entropy production along the shock front,
mathematically this can be formulated as integrating the local entropy production over the
length of the front [30]:

σss =

∫ b

a

σs(x, t)dx (2.54)

Where a and b are the same positions used to determine Gibbs equimolar surface and
excess densities located before and after the shock wave.

We have utilized five methods to determine the excess entropy production. We present
the equations used and their underlying assumptions. First we explain the local equilib-
rium assumption, then we review methods which use the local entropy production, meth-
ods that assume the shock front is a surface of discontinuity and lastly we present a method
for approximating the excess entropy production in the half cell.

2.7.1 The local equilibrium assumption
Before reviewing the methods for determining the excess entropy production it is impor-
tant to address the assumption of local equilibrium. The local equilibrium assumption is
the assumption that the thermodynamic relations remain valid for a chosen volume ele-
ment even though the overall system is not in equilibrium [35]. This assumption is inte-
gral to all the methods for determining excess entropy production, either as an assumption
within the methods derivation or by the use of the EOS, which also assumes local equilib-
rium. Work by Hafskjold and coworkers have indicated that the shock front is not in local
equilibrium [42], which makes the assumption an important factor to consider.

For the simulation methods the assumption is part of the N-S equations, as the EOS
is used to compute temperature and pressure. The NEMD simulations only uses the EOS
to determine entropy related properties. The methods for determining excess entropy
production all have the assumption of local equilibrium, but the assumption is applied
differently in the local methods compared to the surface methods. In the local method we
assume local equilibrium in the shock front while in the surface methods we consider the
shock front as an autonomous thermodynamic system with its own surface properties.

2.7.2 The Linear irreversible thermodynamic (LIT) method
A classical way of determining the local entropy production σs is the formulation by de
Groot and Mazur named the Linear Irreversible Thermodynamic (LIT) method[51]:

σs = J ′
q

∂

∂x

(
1

T

)
− 1

T
Πxx

∂v

∂x
(2.55)

Here, the entropy production is due to a conductive and viscous contribution. The deriva-
tion of the equation involves two assumptions, the assumption of local equilibrium ev-
erywhere in the fluid and the Gibbs equation for bulk systems. Note that this is the only
method where the entropy or entropy density is not directly given in the equations.
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2.7 Deriving the entropy production

2.7.3 The bulk balance method (BBM)
The bulk balance method uses the entropy balance equation to compute the entropy pro-
duction,

σs =
∂

∂t
ρs +

∂

∂x
Js (2.56)

Here, ρs denotes the entropy density while Js is the entropy flux which is a combina-
tion of the heat conduction and entropy transported by fluid flow:

Js =
J ′
q

T
+ ρsv (2.57)

The BBM method consists of a transient- and spatial derivative. Unlike the LIT
method, the BBM has no assumption of local equilibrium in the equation nor does it
involve the Gibbs equation, but the BBM method does utilize the EOS to derive the en-
tropy, which means that the method also assumes local equilibrium everywhere in the
fluid.

2.7.4 The surface balance method (SBM)
In the surface balance method we use the assumtions made in the excess properties section
2.4 and combine it with the entropy balance (Eq. 2.56) to compute the excess entropy
production:

σss =
dρss
dt

+ Jus (t)− vs(t)ρus − Jds + vsρds (2.58)

Here the superscripts u and d are the up- and downstream extrapolated properties on
the surface for the entropy density and flux. The extrapolated properties are determined
as the value of the property at the surface, which can be seen visualized in Figure 2.3.

Equation 2.58 yields the excess entropy production where the shock wave is con-
sidered a surface of discontinuity, but without using the Gibbs equation[30]. The SBM
method, except for the transient derivative of the excess entropy density, only uses prop-
erties in local equilibrium outside the shock front, requiring up- and downstream extrap-
olations of the entropy flux and entropy density which are in the bulk phases, this makes
the method more robust [30].
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2.7 Deriving the entropy production

Figure 2.3: Visualisation used for determining the up- and downstream extrapolated properties.
The green and blue dot are the extrapolated up- and downstream properties on the surface. The dark
dotted line is the extrapolated upstream bulk density and the red line is the extrapolated downstream
bulk density. The black axis line is the surface of discontinuity.

2.7.5 The Gibbs Excess method (GEM)
The Gibbs Excess Method (GEM) takes the SBM method a step further by using the Gibbs
equation for a surface. The expression can be split as follows:

σss = [σq]− + [σj ]− (2.59)

The excess entropy production is a sum of the extrapolated local entropy production of
the heat contribution [σq]− = σuq − σdq and mass contribution [σj ]− = σuj − σdj . The heat
term is given as

σq = J ′
q

(
1

T
− 1

Ts

)
(2.60)

The mass term is set to be

σj = j

(
s− 1

Ts

[
h+

Πxx
ρ

+
1

2
(v − vs)2

])
(2.61)

Where j is given as j = ρ(v − vs). The GEM method assumes the surface as a dis-
continuity and utilizes the Gibbs equation for a surface. This yields a method which gives
detailed information about the energy dissipation in the shock front. For the derivation of
the GEM method see Hafskjold et al. [30].

2.7.6 The Macro entropy method (MEM)
In addition the methods mentioned, we have developed a new method to calculate the
entropy production based on knowledge of the volume element in the NEMD cell and the
entropy balance (Eq. 2.56). The local entropy production in the cell can be written as:

σs =
∂ρs
∂t

+
∂Js
∂x

(2.62)
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2.7 Deriving the entropy production

By integrating across the length of the cell L we compute the total entropy production
of the NEMD cell as [35]:

σcell,ss =
∂
(∫ L

0
ρsdx

)
∂t

+ (Jos − J is) (2.63)

Where Jos and J is are the entropy flux into and out of the NEMD cell. Since there is
no entropy flux into nor out of the cell we can eliminate the fluxes. Previous work showed
that the entropy production of a shock wave is mainly located in the front, thus, the total
entropy production will mainly consist of the excess entropy production of the shock wave
i.e. σcell,ss ≈ σss . The excess entropy production can then be approximated as:

σss ≈
∂
(∫ L

0
ρsdx

)
∂t

(2.64)

The excess entropy production can then approximated by finding the time derivative
of the integrated entropy density across the entire box. The method is similar to the BBM
method, both using the entropy balance and the EOS to determine the excess entropy
production.
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Chapter 3
Simulating a shock wave with
NEMD and the Navier-Stokes
equations

3.1 Simulating a shock wave in NEMD
The NEMD simulations were carried out using an in-house Fortran code where the equa-
tions of motion were on the form:

∂ri
∂t

=
pi
mi

(3.1a)

∂pi
∂t

= Fi(t) + Ri(t) (3.1b)

Wherein ri and pi are the position and momentum of particle i. Fi is the force acting on
particle i from the other particles which can be written as [52]:

Fij =
∂uij
∂ri

(3.2a)

Fi =
N∑
j ̸=i

Fij (3.2b)

where uij is the LJ/s potential shown in equation 2.5. Ri is the required perturbation that
is identified as the external force:

Ri = (Ei − E)Fi −
1

2

∑
j

Fij [rij · Fi(t)] +
1

2N

∑
j,k

Fjk[rjk · Fi(t)] (3.3)

Here Ei is the kinetic and potential energy of particle i while E is the average energy
of all the particles at time t. In boundary driven NEMD the perturbation is at the bound-
aries at the left and right hand side of the NEMD cell, see Figure 3.1, in the form of a
velocity re-scaling.

The simulations consisted of 40 parallels with N = 16000 particles in a cell with
a ratio of Lx/Ly = 32. The cell was split into 256 layers with a distance from each
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3.2 Simulating a shock wave with the Navier-Stokes equations

other of ∆x∗ = 1.176. Each simulation consisted of three steps, first, an equilibrium
simulation, second, the activation of the shock, and third, an NVE ensemble simulation
of the shock wave travelling through the cell. At equilibrium the system had a density
of ρ∗ = 0.6 and temperature of T ∗ = 2. Using the equilibrium configuration, the shock
was created by setting the total kinetic energy in two of the boundary layers to 5 · 104,
this is equivalent to heating the layer to T ∗

boundary = 137.1. With the configuration from
step two, the shock was simulated. Each simulation ran for 105 steps consisting of a
timestep of t∗ = 0.0002 lasting a total of t∗end = 20. Each equilibrium parallel was
randomized with a Monte Carlo sequence, mixing up the position of the particles with m
steps ranging from m = 2.5 · [1, 2, ...39, 40] · 105. The characteristic mass was the mass
of an argon particle, the characteristic energy ϵ/k was 124K, and the characteristic length
was σ = 3.418Å.

