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Abstract

In this work, we propose using a shared parameter model (SPM) in the Bayesian
framework to account for missing data due to dropout in population-based health
surveys. We use data from the longitudinal Trøndelag Health (HUNT) Study in a
predictive model for systolic blood pressure with a modeling cohort consisting of 64385
participants out of which 43.1% dropped out. Further, an validation cohort is used to
validate the model.

A novel evaluation scheme based on comparing the predictive performance of the fitted
SPM with and without conditioning on the missing status is proposed. If the data are
missing at random (MAR), there is no additional information in the missing process and
no extra benefit of conditioning on the missing status.

The results demonstrate that the SPM is suitable for inference for a dataset of this size
and structure and indicates that blood pressure missing due to dropout in the HUNT
Study is missing not at random (MNAR). The SPM gives different parameter estimates
than a naive model assuming data to be MAR. Through simulation studies based on
models the suggested SPM and the naive model with MAR and MNAR data, we obtain
indications that the SPM performs well on both MAR and MNAR data in contrast to the
naive model, which only performs well when data is MAR. However, both models are
biased when the data is MNAR.

SPM and naive models are compared based on predictive performance for the validation
dataset. The naive model performs slightly better than the SPM when predicting blood
pressure for the present participants. However, from the simulation study based on the
SPM, we find that the naive model also performs better for the present participants,
while the SPM performs better for the dropouts.

Through this work, we obtain strong indications that data MNAR should be accounted
for when modeling systolic blood pressure using data from a longitudinal health survey.
We also observe that blood pressure missing due to dropout in the HUNT Study is MNAR.
Accounting for this gives a better representation of the data than assuming it to be
MAR.
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Sammendrag

I dette arbeidet foreslår vi å tilpasse en felles parametermodell (SPM) i et Bayesianske
rammeverket for å ta hensyn til manglende data på grunn av frafall i befolknings-
baserte helseundersøkelser. Vi bruker data fra helse undersøkelse Trøndelag (HUNT)
i en prediktiv modell for systolisk blodtrykk med en modelleringskohort bestående av
64385 deltagere hvorav 43.1% falt fra før påfølgende undersøkelse. Videre validerer vi
modellene på et valideringsdatasett.

Vi foreslår en ny evaluaringsmetode basert på å sammenligne prediktiksjoner fra en
tilpasset SPM med og uten å betinge på om deltagerne er tilstede eller ikke. Hvis dataen
mangler tilfeldig (MAR) er det ingen ekstra informasjon i å vite manglende status og
derfor heller ingen fordel å betinge på denne statusen.

Resultatene viser at en SPM er egnet for inferens på datasett av denne størrelse og
struktur og indikerer at blood trykk manglende grunnet frafall i HUNT studien mangler
ikke-tilfeldig (MNAR). SPM gir forskjellige parameterestimater sammenlignet med en
naiv modell som antar at dataene er MAR. Gjennom simuleringsstudier der dataene er
MNAR og MAR, får vi indikasjoner på at SPM presterer godt både når data er MNAR
og MAR, i motsetning til den naive modellen, som kun presterer godt når data er MAR.
Imidlertid gir begge modellene forventningsskjeve estimat når dataene er MNAR.

SPM og naive modeller blir sammenlignet basert på prediktive ferdigheter for valid-
eringsdatasettet. Den naive modellen presterer litt bedre enn SPM når det gjelder å
forutsi blodtrykket hos de tilstedeværende deltakerne. Vi finner imidlertid gjennom
simuleringsstudier at SPM presterer bedre enn den naive modellen på deltakerne som
ikke er tilstede når dataene er MNAR selv om den naive modellen presterer best på de
tilstedeværende deltagerne.

Gjennom dette arbeidet får vi sterke indikasjoner på at det bør tas hensyn til data
MNAR ved modellering av systolisk blodtrykk ved bruk av data fra longitudinelle
helseundersøkelse. Vi observerer også at blood trykk manglende grunnet frafall i HUNT
studien mangler ikke-tilfeldig. Å ta hensyn til dette gir en mer representativ modell enn
vi får ved å anta at data mangler tilfeldig.
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Preface

The work presented here was carried out at the Department of Mathematical Sciences
in the autumn of 2021. It is a continuation of my project thesis conducted in the spring
of 2021. Both these works are a continuation of the master thesis by Espeland [2020]
who started researching how shared parameter models can be used to account for
data missing not at random, on data from the Trøndelag Health (HUNT) Study. The
HUNT Study is a collaboration between HUNT Research Centre (Faculty of Medicine and
Health Sciences, Norwegian University of Science and Technology NTNU), Trøndelag
County Council, Central Norway Regional Health Authority, and the Norwegian Institute
of Public Health. Participation in the HUNT Study is voluntary, and all participants
provided written informed consent before participation. The Regional Committee on
Medical and Health Research Ethics of Norway (REK; 2018/1824) approved this work
in July 2021.

This thesis has been directed by the wish to make the results based on Espeland and my
research publicly available as a scientific journal paper. Therefore, the unique contri-
butions of this thesis are directed by the research needed to finalize a scientific paper.
Consequently, a substantial amount of time was used to reformulate and summarize
previous findings and improve and generate new figures and tables. This process has
been gratifying and has given me much insight into the world of academia. It let me
learn a lot about the value of reproducing earlier results and iterating a work process to
improve all aspects.

This work allowed me to write a conference paper based on the work done by Espeland
[2020] together with Ingelin Steinsland and Emma Ingeström, giving me a crash course
into the writing of scientific papers. This work was accepted, after being peer-reviewed,
for a poster presentation at the 2021 Neural Information Processing Systems conference
for the workshop themed "Your model is wrong" and is added to Appendix C.

Further, at the cusp of completing this thesis, Ingelin Steinsland, Lars Espeland, Emma
Ingeström, and I are finalizing a larger scientific paper summarizing the work done by
Espeland and myself. The self-contained paper draft is also added to Appendix C.

Writing two papers and a thesis has been very rewarding, although demanding at times.
I am very proud of this being the final work of my master’s degree at the Norwegian
University of Science and Technology.

Trondheim, January 2022
Aurora Christine Hofman
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1Introduction

Data from population-based longitudinal health surveys are frequently used in medical
research. In the common cohort study design where the same participants are followed
over long periods, missing data due to loss to follow-up (dropout) in subsequent health
surveys is almost inevitable. Proper handling of missing data is vital to obtain unbiased
inference [Gad and Darwish, 2013, Little and Rubin, 2019, Chap. 1.3, 6].

This work aims to establish and validate a predictive model for systolic blood pressure
using data from a longitudinal population-based health survey, the Trøndelag Health
(HUNT) Study. Based on available literature [Anderson Jr et al., 1994, Whelton, 1994,
Brown et al., 2000, Jiang et al., 2016, Espeland, 2020] we suggest a predictive model of
future blood pressure (BPF ) based on initial blood pressure (BPI), age (age), sex (sex),
and body mass index (BMI). Elevated blood pressure is known to increase the risk of
developing diseases related to the brain, heart, blood vessels, and kidney [Lewington
et al., 2002, Tozawa et al., 2003, Rapsomaniki et al., 2014]. This medical condition
affects more than 1.1 billion people annually. It accounts for over 10.8 million deaths
per year, thereby surpassing smoking as the leading preventable cause of death for
middle-aged and older adults worldwide [Zhou et al., 2017, Murray et al., 2020]. Early
detection, prevention, and treatment of elevated blood pressure are of high priority in
public health strategies [World Health Organizatoin, 2013]. Thus, obtaining unbiased,
accurate models for BPF is of great interest in medical research [Whelton, 1994].

The HUNT study consists of four consecutive surveys, HUNT1 (1984-86), HUNT2 (1995-
97), HUNT3 (2006-08), and HUNT4 (2017-19), performed 11 years apart. We define
a modeling cohort (HUNT2 cohort) consisting of 60385 participants with explanatory
variables from HUNT2 and response values from HUNT3 and a validation cohort (HUNT3
cohort) consisting of 50201 participants with explanatory variables from HUNT3 and
response values from HUNT4. The validation cohort is considered a new population
with similar properties as the HUNT2 cohort. We chose this validation cohort to mimic
the real scenario of using the models for predictive purposes. All participants have full
records for the explanatory variables in the respective cohorts. As for most longitudinal
population-based health surveys, a considerable proportion of the HUNT participants
have dropped out, causing data to be missing at follow-up. In the HUNT2 cohort, 43.1%
of the original participants have missing response values (lost to follow-up). In the
HUNT3 cohort, 33.3% of the original participants are lost to follow-up.

Missing data can be categorized and described in terms of three missing processes;
missing completely at random (MCAR), missing at random (MAR), and missing not at
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random (MNAR)[Little and Rubin, 2019, Chap. 1.3, 6]. The two former processes are
ignorable, meaning unbiased inference can be performed without modeling the missing
process. However, the latter process is non-ignorable, and the missing process must be
modeled simultaneously with the original model to obtain unbiased inference [Little
and Rubin, 2019, Chap. 1.3, 6]. The three processes differ in how the observed and
missing data affect the probability of having missing data. The data is MCAR if the
probability of missing a data point is independent of the observed and the unobserved
data. It is unreasonable that the probability of dropping out does not depend on age.
Hence, data MCAR is not considered. The data is MAR if the probability of missing is
conditional on the observed data and independent of the unobserved data. A model
for the missing process with the same explanatory variables as the blood pressure is an
example of a model assuming data MAR. Data that is neither MCAR nor MAR is MNAR
[Gad and Darwish, 2013, Little and Rubin, 2019, Chap. 6]. If the part of the BPF which
can not be explained by age, sex, BPI , and BMI affects the probability of dropping
out, the data is MNAR. This part can be thought of as (unknown) explanatory variables
not included in the models. It is reasonable that other health-related variables influence
both the blood pressure and the probability of dropping out. Thus, we argue that a
predictive model for BPF should consider that data might be MNAR.

Ignoring missing data permits the use of powerful tools such as Maximum Likelihood
[Dempster et al., 1977] and Multiple Imputation [Rubin, 1976]. However, missing
data may contain important information about the true data distribution and should be
treated with caution. [Little and Rubin, 2019, Chap. 1.3]. Missing data should only be
ignored in cases where the data is MCAR or MAR [Little and Rubin, 2019, Mohan and
Pearl, 2021].Ignoring data MNAR is known to cause biased inference [Little and Rubin,
2019, Chap. 1.3, 6]. Even though the assumption of data MAR is often not fulfilled,
many of the available software packages and methods described in the literature assume
data to be MAR [Balakrishnan, 2009, Rhoads, 2012, Little and Rubin, 2019, Mohan
and Pearl, 2021]. However, several studies, especially in biostatistics, have accounted
for missing data under the assumption of data MNAR. [Wu and Carroll, 1988, Little,
1993, Diggle and Kenward, 1994, Follmann and Wu, 1995, Little, 1995, Albert and
Follmann, 2000, Molenberghs et al., 2008, Howe et al., 2016]. Popular choices for
models accounting for data MNAR include the pattern mixture model, selection model,
and shared parameter model (SPM) [Heckman, 1979, Wu and Carroll, 1988, Little,
1993, Henderson et al., 2000, Linero and Daniels, 2018, Little and Rubin, 2019, Chap.
15.4]. The pattern mixture model can be interpreted as a mixture of models for different
populations characterized by their missingness pattern. The selection model is based on
a factorization modeling the missing process conditional on the response together with
the marginal distribution of the response [Gad and Darwish, 2013]. The SPM is based
on the idea of a commonly shared variable affecting both the measurement process and
the missing process. Given this variable, the two marginal densities are conditionally
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independent. The SPM has been used to model longitudinal data subject to MNAR in
several studies [Wu and Carroll, 1988, Follmann and Wu, 1995, Thomas et al., 1998,
Pulkstenis et al., 1998, Vonesh et al., 2006, Creemers et al., 2010].

In this work, we propose a Bayesian SPM for future blood pressure. The model fits the
framework of Bayesian latent Gaussian models and is suitable for Bayesian inference
using Integrated Nested Laplace Approximations (INLA) [Rue et al., 2009, 2017, Gómez-
Rubio, 2020]. Through INLA, computationally efficient inference is available. INLA uses
numerical approximations to obtain the posterior marginal distribution of all parameters
and hyperparameters. For a thorough description, the reader is encouraged to read the
original and follow-up paper by Rue et al. [2009, 2017] and the paper by Martino and
Riebler [2019]. Further, we compare the SPM with a naive model assuming the data to
be MAR.

Molenberghs et al. stated that "each MNAR model fit to a set of observed data can be
reproduced exactly by a MAR counterpart" [Molenberghs et al., 2008, p. 371]. Hence,
the choice between models eventually comes down to choosing the most likely model
assumptions [Enders, 2011]. Recent research has proven that taking the approach of
causal modeling of graphical models by formulating the models through missingness
graphs can give understanding and performance guarantees [Mohan and Pearl, 2021].

To the best of our knowledge, the literature provides little insight into practical validation
of model performance on data MNAR. The current standard seems to be the use of
simulation studies to check the reproducibility of the model. i.e., how well the original
parameters are reproduced on simulated data, and sensitivity analysis to check the
robustness of the models [Enders, 2011, Steinsland et al., 2014, Kaciroti and Little,
2021]. A case study is often presented fitting one or several models [Enders, 2011,
Steinsland et al., 2014].

In this work, we validate our methods on a validation dataset with similar properties
as the modeling data following two approaches. First, we compare the predictive
performance of the SPM with the performance of a naive model, assuming the data
to be MAR. We find the predictive distributions of all participants and compare the
two models through the proper scoring rules [Gneiting and Raftery, 2007] continuous
ranked probability score (CRPS) and Brier score. Second, we propose a new method to
evaluate if the data is MNAR when following the SPM by comparing model predictions
conditioned on missing status with model predictions without knowledge about the
missing status. The key idea is that if data are MNAR, the missing status has information
about the quantity of interest. Therefore we compare the predictive performance of the
SPM with and without conditioning on missing status.

Reproducibility is of vital importance to drive science forwards. Since the data used in
this work contains personal information, the original data can not be publicly available.
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Therefore we have simulated a dataset that attempts to capture some of the same
structures as the original dataset to make the reproducibility process as straightforward
as possible. In addition, all code used in this work and a thorough description on how
to use it is publicly available through GitHub [Hofman, 2021a]. In addition to providing
the means to reproduce results on identical data, having open-source code simplifies
the process of replication on new data as well. The paper by Ioannidis [2005] started a
replication crisis within the psychology field. This paper concluded that the bias toward
publishing positive findings rather than negative ones severely impacted the percentage
of false significant findings. It also pointed out how academia stimulates new research
much higher than replicating old findings.

This work proposes a SPM framework accounting for data MNAR due to dropout in
cohorts studies. First, we propose a Bayesian shared parameter model for BPF based
on a longitudinal population-based health survey (the HUNT Study). We demonstrate
that inference is computationally feasible. Second, we explore the difference between
accounting for the possibility that data may be MNAR and assuming data MAR by
comparing the SPM with a naive model assuming the data to be MAR. Third, we
propose two strategies for validating the proposed models by exploring the predictive
performance of the models and examining the likeliness of the data being MNAR for a
realistic validation dataset. We perform a prior sensitivity study and simulation studies
under different assumptions to further understand the proposed model and evaluation
schemes for the given study system. The methodology provided applies to many other
health indicators and other similar situations.

We build this work on the thesis by Espeland [2020] and my project thesis [Hofman,
2021b]. Espeland started researching the possibilities of using a SPM to account for
data MNAR on data from HUNT1 and HUNT2 (HUNT1 cohort). He studied a broader
specter of variables and therefore cleaned the data with respect to all these variables.
Not all of the variables were significant. However, the dataset was not cleaned again.
Hence the dataset used was smaller than strictly necessary. Espeland fitted a SPM, and
a naive model for BPF with age, BPI , and sex as explanatory variables. In addition,
he did a small simulation study and a small prior sensitivity analysis. He also briefly
explored the possibility of adding BMI as an explanatory variable. My project thesis
[Hofman, 2021b] extended the work by Espeland [2020] by cleaning the data only with
respect to the variables used in the analysis. Hence, we use a larger dataset. In addition,
all the data was standardized. The INLA software used for the analysis works better on
standardized data. We noticed this in the form of fewer computational issues. Further,
the model made on the HUNT1 cohort was used to predict the BPF for the HUNT2
cohort, considered an independent dataset. These predictions were used to validate the
model. The naive model in this work only modeled the BPF . Hence, the predictions
of missingness were compared to the average percentage of participants dropping out
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between HUNT1 and HUNT2. This assumes the participants are missing completely at
random, which we know not to be the case.

This work extends previous work by using the most recent HUNT data. I.e., the models
are fitted to the HUNT2 cohort and used to predict BPF in the HUNT3 cohort. We also
naively model the dropout process. This addition enables comparisons of the parameter
estimates and the posterior predictive distributions for the dropout process. Further,
we propose a novel method to validate the MNAR assumption, for data following the
SPM, by predicting BPF at HUNT4 conditioning on the missing status at HUNT4. A
prior sensitivity study is also performed, researching more possibilities than the prior
sensitivity analysis done by Espeland [2020]. In addition, extensive simulation studies
exploring the bias and coverage of the models are performed in addition to simulation
studies on the two proposed validation schemes. Finally, we have created an open-source
GitHub repository with all the code, a simulated dataset, and a detailed description
of how to run the code to enable reproducibility of our work and comply with today’s
research standards.

This work is structured as follows: Chapter 2 provides background information regarding
Bayesian Inference, Latent Gaussian Models, Gaussian Markov random fields, integrated
nested Laplace approximations (INLA), missing data mechanisms and models commonly
used, and briefly scoring rules. This chapter is inspired by the background theory section
of my project thesis [Hofman, 2021b]. Section 3.1 introduces the blood pressure case
study. First, we describe and explore the data used from the HUNT Study. Second, we
set up the model specifications for the SPM and naive model with methods for inference
and validation. The results from the case study are presented in Chapter 4. Chapter 5
consists of several simulation studies. We perform four simulation studies on data
MNAR and MAR using models following both the SPM and naive model. In addition,
we perform simulation studies targeting the proposed validation schemes. Chapter 6
contains a prior sensitivity analysis. To make this work accessible and reproducible,
we provide all the code used in this work. In addition, we present both individual
and population-based validation results. Chapter 7 accounts for where to find this
code. It also gives a thorough account of how we create a simulated dataset where the
explanatory and response variables are simulated. Chapter 8 summarizes the findings
and discusses some of the challenges encountered in this work.
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2Background Theory

The models used in this work are all fitted in the Bayesian framework using integrated
nested Laplace approximations (INLA) [Rue et al., 2009]. INLA can only be used
on models belonging to the class of latent Gaussian models where the latent field is
a Gaussian Markov random field. This chapter introduces the concepts of Bayesian
inference. Further, we introduce latent Gaussian models, Gaussian Markov Random
Fields, INLA, and present some missing data mechanisms and commonly used models
to handle missing data. Finally, we introduce the continuous ranked probability score
(CRPS) and the Brier score used for validation.

2.1 Bayesian Inference
There are two main frameworks within the field of statistics, the frequentist and the
Bayesian. The frequentist framework is the most widespread and usually the first
taught in statistics courses. The two frameworks differ in how they view the unknown
model parameters. The frequentists believe that there exists one true value for every
parameter in a model, and the objective is to find this one value. The Bayesianists
believe the underlying model parameters have a distribution, not a single true value.
The objective then becomes to find this underlying distribution of the model parameters.
This framework allows expert knowledge to be incorporated into the model through a
prior distribution for model parameters. The process of modeling within the Bayesian
framework is as follows. First, we assign a prior distribution πp¨q to all model parameters.
This distribution can be informative/narrow, i.e., allowing for expert or prior knowledge
to be incorporated into the model, or the distribution can be uninformative/wide,
i.e., we have no prior knowledge of the model parameters. After assigning a prior
distribution, we use the observed data y to obtain the likelihood function πpy|¨q for the
model parameters given the observed data. Finally, we combine this information to
obtain the posterior distribution of the model parameters, πp¨|yq using Bayes rule:

πp¨|yq “ πpy|¨qπp¨q.

