
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Edvard Grødem

Closed-Loop-RRT* path planning for
a vehicle-trailer system

Master’s thesis in Cybernetics and Robotics
Supervisor: Sebastien Gros
January 2021

M
as

te
r’s

 th
es

is

Edvard Grødem

Closed-Loop-RRT* path planning for a
vehicle-trailer system

Master’s thesis in Cybernetics and Robotics
Supervisor: Sebastien Gros
January 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Abstract

The last decade has brought considerable improvements to the field of au-
tonomous vehicles, due to their potential of saving cost and increasing safety.
This master thesis studies autonomous vehicles with a trailer attached. The
trailer adds an unstable degree of freedom to the system, making the control of
the system more complicated. A path planner algorithm is required for an au-
tonomous vehicle-trailer system to navigate an unstructured environment, such
as a parking lot. The path planner must create a feasible path that the vehicle-
trailer system can follow while also avoiding obstructions. This is a challenging
task due to the nonholonomic constraint on the system that limits the possible
paths. Care must also be taken in reverse motion such that the trailer does not
fold onto the vehicle in a jackknife configuration.

This master thesis presents a new planner for creating a feasible path between
two set of states of the vehicle-trailer system in an unstructured environment.
Such a planner is called a local planner since it cannot navigate around obstruc-
tions. The feasible path is generated by first approximating the path with a
Dubins path and then improving upon the path in two additional stages. Each
of these stages simulates a closed-loop vehicle-trailer around the reference cre-
ated by the previous stage. This results in a feasible path that a vehicle-trailer
system can follow from one pose to the other.

A global planner based on Rapidly-exploring Random Tree Star (RRT*) and
Closed-Loop RRT (CL-RRT) is also presented. RRT* has the advantage over
other RRT-based planners in that it is probabilistic optimal, meaning the solu-
tion will converge to an optimal solution with time. The local planner described
above is used to find shortcuts in the path, enabling the optimal behavior of
RRT*. To the authors’ knowledge RRT* has not been implemented for vehicle-
trailer systems before, likely due to the problem of finding a suitable local plan-
ner.

The global planner was tested using Monte Carlo-simulations in two environ-
ments. The results shows that the global planner is able to create feasible and
short paths in a realistic scenario simulating a parking lot. It is also shown
that the local planner created feasible paths between a wide range of states.
However, the convergence rate of the algorithm is too slow for most real-time
applications that require an optimal solution.

i

Sammendrag

I de siste 10 årene har det blitt gjort betydelige fremskritt innenfor utvikling
av autonome kjøretøy. Dette er motivert av autonome kjøretøys potensiale til
å b̊ade være ressursbesparende og skape tryggere kjøretøy. Denne masteropp-
gaven skal studere autonome biler med en tilkoblet henger. Hengeren legger
til en ekstra ustabil frihetsgrad som gjør at styring av systemet blir mer utfor-
drende. For at kjøret-henger systemet skal kunne navigere i et ustrukturert miljø
som en parkeringsplass, m̊a en planleggings-algoritme brukes. Planleggings-
algoritmen m̊a planlegge en bane som kan gjennomføres av kjøretøyet samtidig
som banen ogs̊a m̊a hindre at kjøretøyet kolliderer med obstruksjoner. Dette
er en utfordrende oppgave, fordi kjøretøyet har ikke-holonomiske begrensninger
som setter grenser for hvilke baner som kan brukes. Det m̊a ogs̊a tas hensyn til
at kjøretøyet ikke m̊a miste kontroll p̊a hengeren slik at hengeren knekkes over
mot kjøretøyet.

Denne masteroppgaven presenterer en ny planleggingsmetode for å konstruere
en kjørbar bane mellom to sett av tilstander av kjøretøy-henger systemet i et
åpent miljø. Denne type planlegger kalles en lokal planlegger siden den ikke kan
navigere rundt obstruksjoner. Den kjørbare banen er generert ved å p̊a første
steg approksimere banen med en ”Dubins path”. Deretter blir banen forbedret
i to steg. Hvert seg simulerer kjøretøy-hengeren i lukket sløyfe (”closed-loop”)
rundt banen konstruert av det forrige steget. Resultatet er en kjørbar bane som
et kjøretøy-henger system kan følge fra en tilstand til en annen.