Figure 3.1: Illustration of the symmetric NEMD cell where the total kinetic energy are set in the
boundary layers.

3.2 Simulating a shock wave with the Navier-Stokes equa-
tions

To simulate a shock wave similar to the NEMD simulations using the Navier-Stokes equa-
tion we had to set similar initial- and boundary conditions and have the same geometric
proportions. With 256 layers of ∆x∗ = 1.176 and a ratio of Lx/Ly = 32 the total length
and volume was derived as L∗ = 301.056 and V ∗ = 26736. The initial conditions were
set to be akin to the third step of the NEMD simulations when the boundary layers have
just been heated. The initial density and velocity remained as they were in equilibrium i.e
ρ∗ = 0.6 and v∗ = 0, while the internal energy u∗(ρ∗, T ∗) was computed with the EOS
with a shock temperature T ∗

H within the boundary layers Lm and a equilibrium tempera-
ture T ∗

eq on the outside:

u∗(x∗, 0) = u∗(ρ∗eq, T
∗
H)

L∗

2
− L∗

m < x∗ <
L∗

2
+ L∗

m

u∗(x∗, 0) = u∗(ρ∗eq, T
∗
eq)

L∗

2
− L∗

m > x∗, x∗ >
L∗

2
+ L∗

m

(3.4)

As the shock is induced in the middle of the cell the edges/boundaries of the cell were
set to remain unchanged (∂Q∂t = 0), another option would have been to set transmissive
boundary conditions i.eQstart = Qend like Titarev and Toro [53], but given that the shock
wave was studied before it hit the boundaries keeping them unchanged seemed sensible.
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3.2 Simulating a shock wave with the Navier-Stokes equations

The Navier-Stokes simulations were run for a duration of t∗ = 13.5 with a spatial gridsize
of Nx = 4096 and a transient grid of Kt = 2161.

3.2.1 Numerical formulation of the governing equations
The governing equations are discretized spatially with the FORCE flux, developed by
Titarev and Toro [53]. The formulation is extended with a source term which is discretized
with a finite difference method, and, instead of using explicit time differencing, we use an
ODE integrator to integrate the transient differential.

The overall solution of the equations can be written on the form:

∂Qi
∂t

= −
Fi+1/2 − Fi−1/2

∆x
+ S(Qi) (3.5)

Where Fi+1/2 and Fi−1/2 are the FORCE fluxes on the right and left hand sides of the
value i. The FORCE flux can be formulated as follows:

FFORCE =
1

4

(
F (QL) + 2FM + F (QR)−

∆x

∆t
(QR −QL)

)
(3.6)

Where the subscripts R and L are the left and right hand side of the interface position
1/2. The flux FM is the flux of the interface FM = F (Q1/2), the interfacial value Q1/2

is calculated to be:

Q1/2 =
1

2

(
QL +QR − ∆x

∆t
(F (QR)− F (QL))

)
(3.7)

Moving to the formulation of the diffusive terms S(Q), the main derivatives can be split
in a similar manner to the main fluxes, as they are dependent on the interfacial values,
while the internal derivative can be split using central differences, similar to the method
named in the introduction of the work of Shen et al. [54].

∂

∂x

(
µ
∂f

∂x

)
=

1

∆x2
(
µi+1/2(fi+1 − fi)− µi−1/2(fi − fi−1)

)
(3.8)

Here µ represents the transport coefficients µ = [ 43η,
4
3vη, κ] and f the values of [v, v, T ]

respectively.

3.2.2 Newtons method for determining temperature and pressure with
the internal energy

The Navier-Stokes equations uses the equation of state to compute the pressure and tem-
perature. The pressure is necessary to formulate the flux terms in the N-S equations and
the temperature is needed to compute the viscous and conductive coefficients. The tem-
perature and pressure are found by using the EOS in tandem with the Newton method
[55].

Thermopack, the Python module which has access to the equation of state, has two
functions internal energy TV() and pressure TV(), which calculates internal
energy and pressure, including their derivatives, based on temperature, volume and moles
of particles as input. Since the aforementioned variables are given in the N-S equations, it
is possible to determine the temperature by using the Newton method. There is only one
unknown, the temperature, thus, only one root function is required:

f1 = U(T, Vin, nin)− Uin (3.9)
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3.3 Computing shock wave properties and the excess entropy production

here the variables with the subscript in are the given inlet values. As the temperature is
the only non-constant, the derivative function can be written as

f ′1 =
∂U(T, Vin, nin)

∂T
(3.10)

With a temperature guess T0 the approximate root of the function can be found using
the recursive function

Tn+1 = Tn − f1(Tn)

f ′1(Tn)
(3.11)

wherein the recursion goes a limited number of times until the error margin |Tn+1 −
Tn| < 1.48 ·10−8 is met. The Newton function was implemented using the Python library
Scipy [56] which has an effective Newton solver. The temperature guess for Ti was chosen
as the value in the previous time step starting with the initial temperature, if the solution
did not converge, the guess would revert to Teq . With the computed temperature, pressure
was computed with the pressure TV() function. The Newton method was utilized not
just for each index i, but also for the interfacial values i + 1

2 , acquiring Ti+ 1
2

and Pi+ 1
2

instead of computing them with the arithmetic average.

3.2.3 Integrating the system of Ordinary Differential Equations (ODEs)
With the spatial formulation of the N-S equations ready, the equations were evolved in
time using an explicit 5th order Runge Kutte (RK5) integrator with the Scipy program
Solve IVP() [57, 56]. As input the ODE integrator takes the initial conditions of the
conserved variables along with a vector of time points for which to solve the variables.
The integrator would also take in a function detailing how the derivatives ∂Q

∂t were to
be solved, which was where the FORCE flux, diffusive fluxes, and Newton method are
formulated. The formulations were given in vector form using list comprehension in
order to make the program faster. As output the function returns a matrix of the conserved
variables for each step in the given vector of time points. For a full visualization of how
the ODE integrator works with the spatial formulations see Figure 3.2.

3.3 Computing shock wave properties and the excess en-
tropy production

Once the shock wave has been simulated with NEMD and the Navier-Stokes equations the
data is processed separately before the simulation data are used to determine shock wave
properties. The data from NEMD is processed with the program annemd, described in
Appendix A.3, which computes temperature, density, pressure, fluxes and numerous other
properties using the equations given in Section 2.2. The NEMD computation is done for
each layer in the half cell at the times t∗ = [0.25, 0.75, 1.25....20]. The program calculates
these properties for each parallel which are then used to compute averages and errors,
using the equations in Section A.4. Once the average values are attained the NEMD data
is ready.

The N-S data has to go through a couple of processes before we can determine its
shock wave properties. The output from the ODE integrator are vectors of the conserved
variablesQ = [ρ, ρv,E], these are reformulated to attain the density, velocity and internal
energy which lets us compute temperature, pressure, viscosity and conductivity. The data
is then converted to reduced units using Table A.1, and are saved for the same time steps
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Figure 3.2: Flow sheet explaining the Python program written to solve the N-S equations.
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t∗ on the right hand cell (x∗ > L∗/2). After this process the N-S data is ready for
comparison. For a general description of the programs used see Appendix A.3.