We illustrate the difference through an example. A coin manufacturer produces one
million coins, and we want to find the probability of obtaining heads after flipping one of
these coins. We assume the probability of obtaining heads is Bernoulli distributed with
parameter p. A frequentist would then flip n of these coins and record the result of the
flip for each coin. We can then estimate p by the proportion of coins resulting in heads.
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For a frequentist, it would not matter if this experiment had been performed earlier by a
different person. On the other hand, a Bayesian statistician would be very interested in
the previous results and incorporate these results into the prior distribution of p, πppq.
Let us assume the previous experiment showed the coins have a slight bias towards
heads. The Bayesianist could incorporate this by assigning a slightly asymmetrical
distribution to this prior. Then the experiment is performed the same way as in the
frequentist case. This observed data is incorporated into the likelihood and combined
with the prior distribution results in a posterior distribution for p. I.e., p is no longer a
single value but a distribution. This example does not contain any hyperparameters, and
the latent field consists of the parameter p. More complex models such as hierarchical
models will commonly need hyperparameters as well. These are parameters defining
the distribution of the latent field. For example, instead of having one factory producing
coins, we have n “ 1 : 10 factories. Then we could be interested in finding pn for the
specific factory. Assuming pn is beta distributed with parameters α and β, these would
be the hyperparameters shared between all factories.

Occasionally it is feasible to obtain the posterior distribution analytically. However, in
most cases, it is analytically intractable. Traditionally simulations are used to avoid
this problem through Markov chain Monte Carlo simulations [Metropolis et al., 1953,
Hastings, 1970]. The broad idea is to sample from the posterior distribution, usually
indirectly. It can be proven that as long as the distribution is irreducible and aperiodic,
the MCMC simulations always converge to the true sample given sufficient time Brooks
[1998]. The most significant benefit of MCMC is its flexibility to fit almost any model.
With the help of modern technology and computational resources available, it is a very
powerful tool. The disadvantages are, among others, the lack of guarantee of conver-
gence of a MCMC chain. Hence, it can be very time-consuming and computationally
intensive for complex systems to obtain the posterior distribution with high certainty.
In addition, it can be cumbersome to formulate a good MCMC algorithm. However,
powerful tools such as STAN and WinBUGS make this easier [Spiegelhalter et al., 2003,
Carpenter et al., 2017].

An alternative to the traditional MCMC is Integrated nested Laplace approximations
(INLA) [Rue et al., 2009, Martins et al., 2013]. INLA is a fast and accurate methodology
for approximating Bayesian inference without sampling. INLA and its limitations are
described in more detail in Section 2.4

2.2 Latent Gaussian Models
The reader is assumed to be familiar with general linear models, general additive models,
and general linear (additive) mixed models. These are all covered in Fahrmeir et al.
[2007].

8 Chapter 2 Background Theory



Latent Gaussian models fall within a subclass of the structured additive regression
models [Rue et al., 2009]. This means the response yi belongs to the class of exponential
families. Within the class of exponential family the mean Epyiq “ µ is linked to a
structured additive predictor η through a link function hpµq such that hpµq “ η. For the
structured additive regression models η is defined as follows [Fahrmeir et al., 2007],

hpµq “ η “ α`
nβÿ

k“1
βkzk `

nfÿ

j“1
f pjqpujq ` ε.

Here tβku represents the linear effects of covariates z, tf pjqp.qu represents unknown
functions of covariates u, and ε is an unstructured term. To belong to the class of latent
Gaussian model the prior distributions of α, tβku, tf pjqp.qu and ε must be Gaussian.

2.3 Gaussian Markov Random Fields
A Gaussian Markov random field (GMRF) is a random vector following a multivariate
normal distribution in addition to some conditional independent assumptions [Rue and
Held, 2005]. We follow the notation by Rue and Held [2005] for the formal definition.
Let x “ px1, ..., xnqT be normally distributed with mean µ and covariance matrix Σ.
Define the labeled grapf G “ pV,Eq such that V “ p1, ..., nq and E consists of all pairs
of nodes who are dependent on each other. I.e there is no edge between node i and j if
xi is independent of xj given all other nodes, xi K xj |x´ti,ju.
The multivariate normal distribution has the following density function which can be
rewritten to include the precision matrix Q instead of Σ.

fpxq “ p2πq´n
2 |Σ|´ 1

2 exp

«
´1

2px´ µq
TΣ´1px´ µq

ff

ðñ

fpxq “ p2πq´n
2 |Q| 1

2 exp

«
´1

2px´ µq
TQpx´ µq

ff
.

(2.1)

We note that for x normally distributed with mean µ and precision matrix Q then for
every i ‰ j|x´ti,ju if and only if Qij “ 0 [Rue and Held, 2005]. In other words we can
see from Q weather xi and xj are conditionally independent.

Now we can state the formal definition of a GMRF.
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Definition: A random vector x “ px1, ..., xnqT P Rn is a GMRF with respect to a labelled
graph G “ pV,Eq with mean µ and precision matrix Q ą 0 if and only if its density has
the following form

fpxq “ p2πq´n
2 |Q| 1

2 exp

«
´1

2px´ µq
TQpx´ µq

ff

and
Qij ‰ 0 ðñ ti, ju P E @i ‰ j

If most of the components of x are conditionally independent, then x is a GMRF with
a sparse precision matrix, meaning most of the elements in the matrix are zero. This
can be of great computational benefit because we do not have to store the zero entries
in the precision matrix, making the computational time of computations involving the
precision matrix much lower [Rue and Held, 2005].

2.4 Integrated Nested Laplace Approximation
Integrated nested Laplace approximation (INLA) is a state-of-the-art alternative to
traditional Markov chain Monte Carlo simulations. It offers efficient numerical approx-
imations for the marginal posterior distribution of all model parameters [Rue et al.,
2009, Martino and Riebler, 2019] and exploits accurate numerical approximations
and efficient numerical integration. INLA is restricted to the class of latent Gaussian
models described in Section 2.2 where in addition, the latent field is a GMRF with a
sparse precision matrix, introduced in Section 2.3, i.e., endowed with some Markovian
properties.

Before we briefly introduce how INLA works we start by introducing Laplace approxima-
tions, which builds on the Taylor expansion given as follows,

fpxq “ fpaqpx´ aq ` f 1paqpx´ aq ` f2paq
2 px´ aq2 ` ...

for an expansion of x around a point a. The Laplace approximation, π̃Gpxq, can be used
to approximate the logarithm of any Gaussian distribution πpxq by the three first terms
of the Taylor expansion around the distribution mode x̂ as follows,

logpπpxqq « logpπpx̂qq ` B logpπpx̂qq
Bx px´ x̂q ` B

2 logpπpx̂qq
Bx2 px´ x̂q2 (2.2)
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We know that δ logpπpxqq
δx

ˇ̌
ˇ̌
ˇ
x“x̂

“ 0 by definition, hence (2.2) is equivalent to

logpπpxqq « logpπpx̂qq ` B
2 logpπpx̂qq
Bx2 px´ x̂q2 (2.3)

If we define σ̂ “ ´1{B2 logpπpx̂qq
Bx2 , then 2.3 can be rewritten to

logpπpxqq « logpπpx̂qq ´ 1
2σ̂2 px´ x̂q2 (2.4)

which is equivalent to

πpxq « πpx̂q exp
«
´ 1

2σ̂2 px´ x̂q2
ff
“ π̃Gpxq. (2.5)

We note that exp
«
´ 1

2σ̂2 px´ x̂q2
ff

is the kernel of a normal distribution with mean x̂

and standard deviation σ̂. Hence,

ż b

a
πpxqdx « πpx̂q

?
2πσ̂2pφpbq ´ φpaqq (2.6)

where φp.q is the cumulative density function of the normal distribution with mean
x̂ and standard deviation σ̂. Thus, we have a mean to approximate the integral of a
normal distribution.

Let x “ px1, .., xnq be the set of all latent variables, all having Gaussian priors in addition
to being a GRMF with a sparse precision matrix. In the notation used for latent Gaussian
models, Section 2.2, x “ pα, tβku, tf pjqp.qu, εiq. Let y be the observed data and θ the set
of hyperparameters.

The objective is to obtain the marginal posterior distribution πpxi|yq for all i “ 1, ..., n
variables in the latent field. This is equivalent to the following

πpxi|yq “
ż
πpxi,θ|yqdθ “

ż
πpxi|θ,yqπpθ|yqdθ. (2.7)

I.e we need πpθ|yq and πpxi|θ,yq.
πpθ|yq can be computed by using the Laplace approximation and Bayes rule as follows,

πpθ|yq “ πpx,θ|yq
πpx|θ,yq «

πpy|x,θqπpx|θqπpθq
π̃Gpx|θ, yq

ˇ̌
ˇ̌
ˇ
x“x̂pθq

“ π̃pθ|yq. (2.8)

where x̂pθq is the mode of x.
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We find πpxi|θ,yq through an approximation. The approximation can be obtained
in three different ways [Rue et al., 2009, Martino and Riebler, 2019]. The fastest is
through the reuse of the Gaussian approximation πGpxi|θ,yq already computed to solve
(2.8). This method is the least accurate of the three. The second option is to perform
Laplace approximations a second time. This option is computationally demanding
and reduces the speed. However, the results are very accurate. The third option is to
perform a simplified Laplace approximation correcting πGpxi|θ,yq for local skewness.
This option is less accurate than option two, although often sufficiently accurate and
very computationally efficient. For further elaboration, the reader is encouraged to read
the original paper by Rue et al. [2009].

The final INLA algorithm is given as follows [Martino and Riebler, 2019],

- Select points k “ 1, . . . ,K in the space of θ where the density of π̃pθ|yq is high.

- Compute πpθk|yq using (2.8) for all k.

- For all θk compute πpxi|θk,yq using one of the three aforementioned alternatives.

- Approximate (2.7) by

π̃pxi|yq “
ÿ

k

π̃pxi|θk,yqπ̃pθk|yq∆k. (2.9)

∆k are appropriate weigths depending on how the K points where chosen. We note
that the number of parameters must be small n ă 20 for this scheme to be numerically
solvable. For a more detailed explanation of the INLA algorithm, see Martino and Riebler
[2019].

2.5 Missing Data
Missing data is a well-known challenge in most statistical research. As aforementioned,
depending on the process behind the missing values, this has to be accounted for
differently. This work divides missing processes into three categories, missing completely
at random (MCAR), missing at random (MAR), and missing not at random (MNAR) as
done in [Little and Rubin, 2019, Chap 1.5, 6]. We follow the notation given by [Little
and Rubin, 2019, Chap 6]

Let yi be the set of j measurements on the ith subject. Then yi can be divided into an
observed part yio and a missing part yim, yi “ pyio,yimq. Let mi be the vector of,

mij “
$
&
%

1 if yij is missing

0 otherwise.
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Then the full conditional of yi and mi is given as follows,

gpyio,yim,mi|θ,ψq (2.10)

where the parameters θ and ψ describes the measurement process and missing process,
respectively [Gad and Darwish, 2013, Little and Rubin, 2019, Chap. 6.2]. This allow
us to formally define data MCAR, MAR, and MNAR. The data is MCAR if the missing
process is not affected by any observed or unobserved data i.e,

gpmi|yio,yim,ψq “ gpmi|ψq. (2.11)

The data is MAR if the missing process can be influenced by the observed data but not
the unobserved data;

gpm|yio,yim,ψq “ gpmi|yio,ψq. (2.12)

If the data is neither MCAR nor MAR, the data is, by definition, MNAR. The MCAR and
MAR processes are ignorable, and it is possible to perform valid inference by modeling
the measurement process alone [Little and Rubin, 2019, Chap. 6.2]. In contrast, if data
is MNAR, the missing process must be modeled simultaneously with the measurement
process to obtain unbiased inference [Little and Rubin, 2019, Chap. 6.2].

We illustrate the differences between data MCAR, MAR, and MNAR through a small
simplified example. We want to model BPF is with BPI , age, sex, and BMI as the
explanatory variable. Hence yi “ BPF i andmi “ 1 if BPF i is missing, otherwisemi “ 0.
If ppmi|agei, sexi, BPI i, BMIi, BPF iq “ ppmiq the data is MCAR. I.e., the probability of
missing BPFi is completely independent of the explanatory variables and the response.
If ppmi|agei, sexi, BPI i, BMIi, BPF iq “ ppmi|agei, sexi, BPI i, BMIiq the data is MAR.
When the data is MAR, the explanatory variables can affect the probability of dropout,
i.e., when the elderly drop out because they are old. This is a slight simplification
as the observed values of BPF can also affect the missing process in the MAR case.
When BPF i itself affects the probability of dropout, the data is MNAR. For example, if
a participant suddenly increases blood pressure levels severely leading to a very poor
health, enabling further attendance in surveys. This can be thought of as (unknown)
explanatory variables not included in the models affecting both BPF and probability of
drop out. These three cases are illustrated in Figure 2.1.

We can see from (2.11) and (2.12) that MCAR is a special case of MAR. We will now
briefly show why MAR is an ignorable process following the notation by [Little and
Rubin, 2019, Chap. 6]. First we introduce the full likelihood, Lfull, and the ignorable
likelihood Lign based on the observed values pyo,mq.

Lfullpθ,ψ|yo,mq “
ż
fY pyo,ym|θqfM |Y pm|yo,ym,ψqdym . (2.13)
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Figure 2.1.: Illustration of data missing completely at random (MCAR), missing at random
(MAR), and missing not at random (MNAR) when modeling systolic blood pressure
BPF with BPI , age, sex, and BMI as explanatory variables. (Modified version of
Figure 1 in Hofman [2021b])

Lignpθ|yoq “
ż
fY pyo,ym|θqdym . (2.14)

The formal definition of an ignorable missing process is given as follows [Little and
Rubin, 2019]:

Definition: A missing process is ignorable if the following two conditions are fulfilled:

- The parameters θ and ψ are distinct. I.e., the joint parameter space for pθ,ψq is the
product of the individual parameter spaces for θ and ψ .

- The full likelihood factors as

Lfullpθ,ψ|yo,mq “ Lignpθ|yoqLrestpψ|yo,mq (2.15)

for all pθ,ψq in the joint parameter space of pθ,ψq.
For a MAR process we have independent θ and ψ and

fpyo,m|θ,ψq “
ż
fpyo,ym,m|θ,ψqdym

“
ż
fM |Y pm|yo,ym,θ,ψqfpyo,ym|θ,ψqdym

“
ż
fM |Y pm|yo,ψqfpyo,ym|θ,ψqdym

“ fM |Y pm|yo,ψq
ż
fpyo,ym|θqdym

“ fM |Y pm|yo,ψqfpyo|θq

(2.16)
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which is the factored likelihood from (2.15). Hence, this process is ignorable. When
the process is MNAR we have

fpyo,m|θ,ψqdym “
ż
fM |Y pm|yo,ym,θ,ψqfpyo,ym|θ,ψqdym (2.17)

The final line of (2.17) can not be solved in the same way as (2.16) since the missing
process is affected by the unobserved value ym.

2.5.1 Pattern Mixture Models and Selection Models
Under the MNAR assumption, there are several proposed ways of modeling, including
pattern mixture models and selection models [Little and Rubin, 2019], which are
different factorizations of the full conditional (2.10). From now on, let xi be the set of
fully observed explanatory variables and εi be an unobserved within-subject random
effect with hyperparameter γ. [Little and Rubin, 2019]. The pattern mixture model
can be viewed as a mixture of different populations who are characterized by their
missingness pattern [Gad and Darwish, 2013] and is defined as follows,

fpyi,mi, εi|xi,θ,ψ, γq “ fpyi|xi, εi,mi,θqfpεi|xi,mi, γqfpmi|xi,ψq. (2.18)

The selection model is based on the following factorization,

fpyi,mi, εi|xi,θ,ψ, γq “ fpmi|εi,xi,yi,ψqfpyi|εi,xi,θqfpεi|xi, γq. (2.19)

The first factor models the missing mechanism, and the second the distribution of yi in
the population, and θ and ψ are distinct.

2.5.2 Shared Parameter Models
This work uses a class of selection models known as Shared Parameter Models (SPM)
[Little and Rubin, 2019, Chap. 15.2] defined as follows:

gpyi,mi, εi|xi,θ,ψ, γq “ gpyi|xi, εi,θqgpmi|xi, εi,ψqgpεi|xi, γq. (2.20)

This model assumes that the measurement and dropout processes depend on a shared la-
tent variable εi. This allows dropouts to be classified as ignorable provided gpmi|xi, εi,ψq
“ gpmi|xi,ψq [Vonesh et al., 2006].

2.6 Scoring Rules
Model comparison is important to obtain the best possible model fits. To compare
models, the use of scoring rules is common. A scoring rule accesses the probability
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forecast of a model fit by assigning a numerical score to the predictive distribution and
the observed value [Gneiting and Raftery, 2007]. A scoring rule is strictly proper if there
only exists one optimal model [Gneiting and Raftery, 2007]. I.e., it is impossible for two
competing models to obtain the same score, thereby allowing for competing models to
be ranked.

To evaluate the models produced in this work, we use the continuous ranked probability
score (CRPS) [Brown, 1974, Hersbach, 2000, Krüger et al., 2020] for continuous
responses and the Brier score [Brier et al., 1950] for binary responses. These are both
strictly proper scoring rules, and both these scores penalize deviation from the true
observed value. A lower score, therefore, indicates a better model.

Let fpxq be the probability density function of some forecast and y is the actual observed
value. The CRPS score is defined following the notation of Hersbach [2000];

CRPSpF, yq “
ż 8

´8
rF pxq ´ Fypxqs2dx. (2.21)

where F and Fy are cumulatively distributions given by, F pxq “ şx
´8 fpyqdy, and

Fypxq “ Hpx´ yq where

Hpxq “
$
&
%

0 for x ă 0

1 for x ě 0,

is the Heaviside function. The empirical equivalent to Equation (2.21) reduces to,

CRPSpF̂k, yq “ 1
k

kÿ

i“1
|Xi ´ y| ´ 1

2k2

kÿ

i“1

kÿ

j“1
|Xi ´Xj |, (2.22)

where F̂k is the empirical cumulative distribution of the k available simulated samples
(Krüger et al. [2020], Jordan et al. [2017]) and X1, . . . , Xk „ F are the simulated
samples from the distribution of interest, F . The function crps from the R package
scoringRules (Jordan et al. [2017]) is used. In fact this package uses an equivalent
representation of Equation 2.22 given by

CRPSpF̂k, yq “ 2
k2

kÿ

i“1
pXpiq ´ yq

ˆ
kHpXpiq ´ yq ´ i` 0.5

˙
,

which uses the ordered simulated samples. Further detail can be seen in Jordan [2016].
A lower CRPS value suggests a better model as this score penalizes deviation from the
true observed value. To compare models we use the mean CRPS given by

CRPSpF̂k,yq “ 1
n

nÿ

i“1
CRPSpF̂ki, yiq, (2.23)
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where i indicates subject i It is evidently only possible to compute the CRPS for non-
missing data where we have observed observations.

The Brier score is suitable for binary responses and is defined as follows,

Brierpp,yq “ 1
n

nÿ

i“1
pyi ´ piq2.

Here pi is the probability of success and mi the actual observation. In this work we
simulate k predictions of probability pi and use the mean of these predictions as follows,

BrierpP ,mq “ 1
n

nÿ

i“1
pmi ´ 1

k

kÿ

j“1
pjq2. (2.24)

P is the matrix containing k predictions for every subject i “ 1, . . . , n and m is a vector
containing the observed values.
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3Case Study: A Blood Pressure
Predictive Model based on the
HUNT Study.

This work is inspired by constructing predictive models for future blood pressure (BPF )
based on age, sex, BMI, and initial blood pressure from the HUNT Study accounting for
data MNAR. Here we introduce the HUNT study and the specific data used. We set up
the models and introduce the validation schemes we use.

3.1 The HUNT Study and Data for Blood Pressure
Models

The HUNT Study is a longitudinal population-based health survey in central Norway
[Krokstad et al., 2013, Åsvold et al., 2021]. Every adult citizen in the now former
county of Nord-Trøndelag was invited to participate in the first survey in 1984-86
(HUNT1). All adult residents in the screening area have since then been invited to
clinical examinations and questionnaires in 1995-97 (HUNT2), 2006-08 (HUNT3), and
2017-19 (HUNT4) [Krokstad et al., 2013, Åsvold et al., 2021].

In this study, observations of systolic blood pressure (BP ), age (age), body mass index
(BMI) and sex (sex, 0 for females and 1 for males) are used based on the findings by
Espeland [2020]. A description of the variables is given in Table 3.1. When needed, a
subscript indicates the HUNT survey of the observations (BP2 denotes BP observed at
HUNT2).

Table 3.1.: Summary of variables.

