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Summary

This thesis will present an interior-point optimization library based on the ori-
ginal implementation of the Interior Point OPTimizer[1]. The intention with
the implementation is to utilize resources, abstractions and libraries found un-
der the modern C++17 standard, and features from the functional program-
ming paradigm to improve both performance, flexibility and readability.

A linesearch filter-barrier method is implemented, with linear algebraic op-
erations computed using the templated C++ library Eigen[2]. The implement-
ation is interfaced with the Constrained and Unconstrained Testing Environ-
ment (CUTEst[3]) to access sets of nonlinear optimization problems. Using
dense operations, the implementation is able to outperform IPOPT (with BLAS
and MUMPS[4]) in computation time, but requires more iterations than IPOPT
in order to converge to a solution.

For a given set of optimization problems the dense solver is able to converge
for a majority of problems with linear constraints, regardless of nonlinearity in
the objective. The solver still fails to converge for nonlinear constraints.

The functional design in the implementation is constrained by the compiled
language, but is successfully able to replace many of IPOPT’s object oriented
design patterns without impairing performance. Some improvements to the
functional design will require runtime compilation, which can be pursued in
future designs.

Overall, the implemented solver is not robust enough to qualify for general
use, and has the potential for improvements on many of the topics presented in
the thesis. Still, performance, convergence and design is considered satisfactory
with respect to the scope of this thesis.
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Sammendrag

Denne masteroppgaven handler om implementasjon av en interior-point op-
timaliseringsalgoritme basert på den originale implementasjonen av Interior
Point OPTimizer[1]. Hensikten med implementasjone er å untnytte ressurser,
abstraksjoner og bibliotek utviklet under C++17 standarden, og å trekke inn
egenskaper fra det funksjonelle programmeringsparadigme for å forbedre både
ytelse, fleksibilitet og lesbarhet.

En linesearch filter-barriermetode er implementert, hvor lineær-algebraiske
beregninger er utført med template C++ bibliotek Eigen[2]. Implementas-
jonen er configurert opp mot Constrained and Unconstrained Testing Envir-
onment (CUTEst[3]), som gir tilgang til sett med ulineære problemer. Med
beregningsoperasjoner på vanligematriser klarer implementasjonen å løse prob-
lemer med lavere beregnings tid enn IPOPT (med BLAS og MUMPS[4]), men
krever flere iterasjoner for å konvergere til en optimal løsning.

For et subset av problemene i CUTEst klarer implementasjonen å konvergere
for flertallet av problemene som er begrenset med lineære likhetsligninger,
uavhengig av ulineariteten i objektivfunksjonen. Algoritmen har fortsatt prob-
lemer med ulineære begrensninger.

Det funksjonelle designet i implementasjonen er begrenset av det kom-
pilerte programmeringsspråket som er brukt, men klarer å erstatte mange av
IPOPT’s objektorienterte komponenter uten å gjøre algoritmen ineffektiv. Noen
forbedringer på det funksjonelle designet vil kreve rekompilering under kjøretid,
som kan bli implementert i fremtidige design.

Totalt sett er implementasjonen ikke robst nok til å kvalifisere for generell
bruk på ulineære optimaliseringsproblem, og den har potensiale for forbedring
på mange av de ulike feltene som har blitt presentert i oppgaven. Fortsatt så
kan ytelsen, konvergeringsresultatene og designet anses som tilfredstillende
med hensyn til omfanget av oppgaven.
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Chapter 1

Introduction

1.1 Background

Interior point methods are well-established methods that were initially dis-
covered and used for Linear Programs (LPs) and later convex Quadratic Pro-
grams(QPs), and have been used for more than 35 years at this point. These
methods have attractive convergence properties within large-scale optimiza-
tion, due to its consistent, gradual progress towards inequality-constrained
problem solutions. Interior point methods have remained competitive against
the older simplex methods, and provide a stronger, theoretical worst-case com-
plexity. The open-source COIN-OR Interior Point Optimizer (IPOPT [1]) provide
an interface to a wide range of algorithms within the field of interior point
methods, a library that is well-established and frequently maintained by de-
velopers. The IPOPT-library excels on solving large-scale nonlinear programs
(NLPs) with the support of flexible algorithms and a wide range of linear solv-
ers.

1.2 Motivation

It is now over 15 years since the release of the C++ implemented IPOPT 3.0,
a time period where many new features and developments of linear algebra
libraries have been provided to the language. These additions provide a great
oppurtunity to explore and learn the inner workings of the IPOPT solver, and
to reimplement some of its components with the support of efficient, modern
libraries.

The implementation of IPOPT is based on an object-oriented design (OOD),
where its dynamic behaviour is constrained to come from internal states of
objects that interact with each other. This enables IPOPT to be very flexible
within the framework created by its objects, but it also constrains additions to
cooperate with the already existing framework.

NLPs span a large set of problems with many different types of dynamics,
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and the optimal method to converge to a solution of a NLP can be very different
for each one. This encourages adaptive choice of solver methods that are better
implemented in a declarative, functional design, where the solver is able to
branch freely without concern for internal states and dependencies on class
interfaces. This thesis aims to develop a framework for interior-point methods
which is functionally dynamic, but also computationally efficient.

Furthermore, understanding how the IPOPT-solver works is useful in order
properly tune the solver, and get full advantage of the algorithms it provides. It
is also a solid first-step in algorithmic design for numerical optimization, which
has a much larger field of applications than OCPs.

1.3 Relation to Cybernetics

In the field of cybernetics, numerical optimization is important to find solu-
tions to optimal control problems (OCPs). The dimension size of OCPs increase
when the control input resolution to a problem increases, or the time horizon
for the control problem is extended. This generally leads to large, sparse NLPs
constrained by ordinary differential equations (ODEs) or differential algebraic
equations (DAEs), where both control inputs states potentially are inequality-
constrained. Determining the activeness of these constraints becomes combin-
atorially difficult with its dimension, which makes interior-point methods fa-
vorable for such problems once they grow large.

1.4 Problem Statement

The scope of this thesis aims to explore the initial implementation of IPOPT,
to implement a similar solver using libraries and features provided in modern
C++. This can be concretisized into multiple objectives:
• Implement a robust solver that is able to converge on a wide range of dif-
ferentiable NLPs, regardless of nonlinearity, constraints and dimensions.

• Implement the solver with the foundation of an efficient, linear algebra
library with comparable performance to IPOPT.

• Apply functional programming to avoid hidden dependencies, improve
readability, enable additional optimization strategies and give the solver
better capabilities to dynamically change behaviour.

1.5 Preliminaries

A larger part of the theory presented in this thesis is related to the actual
implementation of a solver and the dependencies involved. Prior knowledge
with object-oriented C++ programming and templates is recommended, even
though many of the related concepts are explained throughout the thesis.
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Prior knowledge in numerical optimization is strongly recommended. A lot
of the theory in the first sections refer and relates to other optimization theory
that is not explained in this thesis. NTNU-course TTK4135 Optimization and
Control covers most of these recommendations.

In order to configure and use the code project some knowledge about com-
pilers, path configurations and linking is recommended. Some Fortran sub-
routines are used to interface the project to a problem testing library.

1.6 Contributions

The original implementation paper for IPOPT [1] and preliminary knowledge
from NTNU-courses TTK4135 Optimization and Control and TK8115 Numer-
ical Optimal Control are the main contributing theoretical resources in this
thesis. Besides these preliminaries (which are literature-referenced in the thesis)
and supervisor guidance, other contributions mainly comes from online re-
sources.

1.7 Software

Selecting appropriate software is very important when designing numerical op-
timization algorithms. This ranges from the abstractions and efficiency provided
by libraries inside a programming language, up to the tools required to organ-
ize, efficiently compile and even visualize the code.

1.7.1 Programming Language

The original IPOPT-implementation[1] was written in Fortran but later reim-
plemented in C++. Both languages are compiled languages which perform all
optimization prior to execution. In contrast, interpreted languages (like Python
and Ruby) performs code execution without compiling the whole program in
one instance. This makes interpreted languages attractive in terms of flexibil-
ity, an interpreted language implementation would be able to exploit runtime
information to optimize the future decisions of the program. The interior-point
algorithm implemented in this thesis depends on linear algebra and operations
where a lot of optimization can be resolved before runtime, which is why C++
became the favored language.

1.7.2 Compiler

Clang and GCC has been used as compilers in this project. GCC and Clang
offer different optimization features, since Clang intermediately compiles to
Low-Level Virtual Machine (LLVM[5]) bytecode.

3



Name Version
Clang 10.0.0-4
GCC 9.3.0

1.7.3 CMake

CMake is a build automation tool that enable projects to be built with differ-
ent compilers system-independently. CMake use configuration files to generate
Makefiles in a projects subfolders. Makefiles are used by another build automa-
tion tool (Make), and consists of rules describing how and in which sequence
the project files should be compiled and linked. CMake simplifies the process of
building and linking libraries, avoids redundant re-compilation, and configures
correct paths for header inclusion and library linking in the project subfolders.
Selecting Ninja as CMake generator enables by default multithreaded building,
which was found to reduce the overall build time of the project.

Name Description Version
CMake Build tool 3.16.3

GNU Make Build tool 4.2.1
Ninja Generator 3.15

Table 1.1: Build automation software used

1.7.4 Eigen

The efficiency of the interior-point algorithm presented in this thesis heavily
depends on linear algebra, whichmakes it important to use subroutines that ex-
ploits features of the computer architecture. Basic Linear Algebra Subprograms
(BLAS [6]) address this by implementing architecture-specific subroutines. Ab-
stractions on top of BLAS like LAPACK and Matlab provide better application
interfaces that remain computationally efficient, but are not able to optimize
expressions before evaluating them.

Optimization of expressions can in C++ be implemented by using tem-
plates, which is used by linear algebra libraries like Eigen[2] and Armadillo
[7]. These libraries provide performance benchmark comparisons that depends
on different optimization flags and architectures, which makes it difficult to
find the overall most suitable library for this application. A fairly recent bench-
marking study [8] indicates that Eigen gives the overall better performance in
terms of dot products, norms, element access and compilation time, compared
to other actively developed libraries. Because of this (and other features dis-
cussed in the thesis) Eigen is considered to be the best availiable alternative
for this application.
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1.7.5 Visualization Tools

Doxygen[9] is the standard documentation tool to use for C++ projects, which
provides graph-visualization tools to produce inheritance and call graphs for
classes and functions. Doxygen generate .dot-format files that is used to gen-
erate graph images using Graphviz[10]. Additionally, an online diagram visu-
alization tool called Diagrams.net[11] for cases where it was not possible to
produce call and inheritance graphs.

Name Description Version
Python Interpreter 3.9.5

Matplotlib Plotting library 3.5.1
pybind11 C++ Binders library 2.9.0
Doxygen Documentation tool 1.8.17

Table 1.2: Visualizaion software

1.7.6 Docker

Docker[12] is a Platform-as-a-service (PaaS) used to run software in contain-
ers that are virtualized and made independent of operating system specific
dependencies. Docker is used to simplify the installation process of the thesis
project by providing a docker Ubuntu image, which contains the software re-
quired to compile and execute the code.

1.8 Operating System

The project is configured on Linux operating system Ubuntu 20.04.3 LTS, but
can also be compiled on non-Unix systems.

1.9 System Specification

All numerical results have been computed on a Microsoft Surface Pro 7 with
an Intel(R) Core(TM) i7-1065G7 CPU 1.30GHz processor, using synchronous
3733 MHz LPDDR4-memory.

1.10 Structure of the Thesis

The theory introduced in this thesis ranges over many different topics.
Most of the theory presented in IPOPTs implementation paper[1] is presen-

ted in section 2 and 3. Section 2 presents theory and heuristics for interior-point
method and its subproblems, while section 3 presents the filter responsible for
rejecting/accepting trial steps.
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Section 4 presents pseudocodes for the algorithms in the thesis which are
based on the introduced theory.

Section 5 and 6 present some of the different design features used in IPOPT,
and the alternatives used in the thesis implementation. These sections present
object-oriented and functional design theory in context with C++ and IPOPT,
and provides some examples to demonstrate why certain design decisions were
made.

Section 8 presents the code implementation. The overall structure of the
project is presented, followed by the different components that make up the
solver.

Section 9 explains some optimization features related to the linear algebra
library and C++ compilers. Section 10 presents dense decomposition-based
linear solvers, followed by a brief view of the equivalent sparse solvers.

Section 11 presents the results obtained from running the solver on a test
set of NLPs, where illustrations are provided both for the convergence of states,
multipliers and objective values. Performance and convergence of the solver is
compared to IPOPT.

Section 12 discuss design decisions made based on sections 5 and 6 and
compare them to IPOPTs design, along with a review of the results in section
11. The overall state of the solver is discussed, along with potential causes for
the occations where the solver failed to converge.

The work in this thesis has revealed many improvements that could be
made, and other interesting methods that could be implemented in the same
framework. Theory and potential applications that was studied but not used is
summarized in section 14.

6



Chapter 2

Interior Point Optimization

The interior point optimization of nonlinear problems will in this thesis concern
problems on the following form:

min
x

f (x)

s.t. g(x)≤ 0

h(x) = 0

x l b ≤ x ≤ xub

x ∈ RNx , g(x) ∈ RNg , h(x) ∈ RNh

(2.1)

f (x) is the objective function to be minimized, subject to inequality con-
straints g(x) and equality constraints h(x). g(x) and h(x) are useful notations
for formal definitions, but in the implementation they will be merged in a dif-
ferent formulation:

min
w

f (x)

s.t. cE(x) = h(x) = 0

cI(x)− s =





g(x)− sg
x − sub
sl b − x



= 0

s =





sg
sub
sl b



 ∈ RNs

(2.2)

This formulation is not the same as the in the original paper since it allows
x to be negative.
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2.1 Conditions for Optimality

Some necessary conditions must be fulfilled in order for a point to qualify as
a local optimum x∗. These conditions are the necessary Karush-Kuhn-Tucker
(KKT) optimality conditions.

2.1.1 Stationarity

∇ f (x∗)+∇cE(x
∗)Tλ+∇(cI(x

∗) + s∗)T z∗ = 0 (2.3)

z =





zI
zl b
zub



 ∈ RNz , λ ∈ RNh (2.4)

KKT-stationarity holds for local extreme values in the lagrangian function. This
does not guarantee a local minimum, and may hold for infeasible constraint-
s/multipliers, but it is necessary in order to qualify for it.

2.1.2 Primal Feasibility

cI(x
∗)− s∗ = 0 (2.5)
cE(x

∗) = 0 (2.6)
s∗ ≥ 0 (2.7)

(2.8)

2.1.3 Dual Feasibility

z∗i ≥ 0, i ∈ [1, . . . Nz] (2.9)

The inequality multipliers are strictly positive for active constraints and 0 for
inactive. Negative multipliers imply inequality constraint violations.

2.1.4 Complementary Slackness

Ns
∑

i=1

zisi = 0 (2.10)

(2.11)

Complementary slackness ensures that inequality constraint multipliers does
not contribute to satisfying the stationary condition unless the corresponding
constraint is active (which occurs when s(.) = 0).
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2.2 Barrier Problem

Distinguishing between active and inactive inequality constraints become in-
creasingly difficult with the number of constraints. For small problems this
can be resolved by iteratively checking combinations of constraints (Active-set
methods), but this becomes combinatorially difficult with the size of the prob-
lem. Larger problems are more efficiently solved using barrier approximations.
Parameter µ ensures that the logarithmic barriers (which can be interpreted as
equality constraints with µ as a multiplier) are satisfied on the interior feasible
side of the inequality constraints.

min
x

ϕ(x , s) = f (x)−µ
Ns
∑

i=1

ln(si) (2.12)

s.t. cE(x) = 0

cI(x) + s = 0

Introducing the barrier function can be interpreted as a peturbation to the
complementary slackness condition:

Ns
∑

i=1

zisi = µ (2.13)

(2.14)

This peturbation removes the need to ’guess’ on wether the inequality con-
straint is active (si = 0, zi ≥ 0) or inactive (si > 0, zi = 0), but instead reveals
the solution gradually by iteratively solving barrier subproblems and reducing
µ.

The lagrange equation for the barrier problem is attainable by introducing
equality constraint multipliers.

L(x ,λ, z) = f (x) + cE(x)λ+ (cI(x) + s)z −µ
Ns
∑

i=1

ln(si) (2.15)

The lagrangian can be used to derive Karush-Kuhn-Tucker (KKT) conditions
for the nonlinear problem. The stationary condition is satisfied at an extremum
of the lagrangian with respect to all variables x , sg , sub and sl b.

∇x f (x) +∇x cE(x)
Tλ+∇x cE(x)

T z = 0 (2.16)
cE(x) = 0 (2.17)

cI(x)− s = 0 (2.18)
z −µS−1 = 0 (2.19)

Where S is a main diagonal matrix with elements of s (This notation generally
holds for upper-case letters). By multiplying equation 2.19 with its diagonal
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matrix of slack variables, KKT-conditions for a dual-peturbed KKT-system is ob-
tained:

zS −µ= 0 (2.20)

The dual conditions often avoid numerical issues by only having to invert the
slack-variables once when computing Newton steps. Gradient methods take
advantage from avoiding ill-conditioned (section 10) KKT-systems with this ap-
proach, but it also increases the performance of Newton steps by reducing non-
linearity near the local optimum [13, p.586].

2.3 Formulation of the Sequential Quadratic Program

A local approximation of the objective at x is given by the second-order Taylor
expansion of f (x).

f (x) +∇ f (x)T dx +
1
2

dT
x ∇

2
x x f (x)dx ≈ f (x + dx)

By applying linearization to the constraints the resulting subproblem be-
comes a linearly constrained quadratic program (QP).

min
dx ,ds

∇x f (x)T dx +
1
2

dT
x ∇

2
x x f (x)dx

s.t.
∇x cE(x)

T dx + cE(x) = 0

∇x cI(x)
T dx + cI(x)− ds − s = 0

(2.21)

Which yields the following lagrangian:

LSQP(x ,λ, z) = dT
x ∇x f (x) +

1
2

dT
x ∇x x f (x)dx (2.22)

− (dλ +λ)T (∇x cE(x)
T dx + cE(x))

− (dz + z)T (∇x cI(x)
T dx + cI(x)− ds − s)

Finding the extremum of LSQP will yield a local approximate solution to the
barrier problem (2.12) when is convex and cE(x) concave with feasible multi-
pliers. Slack-variable s can be substituted with a chosen definition for multiplier
z, which determines if the interior-point method is primal or dual. Using the
dual definition Z = µS−1 the lagrangian slack-variables ds, s are reduced to a
constant.