En global planlegger basert p̊a ”Rapidly-exploring Random Tree Star” (RRT*)
og Closed-Loop RRT (CL-RRT) blir ogs̊a presentert. RRT* har fordelen fremfor
andre RRT baserte planleggere at den er probabilistisk optimal, som betyr at
løsningen den returnerer vil konvergere mot den optimale løsningen med tid.
Den lokale planleggeren som er beskrevet ovenfor blir bruk til å finne snarveier
i treet, slik at planleggeren f̊ar den optimale oppførselen til RRT*. Etter det
forfatteren vet, har det ikke tidligere vært implementert RRT* for kjøretøy-
henger systemer, og dette kan skyldes at det ikke har vært en tilgjengelig en
egnet lokal planlegger.

Den globale planleggeren ble testet med Monte Carlo simuleringer i to miljøer.
Resultatene viser at den globale planleggeren kan lage kjørbare og korte baner
i et realistisk miljø som skal simulere en parkeringsplass. Det er ogs̊a vist at
den lokale planleggeren kan lage kjørbare baner mellom et bredt sett av til-
stander. Konvergensraten til algoritmen er likevel for langsom til bruk for de
fleste sanntidssystemer som krever en optimal løsning.

ii

Acknowledgement

I would first like to thank my supervisor Professor Sebastien Gros at the Nor-
wegian University of Science and Technology (NTNU), for all his support and
excellent guidance. I am very thankful to Semcon, the company that has pro-
vided the topic for this thesis. It has been a great experience to collaborate
with Semcon and its employees. I am very greatful to my supervisor at Semcon,
Øystein Henriksen. Thank you for many encouraging discussions, with fantas-
tic suggestions, guidance, and a friendly tone. Thank you for spending many
evenings reading through my thesis and giving me feedback. I would also like to
thank Tonny Mastad and Thomas Eriksen for being excellent and warm team
managers during my internship at Semcon and for supporting me while writing
this thesis. I am very grateful to Professor Halvor Schøyen at the University
of South-East Norway (ISN), who provided valuable guidance through the last
writing stages.

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Outline . 2

2 Background 4
2.1 The Terminology and Problem Formulation of Path Planning . . 4
2.2 Nonholonomic Constraints . 6
2.3 Differential Flat Systems . 7
2.4 Vehicle-Trailer System Kinematics 8

2.4.1 Time Independent Form 10
2.4.2 Time Reversibility . 11

2.5 Exact Path Planning . 11
2.6 Sampling-Based Path Planning 13

2.6.1 Lattice Graph Search . 14
2.6.2 Hybrid A* . 15
2.6.3 Rapidly Exploring Random Trees 16

2.7 Metrics and Nearest Neighbor Search 21
2.8 Dubins Path . 22
2.9 Flat Local Planner . 23
2.10 Optimal Local Planner . 25
2.11 Collision Detection . 25

3 Method 27
3.1 Connect Function - Exact local path planning 27

3.1.1 Modified Dubins Path . 29
3.1.2 LQR Path Follower . 29
3.1.3 Linearization for Straight Paths 32
3.1.4 Linearization for Circular Path 32
3.1.5 LQ gain . 34
3.1.6 Dubins Path Following Controller 34
3.1.7 Feasible Path Following Controller 35
3.1.8 Constraints on β and δ 36
3.1.9 Connect Function . 37

3.2 Steer Function - Local Path Planning 37
3.2.1 Heading Reference . 38
3.2.2 Steering Control . 40
3.2.3 Steer Function . 40

3.3 Distance Heuristic . 41
3.4 Implementation of Collision Detection 42
3.5 Closed Loop Rapidly Exploring Random Tree Star 44

3.5.1 Tree Structure . 44
3.5.2 Algorithm Overview . 44
3.5.3 Stage 1: Random Exploration 45

iv

3.5.4 Stage 2: Semi-optimal Path from Root to New Node . . . 45
3.5.5 Stage 3: Finding Shortcuts to Other Nodes and Rewire

the Tree . 46
3.5.6 Stage 4: Goal Connections 46
3.5.7 Path smoothing: Finding Shortcuts on the Shortest Path 46

4 Results 50
4.1 Simulation Setup . 50
4.2 Evaluation of Exact Local Planner 51

4.2.1 Success Rate . 51
4.2.2 Modification of Dubins Path 53
4.2.3 Accuracy . 53

4.3 Evaluation of the steer function 55
4.4 CL-RRT* . 55

4.4.1 Parking Lot . 55
4.4.2 Maze . 61

4.5 Run-time Analysis . 62

5 Discussion 64
5.1 Evaluation and Future Work on the Connect Function 64
5.2 Evaluation and Future Work on CL-RRT* 65

6 Conclusion 67

v

List of Figures

2.1 Diagram of the vehicle-trailer system. All angles are shown in
positive direction. 9

2.2 Visibility graph for a set of polygon obstacles and waypoints. The
shortest path from x0 to xgoal can be found by doing a shortest
path search on the resulting roadmap and is displayed with back
arrows. 12