Variable Description (Unit)

Explanatory variables

BPI Initial systolic blood pressure˚ (mmHg)
age Age˚ (years)
BMI Body Mass Index˚ (kg/m2)
sex Female (0) or Male (1)

Response variables
BPF Future systolic blood pressure˚ (mmHg)
m BPF is observed (0) or missing (1)

*In the model fitting all continuous variables are standardized.

19



Following Tobin et al. [2005] BP is adjusted by adding 15 mmHg for all participants
who self-reported using BP medication. We define a modeling cohort (HUNT2 cohort)
consisting of 60385 participants with observations of initial blood pressure (BPI “ BP2),
age, BMI and sex in HUNT2, together with future blood pressure BPF “ BP3 in
HUNT3 and a missing indicator m (1 if missing, 0 if present at HUNT3). 43.1% of the
participants in HUNT2 are missing in HUNT3. Dropout in this work is equivalent to "lost
to follow-up" in medical terms. The validation cohort (HUNT3 cohort) consists of 50807
participants with observations of BPI “ BP3, age, BMI and sex from HUNT3, and
BPF “ BP4 from HUNT3 in addition to a missing indicator m (1 if missing, 0 if present
at HUNT4). In the HUNT3 cohort, 33.3% drop out prior to HUNT4. In all following
analyses, BPF , BPI , age, and BMI observations are standardized by the corresponding
sample mean and standard deviation in the HUNT2 cohort.

3.1.1 The Trøndelag Health Study Protocol
The HUNT Study protocols are described in detail in Krokstad et al. [2013] and Åsvold
et al. [2021]. Here, we briefly overview the performed data collection relevant to this
work. Age and sex were extracted from the Norwegian Population Registry. Height and
weight were measured after removing shoes and other heavy clothing. The BP was
measured, by trained personnel, in a sitting position after two minutes of rest. Three
measurements were taken, one minute apart, of which the mean of the second and
third was used to report BP . To assess the current use of BP medication, self-reported
questionnaires were used. In HUNT2, the current use of BP medication was captured in
"Are you taking medication for high blood pressure?" [Never; Previously; Currently]. In
HUNT3, the question was reformulated to "Do you take, or have you taken medication
for high blood pressure?" [No; Yes]. Therefore we combine this question with the answer
to "If you are currently taking medicine for high blood pressure, have you felt unwell/
had side effects from this medicine?". We assume only the participant who currently
takes BP medicine answered this question. In HUNT4, the use of BP medicine was
captured through the question "Do you currently use any prescription medication for
high blood pressure?" [No; Yes].

3.2 Explanatory Analysis
Summaries of both the HUNT2 and HUNT3 cohort are given in Table 3.2. The variables
are summarized for all participants (present and missing), the present participants, and
the missing participants for the HUNT2 and HUNT3 cohorts respectively. In addition the
smoothed empirical distribution of BPI , (BP2 and BP3), age, and BMI are plotted in
Figure 3.1 grouped on missing status. Both from Table 3.2 and Figure 3.1, we see that
there is a difference, especially for age, between present and missing participants. We
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Table 3.2.: The sample mean and standard deviation of BPF , BPI , age, and BMI and propor-
tion of female/male participants in the HUNT2 and HUNT3 survey are displayed
in the third column. The fourth and fifth columns display sample mean for the
present and missing participants in the HUNT2 and HUNT3 cohort in addition to
proportions of present/missing participants for the whole cohorts and per sex.

Summary of the HUNT2 cohort
Variable Unit HUNT2 Present in HUNT3 Missing in HUNT3
BP3 (BPF ) mmHg - 136.1 -
BP2 (BPI) mmHg 139.5 (23.6) 135.2 145.0
age2 years 50.0 (17.1) 47.0 54.01
BMI2 kg/m2 26.4 ( 4.1) 26.2 26.6
sex 56.9 % 43.1 %

female 0 53.0 % 59.3 % 40.7 %
male 1 47.0 % 54.3 % 45.7 %

Summary of the HUNT3 cohort
Variable Unit HUNT3 Present in HUNT4 Missing in HUNT4,
BP4 (BPF ) mmHg - 136.48 -
BP3 (BPI) mmHg 133.21 (20.71) 131.48 136.67
age3 years 53.08 (16.01) 51.68 55.90
BMI3 kg/m2 27.17 (4.41) 27.12 27.28
sex 66.7 % 33.3 %

female 0 54.6 % 68.7 % 31.3 %
male 1 45.4 % 64.3 % 35.7 %

also see that more males than females drop out of the study. These differences suggest
that the data is at least MAR. Further examination is needed to explore the possibility of
data MNAR. In addition, we see that middle-aged participants are less likely to drop
out than young or elderly participants suggesting that age will affect the probability of
dropping out in a non-linear way.

3.3 Shared Parameter Models for Blood Pressure
Based on the HUNT Study

We set up shared parameter models for BPF and the missing process using age, sex,
BMI, and BPI as explanatory variables. Let BPF i and mi represent future blood
pressure and missing status for individual i. We will set up SPMs in the framework of
a latent Gaussian model as presented in Section 2.2. The likelihoods are chosen to be
Gaussian for BPF and Bernoulli with logit link for mi.
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Figure 3.1.: Smoothed empirical density of BPI (in the HUNT2 cohort BPI “ BP2 and in the
HUNT3 cohort BPI “ BP3), age, and BMI for all participants from the HUNT2
(upper panel) and HUNT3 (lower panel) cohort grouped by missing status. All the
variables are displayed in standardized values.
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3.3.1 Shared Parameter Model, a General Formulation
This work uses a variation of the SPM defined in (2.20). Let Y “ py,mqT denote a
two dimensional response vector consisting of measurement y and missing status m.
Let X the n ˚m matrix of explanatory variables, β a vector of linear effects, fpXq a
vector of non-linear effects, and ε a vector of individual random effects, εi „ Np0, σq.
The general form of the SPM used in this work is then given by,

ηY “ Xβ ` fpXT q ` pε, cεqT I

where I is the identity matrix with shape n ˚ n. ηY is connected to the expectation
EpY q “ µ through link functions.

This can also be written as two submodels, one for the measurement process and one
for the missing process, respectively,

ηy “Xβy ` fypXq ` ε,
ηm “Xβm ` fmpXq ` cε,

linked together by the shared random effect ε.

The measurement process has a binary outcome. Therefor, ηm is linked to the expecta-
tion ofm through a logit link function. The measurement process can be any distribution
belonging to the exponential family. Thus, ηy can be linked to the expectation of y in
a number of ways. In this work however, the measurement process follows a latent
Gaussian distribution, and we use the identity link function. This means,

y “Xβy ` fypXq ` ε, (3.1)

ε „ Np0, σq,
logitppq “Xβm ` fmpXq ` cε,

m „ Bernoullippq.

3.3.2 Shared Parameter Model With Additive Effects
To explore the need for non-linear effects, we first model all continuous variables as
additive effects (fpzq) through a random walk of order 2 with a sum to zero constraints
[Gómez-Rubio, 2020]. Using a second-order random walk as an additive effect ensures
a Gaussian latent field, necessary to use INLA.
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The random walk model of order 2 assumes independent second order increments. Let
m “ 1 : n be the index for the increments and define

∆2zm “ zm ´ 2zm`1 ` zm`2 „ Np0, σ2
zq.

The density for fpzq is,

fpz|σzq9σ´
n´2

2
z exp

#
´ 1

2σz

n´2ÿ

m“1
p∆2zmq

+

The sum to zero constraint means the sum of all random effect components must be
zero. For more information about random walks, see Rue and Held [2005].

The specification of the general SPM given in Equation (3.1) becomes,

BPF i “ α0 ` fBPF pBPI iq ` fBPF pageiq ` fBPF pBMIiq ` αsexsexi ` εi (3.2)

εi „ Np0, σ2
ε q

logitppiq “ β0 ` fmpBPI iq ` fmpageiq ` fmpBMIiq ` βsexsexi ` cεi
mi „ Bernoullippiq.

Here, α0, αsex, β0, and βsex are the model parameters. For which we chose the following
independent weak prior,

α0, αsex, β0, βsex „ Np0, 1032q.

The individual random effect εi is normally distributed with mean zero and standard
deviation σε. Both the standard deviation of the additive effects fp.q and εi have
hyperparameters with the following independent prior distributions,

σBPF BPI , σBPF age, σBPF BMI , σmBPI , σmage,

σmBMI , σε „ Gammap1, 5 ¨ 105q.

The subscript to σ indicates which additive effect the variance belongs to.

The association parameter is given the following prior.

c „ Np0, 12q,

The association parameter c is expected to be no more than order one. This expectation
becomes clear when we observe the results of the naive model introduced in Section 3.4
given in Table 4.1. For the naive model σε “ 0.77 (Table 4.1). Hence, εi takes values of
the same order as the standardized explanatory variables. We do not expect the SPM
to deviate drastically from the naive model. Therefore we expect εi to be of a similar
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order for the SPM as for the naive model and affect the dropout process similarly as the
other explanatory variables. For εi to affect the dropout process similarly as the other
variables, the association parameter must be of the same order as the other parameters
in the latent field. These are all less than one.

3.3.3 Shared Parameter Model for Blood Pressure and Missing
Status

Based on the results presented in Section 4.1 we decide to only model the age effect in
the missing process additively.

This leads to the following submodels for predicting BPF i and mi for participant i:

BPF i “ α0 ` αBPBPI i ` αageagei ` αBMIBMIi ` αsexsexi ` εi (3.3)

εi „ Np0, σ2
ε q

logitppiq “ β0 ` βBPBPI i ` fpageiq ` βBMIBMIi ` βsexsexi ` cεi
mi „ Bernoullippiq.

This model is from now on referred to as the SPM and is our main model.

The individual random effect is Gaussian distributed with zero mean and variance one.
Here, α0, αBP , αage, αBMI , αsex, β0, βBP , βBMI , and βsex are the model parameters
with the following independent priors,

α0, αBP , αage, αBMI , αsex, β0, βBP , βBMI , βsex „ Np0, 1032q.

The prior distributions for σage and σε is given by,

σage, σε „ Gammap1, 5 ¨ 105q.

The association parameter c is given the following normal prior,

c „ Np0, 12q,

for the same reason as given in Section 3.3.2.
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3.4 Naive Model for Blood Pressure and Missing
Status

We compare the SPM with a naive model assuming data to be MAR. The naive model is
identical to the model specified in (3.3) except that the individual random effect is no
longer shared, meaning c “ 0. The formulation becomes,

BPF i “ α0 ` αBPBPI i ` αageagei ` αBMIBMIi ` αsexsexi ` εi (3.4)

εi „ Np0, σεq
logitppiq “ β0 ` βBPBP i ` fpageiq ` βBMIBMIi ` βsexsexi

mi „ Bernoullippiq.

All model parameters in the naive model have identical priors as stated for the SPM
(3.3). Even though the naive model consists of two independent models, we refer to
both submodels together as the naive model and use it as a benchmark model.

3.5 Inference for Predictive Distributions
For simplicity later on we introduce some notation for the variables and parameters
introduced in Section 3.3.2, Section 3.3.3, and Section 3.4. Let xi “ pBPI i, agei, BMIi,

sexiq be the set of explanatory variables and let yi “ pBPF i,miq be the response
variables. Further let X “ pxi, .., xnqT be the fully observed dataset of all explanatory
variables for n participants and Y “ py1, ..., ynqT be the corresponding response values.
When needed we use a subscript to indicate respective HUNT surveys. Denote the
latent field by θ “ pα0, αBP , αage, αBMI , αsex, β0, βBP , βBMI , βsex, ε, f, cq. f denotes
the additive effect for age. Let the parameters of the latent field associated to the blood
pressure model be denoted by θBP “ pα0, αBP , αage, αBMI , αsex, εq and the latent field
associated to the missing process be denoted by θm “ pβ0, βBP , βBMI , βsex, c, ε, fq. The
set of non-Gaussian hyper parameters are denoted γ “ pσε, σageq.
When fitting the SPM and the naive model we obtain the posterior distribution of the
latent field πpθ|X,Y q and the hyperparameters πpγ|X,Y q. The posterior distribution of
θk is given by πpθk|X,Y q “

ş
πpθ|X,Y qdθ´k for all k model parameters. dθ´k denotes

the integration of all parameters but θk.
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We can use the posterior distributions of the parameters to obtain the predictive dis-
tribution of ynew “ pBPF new,mmewq for a new observation xnew. In mathematical
terms,

πpynew|xnew, X, Y q “
ż
πpynew,θ|xnew, X, Y qdθ

“
ż
πpynew|xnew, X, Y,θqπpθ|xnew, X, Y qdθ

which can be simplified to

πpynew|xnew, X, Y q “
ż
πpynew|xnew,θqπpθ|X,Y qdθ

Similarly this gives

πpBPF new|xnew, X, Y q “
ż
πpBPF new|xnew,θBP qπpθBP |X,Y qdθBP

and

πpmnew|xnew, X, Y q “
ż
πpmnew|xnew,θmqπpθm|X,Y qdθm

for the posterior predictive distribution for a new value of BPF and m. For simplicity
we compute and evaluate pnew instead of mnew where mnew „ Bernoullippnewq.

3.6 Parameter Estimation
We fit both the SPMs (3.2), (3.3) and the naive model (3.4) using the HUNT2 cohort,
obtaining posterior distributions πpθ|X2, Y2q and πpγ|X2, Y2q where the subscript 2
indicates the HUNT2 cohort. These posteriors are later used to obtain predictive
distributions used for validation of model predictions and to check if the data is MNAR.

For completeness we also fit the SPM (3.3) and naive model (3.4) to the HUNT3 cohort
obtaining πpθ|X3, Y3q and πpγ|X3, Y3q where the subscript 3 indicates the HUNT3
cohort.

3.7 Validation of the Model Predictions of Blood
Pressure

To validate the model predictions we obtain the posterior predictive distribution for
future blood pressure (BPF ) of all participants in the HUNT3 cohort. This means we
obtain,

πpY3|X3, Y2, X2q “
ż
πpY3|X3,θqπpθ|X2, Y2qdθ (3.5)
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We evaluate the performance of the SPM and naive model using the mean CRPS score
( ĞCRPS) for the posterior predictive distributions of BPF and the Brier score for the
posterior mean prediction of p. The blood pressure model can only be validated on
the participants observed in both the HUNT3 and the HUNT4 surveys. In contrast, the
probability of dropping p out can be evaluated for all participants. We compare the
posterior mean predictions of p for the SPM and naive model grouped on missing status
in the HUNT3 cohort.

3.8 Evaluation of the Missing Not at Random
Assumption Based on Conditioning on the
Missing Process

We suggest a novel method for validating if data is MNAR if the data follows the SPM, by
obtaining the posterior predictive distributions πpBP F |mq and πpBP F q for the HUNT3
cohort and comparing the posterior predictive means to the observed BPF values. We
denote the posterior predictive distributions πpBP F |mq and πpBP F q, ˆBP F |m and

ˆBP F respectively. If the data is MNAR, there is a connection between the dropout
process and the blood pressure process. Knowledge of the missing status of a participant
i should then contain information about the shared individual random effect εi. Since εi
is shared between the two sub-models having this information about εi should improve

ˆBPF i. Therefore, we expect ˆBPF i|m to be better than ˆBPF i if the data are MNAR and
follows the SPM. If the data is MAR, we expect the predictions ˆBPF i|m and ˆBPF i to be
equally good. Formally this means we compare,

ˆBPF i|mi “ πpBPF i|miq “
ż
πpBPF i, εi|miqdεi

“
ż
πpBPF i|mi, εiqπpεi|miqdεi

with

ˆBPF i “ πpBPF iq “
ż ż

πpBPF i, εi,miqdεidmi

“
ż ż

πpBPF i,mi|εiqπpεiqdεidmi

“
ż ż

πpBPF i|εi,miqπpmi|εiqπpεiqdεidmi

28 Chapter 3 Case Study: A Blood Pressure Predictive Model based on the HUNT Study.



For simplicity, we use the posterior mean of ˆBPF i|m and ˆBPF i, which we refer to with
the same notation, and compute the mean absolute error (MAE) of ˆBP F |m and ˆBP F

for the participants present in the follow-up survey.

3.9 Software Implementation
In this work, we use the R-INLA software [R-INLA, 2021]. This software provides
a relatively easy way to use INLA and is used by many authors for spatial statistics
[Blangiardo et al., 2013, Lindgren and Rue, 2015, Blangiardo and Cameletti, 2015,
Bakka et al., 2018]. However, this software has many more applications [Martins et al.,
2013, Gómez-Rubio, 2020, Niekerk et al., 2021] and is also previously used to fit SPMs
[Steinsland et al., 2014, Espeland, 2020].

Documentation regarding the R-INLA software can be found at the R-INLA homepage
[R-INLA, 2021]. The R-INLA software supports fitting models with multiple likelihoods
[Steinsland et al., 2014, Espeland, 2020, Gómez-Rubio, 2020, Chap. 6.4] which is the
case for the SPM (3.3). An easy-to-follow example of implementing multiple likelihoods
in R-INLA can be found in [Gómez-Rubio, 2020, Chap. 6.4].

The two main functions from the R-INLA library used in this work are inla(), providing
marginal posterior distributions for the model parameters, and inla.posterior.sample()
to sample from the posterior distributions of the model parameters.

All the code used to fit the models is available in the GitHub repository by Hofman
[2021a].

3.9.1 Shared Parameter Model Fit
When implementing the SPMs (3.2) and (3.3), introduced in Section 3.3.2 and
Section 3.3.3, in INLA, for technical reasons we have to rewrite the models slightly by
adding σ2ε2 “ 0.001. The two models are then given by:

µi “ α0 ` fBPF pBPI iq ` fBPF pageiq ` fBPF pBMIiq ` αsexsexi ` εi (3.6)

BPF i „ Npµi, σ2ε2q
logitppiq “ β0 ` fmpBPI iq ` fmpageiq ` fmpBMIiq ` βsexsexi ` cεi

mi „ Bernoullippiq,
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and

µi “ α0 ` αBPBPI i ` αageagei ` αBMIBMIi ` αsexsexi ` εi (3.7)

BPF i „ Npµi, σ2ε2q
logitppiq “ β0 ` βBPBPI i ` fpageiq ` βBMIBMIi ` βsexsexi ` cεi

mi „ Bernoullippiq.

The priors for all model parameters of (3.6) and (3.7) are the same as given in Sec-
tion 3.3.2 and Section 3.3.3 respectively. Since σ2ε2 is very small we ensures all the vari-
ance is still captured by εi and the random effect can be shared between the two models.
The Gaussian latent field in (3.6) consists of θ “ pα0, fBPF p.q, αsex, εi, β0, fmp.q, βsex, cq
where fBPF p.q and fmp.q are all the non-linear effects. The non-Gaussian hyperparame-
ters in (3.6) are γ “ pσBPF BPI , σBPF age, σBPF BMI , σmBPI , σmage, σmBMI , σεq.
In our main SPM (3.7) the Gaussian latent field is given by θ “ pα0, αBP , αage,

αBMI , αsex, εi, β0, βBP , fpageq, βBMI , βsex, cq and the non-Gaussian hyperparameters
are pγ “ σage, σεq.