− (dz + z)T (ds − s) = µ (2.23)
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2.4 Newton’s Method for KKT-Conditions

Applying Newton’s method on the Sequential Quadratic Program (SQP) in
equation 2.21 yields the same equation as when applied directly on the primal-
dual KKT-conditions (equations 2.19, 2.5 and 2.6). This is consistent with the
fact that a full Newton-Rhapson step minimizes quadratic models. Minimiz-
ing the SQP-objective leads to the following Newton step (With dual multiplier
Z = µS−1):




∇x xL(x) ∇x cE(x) ∇x cI(x)
∇x cE(x)T 0 0
∇x cI(x)T 0 −Σ−1









dx
−dλ
−dz



= −





∇x f (x)−∇x cE(x)Tλ−∇x cI(x)T z
cE(x)

cI(x)−µZ−1e





(2.24)
By eliminating the row for −dz we obtain the following system:

�

∇2
x xL(x ,λ, z) +∇x cI(x)TΣ∇x cI(x) ∇x cE(x)

∇x cE(x)T 0

��

dx
−dλ

�

= −
�

∇xϕ(x)−∇x cE(x)Tλ
cE(x)

�

(2.25)
Steps in the inequality multipliers can be solved with separate equations,

with Σ= S−1z, z = µS−1 this reduces to :

dz = µcI(x)
−1 −Σ∇x cI(x)dx − z (2.26)

This step is very similar to the one presented in the implementation paper
(equation (12)[1]), and only differs in the generalization of constraints.

2.5 Backtracking Linesearch

With dx , dλ determined it is possible to evaluate trial steps in this direction.
These trial steps will be evaluated by the filter (described in section 3) in or-
der to determine if the step is to be rejected. The series of trial steps used in
the original implementation [1, p.30] update the trial step as αl = 2−lαmax ,
where l is the iterate of the trial steps. Backtracking linesearch is well suited
for Newton methods since it quickly backtracks to a value where the second-
order approximation is good, without making the step size too small.

2.6 Fraction-to-the-boundary Rule

Dual feasibility states that inequality multipliers have to be positive in order to
be feasible. One approach to ensure this is to maintain positivity by constrain-
ing the step length:

α(p0, p) =max
¦

α ∈ (0, 1] : p0 +αp ≥ (1−τ j)p0

©

(2.27)
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Where τ j is evaluated for every barrier subproblem:

τ j =max(τmin, 1−µ j) (2.28)

In contrast to the main implementation paper[1, p.30] the rule is only applied
to the inequality multipliers (with separate steps for zg , zub, zl b), since x in this
case is allowed to be negative. This

2.7 Measurement of Optimality Error

A common way to terminate the search for applications of Newton’s method is
to stop once some norm ||r(x)|| is reduced below a tolerance level for target
function r(x). The same applies in the search for optimal solutions of barrier
problems, but IPOPT additionally use factor scalings to obtain a decent balance
of priorities between the KKT-conditions:

Eµ(x ,λ, z) =max
¦ ||∇x f (x) +∇x cE(x)Tλ− cI(x)T z||∞

sd
, ||c(x)||∞,

||cE(x)T Z −µe||∞
sc

©

(2.29)
Scaling factors sd and sc are used to counteract numerical difficulties that may
arise in themultiplier values. Close to linearly dependent constraints may result
in very large multiplier values, which makes it reasonable to rescale the KKT-
conditions with respect to the largest element of the multipliers:

sd =max
¦

1,
||λ||1 + ||z||1
(Nh + Ng)smax

©

sc =max
¦

1,
||z||1

Ngsmax

©

(2.30)

The search for a local optimal solution will be terminated for the barrier
subproblem when the stopping condition is met:

Eµ j
(x ,λ, z)≤ κεµ j (2.31)

For some constant κε > 0 and barrier subproblem-index j = [0, . . . , jmax].

2.8 Barrier Parameter Update

It is desirable for the sequence of barrier parameters (µ0,µ1, . . . ) to converge
towards 0 in order to statisfy the global stopping criterion E0(x ,λ, z). By choos-
ing an appropriate barrier parameter update rule, it becomes possible to prove
convergence rates for the resulting trajectory of barrier subproblems. The up-
date rule used in the implementation paper is proven to rise to superlinear
convergence [14, p.15].

µ j+1 =max
¦εtol

10
,min

¦

κµµ j ,µ
θµ
j

©©

(2.32)
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Where κµ ∈ (0, 1) contributes to a more aggressive linear decrease when µ j
is large, and θµ ∈ (1, 2) decreases superlinearly once sufficiently close to the
solution. The update rule is capped with εtol to not reduce µ j to unreasonably,
numerically difficult small values.

2.9 Inertia Correction

In order to ensure that the linear system for the Newton step (equation 2.25)
has a unique solution it is in circumstances necessary to modify the Newton
step jacobian. Full rank of the hessian and the equality constraint gradient can
be enforced by adding diagonal matrices δw,δc ≥ 0:

�

∇2
x xL(x ,λ, z) +∇x cI(x)TΣ∇x cI(x) +δw ∇x cE(x)

∇x cE(x)T −δc

�

(2.33)

This matrix is invertible if the top-left block of the matrix (referred to as the
"Primal-Dual Barrier-term hessian") projected onto the null-space of ∇x cE(x)
is positive definite. This is satisfied when the matrix has exactly Nx positive, Nh
negative and 0 eigenvalues equal to 0. It is desirable to preserve the original
matrix as much as possible, which is done by iteratively increasing and decreas-
ing δw,δc until the eigenvalue-conditions are satisfied. Inertia correction then
gets terminated when the solution to the system is finite.

2.10 Hessian Safeguards

The primal KKT system has important properties to ensure global convergence,
while the dual have better local convergence properties. It is possible to main-
tain parts of both properties by ensuring that the primal-dual hessian (ΣPD =
S−1Z) does not deviate too much from the primal hessian (ΣP = µS−2). This
is done by ensuring that diagonal elements σ(i)PD stays within some interval
around σ(i)P :

σ
(i)
PD,k+1 ∈

� µ j

κΣ
s(i)k

−2
,κΣµ js

(i)
k

−2� (2.34)

Where κSigma ≥ 1 is used to scale the interval. Multiplying by s(i)k gives the
interval for z(i)k+1 and consequently the following reset rule:

z(i)k+1 =max
¦

min
¦

z(i)k+1,
κΣµ j

s(i)k

©

,
µ j

κΣs(i)k

©

(2.35)

2.11 Second-Order Correction

The linearization of cE(x) may lead to the filter rejecting steps that result in
good progress towards a solution. This is called the maratos effect[13, p.440],
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which can be counteracted by solving the KKT system (equation 2.25) with
equality constraints evaluated at the trial step. Second-order corrections use
the same gradient evaluation ∇x cE(x)T as in the original step.

∇x cE(x)
T d cor

x + c(x +αdx) = 0 (2.36)
The corrected direction is obtained by adding together the computed steps:

d cor
x = αdx + dSOC

x (2.37)

The same KKT jacobian as in equation 2.25 is used to solve this KKT-system.
�

∇2
x xL(x ,λ, z) +∇x cI(x)TΣ∇x cI(x) ∇x cE(x)

∇x cE(x)T 0

��

d cor
x
−dλ

�

= −
�

∇xϕ(x)−∇x cE(x)Tλ
αcE(x) + cE(x +αdx)

�

(2.38)
In contrast to the paper implementation, the step size in the corrected dir-

ection is always a full step in this case, since x itself is not (directly) subject
to the fraction-to-the-boundary rule, and there is no reason to restrict the first
step for normal Newton-Rhapson steps[13, p.59].

2.12 Initial Multipliers

Initial multipliers for equality constraints are obtained by minimizing the dual
infeasibility (equation 2.16), yielding the following linear system:

�

I ∇x cE(x)
∇x cE(x)T 0

��

w
λ0

�

=

�

∇x f (x0)− zg,0 − zub,0 − zl b,0
0

�

(2.39)

Where w is discarded after the computation.

2.13 Initialization

Primal dual interior point methods puts no restriction on the initial point x0,λ0.
However, when a solver is initialized on the infeasible side of inequality con-
straints, the value of ϕ(x) becomes undefined. While it is fully possible to com-
pute the newton direction without ϕ(x), the Fletcher-Leyffer filter[15] presen-
ted in the next section lose its ability to accept steps that reduce the object-
ive value f (x). The implementation paper solves this by correcting the initial
guess x0 to the interior, feasible side. While this correction is trivial for bounds
x l b, xub, it is harder to determine for nonlinear inequality constraints. The res-
toration phases (section 3.3) will address this issue.
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Chapter 3

Fletcher-Leyffer Filter

Solving the interior-point barrier subproblem using Newton-Rhapson may res-
ult in numerical instability when the initial guess x is far from all local optimal
solutions x∗. This results in an unsystematic convergence, where no consistent
decrease in the objective value or constraint violation is imposed. One way to
overcome this is to introduce merit functions [13, p.435] to penalize the con-
straint violation. This introduces the challenge of determining the merit mul-
tiplier, whose solution is intertwined with the optimal solution x∗ itself. A bad
choice of merit multipliers will either limit the progress of the Newton-steps
(too large), or have a negligible effect (too small).

It is desirable to use full Newton-Rhapson steps as much as possible, as
this yields quadratic convergencewhen close to x∗. In order to enable larger
steps while maintaining objective reduction the Fletcher and Leyffer-filter [15]
instead interprets constrained objectives as a bi-objective.

min
x

ϕµ j
(x) (3.1)

min
x

θ (x)¬ ||cE(x)|| (3.2)

This perspective is more general than using a merit function. Sufficient reduc-
tion criteria on merit functions are a subset of filter methods where constraints
are incorporated into a single objective:

min
x
ϕµ(x)−λM

m
∑

i=1

||cE,i(x)|| (3.3)
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3.1 Step Acceptance Conditions

Sufficient reduction in ϕµ j
(w) or θ (w) are set as criteria for accepting a trial

point in the implementation of IPOPT.

θ (xk +αkdx ,k)≤ (1− γθ )θ (xk) (3.4)
ϕµ j
(xk +αkdx ,k)≤ ϕµ j

(xk)− γϕθ (xk) (3.5)
γθ ,γϕ ∈ (0,1)

These criteria force the constraint infeasibility to strictly decrease. ϕµ j
is

allowed to increase in order to satisfy the sufficient reduction in θ . When the
value of θ reach a threshold (θ ≤ θmin), no further reduction in θ is prioritized.
Instead, a "Switching condition" is introduced, which compares the gradient
estimate reduction in ϕµ j

to the current constraint infeasibility.

∇ϕµ j
(xk)

T dx ,k < 0, αk,l[−∇ϕµ j
(xk)

T dx ,k]
sϕ > δ[θ (xk)]

sθ (3.6)

With sϕ ≥ 1, sθ > 1,δ > 0. These two conditions ensure that the descent
direction is negative, and that the decrease in ϕµ j

is significant compared to the
current constraint violation. If equation 3.6 holds the trial step has to satisfy
the Armijo condition[13, p.33], which is necessary to avoid convergence to
non-optimal points.

ϕµ j
(xk +αk,l dx ,k)≤ ϕµ j

(xk) +ηϕαk,l∇ϕµ j
(xk)

T dx ,k (3.7)

If either (3.4) or (3.5) is satisfied the trial point will be accepted by the
filter, assuming that θ ≥ θmin.

3.2 Filter Update

The filter itself keeps track of upper bounds for accepting (θ ,ϕ), and is initial-
ized with a maximum tolerance for constraints:

F0 ¬ {(θ ,ϕ) ∈ R2 : θ ≥ θmax} (3.8)

The filter stores value-pairs for the accepted trial points satisfying the bi-objective
reduction condition.

θ̄k ¬ (1− γθ )θ (xk) (3.9)
ϕ̄k ¬ ϕµ j

(xk)− γθθ (xk) (3.10)

Value-pairs updates the filter with a new condition each iteration k when the
bi-objective reduction is satisfied.

Fk+1 = Fk ∪
¦

(θ ,ϕ) ∈ R2 : θ ≥ θ̄k ∩ϕ ≥ ϕ̄k

©

(3.11)
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An old value-pair is dominated by a new one if both values in the new pair are
smaller than in the old pair. At this point the old pair is redundant, and can be
removed from the filter. Updating the filter with such pairs ensures that cycles
does not occur, newer iterates cannot return to the neighborhood of xk.

3.3 Feasibility Restoration Phase

When the step size resulting from the filter linesearch becomes too small or the
KKT-system becomes very ill-conditioned, other strategies should be considered
in order to reach a new solution acceptable to the filter. The implementation
papers solution is to intermediately minimize the constraint infeasibility:

min
x̄

||cE(x)||1 +
ζ

2
||DR( x̄ − x̄R)||22 (3.12)

s.t cI(x)≥ 0

Where DR(.) is used to scale the deviation from the initial reference point
x̄R, with diagonal elements d(i)R :

d(i)R =min
�

1,
1

x̄ (i)R

�

, i = [0, . . . , Nx − 1] (3.13)

In words this optimization problem tries to minimize the distance to equal-
ity constraints without leaving the old iterate, while staying on the feasible side
of cI(x).

3.4 Equality Restoration Phase

Coefficients of cE(x) in equation 3.12can be separated for the positive elements
and negative elements (p̄, n̄ ∈ Nh)), resulting in a smooth reformulation:

min
x̄ ,p̄E ,n̄E

ρ

Nh−1
∑

i=0

(p̄(i)E + n̄(i)E ) +
ζ

2
||DR( x̄ − x̄R)||22 (3.14)

s.t cE(x) + p̄E − n̄E = 0 (3.15)
p̄E , n̄E ≥ 0

cI(x)≥ 0 (3.16)

Where ρ > 0 is used to scale the objective with respect to the constraints,
and ζ > 0 is the `2-regularization parameter. This problem formulation can be
solved with the same algorithm as the original barrier problem (equation 2.12).

The feasibility restoration phase can also encounter infeasible iterates. In-
stead of recursively calling new restoration phases, the infeasible iterate x̄ t is
instead fixed in equation 3.14, allowing p̄ and n̄ to be solved with least squares:
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η̄(i) =
µ̄−ρc(i)E ( x̄)

2ρ
+

√

√

√
� µ̄−ρc(i)E ( x̄)

2ρ

�2
+
µ̄c(i)E ( x̄)

2ρ
(3.17)

p̄(i) = c(i)E ( x̄) +η
(i) (3.18)

3.5 Inequality Restoration Phase

Equations 3.12 to 3.18 summarize how the restoration phase works in the
implementation paper. However, the separation of inequality constraints cI(x)
from cE(x) introduce the possibility of two different kinds of restoration phases.
The first restoration phase occurs under conditions where only ||cE(x)|| is vi-
olated and the barrier subproblem fails. However, if any of the inequality con-
straints also are infeasible (cI(x)(i) < 0 for one i ∈ Ng), a restoration phase
where cE is replaced by cI is initialized:

min
x̄ ,p̄I ,n̄I

ρ

Nh−1
∑

i=0

(p̄(i)I + n̄(i)I ) +
ζ

2
||DR( x̄ − x̄R)||22 (3.19)

s.t g( x̄) + p̄I − n̄I −∆cI
= 0 (3.20)

p̄I , n̄I ≥ 0

The aim for this restoration phase is to find a point on the feasible side of the
inequality constraints. In order to find a point acceptable to the filter it is useful
to add a negative offset to push the next iterate over to a point where ϕµ j

is
feasible, which is enforced with ∆cI

in equation 3.20.

∆cI
=min

¦

κcI
||g( x̄0)||2,∆cI ,max

©

(3.21)

Convergence failure invokes a least squares problem equivalent to equa-
tions 3.17, 3.18.

Inequality 3.16 is ignored in the thesis implementation, in the hope that
sequences of alternating restoration phases are more robust. For example, an
equality restoration phase may pull the next iterate to a point that is infeasible
with respect to cI(x), which further activates an inequality restoration phase.