3.3.1 Computing shock position, velocity, speed of sound and Mach
number

The Gibbs equimolar surface was calculated for each time step with Equation 2.32 where
a was set to be approximately a distance of x∗ = 5, behind the middle value of the
wave and b was set to be a distance of x = 5 in front. The integral of ρ was calculated
using the Simpson method with the Python Scipy function simps(). The downstream
extrapolated bulk densities were determined by making a linear regression of the densities
from a to a − 5 while the upstream extrapolated densities were determined taking an
average of the equilibrium values in front to get a zeroth order regression. The equation
was solved for l using the Python Scipy function root() for the function:

0 = Isimps −
∫ l

a−5

(pd1x+ pd0)dx−
∫ b

l

pu0dx (3.12)

Where Isimps is the numerical integral of ρ from a − 5 to b, while p are polynomial
coefficients. Note that the integration was done from a − 5 to ensure the density profile
and the extrapolated downstream density were in contact. With the shock position at each
time step we can determine the shock speed by plotting the shock position against time
and fit it to a third degree polynomial. The shock speed is calculated as the derivative
of the polynomial, or optionally using central differencing given that the data does not
fluctuate. The speed of sound can be determined with the EOS in Thermopack with the
function speed of sound() given that temperature, pressure and phase composition
at equilibrium is known. With the shock speed and speed of sound available, the Mach
number is determined using Equation 2.2.

3.3.2 Computing excess internal energy, entropy and surface temper-
ature

Knowing the position of the shock front, the excess internal energy- and entropy density
can be calculated. After attaining the specific internal energy using Equation 2.15, in
the case of NEMD, we compute the specific entropy using the EOS. The EOS function
entropy TV() uses as input the temperature, volume and moles and returns the resid-
ual entropy s∗res. After adding the ideal entropy contribution to the residual entropy the
entropy was computed as:

s∗ = s∗res +
3

2
lnT ∗ − ln ρ∗ (3.13)

wherein the superscript ’∗’ denotes that the units are in dimensionless form. The specific
internal energy and entropy densities were computed as ρu = ρu and ρs = ρs. With
the entropy- and internal energy densities we can utilize the same procedure used to find
the Gibbs equimolar surface to determine the excess density. Extrapolating over the same
ranges and using the Simpson method to compute the density of the integral we instead
use Equation 2.31:

ρsi = Iisimps −
∫ l

a−5

(pd1,ix+ pd0,i)dx−
∫ b

l

pu0,idx (3.14)
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the superscript i signifies the type of density property i.e. internal energy u or entropy s.
With the excess densities the surface temperature can be determined using Equation 2.35.
By plotting the excess internal energy density as a function of excess entropy density the
derivative of the function will give the surface temperature. To fit function we chose a
linear regression.

3.3.3 Determining excess entropy production with local methods and
the MEM method

Knowing the surface properties, the excess entropy production can be calculated. We start
with the local entropy production σs using the LIT and BBM methods. For both methods
the procedure goes as follows, first the local entropy is computed for each point on the
spatial grid, then the local entropy is numerically integrated over the shock front to yield
the excess entropy production (Eq. 2.54). A simple method to solve the local equations
can be done by computing the derivatives using fourth order finite differencing in the
transient and spatial directions. For the BBM method is can be written as:

σijs =
ρi,j−2
s − 8ρi,j−1

s + 8ρi,j+1
s − ρi,j+2

s

12∆t
+
J i−2,j
s − 8J i−1,j

s + 8J i+1,j
s − J i+2,j

s

12∆x
(3.15)

The superscripts i and j are the spatial and transient grid points respectively. The pro-
cedure was the same for the LIT method only using spatial derivatives. After computing
the local entropy production in the cell, the excess entropy production is computed by
numerically integrating (Simpson method) the local entropy production over the shock
front, the shock front being the same range used to determine the equimolar surface and
excess densities.

The MEM method procedure is similar to the determination of shock speed. Using
Simpson integration, we integrate the entropy density over the entire half cell. Doing so
for each time step we plot the integrated entropy density as a function of time and fit the
plot with to a third order polynomial. The excess entropy production is then computed as
the derivative of the polynomial using Eq. 2.64. This method can then be checked with
the BBM method by integrating over the entire cell instead of the shock front.

3.3.4 Determining excess entropy production with surface balance
methods

Determining the excess entropy production using the surface based methods requires up-
stream and downstream values. For the SBM method the extrapolated values are the
entropy flux Js and density ρs, while for the GEM method these are heat σq and mass σj
terms. The upstream and downstream values are the value of the extrapolations at x∗ = l,
shown in Figure 2.3, by extrapolating the aforementioned variables, using the same ranges
and polynomial orders used for determining the Gibbs equimolar surface and excess den-
sities, the upstream and downstream values can be computed e.g. for the linear regression
of the entropy flux we get Jds = pd1l + pd0.

There are some additional considerations. For the SBM method, we fit a linear re-
gression to the excess entropy density to determine its transient derivative. For the GEM
method the derivative in the viscous pressure tensor was approximated using a fourth or-
der central difference scheme while, for the N-S equations, the enthalpy was computed
with the EOS using the function enthalpy() in Thermopack.
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Chapter 4
Results and Discussion

The following chapter consists of four sections. Section 4.1 discusses the overall ther-
modynamic properties of the NEMD- and N-S data and the subsequent shock wave prop-
erties. Section 4.2 concerns the entropy production, Section 4.3 will show comparisons
between NEMD and the EOS, and Section 4.4 will delve into the methods used to deter-
mine the errors in NEMD.

4.1 General profiles and shock wave properties
In this section the results from the NEMD and N-S simulations are presented side-by-
side starting with the general profiles of density, pressure, velocity and temperature in
addition to the measurable heat flux. In the next subsection we compare the determination
of the shock position and Mach number, and lastly we look at the determination of excess
densities and surface temperature.

4.1.1 General profiles
Running the NEMD and N-S simulations, as described in the previous chapter, yielded
the profiles shown in Figure 4.1 at time t∗ = 6.25. This time step was chosen since the
wave was evolved enough to compute shock wave properties and strong enough to show
the characteristic differences between the simulation methods. Profiles for later steps
were not included as they were not characteristically different. Starting with the NEMD
data, Figure 4.1 has a sharp increase in temperature, density, pressure and fluid velocity
which could indicate the presence of a shock wave. The profiles are relatively smooth,
though not completely. The slight jaggedness of the profiles stem from NEMDs statistical
nature which can be smoothed out by either increasing the number of particles [58] in
the simulations or by averaging data with more parallels. Whether the slight jaggedness
of the figures will affect subsequent extrapolations and calculations is difficult to tell, but
instabilities in the data do not pair well with numerical methods such as central numerical
derivatives, thus, the slight lack of smoothness could negatively affect the determination
of the local entropy production down the road.

Moving to the N-S equations, we see the same increases in temperature, density, pres-
sure and fluid velocity, with nearly identical trends to the NEMD simulations. Given that
there are no fluctuations and that the profiles are similar to that of NEMD, we can assume
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(a) Density. (b) Temperature.

(c) Pressure. (d) Velocity.

Figure 4.1: Averaged NEMD data and N-S data at t∗ = 6.25 for density, temperature, pressure
and fluid velocity. Uncertainties are three standard errors and were computed using data from the
40 NEMD parallels.

that the N-S equations satisfied the convective and diffusive restrictions on the transient-
and spatial grid. There are some characteristic differences, as noted in the introduction,
using the N-S equations would lead to sharper shock fronts, which can be seen replicated
here in the density and pressure profiles. There could be another factor which has lead to
a steeper front in the N-S equations, namely the transport coefficient equations. The N-S
equations does not have a model for the bulk viscosity and has utilized an argon model for
the thermal conductivity and shear viscosity, which given smaller coefficients could yield
sharper profiles.

Since NEMD does not compute the shear viscosities explicitly we can only check the
agreement between the methods respective measurable heat fluxes given in Figure 4.2.
The measurable heat flux is within the error margin, with the exception of the shock front
in which the NEMD values are larger. The sharper front could optionally or additionally
be due to the less accurate transport coefficient equation and lack of viscous bulk con-
tribution, which has been documented to more accurately describe the shock front (see
Section 2.6).

Another difference between the methods (Figure 4.1) to note are the differences on
the left hand side of the cell (x∗ < 20), most notable for the temperature. This is likely
due to the transport coefficient equations mentioned earlier, but it could be due to the
FORCE flux’s dissipative nature which could have the effect of dissipating the profiles,
given the fineness of the grid and sharpness of the front it does not seem to affect the
general profiles. The effect should not be disregarded though, as it could affect the excess
entropy production down the line.
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Figure 4.2: Averaged NEMD data and N-S data at t∗ = 6.25 for the measurable heat flux. Uncer-
tainties are three standard errors and were computed using data from the 40 NEMD parallels.