3.9.2 Validation of the Model Predictions of Blood Pressure
The validation scheme introduced in Section 3.7 is implemented as follows: To obtain the
posterior predictive distribution for individual i, πpBPF iq and πppiq, we use j “ 1 : 300
samples from the marginal posterior distributions of the latent field

πpθtrue|X2, Y2qq “ πpα̂0, α̂BP , α̂age, α̂BMI , α̂sex, β̂0, β̂BP , β̂BMI , β̂sex, ĉ, σ̂εq,

from both the SPM and naive model presented in Section 3.3 and 3.4. This is done
with the help of the function inla.posterior.sample(). The age effect is taken from the
SPM (3.3) and naive model (3.4), respectively. For each sample j we compute the
corresponding values of BPF ij and pij as follows:

εij „ Np0, σ̂εj q (3.8)

BPF ij “ α̂0j ` α̂BP jBP3i ` α̂agejage3i ` α̂BMIjBMI3i ` α̂sexjsex3i ` εij
logitppijq “ β̂0j ` β̂BP jBP 3i ` f̂page3iq ` β̂BMIjBMI3i ` β̂sexjsex3i ` ĉεij

3.9.3 Evaluation of the Missing Not at Random Assumption
Based on Conditioning on The Missing Process

We implement the validation scheme presented in Section 3.8 to evaluate the MNAR
assumption in the following way.
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When predicting ˆBP F |m, the observed BPF values are removed for all participants.
Then we refit the SPM (3.3) with normal priors using the posterior mean estimates θ̂ of
the model parameters, obtained from fitting the SPM (3.3) presented in Section 3.3,
as mean and a very small variance σ “ 0.001 meaning θk „ Npθ̂k, 0.0012q. INLA fits
missing values from its marginal posterior distribution using the posterior mean. When
predicting ˆBP F , both BPF and m are removed from the data before we refit the SPM
as for ˆBP F |m. The missing values are fitted with the posterior mean of the posterior
marginal predictive distribution of BPF i and mi. Hence, we obtain the posterior mean
estimate of BPF i|mi and BPF i, ˆBPF i|m and ˆBPF i, for all participants. We compute
the MAE for the participants present at HUNT4.
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4Results from the Blood Pressure
Case Study

The two shared parameter models (SPM), (3.2) and (3.3), and the naive model (3.4)
introduced in Chapter 3 are fitted to the HUNT2 cohort as described in Section 3.3
and Section 3.4. This chapter presents the resulting parameter estimates for the SPM
with additive effects for all continuous variables (3.2) and arguments for the removal
of some of these additive effects leading to our main SPM. Further, we present the
parameter estimates of the model fits of the main SPM (3.3) and the naive model (3.4)
on the HUNT2 cohort. We briefly explore the same model fits on the HUNT3 cohort
and compare the posterior mean estimates obtained on the HUNT2 and HUNT3 cohort,
respectively. Then we validate the predictive models obtained based on the HUNT2
cohort by predicting BPF and missing status in the HUNT3 cohort as introduced in
Section 3.7. Further, we test the novel validation scheme for evaluating if the data is
MNAR described in Section 3.8 on the HUNT3 cohort.

4.1 Shared Parameter Model With Additive Effects
To explore the need for non-linear effects, we modeled the SPM with all continuous
variables as a random walk of order two as presented in (3.2). Modeling all parameters
in an additive way is extremely computationally demanding. With 32 CPU cores and 32
G memory, we were still only able to fit the SPM (3.2) with 15000 (« 25%) participants.
These participants were drawn randomly. Even though we were not able to fit the
model on all participants, Figure 4.1 shows that the age effect in the missing process
is non-linear. The other continuous variables, although not perfectly linear, are much
closer to being linear even when we allow them not to be. Therefore we chose to
model all variables linearly except for age in the dropout process, which we model as an
additive effect. The final model can be seen in (3.3) in Section 3.3.3 and is referred to
by either the main SPM or the SPM. This choice also means the computational time and
resources needed to fit the model gets reduced significantly. If this model is to be used
in future research, the model must be computationally feasible.
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Figure 4.1.: Additive effects of age, BMI, and BPI in the SPM for both the BP process and
the missing process.
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4.2 Shared Parameter and Naive Model Results for
Blood Pressure and Missing Status on the
HUNT2 Cohort

The posterior distributions of the estimates obtained by the SPM (3.3) and the naive
model (3.4), introduced in Section 3.3.3 and 3.4 fitted to the HUNT2 cohort can be
seen in Figure 4.2. The posterior mean and 95% credible intervals are presented in
Table 4.1.

For the blood pressure submodel in the SPM, we see that the effect of BPI is the largest,
followed by age, BMI, and sex. The effect of BMI and sex are close to zero. The
parameter estimates of the naive blood pressure model are of the same order as the
SPM. However, in the blood pressure model, all variables but age have weaker effects in
the naive model than for the SPM. The difference is especially pronounced for α0 and
αBP , suggesting the two models could result in different model predictions.

For the missing process in the SPM, we see that sex has the largest effect on the
probability of dropping out, followed by BPI and BMI. The age effect is the largest for
the elderly and the smallest for middle-aged participants Figure 4.3. The naive missing
process again has the same order of variable effects. The SPM and the naive model are
more similar in parameter estimates for the missing process than the blood pressure
process. However, the naive parameter estimates are still shifted towards lower values
for the naive model than the SPM.

The association parameter c, connecting the two submodels (3.3) is clearly positive,
which implies an increase in the probability of dropping out for a larger random effect
and a clear connection between the two sub-models.

Since the data used in this work contains personal information, we consider three female
simulated participants with BPI , age, and BMI, given in Table 4.2, to explore results
on an individual level. We used a young and underweight female with low BPI , a
middle-aged and overweight female with normal BPI , and an old and obese female
with severely high BPI . For these participants, the effect of the association parameter
on the probability of dropping out is plotted in Figure 4.4 with individual random effects
between ´1.5 and 1.5, which corresponds to approximately two standard deviations of
the random effect. We see an increase in the probability of dropping out for increased
residuals. According to the SPM, this increase means that participants with higher BPF
than can be explained by the explanatory variables are more likely to drop out. When
the random effect impacts the probability of dropping out, there is a connection between
the submodels of the SPM, which indicates data MNAR.
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Figure 4.2.: Posterior distribution of the latent field and hyperparameters for the SPM (3.3)
and naive model (3.4) fitted to the HUNT2 cohort.
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Figure 4.3.: Age effect for the SPM and naive model fitted to the HUNT2 cohort with 95%
credible bands fitted to the HUNT2 cohort.

Table 4.1.: Summary of all parameters estimated for both the SPM and the naive model de-
scribed in Section 3.3.3 an Section 3.4 fitted on the HUNT2 cohort. The posterior
means and 95% credible intervals are displayed.

SPM Naive
Posterior mean CI Posterior mean CI

α0 0.275 (0.259, 0.291) 0.134 (0.123, 0.145)
αage 0.244 (0.232, 0.255) 0.246 (0.235, 0.258)
αBMI 0.073 (0.064, 0.082) 0.071 (0.062, 0.080)
αBP 0.599 (0.589, 0.610) 0.578 (0.567, 0.588)
αsex 0.041 (0.025, 0.057) -0.022 (-0.064, 0.019)
β0 0.567 (0.475, 0.666) 0.55 (0.460, 0.651)
βBMI 0.087 (0.087, 0.106) 0.081 (0.063, 0.099)
βBP 0.139 (0.139, 0.162) 0.133 (0.111, 0.155)
βsex 0.292 (0.292, 0.329) 0.275 (0.240, 0.310)
σage 1.412 (0.946, 2.130) 1.400 (0.927, 2.123)
σε 0.790 (0.783, 0.797) 0.77 (0.765, 0.776)
c 0.705 (0.645, 0.765) - -

Table 4.2.: Values of BPI , age and BMI for three simulated female individuals.

id BPI̊ age˚ BMI˚ sex BPI true agetrue BMItrue
1 -2 -1.5 -2 female 92.2 24.4 18.2
2 0 0 0 female 139.5 50.0 26.4
3 2 1.5 2 female 186.7 75.7 34.6
* Standardized values
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Figure 4.4.: The probability of dropping out as a function of the individual random effect of the
blood pressure model (3.3) for three simulated female participants with BPI , age,
and BMI as given in Table 4.2.

4.3 Shared Parameter and Naive Model for Blood
Pressure and Missing Status on the HUNT3
Cohort

For completeness we also fitted the SPM (3.3) and the naive model (3.4), introduced
in Section 3.3.3 and Section 3.4 on the HUNT3 cohort.

We see from Figure 4.2 and Figure 4.5 that the relation between the SPM and naive
model is similar for the HUNT3 cohort as for the HUNT2 cohort (Figure 4.2). We also
see from Table 4.3 that the difference in parameter estimates are quite similar ă 0.07 in
absolute value, for all model parameters but β0 and σage. Some difference is expected
when working on real data. The HUNT surveys take place approximately 11 years apart.
Hence, some societal changes affecting the general blood pressure and missing processes
are inevitable.
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Figure 4.5.: Posterior distribution of the latent field and hyperparameters for the SPM (3.3)
and naive model (3.4) fitted to the HUNT3 cohort.
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Table 4.3.: The posterior mean of all model parameters, estimated for the SPM and the naive
model on the HUNT2 and HUNT3 cohort.

SPM Naive
Posterior Mean Posterior Mean

HUNT2
cohort

HUNT3
cohort

Diff˚ HUNT2
cohort

HUNT3
cohort

Diff˚

α0 0.275 0.344 -0.063 0.134 0.214 -0.070
αage 0.244 0.250 -0.024 0.246 0.246 -0.016
αBMI 0.073 0.032 - 0.031 0.071 0.031 0.030
αBP 0.599 0.654 - 0.037 0.578 0.636 -0.041
αsex 0.041 -0.009 0.059 -0.022 -0.022 0.056
β0 0.567 -0.168 0.73 0.55 -0.179 0.727
βBMI 0.087 0.063 0.018 0.081 0.058 0.017
βBP 0.139 0.135 0.026 0.133 0.129 0.026
βsex 0.292 0.256 0.037 0.275 0.236 0.037
σage 1.412 1.927 -0.892 1.400 1.196 0.202
σε 0.790 0.807 -0.017 0.77 0.783 -0.014
c 0.705 0.719 -0.027 - - -
˚ Diff marks the difference between the non-rounded values of the parameter
estimates for the HUNT2 cohort and the estimates on the HUNT3 cohort.

4.4 Validation of Model Predictions for the HUNT3
Cohort

The validation is performed as described in Section 3.7 on the HUNT3 cohort. However,
due to privacy, we present individual results on simulated data given in Table 4.2. The
posterior predictive distributions for the three simulated participants are plotted in
Figure 4.6 and Figure 4.7. From this simple example, it seems the posterior predictive
distribution of the SPM is shifted towards larger values than the naive model, and more
so for Id1 and Id3, who have more extreme explanatory variables. When predicting
the probability of dropping out, the SPM has a much wider distribution than the naive
model. This difference, however, can be explained by the random effect εi, which is not
present in the naive model. The posterior means of the probability of dropping out are
similar when comparing the SPM with the naive model.

On a population basis, we compare the CRPS scores of the posterior predictive distribu-
tions of BPF i and the Brier score for the posterior predictive mean of the probability
of dropping out for the HUNT3 cohort. The CRPS scores can be seen in Table 4.4 and
are almost equal. The naive model performs slightly better. This can be explained by
the fact that the missing participants do not affect the likelihood of the naive model.
Hence this model is optimized to perform well for the present participants. The Brier
scores can be seen in Table 4.5 and are very similar when we look at all participants
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Id = 3, old, high BMI and, high blood pressure.

Id = 2, middle−aged, average BMI, and average blood pressure.

Id = 1, young, low BMI, and low blood pressure.
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Figure 4.6.: Posterior predictive distribution of BPF for three simulated participants with
values for BPI , age, and BMI as given in Table 4.2. The vertical lines indicate the
posterior means.

Table 4.4.: CRPS score for predictions of systolic blood pressure in HUNT4 for the present
participants based on the HUNT3 cohort. Bold marks the best score.

SPM Naive
CRPS 0.4406 0.4337

together. However, when grouped by missing status, the naive model performs better on
the present participants, and the SPM performs better on the dropouts.

The distribution of posterior means for all participants both for the blood pressure
model and the dropout model can be seen in Figure 4.8 and Figure 4.9. We see that
the SPM predicts slightly higher values for the BPF than the naive model. For the
present participants, the observed distribution of BPF is wider than the distribution
of mean predictions. This distribution is only added for reference and is expected to
be wider compared to a distribution of posterior mean estimates. The distributions of
mean predictions of the probability of dropping out are also similar. The SPM predicts a

Table 4.5.: Brier score for mean predictions of the probability of drop out in HUNT4. All
predictions are based on the HUNT3 cohort. Bold marks the best score.

Brier
All Present Missing

SPM 0.2082 0.1656 0.2937
Naive 0.2072 0.1602 0.3014
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Id = 3, old, high BMI and, high blood pressure.

Id = 2, middle−aged, average BMI, and average blood pressure.

Id = 1, young, low BMI, and low blood pressure.
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(a) SPM

Id = 3, old, high BMI and, high blood pressure.

Id = 2, middle−aged, average BMI, and average blood pressure.

Id = 1, young, low BMI, and low blood pressure.
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Figure 4.7.: Posterior predictive distribution of the probability of dropping out, p, for three
simulated participants with values for BPI , age, and BMI as given in Table 4.2.
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Figure 4.8.: Density of the posterior mean of BPF i for all participants grouped by missing
status in the HUNT3 cohort.
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Figure 4.9.: Density of the posterior mean of pi for all participants grouped by missing status in
the HUNT3 cohort.
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slightly higher probability of dropping out, on average, than the naive model. We not
that the differences have little practical implication on a populational level while there
are some differences on an individual level.

4.5 Validation of the Missing Not at Random
Assumption

After refitting the SPM, as described in Section 3.8 both given the missing status and
not, we obtain the mean absolute error (MAE) of the posterior mean predictions of
each participant. The results are given in Table 4.6. We see the errors are similar.
The predictions for BP4 given m4 yield a slightly smaller error than not knowing m4,
suggesting some information from the missing process affects the BPF .

Table 4.6.: Mean absolute error for B̂P F |m and ˆBPF . The best score is indicated in bold.

B̂P F |m ˆBPF MAE(B̂P F |m) - MAE( ˆBPF )
MAE 0.6140 0.6155 -0.0014
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5Simulation Studies

We set up several simulation studies to explore the properties of the SPM, the naive
model and the method validating MNAR by conditioning on missing status for datasets
with the size and structure of the HUNT3 cohort. All simulation studies regarding bias
and coverage of the models are preformed with the same number of participants and
explanatory variables X as in the HUNT2 cohort, i.e. X “ XHUNT2. Further, when
simulating data, the parameters θ “ θtrue are set to the posterior mean estimates of
the SPM and naive model fitted on the HUNT2 cohort, see Table 4.1. When predictions
are studied, simulated validation datasets are based on the same size and explanatory
variables as the HUNT3 cohort, i.e. X “ XHUNT3 is used.

5.1 Simulation Studies Exploring Bias and
Coverage

We performed several simulation studies to evaluate how well the SPM and naive model
estimates known parameters on MNAR and MAR data. We do this to evaluate if the
models are biased or able to reproduce the original parameter values.

5.1.1 Setup
We use the parameter estimates

θtrue “ πpα̂0, α̂BP , α̂age, α̂BMI , α̂sex, β̂0, β̂BP , β̂BMI , β̂sex, f̂p.q, σ̂εq, (5.1)

obtained from both the main SPM (3.3) and the naive model (3.4) displayed in
Section 4.2 (Table 4.1) and the original explanatory variables XHUNT2 from the HUNT2

Table 5.1.: This table indicates which parameter estimates and data missing mechanism are
used, in each study, to construct the new values for BPF and m. SPM signifies the
we use the posterior means for all parameters from the SPM while naive signifies
that we use the posterior means obtained by the naive model (Table 4.1). We also
display the true value of the association parameter in the respective cases.

Study Parameter estimates Missing mechanism ĉ

1 SPM MNAR 0.705
2 SPM MAR 0
3 Naive MNAR 0.705
4 Naive MAR 0
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cohort to simulate new values for Y “ pBPF ,mq, denoted Y new. This gives us new
simulated data sets pXHUNT2, Ynewq which are either MNAR or MAR depending on the
value of ĉ. When ĉ “ 0.705 the data are MNAR and when ĉ “ 0 data is MAR.

In total, we perform four simulations studies exploring model bias and coverage with a
combination of parameter estimates and missing mechanisms as given in Table 5.1. All
four studies follow the same setup given as follows:

Run 100 simulations where each simulation is indicated by index l.

For l “ 1 : 100:

– Create new values for Y denoted Yl for all participant based on the original explanatory
variables, XHUNT2, from the HUNT2 cohort, and parameter estimates θtrue as follows:

εil „ Np0, σ̂εq (5.2)

BPF il “ α̂0 ` α̂BPBP2i ` α̂ageage2i ` α̂BMIBMI2i ` α̂sexsex2i ` εil
logitppilq “ β̂0 ` β̂BPBP 2i ` f̂page2iq ` β̂BMIBMI2i ` β̂sexsex2i ` ĉεil

mil „ Bernoullippiq.

We recall that the index 2 signifies that the data is from the HUNT2 study. This gives us
a new simulated dataset datanew “ pXHUNT2, Ylq where Yl “ pBPFl ,mlq.
– Fit the SPM to datanew and summarize the simulation by the posterior mean of all k
model parameters, θkl, and the binary variable coverkl given by:

coverkl “

$
’’’&
’’’%

1 if θ̂ktrue falls within the 95% equal tailed credible interval

of the posterior distribution of θkl

0 otherwise.

(5.3)

When we have 100 estimates and cover values for all model parameters we compute the
mean of the posterior means

θ̄k “ 1
100

100ÿ

l“1
θkl

for all k parameters and compute the bias of the posterior means,

Bias pθ̄kq “
ř100
l“1pθkl ´ θ̂ktrueq

100 .
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Finally we compute the coverage defined as

coveragek “
1

100

100ÿ

l“1
coverkl,

where coverkl is defined in (5.3).

5.1.2 Results and Discussion
The resulting mean posterior mean, bias, and coverage for all simulation studies can be
viewed in Table A.1, Table A.2, Table A.3, and Table A.4 in Appendix A.

The distribution of the posterior means from the simulation studies can be seen in
Figure 5.1, Figure 5.2, Figure 5.3, and Figure 5.4. We see from Figure 5.1 and Figure 5.3
that both the naive model and SPM are biased when the data is MNAR. However,
the SPM is less biased than the naive model especially for the blood pressure model
(i.e. α0, αPB, αage, αsex, and αBMI). Still, there are some reproducibility issues. These
are especially pronounced for the association parameter c, which has low coverage
(Table A.1 and Table A.3).

When the data is MAR, both the SPM and naive model have very little bias and give
similar results for most parameters, as seen in Figure 5.2 and Figure 5.4. Also, the
association parameter c is centered around zero and has good coverage. This finding
reassures our assumption that the SPM and the naive model perform similarly if the
data are MAR, although the naive model is slightly better.

When comparing all four studies, we see that both models are less biased when the data
is MAR than when it is MNAR. Missing at random data also results in better coverage
for most parameters than when the data is MNAR(Table A.1, Table A.2, Table A.3, and
Table A.4). If one does not know if the data is MAR or MNAR, the naive model produces
a larger error when fitted to MNAR data than the SPM produces when fitted to data
MAR. It seems the SPM is more robust at modeling data both MAR and MNAR while the
naive model performs poorly on data MNAR. This finding supports using a SPM when
the data is likely to be MNAR.

To conclude, both models are biased when the data is MNAR. However, the SPM is less
biased and has much better coverage for most parameters (Table A.1 and Table A.3).
The two models perform almost identical regarding bias and coverage when the data is
MAR (Table A.2 and Table A.4), although the naive model is slightly better in terms of a
lower bias.
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Figure 5.1.: Resulting distribution of posterior mean estimates after 100 iterations of model fits
on simulated MNAR data following the SPM (Study 1, Table 5.1) as described in
Section 5.1.1. The vertical dotted black line indicates the true values for all model
parameters. Furthermore, the mean of posterior means for both the SPM and naive
model are indicated by red and blue vertical lines, respectively.
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Figure 5.2.: Distribution of posterior mean estimates after 100 iterations of model fits on
simulated MAR data following the SPM (Study 2, Table 5.1) as described in
Section 5.1.1. The vertical dotted black line indicates the true values for all model
parameters. Furthermore, the mean of posterior means for both the SPM and naive
model are indicated by red and blue vertical lines, respectively.
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Figure 5.3.: Resulting distribution of posterior mean estimates after 100 iterations of model
fits on simulated MNAR data following the naive model (Study 3, Table 5.1) as
described in Section 5.1.1. The vertical dotted black line indicates the true values
for all model parameters. Furthermore, the mean of posterior means for both the
SPM and naive model are indicated by red and blue vertical lines, respectively.
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Figure 5.4.: Distribution of posterior mean estimates after 100 iterations of model fits on
simulated MNAR data following the naive model (Study 4, Table 5.1) as described
in Section 5.1.1. The vertical dotted black line indicates the true values for all
model parameters. Furthermore, the mean of posterior means for both the SPM
and naive model are indicated by red and blue vertical lines, respectively.
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5.2 Validation of Model Predictions
To test the validation scheme introduced in Section 3.7 comparing the CRPS and Brier
score of the model predictions for the SPM and naive model, we perform a simulation
study with known data. The simulated validation datasets use explanatory variables
from the HUNT3 cohort, i.e. X “ XHUNT3, and simulate new values for Y based on
the posterior mean estimates of the SPM. A large advantage for the simulated data sets
is that predictive performance can be evaluated not only for present participants, but
also for those that are missing, which we include.