18



Chapter 4

Algorithms

There are several steps of the IPOPT-algorithm that require iterative proced-
ures to find steps and values that satisfy the given optimality conditions. These
algorithms are presented as pseudocodes intended to summmarize their steps,
and to be more relatable to the thesis code implementation. These algorithms
are not equivalent to the exact steps in the implementation paper [1], but gen-
erally use the same parameters. The algorithms are presented bottom-up ac-
cording to their execution hierarchy in the code. ’Algorithms’ will in context
with the implementation refer to these pseudocodes and their corresponding
subroutines.
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4.1 Inertia Correction

Algorithm 1 Inertia Correction Algorithm
δc ← 0
if acceptable eigenvalues(KKT_matrix) then

Obtain dx , dλ by solving (2.25)
δw,old ← δw
Return if dx , dλ is feasible

end if
δw← κ−wδw,old
while δw < δw,max do

if any zero_eigenvalues(corrected_KKT_matrix(δw,δc)) then increase δc
end if
if acceptable eigenvalues(corrected_KKT_matrix(δw,δc)) then

Obtain dx , dλ by solving (2.25) with corrected_KKT_matrix(δw,δc)
δw,old ← δw
Return if dx , dλ is feasible

end if
Increase δw

end while
Return correction failure

Storing the previous value of δw prevents unneccessary computations for
steps where the correction required is consistent. A fraction of δw,old is tested
at the first iteration in an attempt to reduce the inertia. The following iterations
increase δw exponentially.
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4.2 Second-Order Correction

Algorithm 2 Second-order correction algorithm pseudocode
if θ (x + dx)< θ (x) and (3.6), (3.7) holds for (x , dx) then

d cor
x ← dx

for i← 1 to pmax do
csoc

k ← c(x) + c(x + d cor
x )

Obtain d cor
x , d cor

λ
by solving (2.38) with csoc

if ϕµ j
(x + d cor

x )≤ ϕµ j
(x) +ηϕ∇ϕµ j

(x)dx then
dx ← d cor

x
dλ← d cor

λ
Return with accepted step size

end if
if θ (x)− θ (x + d cor

x )< κsoc then
Return to normal linesearch

end if
end for
Return to normal linesearch

end if

This implementation is simplified to only work with full steps α = 1. The
Armijo condition check differ from the one used in the filter by using the barrier
gradient (∇ϕµ j

(x)dx), while evaluating a the barrier function in a different
direction (ϕµ j

(x + d cor
x )).
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4.3 Linesearch

Algorithm 3 Linesearch algorithm pseudocode
α← 1
if θ (xk +αdx)> θ (xk) then

if Second-order correction (A.2) succeeds then
Return with accepted step α

end if
end if
for i← 1 to lmax do

if α satisfies section 3’s conditions then
Return with accepted step α

end if
if α < αmin then

Return failure
end if
α/= 2

end for
Return failure
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4.4 Barrier Subproblem

Algorithm 4 Barrier subproblem algorithm pseudocode
Initialize barrier functor ϕµ j

with µ j
Initialize filter Fk with provided filter_set
for k← 0 to max_iter do

if (Eµ j
(xk,λk, zk)≤ κεµ j) then

Return with xk,λk, zk
end if
Evaluate KKT_matrix and KKT_vector in (2.25)
if Solving (2.25) for dx , dλ with algorithm 1 fails then

Return failure
end if
Update position and direction of Fk with xk, dx
if Linesearch with algorithm 3 fails then

Return Failure
end if
Solve dz with (2.26)
Limit α,αzg

αzub
,αzl b

with Fraction-to-the-boundary rule (2.27)
xk+1,λk+1, zk+1 += αdx ,αdλ, [αzg

,αzub
,αzl b

] · dz
Correct zk+1 with hessian safeguards (2.34)

end for
Return failure
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4.5 Restoration Phase

Algorithm 5 Restoration phase pseudocode
Construct objective fR(w, z) with x j (3.14)
Compute η̄0, p̄0 with (3.17, 3.18)
w0← [x0, η̄0, p̄0]T

z̄0← [min(ρ, zx), µ̄η̄−1
0 , µ̄p̄−1

0 ]
λ̄0← 0
for t ← 0 to tmax do

if Barrier subproblem algorithm 4 fails for fR then
break

end if
if (Eµ̄t

(wt , λ̄t , z̄t)≤ κεµ̄t) then
if t = 0 then

break
end if
Return with x j+1 = wt[: Nx]

end if
Update fraction-to-the-boundary parameter τ̄t with (2.28)
Assign µ̄t+1 with (2.32)

end for
Compute η̄t , p̄t in wt with (3.17, 3.18)
Return with x j+1 = wt[: Nx]

Algorithm 5 is used both for the equality-constrained restoration phase and
the inequality-constrained, only differing in the objective function fR and vari-
ables w, λ̄, z̄.
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4.6 Linesearch Filter-Barrier

Algorithm 6 Linesearch Filter-Barrier algorithm pseudocode
Compute λ0 with (2.39)
z0← µ0cI(x0)−1

for j← 0 to jmax do
if (Eµ j

(xk,λk, zk)≤ εtol) then
x∗,λ∗, z∗← xk,λk, zk
Return success

end if
if Barrier subproblem algorithm 6 fails then

if Any inequality constraints are violated then
Get x j+1 from inequality restoration phase with x j , z j

else
Get x j+1 from equality restoration phase with x j , z j

end if
Compute λ j+1 with (2.39)
z j+1← µ jcI(x j+1)−1

end if
Update fraction-to-the-boundary parameter τ j with (2.28)
Assign µ j+1 with (2.32)

end for
Return failure

Inequality restoration phases are prioritized over equality restoration phases,
since filter-feasible iterates are prioritized over equality constraint violation.
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Chapter 5

Object-Oriented Design

The C++programming language is well established for object-oriented design,
and its advantages are visible in the implementation of IPOPT. Here, objects
are used to hide the implementation of data structures as Abstract Data Types
(ADTs), which form higher abstraction hierarchies that holds the computed
quantities that are required to run IPOPT algorithms. OOD lets objects have
mutable internal data, which enables the control flow of the program to be de-
scribed imperatively by the change of these internal states. The topics discussed
in the following sections cover broadly used design patterns (which are relev-
ant for IPOPT’s implementation) and different types of polymorphism used in
OOD.

5.1 Design Patterns

The IPOPT-algorithms are composed of different types of objects that interact
with each other. These objects follow different well-known OOD design patterns
which Larman and Gamma [16] defines as:

’...descriptions of communicating objects and classes that are customized to solve
a general design problem in a particular context’ [16, p.3]

Larman and Gamma divides design patterns in three categories: Creational,
structural and behavioral patterns. The characteristics of the patterns used by
IPOPT will be briefly summarized.

5.1.1 Behavioral Patterns

Behavioral patterns are intended provide clear distinctions between the differ-
ent behaviors of an algorithm by separating them using classes/objects.

The strategy pattern[16, p. 315] is useful for implementing algorithms that
only differ in behavior, but share other traits (like interface-access and data).
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This is widely used through the base class AlgorithmStrategy in IPOPT, which
provides common access to the computed data and loggingmethods it provides.

The observer pattern[16, p.293] is useful for introducing dependencies where
one object needs to be notified of a change of state in the other. This is useful
for caching iteration values, and IPOPT use this pattern to cache the performed
linear algebra operations by making all vectors and matrices inherit from an
IpObserver base class.

5.1.2 Creational Patterns

Creational patterns abstract the instantiaion of objects, which can simplify and
make the instantiating code invariant to the details encapsulated in that object.
The creational patterns give a lot of flexibility in how, when and which type
that is created.

In order to construct its algorithm IPOPT makes use of the builder pat-
tern[16, p.97]. This pattern separates the construction of its algorithm from
the usage, and makes it possible to configure different strategies for the steps
of the algorithm. Table 5.1 summarize the components used by the builder, all
of which are classes inheriting from a same base class called AlgorithmStrategy.

SearchDirectionCalculator Computes the search direction.
LineSearch Implements computation of step length α and ini-

tialization of fallback-mechanism.
MuUpdate Updates barrier parameter µ.

ConvergenceChecker Implements conditions for optimality, responsible
for termination of the algorithm.

IterateInitializer Allocates, computes and initializes necessary data
and option-configuration structures. Computes
least-square primal and dual multiplier initial val-
ues.

IterationOutput Implements output summary for each iteration.
HessianUpdater Implements method for computing the hessian.

EqMultiplierCalculator Implements the computation of initial equality
multiplier estimates.

Table 5.1: Relevant AlgorithmStrategy-Interfaces used by the IPOPT-builder

This pattern clearly separates the different stages of the IPOPT-algorithm
and provides the flexibility to change each step without affecting the others. It
allows each component to operate as a black box, provided that the methods
specified in its interface has been implemented correctly.

Another pattern used is factory methods[16, p.107], which use convenient
methods for constructing objects of an unknown type. Three factory methods
are used by the IPOPT-builder, which all are used to configure a solver for the
primal-dual system. The pattern lets the subclasses be responsible for their own
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instantiation. Considering that IPOPT supports a wide range of linear solv-
ers (Harwell Subroutine Library [17] and SPRAL[18], PARADISO[19–21] and
more) with different interfaces, it is useful to provide abstractions for this at a
low level in the hierarchy.

5.1.3 Structural Patterns

Structural patterns are concerned with how structures are formed from com-
ponents, they are used to introduce abstracting and adapting interfaces that
clarifies and enables communication between objects.

The adapter pattern[16, p.139] is used to modify an object to fit the type
criterion of others. IPOPT use a TNLP adapter (Triplet NonLinear Program) to
allow TNLP objects to inherit from the IpNLP-class.

5.2 Polymorphism

Polymorphism is the trait of having different forms, which is a characteristic
that applies to many areas in object-oriented design. With a set of data mem-
bers and methods given in a base class, the base class can be considered poly-
morphic with respect to the derived classes that inherits from it. This type of
polymorphism is very useful for exposing the relevant properties of an object
when they are needed. Another approach to achieve polymorphic behavior is
object composition, where complex behavior is built by adding simpler objects
as data members inside a class. Object composition results in better encapsula-
tion than inheritance, and is used when an object has sub-objects, in contrast
to inheritance where a class is a base class.

5.2.1 Dynamic Polymorphism

Dynamic polymorphism resolves method and data types at runtime. One ex-
ample is virtual interfaces in C++, which are base classes that declares meth-
ods without implementing them. The inheriting classes need to provide imple-
mentations for these methods through method overriding.

Code listing 5.1: Inheritance from a virtual interface in C++
class A
{
public:

virtual void method() = 0;
};

class B : public A
{
public:

void method()
{

cout << "Implementation_B" << endl;
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}
};

class C : public A
{
public:

void method()
{

cout << "Implementation_C" << endl;
}

};

B and C in listing 5.1 override ::method() in A. The override is caused by late
binding, which is enforced by the virtual-keyword. This implies that a virtual
table is created in base class A, where pointers to all method overrides are
stored at runtime. These pointers provide additional flexibility at runtime, but
the same time restricts optimization capabilities. IPOPT makes heavy use of
virtual interfaces to present the methods required in its objects.

5.2.2 Static Polymorphism

Static polymorphism resolves method and data types at compile time. By repla-
cing the virtual method in listing 5.1 with an actual implementation, function
overloading (section 6.5.1) will instead be performed with B and C’s methods.
No virtual table is generated, the pointers to the derived methods are fixed
at compile time. These methods cannot be replaced at runtime, which allows
additional optimization to be performed by the compiler.

5.2.3 Parametric Polymorphism

Parametric polymorphism is a useful trait for defining objects that only differ
in the the types used. True parametric polymorphism allows objects with the
same behavior to be recognised as the same type, regardless of the data types
contained within it. C++ does not exhibit true parametric polymorphism, but
class templates achieve a very similar behavior.

Code listing 5.2: Class template example using sparse and dense Eigen-
vectors

template <typename T>
class A
{
private:
T data_;
public:

A(const T& data): data_(data){}

void print()
{

cout << data_ << endl;
}
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};

int main()
{

Eigen::VectorXd dense_x(2);
dense_x << 1.0, 0.0;
A Dense_Obj(dense_x);
Dense_Obj.print();

Eigen::SparseVector<double> sparse_x(2);
A Sparse_Obj(sparse_x);
Sparse_Obj.print();

}

$./Parametric_example
1
0
(4,0)

Listing 5.2 presents a class template A<T> which is used to generate two dis-
tinct classes A<Eigen::VectorXd>, A<Eigen::SparseVector<double>>. Class templates al-
low multiple types to be implemented and manipulated using the same code,
effectively avoiding repitious code duplication. The compiler will deduce the
types used and instantiate the necessary classes.

The usage of templates leads to new challenges for inheritance. A templated
base class A<T>will encounter issues when trying to deduce pointers for methods
to templated derived classes. This issue is solved by passing the type of the
derived class to the base class, which is a design pattern known as the Curiously
Recurring Template Pattern (CRTP).
template <typename Derived, typename T>
class A
{
public:
T data_;

A(const T& data): data_(data){}

void print()
{

static_cast<Derived*>(this)->print();
}

};

template <typename T>
class B: public A<B<T>, T>
{

using Base = A<B<T>, T>;
using Base::data_;

public:
B(const T& data): Base(data){}
void print()
{

cout << data_ << endl;
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}

};

template <typename T>
class C: public A<C<T>, T>
{

using Base = A<C<T>, T>;
using Base::data_;

public:
C(const T& data): Base(data){}
void print()
{

cout << data_ << endl;
}

};

In this case the compiler is unable to override or overload functions, so the base
class has to be explicitly guided towards calling the corresponding method in
the derived class using static_cast. CRTP exhitbits static polymorphism, and
enables interface-classes with the same optimization capabilities found in func-
tion overloading.

(a) (b)

Figure 5.1: Inheritance diagrams for CRTP-example

Figure 5.1 shows that B and C does not inherit from the same base class,
and therefore does not exhibit true parametric polymorphism.

5.3 Overview of IPOPTs Implementation

Graph visualizations of IPOPT isolates the complexity of its components, which
makes it easier to see how the algorithm works in total. The following visual-
izations are generated from IPOPT’s provided C++-example, which default-
instantiates an IpoptApplication-object. Its constructor further configures a Journalist

, which is responsible for messaging, printing and logging of results. Default
algorithm-parameters are instantiated in RegisteredOptions, followed by con-
struction of the core algorithm by invoking the AlgorithmBuilder.
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Figure 5.2: AlgorithmBuilder collaboration graph

This instantiates a wide range of AlgorithmStrategy-objects, which illustrates
the flexibility that the library has to offer. Each component may be replaced by
a custom implementation with the use of inheritance, which makes simple to
swap out any component on demand.

One important consequence of the AlgorithmBuilder’s design is how data
is exposed to the objects.

The collaboration graph of AlgorithmStrategy in Figure 5.3 shows that the
class has direct access to the data contained in IpoptCalculatedQuantities, which is
where all the computed data is cached. IpoptCalculatedQuantitites enables read-
only access to the data with const pointers which protects cache from being

Ipopt::AlgorithmStrategy
Object

Ipopt::ReferencedObject

Ipopt::Journalist

Ipopt::IpoptCalculatedQuantities

Ipopt::SmartPtr< const
 Ipopt::Journalist >

 jnlst_

Ipopt::Referencer
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 ip_nlp_
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Figure 5.3: AlgorithmStrategy collaboration graph
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modified. IpoptCalculatedQuantities uses a form of memoization (section 6.6.1)
to compute and retrieve information from the same functions. While this design
simplifies the process of accessing data for the objects, it can introduce hidden
dependencies between the different stages of the algorithm. Moreover, differ-
ent types of cached data may be completely independent and irrelevant with
respect to eachother, making it unneccessary to The functional design in the
next chapter will introduce alternatives which will be used to replace these
patterns.
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Chapter 6

Functional Design

In contrast to imperative programming that use statements to change a pro-
grams state, declarative programming abstract away the control flow of the
application and instead focuses on formulating what the desired outcome is.
Functional programming is a declarative paradigm that treats functions as first-
class citizens, meaning that general operations used by other entities in the
language also is supported for functions (operators, argument passing, modi-
fications, etc...). Instead of using composition of states to create a desired be-
havior, functional programming compose behavior by building, combining and
modifying functions.

6.1 Pure Functions

Functional programming introduce natural encapsulation by using pure func-
tions. Its properties are:

• Function return values are identical for identical input arguments.
• The function application has no side effects, no mutation of data/instruc-
tions occurs outside its local environment.

Functional programming with pure functions is a very restrictive design,
but it has many attractive properties.

• Error detection - Encountered errors must have been caused by the local
environment of the function, or by its input arguments.

• Parallel execution - Any data-independent pure functionmay be executed
in parallel, since there are no side effects.

• Memoization - Identical return values for identical arguments makes it
possible to store and reuse previously computed data.
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6.2 Lambda functions

Highly idealized functional programming languages (like Scheme[22] andHaskell[23])
solve expressions in coherence with lambda calculus[24]. These languages per-
forms computations in terms of variable bindings and substitutions of expres-
sions, in contrast to the imperative approach of modifying internal states. When
computations are performed with functions treated as data it is convenient to
allow functions to be declared anonymously, without a name identifier.

6.2.1 Lambda Expressions and Functors

There are many situations in the IPOPT algorithm design that can greatly be-
nefit from using anonymous functions. Considering that the majority of evalu-
ations performed in the algorithm is built on combinations of the user-provided
NLP, dynamically breaking and building abstractions would improve the flexib-
ility and readability of the algorithm. Listing 6.1 show examples where barrier
and linesearch evaluation functions are created with lambda expressions.

Code listing 6.1: Example applications for lambda expressions in IPOPT-
algorithm design

using Vec_s = Eigen::Matrix<double, Ns, 1>;
using Vec_x = Eigen::Matrix<double, Nx, 1>;
Vec_s s;
objective f;

auto phi = [&f, &S](auto& x, const double& mu)
{return f(x) - mu*s.cwiseLog().cwiseInverse();};

const Vec_x x0;
const Vec_x d_x;
auto f_LineSearch = [&f, &x0, &d_x](const double& alpha){return f(x0 + alpha*d_x)

;};

Data used to construct the lambda expressions can be passed as captures
([]), allowing the expression to be dependent on other variables outside its own
scope. Besides this, the input argument types and function body instructions
are resolved at compile-time. These expressions allow to some extent functions
to be treated as data, but they do not create new instructions at runtime. This
makes lambda expressions comparable to functor classes. It can be shown that
the disassembly output of a lambda closure (lambda-expression instance) is
equivalent to a functor defined with the same instructions[25]. This also holds
for captures, which makes the following functor equivalent to the first example
of listing 6.1.

Code listing 6.2: Functor-equivalent to listing 6.1’s phi-expression
struct phi
{

phi(objective &f, Vec_s &s) : f_(f), s_(s) {}
auto operator()(auto &x, const double &mu)
{
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return f_(x) - mu * s_.cwiseLog().cwiseInverse();
}

private:
objective &f_;
Vec_s &s_;

};

The caveat with lambda-expressions is that C++ does not allow the use of
pointers to closures that capture data, and capturing data is necessary to be
able to use user-defined NLP-methods. This means that new lambda expres-
sions would have to be defined in every function scope, or that it would have
its lifetime maintained in a custom allocated scope, which is the purpose of the
function-wrapper std::function from the C++ standard library. However, std::
function makes use of heap allocation in order to store capture data once its
size surpasses ∼ 16 bytes. Heap-allocated function-wrappers are slower than
stack-allocated functors, thus functors became the design choice for the imple-
mentation.

6.2.2 Currying

A function for adding an input to a constant r may be expressed as follows:

(λy.λx .x + y)r
β
−→ λx .x + r (6.1)

Here λx ,λy denotes function input arguments for two anonymous functions,
which is used to represent a sequence of functions (ie. curried representation)
on the left hand side. An anonymous version of a function f (x) = x + r is β-
substituted from a more general sum-function with r as the binding variable.
This is how computations are performed in lambda calculus (along with α-
renaming and η-extensionality). Currying and input transformations are useful
for abstracting away input arguments that are to be used repeatedly.