4.1.2 Shock Position and Mach number
With the densities we could determine the shock position using the definition of the Gibbs
equimolar surface. The surface was determined in a nearly identical way, the extrapolation
of the downstream density being a bit further behind the shock front by a distance of ca
∆x∗ = 3 for the N-S equations. Looking at Figure 4.3 the steepness of the front in the
N-S equations does not lead to a characteristically different position of the surface, the
surfaces being hard to tell apart.

Figure 4.3: The method used for determining Gibbs Equimolar surface at t∗ = 6.25. The dark and
light blue line are the extrapolated bulk downstream densities while the magenta and yellow axis
lines are the surface of discontinuity for the NEMD- and N-S methods respectively. The red line is
the extrapolated upstream bulk density.

Looking at Figure 4.4, the two methods have similar surface positions, even the third
order polynomials are hard to tell apart. The similarity is due to the definition of the
equimolar surface which is not affected by the sharpness of the shock front. One could
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expect the NEMD shock to be slightly slower as there are more viscous and conductive
contributions.

Figure 4.4: The NEMD and N-S shock wave positions as a functions of time fitted with a third
order polynomial. The red and magenta polynomials are fitted to the NEMD- and N-S simulations
respectively. Uncertainties are three standard errors and were computed using data from the 40
NEMD parallels.

With the fitted polynomials, we determined the shock speed and, by using the equi-
librium data as input for the EOS, computed the speed of sound to be v∗sound = 4.7.
With these properties we determined the Mach number of the shock wave at each point in
time, as seen in Figure 4.5. The sharp gradients are indeed shock waves, in both methods,
as they are travelling at supersonic speeds. Interestingly, the N-S wave seems to travel
slower than the NEMD wave, but given that the N-S method is within the margin of error
the small differences could be due to inaccuracies in the polynomial fit.

Figure 4.5: Mach numbers, computed using Eq. 2.2, for the N-S and NEMD data at a given time.
Uncertainties are three standard errors and were computed using data from the 40 NEMD parallels.

Overall, the agreement between the methods seem promising for determining the sub-
sequent shock properties. A point of discussion which has been reserved for Section 4.4
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is the accuracy of error bars for the shock position, Mach number and effects of averaging
NEMD parallels on the shock front.

4.1.3 Excess densities and surface temperature
To determine the excess internal energy- and entropy density we extrapolated their respec-
tive densities using the same ranges that were used for determining the Gibbs equimolar
surface i.e. a − 5 to a for the downstream properties and equilibrium properties for the
upstream properties. Starting with the internal energy density, as seen in Figure 4.6, the
stable downstream bulk data seem to be accurately described by a linear regression in both
methods. The extrapolations proved less accurate at early stages due to the closeness to
the creation of the shock making the downstream extrapolated difficult to describe with a
linear regression.

Figure 4.6: The method used for determining excess internal energy density at t∗ = 6.25. The dark
and light blue line is the extrapolated bulk downstream density while the magenta and yellow axis
lines are the surface of discontinuity for the NEMD and N-S methods respectively. The red line is
the extrapolated upstream bulk density.

Moving to the excess internal energy density (Figure 4.7) the NEMD data fluctuates
some whereas the N-S data remains stable and within the error bars. Given that there
are only fluctuations in the NEMD data indicate that the instability is likely statistical in
nature, meaning that the extrapolations in NEMD might be less accurate.
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Figure 4.7: Excess internal energy density for the NEMD and N-S methods plotted against time.
Uncertainties are three standard errors and were computed using data from the 40 NEMD parallels.

Moving to the extrapolations of the entropy density, shown in Figure 4.8, the ex-
trapolation captures the downstream bulk accurately for both methodologies, though the
NEMD data are a bit unsmooth. Note that the entropy was determined using the EOS,
thus, making the NEMD data less independent as a method, as it uses the same tool as
the N-S equations to determine a property. The EOS accuracy for determining NEMD
properties will be the topic of discussion in Section 4.3.

Figure 4.8: The method used for determining excess entropy density at t∗ = 6.25. The dark and
light blue line is the extrapolated bulk downstream density while the magenta and yellow axis lines
are the surface of discontinuity for the NEMD and N-S methods respectively. The red line is the
extrapolated upstream bulk density.

In Figure 4.9 there is a characteristic difference between the two methods, the excess
entropy density being lower for the N-S equations. The difference could be due to several
factors; the N-S equations has a transport coefficient equation for argon instead of an
equation for the LJ/s fluid and a sharper shock front, but the difference could also be due
to the use of the EOS for the NEMD data, a topic expanded upon in Section 4.3.
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Figure 4.9: Excess entropy density for the NEMD and N-S methods plotted against time. Uncer-
tainties are three standard errors and were computed using data from the 40 NEMD parallels.

The surface temperatures were determined by fitting a linear regression, as done in
Figure 2.35, to the excess densities. The surface temperature for the NEMD shock was
determined to be T s∗NEMD = 2.82 ± 0.184 and the N-S equations yielded a surface tem-
perature of T s∗N−S = 3.20. Both methodologies fulfill the criteria of being larger than the
equilibrium temperature (Teq = 2) and lower than the temperature post-shock tempera-
ture (T ∗

ps ≈ 4.2) i.e. T ∗
eq < T s∗ < T ∗

ps, which was the case for gases in previous NEMD
simulations [30]. That the N-S equations has a larger surface temperature should be due
to the methods sharper gradients and transport coefficient equations, in the equations this
showed in the form of the N-S equations lower excess entropy density. Note that both of
the methods have assumed local equilibrium in the shock front, by utilizing the EOS, to
compute the surface temperature.

Figure 4.10: Excess internal energy plotted against excess entropy with a linear regression to de-
termine surface temperature T s∗ which was calculated to be T s∗

NEMD = 2.82 in the NEMD simu-
lations and T s∗

N−S = 3.20 for the N-S equations.
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4.2 The excess entropy production

4.2 The excess entropy production
With the general data and shock wave properties acquired, we can delve into the excess en-
tropy productions. The structure will be similar to the Section 4.1, presenting the NEMD
and N-S methodologies side-by-side, but we will expand upon this by comparing different
entropy methods when necessary. We start with the local LIT and BBM methods, then the
MEM method is reviewed before we focus on the surface methods SBM and GEM. Lastly
we review the methods in the NEMD simulations and the N-S equations separately.

4.2.1 The BBM and LIT methods
With the LIT and BBM methods we can compute the local entropy production, which
has the benefit of showing whether the method satisfies the 2nd law of thermodynamics
i.e. σs > 0. Starting with the BBM method used with NEMD data, see Figure 4.11,
it is clear the BBM method does not accurately describe the shock front, dipping below
zero and oscillating before and after the shock. The LIT method remains strictly positive
using NEMD data. The N-S data used a finer spatial and temporal grid and yielded strictly
positive local entropy production. The BBM methods faults, in the NEMD calculations,
can be pinpointed to the use of central differencing, a problem which arose in the work
of Haskjold and coworkers as well. Possible ways of improving the BBM method were
tested, such as fitting the NEMD results with spline system and normal distribution, but
the data proved too unstable to improve the results significantly. The best option would
have been to run larger simulations that would have yielded smoother profiles which, in
turn, would be easier to apply numerical derivatives to.

Moving to the LIT method, the results remained strictly positive, which it should by
definition. For the NEMD data we had to use the transport coefficient equations detailed
in Section 2.6 to compute the shear- and bulk viscosities, seeing as the N-S equations had
a lower excess entropy density we expect the transport coefficient equations to underes-
timate the viscous contributions, but to investigate this we need to compute the excess
entropy density.

(a) NEMD. (b) N-S.

Figure 4.11: Local entropy production computed with NEMD- and N-S data using the LIT and
BBM methods plotted against the length of the cell at time t∗ = 6.25.