5.2.1 Setup
We use the posterior mean estimates θtrue obtained by the SPM (Table 4.1) as the
true values for the model parameters analogous to Section 5.1.1 to simulate values
for Y , Ynew. Then we refit the SPM (3.3) and naive model (3.4) to this dataset
pXHUNT2, Ynewq and denote these model fits SPM˚ andNaive˚ model, where ˚ denotes
the new model fits.

The setup of the 100 simulations is as follows:

– First we construct new values for Y similarly as in Section 5.1.1 but with explanatory
variables from the HUNT3 cohort for all i participants,

εil „ Np0, σ̂εq (5.4)

BPF il “ α̂0 ` α̂BPBP3i ` α̂ageage3i ` α̂BMIBMI3i ` α̂sexsex3i ` εil
logitppilq “ β̂0 ` β̂BPBP 3i ` f̂page3iq ` β̂BMIBMI3i ` β̂sexsex3i ` ĉεil

mil „ Bernoullippilq.

This gives us a new dataset, datanew “ pXHUNT3, Ylq, with data MNAR.

– Run the validation procedure as described in Section 3.7 on datanew with SPM˚

and Naive˚ as model fits to obtain the mean CRPS score, CRPSl, and the Brier score,
Brierl.

We now have 100 values of the mean CRPS and Brier score for all participants (present
and missing), the present, and the missing participants for each simulated dataset for
the SPM˚ and naive˚ model.

5.2.2 Results and Discussion
Figure 5.5 displays the distribution of the difference between the mean CRPS for the SPM
and the naive model. This difference is displayed for all participants (missing/present)
and grouped on missing status. We see that the SPM performs better for all participants
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Figure 5.5.: Difference in mean CRPS score for the SPM˚ and naive˚ model on 100 simulated
dataset following the scheme described in Section 5.2.1.

and the dropouts, but the naive model performs better on present participants. This
confirms our previous suspicion that even if the data is MNAR and the SPM fits the
actual data better, the naive model is expected to obtain a better CRPS score when only
tested on the present participants.

Figure 5.6 shows the distribution of the difference in Brier score for all participants, the
dropouts, and the present participants. We see similar results here, although the Brier
score for all participants, in this case, covers zero. However, for the dropout process,
the original parameter estimates of the SPM and naive model (Table 4.1) were much
more similar than for the blood pressure process. Naturally, these predictions will then
be closer to one another.

To summarize, we find that the CRPS score for the blood pressure process can be better
for the naive model than the SPM if we only consider the present participants. Otherwise,
the CRPS of the SPM is the best if the data is MNAR and follows the SPM. The Brier
score of the dropout process for the SPM is better for dropouts, very similar for all
participants (present and missing), and worse for the present participants than the naive
model on MNAR data following the SPM.
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Figure 5.6.: Difference in Brier score for the SPM˚ and naive˚model on 100 simulated dataset
following the scheme described in Section 5.2.1.

5.3 Validation of Evaluation Method of Data Missing
Not at Random

In section Section 3.8 we proposed a novel validation scheme for assessing if the data is
MNAR when it follows the SPM. We suspect that data MNAR means the missing status
contains information about BPF . This suspicion would imply predicting ˆBPF i|mi

should result in better predictions than ˆBPF i.

When we implement the scheme introduced in Section 3.8, we have no control of the
underlying data missing mechanism of the real data. Therefore, we simulate the data
to be both MNAR and MAR to evaluate how much difference we can expect to obtain
between the mean absolute errors (MAE) of ˆBPF |m and ˆBPF when the data is MNAR
and MAR respectively. For simplicity, we use the posterior mean prediction of ˆBPF i|mi

and ˆBPF i.

5.3.1 Setup
We describe the setup when the data is simulated MNAR and MAR separate to avoid
confusion on how the data is created.

Data simulated Missing Not at Random

We start by using the posterior mean estimates obtained by the SPM (3.3) displayed
in Table 4.1 and the original explanatory variables from the HUNT2 cohort to simu-
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late new values for Y , denoted Ynew, as done in Section 5.1.1 and fit a new SPM to
pXHUNT2, Ynewq as done in Section 5.2.1. We call this model fit SPMMNAR since it is
fitted to data MNAR.

Further, we run 100 iterations, indicated by index l “ 1 : 100, where we do the
following:

– Simulate a new dataset as done in (5.4) by using explanatory variables from the
HUNT3 cohort and posterior mean estimates from the model parameters of the main
SPM (3.3) presented in Table 4.1 to create Yl as done in (5.4).

– Use SPMMNAR to predict ˆBPF il|mil and ˆBPF il for all i participants as described in
Section 3.8

– Compute MAEp ˆBPFl |mlq and MAEp ˆBPFlq
Data simulated Missing at Random

We repeat the what we did for data MNAR for data MAR by using the posterior mean
estimates θtrue obtained by the naive model (3.4) (Table 4.1) with explanatory variables
from the HUNT2 cohort as done in Section 5.1.1 to create Ynew. We fit a SPM to
pXHUNT2, Ynewq and call it SPMMAR since it is fitted to data MAR following the naive
model.

Then we run this simulation procedure 100 times, indicated by index l “ 1 : 100, where
we do the following:

– Create a new dataset by using explanatory variables from the HUNT3 cohort and
posterior mean estimates from the model parameters from the original naive model
presented in Table 4.1 to create Yl.

– Use SPMMAR to predict ˆBPFil
1|mil and ˆBPFil

1
as described in Section 3.8. We use a 1

to indicate that the data used is MAR.

– Compute MAEp ˆBPFl

1|mlq and MAEp ˆBPFl

1q.

5.3.2 Results and Discussion
Data Simulated Missing Not at Random

We can see from Figure 5.7 that the distribution of MAEs for the predictions of Yl in the
100 simulated datasets is shifted towards lower values when the missing status is known
when the data is MNAR. Further, we see from Figure 5.9 that the mean absolute error
was smaller for every simulated dataset when predicting ˆBPF |m than ˆBPF since zero
is not contained in the distribution of MAEp ˆBPF |m´ ˆBPF q. Hence, for data MNAR
following the SPM, we can expect the predictions of ˆBPF |m to be better than ˆBPF .
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Figure 5.7.: Distribution of the mean absolute error (MAE) of the posterior mean prediction
ˆBPF |m and ˆBPF for future blood pressure obtained from the validation scheme

presented in Section 5.3.1 when the data is MNAR.

Data Simulated Missing at Random

Figure 5.8 shows that when the data is MAR, we obtain almost the same mean absolute
error for for the predictions of Yl in every simulated dataset when predicting ˆBPF

1|m
as when predicting ˆBPF

1
. In addition we see from Figure 5.9 that the distribution of

MAEp ˆBPF
1|mq ´MAEp ˆBPF

1q covers zero.

Comparing Data Missing Not at Random with data Missing at Random

From Figure 5.9 we also see that there is no overlap between the two distributions,
MAEp ˆBPF |mq´MAEp ˆBPF q and MAEp ˆBPF

1|mq´MAEp ˆBPF
1q. The distributions

are also very narrow both when the data is MNAR and MAR. This demonstrates that
even minor differences in MAE between predictions of ˆBPF |m and ˆBPF indicate that
data are MNAR.
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6Prior Sensitivity Analysis

The simulation studies performed in Section 5.1 uncovered identifiability issues for both
the naive model and the SPM when the data was MNAR (Figure 5.3 and Figure 5.1).
Even though the SPM is less biased than the naive model, there is still a substantial
bias. The coverage for the association parameter c is especially low (Table A.3 and
Table A.1). The association parameter is of great importance in the SPM since it defines
the connection between the dropout process and the blood pressure process. Therefore,
we were left with the question; Could misspecification of the informative prior for
the association parameter c be the cause of some of this bias and low coverage? This
question motivated a prior sensitivity analysis. All the models fitted in Chapter 4 used
a normal prior with mean zero and standard deviation one. In this analysis, we fit
the main SPM defined in (3.3) with different choices for the prior for c displayed in
Table 6.1. All other priors are kept identical to the specification given in Section 3.3.3.
We use real data from the HUNT2 cohort.

Figure 6.1 shows the resulting 95% equi-tailed credible intervals for all parameters. We
clearly see that the latent field, α0, αBP , αage, αBMI , αsex, β0, βBP , βBMI , βsex, c, have
almost identical credible intervals. Even when the prior for c is misspecified with mean
ten and variance one, the SPM obtains almost identical posterior means as with the
other prior distributions for c. The credible intervals for the hyperparameter σage vary
slightly more. However, we see in Figure 6.2 that the resulting posterior mean of the
age effect is practically identical for all the different priors. Hence we conclude that the
model is not sensitive to different choices of c.

Table 6.1.: Priors for the association parameter c.

Model name Prior for c
mu “ 0, sigma “ 1 N(0,12)
mu “ 0, sigma “ 10 N(0,102)
mu “ 0, sigma “ 100 N(0,1002)
mu “ 1, sigma “ 1 N(1,12)
mu “ 1, sigma “ 10 N(1,102)
mu “ 1, sigma “ 100 N(1,1002)
mu “ 10, sigma “ 100 N(10,1002)
mu “ 10, sigma “ 1 N(10,12)
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βsex c σage σε

αsex β0 βBMI βBP

α0 αage αBMI αBP

0.26 0.28 0.30 0.32 0.65 0.70 0.75 0.80 1 2 0.785 0.790 0.795

0.04 0.05 0.06 0.5 0.6 0.06 0.08 0.10 0.14 0.16 0.18

0.27 0.28 0.29 0.22 0.23 0.055 0.060 0.065 0.070 0.61 0.62 0.63

mu = 0 sigma = 1
mu = 0 sigma = 10

mu = 0 sigma = 100
mu = 1 sigma = 1

mu = 1 sigma = 10
mu = 1 sigma = 100

mu = 10 sigma = 1
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Figure 6.1.: Posterior mean and 95 % credible intervals for all model parameters of the SPM with
different priors for the association parameter c. The model names are constructed
so the first digit is the mean and the second the is the standard deviation used in
the prior for c.
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7Simulated Data for Reproducability
Purposes

To follow the standard of high-end journals such as the Journal of the American Sta-
tistical Association, we have chosen to make all code publicly available and generate
a simulated dataset. These can be found in the following GitHub repository: Hofman
[2021a]. For reproducibility reasons, the best would be to make all data available.
However, data from the HUNT study contains personal information and can not be
shared to protect the privacy of the participants. To enable third parties to evaluate the
methods and findings of this work, we have constructed a simulated dataset with similar
properties as the original data.

The explanatory variables are generated based on graphical inspection, summary statis-
tics of the HUNT2 cohort, including empirical correlations, and simple linear frequentist
regressions. In this chapter, we use i to index the actual participants of the HUNT2
cohort and j to index the simulated participants. The response variables, i.e., future
blood pressures (BPF ) and the missing status m are generated based on the posterior
mean estimates of the model parameters of the SPM presented in Table 4.1. The aim
has been to obtain a simulated dataset with similar properties as the HUNT2 cohort,
also concerning dependence in the explanatory variables. Further formal modeling and
inference regarding the models for the simulated data are outside the scope of this
thesis.

7.1 Generation of the Explanatory Variables
The variable sex is drawn from a binomial distribution, and age is drawn independently
from sex from a truncated mixed normal distribution. BMI is drawn from a skewed
normal (SN) distribution dependent on age and sex. Further BPI is also drawn from a
SN distribution depending on sex, age, and BMI.

The following paragraph consists of a detailed explanation of the simulation process for
each explanatory variable.

Sex: Sex is drawn independently for each participant j from a Bernoulli distribution
with parameter p equal to the fraction of female participants in HUNT2 (Table 3.2).

sexj„Binomialpp “ 0.5303q
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Table 7.1.: Coefficients of the linear regression BMII “ α0 ` αageagei ` αsexsexi ` εi with
εi „ Np0, σ2q

Variable Mean Std. error Pr(>|t|)
α0 -0.023 0.005 1 e-5
αage 0.191 0.004 <2e-16
αsex 0.05 0.008 1.2 e-10

Age: Age is considered independent of sex and draw from a mixed normal distribu-
tion.

agej „ 0.75Np43, 152q ` 0.25Np75, 72q
This means, for each participant, we draw a cut parameter from a Bernoulli distribution
with parameter p “ 0.75. If the cut parameter is one, we draw age from a normal
distribution with mean, µ “ 43, and standard deviation, σ “ 15, otherwise we draw
from a normal distribution with mean 75 and standard deviation 7. In addition we
truncate age at agej “ 18 and agej “ 105. More precisely for every value of agej ă 18
we draw a new value from distribution Np43, 152q until it was greater than 18 and for
every value of agej ą 105 we draw a new value from Np75, 72q distribution. Afterward,
we round the age to one significant digit to replicate the format used in the HUNT Study
before standardizing it. We draw agej on the original scale (years) before standardizing
it to ensure the same number of possible ages as in the HUNT2 cohort.

BMI: BMI is correlated with both age and sex in HUNT2. To be able to mimic this
dependency, we first perform a linear regression on the HUNT2 cohort as follows,

BMIi “ α0 ` αageagei ` αsexsexi ` εi,
εi „ Np0, σ2q.

The result of this linear regression can be seen in Table 7.1. The distribution of BMI

in the HUNT2 cohort is skewed compared to a normal distribution. Therefor we use a
skewed normal (SN) distribution with density as follows;

fpxq “ 2
σ
φpx´ µ

σ
qΦpξpx´ µ

σ
qq

where φp.q denotes the standard normal density function and Φ denotes the correspond-
ing cumulative density function.

The SN used to generate BMIj has mean µ “ α0 ` αageagej ` αsexsexj , standard
deviation σ “ 0.9 and skewness parameter ξ “ 1.5. The coeffcients α0, αage, and αsex
take the values presented in Table 7.1 from the linear regression of BMI on the HUNT2
cohort. For each simulated participant j we use the corresponding simulated age and
sex.

BMIj „ SNpµ “ α0 ` αageagej ` αsexsexj , σ “ 2, ξ “ 1.5q.
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Table 7.2.: Coefficients of the linear regression BPI “ α0`αsexsexi`αageagei`αBMIBMIi`
εi with εi „ Np0, σ2q on the HUNT2 cohort.

Variable Estimate Std. Error Pr(>|t|)
α0 -0.078 0.004 <2e-16
αsex 0.167 0.006 <2e-16
αage 0.516 0.003 <2e-16
αBMI 0.186 0.003 <2e-16

BPI: BPI is correlated with age, sex, and BMI in the HUNT2 cohort. Therefore we
perform a linear regression on the HUNT2 cohort as follows,

BPI i “ α0 ` αsexsexi ` αageagei ` αbmiBMIiεi

εi „ Np0, σ2q.

The results of this regression can be seen in Table 7.2. Again the true distribution is more
skewed leading us to use a SN distribution with mean µ “ α0 ` αsexsexj ` αageagej `
αbmiBMIj ´ 0.15, standard deviation 0.85, and skewness ξ “ 3 and where α0, αsex,
αage, and alphaBMI are given in Table 7.2.

BPI „ SNpµ “ α0 ` αsexsexj ` αageagej ` αbmiBMIj ´ 0.15, σ “ 0.6, ξ “ 3q

7.2 Generating the Response Values
The response values BPF and m are constructed using the posterior mean estimates for
all model parameters from the SPM given in Table 4.1 fitted to the HUNT2 cohort.

εj „ Np0, σ2
epsilonq

BPF j “ α0 ` αsexsexj ` αageagej ` αbmiBMIj ` αBPIBPI j ` εj
logitppjq “ β0 ` βsexsexj ` fpagejq ` βbmiBMIj ` βBPIBPI j ` cεj

mj „ Bernoullippjq

7.3 Comparison Between Simulated Data and the
HUNT2 Cohort

As we can see from Figure 7.2 the distribution of age, BMI, BP2 and BP3 are similar.
The correlation matrices for both the true and simulated data are displayed in Figure 7.1a
and Figure 7.1b and also show similar properties. In Appendix B we display the posterior
distribution of the latent field and the hyperparameters for the SPM (3.3) and the
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naive model (3.4) for a simulated dataset of size 64385 and 1000. These datasets are
available at GitHub repository Hofman [2021a]. We note that results on simulated data
will not be identical to the results presented in earlier chapters. However the results for
the dataset of full size, Figure B.1, Figure B.2, are similar to Figure 4.2 and Figure 4.3
presented in Section 4.2. The results for the smaller dataset, Figure B.3, Figure B.4, are
not comparable as all the distributions become very wide.
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8Discussion

In this work, we propose reasonable models in the form of a SPM (3.3) for predicting
future blood pressure (BPF ) and missing status on real and simulated data. These
models are compared to a naive model (3.4) which assumes data MAR. Our findings
indicate that blood pressure missing due to dropout in the HUNT Study is MNAR.
The posterior distribution of the association parameter c (3.3) is non-zero, and the
SPM results in different parameter estimates than the naive model (Table 4.1). The
simulation studies (Section 5.1) indicate that the two models result in similar parameter
estimates given MAR data. The simulation study also confirms that if the underlying
assumption of data MNAR is valid, the SPM accounts for this better than the naive
model, even though both models are biased. Hence, a difference in SPM and naive
model parameter estimates indicate data MNAR. We note that there seem to be some
identifiability issues resulting in a bias when the data is MNAR and a low coverage for
some model parameters in the simulation studies (Figure 5.1,Figure 5.2, Table A.1, and
Table A.2). This bias is especially pronounced for the association effect c when the data
is MNAR. Our initial thought was that the low coverage could be due to misspecification
of the informative prior used for c. However, the prior sensitivity study presented
in Chapter 6 indicates that the model is robust to prior specifications concerning the
association parameter. Hence, the source of the bias and low coverage remains unsolved.
We performed all simulation studies on datasets that mimic our study systems, the
HUNT2 and HUNT3 cohort, in size and explanatory variables. We have not explored the
asymptotic properties of the models, such as the development of the biases with larger
datasets. This is outside the scope of this thesis.

Validation of the model predictions indicated that the two models do not differ much
when predicting future blood pressure and the probability of dropping out on a popula-
tional level. However, the SPM predicts both a higher ˆBPF i and a higher probability
of dropping out (p̂i) on an individual level. In addition, the SPM is relevant for under-
standing the underlying data. Through simulation studies, we see that even if the data
is MNAR and the overall CRPS (for observed and missing participants) is the best for
the SPM, the naive model is expected to perform better than the SPM on the present
participants. Therefore we do not reject the SPM model even though the CRPS is better
for the naive model than the SPM on the present participants in the HUNT3 cohort.

The new validation scheme proposed in Section 3.8 to validate the MNAR assumption,
given data following the SPM, indicates that the missing status contains information
about BPF . According to the simulation studies, on this validation scheme, the model
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predictions given missing status are only better than those without knowledge of missing
status if the data is MNAR (Figure 5.9). When the data is MAR, the mean absolute
errors of the two posterior mean predictions are almost identical. Hence we have strong
indications that blood pressure missing due to dropout in the HUNT Study is MNAR.

It is worth making a note about the definition of missing. In this work, we consider
every participant who did not attend the follow-up study as missing, including dead
participants. One could argue that these do not have a blood pressure at the time of
the follow-up study and should not be regarded as missing. However, since increased
systolic blood pressure can cause death, we decided to consider these participants as
missing. It could be interesting to do further research with a different definition of
missingness, such as only including participants invited to the follow-up survey. One
could even model two missing processes, one for the death process and one for the
missing process of the still alive participants.

In this work, we have not explored the effect of measurement errors on the model
results. Variables such as age and sex are not prone to measurements error. Blood
pressure, on the other hand, can easily be measured incorrectly [Handler, 2009]. The
blood pressure reported in the HUNT study is measured by trained personnel reducing
the risk of measurement errors. However, it is not unlikely that errors such as talking,
active listening, distant bladder, or smoking within 30 minutes of measurement can
have occurred, and according to Handler [2009] this can lead to an error in systolic
blood pressure of approximately 10´ 15mmHg. This error is approximately 7´ 11%
of the average systolic blood pressure measured in the HUNT2 and HUNT3 cohorts.
Exploring the effect measurement errors have on the models could be of interest in
future reaserch.

When developing models and testing the inference, we at times used a smaller dataset
and observed that the parameter estimates varied with the size of the dataset. We also
observed similar tendencies when creating simulated data for reproducibility purposes
that are publicly available. Exploring this discrepancy was considered outside the scope
of this thesis. However, this might affect the bias of the SPM when data is MNAR.
Future research should contain a thorough analysis of the impact of the data size and
how the parameter estimates vary with different data sizes. This research could give a
more precise guideline as to when these models are appropriate to use, e.g., how large
datasets are needed.