Currying results in a new function, which in C++ is only achieveable during
compile time. Lambda expressions can be used to present an illusion of curry-
ing, but the same number of input arguments are evaluated for the underlying
declared functions.

6.2.3 Higher-Order Functions

Higher-order functions is a built-in advantage in lambda calculus which makes
it possible to create complex behavior by passing simpler functions as argu-
ments to others.

(λy.λx .x + y)λz.z2 β
−→ λz.λx .x + z2 (6.2)

Passing functions as input arguments to other functions is a way of building
complex behaviour with simpler components.
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In C++ it is possible to pass function pointers as input arguments, but it is
only possible to compose new functions at compile time.

6.3 Recursion

For and while-loops are not achievable in a pure functional design. Loops are
allowed to mutate data outside of its iteration scope, which can lead as a side
effects for the upcoming iterations. By making a pure function call itself with
different input arguments it is still possible to perform iterative procedures.
Compared to for and while-loops, recursion introduce a property that both
can be considered both more restrictive and enabling. A recursive iteration
only need to account for its local variables, which could be a better basis for
dynamically branching algorithms.

Local optimization solvers tend to use information obtained around the cur-
rent iterate, which makes access to previous iteration data redundant from the
perspective of the algorithm. This also applies to the implementation in this
thesis, which makes it worthwhile to consider the advantages and disadvant-
ages recursion creates.

6.3.1 C++ Function Call Overhead

C++ allocates local variables by pushing them onto the stack, where new cop-
ies are added (pass-by-value) every time a new function is called. This makes
it possible to perform operations that do not concern the local variables, and
later return and use them in other operations. In recursive calls this can lead
to high stack memory consumption, especially if input arguments are copied
for each recursive call.

Code listing 6.3: Stack overflow with pass-by-value recursive function
double recursive(std::array<double, 10000> arg, int& i)
{

std::cout << i << std::endl;
i++;
return recursive(arg, i);

}

int main()
{

std::array<double, 10000> arg;
int i = 0;
recursive(arg, i);

}

...
99
100
101
103
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Segmentation fault (core dumped)

Listing 6.3 demonstrates the limitations of the stack, where an array of
80000 bytes are passed by value. With a default stack size of 8192MB a stack
overflow occurs after an infeasibly small number of iterations. The number of
iterations drastically increase (259226) when the array instead is passed by
reference. In this case the stack size is incremented with the pointer size (8
bytes) of arrays. Even in this case, the maximum number of function calls will
not be sufficient to call all subroutines in a linesearch filter barrier-algorithm
without using return values.

6.3.2 Y-Combinator

In lambda calculus recursion is achieved with Y-combinators:

(λx .x x)(λx .x x)
β
−→ (λx .x x)(λx .x x) (6.3)

Performing a β-reduction on a Y-combinator results in a new Y-combinator. This
is a practically infeasible problem to reduce, since no bounded number of β-
reductions is able to bind all variables of the expression. The Y-combinator can
be modified with conditional termination conditions, which would make re-
cursive sequence of functions finite. Reductions performed on a finite recursive
expression is comparable to the expression-reductions that Eigen would per-
form on recursive calls in C++.

6.3.3 Tail Recursion

Tail recursive functions are functions where a recursive call is the last thing ex-
ecuted in the function body. This type of recursion enables tail-call elimination,
which effectively removes the recursive function call overhead.

Code listing 6.4: Tail recursive function C++ example
int recursive(int N, int total)
{

if (N == 0)
{

return total;
}
else
{

return recursive(N - 1, total + 1);
}

}

recursive(N, 0)
recursive(N - 1, 1)
recursive(N - 2, 2)
...
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The tail-call eliminated representation allows the function calls to be com-
puted sequentially without the need for additional stack-allocation of new vari-
ables.

Tail-call optimization can be enforced on the GCC-compiler in the case
where objects used are destructible within the scope of the recursive function,
and a recursive function call is the last operation performed wihin its scope.
Listing 6.5 demonstrates an example application for tail-call optimization.

Code listing 6.5: Tail-call optimization with default destructors
struct A
{

double data;

};
inline A recursive(A a1,

A a2,
const int N)

{
a1.data /= a2.data;
if (N <= 0)

return a2;
return recursive(a1, a2, N - 1);

}

int main()
{

A a1{10.};
A a2{2.};
recursive(a1, a2, 10);

}

Code listing 6.6: Tail-call optimization assembly output (g++ -O2)
.type _Z9recursiveR1AS0_RKi.isra.0, @function

_Z9recursiveR1AS0_RKi.isra.0:
.LFB2:

.cfi_startproc
movsd (%rdi), %xmm0
divsd (%rsi), %xmm0
movsd %xmm0, (%rdi)
testl %edx, %edx
jg .L2
movsd (%rsi), %xmm0
ret
.p2align 4,,10
.p2align 3

.L2:
divsd (%rsi), %xmm0
movsd %xmm0, (%rdi)
subl $1, %edx
jne .L2
movsd (%rsi), %xmm0
ret
.cfi_endproc

The assembly output for recursive contains no calls to itself, which shows
that GCC has transformed the recursive calls to a loop. This example could
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even be extended to perform alternating recursive calls (e.g. recursive_0 calls
recursive_1, recursive_1 calls recursive_0), Unfortunately this only holds for trivial
destructors, which is necessary to guarantee that the behavior of the optim-
ized code remains the same. Once a non-trivial destructor is defined for A
the compiler is unable to tail-call optimize. This makes this type of optimiza-
tion incompatible with Eigen, which defines its classes with protected destruct-
ors. Moreover, the C++ standard gives no guarantee of tail-call optimization,
which could make the performance of the code highly dependent on the com-
piler used.

6.3.4 Encapsulating Loops

Since tail-call optimization is incompatible with Eigen, it is desirable to find
other iterative methods that remain efficient, but which also separates atomic
operations, indivisible operations that cannot be interfered by any concurrent
processes.

Many of the steps in the interior-point algorithm is conditionally dependent
on values. Some examples are tolerance-dependent termination criteria, the
filter conditions and the eigenvalue condition in inertia correction. Replacing
these conditions with function branches for all cases would be combinatori-
ally infeasible. A good compromise is to instead separate atmoic operations in
smaller functions that are called inside the loop.

This ensures that potential errors can be traced back through the previous
sequence of function calls. All of the iterative algorithms presented in section
4 are implemented according to this guideline.

6.4 Design Patterns

Functional programming replace all OOD-patterns with higher-order functions.
This can be demonstrated for the strategy-pattern:

Code listing 6.7: Functional equivalent to the strategy design pattern
void strategy_0()
{

std::cout << "Strategy_0" << std::endl;
}

void strategy_1()
{

std::cout << "Strategy_1" << std::endl;
}

void application(void (*strategy)(void))
{

strategy();
}
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Instead of relying on inheritance polymorphism to get different behaviour, the
functional approach solves this by passing the behaviour to the function. Cor-
responding equivalents can be found for other OOD-patterns[26] using func-
tion composition.

6.5 Polymorphism

In constrast to the object-oriented approach where objects with different in-
ternal types can be treated equally, functional polymorphism allow functions
to behave differently depending on the provided types of input arguments.

6.5.1 Function Overloading

Function overloading, also known as Ad Hoc polymorphism refers to functions
that are able to take arguments of many different types, but exhibit different
behavior for those types. One example is a function add that return the sum in-
puts of type integer, but returns a concatenated string inputs of type string. The
Eigen-library use function overloading to implement its linear algebra opera-
tions, which also applies to operations in-between dense and sparse matrices.

6.5.2 Parametric Polymorphism

Parameter-polymorphic functions are in constrast to overloaded functions in-
variantly to input types. Templated functions in C++ have a similar behaviour,
but generate function overloads for the used parameter types.

Code listing 6.8: Example of parameter polymorphism in functions
template <typename T>
void function(T arg)
{

cout << arg << endl;
}

int main()
{

function(0);
function("string");

}

(gdb)
info functions
...
0x0000000000001254 void function<int>(int)
0x000000000000128c void function<char const*>(char const*)

Listing 6.8 shows that one function is generated for each type passed to the
template function.
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6.6 Optimization

6.6.1 Memoization

When entities in a program are restricted to have no internal state it becomes
harder to share results of expensive computations. However, since a pure func-
tion always returns identical values for identical input arguments, it is possible
to cache the input-output value pairs for reuse, and return the output value
whenever the subject function is called with the corresponding input. Memoiz-
ation trade off memory for computational speed, which can be a very attractive
property for the nonlinear solver.

6.6.2 Lazy Evaluation

Lazy evaluation postpones the evaluation of expressions until a value is needed.
This makes it possible to avoid computation of uneccessary, intermediate val-
ues, which can be more efficient both in terms of computations and memory us-
age. The unevaluated expressions are instead simplified by applying β-reductions.

6.7 A Note on Self-Modifying Code

It should be emphasized that β substitutions imply that instructions themselves
are modified as data, since no internal state is held by the lambda functions.
This is fundamentally different from the way most high-level languages trans-
late code to binaries, the majority (C++ included) do not implement support
to mutate instructions at runtime. This also holds for functional programming
languages like Scheme (interpreted, compiled or JIT), Erlang/Elixir (BEAM
Virtual Machine) and Haskell (GHC Runtime System), which instead use ab-
stractions in form of compilers or interpreters which at some level compiles C
or Assembly code. True in-memory modification of instructions during runtime
is achievable in Assembly language, but instruction memory modification can
behave very differently from one CPU architecture to another (and be very
cache-inefficient), making it very difficult to construct higher-level compilers
to work this way. Furthermore, considering the difficulties with determining
the intention of self-modification, most operating systems enforce "write xor
execute" to protect computers from malicious code.

The templated Eigen-expressions are promising in this context, since they
can be reduced before runtime, but these reductions are not able to work with
information obtained at runtime. A good compromise in this case would be
to introduce a Just-In-Time-compiler, which allows runtime data to be used to
compile new binaries.
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6.8 Deduction and Specification of Template Paramet-
ers

There are many different ways to pass compile-time configurable information
to the different components of a C++ application. The most verbose approach
is to explicitly specify template parameters whenever a templated component
is used. In this case the compiler can sequentially resolve the required template
instantiations, and the applicationwill compile. However when large templated
components build on top of each other, the list of template parameters grow
larger, and it becomes increasingly difficult to interpret the composition and
relations of types in the code. This is counteracted by introducing name aliases
for the impractically long typenames. Types and name aliases during compile-
time are analogous to values and variables at runtime.

Explicitly specifying a template parameter is useful when the parameter
defines some behavior in a subject function/class that is not deducible from its
input arguments. One relevant example is the choice of a linear solver, which
in Eigen can be specified with a template parameter.

Code listing 6.9: Explicit specification of template parameters for a wrapper
to an Eigen linear solver

template <typename LinSolver, int Nx>
Eigen::Matrix<double, Nx, 1>
Solve(Eigen::Matrix<double, Nx, Nx>& A, Eigen::Matrix<double, Nx, 1>& b)
{

LinSolver S(A);
return S.solve(b);

}

constexpr int Nx = 2;

int main()
{

using Mat = Eigen::Matrix<double, Nx, Nx>;
using Vec = Eigen::Matrix<double, Nx, 1>;
Mat A;
A << 1 , 0 , 0, 1;
Vec b;
b << 1, 2;

Vec result = Solve<Eigen::LDLT<Mat>, Nx>(A, b);

}

In the case of listing 6.9 both Nx and LinSolver have to be specified, even
though Nx is present in the dimensions of the input arguments. It is not possible
(as of C++ 17) to partially deduce function template parameters.

The less verbose, opposite approach is to let the compiler deduce paramet-
ers through implicit type deduction. Implicit type deduction avoids the need
of specifying template parameters by using the input arguments to functions
and constructors (C++17) to deduce types. This approach is useful in order
to avoid having to repeatedly specify types bottom-up.
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Code listing 6.10: Implicit deduction of Eigen input arguments
template <int Nx, int Nc>
void fun(Eigen::Matrix<double, Nx, Nx>& Mat_x,
Eigen::Matrix<double, Nc, 1>& Vec_g)
{

using Mat = Eigen::Matrix<double, Nx, Nx>;
using Vec = Eigen::Matrix<double, Nc, 1>;
// ...

}

template <typename Mat, typename Vec>
void fun(Mat& Mat_x,
Vec& Vec_c)
{

constexpr int Nx = Mat::RowsAtCompileTime;
constexpr int Nc = Vec::RowsAtCompileTime;
// ...

}

Listing 6.10 presents two useful deduction methods used for retrieving the
types and dimensions of Eigen-matrices. Problem dimensions are generally de-
duced at lower levels in the implementation, while the matrix types themselves
are sometimes deduced in higher levels where dimensions are irrelevant.

While functions are constrained to only allow full parameter specification/de-
duction, classes can be partially specialized and also constructor-deduced (C++17).
Templated methods inside class templates are able to combine the advantages
of the two approaches, leading to a reformulation of the linear solver function
in listing 6.9.

Code listing 6.11: Partial implicit class template deduction
template <typename LinSolver>
struct CustomLinSolver
{

template <int Nx>
static void Solve(Eigen::Matrix<double, Nx, Nx>& A,

Eigen::Matrix<double, Nx, 1>& b)
{

LinSolver S(A);
S.solve(b);

}
};

constexpr int Nx = 2;
int main()
{

using Mat = Eigen::Matrix<double, Nx, Nx>;
using Vec = Eigen::Matrix<double, Nx, 1>;
Mat A;
A << 1, 0, 0, 1;
Vec b;
b << 1, 2;

CustomLinSolver<Eigen::LDLT<Mat>>::Solve(A, b);
}
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Chapter 7

Constrained and Unconstrained
Testing Environment

The Constrained and Unconstrained Testing Environment (CUTE [27]/CUTEst
[3]) has been widely used to interface numerical solvers to constrained/un-
constrained optimization problems. The library is an adaptation of an older
library written Fortran, which is fully compatible with C++ code. Solvers that
have been configured for CUTEst can be applied to a wide range of problem-
files written in the Standard Input Format (SIF). When the files have been
decoded (using the sifdecode-library provided with CUTEst) it is possible eval-
uate objective, constraints, jacobians and the hessian by calling functions from
a provided header file (cutest.h).

7.1 Standard Input Format

The Standard Input Format (SIF) is a general input format for specifying non-
linear optimization problems. The input format is based on the other well-
established Mathematical Programming System (MPS) which features an input
format for linear and linear mixed-integer problems. The SIF-format considers
the problem formulation used in the large-scale nonlinear optimization solver
LANCELOT [28]. The SIF reference report [29] describes how the components
of a nonlinear problem can be formulated using indicator cards. One example
of a SIF-file will be included to demonstrate how problems are specified.

7.1.1 2-Dimensional Rosenbrock NLP in SIF-Format

The Rosenbrock function is a commonly used, non-convex optimization prob-
lem for testing optimization algorithms. The problem problem is known to
converge slowly for gradient-based algorithms. The following formulation is
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provided in a SIF-file with CUTE/CUTEst.

min
x

f (x) = 100(x2 − x2
1)

2 + (1− x1)
2 (7.1)

The objective contains two groups (x2− x2
1) and (1− x1), which are named

G1 and G2 in the SIF-file. G2 contains a constant in addition to variable x1,
which is specified under CONSTANT. G1 and G2 are both quadratic groups,
but G1 additionally contains a quadratic element. Groups and elements are
first declared under GROUP/ELEMENT TYPE, and later specified under the
ELEMENTS-section. Element function SQ(V1) and group function L2(GVAR)
is declared to account for x2

1 and the quadratic groups respectively. Function
value, gradient and hessian are defined for these functions under ELEMENTS.

The constant element 1.0 is added to G2 under CONSTANTS. Quadratic
element x2

1 is associated with its element type under ELEMENT USES, yielding
E1. The objective function is assembled under GROUP USES, where L2 is ap-
plied to all groups by setting it as DEFAULT, and −x2

1 is added to G1. Bounds
and initial values are trivially specified, resulting in the full SIF-file:

Code listing 7.1: ROSENBR.SIF
***************************
* SET UP THE INITIAL DATA *
***************************

NAME ROSENBR

* Problem :
* *********

* The ever famous 2 variables Rosenbrock "banana valley" problem

* Source: problem 1 in
* J.J. More’, B.S. Garbow and K.E. Hillstrom,
* "Testing Unconstrained Optimization Software",
* ACM Transactions on Mathematical Software, vol. 7(1), pp. 17-41, 1981.

* SIF input: Ph. Toint, Dec 1989.

* classification SUR2-AN-2-0

VARIABLES

X1
X2

GROUPS

N G1 X2 1.0
N G1 ’SCALE’ 0.01
N G2 X1 1.0

CONSTANTS

ROSENBR G2 1.0
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BOUNDS

FR ROSENBR ’DEFAULT’

START POINT

ROSENBR X1 -1.2
ROSENBR X2 1.0

ELEMENT TYPE

EV SQ V1

ELEMENT USES

T E1 SQ
V E1 V1 X1

GROUP TYPE

GV L2 GVAR

GROUP USES

T ’DEFAULT’ L2
XE G1 E1 -1.0

OBJECT BOUND

LO ROSENBR 0.0

* Solution

*LO SOLTN 0.0

ENDATA

***********************
* SET UP THE FUNCTION *
* AND RANGE ROUTINES *
***********************

ELEMENTS ROSENBR

INDIVIDUALS

T SQ
F V1 * V1
G V1 V1 + V1
H V1 V1 2.0

ENDATA

*********************
* SET UP THE GROUPS *
* ROUTINE *
*********************

GROUPS ROSENBR
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INDIVIDUALS

T L2
F GVAR * GVAR
G GVAR + GVAR
H 2.0

ENDATA

A simpler introduction is provided in LANCELOT[28, p.15].

7.2 Sifdecoder

The sifdecoder[30] is responsible for translating components specified in the
SIF-files into usable fortran-subroutines that evaluates objective function, con-
straints, their gradients and the objective function hessian.