The excess entropy density can be seen in Figure 4.12 which raises a point which
needs to be addressed, namely that the N-S equations compute a higher excess entropy
production than the NEMD simulations with the LIT method. The main reason for this
should be the use of the transport functions of argon explained in the previous paragraph,
but it could also be caused by the N-S sharper gradients and its use of a finer grid, which
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computes more accurate derivatives, a problem highlighted in the BBM method used on
the NEMD data.

(a) LIT. (b) BBM.

Figure 4.12: Excess entropy production computed for the NEMD and N-S methods using the LIT
and BBM methods. Uncertainties in the Subfigure 4.12a are three standard errors and were com-
puted using data from the 40 NEMD parallels.

Turning to the excess entropy production with the BBM method, the oscillations in
the local entropy makes the NEMD simulations excess entropy production highly ques-
tionable, but the method has proved fruitful for the N-S data which had a good agreement
with the LIT method, though the BBM method had slightly larger values.

4.2.2 The MEM method
Integrating entropy density over the half cell we fitted the result to a third order polyno-
mial, as shown in 4.13. The polynomials describe the profiles well and given that the
integrated entropy density of NEMD is larger than the N-S equations seems sensible as
we expect there to be more diffusive fluxes in NEMD.

Figure 4.13: The integrated entropy density for the NEMD and N-S methods as a function of time
fitted with a third degree polynomial.

Analyzing Figure 4.14 the NEMD and N-S methods have very similar results, the N-S
equations remaining within the error bars. Given that the excess entropy production is for
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the entire cell, the larger production in the N-S equations could be due to the dissipative
nature of the FORCE flux. Looking at the profiles of temperature, the N-S data seems
to have dissipated faster than the NEMD data while having a lower measurable heat flux,
which could indicate that the N-S equations in fact are quite dissipative.

Figure 4.14: Excess entropy production plotted against time using the MEM method on the NEMD
and N-S methodologies. Uncertainties are three standard errors and were computed using data from
the 40 NEMD parallels.

The reliability of the MEM method was checked by using the BBM method integrated
over the entire cell, in which data from the N-S equations was utilized due to its finer grid.
The results can be seen in 4.15 where the BBM method shows good agreement with the
MEM method. The figures should by definition be nearly identical since both methods
were derived using the entropy balance, thus the difference arises from the use of different
numerical methods, the MEM method fitted with a third order polynomial and the BBM
method used central differencing. The slight kink, can likely be fixed by using a finer
grid and central differences in the MEM method instead of fitting a polynomial, but the
polynomial was chosen to keep the methods used on the NEMD and N-S data similar.
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Figure 4.15: Excess entropy production plotted against time using the MEM method and BBM
method integrated over the half cell on the N-S data.

4.2.3 The SBM method
With the excess entropy density, shock position and speed, we determined the excess
entropy production using the Surface Balance Method (SBM). The transient derivative
of the excess entropy density was found by fitting a linear regression to the latter part
(t∗ > 8) of the profile in Figure 4.9. For the NEMD and N-S methods the downstream
properties were extrapolated with a first and second order polynomial respectively, the
second order extrapolation fitted better with the N-S data which can be seen in Figure
4.16.

(a) NEMD. (b) N-S.

Figure 4.16: The method used to determine the upstream- and downstream entropy flux at
t∗ = 6.25. The red line is the downstream extrapolated bulk, the blue axis line is the surface
of discontinuity. The red line is the extrapolated upstream bulk density.

The excess entropy production can be seen in Figure 4.17 where the N-S equations
remains within the error bars of the NEMD simulations. That the excess entropy pro-
duction has the same magnitude in the two methods, which was the case using the MEM
method, points to the presence of numerical viscosity in the N-S equations which will be
elaborated upon in Subsection 4.2.5. The NEMD results fluctuate which, by checking the
Fig. 4.16 is caused by the extrapolations of the downstream properties. Note that values
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before t∗ > 8 should be regarded as less accurate as the excess entropy density is given as
a linear regression, but values before t∗ > 8 are characteristically non-linear, see Figure
4.9.

Figure 4.17: Excess entropy production plotted against time using the SBM method on the NEMD
and N-S methodologies. Uncertainties are three standard errors and were computed using data from
the 40 NEMD parallels.

4.2.4 The GEM method
Lastly, the Gibbs Excess Methods (GEM) will be investigated here. The entropy proper-
ties σq and σj had to be extrapolated to the surface to compute the excess entropy produc-
tion. Checking the extrapolations σj , seen in Figure 4.18, we see the same characteristics
from previous extrapolations where the N-S data seems more stable. The extrapolations
of σq can be found in the Appendix (Fig. A.1) as it was found, similar to previous work,
that it contributed little to the excess entropy production.

(a) NEMD. (b) N-S.

Figure 4.18: The method used to determine the upstream- and downstream σj at t∗ = 6.25. The
red line is the upstream extrapolated bulk, the blue axis line is the surface of discontinuity. The red
line is the extrapolated downstream bulk density.

Looking at the excess entropy production in Figure 4.19 we first have to address the
large error bars, the large gaps are caused by computing the entropy production for each
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parallel, wherein the data is less stable. With the N-S method yielding more stable results
makes it clear that the fluctuations in the NEMD data are not caused by the implementation
of the equations, but rather the statistical nature of NEMD. The GEM results raises the
issue whether the NEMD system size has been too small with 16 000 particles, a subject
we will return to in Section 4.4.

Figure 4.19: Excess entropy production plotted against time using the GEM method on the NEMD
and N-S methodologies. Uncertainties are three standard errors and were computed using data from
the 40 NEMD parallels.

4.2.5 Agreement between the Entropy methods
Having acquired the excess entropy production with five different methods we can investi-
gate the overall agreement between these methods as well as characteristics of the method-
ologies. Starting with the N-S equations, shown in Figure 4.20 for t∗ > 8 where the shock
wave has stabilized, all the techniques share a similar profile. The MEM method stands
out slightly by having a larger production, which was expected, seeing as the method
computes the total entropy production of the cell.

Looking at the other methods they follow a similar pattern, the LIT and BBM method
have the lower values, followed by the SBM method, while the GEM method computes
the second highest excess entropy production, remaining under the MEM estimates.

The agreement between the LIT method and the other methods is an important matter
to consider, as the LIT method is the only method which does not to use the EOS function
for entropy. Given the similar profiles between the BBM and LIT method, it is safe to
assume that the EOS entropy function computes accurate entropies at local equilibrium.

There is a noticeable difference between the local methods and the surface methods.
This is likely due to equilibrium assumption where the LIT and BBM methods contain
the assumption of local equilibrium in the front values whereas in the SBM and GEM
methods considers the surface as its own thermodynamic system. Using surface properties
in equilibrium for the shock front might compute a larger excess entropy production, even
when the system used i.e. the N-S equations, has the assumption of local equilibrium.
The slight difference might also caused by the use of second order extrapolations for the
SBM- and GEM methods when we utilized N-S data.
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Figure 4.20: Excess entropy production plotted against time for the N-S equations using five dif-
ferent methods.

Considering the agreement of the methods with the NEMD simulations (Figure 4.21)
yields similar results, the MEM method is the largest while the LIT method is the lowest.
The more reliable methods proved to be the MEM, SBM and LIT methods, remaining rel-
atively stable by computing excess entropy production which fluctuated little. BBM and
GEM methods were less reliable; BBM, by having ”negative” local entropy production,
and the GEM method, by computing highly fluctuating results.

Figure 4.21: Excess entropy production plotted against time for the NEMD simulations using dif-
ferent methods. Uncertainties are three standard errors and were computed using data from the 40
NEMD parallels using the SBM method.
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The LIT methods agreement with the other methods, in NEMD, is notably lower com-
pared to those in the N-S equations. It could simply be due to the use of the transport
coefficient equations of argon to determine the shear and bulk viscosity, but the use of
central differences and the effects of averaging the NEMD parallels (discussed in Section
4.4) could make the derivatives in the LIT equation less steep.

4.2.6 Comparing the excess entropy production for the simulation
methods

Lastly, we address the very similar entropy production of the NEMD simulations and N-S
equations. From Figure 4.20 and 4.21 the excess entropy production is roughly the same
throughout, with the N-S data remaining within the error bars for the MEM method. As
mentioned in previous sections, the expectation was that the NEMD simulations would
have a larger entropy production, since it has a viscous bulk contribution and a larger
measurable heat flux, shown in Figure 4.2.