2.3 A simple lattice graph constructed from the motion primitives
to the left. A path found from x0 to xgoal is highlighted on the
lattice graph. 14

2.4 Illustration of how Hybrid A* expands the motion tree 15
2.5 Figure (a) to (c) shows the one iteration of a successful expansion

of a random tree. (a) A state xrand is selected at random from
the configuration space. (b) A path from the closest node in the
tree xnearest to xrand is constructed. The end of the path is
located at xrand and named xnew. (c) Since the path does not
collide, that is it does not enter Xobs, xnew is added to the tree. 17

2.6 RRT with limitation of expansion length 18
2.7 Three implementations of RRT. The red circle is the goal region

Xgoal, Xobs is the black regions, the blue graph is the full graph
of the RRT, the red path is the path found by the RRT from x0

to the goal region Xgoal. 19
2.8 Two example of Dubins path between two poses. The top path

is a RLR path and the one under is a RSL path 23
3.1 The three stages of the exact local planner. Stage 1: Modified

Dubins Path Guidance. Stage 2: Forward Dubins Path following
for feasible path generation. Stage 3: Reverse path following for
exact path generation and connection. Notice how stage 2 misses
xto and how stage 3 is able to approach the path from stage 2 . . 28

3.2 An example of the modified Dubins path with the extra segment
shown in blue. 30

3.3 Illustration of the geometrical relationship of the vehicle-trailer
system in steady state. 33

3.4 A vehicle following a path that was generated at δlim as input.
Due to the disturbance the vehicle is not able to track the path
before the intersection point . 36

3.5 Diagram of the geometric relations for the pure-pursuit controller 39
3.6 Diagram of the geometric relations for the pure-pursuit controller

when the line though xp is outside of the look-ahead circle. . . . 40
3.7 A visualization of the collision detection system. The open space

is deep blue, the obstructed environment, here from a parking lot,
is in light blue, the vehicle-trailer system is in green, and the area
of intersection indicating a collision is in yellow. The resolution
of the occupancy grids are 4px/m. 43

vi

3.8 Flow diagram showing an overview of the CL-RRT* algorithm
illustrated with an sample tree on the left. Mark that the tree in
the illustration has straight paths between the nodes. In the real
algorithm these paths would be smooth. 48

3.9 Illustration of the path being improved by the smoothing step . . 49
4.1 The two test environments. The initial position is marked with

a visualization of the vehicle. In the Parking lot a goal state is
placed randomly in one of the narrow parking spots. In the Maze
the goal position is shown marked with xgoal 51

4.2 The distance heuristic for a 80m×80m grid with βg = 0. Deeper
blue means closer to the origin, and green means further away.
Yellow indicates that the vehicle was not able to reach this state. 52

4.3 The distance heuristic for a 80m× 80m grid with βg = π/8. . . 52
4.4 The distance heuristic for a 80m× 80m grid with βg = π/4. . . 53
4.5 Fail attempt at exact local path planning between xfrom = [0, 0, 0, 0]T

and xto = [30,−30, 2π/5, π/8]T ; without the approach arch. Stage
3 got to far away from the nominal path created by stage 2 and
therefore lost tracking. 54

4.6 Successful attempt at exact local path planning between xfrom =
[0, 0, 0, 0]T and xto = [30,−30, 2π/5, π/8]T ; with a approach length
of 5 m. 54

4.7 A histogram showing the ρs distance between the endpoints of
the path created by the Connect function and xfrom and xto in
the heuristic lookup table. The bin above 1 includes everything
from 1 up to infinity. 55

4.8 Distance to each grid state with the vehicle-trailer system con-
trolled by the Steer function in forward travel direction. Deeper
blue means closer to the origin, and green means further away.
Yellow indicates that the vehicle was not able to reach this state. 56

4.9 Distance to each grid state with the vehicle-trailer system con-
trolled by the Steer function in reverse motion. 56

4.10 CL-RRT* . 58
4.11 Plot of the average length of the shortest path over time for CL-

RRT*. 58
4.12 First 16 paths found in the Parking Lot simulation using CL-RRT

after 30 sec. Yellow are obstructions, the green paths are trailer
in reverse motion, white in forward motion and red are nodes in
the tree. 59

4.13 First 16 paths found in the Parking Lot simulation using CL-
RRT* after 30 sec. 60

4.14 The average length of the shortest path to the goal pose in the
Maze as a function of time. The blue regions show the maximum
and minimum length, the 10 to 90 percentile and 25 to 75 percentile. 61