Code listing 7.2: Decoding and compiling ROSENBR.SIF
$sifdecoder ROSENBR.SIF
Problem name: ROSENBR

Double precision version will be formed

The objective function uses 1 linear group
The objective function uses 1 nonlinear group

There are 2 free variables

File successfully decoded
$ls
AUTOMAT.d ELFUN.f EXTER.f GROUP.f OUTSDIF.d RANGE.f
$gfortran -c *.f
$ls
AUTOMAT.d ELFUN.f ELFUN.o EXTER.f EXTER.o GROUP.f GROUP.o
OUTSDIF.d RANGE.f RANGE.o

The sifdecoder produce four fortran-files in Listing 7.2, which is compiled
to object-files using the gfortran-compiler. These object files can be compiled
together with C++ source files. Function declarations for the subroutines are
found a C-header file provided with CUTEst (Cutest.h), which can be included
directly by specifying its path to the compiler. The files have distinct purposes:
• ELFUN.f - Evaluates numerical functions for nonlinear element types and
its derivatives.

• GROUP.f - Evaluate numerical functions for group types and its derivat-
ives.

• RANGE.f - Transforms elemental to internal variables.
• EXTERN.f - Contains user-provided fortran subroutines.
• OUTSDIF.d - Contains problem structure data, used to initialize the prob-
lem.
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7.3 Hock-Schittkowski Collection

TheHock-Schittkowski (HS) collection[31] contains awide range of NLPswhich
tests how robst a solver is to numerical difficulties. Some of the traits of these
problems are the following:
• Badly scaled objectives, variables and constraints.
• Non-smooth model functions.
• Ill-conditioned optimization problems.
• Infinitely/several different optimal local solutions.
• Solutions where constraint qualification is not satisfied.

The HS collection is an ideal application for the dense solver because of the
small problem dimensions.

7.3.1 Problem Classification

The CUTEst problem set classify its problemswith strigs in the following format:
XXXr-XX-n-m

The first letter encodes the type of objective function. The HS problem set
uses objectives quadratic (Q), nonlinear (O), sum of squares (S) and constant
(C). The second letter encodes the type of constraints. The HS problem set
uses linear (L), quadratic (Q), nonlinear (O) and bounds only (B). The third
letter and ’r’ gives the smoothnes and highest derivative order of the problem.
The following ’XX’ gives miscellaneous info, while ’n’ and ’m’ gives the problem
dimensions.
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Chapter 8

Implementation

8.1 Overview

The project excessively use directories to separate the its different components.
This structure also works well with CMake, which adds CMakeLists.txt-files in
each directory that enables executables and libraries with relative paths.

8.1.1 Top-Level Structure

PROJECT_ROOT/
Data/
Plot/
Release/
build/
figures/
include/
test/
docs/

Figure 8.1: Top-level folder project structure

The top-level is used to separate the library from the data, parameters,
executables and plotting tools. The core directories can are summarized as
follows:
• include - Contains all header-files used by the project. (Excluding cutest.h)
• Data - Contains data produced by executables and parameters. SIF-problems
are decoded in its SIF-subdirectory, and matrices/vectors are provided to
QP-objectives using.csv-files in its QP-subdirectory.

• Plot - Contains source files for Python-binders and Python-files used to
plot results, along with build build/plot automation scripts

• test - Contains source code for all executable examples
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• build - Contains the resulting binary outputs from building the project in
debug mode (generated by CMake)

• Release - Contains the resulting binary outputs from building the project
with optimization flags (generated by CMake)

• docs - Directory for doxygen graphs and latex convergence plot genera-
tion.
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8.1.2 Header-Library Structure

The include-directory is structured to clearly separate the different components
of the library. Almost all header files are given individual subdirectories.

include/
Common/

Barrier_Parameter_Update/
Circular_Buffer/
Memoizer/
Utils/
Cutest.hpp
EigenDataTypes.hpp

Dense/
Algorithms/

Barrier_Subproblem/
Inertia_Correction/
LSFB/
LineSearch/
Restoration_Phase/
SOC/

Functors/
Barrier/
Filter/
Objective/

Hessian_Safeguards/
Initial_Multipliers/
KKT_System/

Inequality_Multiplier_Solver.hpp
KKT_System_Dense.hpp

Optimality/
Restoration_Least_Squares/

SIF_Dimensions/
Dimensions.csv
Dimensions.hpp

Sparse (Deprecated)/

Figure 8.2: Include-directory structure

Datatype-invariant functions (Memoizer, Utilities and Common) are imple-
mented in headers near the top-level, along with compile-time parameters for
SIF-files (SIF_Dimensions). The core components of the solver are implemen-
ted in the Dense and Sparse modules. The different components of the solver
follow the same separation as presented in this thesis, with smaller routines
isolated into separate headers (Optimality, Initial_Multipliers, KKT_System,...).
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8.2 Memoizers

Memoizers are implemented as simple storage classes where templated pairs
of data are stored. Memoizers contain an internal apache-licenced circular buf-

FIPOPT::memoizer< Input,
 Return, buffer_size >

 

+ memoizer()
+ Get_Data()
+ Set_Data()

Figure 8.3: The memoizer-class

fer[32], which holds a fixed capacity of element pairs Input, Return. New input-
output pairs will overwrite the oldest entry in the buffer.
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8.3 The NLP Functors

8.3.1 Motivation

In commonwith object-oriented design it is desirable to abstract away elements
that are irrelevant in different parts of an application. Functions can be grouped
inside objects similarly to other data (Either by storing pointers inside them, or
by specifying them as methods inside its class). This is the purpose of functors,
which is very useful for abstracting away user-defined NLPs from the interface
of the algorithm.

8.3.2 Objective

A user-defined NLP needs to provide evaluations for the objective and con-
straints, in addition to their first derivatives and hessians. These functions
along with the constraint and state dimensions (Nx , Ng , Nh) are the funda-
mental properties all objectives should provide.

FIPOPT::Dense::objective
< Derived, nx, ng, nh >

+ Nx
+ Ng
+ Nh

+ objective()
+ operator()()
+ Eval_grad()
+ Eval_hessian_f()
+ Eval_cE()
+ Eval_grad_cE()
+ Eval_hessian_cE()
+ Eval_hessian()
+ Eval_cI()
+ Eval_grad_cI()
+ Eval_hessian_cI()
+ Get_x_lb()
+ Get_x_ub()

Figure 8.4: The dense base objective class
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operator() f (x)
Eval_grad ∇x f (x)
Eval_hessian_f ∇2

x x f (x)
Solver side:
Eval_cE cE(x)
Eval_grad_cE ∇x cE(x)
Eval_hessian_cE Eval_hessian_h

Eval_cI cI(x)
Eval_grad_cI ∇x cI(x)
Eval_hessian_cI Eval_hessian_g

User side:
Eval_h h(x)
Eval_grad_h ∇xh(x)
Eval_hessian_h

∑Nh
i=1λi∇2

x xh(i)(x)
Eval_g g(x)
Eval_grad_g ∇x g(x)
Eval_hessian_g

∑Ng

i=1λg,i∇2
x x g(i)(x)

Table 8.1: Description of objective’s methods

Note: λg in table 8.1 are equality multipliers unique to the inequality res-
toration phase, since this is the only algorithm utilizing Eval_hessian_g.

The implemented methods pass input arguments as MatrixBase<T>, which
enables the methods to form Eigen-expressions without performing any evalu-
ation into temporary allocations [33]. The base class accounts for bounds and
use the corresponding notation. For example, the base class uses ::Eval_cI(.)

and ::Eval_cE(.), while the derived implementation needs to provide the cor-
responding ::Eval_g(.) and ::Eval_h(.).

Objective<Derived>

static_cast<Derived*>
Method 0

Method 1

...

Method N

Implementation

Method 0

Method 1

...

Method N

Figure 8.5: Method dispatching for base objectives

8.3.3 Memoized Objective

The inputs and return values of methods can be memoized by inheriting from
a memoized class. This is achieved by redirecting the function calls from base
objective classes to memoization-wrappers.

8.3.4 Messenger and Observer

A messenger-layer can be used to obtain computed values without interfering
with the design of the algorithm. The messenger pass the input/return value

58



Objective<Derived>

Method 0

Method 1

...

Method N

Objective<

Objective_Memoized<


Derived>>

static_cast<Objective_Memoized<...>*>

Method 0

Method 1

...

Method N

Implementation

Method 0

Method 1

...

Method N

Implementation

Method 0

Method 1

...

Method N

Objective_Memoized<Derived>

static_cast<Derived*>

Implementation

Method 0

Method 1

...

Method N

Figure 8.6: Method dispatching for memoized objectives

pairs for each method to a corresponding one in an observer-object.

Objective<Derived>

Method 0

Method 1

...

Method N

Objective<

Objective_Messenger<


Derived>>

static_cast<Objective_Messenger<...>*>

Method 0

Method 1

...

Method N

Implementation

Method 0

Method 1

...

Method N

Implementation

Method 0

Method 1

...

Method N

Objective_Messenger<Derived>

static_cast<Derived*>

Implementation

Method 0

Method 1

...

Method N

Observer<...>

Figure 8.7: Method dispatching for messenger objectives

Figure 8.7 shows how amessenger pass the input/output data passed through
it to an attached observer, which can be used to process the input/output data
without interfering with the algorithmic design.
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8.3.5 Journalist

The journalist-classes are derived from observers and used to write the interme-
diate input/return value pairs to separate csv-files. The journalist is intended

Objective<Derived> File I/OObjective_Observer<

Objective_Journalist>

static_cast<Objective_Journalist*>

Method 0

Method 1

...

Method N

Implementation

Method 0

Method 1

...

Method N

Implementation

Method 0

Method 1

...

Method N

Objective_Journalist

Figure 8.8: Method dispatching for journalist objectives

to demonstrate how data can be extracted and used during runtime.

8.3.6 Objectives for Quadratic Programs

Generic classes for Quadratic Programs (QPs) with linear constraints can be
created by providing implementations to the base classes.

min
x

1
2

x TQx + cT x

s.t.
Ax − b = 0

Dx − e ≥ 0

x l b ≤ x ≤ xub

(8.1)

ParametersQ, c, A, b, D, e, x l b, xub are passed into the constructor of the class,
which allows dimensions Nx , Ng , Nh to be implicitly deduced. A templated base
class (objective_QP_dense_base<>) enables the same implementation to be used for
normal, memoized and messenger objectives.

8.3.7 Decoded SIF Objectives

By calling the appropriate functions from cutest.h it is possible to load para-
meters for decoded SIF-problems, and to call dense/sparse fortran-subroutines
to evaluate values. SIF-NLP classes use the same inheritance design as QPs to
enable normal, memoized and messenger objectives. Figure 8.9 illustrates the
similarities for the basic QP and SIF objectives.

60



FIPOPT::Dense::objective
_QP< Nx, Ng, Nh >

FIPOPT::Dense::objective
_QP_base< Nx, Ng, Nh, objective >

# Q_
# c_
# A_
# b_
# D_
# e_
# x_lb_
# x_ub_

+ objective_QP_base()
+ objective_QP_base()
+ operator()()
+ Eval_grad()
+ Eval_hessian_f()
+ Eval_h()
+ Eval_grad_h()
+ Eval_hessian_h()
+ Eval_g()
+ Eval_grad_g()
+ Eval_hessian_g()
+ Get_x_lb()
+ Get_x_ub()
+ write_parameters()

FIPOPT::Dense::objective
< objective_QP_base< Nx,
 Ng, Nh, objective >, Nx,

 Ng, Nh >

+ Nx
+ Ng
+ Nh

+ objective()
+ operator()()
+ Eval_grad()
+ Eval_hessian_f()
+ Eval_cE()
+ Eval_grad_cE()
+ Eval_hessian_cE()
+ Eval_hessian()
+ Eval_cI()
+ Eval_grad_cI()
+ Eval_hessian_cI()
+ Get_x_lb()
+ Get_x_ub()

(a)

FIPOPT::Dense::objective
_SIF< Nx, Ng, Nh >

 

 

FIPOPT::Dense::objective
_SIF_base< Nx, Ng, Nh,

 objective >

# fPath_
# funit
# io_buffer
# iout
# ierr
# status
# x0_
# x_lb_
# x_ub_
# grad_f_
and 10 more...
# Nc
# Nw
# Ns

+ objective_SIF_base()
+ objective_SIF_base()
+ operator()()
+ Eval_grad()
+ Eval_hessian_f()
+ Eval_h()
+ Eval_grad_h()
+ Eval_hessian_h()
+ Eval_g()
+ Eval_grad_g()
and 6 more...

FIPOPT::Dense::objective
< objective_SIF_base< Nx,
 Ng, Nh, objective >, Nx,

 Ng, Nh >

+ Nx
+ Ng
+ Nh

+ objective()
+ operator()()
+ Eval_grad()
+ Eval_hessian_f()
+ Eval_cE()
+ Eval_grad_cE()
+ Eval_hessian_cE()
+ Eval_hessian()
+ Eval_cI()
+ Eval_grad_cI()
+ Eval_hessian_cI()
+ Get_x_lb()
+ Get_x_ub()

(b)

Figure 8.9: Inheritance diagrams for normal dense QP and SIF-objectives

8.3.8 Restoration Phase Objectives

Restoration phase objectives depend on the methods from the original NLP ob-
jectives, which are included with object composition. The restoration phase ob-
jectives implement equation 3.14 for inequality and equality constraints, yield-
ing equality_restoration_dense and inequality_restoration_dense in figure 8.10.
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FIPOPT::Dense::equality
_restoration< Derived,

 Nx, Ng, Nh >

FIPOPT::Dense::equality
_restoration_base< Derived,

 Nx, Ng, Nh, objective >

+ Nw
# w_lb_
# w_ub_
# grad_f_
# hessian_h_
# grad_h_
# x_R_
# D_R_
# hessian_f_
# zeta_
# rho_

+ equality_restoration_base()
+ operator()()
+ Eval_grad()
+ Eval_hessian_f()
+ Eval_h()
+ Eval_grad_h()
+ Eval_hessian_h()
+ Get_x_lb()
+ Get_x_ub()

FIPOPT::Dense::objective
< equality_restoration
_base< Derived, Nx, Ng,
 Nh, objective >, Nx+2 *Nh,

 0, Nh >

+ Nx
+ Ng
+ Nh

+ objective()
+ operator()()
+ Eval_grad()
+ Eval_hessian_f()
+ Eval_cE()
+ Eval_grad_cE()
+ Eval_hessian_cE()
+ Eval_hessian()
+ Eval_cI()
+ Eval_grad_cI()
+ Eval_hessian_cI()
+ Get_x_lb()
+ Get_x_ub()

FIPOPT::Dense::objective
< Derived, nx, ng, nh >

+ Nx
+ Ng
+ Nh

+ objective()
+ operator()()
+ Eval_grad()
+ Eval_hessian_f()
+ Eval_cE()
+ Eval_grad_cE()
+ Eval_hessian_cE()
+ Eval_hessian()
+ Eval_cI()
+ Eval_grad_cI()
+ Eval_hessian_cI()
+ Get_x_lb()
+ Get_x_ub()

 #f_

(a)

FIPOPT::Dense::inequality
_restoration< Derived,

 Nx, Ng, Nh >

FIPOPT::Dense::inequality
_restoration_base< Derived,

 Nx, Ng, Nh, objective >

+ Nw
# w_lb_
# w_ub_
# grad_f_
# hessian_h_
# grad_h_
# x_R_
# D_R_
# hessian_f_
# zeta_
# rho_
# Delta_cI_

+ inequality_restoration_base()
+ operator()()
+ Eval_grad()
+ Eval_hessian_f()
+ Eval_h()
+ Eval_grad_h()
+ Eval_hessian_h()
+ Get_x_lb()
+ Get_x_ub()

FIPOPT::Dense::objective
< inequality_restoration
_base< Derived, Nx, Ng, Nh,
 objective >, Nx+2 *Ng, 0, Ng >

+ Nx
+ Ng
+ Nh

+ objective()
+ operator()()
+ Eval_grad()
+ Eval_hessian_f()
+ Eval_cE()
+ Eval_grad_cE()
+ Eval_hessian_cE()
+ Eval_hessian()
+ Eval_cI()
+ Eval_grad_cI()
+ Eval_hessian_cI()
+ Get_x_lb()
+ Get_x_ub()

FIPOPT::Dense::objective
< Derived, nx, ng, nh >

+ Nx
+ Ng
+ Nh

+ objective()
+ operator()()
+ Eval_grad()
+ Eval_hessian_f()
+ Eval_cE()
+ Eval_grad_cE()
+ Eval_hessian_cE()
+ Eval_hessian()
+ Eval_cI()
+ Eval_grad_cI()
+ Eval_hessian_cI()
+ Get_x_lb()
+ Get_x_ub()

 #f_

(b)

Figure 8.10: Inheritance diagrams for normal restoration phase objectives

8.3.9 Unifying Sparse and Dense Functors

If an algorithm requires evaluations using both dense and sparse methods it is
desirable to derive a functor provides both.

Unfortunately this also introduces overload ambiguity. When calling amethod
from objective<> the function signatures of the dense and sparse NLP methods
are exactly the same, despite having different return values. This means that
the compiler is unable to determine which method to use, effectively making
the unified functor a redundant abstraction. One way to resolve this is to use
a pass-by-reference input argument in order to incorporate the return value
into the function signature, but this would break the return-value flow used
throughout the rest of the implementation.
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8.3.10 Barrier Functor

The barrier functor implements methods for computing the barrier function
and its gradient.

FIPOPT::Dense::logbarrier
< Derived, Nx, Ng, Nh >

FIPOPT::Dense::logbarrier
_base< Derived, Nx, Ng,

 Nh, barrier >

# mu_

+ logbarrier_base()
+ logbarrier_base()
+ operator()()
+ Eval_grad()
+ Eval_cE()
+ Eval_cI()
+ Get_mu()

FIPOPT::Dense::barrier
< logbarrier_base< Derived,
 Nx, Ng, Nh, barrier >, Nx,

 Ng, Nh >

+ operator()()
+ Eval_grad()
+ Eval_cE()
+ Eval_cI()
+ Get_mu()

FIPOPT::Dense::objective
< Derived, nx, ng, nh >

+ Nx
+ Ng
+ Nh

+ objective()
+ operator()()
+ Eval_grad()
+ Eval_hessian_f()
+ Eval_cE()
+ Eval_grad_cE()
+ Eval_hessian_cE()
+ Eval_hessian()
+ Eval_cI()
+ Eval_grad_cI()
+ Eval_hessian_cI()
+ Get_x_lb()
+ Get_x_ub()

 #f_

Figure 8.11: Logarithmic barrier functor collaboration graph

The base class use object composition to access methods from the NLP-
objective, which makes it possible to use all memoized and base variants of the
base NLP objective classes.