Whether the data is MAR or MNAR relies on untestable assumptions [Enders, 2011].
However, for future research, it would be interesting to study the models and results
of this work in the new graphical framework introduced by Mohan and Pearl [2021].
This new approach of missing data modeling could greatly benefit understanding the
proposed model’s properties.
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As a final note, we acknowledge that the models presented in this work are far from
trivial to use and are computationally demanding. Especially the use of the software
package R-INLA can be challenging for non-statisticians. However, we find the models
presented to provide helpful insight into the underlying structure of the HUNT data and
how one can model accounting for data MNAR.

To summarize this work, we find that the SPM is better suited to account for data MNAR
than the naive model, even though both models are biased. The bias is still unaccounted
for but is not caused by misspecification of the informative prior of the association
parameter c in the SPM. We have shown that the SPM can be fitted efficiently through
INLA and can be used for predictive purposes. In addition, we have proposed a novel
scheme for evaluating if data is MNAR when the data follows the SPM. This scheme is
tested in simulation studies and indicates that blood pressure missing due to dropout in
the HUNT Study is MNAR.
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ASupplementary Material for The
Simulation Studies on Bias and
Coverage

We have summarized the results from the simulation studies performed in Section 5.1
exploring the bias and coverage of the SPM (3.3) and the naive model (3.4). Table A.1,
Table A.2, Table A.3, and Table A.4 display the mean posterior mean, bias, and coverage
of the parameter estimates for both the SPM and the naive model. Further we display
the difference in bias for the SPM and naive model BiasSPM ´Biasnaive.
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BShared Parameter and Naive Model
Results on Simulated Data

For comparison concerning reproducibility purposes, we fitted our main SPM (3.3) and
naive model (3.4) to simulated data created as described in Chapter 7. In the GitHub
repository by Hofman [2021a] two simulated datasets are available, one with 1000 and
one with 64385 simulated participants. We see from Figure B.1 and Figure B.2 that we
obtain similar, although not identical, results for the model fits on the simulated dataset
of the same size as the HUNT2 cohort as on the HUNT2 cohort. When we use the smaller
simulated dataset with only 1000 participants, we do not get the same results as for the
real data. This can be seen in Figure B.3 and Figure B.4. We, therefore, note that while
the smaller dataset can be used to verify the code, it can not be used to compare results.
Further, we note that this indicates that a certain amount of data is needed for using the
models presented in this work.
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Figure B.1.: Age effect for the SPM and naive model fitted to simulated data mimicking the size
(64385 participants) and structure of the HUNT2 cohort with 95% credible bands.
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Figure B.2.: Posterior distribution of the latent field and hyperparameters for the SPM (3.3) and
naive model (3.4) fitted to simulated data mimicking the size (64385 participants)
and structure of the HUNT2 cohort.
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Figure B.3.: Age effect for the SPM and naive model fitted to a small simulated dataset (1000
participants) mimicking the structure of the HUNT2 cohort with 95% credible
bands.
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Figure B.4.: Posterior distribution of the latent field and hyperparameters for the SPM (3.3)
and naive model (3.4) fitted to a small simulated dataset (1000 participants)
mimicking the structure of the HUNT2 cohort.
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During the time of writing this thesis, Ingelin Steinsland, Lars Espeland, Emma In-
geström, and I wrote a small paper based on the work by Espeland [2020] and a full
journal paper based on the work by Espeland [2020], my project thesis Hofman [2021b],
and this master thesis.

The first, "A Shared parameter model accounting for dropout not at random in a
predictive model for systolic blood pressure using The HUNT Study", was submitted to
the 2021 Neural Information Processing Systems conference (14. December 2021) and
accepted, after being peer-reviewed, for a poster presentation.

The second "A Shared Parameter Model for Systolic Blood Pressure Accounting for Data
Missing Not at Random in the HUNT Study" is finalized at the cusp of completing this
thesis and will shortly be sent to the HUNT team for approval before it is submitted
to an international recognized journal in statistics. The manuscript given here is not
considered complete for submission when delivering this work. However, it is included
here for completeness. It shows an essential milestone in working with this thesis, and a
considerable amount of effort went into it.

Both papers are self-contained.
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Abstract

This work proposes and evaluates a shared parameter model (SPM) to account for
data being missing not at random (MNAR) for a model based on a longitudinal
population study. The aim is to model systolic blood pressure ten years ahead based
on current observations. It is inspired by and evaluated on data from the Trøndelag
Health Study (HUNT). The proposed SPM consists of a linear model for the systolic
blood pressure and a logistic model for the dropout process connected through a
shared random effect. To evaluate the SPM we compare the parameter estimates of
the SPM with a naive linear Bayesian model using the same explanatory variables
while ignoring the dropout process. This corresponds to assuming data to be
missing at random (MAR). In addition, a simulation study is performed in which
the naive model and the SPM are tested on data with known parameters when
missingness is assumed to be MNAR. The SPM indicates that participants with
higher systolic blood pressure than expected from the explanatory variables at the
time of the follow-up study have a higher probability of dropping out, suggesting
that the data are MNAR. Further, the SPM and the naive model result in different
parameter estimates for the explanatory variables.

NeurIPS 2021 Workshop Your Model Is Wrong: Robustness and Misspecification in Probabilistic Modeling.



1 Introduction

An elevated systolic blood pressure (BP) increases the risk of developing diseases related to the heart,
blood vessels, brain, and kidney [Lewington et al., 2002, Rapsomaniki et al., 2014, Tozawa et al.,
2003]. Elevated BP affects over 1.1 billion people worldwide and accounts for 10.8 million global
deaths per year [Zhou et al., 2017, Murray et al., 2020]. Early detection, treatment, and control
of elevated BP are of high priority in public health strategies [World Health Organization, 2013].
Hence, the ability to predict future BP trends and use this to start preventive measures early is of
great benefit [Whelton, 1994]. This work is motivated by making models for understanding BP
ten years ahead based on current BP, age, and sex using data from Helseundersøkelsen i Trøndelag
(HUNT). The HUNT Study is a series of four comprehensive population-based health surveys in
central Norway and a valuable source for longitudinal research. However, longitudinal cohort studies
following participants over a long period may be subject to selection bias as participants being lost
to follow-up, i.e., dropout between two subsequent surveys, cause data to be missing. The missing
data may contain important information about the true distribution of the data and must therefore be
treated with great care [Little and Rubin, 2019].

This work proposes a shared parameter model (SPM) assuming data missing not at random (MNAR)
for BP based on a population-based health study [Wu and Carroll, 1988, Follmann and Wu, 1995,
Vonesh et al., 2006, Steinsland et al., 2014]. The model fit belongs to the framework of a Bayesian
latent Gaussian model, and computational efficient inference is available through integrated nested
Laplace approximations (INLA)[Rue et al., 2009, 2017, Gómez-Rubio, 2020]. Further, the SPM is
compared to a naive model under the assumption of data being missing at random (MAR). We use
the definitions as stated in Little and Rubin [2019]. The differences between these categories are how
the missingness depends on the complete data. Data MAR means the distribution of missingness is
independent of the missing response values but can be dependent on the observed data. Data MNAR
means the probability of being missing depends on the missing values themself. This process is
non-ignorable and needs to be modeled together with the original model [Little and Rubin, 2019].
The work presented here is based on the thesis by [Espeland, 2020].

2 Data

Summary of data from HUNT1-HUNT2
Summary HUNT1 Observed in HUNT2 Missing in HUNT2

Variable n = 74 247 n = 46 456, 62.6 % n = 27 791, 37.4 %
BP2 - 141.66 ± 22.62 -
BP1 138.48 ± 23.52 133.66 ± 19.94 146.54 ± 26.65
age1 49.30 ± 17.45 45.17 ± 14.24 56.20 ± 19.98
sex

female 37 788 24 793 (65.6 %) 12 995 (34.4 %)
male 36 459 21 663 (59.5 %) 14 796 (40.5 %)

Table 1: Summary of the HUNT1-HUNT2 cohort. The second column displays the mean and standard deviation
for all continuous variables of all participants in HUNT1 in addition to the number of females/males present
in the study. The third and fourth column displays the number of participants from HUNT1 who participated
or dropped out in HUNT2 and the mean and variance of all continuous variables of the participants grouped
by missingness in HUNT2. They also display the percentage of the original number of females/males who
participated/dropped out. All the data are displayed on the original data scale.

In this work, we follow a cohort of adults participating in HUNT1 (1984-86) until participation
in HUNT2 (2006-08). Of 74 247 participants with complete records on BP, age, sex, and BMI at
HUNT1, 27 791 (37.4 %) participants were missing in HUNT2 meaning the response value of interest
is missing in a large proportion of the sample [Krokstad et al., 2013]. The available data do not
contain any information on the reason for dropout, e.g., declined to participate, moved out of the
county, or being dead. A summary of the data from the HUNT Study is provided in Table 1. The
indices in BP1, age1, and BP2 refer to age and BP from HUNT1 and HUNT2 respectively. Prior to
modeling the explanatory variables are standardized based on the empirical mean and variance from
HUNT1.
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3 Models and methods

3.1 Naive and shared parameter model

The shared parameter model consists of two sub-models, one for BP (BP2) and one for the dropout
process (m2). The index i signifies participant number i. The first model is given by,

BP2i = α0 + αBPBP1i + αageage1i + αsexsexi + εi. (3.1)

This sub-model is the naive model when the dropout process is ignored. When the dropout process is
accounted for εi is shared with the sub-model for the dropout process given as follows,

logit(p2i) ∼ β0 + βBPBP1i + f(age1i) + βsexsexi + cεi (3.2)
m2i ∼ Bernoulli(p2i). (3.3)

Here p2i is the probability of dropping out for participant i, f(.) is a random walk of order 2 [Gómez-
Rubio, 2020], and the parameter c is an association parameter that links the two models together. A
random walk is a common choice to include smooth terms in the linear predictor [Gómez-Rubio,
2020]. As shown by Espeland [2020] only age has an additive effect even when all continuous
parameters are modeled non-linearly in the naive model. In addition adding additive effects severely
decreases the computational speed. Hence, as suggested by Espeland [2020] we only model age as a
non-linear effect. The variances of the second-order difference for the random walk and the variance
for the individual random effect are assigned a non-informative Gamma distribution,

σage, σε ∼ Gamma(1, 5 · 105). (3.4)

The priors for the coefficients are,

α0, αBP , αage, αsex, β0, βBP , βsex ∼ N(0, 106). (3.5)

The association-parameter c is given a more informative normal prior,

c ∼ N(0, 1) (3.6)

as this parameter is assumed to be small.

3.2 Inference

By modeling the BP in a Bayesian framework we obtain the posterior marginals of all the coefficients
involved. This can be done using integrated nested Laplace approximations (INLA) because the
SPM and the naive model are parts of the class of latent Gaussian models [Rue et al., 2009, 2017,
Gómez-Rubio, 2020].

We use the R-INLA software (https://www.r-inla.org) which also supports fitting models with
multiple likelihoods, which is the case for the model specified in Equation 3.1 and 3.2 where the
dropout process is modeled with a binomial likelihood and the model for BP is modeled with a
normal likelihood.

3.3 Simulation study

To evaluate the performance of the models a simulation study is performed under MNAR assumption.
The parameters are the posterior mean estimates obtained by the SPM for HUNT1-HUNT2 data
(Table 2). These are used to simulate BP and the dropout process between HUNT1 and HUNT2.

We simulate j = 1 : 100 new data sets and fit both the naive model and the SPM to the data. To
compare the models both the mean posterior mean, mean bias and coverage are compared. The mean
bias is given by, Bias(θ̂) =

∑j=100
j=1 (θ̂j − θ) The coverage is defined as the proportion of occurrences

where the true parameter θ falls within the 95% equal-tailed credible interval.

4 Results

The results of the parameter estimations can be seen in Figure 1. We can see that all coefficients but
αsex in the SPM are significant in both models and do not have zero contained in their distribution.
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Figure 1: Posterior density for the parameters and hyperparameters of both the SPM model and the naive model
for the BP model (3.1). We used the HUNT1-HUNT2 data as described in Table 1 with scaled explanatory
variables. The association parameter c (3.2) in the SPM is also displayed.

We also note that the posterior mean for the association parameter, c (3.2), is unequal to zero which
can also be seen in the bottom right panel of Figure 1.

When comparing the estimates made by the SPM with the naive model we see that the naive model
estimates a lower effect of the explanatory variables than the SPM for all explanatory variables. From
Figure 1 we also see that the coefficients with the smallest overlap in posterior density between the
SPM and the naive model are α0, αBP1

, and σε. The estimates of αage and αsex have more overlap
although still distinct.

SPM Naive
True Mean Bias Coverage Mean Bias Coverage

α0 152.49 151.50 -0.99 0.14 148.94 -3.55 0
αBP1 17.45 17.23 -0.22 0.49 16.65 -0.80 0
αage2 7.31 7.20 -0.11 0.82 6.94 -0.37 0.13
αsex -0.53 -0.75 -0.22 0.71 -1.35 -0.82 0
β0 0.13 0.11 -0.02 0.96 - - -
βBP1 0.26 0.25 -0.01 0.79 - - -
βsex 0.44 0.42 -0.02 0.75 - - -
σε 18.10 17.70 -0.40 0.12 -17.45 -0.65 0.03
c 0.046 0.033 -0.013 0.07 - - -

Table 2: Summary of the parameter estimates obtained from the simulation study when the data are MNAR.
The mean and biases are the mean of the posterior means and the bias of the posterior means as defined in
Section 3.3. The coverage is defined as the proportion of times the true parameter value falls within the 95%
equally tailed credible interval.

The results of the simulation study are summarized in Table 2. The SPM has relatively good parameter
estimates and overall good coverage. We see that the SPM estimates all parameters closer to the
true value than the naive model. The coverage varies much between the parameters, but the SPM
has consistently better coverage than the naive model. The low coverage for c could be due to prior
sensitivity. We also see that both the SPM and the naive model underestimate the true parameter
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values for all parameters. However, the bias is clearly reduced by the SPM compared to the naive
model in our simulation.

5 Closing Remarks

Models accounting for data MNAR are based on untestable model assumptions. As stated by
Molenberghs et al. [2008] "each MNAR model fit to a set of observed data can be reproduced exactly
by a MAR counterpart". In this work, we suggest reasonable models for both blood pressure and
the missing process, and the results indicate data MNAR that needs to be considered. The posterior
distribution of the association parameter in the SPM has all its mass above zero and the SPM and
the naive model result in different posterior distributions. The simulation study confirms that if the
underlying assumption of the data being MNAR holds and a higher BP ten years ahead than explained
by the explanatory variables increases the probability of dropping out, the SPM gives less bias and
better coverage. Further, we demonstrate that the suggested SPM can be fitted using INLA, and is
computationally feasible for a data set of this size. Future work should include more simulation
studies including data MAR, a thorough sensitivity analysis, and different scaling of the data to
possibly solve numerical issues.
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Abstract

In this work, blood pressure eleven years ahead is modeled using data from a
longitudinal population-based health survey, the Trøndelag Health (HUNT) Study,
while accounting for missing data due to dropout. In the HUNT Study, 20´50% drop
out between consecutive surveys. We propose and validate a shared parameter model
(SPM) in the Bayesian framework with age, sex, body mass index, and initial blood
pressure as explanatory variables. Further, we propose a novel evaluation scheme to
evaluate if data is missing not at random (MNAR) based on comparing the predictive
performance of the fitted SPM with and without conditioning on the missing process.
The results demonstrate that the SPM is suitable for inference for a dataset of this size
(cohort of 64385 participants) and structure and indicates data MNAR. The SPM
gives different parameter estimates than a naive model assuming data missing at
random. The SPM and naive models are compared based on predictive performance
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for the validation dataset. The naive model performs slightly better than the SPM
for the present participants. However, we find that the naive model performs better
for the present participants in a simulation study based on the SPM, while the SPM
performs better for the dropouts.

Keywords: longitudinal studies, missing data, INLA (integrated nested Laplace approxi-
mations), dropout, health survey

1 Introduction

This work aims to establish and validate a predictive model for systolic blood pressure using
data from a longitudinal population-based health survey, the Trøndelag Health (HUNT)
Study, while accounting for missing data due to dropout.

Elevated blood pressure increases the risk of developing diseases related to the brain,
heart, blood vessels, and kidney [Lewington et al., 2002, Tozawa et al., 2003, Rapsomaniki
et al., 2014]. It affects more than 1.1 billion people and accounts for over 10.8 million deaths
per year, thereby surpassing smoking as the leading preventable cause of death for middle-
aged and older adults worldwide [Zhou et al., 2017, Murray et al., 2020]. Early detection,
prevention, and treatment of elevated blood pressure are of high priority in public health
strategies [World Health Organizatoin, 2013]. Thus, obtaining unbiased, accurate models
for predicting future blood pressure is of great interest in medical research [Whelton, 1994].

The HUNT Study follows the cohort study design meaning the same participants are
followed over a long period. In each survey there are between 50000 and 80000 participants,
and between consecutive health surveys, 20 ´ 50% of participants are lost to follow-up
[Krokstad et al., 2013, Åsvold et al., 2021]. Proper handling of missing data is vital to
obtain unbiased inference [Gad and Darwish, 2013, Little and Rubin, 2019, Chap. 1.3, 6],
and how to handle missing data depends on the missing process.

Based on available literature [Anderson Jr et al., 1994, Whelton, 1994, Brown et al.,
2000, Jiang et al., 2016, Espeland, 2020] and available observations in the HUNT Study, we
suggest a predictive model of future blood pressure with age, sex, body mass index (BMI),
and initial blood pressure as explanatory variables. All participants have full records for
the explanatory variables. Missing data can be categorized and described in terms of three
missing processes; missing completely at random (MCAR), missing at random (MAR), and
missing not at random (MNAR) [Little and Rubin, 2019, Chap. 1.3, 6]. If the probability
of drop out, i.e. of missing future blood pressure values, is independent of all observed and
unobserved data, including the missing response variables and all explanatory variables, the
data is MCAR. It is reasonable that the probability of dropping depends on age, and hence
MCAR is disregarded. The data is MAR if the probability of missingness dependends on
the observed data, but is independent of the unobserved data. If all explanatory variables
are observed a model for the missing process with the same explanatory variables as for
blood pressure, is an example of a model assuming MAR. Missing processes that are MCAR
or MAR are ignorable, meaning unbiased inference can be performed without modeling the
missing process. Data that is neither MCAR nor MAR is MNAR [Gad and Darwish, 2013,
Little and Rubin, 2019, Chap. 6]. If the part of the future blood pressure which can not be
explained by age, sex, BMI, and initial blood pressure, affects the probability of dropping
out, the data is MNAR. This can be thought of as (unknown) explanatory variables not
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included in the models. It is reasonable to assume that there are health related variables
that influence both blood pressure and the probability of drop out. Thus, we argue that in
a predictive model for future blood presure we should consider that data might be MNAR.
If data is MNAR the missing process must be modeled simultaneously with the original
model to obtain unbiased inference [Little and Rubin, 2019, Chap. 1.3, 6].

Even though the assumption of data MAR is often not fulfilled, many of the available
software packages and methods described in the literature assume data to be MAR [Bal-
akrishnan, 2009, Rhoads, 2012, Little and Rubin, 2019, Mohan and Pearl, 2021]. However,
several studies, especially in biostatistics, have accounted for missing data under the as-
sumption of data MNAR. [Wu and Carroll, 1988, Little, 1993, Diggle and Kenward, 1994,
Follmann and Wu, 1995, Little, 1995, Albert and Follmann, 2000, Molenberghs et al., 2008,
Howe et al., 2016]. Popular choices for models accounting for data MNAR include the pat-
tern mixture model, selection model, and shared parameter model (SPM) [Heckman, 1979,
Wu and Carroll, 1988, Little, 1993, Henderson et al., 2000, Linero and Daniels, 2018, Little
and Rubin, 2019, Chap. 15.4]. The SPM is based on the idea of a commonly shared
variable affecting both the measurement process and the missing process. Given this vari-
able, the two marginal densities are conditionally independent. It has been used to model
longitudinal data subject to MNAR in several studies [Wu and Carroll, 1988, Follmann and
Wu, 1995, Thomas et al., 1998, Pulkstenis et al., 1998, Vonesh et al., 2006, Creemers et al.,
2010]. In this work, we propose a Bayesian SPM for future blood pressure. The model fits
the framework of Bayesian latent Gaussian model and is suitable for Bayesian inference
using computationally efficient Integrated Nested Laplace Approximations (INLA) [Rue
et al., 2009, 2017, Martino and Riebler, 2019, Gómez-Rubio, 2020, Steinsland et al., 2014].