4.15 Pie chart showing the proportion of time taken by the most time-
consuming functions. 63

vii

List of Tables

4.1 Vehicle-trailer parameters used for validating the path planning
framework . 50

4.2 Tuning parameters that were used for CL-RRT* 50
4.3 The exact local planner success rate with and without an ap-

proach arch added to the Dubins path. 52
4.4 The performance values for CL-RRT and CL-RRT* for the Park-

ing Lot map. 57
4.5 The performance values for CL-RRT and CL-RRT* for the Maze

environment. 61
4.6 The time used by the most time-consuming functions for 10 runs

of 30 sec in the Parking Lot environment. 62

viii

1 Introduction

1.1 Motivation

The last decade has brought considerable improvements to the field of au-
tonomous mobile robots. Many companies are investing a lot of resources into
developing autonomous vehicles [Schwarting, Alonso-Mora, and Rus 2018]. The
interest in developing autonomous vehicles is due to the many benefits of au-
tonomous cars and trucks. It is estimated that road safety will increase by as
much as 90% if the existing car park were to be replaced with autonomous ve-
hicles [Duleba et al. 2021]. Today we already see operating autonomous mobile
robots in warehouses, where the robots gather and move inventory, in a human-
free environment [Bolu and Korçak 2021]. These robots work faster and at a
lower cost compare to manually controlled vehicles. In the future, it is possi-
ble that long-distance transport will be revolutionized by autonomous trucks,
both due to their cost savings and improved safety [Duleba et al. 2021]. In ad-
dition, personal transport will potentially be greatly impacted by autonomous
cars. Autonomous vehicles can enable shared mobility, improve driving comfort
and improve road efficiency by communicating with other nearby autonomous
vehicles [Bolu and Korçak 2021].

Many applications require a trailer to be attached to the vehicle. Such a system
is called a 1-trailer system. These applications range from personal cars where
a trailer can be attached occasionally for increased capacity to long-distance
trucks with semi-trailers. The trailer adds another degree of freedom to the
vehicle. The trailer also makes the system harder to control due to the unusable
dynamics of the trailer while reversing. This significantly alters how the vehicle
system can be operated as many drivers have experienced for themself.

This master thesis is written in cooperation with Semcon Norway, a company
located in Kongsberg, Norway. Semcon has a long history in the automotive
industry. Seeing the potential of specialized autonomous vehicles Semcon is
developing autonomous vehicles for industrial use. These vehicles will be made
in small volumes and specialized for each specific application. One of the use-
cases is a vehicle pulling a trailer with cargo from a factory to a local seaport.
The cargo is too heavy for most vehicles, and the trailer is therefore essential
for the operation. Another advantage of using a trailer is that the trailer can
be left by the port, and an empty trailer can be brought back to the factory.
The ports are not public, and therefore few dynamic obstructions are present.
However, the environment around the port is changing due to cargo being moved
around. The autonomous vehicle-trailer system must therefore be able to adapt
to the changing environment. The sister company of Semcon, Yeti Move, is
developing autonomous snow trucks with trailers attached. The snow trucks
are designed for clearing snow off of airport runways. While studying these
use-cases, Semcon has identified that a path planner for a vehicle-trailer system
is needed. Designing such a planner for industrial use is the motivation of this
thesis. Since Semcon develops multiple systems, the goal is to make the planner

1

general enough that it can be employed on multiple different systems.

1.2 Problem Statement

This thesis will present an algorithm that will solve the following problem: Find
a feasible and collision free path from any pose to another for a gen-
eral 1-trailer system in an unstructured environment. It is assumed
that the environment is fully known and static. This is reasonable for an in-
dustrial case, where the locations can be mapped both before and during the
autonomous operations. It is also assumed that the vehicle-trailer system will
be moving at low speed such that the system can be described by kinematics
considerations. The planner must be able to utilize both forward and reverse
motion when creating a path. The goal is that the algorithm should be prob-
abilistic optimal, with respect to path length. This means that the length of
the path should decrease with the running time of the algorithm. It is assumed
that a shorter path will decrease the wear on the vehicle, increase the efficiency
of the operation and make the autonomous system act predictable for humans,
such that accidents can be avoided.

1.3 Outline

Section 2 gives the theoretical background for path planning of vehicle-trailer
systems. This includes the theoretical concepts that are useful for path plan-
ning, such as nonholonomic constraints and metrics, and a larger section on path
planning algorithms that previously have been developed for vehicle-trailer sys-
tems. The kinematic model of the general 1-trailer system is also derived in
Section 2.