8.4 Fletcher-Leyffer Filter

The FL_filter class implements methods for all filter conditions specified in sub-
section 3. The filter assigns xk, dx for the current iteration, and use object com-
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position to access methods for ϕµ(x) and θ (x). Due to the high amount of state
comparisons performed inside the filter it is impractical to use pure functions
to perform the conditional checks. The full evaluation and update of the filter is
performed in one function call (::Eval_Update_Filter(const double& alpha)), which
will update the filter by adding a condition_pair to the filters internal state.

FIPOPT::Dense::FL_filter
< Derived, Nx, Ng, Nh >

+ x_
+ p_
+ small_search_direction_
+ filter_set_

+ FL_filter()
+ FL_filter()
+ Eval_Update_Filter()
+ Eval_theta()
+ Eval_phi()
+ Eval_grad_phi()
+ Eval_Switching_Condition()
+ Eval_Armijo_Condition()
+ Update_Direction()

FIPOPT::Dense::FL_param

+ gamma_theta
+ gamma_phi
+ gamma_alpha
+ delta
+ eta
+ theta_min
+ theta_max
+ s_theta
+ s_phi
+ filter_set_size

+ FL_param()

 +P_

FIPOPT::Dense::barrier
< Derived, Nx, Ng, Nh >

 

+ operator()()
+ Eval_grad()
+ Eval_cE()
+ Eval_cI()
+ Get_mu()

 +phi_

Figure 8.12: FL_filter collaboration graph

The filter currently contains internal state that alters how its methods oper-
ate. This is not good with respect to the functional design, but was intended to
give better abstractions for the current application. The FL_filter class handles
most of the acceptance and rejection decisions made by the algorithm.

Lambda-expressions were considered to implement θ (α) and ϕ(α) as ob-
jectives fixed in a linesearch at (xk, dxk

). However, due to the arguments in
section 6.2.1 and the overhead produced when the expression is replaced, it
was simpler and more readable to introduce methods for linesearch directly
inside the filter.

8.5 Algorithms

Algorithms follow some of the same design principles as the functors, but only
implements one behavior each through a single function call. Parameters used
in the algorithms are packaged in data structures (_Param.hpp) and status re-
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turn values are provided to interpret their outcomes (_Status.hpp). Instead of
presenting the detailed function signatures for the algorithms, the calls that
are used inside the code is instead presented to provide explanations in context
of its usage. Many of the algorithms use static member functions to explicitly
specify template parameters.

8.5.1 Inertia Correction

Code listing 8.1: Inertia correction function call
IC_solver<LinSolver>::
Solve(KKT_mat, KKT_vec, d_x, d_lbd, delta_w_last, mu, fPath, IC_param)

The function computes and eigenvalues using the Eigen’s general eigenvalue-
solver, and corrects inertia according to algorithm 1. The result of a successful
inertia correction is stored directly into d_x, d_lbd, and the previous correction
value delta_w_last is updated. SOC_param contains all inertia-correction paramet-
ers. Correction scalars δw,δc are written to fPath/delta.csv after each successful
correction.

8.5.2 Second-Order Correction

Code listing 8.2: Second-order correction function call
SOC_system<LinSolver>::
Solve(f, phi, F, KKT_mat, x, lbd, z, d_x, d_lbd, alpha, SOC_param)

Second-order correction requires objective f, barrier phi and filter F, and solves
Newton system (2.38) with a KKT_mat fixed. alpha = 1 by default, and accepted
second-order corrections are assigned back to d_x, d_lbd.

8.5.3 Linesearch

Code listing 8.3: Second-order correction linesearch function call
SOC_Filter_LineSearch<LinSolver>
::Solve(f, phi, F, KKT_mat, x, lbd, z, d_x, d_lbd, alpha)

This function implements algorithm 3 and additionally forwards input argu-
ments to call second-order correction. Trial step sizes are assigned directly to
alpha.

8.5.4 Barrier Subproblem

Code listing 8.4: Barrier subproblem function call
barrier_subproblem<LinSolver>::Solve(f, x, lbd, z, mu, tau, fPath)
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This function implements algorithm 4 which involves allocation of the KKT-
system (2.25), search directions dx , dλ, dz and step sizes α,αzg

,αzub
,αzl b

. Bar-
rier phi and filter F are constructed in its scope, before listings 8.1 and 8.3 are
iteratively called to solve the subproblem. A BS_journalist is constructed to out-
put iteration data to files x.csv, lbd.csv, z.csv, obj.csv, theta.csv and alpha.csv

in directory fPath.

8.5.5 Linesearch Filter-Barrier

Code listing 8.5: Linesearch Filter Barrier function call
LSFB<LinSolver>::Solve(f, x0, fPath);

The top-level call for the algorithm only require the objective function and an
initial state. Multipliers are allocated and initialized in its scope, and barrier
parameter µ j and fraction-to-the-boundary parameter τ j are updated as each
subproblem is solved. A LSFB_journalist is constructed to output iteration data
to x.csv, lbd.csv, z.csv, mu.csv, obj.csv, theta.csv in directory fPath.

8.5.6 Restoration Phase

Code listing 8.6: Restoration phase fuction call
Restoration_Solver<LinSolver, Restoration_Objective>::
Solve_LSFB(f, x, z, mu, fPath, P)

With the addition of template parameter Restoration_Objective it becomes pos-
sible to use the same function for both restoration objectives inequality_restoration
<> , equality_restoration<>. The restoration phase differs from the LSFB algorithm
in its initialization of multipliers, and the least-square estimate (equations 3.17,
3.18) that it evaluates upon failure. The restoration phase utilize the LSFB_journalist

to output iteration data similarly to the original linesearch filter-barriermethod.

8.6 Python Binders

Pybind11 [34] provides simple integration between C++ and Python for both
function and classes. Enabling components from C++ to be called from Python
allows for prototyping that avoids recompilation. Binders can also be created
for templated classes and methods as demonstrated in listing 8.7.

Code listing 8.7: Python-binder for the objective_QP_dense-class
using Mat = Eigen::MatrixXd;
template <int Nx, int Ng, int Nh>
const objective_QP_dense<Nx, Ng, Nh> load_QP(const Mat &Q,

const Mat &c,
const Mat &A,
const Mat &b,
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const Mat &D,
const Mat &e,
const Mat &x_lb,
const Mat &x_ub)

{
objective_QP_dense<Nx, Ng, Nh> f(Q, c, A, b, D, e, x_lb, x_ub);
return f;

}

PYBIND11_MODULE(Binder_QP, m)
{

using objective_QP = objective_QP_dense<Nx, Ng, Nh>;
py::class_<objective_QP>(m, "objective_QP")

.def("__call__", &objective_QP::template operator()<Vec_x>,
py::return_value_policy::reference_internal);

m.def(("load_QP" + name).c_str(), &load_QP<Nx, Ng, Nh>);
}

This creates a class called objective_QP and a function load_QP for loading
the class in Python, which can be imported under library name Binder_QP.
Pybind11 has built-in support for the Eigen-library. Python-binders are used to
implement plotting-tools under the Plot-subdirectory in the project root folder.

8.7 The Sparse and Dense Modules

The solver have initially been implemented using fixed-size dense matrices.
Fixed-size matrices provide most optimization through vectorization and op-
eration features, and avoid dynamic allocation. Since the dense module is de-
signed to use fixed-size matrices, it requires problem dimensions to be known
at compile-time.

Eigens sparse matrices are on the other hand dynamically allocated, and
does not provide the same matrix operations that is used in fixed-size matrices.
Slicing, indexing, assignments and block operations are not supported in the
same way for sparse matrices, which had some impact on the design of the
sparse module, which deviated from the dense module design. The module
was intended to provide results on the large-scale SIF-problems provided with
CUTEst, but the sparse solver is in its current state not able to solve the prob-
lems.

While there is a deviation in the dense and sparse module designs, the
majority of the sparse module’s components operate correctly, including the
objective_SIF functor that provide a sparse interface to CUTEst’s subroutines.
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8.8 Overview of the Implementation

Figure 8.13 shows a simplified overview that summarize the core components
of the linesearch filter-barrier algorithm. Different filter_set are used for each
barrier subproblem.

LSFB::Solve

SOC_Filter_LineSearch::Solve

Inertia_Correction::SolveBarrier_Subproblem::Solve

Eval_KKT_Jacobian

Eval_KKT_Value


Solve_FTTB_Step
...

objective<> f

barrier<> phi(f)

FL_filter F(phi, filter_set)

Barrier_Subproblem::Solve

inequality/equality

_restoration<> f_R

barrier<> phi(f_R)

FL_filter F(phi, filter_set)

objective<> f

memoizers

objective_barrier<> phi

memoizers

inequality/equality_restoration<>

Restoration_Solver<...,
inequality_restoration>::Solve

Restoration_Solver<...,
equality_restoration>::Solve

Figure 8.13: Collaboration overview of the thesis implementation
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Chapter 9

Optimization Features

Compiled languages come with the advantage of knowing all instructions prior
to execution. This enables a wide range of optimization capabilities, that can
impact both the speed and thememory consumption of the resulting executable
code.

9.1 Eigen

Eigen is a C header-only template library for linear algebra, and is used to both
store and perform computations with vectors and matrices in the implement-
ation. All of the classes provided by Eigen builds on top of the C++ standard
library, it is actively developed and compatible with most modern C++ com-
pilers. By being a templated header-only library it is in contrast to static and
dynamic libraries not compiled as separate units from the main application.
This is because the functions and classes produced by the library depends on
the implementation itself.

By letting the library know which types and dimensions that are going to be
used prior to its compilation, it is able to adapt better to the subject architecture
and perform optimization on other levels that dynamic/static libraries cannot.

9.1.1 MatrixBase

Datatypes and expressions in Eigen are implemented as derived classes of
some common base. Dense matrices and operations derive from the common
MatrixBase that is implemented in the library’s Dense module. Likewise sparse
matrices derived from the common SparseMatrixBase implemented in the cor-
responding Sparse module. The bases can be combined in expressions, which
forms a dense MatrixBase-expression as a result. By using bases instead of vec-
tors/matrices it is possible to pass unevaluated expressions between functions,
which enable Eigen to form expression trees that can be reduced at compile
time. This makes the expressions lazily evaluated, which removes the need for
temporary storage allocations of intermediate results.
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9.1.2 SIMD

Single Instruction Multiple Data (SIMD) enables the same instruction to be
performed onmultiple data elements in parallel, which can be used to speed up
linear algebra operations on vectors and matrices of small sizes. CPUs provide
access to SIMD execution models through Streaming SIMD Extensions (SSE),
which are Assembly instruction sets that can be used when specified to the
C++ compiler. Eigen utilize SSE-instructions to vectorize both dynamic and
fixed-size matrices and vectors.

9.1.3 Loop Unrolling

Loop unrolling improves runtime performance by reducing the number of it-
erations of a loop at the expense of adding additional instructions, effectively
trading off binary size for runtime speed. Eigen greatly benefits from loop un-
rolling in small fixed-size matrices.

9.1.4 Aliasing

When amatrix/vector appears on both the left and right hand side of an expres-
sion a temporary allocation is required in order to perform the computation.
Eigen provides .noalias() to disable temporary evaluations in cases where linear
operations are safe to perform in place.

9.2 Compiler Optimization

9.2.1 Inlining

The inline-keyword is used to specify to the compiler that the body of the sub-
ject function can be replaced with its function calls. This removes the stack
overhead caused by the function call, and also enables the compiler to optimize
the function body code in context with the scope its function was called from.
Inlining is very useful in combination with the CRTP-classes (section 5.2.3),
since it removes the function calls required to dispatch to the derived imple-
mentation, and further enables optimization of the implementation in context
of its caller. Inlining is useful for small function bodies. The compiler may ig-
nore inlining in cases where it is inefficient.

9.2.2 Copy Elision

All values passed to and returned from functions in C++ are copies, which
can potentially lead to an unnecessary amount of data copying and alloca-
tions. C++ compilers prevent this by eliminating the redundant temporaries
using return value optimization. Additionally, modern compilers also move the
construction of objects directly into the destination address, instead of copying
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the data after construction. This generally makes it possible to avoid custom
move semantics in the code.

9.2.3 Optimization Flags

Compilers provide a wide range of flags to enable optimization features. There
are different flags for each compiler, whose effect can be very different de-
pending on the implementation. Overall, C++ compilers group their flags in
different optimization levels which increasingly improve runtime speed, binary
size and memory usage from levels -O0 to -O3. Higher levels introduce higher
levels of code transformation that is more expensive to compute, leading to a
longer compile time. Additionally two flags are passed to enable instruction
sets:

-mfpmath=SSE - Enables scalar floating point instructions from the SSE in-
struction set
-march=native - Enables GCC to utilize intruction sets specific to the local
machine
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Chapter 10

Linear Solvers

There is a wide range of different algorithms used to solve linear systems. In all
algorithms there is a trade-off between accuracy in the result and the compu-
tational expense. The accuracy of a solution to a linear system is dependent on
the condition number of its matrix, which quantifies how sensitive the system
will be to errors in the input. The condition number for a normal matrix in an
`2 metric space can be determined by its eigenvalues:

κcond(A) =
λmax(A)
λmin(A)

(10.1)

This condition number impacts all linear solvers, but some types suffermore
than others. Direct methods find the ’exact’ (down to a κcond -dependent accur-
acy) solution to the system in a finite number of steps. Direct methods use
row/column eliminiations and pivoting strategies to transform the system to
another form, where front and back-substitution methods are used to obtain
the solution. Matrix decompositions are used to reach these forms, and each
type of decomposition have different properties for numerical stability, accur-
acy and computational efficiency. Eigen use direct decomposition methods for
its dense linear solvers and provides performance benchmarks[35] and require-
ments[36] for the different types decompositions.

10.1 Dense Decompositions

10.1.1 Cholesky Decomposition

The Cholesky decomposition decompose a real, hermitian matrix into a matrix
product consisting of triangular matrix L and its transpose:

LLT x = b (10.2)
Ly = b, y = LT x (10.3)
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The resulting equation is solved for x with two forward/back substitu-
tions. This is the fastest decomposition available, but comes with strict re-
quirements as a cost. The Cholesky algorithm require roots of the matrix ele-
ments, but this can be avoided by leaving unfactorized root-terms in a diagonal
matrix D. This is the robust Cholesky decomposition (LDLT). The presented
equality-constrained KKT-system (equation 2.25) always have negative eigen-
values, which makes LLT infeasible for solving subproblems, but LDLT is prefer-
able.

10.1.2 QR-Decomposition

QR-decompositions transform real, square matrices into an orthogonal (Q) and
upper-triangular (R) matrix-product:

QR= A (10.4)
The QR-decomposition is useful for computing least-squares initial multipli-
ers λ0 since it avoids computing the covariance matrix AT A by first orthogon-
alizing the system. Eigen provide QR-decompositions with algorithms using
householder-transformations, which are numerically stable and provide better
accuracy than the Cholesky decompositions.

10.1.3 LU-Decomposition

The LU-decomposition transform real, square matrices into an lower (L) and
upper (U) triangular matrix-product:

LU = A (10.5)
LU-decompositions has no symmetry requirement, which makes them roughly
twice as slow as the LLT-decomposition. Eigen has a partial pivoting LU-decomposition
algorithm implemented which requires A to be invertible.

10.2 Sparse Decompositions

There is a wide range of available sparse linear solvers which exploit the sparsity
of the linear system in different ways. Equivalently to the dense decompositions
there are also direct sparse solvers that aim to factorize and obtain a triangu-
lar matrix. Sparse decompositions have not been used to obtain results for this
thesis, but they are important in order to be able to efficiently solve large-scale
problems in the future.

10.2.1 Sparsity Pattern

Sparse linear solvers utilize the sparsity pattern of the systems matrix A, which
is used to avoid performing computations with zero-elements. The sparsematrices
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in Eigen by default stores its sparsity pattern in a Compressed Column Storage
format (CCS), which allows a sparse matrix to be represented with an array of
its nonzero values, and the row indices for these elements. This effectively re-
duces the worst-case time for element access and insertions to the total number
of nonzero elements in the systems matrix.

10.2.2 Triangular Solve

Once a sparse matrix has been factorized, the system can be solved by travers-
ing the sparsity pattern as a graph and solving the system for the elements
encountered through that graph. Performing a Depth First Search while solving
for the encountered elements will solve the triangular system (Figure 10.1).

Figure 10.1: Graph view of a sparse triangular matrix[37]

MatLabs backslash operator (mldivide) utilize this to achieve a O(n+ nnzh)
[37, p.35], where n is the square matrix dimension of L and nnzh the nonzero
elements.

10.2.3 Direct Decompositions

Eigen provides sparse LLT, LDLT, LU and QR decompositions with similar mat-
rix requirements and properties to the dense decompositions. Similarly to the
triangular solve the decomposisions only have to traverse through elements
related to the sparsity pattern, which will make the worst-case solve time de-
pendent on nnzh rather than only the full square matrix dimension.
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Chapter 11

Results

11.1 Convergence Results

A selection of problems have been selected to demonstrate the convergence
of the algorithm. Some quadratic programs have been specified directly, while
nonlinear programs are obtained from the Hock-Schittkowski collection. Prob-
lems are solved to optimality error tolerance εtol = 1e−8 overall, and subprob-
lem tolerance given by the stopping condition (2.31). The problem is set to ter-
minate if repeated inequality or equality restoration phases are called without
any progress. Parameters for the algorithm are summarized in appendix A.

The barrier function values are plotted as a filled contour while objective
function values are plotted with contour lines. The infeasible region is marked
with small x-markers. Equality constraints are plotted with contour levels to
some tolerance (cE(x)< 0.1), whichmeans that the feasible curve will be some-
where in an interval between two contour levels.

Iteration plots show all barrier subproblem iterations, where the transition
to a new barrier parameter is marked with dots. The plots are shown without
subproblem iterations for restoration phases. Sudden spikes in iteration values
(present in the end of HS13, HS14 and start of HS14) are caused by the return
from restoration phases.