Molenberghs et al. stated that ”each MNAR model fit to a set of observed data can
be reproduced exactly by a MAR counterpart” [Molenberghs et al., 2008, p. 371]. Hence,
the choice between models eventually comes down to choosing the most likely model as-
sumptions [Enders, 2011]. Recent research has proven that taking the approach of causal
modeling and formulating the models through missingness graphs can give theoretical un-
derstanding and asymptotic performance guarantees [Mohan and Pearl, 2021]. To the best
of our knowledge, the literature provides little insight into practical validation of model
performance on data MNAR. The current standard seems to be the use of simulation
studies to check the reproducibility of the model. i.e., how well the original parameters
are reproduced on simulated data, and sensitivity analysis to check the robustness of the
models [Enders, 2011, Steinsland et al., 2014, Kaciroti and Little, 2021].

In this work, we validate the models on a validation dataset. First, predictive perfor-
mance of the SPM and a naive model assuming the data to be MAR are compared based on
the proper scoring rules [Gneiting and Raftery, 2007] continuous ranked probability score
(CRPS) and Brier score. Second, we propose a new method to evaluate if data is MNAR
based on the SPM. The key idea is that if data is MNAR the missing status has information
about the quantity of interest. Therefore we compare the predictive performance of the
SPM with and without conditioning on missing status.

The main contributions of this paper is the SPM for blood pressure based on data from
the HUNT Study, the demonstration of the applicability for a large case study together
with the new insight from the proposed validation schemes.

Section 2 provides background about latent Gaussian models and missing data theory.
Section 3 introduces the blood pressure case study including the HUNT Study, the proposed
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models, and methods for inference and validation. The results from the case study are
presented in Section 4. Section 5 consists of several simulation sensitivity studies based on
the HUNT Study. Section 6 summarizes and discusses our findings.

2 Background Theory

This section briefly introduces needed background on latent Gaussian models, and com-
monly used models and methods for missing data.

2.1 Latent Gaussian Models

Latent Gaussian models (LGMs) fall within a subclass of the structured additive regression
models [Rue et al., 2009] meaning the response yi belongs to the class of exponential families.
Hence, the mean Epyiq “ µ is linked to a structured additive predictor η through a link
function hpµq such that hpµq “ η. For the structured additive regression models η is defined
as follows [Fahrmeir et al., 2007],

hpµq “ η “ α `
nβÿ

k“1
βkzk `

nfÿ

j“1
f pjqpujq ` ε.

Here tβku represents the linear effects of explanatory variables z, tf pjqp.qu represents un-
known functions of explanatory variables u, and ε is an unstructured term. To belong to
the class of LGMs the prior distributions of α, tβku, tf pjqp.qu and ε must be Gaussian. All
models used in this work belong to the class of LGMs.

2.2 Missing Data

Let yi be the set of j measurements on the ith subject. Then yi can be divided into an
observed part yio and a missing part yim, yi “ pyio,yimq. Let mi be the vector of,

mij “
#

1 if yij is missing

0 otherwise.

Then the full conditional of yi and mi is given as follows,

gpyio,yim,mi|θ,ψq (1)

where the parameters θ and ψ describes the measurement process and missing process,
respectively [Gad and Darwish, 2013, Little and Rubin, 2019, Chap. 6.2]. The data
is MCAR if the missing process gpmi|yio,yim,ψq “ gpmi|ψq. The data is MAR if
gpm|yio,yim,ψq “ gpmi|yio,ψq. If the data is neither MCAR nor MAR, the data is,
by definition, MNAR. If data is MNAR, the missing process must be modeled simultane-
ously with the measurement process to obtain unbiased inference [Little and Rubin, 2019,
Chap. 6.2], and several models are proposed including pattern mixture models and selection
models [Little and Rubin, 2019]. In this work a class of selection models known as shared

4



parameter models (SPMs) is used. From now on, let xi be the set of fully observed explana-
tory variables and εi be an unobserved within-subject random effect with hyperparameter
γ. [Little and Rubin, 2019, Chap. 15.2] defined SPM as follows:

gpyi,mi, εi|xi,θ,ψ, γq “ gpyi|xi, ε,θqgpmi|xi, εi,ψqgpεi|xi, γq. (2)

This model assumes that both the measurement and dropout processes depend on a shared
latent variable εi. MAR is then a special case with gpmi|xi, εi,ψq “ gpmi|xi,ψq [Vonesh
et al., 2006].

3 Case Study: A Blood Pressure Predictive Model

based on the HUNT Study.

3.1 The HUNT Study and explanatory analyses

The HUNT Study is a longitudinal population-based health survey in central Norway and
the study protocols have been described in detail previously [Krokstad et al., 2013, Åsvold
et al., 2021] (Appendix A). Every adult citizen in the now former county of Nord-Trøndelag
were invited to participate in clinical examinations and questionnaires in 1984-86 (HUNT1),
1995-97 (HUNT2), 2006-08 (HUNT3), and 2017-19 (HUNT4) [Krokstad et al., 2013, Åsvold
et al., 2021]. In this study observations of systolic blood pressure (BP ), age (age), body
mass index (BMI) and sex (sex, 0 for females and 1 for males) are used. Following Tobin
et al. [2005] BP is adjusted by adding 15 mmHg for all participants who self-reported using
BP medication. When needed a subscript indicates the HUNT survey of the observation
(e.g. BP2 denotes BP observed at HUNT2). We define a training cohort (HUNT2 cohort)
with observations of initial blood pressure (BPI “ BP2), age, BMI and sex from HUNT2,
together with future blood pressure (BPF “ BP3) from HUNT3 and a missing indicator
m (1 if BPF is missing in HUNT3, 0 if present). Of 60385 participants in HUNT2, 43.1%
of the cohort were missing in HUNT3.

Units and summary statistics for the observations in the HUNT2 cohort are given in
Table 1, together with group mean for observations grouped on missing status. In all follow-
ing analyses BPF , BPI , age and BMI observations are standardized by the corresponding
sample mean and standard deviation in the HUNT2 cohort.

In Figure 1 and Table 1 we find clear differences between the present and missing
participants for age and BPI (BP2). Middle-aged participants are less likely to drop out
than young or elderly participants, and those with higher blood pressure are more likely to
be missing. This suggests that the data is at least MAR. A validation cohort, the HUNT3
cohort, is also constructed. It consists of participants with observations of blood pressure
(BPI “ BP3), age, BMI and sex in HUNT3, and future blood pressure (BPF “ BP4)
and missing status from HUNT4. Of 50201 participants in HUNT3, 33.3% of the cohort
drop out before HUNT4. See Table 5 in Appendix B for further summery of the HUNT3
cohort.
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Table 1: The sample mean and standard deviation of BPF , BPI , age, and BMI and
proportion of female/male participants in the HUNT2 cohort are displayed in the third
column. The fourth and fifth columns display sample mean for the present and missing
participants in addition to proportions of present/missing participants for the whole cohort
and per sex.

Summary of the HUNT2 cohort
Variable Unit HUNT2 Present in HUNT3 Missing in HUNT3
BP3 (BPF q mmHg - 136.1 -
BP2 (BPI) mmHg 139.5 (23.6) 135.2 145.0
age2 years 50.0 (17.1) 47.0 54.01
BMI2 kg/m2 26.4 ( 4.1) 26.2 26.6
sex 56.9 % 43.1 %

female 0 53.0 % 59.3 % 40.7 %
male 1 47.0 % 54.3 % 45.7 %
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Figure 1: Smoothed empirical density of BPI (BP2), age, and BMI for all participants in
the HUNT2 cohort.
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3.2 A Shared Parameter Model for Blood Pressure

We set up a shared parameter model (SPM) for BPF and the missing process using age,
sex, BMI, and BPI , as explanatory variables in the framework of a LGM as presented in
Section 2.1. Let BPF i and mi represent future blood pressure and missing status for indi-
vidual i. The likelihoods are chosen to be Gaussian with identity link for BPF and Bernoulli
with logit link for mi; BPFi „ NpηBPi , σ2

BP q and mi „ Bernoullippiq with logitppiq “ ηmi .
From the general formula of LGMs in Section 2.1 the explanatory variables can be included
either as linear effects or as non-linear effects. Based on the work by Espeland [2020] and
the analyses in Appendix C we chose to include all explanatory variables but age in the
missing process as linear effects. Further we introduce a shared parameter εi in both linear
predictors, and with an association parameter c for the missingness model;

ηBPi “ α0 ` αBPBPI i ` αageagei ` αBMIBMI i ` αsexsexi ` εi (3)

ηmi “ β0 ` βBPBPI i ` fpageiq ` βBMIBMI i ` βsexsexi ` cεi,
where the shared parameters εi are assumed to be independent Gaussian εi „ Np0, σ2

ε q and
fpq is a random walk of order two with variance σage, as defined in Appendix C. To avoid
identifiability issues between the shared parameter ε and the likelihood of BFF we fix σ2

BP

to a small value (σ2
BP “ 0.0012). All regression parameters α0, αBP , αage, αBMI , αsex, β0,

βBP , βBMI , and βsex are given independent priors Np0, 1032q, and σ2
age and σ2

ε are assigned
independent gamma priors, Gammap1, 5¨105q. We expect the shared parameter to influence
the missing process similarly or less then the standardized explanatory variables. Therefore,
the association parameter c is given an informative prior c „ Np0, 12q. A sensitivity study
is conducted for this prior, see Appendix E.

When the association parameter c “ 0, the models for BPF and m are independent and
we have a model that assumes data MAR. We refer to this model as the naive model, and
it is used as a benchmark model.

For simplicity we introduce some notation. Let xi “ pBPI i, agei, BMIi, sexiq be the
explanatory variables and yi “ pBPF i,miq the response variables for individual i. Further
let X “ pxi, .., xnqT be the explanatory variables for all n participants and Y “ py1, ..., ynqT
be the corresponding response variables in a cohort. When needed we use superscript to
indicate the HUNT2 or HUNT3 cohort, i.e., X2 are the explanatory variables from the
HUNT2 cohort. Denote the modeling parameters by θ = (α0, αBP , αage, αBMI , αsex, β0,
βBP , βBMI , βsex, ε, f , c, σε, σage) where f refer to the Gaussian variables of the additive
effect for age.

3.3 Inference

Conditioned on data pX, Y q we can achieve posterior distributions for the parameters,
πpθ|X, Y q. In this work, we are either interested in the marginal posterior of selected
parameters pjq, πpθpjq|X, Y q, or in the posterior predictive distribution for a new person
with explanatory variables xnew. This posterior predictive distribution is given by

πpynew|xnew, X, Y q “
ż
πpynew,θ|xnew, X, Y qdθ

“
ż
πpynew|xnew,θqπpθ|X, Y qdθ.
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The SPM suggested in Section 3.2 is a LGM, as described in Section 2.1 that meets
the requirements for using the computationally efficient integrated nested Laplace approx-
imations (INLA), see Steinsland et al. [2014] for more details for an analogous SPM. The
latent Gaussian field consists of (α0, αBP , αage, αBMI , αsex, β0, βBP , βBMI , βsex, ε, f , c)
and the non-Gaussian hyperparameters are (σε, σage).

3.4 Validation Scheme Using the HUNT3 Cohort

We evaluate the prediction models obtained from the HUNT2 cohort using the HUNT3
cohort. For each participant i in the HUNT3 cohort we get the predictive distributions
ŷi „ πpy3

i |x3
i , X

2, Y 2q and specifically for the future blood pressure and missing status
ˆBPFi „ πpBP 3

Fi|x3
i , X

2, Y 2q and m̂i „ πpm3
i |x3

i , X
2, Y 2q.

To evaluate the predictive performance we calculate the mean continuous rank proba-
bility score (CRPS) of ˆBPFi and mean Brier score of m̂i over all participants in the HUNT3
cohort. Let F ˆBPFi

pxq be the cumulative probability distribution of ˆBPFi and BPFi the ob-

served blood pressure in HUNT4 for participant i, then CRPSpF, yq “ ş8
´8rF pxq ´Hpx´

BPFiqs2dx where Hpuq is the Heaviside function (0 for u ă 0 and 1 for u ą 0). The blood
pressure model can only be validated on the participants observed in both the HUNT3 and
the HUNT4 surveys. In contrast, missing model can be evaluated for all participants.

Predictions from the SPM and the naive model are compared by their posterior mean
for the HUNT3 cohort participants as well as their CRPS and Brier scores.

3.5 Evaluation of Missing not at Random by Conditioning on
Missing Status

We introduce a novel method for validating if data is MNAR based on a SPM fitted to a
training dataset (here the HUNT2 cohort) and the difference in predictive performance for
a validation dataset (here the HUNT3 cohort) for predictors with and without conditioning
on the missing status in the training dataset. For readability we introduce the method using
the notation of HUNT2 cohort and HUNT3 cohort, but the method is general.

If data are MNAR and the SPM is true, there is information about the shared pa-
rameter in the missing status, and conditioning on the missing status, i.e. the value of
mnew should give a better predictor. For each participant i in the HUNT3 cohort we
can from the the predictive distribution πpy3

i |x3
i , X

2, Y 2q derive both the marginal pre-

dictive distribution for the future blood pressure ˆBPFi „ πpBP 3
Fi|x3

i , X
2, Y 2q and the

predictive distribution for the future blood pressure conditioned on the missing status
ˆBPFi|mi „ πpBPFi|x3

i , X
2, Y 2,m3

i q.
In practice, we can for a validation dataset only evaluate the predictions for the present

participants, and not the dropouts, and we therefore compare the predictive performance of
B̂P Fnew and B̂P Fnew |mnew “ 0 for all presents participants. In this work we have calculated
the absolute error of the posterior mean predictions for each participant, and compare mean
absolute errors (MAE) for the prediction with and without conditioning on missing status.
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3.6 Software and Code

In this work, we use the R-INLA software [R-INLA, 2021]. The R-INLA software supports
fitting models with multiple likelihoods [Steinsland et al., 2014, Espeland, 2020, Gómez-
Rubio, 2020, Chap. 6.4] which is the case for the SPM (3). All the code is available at the
GitHub repository by Hofman [2021]. Since data can not be shared, to protect participants
privacy, also a compleatly simulated dataset is provided.

4 Results for the Blood Pressure Case Study

The shared parameter models (SPM) and the naive model introduced in Section 3 are fitted
using the HUNT2 cohort as described in Section 3.2. This chapter presents and compares
the posterior distributions of interest. Further, the predictive models are evaluated through
predictive performance of the HUNT3 cohort, as described in Section 3.4 and Section 3.5.

4.1 Results for the HUNT2 Cohort

The posterior distributions of the estimates obtained by the SPM and the naive model,
introduced in Section 3.2 and fitted to the HUNT2 cohort, can be seen in Figure 2. The
posterior mean and 95% credible intervals are presented in Table 6 in Appendix D.

For the blood pressure submodel in the SPM, we see that the effect of BPI (αBP ) is
the largest followed by age, BMI and sex. The effect of BMI and sex are close to zero.
The parameter estimates of the naive blood pressure model are of the same order as the
SPM. However, in the blood pressure submodel all variables but age have weaker effects
in the naive model than for the SPM. The difference is especially pronounced for α0 and
αBP , suggesting the two models could result in different predictions.

For the missing process in the SPM, we see that sex has the largest effect on the
probability of dropping out, followed by BPI and BMI. The age effect is largest for the
elderly and smallest for middle-aged participants (Figure 3). The SPM and the naive model
are more similar in parameter estimates for the missing process than the blood pressure
process. However, the parameter estimates of the naive model are shifted towards lower
values than the SPM.

The association parameter c, connecting the two submodels (3) in the SPM is clearly
positive, which implies an increase in the probability of dropping out for larger random
effect. According to the SPM, this means that participants with higher BPF than can be
explained by the explanatory variables are more likely to drop out.

4.2 Results for Toy Example Participants

Since the data used in this work contains personal information, we consider three construc-
tive toy example participants to explore the model presented in Section 3.2 and Section 3.4
on an individual level. We used a young and underweight female with low BPI (id1), a
middle-aged and overweight female with average BPI (id2), and an old and obese female
with severely high BPI (id3), see Table 2. For these participants, the effect of the associa-
tion parameter on the probability of dropping out is plotted in Figure 4 for random effects
between ´1.5 and 1.5 which corresponds to approximately two standard deviations of the
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Figure 2: Posterior distribution of the latent field and hyperparameters for the SPM and
naive model fitted to the HUNT2 cohort.
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Figure 3: Age effect for the SPM and naive model fitted to the HUNT2 cohort with 95%
credible bands.
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Table 2: Values of BPI , age and BMI for three female toy example participants.

id BPI̊ age˚ BMI˚ sex BPI true agetrue BMItrue
1 -2 -1.5 -2 female 92.2 24.4 18.2
2 0 0 0 female 139.5 50.0 26.4
3 2 1.5 2 female 186.7 75.7 34.6
* Standardized values
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Figure 4: The probability of dropping out as a function of the individual random effect of
the blood pressure model for three toy example participants specified in Table 2.

random effect. We find that a larger value of the random effect gives a large probability of
dropping out for all three toy example participants.

The posterior predictive distributions of BPF for the three simulated participants are
plotted in Figure 5 for both the SPM and the naive model. For all toy example participants
the posterior predictive distribution from the SPM is shifted towards larger values than the
naive model, and more so for id1 and id3 who have more extreme explanatory variables.

4.3 Validation of Model Predictions for the HUNT3 Cohort

Table 3: CRPS score for predictions of systolic blood pressure in HUNT4 for the present
participants. Brier score for mean predictions of the probability of drop out in HUNT4.
All predictions are based on the HUNT3 cohort. The best score is indicated in bold.

CRPS Brier
All Present Missing

SPM 0.4406 0.2082 0.1656 0.2937
Naive 0.4337 0.2072 0.1602 0.3014

For all HUNT3 participants predictive distributions are calculated as described in Sec-
tion 3.3 estimated from the HUNT2 cohort for both the naive model and the SPM. The
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Id = 3, old, high BMI and, high blood pressure.

Id = 2, middle−aged, average BMI, and average blood pressure.

Id = 1, young, low BMI, and low blood pressure.
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Figure 5: Posterior predictive distribution of the future blood pressure (BPF ) for three toy
example participants in Table 2 for the naive model and the SPM models. Vertical lines
indicate posterior means.
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(a) Density over all participants in HUNT3 of the posterior mean of predicted future blood
pressure ˆBPF i.

Missing Present

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
0

1

2

3

4

5

p̂4

D
en

si
ty

Naive posterior predicitve mean SPM posterior predictive mean

(b) Density over all participants in HUNT3 of the posterior mean of predicted probability of
dropping out p̂i.

Figure 6: All plots display the participants grouped by missing status in the HUNT3 cohort.

empirical distributions of posterior mean predictions for participants in HUNT3 cohort are
found in Figure 6a, and for the BPF and in Figure 6b for probability of drop out p. For
reference the empirical distribution for observed BPF is included for present participants
in Figure 6a. We see that on a population level the SPM predicts slightly larger values for
the BPF than the naive model. The distributions of mean predictions of the probability of
dropping out are very similar. The SPM predicts a slightly higher probability of dropping
out, on average, than the naive model. We note that the differences between naive and
SPM have little practical implication on population level, but for some individuals there
can be differences of some practical significance.

We further evaluate the predictive performance for the HUNT3 cohort for the SPM
and the naive model from the HUNT2 cohort as described in Section 3.4. Mean CRPS for
BPF and mean Brier scores for the probability of drop out are given in Table 3. The mean
CRPS is very similar for the SPM and naive model, but the CRPS for the naive model
predictions is slightly smaller and hence the naive model performs slightly better. This
might be explained by the fact that the missing participants do not affect the likelihood of
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Table 4: Mean absolute error for B̂P F |m and ˆBPF . The best score is indicated in bold.

B̂P F |m ˆBPF MAE(B̂P F |m) - MAE( ˆBPF )
MAE 0.6140 0.6155 -0.0014

the naive model. Hence, the model is optimized to perform well for the present participants.
We explore this further in a simulation study in Section 5.2.

The Brier scores in Table 3 are slightly better for the naive model then for the SPM
when evaluating for all participants. However, when grouped by missing status, the naive
model performs better on the present participants, and the SPM performs better on the
dropouts.