Starting with factors that could increase the excess entropy production using the N-
S equation, we have the dissipative FORCE flux, the sharper shock front, the EOS, the
assumption of local equilibrium, the implementation of the diffusive fluxes, and the use
of a one dimensional model.

Given that the initial conditions are discontinuous, with a large temperature gradient,
it was expected to be some numerical dissipation in the model. This seems to be the
case given the lower temperature in the N-S profiles at the boundary layer compared to
NEMD, which given the N-S lower conductivity and viscosity coefficients should have
been higher. To quantify the numerical viscosity in a shock wave is difficult to check,
especially given the presence of diffusive fluxes. An option to investigate this would
have been to simulate a continuous heat gradient for an inviscid fluid and utilize the EOS
entropy function to compute the entropy production, which using the LIT equation should
have been zero. This would not give any information to how the FORCE flux works
combined with the diffusive fluxes, but it could have offered information as to how the
dissipative nature of FORCE affects the entropy production at a similar time- and length
scale.

As noted in Section 4.1 the N-S profiles are slightly steeper in the front, which has
been the case in previous studies. This does in turn lead to steeper gradients in the LIT
and BBM methods which could contribute to the larger entropy production in the local
methods. The sharper front also yielded different extrapolated values e.g. the difference
in profiles for the entropy flux (Fig. 4.16), which could have increased the entropy pro-
duction in the SBM and GEM methods.

The simplification to a one dimensional spatial grid was done due to computational
efficiency, but it does limit the movement of the shock wave to the axial direction, whereas
the particles in NEMD can move in three dimensions. This might have sharpened the front
of the N-S method, but to check if this was the case, we would have had model the N-S
equation in three dimensions.

The implementation of the diffusive fluxes could have affected the entropy produc-
tion. As the FORCE flux is originally designed for the Euler equations the addition of
the diffusive flux was done by applying central differences to the inner derivatives. The
method has been utilized before, but with other central methods like the WENO scheme
instead of the FORCE flux. Toro [19] noted that source contributions could be added by
splitting the partial differential equations, first evolving the inviscid equations and then
evolve the equation with the source contribution. Using the RK5 integration we evolved
the entire equation instead of splitting it. Looking at the general profiles (Fig 4.1) and

40



4.3 Agreement between NEMD and the Equation of state

measurable heat flux (Fig. 4.2), the integration described the shock wave well, but given
that the formulation only uses central differences, it could have been slightly inaccurate
when describing the diffusive fluxes which could have resulted in a higher entropy pro-
duction.

The FORCE flux and the N-S equations steeper shock front are possible contribu-
tors to the larger excess entropy production, but there is still the use of the EOS and the
assumption of local equilibrium. The assumption of local equilibrium is integral to the
N-S equations and the entropy derivations since we have used the EOS. Meaning that
even though the NEMD simulations does not assume local equilibrium, we still utilize the
EOS to compute the excess entropy production in both the methodologies. We cannot say
whether the assumption of local equilibrium leads to a lower excess entropy production,
but we can compare other properties in NEMD and the EOS to get an impression of the
accuracy in the shock front. The accuracy of the EOS and statistical nature of NEMD will
be explored in the following sections.

4.3 Agreement between NEMD and the Equation of state
The EOS is utilized extensively with both the N-S equations and NEMD for determining
shock wave properties. It plays an integral part in the N-S equations, determining tem-
perature and pressure, and it gives access to the entropy, which enables us to compute the
excess entropy production using the BBM, MEM, SBM and GEM methods. To ensure
that the EOS is reliable and accurate within the ranges of temperature and density we
compare properties which can be obtained in both methods, namely the pressure, internal
energy and enthalpy. All comparisons were done at t∗ = 6.5 similar to comparisons in
previous sections.

(a) Pressure. (b) Pressure difference.

Figure 4.22: Comparison between NEMD pressure data and the EOS for a shock wave generated
in NEMD. The EOS was given NEMD data for temperature, volume and moles of particles as input.
The difference ∆p is given as ∆p∗ = p∗EOS −p∗NEMD . Uncertainties are three standard errors and
were computed using data from the 40 NEMD parallels.

Using NEMD data for temperature and density as input for the EOS, we check the dif-
ference across the shock wave between the EOS and NEMD. Starting with pressure, see
Figure 4.22, the EOS is within the error bars with the notable exception of the shock front
where the EOS computes a lower pressure. The difference could be due to the EOS as-
sumption of local equilibrium, which is not the case for the temperature at the shock front.
The perturbation theory is given an average of the temperature component and assumes
temperature is still isotropic, this seems to result in a lower calculated pressure compared
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to NEMD. There might be other explanations for the difference in the front though, like
surface effects, the effect of the pressure component or perhaps the parameterization. To
investigate this further would require a deeper dive into the perturbation theory derivations
and comparisons to NEMD simulations.

(a) Internal energy. (b) Internal energy difference.

Figure 4.23: Comparison between NEMD internal energy data and the EOS for a shock wave gen-
erated in NEMD. The EOS was given NEMD data for temperature, volume and moles of particles
as input. The difference ∆u∗ is given as ∆p∗ = u∗

EOS−u∗
NEMD . Uncertainties are three standard

errors and were computed using data from the 40 NEMD parallels.

Much like the pressures, the internal energies, seen in Figure 4.23, are in good agree-
ment with each other. They share the same trends, the EOS being lower in the shock front.
The EOS An interesting point is that the EOS computes a lower internal energy closer to
the boundary layer. This opens the possibility of the lower temperatures in the boundary
layer of the N-S equations being due to the accuracy of the EOS, instead of numerical
dissipation caused by the FORCE flux. The EOS had room for improvement in regards to
the internal energy close to the critical region, since the initial temperature was above that
region it does not seem to have affected the internal energies before and after the shock.

(a) Enthalpy. (b) Enthalpy difference.

Figure 4.24: Comparison between NEMD enthalpy data and the EOS for a shock wave generated
in NEMD. The EOS was given NEMD data for temperature, pressure and phase as input. The
difference ∆p∗ is given as ∆h∗ = h∗

EOS − h∗
NEMD . Uncertainties are three standard errors and

were computed using data from the 40 NEMD parallels.

The enthalpies (Figure 4.24) share trends with both the pressure and internal energy,
having the largest difference at the shock front and differing some at the starting layers.

Overall the EOS captures the trend of the shock quite well with the exception of the
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shock front. In the front, the EOS calculates lower values likely due to its assumption
of local equilibrium. Given that EOS computes different values in the shock front it
will likely affect its determination of entropy too, affecting the accuracy of the calculated
surface temperature, as well as the BBM, MEM and the SBM method, as the SBM method
utilizes the excess entropy density derivative.

4.4 Error analysis
40 NEMD simulations were used to determine the properties of a shock wave in NEMD.
The average values of the parallels were used to determine surface properties while the
error bars were determined computing properties for each parallel. The use of the average
values and individual parallels both have their setbacks which could affect calculations
and the accuracy of the NEMD data.

Figure 4.25: Density of the tenth parallel plotted against cell length at time t∗ = 6.25. The multiple
colored axis lines are the Gibbs equimolar surface for 40 NEMD parallels.

Starting with the use of an average of the simulations, averaging 40 parallels could
have the effect of evening out the shock front, looking at Figure 4.25 and 4.26, the shock
position is not identical for all simulations. The shock position does however remain
between the equilibrium and maximum density for most parallels. Thus, computing an
average could have the effect of dissipating the front by making the max value of the
density slightly lower as the top differs in position. This could be one of the causes for
the NEMD simulations yielding lower excess entropy productions, as the representation
of the shock front consists of 40 shocks with slightly different positions.

Figure 4.26 and 4.27 serves to illustrate an issue with the determination of error bars.
The methods used to determine shock wave properties and excess entropy production all
require a non-fluctuating set of data in order to make accurate extrapolations, numerical
derivations or integrals. In Figure 4.26 we see the consequence of utilizing fluctuating
data, where the numerical procedure is not able to compute the shock position accurately
in several parallels. This was the reason for the large error bars in the GEM method
calculations (Fig. 4.19).
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Figure 4.26: Shock position of the 40 NEMD parallels in multiple colors.