Section 3 will cover the algorithms developed in this thesis. From the kinematic
model of the vehicle-trailer system, a novel exact local planner will be derived
and presented in Section 3.1. Then another local planner that is based on the
works of Ljungqvist, Axehill, and Helmersson 2016 is presented in Section 3.2.
To save computational time, heuristics that estimates the length generated by
the local planner is heavily used in this thesis. The construction of these heuris-
tics are presented in Section 3.3. The implementation of the collision detection is
presented in Section 3.4. Together, the sections of Section 3 are all put together
in used in Section 3.5 where the CL-RRT* algorithm is described in detail.

In Section 4 the algorithm is tested on simulation of a vehicle-trailer system.
The simulation setup is described in Section 4.1. In Section 4.2 and Section 4.3
the local planners are tested for computational time, accuracy and optimally. In
Section 4.4 the CL-RRT* algorithm is tested in multiple scenarios using Monte
Carlo simulations. The performance of CL-RRT is used as the performance
baseline. Section 4.5 analyzes the CL-RRT* algorithm to identify bottlenecks.

The results are discussed in Section 5. This section highlights the weaknesses
and strengths of the CL-RRT* algorithm of this thesis, and suggests further

2

work.

Section 6 sums up the thesis and gives a conclusion based on the results.

3

2 Background

2.1 The Terminology and Problem Formulation of Path
Planning

Path planning is a vast field that still is in development. This thesis focuses on
path planning for nonholonomic systems, particularly vehicle-trailer systems.
This section will present the terminology that is frequently used for path plan-
ning. La Valle has made considerable contributions to the field of path planning,
and especially his book [LaValle 2006] is commonly used as a source for termi-
nology and mathematical background for path planning.

The path planning problem can be summed up as being the problem of finding a
set of either continuous or discrete actions that will take a system from one initial
state to some goal state while satisfying a set of constraints. For our purpose,
the system is a mobile robot, and the constraints are set by the environment.

Borrowing the terminology from Ljungqvist 2020 and LaValle 2006, the robot for
which we are doing path planning can be modeled as a nonlinear time-invariant
system described by the following equations

ẋ(t) = f(x(t),u(t)) (2.1a)

x(t0) = x0 (2.1b)

Where x is the n-dimensional state vector of the robot and u is the m-
dimensional control input vector that defines the actions of the robot. The
robot should navigate from an initial state x0 to a goal state xgoal in the real
world. It must avoid obstacles while heading towards a goal state. The robot is
likely to have constraints on both x and u. The topological space of the possible
states and inputs are respectively denoted X and U, such that the system must
satisfy x(t) ∈ X and u(t) ∈ U. X and U can be any topological space and
may not necessarily lay on the manifold of Rn . This is an important point,
especially for states such as orientation. The orientation of an object is not
uniquely defined on R since we have that θ = θ + k2π ∀ k ∈ Z. Therefore we
say that 2d orientations operate on the manifold S which wraps around itself
such that every orientation is uniquely defined.

The set of all possible configurations X defines all the states in which the robot
can be in an open world. However, the real world is full of obstructions, and we
want the robot to navigate around these. These obstructions are represented
by the closed set Xobs which are all the states where the robot is colliding with
the obstructions. The space that the robot then is free to navigate through is
called Xfree and is simply defined as Xfree = X \Xobs.

Summed up the path planning problem is to find a set of inputs u(t) to construct
a path x(t) such that

x(t0) = x0 (2.2a)

x(tG) = xgoal (2.2b)

4

x(t) ∈ Xfree (2.2c)

u(t) ∈ U (2.2d)

ẋ(t) = f(x(t),u(t)) (2.2e)

This definition only applies to the path planning problem where we are satisfied
with any feasible path that takes the system from x0 to xgoal. However, it is
often desirable to find some path that optimizes some objective function J. The
optimization problem can be formulated as

argmin
u(t)

J =

∫ tG

t0

L(t,x(t),u(t)) subject to 2.2 (2.3)

As we can see from Eq. (2.3) that path planning for dynamic systems is similar
to the problem formulated when designing Model Predictive Controller (MPC).
The main difference is that where MPC often can use gradient descent or some
derivative of gradient descent to solve the problem, path planning must often
rely on other methods to navigate the nonlinear environment. The following
chapters will present a few popular strategies for path planners for these non-
linear problems.