Note: All results are obtained from the fixed-size dense module.

11.1.1 Linear Inequality-Constrained Quadratic Program

min
w

1
2

x T

�

1 0
0 1

�

x

s.t.
�

1 1
�

x ≥ 20

x0 =

�

40
25

�

(11.1)
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Figure 11.1: Full trajectory for linear inequality-constrained QP
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Figure 11.2: Iteration optimality for linear inequality-constrained QP
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Figure 11.3: Inequality multipliers for inequality-constrained QP

11.1.2 Inequality-Constrained Quadratic Program (Infeasible)
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w

1
2

x T
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1 0
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(11.2)
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Figure 11.4: Full trajectory for linear inequality-constrained QP (infeasibile)
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Figure 11.5: Iteration optimality for linear inequality-constrained QP (Infeas-
ible)
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11.1.3 Nonlinear Inequality-Constrained Quadratic Program

min
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x
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0 + x2

1 ≥ 1

x0 =

�

2
1

�

(11.3)
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Figure 11.6: Full trajectory for nonlinear inequality-constrained QP

81



0 50 100 150 200
Iterations k for subproblems j

0.0

0.5

1.0

1.5

2.0

2.5 f(x(j)
k )

Eμj(x(j)
k )

Figure 11.7: Iteration optimality for nonlinear inequality-constrained QP
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Figure 11.8: Inequality multipliers for inequality-constrained QP
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11.1.4 Nonlinear Equality-Constrained Quadratic Program

min
w

1
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x T

�

1 0
0 2

�

x

s.t. x2
0 + x2

1 = 1
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�

1
1e−3

�

(11.4)

Solutionwas obtainedwithmodified switching-condition filter-parameters sϕ =
2.3, sθ = 1.0.

Figure 11.9: Trajectories for nonlinear equality-constrained QP
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Figure 11.10: Iteration optimality for nonlinear equality-constrained QP
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11.1.5 Unconstrained 2-Dimensional Rosenbrock Function

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

-5.00e-01

0.00e+00

5.00e-01

1.00e+00

1.50e+00

2.00e+00
x * = [1.0, 1.0], f * = 0.0, E0 = 2.5059e− 09, Nμ = 6

Figure 11.11: Full trajectory for 2-Dimensional Rosenbrock NLP
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Figure 11.12: Iteration optimality for 2-Dimensional Rosenbrock NLP
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11.1.6 HS2 (Converged)
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Figure 11.13: Full trajectory for HS2
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Figure 11.14: Iteration optimality for HS2
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Figure 11.15: Inequality multipliers for HS2
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11.1.7 HS12 (Not Converged)
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Figure 11.16: Full trajectory for HS12
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Figure 11.17: Iteration optimality for HS12
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Figure 11.18: Inequality multipliers for HS12
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11.1.8 HS13 (Not Converged)
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Figure 11.19: Full trajectory for HS13
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Figure 11.20: Iteration optimality for HS13
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Figure 11.21: Inequality multipliers for HS13
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11.1.9 HS14 (Converged)
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Figure 11.22: Full trajectory for HS14
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Figure 11.23: Iteration optimality for HS14
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Figure 11.24: Inequality multipliers for HS14
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11.1.10 HS17 (Converged)

0.6 0.4 0.2 0.0 0.2

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50
x * = [ 0.0, 0.0], f * = 1.000e + 00, E0 = 2.506e 09, N = 7

Barrier Subproblem
Central Path
x *

Figure 11.25: Full trajectory for HS17
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Figure 11.26: Iteration optimality for HS17
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Figure 11.27: Inequality multipliers for HS17

11.1.11 Additional Hock-Schittkowski Results

Plots for remaining problems from the Hock-Schittkowski test set are provided
in a separate document[38].

11.2 Performance Results

Performance results are obtained by running both IPOPT and the thesis im-
plementation on the Hock-Schittkowski collection. The solve time is obtained
using Python’s timeit()-function, which executes the binary multiple times and
averages the execution time. PartialPivLu has been used as the linear solver for
these results.

The binaries for solving the SIF-problems have been compiled with the fol-
lowing optimization flags:
-msse2 -mfpmath=sse -march=native -O3

IPOPT has been configured and installed only with Intel Math Kernel Library
(MKL) as BLAS-provider[39] according to its installation instructions[40]. IP-
OPT is configured with MUltifrontal Massively Parallel Solver (MUMPS[4]) as
linear solver. Memoizers were configured with a ringbuffer size of 4 input-
output data pairs for the memoized solve.

The thesis implementation successfully converged and terminated for 55
of the total 118 HS-problems, which are the problems illustrated in 11.28 and
11.29, and came sufficiently close to convergence (without termination) for 5

94



Figure 11.28: Subproblem iterations for converged HS-problems

Figure 11.29: Problem dimensions and time consumption for converged HS-
problems
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problems, resulting in 58 problems that did not converge. ’Sufficiently close’ is
considered to be the distance to IPOPT’s optimal value:

||x∗thesis − x∗I POPT ||∞ ≤ 1e−3 (11.5)

Converged Sufficiently Close Not Converged
Inequality Restoration 3 4 37
Equality Restoration 13 1 22

Table 11.1: Number of problems that used restoration phases in con-
verged/unsolved problems
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Figure 11.30: Classification counters for HS-problems (separate)

All problems are classified as regular in smoothness with continous second
order derivatives everywhere.
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Figure 11.31: Classification counters for HS-problems (combined)
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Chapter 12

Discussion

12.1 Design

Different design choices had to be made in order to weigh readability and
flexibility against efficiency in the implementation. Some components of the
solver have been made in a declarative style, while others exploit the efficiency
of imperative programming. Some aspects of this will be discussed by reviewing
these different components.

12.1.1 The NLP and Barrier Functors

The NLP functors can be considered as one of the most successful components
of the implementation. The objective-classes (along with the derived memoized
and messenger-objectives) pass Code Complete’s checklist for class quality [41,
p.158].
• The objective and barrier-classes (and its derivatives) have one central
purpose and is named appropriately to emphasize that purpose.

• These classes properly encapsulate data, and avoid redundant internal
states. The only data members that can alter behaviour in these classes
are kept in the memoizers which are protected with ::get_data, ::set_data

-methods. In other cases the data is initialized as constants or marked
private.

• The classes contain a limited number of methods that is appropriate to
cover their purpose. This makes it easier to interpret the purpose of a
class and makes the class more readable.

The design of the restoration phase algorithm illustrates how seamlessly
this abstraction can be used to introduce newNLPs. The class templates provide
instantiations for problems of any size, and enable any templated function in
which it is used to adapt to that size, all evaluated at compile-time. From the
user-perspective a new objective can be constructed in a few lines of code,
without any side-effects. This was a significant advantage in the implement-
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ation of the restoration phase, which is able to re-use almost all subroutines
besides the main LSFB algorithm.

12.1.2 Fletcher-Leyffer Filter

The Fletcher-Leyffer filter turned out to become one of the most inconsist-
ent design choices in the implementation. The filter tries to encapsulate bi-
objective pairs (θ (x),ϕ(x)) and to make all decisions for the algorithm de-
pendent on these states. (θ (x),ϕ(x))-dependent decisions have to be made
in all algorithms contained within a barrier subproblem, which consequently
makes the FL_filter class essential everywhere at this level. The filter violates
many of the traits in the aforementioned class quality checklist.
• The filter does not have a central purpose. The filter decides the accept-
ability of a step while it simoultaneously modifies its internal state for
future decisions.

• The name of the class does not describe its purpose(s). This makes the
class act as a common namespace for methods that are correlated with
different purposes.

In order to address these issues the pairs of (θ (x),ϕ(x)) were removed from
the filter class and treated as an external abstract data type. This could (in
retrospect) be a better choice, and should be pursued in a redesign. The concept
of a filter could itself be a counter-intuitive design choice which allows several
different components to be recognised under the same name. For example, the
Armijo descent condition (3.7) and the switching condition (3.6) are not only
relevant to the acceptance of a step, but also used to determine if second-order
corrections should be performed.

12.1.3 The Algorithms

The algorithms generally follow the same implementation structure:

Algorithm 7 General algorithm structure pseudocode
Require: Input arguments
Allocate and Initialize data
for i← 0 to imax do

if Feasible condition then
Return success

end if
Atomic action
Atomic action
...

end for
Return failure
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By isolating allocations to the initial stage of each algorithm, and separat-
ing computations into atomic actions in the iterative loop, it becomes simpler
to backtrace to exactly where and why the solvers fails to converge to a feas-
ible point. This structure is also very useful to resolve compile-time/runtime
allocation errors in the design process, since they often are caused by the same
dimension parameters.

The algorithms follow guidelines from Code Complete’s checklist for quality
routines[41, p.185] with (for efficiency reasons) some relaxations.
• Each algorithm is an essential component of the solver that is functionally
cohesive, it is centered around fulfilling one purpose.

• The algorithms are loosely coupled to its subroutines, allowing subroutines
to be replaced without side-effects. One exception to this property is the
Fletcher-Leyffer filter, which violates this with its internal state.

• The length of each algorithm are appropriate to its purpose, ranging from
30-50 lines of code from the lower level (Inertia/second-order correction)
to higher level routines (LSFB/Barrier subproblems).

• Input arguments are constrained to a readable size ( ≤ 7) by grouping
algorithm-specific parameters into data structures.

• The return value for each algorithm clearly describes its outcome with
status-encoded C++enumerations, and all outcomes are properly handled
by the parent routine.

Input arguments are also used to return values, which makes it harder to
determine each arguments purpose. Some distinction is made by enforcing im-
mutability on the arguments with the const-keyword.

12.1.4 Journalists and Memoization

The functor-journalists combined with the journalists for the algorithms man-
age to retrieve almost all values that are computed in the solver, and they are
able to do so in a way that minimally interfere with the design of the algorithms.
The algorithm journalists were found to be the most useful for the application
in this thesis, but the functor journalists could become useful in cases where
one wants to obtain data on a lower level. The functor layer design used in the
memoization and messager functors depend on repetitious code, but it can be
argued that the purpose of that code outweighs its size.

12.1.5 Typenames and Template Parameters

One persisting large overhead is the specification of types for each function,
which (as mentioned in section 6.8) can either be deduced or explicitly spe-
cified. The behavior of types should be constrained, which is why types like
objective<Derived, Nx, Ng, Nh> is used instead of a single template parameter
Objective. Vector and matrix dimensions add additional overhead, but this was
found to be more concise and easier to read than the implicit alternative.
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Template parameters have generally been avoided, besides for problem di-
mensions, CRTP-classes and configuration of the linear solver. Another excep-
tion is the nested template <class, int, int, int> typename Base parameter for ob-
jectives, which enables memoization, messengers and journalists to be con-
figured under the same implementation.

Code listing 12.1: Partial parameter specification of SIF-objectives
template <int Nx, int Ng, int Nh>
struct objective_SIF :
public objective_SIF_base<Nx, Ng, Nh, objective>
{

using objective_SIF_base<Nx, Ng, Nh, objective>::objective_SIF_base;
};

template <int Nx, int Ng, int Nh>
struct objective_SIF_memoized :
public objective_SIF_base<Nx, Ng, Nh, objective_memoized>
{

using objective_SIF_base<Nx, Ng, Nh, objective_memoized>::objective_SIF_base;
};

template <int Nx, int Ng, int Nh>
struct objective_SIF_journalist :
public objective_SIF_base<Nx, Ng, Nh, objective_journalist>
{

using objective_SIF_base<Nx, Ng, Nh, objective_journalist>::objective_SIF_base;
};

Configuring typenames this way leads to extra typename configuration,
which is less readable than direct implementations. Templated object compos-
ition could be a viable alternative to this approach.

12.1.6 Replacement of Design Patterns

The polymorphism from AlgorithmStrategy-classes from table 5.1 have been re-
moved and instead directly implemented into the algorithms. This is less flex-
ible, but can easily be adapted by adding a higher-order function as input ar-
gument or input template parameter. The AlgorithmBuilder naturally disappears
with this choice, but would otherwise be replaced with function composition.

The messenger and observer bear greater resemblance to namespaces for func-
tions than to actual notifiers and observers found in the OOD observer pat-
tern, but they provide the opportunity to use OOD-patterns outside of the al-
gorithms. Factory methods are redundant because of Eigen’s abstractions, and
structural patterns can be resolved with currying and transformations of input
arguments.

12.1.7 Comparison to IPOPT

The thesis implmenetation provides a working, decentralized alternative to IP-
OPT’s shared IpIpoptCalculatedQuantities, which results in less verbose, readable
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code that has better resemblance to the theoretical equations.
Functional design was intended to simplify dynamically changing beha-

viour, but this property has been restricted by the loops in the implementation.
For example, in order to switch to a restoration phase the barrier subproblem
needs to obtain a state that determines if the loop in Barrier_Subproblem::Solve

should be terminated, only to initialize a new loop in the restoration phase
afterwards. Replacing this behaviour requires Barrier_Subproblem::Solve to be re-
placed, instead of modifying the transition step between two smaller functions.

Modifying/extending the behaviour of IPOPT would require the addition
of AlgorithmStrategy-classes, which further needs to be accounted for in the the
AlgorithmBuilder and IpoptAlgorithm-classes, before finally extending the cache in
IpoptCalculatedQuantities which potentially none of the other AlgorithmStragegy-
classes have any relation to.

In total it is possible to argue that the thesis implementation provides better
encapsulation, but there are still improvements to be made with respect to
the design. Fortunately, most of the components of the solver can be replaced
independently, which will simplify this process.

The current setup is configured with binders to Python, automated scripts
for execution and interface to CUTEst makes it easy to configure problems,
obtain the convergence data and visualize the convergence. This framework in
itself is a very useful outcome of the thesis that can also be used to prototype
numerical algorithms in the future.

12.2 Performance

12.2.1 Inertia Correction

The inertia correction correctly increases δw when the primal-dual hessian
starts becoming nonconvex. The exponential increase in the trial δw’s have
in some cases been correlated with convergence failure on some of the SIF-
problems, which could indicate that additional parameter tuning is needed, but
this has to be reviewed together with the other components of the solver. The
constraint independence correction δc is added when eigenvalues approach 0.
Overall inertia correction has improved the robustness of the algorithm, and
makes it possible to find descent directions in nonconvex cases where the de-
fault KKT-system would yield ascending directions.

HS13 (Section 11.1.8) was intended to demonstrate inertia correction with
the loss of the Linear Independent Constraint Qualification (LICQ) which oc-
curs at x∗. However, the superlinear update rule results in a too rough transition
when µ becomes small, which leads to an inaccurate update of inequality mul-
tipliers zg , zl b, which throws the linesearch direction of the next iterate off on
the wrong course. The solver converged successfully once the superlinear up-
date (µ j+1 = µ

θµ
j ) was disabled, indicating that robustness could be improved

by modifying this rule.
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Inertia correction was found to be a very costly procedure when performed
on large, dense matrices, which indicates that the eigenvalue-solver module in
Eigen becomes a bottleneck in this case. This performance issue could be solved
by resorting to a large-scale eigenvalue solver library called Spectra[42] which
builds on top of Eigen, and instead compute a subset of the eigenvalues in order
to estimate the inertia.

12.2.2 Second-Order Correction

In the nonlinear equality-constrained QP (section 11.1.4) the solver achieves
full-step convergence both with and without second-order corrections. This is
not caused by the correction itself, but by the modified switching conditions
which enables the filter to accept steps that increase the contraint violation.
The solver was not able to converge with the original switching parameters
(sθ = 1.10, sϕ = 2.30) which prevented full-step acceptance.

As a consequence of the milder switching condition, full steps are accepted
both with and without second-order corrections. This does not impact the con-
vergence in this specific problem, but the non-corrected trajectory converge
with slightly higher optimality values (Eµ j

(x ,λ, z), f (x),θ (x)). Still, the ex-
ample is able to demonstrate that second-order correction works as intended.

12.2.3 Linesearch

The linesearch is kept rather simple in this project, whichmakes it easy to verify
that it operates correctly. Each trial step in a linesearch provide information that
be used to improve the search for new trial steps. Reducing the total number of
trial steps is a good approach to improving the efficiency of the solver without
any other dependencies, and should be pursued in future designs.

12.2.4 Barrier Subproblem, Linesearch Filter-Barrier and the Res-
toration Phases

The general algorithm structure in algorithm 7 ensures that the computation-
ally expensive operations performed in each algorithm occurs within some
atomic actions inside the algorithms loop. The few expensive function calls
performed in the barrier subproblem, linesearch filter-barrier and restoration
phase algorithms are easy to profile. Performance profiling these higher-level
algorithms show that the linesearch and inertia correction accounts for the
most computationally expensive components of the solver, while the smaller
pass-by-reference operations performed in these higher level algorithms are
inexpensive.

The restoration phases solve KKT-systems using exactly the same routines
as the linesearch filter barrier-algorithm, which leads to solving an unneces-
sary large linear system that could be reduced with substitution. The number
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of states in the restoration objectives can grow large with the number of con-
straints (Nw = Nx + 2Ng for inequality restoration, Nw = Nx + 2Nh for equality
restoration). The performance would scale better with an equivalent sparse
implementation.

12.2.5 Memoization

Figure 11.29 show that the memoizers are able to reduce the solver time. This is
reassuring for the functional design, and shows that decentralizedmemoization
is able to perform well. Increasing the buffer size did not further reduce the
computation time. Some improvements could be made to the buffer, which
is forced to recompute values at xk when the circular buffer gets filled with
evaluations at xk +αdx during the linesearch.

12.2.6 Compile-Time

The compile-time of fixed-size matrix executables is too long for both GCC
and CLANG, measured up to 20 seconds with an executable size of 98Mb for
SIF-executables. Reducing the size of the produced object files could make it
possible to compile a static libary for the desired problem dimensions.

The number of instantiations of functions and classes is reasonable with
respect to their usage. For example, running objdump on the cmake-cached object
file SIF_LSFB.cpp.o can be used to count the number of symbols for a function:
$ objdump -t SIF_LSFB.cpp.o | grep Eval_hessian_f | wc -l
$ 14

Another approach to reduce the compile-time is to limit the scope for the eigen-
expressions, possibly by performing recompilations after a fixed number of loop
iterations. Sequentially compiling and executing code this way could be per-
formedwith a Just-In-Time compiler (JIT), which prioritize compile-time speed
over optimization.