Figure 4.27: Method used to determine up- and downstream entropy density on the surface on of
the tenth NEMD parallel at time t = 6.25.

In retrospect, the NEMD simulations would have benefited from using fewer parallels
consisting of larger systems i.e. more particles. The increase in the number of particles
would lead to less fluctuations since the statistical error of a particle property is inversely
proportional to square number of particles

√
N [58]. Thus, the increase in particles would

have smoothed out the profiles and made methods for determining shock wave properties
and excess entropy production more reliable as fluctuations would not affect extrapo-
lations and numerical procedures to a significant degree. Sufficiently large simulations
would also have made the determination of error bars more reliable, making extrapola-
tions and numerical procedures less disordered for each parallel. Overall the system was
large enough to determine properties such as the shock position, speed, surface temper-
ature and excess entropy production using the MEM, SBM and LIT methods. To get
more accurate uncertainties and utilize the GEM and BBM method would require larger
simulations.
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Chapter 5
Conclusion and future work

5.1 Conclusion
In this thesis we have simulated a liquid shock wave using NEMD simulations, developed
by Hafskjold, and with the Navier-Stokes (N-S) equations. The implementation of the
N-S equations combined an EOS for the LJ/s fluid, a transport coefficient equation for
argon, the spatial FORCE flux, and an ODE integrator to solve a transient shock. The
NEMD simulations and N-S equations both yielded similar profiles, but there were a
couple of characteristic differences. The N-S equations had a sharper shock front, a lower
measurable heat flux and a lower temperature in the boundary layer. The sharper front
has been a characteristic of the N-S equations in previous work, while the lower heat
flux was due to the use of argon transport coefficient equations. The lower temperature
in the boundary, where the shock was generated, was likely due to a combination of the
dissipative nature of the FORCE flux and the use of the EOS, which would compute lower
internal energies at the boundary (see Fig. 4.23).

With the methodologies yielding similar profiles we calculated the shock wave proper-
ties using similar techniques. To determine the shock position and Mach number we used
the definition of the Gibbs equimolar surface. Using the EOS, the speed of sound was
determined to be v∗sound = 4.7. By fitting the shock position to a polynomial we found
the speed and subsequent Mach number. Both of the methods had a Mach number around
2, classifying them as supersonic shock waves. The shock wave, generated with the N-S
equations, slowed down a bit faster compared to the NEMD simulations, but given that it
remained within the error bars, the difference could be due to the the fitting of the third
order polynomial to the NEMD data.

Having found the surface of discontinuity we determined the excess internal energy-
and entropy densities and surface temperatures. The methodologies shared a similar pro-
file for the excess internal energy density where the N-S data remained within the error
bars. The excess entropy density was different for the two methods, sharing a similar pro-
file, but the N-S data was lower and outside the error bars of NEMD. As a result the surface
temperature of the N-S equations was higher i.e. T s∗N−S = 3.2, which was not within the
range of the NEMD temperature T s∗NEMD = 2.82±0.184, but it still satisfied the criterion
of being larger than the equilibrium temperature and lower than the temperature behind
the shock. The difference in the models could be due the N-S equations sharper front and
transport coefficient equations, but given that the EOS undervalued properties within the
shock front it could also be the case for the entropy density.
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5.2 Future work

With the computed shock wave properties we determined the excess entropy produc-
tion. Starting with the local methods, the LIT method proved stable with both method-
ologies, giving larger values for the N-S equations because of its sharper front, use of
transport coefficients, and the use of numerical derivatives. The BBM method did not
work well with NEMD, giving negative local entropy production because of its coarser
grid and inaccurate derivatives. The method did satisfy the second law of thermodynamics
when it was used for the N-S equations.

The newly developed MEM method worked well with both of the simulation methods,
deriving the excess entropy production for the entire half cell, the methods yielded very
similar productions where the N-S data remained within the margins of NEMD. The MEM
method also showed good agreement with the BBM method, though there were slight
deviation because of the numerical techniques. We then moved to the surface methods
SBM and GEM, where the SBM method worked with both methodologies, whereas the
extrapolations for the GEM method were too unstable in NEMD.

At the time we suspected that the N-S equations yielded a similar excess entropy
production because of the dissipative nature of the flux, but other factors could have con-
tributed to the excess higher entropy productions, such as the sharpness of the shock front,
assumption of one dimension, the use of the EOS, the assumption of local equilibrium and
NEMD statistics, which we investigated further. The EOS was found to compute lower
pressure, internal energy and enthalphy in the shock front of the NEMD simulations.
Checking the error analysis, the NEMD system was found to be too small to reliably de-
termine certain properties, namely the excess entropy using the BBM and GEM method.
Computing the shock position for each parallel also showed that the shock position would
differ slightly which could have affected the sharpness of the NEMD shock front.

Overall, the NEMD and N-S methods have successfully simulated a liquid shock
wave, NEMD using the Newton’s equations of motion whereas the N-S equations used
the conservation of mass, momentum and energy with diffusive fluxes. Both methods
managed to calculate shock wave properties such as the shock position, Mach number
and surface temperature, wherein the N-S equations had a higher surface temperature. All
of the excess entropy production methods worked with the N-S equations yielding similar
results. For NEMD the system proved too small to utilize the BBM and GEM methods,
whereas the MEM, SBM and LIT methods yielded more stable results. Though the EOS
had slight issues in the shock front, it was in good agreement with NEMD across the range
of the shock wave remaining within the uncertainties.

5.2 Future work
There are a lot of avenues to the study of shock waves utilizing the two methodologies we
can explore. The most immediate work would be to improve upon the NEMD implemen-
tation by running larger simulations with more particles, and then run N-S simulations at
similar initial conditions. We can use the methods for computing the entropy production
to investigate the dissipative FORCE flux further by modeling the inviscid Euler equa-
tions, and we could study the perturbation theory in further detail by checking the theory’s
agreement with NEMD in equilibrium at higher temperatures, which could enable us to
model stronger shocks.

Regarding new applications, a good start would be to investigate whether the N-S
method works for gases. Given that the work by Hafskjold and coworkers were done
studying shock waves in gases, their work is readily available for comparison. In this
work we used an argon transport coefficient equation, but there are low-density transport
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5.2 Future work

coefficients equations available for the LJ/s fluid [59]. These low-density transport coef-
ficients equations can be implemented in the N-S method and used to simulate a shock
wave at the same initial conditions as the NEMD simulations done on gases.

There are numerous amounts of techniques to discretize the spatial and temporal grid
in the N-S method, thus, to explore different schemes can benefit the methods accu-
racy and speed. For the spatial grid we can test the weighted essentially non-oscillatory
(WENO) scheme which is widely used and has a higher order accuracy than FORCE. For
the ODE integrator the function Solve IVP() can easily utilize several other methods
such as a 8. order RK integrator, the LSODA method which automatically switches be-
tween implicit and explicit solvers, and an implicit Runge Kutta method. There is also
methods outside the Solve IVP() function which can be combined with the spatial
grid. Note that we only utilized the RK5 method in this work due to its speed.

The numerical formulation of the N-S equations could be improved upon by analyzing
the diffusive fluxes. In our work we used central differences, but formulations can be
expanded to a higher order which has been done for other models such as the WENO
scheme [54]. The inclusion of bulk viscosity should improve the accuracy of the method
further, as it has done so in previous work [37]. There is not transport equations for the
bulk viscosity for the LJ/s fluid as of this moment, but it could be developed in future
work.

The N-S method could be used to model other liquids. Given an accurate EOS and
transport coefficient equations for the given fluid, we can utilize the same discretizations
to model a shock wave in the new fluid. Given access to the entropy and other properties
we can then compute the excess entropy production of that fluid. Possibly the most inter-
esting liquid to model would be water, given its abundance and relevance in fields such as
medicine.
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Appendix A
A.1 Finite volume method
The purpose of this section is to use the finite volume method to discretize the Euler
equations in space. By defining the volume average Q = Q(x, t) of a conserved quantity
Q at time t = t1 and x within the range [x1−1/2, x1+1/2] we get:

Q(t1) =
1

xi+1/2 − x1−1/2

∫ xi+1/2

xi−1/2

Q(x, t1)dx (A.1)

Doing the same for t = t2, we can the integrate in time on the form

Qi(x, t2) = Q(x, t1)−
∫ t2

t1

∂f

∂x
dt (A.2)

Where f is the flux. To obtain the volume average at t2 we then integrate over the cell
volume and divide the result by ∆xi = xi+1/2 − xi−1/2 i.e.