4.4 Evaluate of the Missing Not at Random Assumption

We evaluate the MNAR assumption by comparing the predictive performance of the SPM
with and without conditioning on the missing status for the HUNT3 cohort as described in
Section 3.5. The results are given in Table 4. We see that the mean absolute errors (MAEs)
are very similar, but that the predictions for BP4 given m4 yield a slightly smaller error
than not knowingm4. This suggests that some information from the missing process affects
the BPF . A simulation study is conducted in Section 5.2, and a difference of ´0.0014 is
within what is to be expected when the SPM is true for similar training and validation
datasets.

5 Simulation Studies

We set up several simulation studies to explore the properties of the SPM, the naive model
and the method validating MNAR by conditioning on missing status for datasets with the
size and structure of the HUNT2 and HUNT3 cohort. In all simulation studies data sets
for training models are simulated using the same number of participants and explanatory
variables as in the HUNT2 cohort, i.e. X “ X2. Further, when simulating data, the
parameters θ “ θtrue are set to the posterior mean estimates of the SPM and naive
model fitted on the HUNT2 cohort, see Table 6, in Appendix D, in all simulation studies.
When predictions are studied, simulated validation datasets are based on the same size and
explanatory variables as the HUNT3 cohort, i.e. X “ X3 is used.

5.1 Simulation Study exploring Bias and Coverage

The aim of this simulation study is to study the properties of the posterior estimates for
the SPM and the naive model in a situation similar to the HUNT2 cohort. 100 independent
new response data (i.e. both future blood pressure BPF and the missing status m) are
simulated using the SPM with parameters θtrue and with explanatory variables as in the
HUNT2 cohort, resulting in Y plq for l “ 1 . . . 100. For each of the data sets pX2, Y plqq both
the SPM and the naive model are fitted. This gives posterior distributions πpθ|X2, Y plqq.
Each of these are summarized by the posterior mean and the coverage indicator of the true
value in 95% credibility interval.
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Figure 7: Distribution of posterior mean estimates on simulated data MNAR following the
SPM as described in Section 5.1. The mean of posterior means for both the SPM and naive
model and the true value are indicated by the vertical lines.

The resulting mean posterior mean, bias, and coverage are found in Table 8 in Ap-
pendix F. The distribution of the posterior means from the simulation study when the true
parameters are the posterior mean estimates of the SPM can be seen in Figure 7. From
Figure 7 we find that both the naive model and SPM are biased when the data is generated
from the SPM. However, the SPM is less biased especially for the blood pressure model
parameters (i.e. α0, αPB, αage, αsex, and αBMI). The association parameter c has especially
low coverage, see Table 8 in Appendix F).

We have also preformed a similar simulation study, but with data MAR by setting the
association parameter c “ 0 when simulating data. The results are presented in Appendix F
When the data is MAR, both the SPM and naive model have very little bias, and in
particular the association parameter c is centered around zero and has good coverage.

5.2 Simulation Study for Predictions

The aim of this simulation study is to learn about the predictive performance. Follow-
ing the procedure in Section 5.1 a data sets mimicking the HUNT2 cohort, pX2, Y q, and
l “ 1 . . . 100 data sets mimicking the HUNT3 cohort, pX3, Y plqq, are simulated using the
SPM with parameters θtrue. Corresponding posterior distributions based on the simu-
lated HUNT2 cohort πSPMpθ|X2, Y q and πnaivepθ|X2, Y q are found based on the SPM and
the naive model, respectively. From these, posterior predictive distributions are achieved,
and the predictive performance is evaluated for each participant in the simulated data set
pX3, Y pjqq as described in Section 3.4 by the CRPS and Brier score. A large advantage
for the simulated data sets is that predictive performance can be evaluated not only for
present participants, but also for those that are missing, and we include them.

Further we compare the predictive performance conditioned on missing status
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Figure 8: Plots for differences in mean scores for participants grouped by missing status in
the HUNT3 cohort.

πSPMpY plq|ml, X3,θq with πSPMpY plq|X3,θq through MAE as described in Section 3.5.
Figure Figure 8a displays the distribution of the difference between the mean CRPS for

the SPM and the naive model. This difference is displayed for all simulated participants
(present/missing) and grouped on missing status. We see that the SPM performs better
for all participants and the dropouts, but the naive model performs better on present
participants. This demonstrate that for our case study even if the data is MNAR and
follows the SPM, the naive model is expected to obtain a better CRPS than the SPM when
only evaluating for present participants (and the missing participants can not be used for
evaluation!).

Figure Figure 8b shows the distribution of the difference in Brier score for all, missing
and present participants. We see similar results here, the SPM predicts best for missing
participants and the naive model predicts best for the present participants.

For data MNAR, we can see from Figure 10a that the distribution of MAEs for the 100
simulations is shifted towards lower values when the missing status is known when the data
is MNAR. Further, we see from Figure 9 that the MAE was smaller for every simulated
dataset when predicting ˆBPF |m than ˆBPF since zero is not contained in the distribution

of MAEp ˆBPF |mq ´MAEp ˆBPF q. Hence, for data MNAR following the SPM, we can

expect the predictions of ˆBPF |m to be better than ˆBPF .
For data MAR Figure 10b shows we obtain almost the same mean absolute error for

every simulated dataset when predicting ˆBPF |m as when predicting ˆBPF . In addition,
we see from Figure 9 that the distribution of MAEp ˆBPF |mq ´MAEp ˆBPF q covers zero.

From Figure 9, we see that there is no overlap between the two distributions for,
MAEp ˆBPF |mq ´MAEp ˆBPF q. Also, the distributions are narrow both when the data is
MNAR and MAR. This demonstrates that even minor differences in MAE between predic-
tions of ˆBPF |m and ˆBPF indicate that data are MNAR.
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Figure 9: Difference in mean absolute error (MAE) of the predictions of ˆBPF |m and ˆBPF
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Figure 10: Distribution of the mean absolute error MAE of the posterior mean prediction
for future blood pressure obtained from the validation scheme presented in Section 5.2
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6 Discussion

In this work, we propose reasonable models in the form of a SPM for predicting future blood
pressure (BPF ) and missing status. The SPM is compared to a naive model which assumes
data MAR. Our findings indicate that blood pressure missing due to dropout in the HUNT
Study is MNAR. The simulation study also confirms that if the underlying assumption of
data MNAR is valid, the SPM accounts for this better than the naive model, even though
both models are biased. We note that there seem to be some identifiability issues resulting
in a bias when the data is MNAR and a low coverage for some model parameters in the
simulation studies (Figure 7, Figure 14, Table 8, and Table 9). This bias is especially
pronounced for the association effect c when the data is MNAR. Our initial thought was
that the low coverage could be due to misspecification of the informative prior used for c.
However, the prior sensitivity study presented in Appendix E indicates that the model is
robust to prior specifications concerning the association parameter.

We performed all simulation studies related to bias and coverage on data sets that mimic
our study system in size and explanatory variables, i.e. the HUNT2 cohort for training
and the HUNT3 cohort for validation, We have not explored asymptotic properties of the
models nor how uncertainty and biases change with the size of the datasets.

The new validation scheme proposed in Section 3.5 to evaluate the MNAR assumption
indicates that the missing status contains information about BPF given data following the
SPM. According to the simulation studies on this validation scheme (Section 5.2), the model
predictions conditioned on missing status are only better than those without knowledge of
missing status if the data is MNAR (Figure 9). When the data is MAR, the mean absolute
error of the two posterior mean predictions are almost identical. Hence we have strong
indications that blood pressure missing in the HUNT Study is MNAR.

Weather data is MAR or MNAR relies on untestable assumptions [Enders, 2011]. How-
ever, for future research it would be interesting to study the models and results of this work
in the framework of missingness graphs introduced by Mohan and Pearl [2021].

As a final note, we acknowledge that the models presented in this work are far from
trivial to use and are computationally demanding. Especially the use of the software
package R-INLA can be challenging for non-statisticians. However, we find that the models
presented provide helpful insight into the underlying structure of the HUNT data and how
one can model blood pressure accounting for data MNAR.

To summarize this work, we find that the SPM is better suited to account for data
MNAR than the naive model even though both models are biased. We have shown that
the SPM can be fitted efficiently through INLA and can be used for predictive purposes.
In addition, we have proposed a novel scheme for evaluating if data is MNAR if the data
follows the SPM. This scheme is tested in simulation studies and indicates that the blood
pressure missing in the HUNT Study is MNAR.
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A The Trøndelag Health Study Protocol

The HUNT Study protocols are described in detail in Krokstad et al. [2013] and Åsvold
et al. [2021]. Here, we briefly overview the performed data collection relevant to this work.
Age and sex were extracted from the Norwegian Population Registry. Height and weight
were measured after removing shoes and other heavy clothing. The BP was measured, by
trained personnel, in a sitting position after two minutes of rest. Three measurements were
taken, one minute apart, of which the mean of the second and third were used to report
BP. To assess the current use of BP medication, self-reported questionnaires were used. In
HUNT2, the current use of BP medication was captured in ”Are you taking medication
for high blood pressure?” [Never; Previously; Currently]. In HUNT3, the question was
reformulated to ”Do you take, or have you taken medication for high blood pressure?”
[No; Yes]. Therefore, we combine this question with the answer to ”If you are currently
taking medicine for high blood pressure, have you felt unwell/ had side effects from this
medicine?”. We assume only the participant who currently takes BP medicine answered
this question. In HUNT4, the use of BP medicine was captured through the question ”Do
you currently use any prescription medication for high blood pressure?” [No; Yes].

B Summary of the HUNT3 cohort

The validation cohort (HUNT3 cohort) consists of participants with observations of BP ,
age, BMI and sex in HUNT3, and BP and missing status in HUNT4. Of 50201 in HUNT3,
33.3% drop out prior to HUNT4. Summary statistics for the HUNT3 cohort are given in
Table 5, together with group mean for HUNT2 observations grouped on missing status.

Table 5: The sample mean and standard deviation of BPF , BPI , age, and BMI and
proportion of female/male participants in the HUNT3 cohort are displayed in the third
column. The fourth and fifth columns displays sample mean for the present and missing
participants in addition to proportions of present/missing participants for the whole cohort
and per sex.

Summary of the HUNT3 cohort
Variable Unit HUNT3 Present in HUNT4 Missing in HUNT4,
BP4 mmHg - 136.48 -
BP3 mmHg 133.21 (20.71) 131.48 136.67
age3 years 53.08 (16.01) 51.68 55.90
BMI3 kg/m2 27.17 (4.41) 27.12 27.28
sex 66.7 % 33.3 %

female 0 54.6 % 68.7 % 31.3 %
male 1 45.4 % 64.3 % 35.7 %
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C Shared Parameter Model With Additive Effects

Based on the work done by Espeland [2020] we explore the need for non-linear effects in the
SPM introduced in Section 3.2. We model all continuous variables as additive effects (fpzq)
through a random walk of order 2 with a sum to zero constraints [Gómez-Rubio, 2020]. Let
m “ 1 : n be the index for the increments and define ∆2zm “ zm´2zm`1`zm`2 „ Np0, σ2q.
The density for fpzq is, fpz|σq9σ´n´2

2 exp

#
´ 1

2σ

řn´2
m“1p∆2zmq

+
Further, the sum of all

random effect components is constrained to be zero. For more information about random
walk priors and sum to zero constraints, see Rue and Held [2005].

The specification of linear predictors of the SPM defined in Section 3.2 becomes,

ηBPi “ α0 ` fBPF pBPI iq ` fBPF pageiq ` fBPF pBMI iq ` αsexsexi ` εi (4)

ηmi “ β0 ` fmpBPI iq ` fmpageiq ` fmpBMI iq ` βsexsexi ` cεi.

All regression parameters α0, αsex, β0, and βsex are given independent priors Np0, 1032q.
The shared parameters εi are assumed to be independent Gaussian εi „ Np0, σ2

ε q. Both
the additive effects fp.q and εi have hyperparameters (σBPF BPI , σBPF age, σBPF BMI , σmBPI ,

σmage, σmBMI , σε) with independent gamma priors, Gammap1, 5 ¨ 105q. The association
parameter c is given an informative prior c „ Np0, 12q.

Modeling all parameters in an additive way is extremely computationally demanding.
With 32 CPU cores and 32 G memory, we were still only able to fit the SPM (4) with 15000
(« 25%) participants. These participants were drawn randomly. The results are given in
Figure 11. The age effect in the missing process is clearly non-linear. The other continuous
variables, although not perfectly linear, are much closer to being linear.

Therefore we chose to model all variables linearly except for age in the dropout process,
which we model as an additive effect.

D Parameter estimates

The parameter estimates from the SPM and naive model introduces in Section 3.2 fitted
on the HUNT2 cohort, together with their 95% equitailed credible intervals model are
presented in Table 6.
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Figure 11: Additive effects of age, BMI, and BPI in the SPM for both the BP process and
the missing process fitted on 15000 randomly drawn participants from the HUNT2 cohort.

Table 6: Summary of all parameters estimated for both the SPM and the naive model fitted
on teh HUNT2 cohort. The posterior means and 95% credible intervals are displayed.

SPM Naive
Posterior mean CI Posterior mean CI

α0 0.275 (0.259, 0.291) 0.134 (0.123, 0.145)
αage 0.244 (0.232, 0.255) 0.246 (0.235, 0.258)
αBMI 0.073 (0.064, 0.082) 0.071 (0.062, 0.080)
αBP 0.599 (0.589, 0.610) 0.578 (0.567, 0.588)
αsex 0.041 (0.025, 0.057) -0.022 (-0.064, 0.019)
β0 0.567 (0.475, 0.666) 0.55 (0.460, 0.651)
βBMI 0.087 (0.087, 0.106) 0.081 (0.063, 0.099)
βBP 0.139 (0.139, 0.162) 0.133 (0.111, 0.155)
βsex 0.292 (0.292, 0.329) 0.275 (0.240, 0.310)
σage 1.412 (0.946, 2.130) 1.400 (0.927, 2.123)
σε 0.790 (0.783, 0.797) 0.77 (0.765, 0.776)
c 0.705 (0.645, 0.765) - -
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E Prior Sensitivity Analysis

Model name c 0 1 c 0 10 c 0 100 c 1 1 c 1 10 c 1 100 c 10 100

Prior for c N(0,12) N(0,102) N(0,1002) N(1,12) N(1,102) N(1,1002) N(10,1002)

Table 7: Priors for association parameter c.

As the SPM model specified in Section 3.2 is rather complex, we perform a sensitivity
analysis to evaluate if the model is sensitive to the choice of prior for the association
parameter c (3). This parameter is of special interest as it defines the connection between
the dropout process and the measurements process, BPF . We fit the model defined in (3)
with different choices for the prior for c displayed in Table 7.

βsex c σage σε

αsex β0 βBMI βBP

α0 αage αBMI αBP

0.26 0.28 0.30 0.32 0.65 0.70 0.75 0.80 1 2 0.785 0.790 0.795

0.04 0.05 0.06 0.5 0.6 0.06 0.08 0.10 0.14 0.16 0.18

0.27 0.28 0.29 0.22 0.23 0.055 0.060 0.065 0.070 0.61 0.62 0.63

mu = 0 sigma = 1
mu = 0 sigma = 10

mu = 0 sigma = 100
mu = 1 sigma = 1

mu = 1 sigma = 10
mu = 1 sigma = 100

mu = 10 sigma = 1
mu = 10 sigma = 100

mu = 0 sigma = 1
mu = 0 sigma = 10

mu = 0 sigma = 100
mu = 1 sigma = 1

mu = 1 sigma = 10
mu = 1 sigma = 100

mu = 10 sigma = 1
mu = 10 sigma = 100

mu = 0 sigma = 1
mu = 0 sigma = 10

mu = 0 sigma = 100
mu = 1 sigma = 1

mu = 1 sigma = 10
mu = 1 sigma = 100

mu = 10 sigma = 1
mu = 10 sigma = 100

M
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s

Figure 12: Posterior mean and 95 % credible intervals for all parameters of the SPM with
different priors for the association parameter c. The model names are constructed so the
first digit is the mean and the second the is the standard deviation used in the prior for c.

Figure 12 shows the resulting 95% equi-tailed credible intervals for all parameters. We
clearly see that the latent field, α0, αBP , αage, αBMI , αsex, β0, βBP , βBMI , βsex, have almost
identical credible intervals. The credible intervals for the hyperparameter σage vary sligtly
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Figure 13: Mean posterior age effect for all models tested in the prior sensitivity study.

more. However, we see in Figure 13 that the resulting posterior mean of the age effect is
practically identical for all the different priors. Hence we conclude that the model is not
sensitive to different choices of c.

F Supplementary Material for The Simulation Stud-

ies on Bias and Coverage

We have summarized the results from the simulation study performed in Section 5.1 explor-
ing the bias and coverage of the SPM and the naive model. In addition we have performed a
similar study with data MAR. The distribution of the posterior means from the simulation
study when the true parameters are the posterior mean estimates of the SPM and the data
is MAR can be seen in Figure 7. Table 8, and Table 9 display the mean posterior mean,
bias, and coverage of the parameter estimates for both the SPM and the naive model for
simulated data MNAR and MAR. Further we display the difference in bias for the SPM
and naive model BiasSPM ´Biasnaive.

24



βBMI σage σε c

αBMI β0 βsex βBP

α0 αBP αage αsex
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Figure 14: Distribution of posterior mean estimates on simulated data MAR following the
SPM. The mean of posterior means for both the SPM and naive model and the true value
are indicated by the vertical lines.

Table 8: A summary of the results where we explore the bias and coverage of the SPM
and the naive mode when the true model parameters are known. We display the mean
posterior mean, bias of posterior means, and coverage for all parameters. In addition, we
display the difference in bias for the SPM and the naive model (BiasSPM´Biasnaive). The
true parameters are the posterior means from the SPM as given in Table 6 and the data is
MNAR.

SPM Naive model

True value Mean Bias Coverage Mean Bias Coverage
Difference
in bias

α0 0.27 0.24 -3e-02 0.07 0.13 -0.144 0.00 0.112
αBP 0.60 0.60 -4e-03 0.91 0.58 -0.021 0.01 0.017
αage 0.24 0.24 -8e-04 0.98 0.25 0.002 0.97 0.001
αbmi 0.07 0.07 -1e-03 0.95 0.07 -0.006 0.76 0.004
αsex 0.04 0.04 -3e-03 0.97 0.02 -0.018 0.42 0.015
β0 0.57 0.56 -1e-02 0.98 0.55 -0.016 0.99 0.004
βBMI 0.09 0.13 5e-02 0.01 0.13 0.042 0.01 -0.005
βsex 0.29 0.29 -5e-03 0.93 0.28 -0.016 0.86 0.011
βBP 0.14 0.14 -3e-03 0.90 0.13 -0.007 0.91 0.004
σage 1.42 1.22 -2e-01 0.67 1.34 -0.082 1.00 -0.119
σε 0.79 0.78 -8e-03 0.32 0.77 -0.020 0.00 0.012
c 0.70 0.55 -2e-01 0.00 NA NA NA NA
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Table 9: A summary of the results where we explore the bias and coverage of the SPM
and the naive model when the true model parameters are known. We display the mean
posterior mean, bias of posterior means, and coverage for all parameters. Further, we
display the difference in bias for the SPM and the naive model (BiasSPM´Biasnaive). The
true parameters are the posterior means from the SPM as given in Table 6 and the data is
MAR meaning c “ 0.

SPM Naive model

True value Mean Bias Coverage Mean Bias Coverage
Difference

in bias
α0 0.27 0.272 -3e-03 0.8 0.27 -2e-04 1.0 -3e-03
αBP 0.60 0.599 -8e-04 1.0 0.60 -4e-04 1.0 -4e-04
αage 0.24 0.243 -6e-04 1.0 0.24 -7e-04 1.0 1e-04
αbmi 0.07 0.074 6e-04 0.9 0.07 7e-04 0.9 1e-04
αsex 0.04 0.041 7e-05 0.9 0.04 4e-04 1.0 4e-04
β0 0.57 0.553 -1e-02 1.0 0.57 -2e-03 1.0 -1e-02
βBMI 0.09 0.139 5e-02 0.0 0.14 5e-02 0.0 2e-04
βsex 0.29 0.292 -4e-05 0.9 0.29 9e-05 0.9 4e-05
βBP 0.14 0.139 3e-04 0.9 0.14 2e-04 0.9 -1e-04
σage 1.42 1.069 -4e-01 0.4 1.41 -6e-03 1.0 -3e-01
σε 0.79 0.790 4e-04 1.0 0.79 3e-04 1.0 -1e-04
c 0.00 -0.008 -8e-03 0.9 NA NA NA NA
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