12.3 Convergence

12.3.1 Subproblem Iterations

The subproblem iteration results for the HS-problems (figure 11.28) shows that
the thesis implementation consistently requires more evaluations than IPOPT.
This convergence issue is likely to either be a parameter adjustment issue re-
lated to the acceptance of steps in the filter, or it could be caused by conver-
gence issues in either the primal states or the multipliers. Convergence towards
the optimality conditions have different dependencies than in IPOPT’s imple-
mentation which makes it difficult to sequentially compare the trajectories of
the solvers.
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The number of subproblem iterations for the majority of the converged
problems are promising, and most of the problems have a significantly shorter
solve time than IPOPT. This confirms that the dense solvers are useful for small-
scale problems. Comparing a dense solver for small-scale problems with IPOPT
can be misleading however, since IPOPT is a large-scale problem solver.

12.3.2 Restoration Phases

The inequality restoration phase show a promising convergence in the inequality-
constrained quadratic program with infeasible initial point (section 11.1.2),
where it is able to bring the iterates to a feasible, optimal point, terminate and
return to the normal LSFB-algorithm.

Table 11.1 shows that inequality restoration phases struggle to achieve suc-
cessful termination when inequality restorations are invoked. Only 4 inequal-
ity restoration phases were sufficiently close to a solution without termination,
which indicates that there are issues with the transition back to the normal
LSFB algorithm. Convergence failure for problems with infeasible initial points
is a recurring problem in the case of the HS-dataset, which raises the question
on the robustness of the inequality restoration phase. However, the convergence
of HS14 (section 11.1.9) and HS17 (section 11.1.10) show that the concept of
an inequality restoration phase can be useful under the right conditions.

The equality restoration phases have been invoked for some HS-problems
with mixed results. Equality restoration phases were used in 13 of problems
that successfully converged, and only 1 that was close.Multiplier re-initialization
after restoration phases seem to operate correctly, but the converged restora-
tion point x̄∗ could itself be the issue. Some inspected restoration phases were
observed to converge to points with high infeasibility in Eµ j

, indicating that
there are issues related to the computation of directions d x̄ , dλ̄.

Both of the restoration phases can encounter situations where there are
multiple solutions to the optimal distance metric ||DR( x̄− x̄R)||22. Modifying this
penalty to a different `p norm when the system becomes ill-conditioned could
provide unique solutions to situations that are infeasible for `2 penalty.

The search for one unique minimizer of the restoration phase is a very strict
requirement, which could be relaxed by increasing the optimality tolerance
εR. This would throw the next iterate into some neighborhood of the actual
solution x̄∗, λ̄∗, z̄∗ which needs to be carefully scaled by εR.

12.3.3 Problem Classifications

Figure 11.30 shows that the solver is able to coverge for all problems with
bounds only, and for themajority of problemswith linear constraints. Quadratic
and nonlinear constraints have a very large rate of failure, which could be an
indication of malfunction in the constraint hessian evaluations (::Eval_hessian_h
, ::Eval_hessian_g) or the context in which they are used. In figure 11.31 this
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rate is visible in all categories with last letter Q and O.
All problems involving bounds (XB) and linear constraints (XL) converge

regardless of objective type. This confirms that both inequality and equality
multipliers contribute to the search direction in a meaningful way, but also that
the filter is able to reduce step lengths correctly both for nonlinear objectives,
and for the nonlinear cost from the barrier function.

The usage of classification on a larger problem set has proven to be a useful
method for discovering convergence issues. Specific testing on tailored prob-
lems was initially expected to be both simpler and more efficient, but problem
classification are able to show trends that reveal problems from a higher level
perspective.

12.3.4 Overall Convergence

In total the convergence results are not good enough to consider this to be a
robust solver, and it consistenly requires more iterations than IPOPT in order
to converge. Considering that the Hock-Schittkowski collection is designed to
test the solver on many different sources of numerical issues, it is reassuring to
see that the solver is able to converge on a large portion of them.
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Chapter 13

Conclusion

Thework on the solver throughout this thesis has provided insight into the chal-
lenges of implementing algorithms for numerical optimization. Despite these
challenges the results brings some closure to the initial problem statement,
which will be briefly discussed.
• Implement a robust solver that is able to converge on a wide range of dif-
ferentiable NLPs, regardless of nonlinearity, constraints and dimensions.

In its current state the thesis implementation can not be considered robust,
and it does not converge towards arbitrary differentiable NLPs. The robustness
is significantly better for all linearly constrained NLPs. Additionally, this does
not scale well with the dimension of the problem, which leads to the conclusion
that there are many improvements to be made in order to achieve an overall
robust, dimension-invariant solver.
• Implement the solver with the foundation of an efficient, linear algebra
library with comparable performance to IPOPT.

Eigen has provided linear algebra and a solver that beat IPOPT in its default
configuration for small problems. Considering that IPOPT is designed for large-
scale problems it is still undetermined if the Eigen-based implementation will
outperform IPOPT.
• Apply functional programming to avoid hidden dependencies, improve
readability, enable additional optimization strategies and give the solver
better capabilities to dynamically change behaviour.

Functional design combined with restrictive programming of loops have
ensured that the solver does not suffer from hidden dependencies. Functional
design, memoization and Eigen-abstractions improve readability both on the
lower and higher levels.

Dynamic behaviour andmany of the implemented optimization features are
constrained to occur at compile-time using templates. Incorporating runtime
information into this is an improvement to be made in the future.

The educational benefits of designing the solver has been significant, all the
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way from optimization theory, language paradigms and linear algebra to C++
standards and code debugging. Considering that the objectives were ambitious,
the resulting library can be considered a success with respect to the scope of
this thesis, which is likely to be re-used for future projects in numerical optim-
ization.
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Chapter 14

Future Work

14.1 Resolve Convergence for Nonlinear Constrained
Problems

Classification results show that the majority of unconverged problems are non-
linearly constrained. The cause of these problems is likely to be related to a
minor implementation detail, but no solution was found within the scope of
this thesis. These convergence issues should be fixed before refactoring the
sparse module.

14.2 Improve Robustness with Additional Heuristics

There are still many heuristics presented in the IPOPT implementation pa-
per[1] that could improve performance, but these heuristics need to be con-
sidered carefully with respect to the differences in the thesis implementation.
Testing the heuristics with tailored problems and obtaining results on classified
problem sets was found to be very useful.

14.3 Resolve Sparse Runtime Errors

Results from a working, sparse solver will be more comparable to the results
from IPOPT, and could make it possible solve large-scale problems in an ac-
ceptable amount of time. Once the robustness of the dense module has been
improved, the sparse module can be adapted to follow its design structure.

14.4 Static Libraries with Explicit Instantiation

The compile time for the classes in the fixed-size matrix dense module becomes
large when modifications that affect a longer chain of header dependencies is
performed. By explicitly instantiating template parameters for template classes
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and functions it is possible to isolate and compile smaller components of the
library as a static library, which can be afterwards linked after compiling the
main source file. This is not a problem for dynamically allocated dense/sparse
matrices, since they do not require problem dimensions at compile time. How-
ever, for fixed-size matrices there is currently a lot of duplicate code compiled,
which should be preventable.

Code listing 14.1: Instantiation prevention and explicit instantiation
//Instantiation header:
template class A<int>;
template class A<double>;
template void fun<int>(int& arg);
template void fun<double>(double& arg);

//User headers:
extern template class A<int>;
extern ...

Listing 14.1 shows how classes and functions can be explicitly instantiated in
one file, and declared as extern in other headers that wants to use the same
binary code.

14.5 CasADI Interface

CasADI[43] is an open-source tool for optimization and algorithmmic differen-
tiation, which serves as a great tool for optimization of OCPs. CasADI provides a
symbolic framework which simplifies the process of converting system dynam-
ics to constraints, which is very useful when the number of constraints grow
large. Systems with ODE-dynamics are often solved with shooting methods,
where both the order of the integrator (e.g. Runge-Kutta or collocation poly-
nomial orders) and the number of ’trajectory segments’ in multiple shooting
add additional constraints to the problem. Additionally, explicit instantiation
can be used to reduce the size of the compiled object files.

LSFB<>::Solve

LSFB<>::Solve

Symbolic Construction (Python/MatLab) Algorithmic Differentiation

Objective Interface

objective<> f

Figure 14.1: CasADI Interface[44]

CasADI simplifies this process by passing symbolic variables into integrat-
ors, resulting in sparse expression trees which can be algorithmically differenti-
ated to obtain jacobian evaluation functions and sparsity patterns. CasADI was
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initially designed for algorithmic differentiation, and its state-of-the-art imple-
mentation should compare well against the HSL AD02 [17] subroutines used
in CUTEst.

14.6 JIT-compilation

The current compile-time for fixed-size matrices is long and results in large-
sized binaries, which makes the compilation process unacceptable to interface
with the runtime of other applications (like CasADI). Additionally, compiling
the full scope of the solver before runtime prevents optimization based on
runtime information.

This is also a problem in templated recursive functions, since a new function
is potentially instantiated every recursive call. By setting a smaller maxium
recursion depth it becomes possible to prevent stack overflow and optimize
Eigen-expressions with runtime information.

Alternatively, the JIT-compiler also presents the oppurtunity to outsource
the algorithms to a different language. Higher-level decisions be performed in
a functional programming language could enable recursion, lazy evaluation
and expression reductions to be performed during runtime.

14.7 Trust-Region Methods

Trust-region methods were studied as a potential candidate to the implemen-
ted linesearch. Trust-region methods is the dual approach to linesearch, which
determines the distance for a step before the direction. A trust-region based
interior-point algorithm using dogleg steps[45] is provided by the authors of
the original implementation paper. Determining the search direction can often
yield long steps when the local approximation is accurate, but gives no guar-
anteed convergence rate. Trust-region methods can (depending on the sub-
problem step methods) guarantee convergence under the assumption that the
primal hessian ΣP is used[13, p.590], while linesearch may fail for interior-
point when subject to bounds/inequalities. [13, p.587].

14.8 Linesearch with Interpolation

The gradients and barrier objective values obtained in linesearch can be used
to build a local approximation around the evaluated trial steps, using interpola-
tion. The interpolated model becomes a minimization problem that potentially
yields faster convergence to an acceptable trial step without making the step
too short. An algorithm called zoom[13, p.61] use values at previous trial steps
to form new step bounds and interpolations, gradually converging towards a
local minimum. Quadratic/qubic interpolation models can be interchangably
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used depending on the curvature, where qubic models usually yields quadratic
convergence[13, p.59].

14.9 Barrier Parameter Update Rule

Exploring different barrier parameter rules should be done in order to avoid
some of the numerical difficulties that were encountered in some of the HS-
problems. The update rules researched for this thesis[14] are autoregressive,
which results in a fixed sequence of barrier parameters. Introducing states,
multipliers and optimality values would enable the barrier parameter to update
according to the iterates optimality, states and multipliers[46].
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Chapter 15

Installation and Build
Instructions

15.1 Installation with Docker

The docker image for this project can be downloaded from the provided link[47].
A README with installation instructions is provided on the page. The docker
installation is recommended over the manual installation in order to avoid path
configurations and linking.

15.2 CUTEst

The SIF-executables in the project requires access to decoded SIF-files, which
is attained from the CUTEst-library. The library can be installed by following
the instructions provided in the librarys GitHub-repository[48]. Path configur-
ations in CMake use environmental variables MASTSIF and CUTEst which is con-
figured during this installation.

15.3 Pybind11

The top-level CMakeLists.txt-file is configured to locate an installation of the Py-
bind11 header-only library, which can be installed following the instructions
on its documentation website [49]. Pybind11 requires access to Python header
files (python-dev/python3-dev). The Pybind11-requirement can be removed by re-
moving the CMakeLists-requirements, and by excluding the Plot-directory from
the CMake directory hierarchy.
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15.4 The Project

The project can be cloned from its GitHub-repository[50].With CMake, GC-
C/Clang and dependencies configured the project can be built by running cmake

.. from the build directory. CMake will attempt to automatically locate Py-
bind11 and the Python header files installed.

15.5 Usage

15.5.1 Decode SIF-Objective

CustomCMake-targes have been added in PROJECT_ROOT/Data/SIF/Problem/CMakeLists

.txt which decodes and compiles a target SIF problem when cmake .. is ex-
ecuted. The SIF problem name can be specified in PROJECT_ROOT/CMakeLists.txt,
or during configuration:
cmake .. -DSIF_PROBLEM=PROBNAME

Manual compilation of SIF problems is described in section 7.2.
A dimension preloader-script is used to produce a header file for dimensions

Nx , Ng , Nh. One of the CMake custom targets compiles and executes Dimension_Preloader
.cpp, resulting in PROJECT_ROOT/include/SIF_Dimensions/Dimensions.hpp. This header
is included by SIF executables, which enables them to pass Nx , Ng , Nh as compile-
time parameters.

15.5.2 Configure Paths

All source files for C++ executables and Python scripts contain absolute paths
which needs to be configured. Paths used in CMake aremade relative to CMAKE_PROJECT_SOURCE_DIR

.

15.5.3 Make

Running Make in any of the CMake-directories will build targets for it and its
subdirectories.

15.5.4 Execute

Executables are available in PROJECT_ROOT/build/test/ and plotting scripts in PROJECT_ROOT

/Plot/.

15.5.5 Configure Layers

PROJECT_ROOT/test/SIF/Run_SIF.cpp demonstrates how layers can be configured for
the objectives. Listing 15.1 shows the object instantiations.
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Code listing 15.1: Layer configurations for SIF objectives

objective_SIF<Nx, Ng, Nh> f(SIF_path + "OUTSDIF.d");

objective_SIF_memoized<Nx, Ng, Nh> f(SIF_path + "OUTSDIF.d");

observer_journalist<Nx, Ng, Nh> journalist_f(journalist_ID, output_path);
objective_SIF_journalist<Nx, Ng, Nh> f(SIF_path + "OUTSDIF.d", journalist_f);

15.5.6 Configure Parameters

Parameters currently do not have an input-argument based configuration, but
are instead configured by editing default constructors in each _Param.hpp-file.

15.5.7 Read Data

Data is outputted to paths configured in the executables. Default output folders
are located under PROJECT_ROOT/Data/, which will output directory hierarchies
with data from the algorithm and objective journalists.

The journalist objective in listing 15.1 will produce a folder with the journ-
alists’ ID, located under output_path.

journalist_f/
Eval_f_data.csv
Eval_f_input.csv
Eval_g_data.csv
Eval_g_input.csv
Eval_grad_data.csv
Eval_grad_g_data.csv
Eval_grad_g_input.csv
Eval_grad_h_data.csv
Eval_grad_h_input.csv
Eval_grad_input.csv
Eval_h_data.csv
Eval_h_input.csv
Eval_hessian_f_data.csv
Eval_hessian_f_input.csv
Eval_hessian_g_data.csv
Eval_hessian_g_input.csv
Eval_hessian_h_data.csv
Eval_hessian_h_input.csv

Figure 15.1: objective_journalist output directory
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15.5.8 Plot Data

Trajectory_Plot.py, Objective_Plot.py and Multiplier_Plot.py are available under
subfolders QP/, SIF/ in PROJECT_ROOT/Plot/. In the case of SIF problems the binders
needs to be recompiled in order to produce correct contour plots (The SIF-
binder has the decoded SIF-problem as a dependency). Folder and system path
configurations apply here aswell.

15.5.9 Automated SIF Problem Set Optimization

A set of bash-scripts are used to run lists of SIF-problems. These scripts are
available under PROJECT_ROOT/Plot/SIF/HS/, and automate both the building pro-
cess for optimization and the building of binders for plotting.

15.5.10 Doxygen Graph Generation

Doxygen is configured to generate graphs in the PROJECT_ROOT/include/dense/ dir-
ectory. The graphs are generated by running doxygen Doxyfile in the PROJECT_ROOT

/docs/ directory, which can be navigated by opening PROJECT_ROOT/docs/html/index

.html.
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Appendix A

Parameters

The reader is referred to the original implementation [1] for additional details.
Parameters unique to the thesis implementation are asterisk-marked (∗).

δw,min Initial inertia lower bound 1e−20

δw,0 Initial inertia 1e−4

δw,max Maximum inertia 1e40

δ̄c Constraint inertia coefficient 1e−8

κ−w Inertia decrease coefficient 0.33
κ+w Inertia increase coefficient 8.00
κ̄+w Initial inertia increase coefficient 100
κc Constraint inertia increase coefficient 0.25

iter_max* Maximum loop iterations 500
zero_tol* Zero-eigenvalue tolerance 1e−6

Table A.1: Inertia correction algorithm parameters

max_iter Maximum loop iterations 4
κSOC Reduction criterion coefficient 0.99

Table A.2: Second-order correction algorithm parameters

iter_max* Maximum loop iterations 100
κΣ Hessian safeguard coefficient 1e10

κε Barrier optimality coefficient 1.00
τmin Minimum FTTB-parameter 0.99
smax Maximum optimality scaling 100
λmax Maximum λ initial value 1e3

Table A.3: Barrier subproblem algorithm parameters
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iter_max* Maximum loop iterations 100
λmax Maximum λ initial value 1e3

smax Maximum optimality scaling 100
εtol Optimality error tolerance 1e−8

ρ Restoration phase slack-variable scaling 1e3

κ1,κ2 Bounds-correction parameters 1e−2

Table A.4: Linesearch Filter-Barrier algorithm parameters

∆̄cI
* Maximum constraint optimality offset 1e3

κcI
* Constraint optimality offset coefficient 1e−4

Table A.5: Inequality restoration phase algorithm parameters

Bounds for constraint violations are evaluated at initialization:

θmin = 1e−4 max
¦

1,θ (0)
©

(A.1)
θmax = 1e4 max

¦

1,θ (0)
©

(A.2)
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γθ Constraint violation reduction coefficient 1e−5

γϕ barrier objective reduction coefficient 1e−5

δ Switching feasibility coefficient 1.00
γα Step infeasibility coefficient 0.05

sθ , sϕ Switching feasibility power coefficients 1.10, 2.30
η Armijo reduction coefficient 1e−4

Table A.6: Fletcher-Leyffer filter parameters
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