Qi(t2) =
1

∆xi

∫ xi+1/2

xi−1/2

(
Q(x, t1)−

∫ t2

t1

∂f

∂x
dt

)
dx (A.3)

By then applying the divergence theorem we can substitute the volume integral with val-
ues of f(x) evaluated at the surface i.e. the edges (x1−1/2, x1+1/2):

Qi(t2) = Q(t1)−
1

∆xi

(∫ t2

t1

∂fi+1/2

∂x
dt−

∫ t2

t1

∂fi−1/2

∂x
dt

)
(A.4)

Differentiating with respect to time we then obtain the required equation:

∂Qi
∂t

= −
Fi+1/2 − Fi−1/2

∆xi
(A.5)

Note that we applied central differences to the derivatives within the diffusive flux in
order to utilize the equation.

A.2 List of reduced variables
The results from Navier-Stokes equations and computations using the equation of state
were converted into dimensionless Lennard-Jones units by using Table A.1. The charac-
teristic mass was the mass of an argon particle, the characteristic energy ϵ/k was 124 K,
and the characteristic length was σ = 3.418Å.

53



Symbol LJ Unit Definition

J∗
q Jq σ

3

ϵ

(
m1

ϵ

)1/2
Heat flux

J′∗q J′
q
σ3

ϵ

(
m1

ϵ

)1/2
Measurable heat flux

j∗, J∗m Jm σ3

(m1ϵ)1/2
Mass flux

J∗
s Js σ

3

k

(
m1

ϵ

)1/2
Entropy flux

m∗ m
m1

Mass

l∗ l
σ Shock position

p∗, P ∗
xx,Π

∗ pσ3

ϵ Pressure, pressure tensor, viscous pressure tensor

r∗, r∗ij
r
σ Radius, length between particle i and j

s∗ sm1

k Specific entropy

T ∗ kbT
ϵ Temperature

t∗ t
σ

(
ϵ
m1

)1/2

Time

u∗, u∗pot, h
∗ um1

ϵ , h
m1

ϵ Specific internal and potential energy, specific enthalphy

V ∗ V
σ3 Volume

v∗ v
(
m1

ϵ

)1/2
Velocity

x∗ x
σ Distance

η, ζ ησ2

(m1ϵ)
1
2
, ζσ2

(m1ϵ)
1
2

Shear viscosity, bulk viscosity

λ∗ λσ
2

k

(
m
ϵ

)1/2
Conductivity

ρ∗ ρσ3 Density

ρs∗ ρsσ2 Excess density

ρs ρs
σ3

k Entropy density

ρss ρs∗s = ρss
σ2

k Excess entropy density

σs σ∗
s = σ σ

4

kb

(
m1

ϵ

)1/2
Local entropy production

Table A.1: Symbol list and definitions of variables in reduced Lennard-Jones units.

A.3 General Description of programs used
There were four major Python programs and two Fortran programs used to simulate a
shock wave and derive the shock wave properties.

Starting with eulerFast.py. This was the program used to model the shock wave
with the Navier-Stokes equations. The program runs through the terminal, requesting
equilibriumm and shock temperature, and would model a shock wave for an inviscid or
viscid fluid. After the shock was modelled ot would then compute the values to reduced
LJ/s units and save them to .txt files.

The Fortran programs nemd and annemd performed the NEMD simulations and
computed NEMD values. The program nemd would take an input file and run a speci-
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fied simulation, which would be the equilibrium simulation, activation of shock and NVE
simulation of the blast. Then the annemd program would take the output of nemd and
compute the properties given in Section 2.2 and save it to a .DAT file named CPROPS.

The programs motherGoose.py and fileRead.py computes the shock wave
properties. motherGoose.py reads the information from the NEMD- and N-S data
then computes shock wave properties and entropy productions using functions written in
fileRead.py.

Lastly we have deviationGoose.py which computes the error bars for the shock
wave properties. It reads the information from the NEMD- data then computes shock
wave properties and entropy productions using functions written in fileRead.py for
each NEMD parallel saving the errors to .txt files. The programs that were implemented
as part of this thesis work and can be found as supplementary material. Note that to run
the Python code one needs to have the module Thermopack installed with the new LJ/s
EOS.

A.4 Computing averages and Error bars
For the NEMD simulation data we utilize averages and error bars which are computed
using the equations given in this section. The averages are computed as the arithmetic
mean on the form:

x =
1

N

N∑
i=1

xi (A.6)

whereN is the total number of parallels and the subscript i represents data from a parallel.
Using the average we compute the standard deviation as:

σSD =

√√√√ 1

N

n∑
i=1

(xi − x)
2 (A.7)

With the standard error [60] we computed the error bars as three times the standard error
i.e.

SE =
3σSD√
N

(A.8)

These properties were computed for all properties in NEMD, in addition to the shock
properties of each parallel.
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A.5 Extrapolated bulk properties
The extrapolation of σq were not included in the discussion of the GEM method, but
have been included here to show that σq did not affect the excess entropy production to a
significant degree. The extrapolation of σq which can be shown in Figure A.1 where both
methods compute a up- and downstream bulk close to zero.

(a) NEMD. (b) N-S.

Figure A.1: The method used for upstream and downstream properties for σq at t∗ = 6.25. The
red line is the upstream extrapolated bulk, the blue axis line is the surface of discontinuity. The red
line is the extrapolated downstream bulk density.

56



N
TN

U
N

or
ge

s 
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e 

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 n

at
ur

vi
te

ns
ka

p
In

st
itu

tt
 fo

r k
je

m
i

Tage Winther Maltby

A Study of the Entropy Production in
Liquid Phase Shock Waves

Masteroppgave i Industriell kjemi og bioteknologi
Veileder: Øivind Wilhelmsen
Januar 2022

M
as
te
ro
pp

ga
ve


	Acknowledgments
	Abstract
	Sammendrag
	Table of Contents
	List of Figures
	Symbol List
	Introduction
	Theory
	General shock wave theory
	Non-Equilibrium Molecular Dynamics Simulations of a blast
	The Navier-Stokes equations
	The pressure tensor
	The Navier-Stokes equations
	The Finite Volume Method and numerical stability

	Excess properties
	Perturbation theory
	Models for viscosity and thermal conductivity
	Deriving the entropy production
	The local equilibrium assumption
	The Linear irreversible thermodynamic (LIT) method
	The bulk balance method (BBM)
	The surface balance method (SBM)
	The Gibbs Excess method (GEM)
	The Macro entropy method (MEM)


	Simulating a shock wave with NEMD and the Navier-Stokes equations
	Simulating a shock wave in NEMD
	Simulating a shock wave with the Navier-Stokes equations
	Numerical formulation of the governing equations
	Newtons method for determining temperature and pressure with the internal energy
	Integrating the system of Ordinary Differential Equations (ODEs)

	Computing shock wave properties and the excess entropy production
	Computing shock position, velocity, speed of sound and Mach number
	Computing excess internal energy, entropy and surface temperature
	Determining excess entropy production with local methods and the MEM method
	Determining excess entropy production with surface balance methods


	Results and Discussion
	General profiles and shock wave properties
	General profiles
	Shock Position and Mach number
	Excess densities and surface temperature

	The excess entropy production
	The BBM and LIT methods
	The MEM method
	The SBM method
	The GEM method
	Agreement between the Entropy methods
	Comparing the excess entropy production for the simulation methods

	Agreement between NEMD and the Equation of state
	Error analysis

	Conclusion and future work
	Conclusion
	Future work

	Bibliography
	
	Finite volume method
	List of reduced variables
	General Description of programs used
	Computing averages and Error bars
	Extrapolated bulk properties