Example: Differential drive robot To make the definition above more con-
crete, we will present a simple example. The Differential driven robot is a
popular vehicles for autonomous robots due to it simple design both mechan-
ically and control wise. Assuming no slip on the wheels, Chitsaz et al. 2009
showed that this system can be modeled as

ẋẏ
θ̇

 =

 1
2 (u1 cos(θ) + u2 cos(θ))
1
2 (u1 sin(θ) + u2 sin(θ))

1
d (u2 − u1)

 (2.4a)

In this case, as is common for robots navigating on a plane, the states of the
system is

x =

xy
θ

 (2.5)

where x and y are the position of the center of the differential driven robot,
and θ is the orientation. Notice that the topological space of X = R2 × S as
is common with rigid body robots operating on a 2D plane. The input is the
velocity of the two wheels.

u =

[
u1
u2

]
(2.6)

The wheels has an upper limit to their velocity and we therefore have that
U ⊂ R2.

5

2.2 Nonholonomic Constraints

Before we define a nonholonomic constraint, we will first define a holonomic
and nonholonomic system. The following definition is often used [LaValle 2006;
Borisov and Mamaev 2005]

Holonomic A system on the from of Eq. (2.1) is said to holonomic if there exists
a function F (x) = 0 such that Eq. (2.1) can be obtained by differentiating F (x)
with respect to time.

Nonholonomic A system that is not holonomic is said to be nonholonomic

In practice, this means that a nonholonomic system cannot be solved analyt-
ically. An example of a holonomic system is the linear time-invariant system

ẋ = Ax (2.7a)

x(t0) = x0 (2.7b)

Where A is a n by n matrix and x is a n-dimensional state vector. The solution
for this system can of course be found analytically.

An example of a nonholonomic system is a disk rolling on a surface given by

ẋ = −rψ̇ cos θ (2.8a)

ẏ = −rψ̇ sin θ (2.8b)

where x and y are the position of the contact point of the disc and the ground
plane and ψ is the angle of the disk around its symmetrical axis and θ is the
angle of the disc relative to the coordinate system. As shown in Golwala 2014
there cannot exist a function F (x, y, θ, ψ) such that Eq. (2.8) can be derived
from F (x, y, θ, ψ) by time differentiation.

Holonomic constraints are constraints that can be expressed as a function of the
systems states. This limits the system to operate on a sub-surface of the state
space that the system is given in. In other words, holonomic constraints reduce
the degrees of freedom of a system. For example, take a system of the point
mass particle system moving in a gravitational field in R2

mẍ = Rx (2.9a)

mÿ = Ry + gm (2.9b)

subject to the constraint
xẋ+ yẏ = 0 (2.10)

6

Where x and y are the positions of the particle, Rx and Ry are the forces
from the constraint, and m and g is the mass of the particle and gravitational
acceleration respectively. In this case, the constraint can be derived from

x2 + y2 = r2 (2.11)

essentially constraining a system to be moving on a circle. We all know this
system as a pendulum, and the state of this system can be explicitly be expressed
by a single state θ, the angle of the particle with respect to the origin.

A nonholonomic constraint restricts the dynamics of the system, but does not
decrease the degrees of freedom. This means that the constraints can only be
expressed as a function of the derivatives of the system’s states. Nonholonomic
constraints are therefore sometimes referred to as differential constraints.

The no-slip car model is an example of a system with nonholonomic constrained.
The state of the car can be described fully by the car’s pose which is given by
the [x, y, θ] ∈ R2×S. The system is said to be nonholonomic because the wheels
restrict the vehicle to only move in the direction of the wheel’s rotation.The car
can obtain any pose, but the path to the pose is restricted.

For the case of path planning, it is important to determine whether or not the
system is nonholonomic or not. In the case of the no-slip car model, a pose can
be infinitesimally close to the car pose, without the car being able to reach the
pose without driving a significant distance. As will be explained in Section 2.7
the metric that usually applies to R2 × S does not give a good indication of the
real distance that the car must travel.

2.3 Differential Flat Systems

A flat system with output y = [y1(x), ..., ym(x)] has the following properties
[Fliess et al. 1997]

• every system variable may be expressed as a function of the components
of y and of a finite number of their time-derivatives.

• every component of y may be expressed as a function of the system vari-
ables and of a finite number of their time-derivatives.

• the number m of components of y is equal to the number of independent
inputs

These properties are very useful for path planning for such systems. For a flat
system, one can find a path from one state to another and connect them with
a smooth path. Then the exact input that allows the system to follow the path
can be found by combining a finite number of the outputs time derivative along
the path. Many systems are deferentially flat. An example of a flat system is
a car pulling trailers with each hitch connection directly above each the rear
axle. In this case, the position of the rear axle of the last trailer can be used as
a flat output [Rouchon, Michel Fliess, Lévine, et al. 1992]. If the hitch is offset

7

from the rear axle the system is no longer flat. The exception is for a vehicle
pulling one single trailer, which is the system being studied in this thesis. A
local planner based on the flat output will be described in Section 2.9

2.4 Vehicle-Trailer System Kinematics

This thesis presents a planning algorithm for a general 1-trailer system. It is
called general since the hitch connection is not nessesarly directly above the
middle rear wheel axle. An n-trailer system with no hitch offset is called a
simple n-trailer system. In this thesis, when the context is clearly the general
1-trailer system, it will be referred to as the vehicle-trailer system.

The path planning algorithm of this thesis is intended for low-speed operations
such as parking. It is, therefore, reasonable to assume that the wheels do not
slip on the ground. We also assume that the ground is flat. These assumptions
are known as the no-slip assumptions. We can therefore use a kinematic model
of the vehicle-trailer system.

There are multiple intuitive ways to define the states of the system. This thesis
defines the input of the system to be the steering angle of the front wheel δ,
and the velocity of the vehicle rear wheel v1. β is the relative angle between the
trailer and the vehicle. v1 is also a more intuitive velocity as most vehicles are
driven from the vehicle, and not the trailer. No rate limit is put on the steering
angle. This is done to simplify the problem and is common when modeling
trailer systems [Svestka and Vleugels 1995; Fliess et al. 1997], however many
others include dynamics of the steering angle [B. Li et al. 2019; Sekhavat et al.
1998; Michel Fliess et al. 1995]. The assumption is that a vehicle following the
path found in real life only will deviate with a small distance from the path at
the points where the control input is not continuous.

An overview of the geometry of the vehicle-trailer system is shown in Fig. 2.1.

The kinematics can be derived from the assumption of no slip. Since the wheels
are not slipping, the velocities of the all the wheels must be in the direction of
each wheel. This can be expressed as

vf =

[
vf cos (δ + θ1)
vf sin (δ + θ1)

]
(2.12a)

v1 =

[
v1 cos (θ1)
v1 sin (θ1)

]
(2.12b)

v2 =

[
v2 cos (θ2)
v2 sin (θ2)

]
(2.12c)

Where vf , v1, and v2 are the velocity vectors of the front, rear, and trailer
wheels in inertial frame. vf , v1 and v2 are the velocities at the front wheel and
trailer wheel. θ1 is the heading of the vehicle and θ2 is the heading of the trailer.

8

.

Figure 2.1: Diagram of the vehicle-trailer system. All angles are shown in
positive direction.

The wheels are also constrained in their geometrical relation to each other and
this can be expressed as

rf =

[
x2 + L2 cos(θ2) + (M1 + L1) cos(θ1)
y2 + L2 sin(θ2) + (M1 + L1) sin(θ1)

]
(2.13a)

r1 =

[
x2 + L2 cos(θ2) +M1 cos(θ1)
y2 + L2 sin(θ2) +M1 sin(θ1)

]
(2.13b)

r2 =

[
x2
y2

]
(2.13c)

Where rf , r1, and r2 are the position of the front, rear and trailer axles in
inertial frame.

[
x2, y2

]
are the position of the trailer axle, L1 is the distance

between the front wheel and the rear axle, and L2 is the distance from the trailer
hitch connection to the trailer axle. M1 is the distance from the rear axle to
the trailer hitch connection. On some vehicles, the hitch connection is in front
of the axle of the rear wheel. In this case, M1 would be negative, however, it
will not change the calculations. The angle between the trailer and vehicle is
denoted β and given by

β = θ2 − θ1 (2.14)

9

Both constraints must be satisfied for the system, therefore we can take the time
derivative of Eq. (2.13) and set it equal to the velocity constraints of Eq. (2.12).

drf
dt

= vf (2.15a)

dv1

dt
= v1 (2.15b)

dv2

dt
= v2 (2.15c)

Finally we solve for the state vector ẋ = f(x,u) arrive at the kinematics of the
no-slip vehicle-trailer system

ẋ2 = v1 cos(θ2)
L1 cosβ −M1 sinβ tan δ

L1
(2.16a)

ẏ2 = v1 sin(θ2)
L1 cosβ −M1 sinβ tan δ

L1
(2.16b)

θ̇2 = −v1
L1 sinβ +M1 cosβ tan δ

L1L2
(2.16c)

β̇ = −v1
L1 sinβ + (L2 +M1 cosβ) tan δ

L1L2
(2.16d)

This also gives us the relation between v1 and v2

v2 = v1
L1 cosβ −M1 sinβ tan δ

L1
(2.17)

Mark that Eq. (2.16) can be written as

ẋ(t) = f(x(t),u(t)) = v1(t)f̄(x(t),u(t)) (2.18)

This gives rise to two important properties for the system which will be described
underneath and are essential to the path planner developed in this thesis.

2.4.1 Time Independent Form

The kinematics of the vehicle-trailer system can be made independent of time.
This is because we rewrite the system Eq. (2.16) on the form

ẋ(t) =
∂x(s1)

∂s1

∂s1(t)

∂t
=
∂x(s1)

∂s1
v1(t)v̄1 (2.19)

Where s1 is the arc length of the vehicle path and v̄1 = sign(v1(s1)) is the
direction of travel. By inserting Eq. (2.19) for ẋ in Eq. (2.18), v1 can be factored
out and we are left with

∂x(s1)

∂s1
= v̄1f̄(x(s1),u(s1)) (2.20)

10

In practice, this means that any path traveled by the vehicle-trailer system can
be followed by the same vehicle-trailer system at any velocity. This is useful
since it allows path planning to be independent of velocity. The velocity of the
real-world vehicle only needs to be low enough for the no-slip assumptions to
hold.

2.4.2 Time Reversibility

Holmer 2016 showed that any system on the from Eq. (2.18) can be time-reversed
by applying the inverse input. That is, we can achieve the states in reverse order
by using the following input:

v1(t) = −v1(T − t) (2.21)

δ(t) = δ(T − t) (2.22)

This will give us the time-reversed states xi.

xi(t) = x(T − t), ∀t ∈ [t0, T] (2.23)

Where T is the time at which the system is reversed from.

This is of course not only restricted to time as the variable, but applies to the
system in the form of Eq. (2.20). The interpretation of this is that for any path
that has been traversed in either forward or backward motion, one can follow
the same path in the opposite direction by applying the same control input that
was previously used on the same point on the path.

2.5 Exact Path Planning

Some path planning problems can be solved exactly and in finite time. These
algorithms are said to be complete, that is they either will find a solution or
return no solution if no solution exists. Completeness will be further discussed
in the section on sampling-based algorithms. While these algorithms are not
applicable to the motion planning problem for the vehicle-trailer system, an
overview is presented here for the sake of giving a wide coverage of path plan-
ning algorithms and providing context for non-complete algorithms that will be
presented next.

Many exact path planning algorithms do not take system dynamics into account.
However, this is for many robotic systems, not an issue. The robotic system is
of course constrained by the laws of nature, but the navigation system can be
designed such that we do not have to take the dynamics into consideration while
doing path planning. For example, a differential wheel-driven robot can follow
any continuous path consisting of straight line segments by stopping at every
sharp corner to change heading. Other examples are robots on omnidirectional
wheels, and 6 DOF robotic arms [Kuffner and LaValle 2000]. Systems that are
not in the real world at all, such as computer animations or computer characters

11

in video games are also free from dynamic constraints. We, therefore, see exact
algorithms being used in popular game engines such as Unity 2020.

Exact algorithms require an analytic description of the obstacles. Many modern
autonomous systems rely on SLAM [Bresson et al. 2017] to gain knowledge about
the environment. There exist both real-time and post-processing techniques that
will construct a high-level algebraic description of the environment from SLAM
data such as in Yang et al. 2019. However, the field of analytic reconstruction is
still in early development and most modern autonomous systems rely on point
cloud or voxel obstruction maps as a representation of the environment [Cadena
et al. 2016].

Most exact path planning algorithms find a path from a roadmap that is con-
structed from the environment. A roadmap is an undirected graph that can
be searched through with a shortest path algorithm such as A* [Hart, Nilsson,
and Raphael 1968]. For instance, the shortest path can be found for any en-
vironment defined by polygons. This is done by first constructing a road map
as a visibility graph by connecting all vertices to all other vertices that can be
reached with a straight line. The initial state x0 and the goal state xgoal are
also included as vertices that are connected to the road map. Then a Dijkstra’s
algorithm is used to find the shortest path through the road map. An example
of the shortest path from a visibility graph is shown in Fig. 2.2.

Figure 2.2: Visibility graph for a set of polygon obstacles and waypoints. The
shortest path from x0 to xgoal can be found by doing a shortest path search on
the resulting roadmap and is displayed with back arrows.

Another strategy is to divide Xfree into convex regions and then search from
the initial region containing the initial state outwards to the region containing
the goal state. A version of this method called vertical cell decomposition was
demonstrated in Abbadi et al. 2014.

There is much more to be said about exact algorithms, and chapter 6 in LaValle
2006 gives an excellent overview of these methods. The most important take-
away from this section, is however that these algorithms are not practical for
real-world applications due to their poor computational performance, hard to

12

implement algorithms, and their need for analytical environments (LaValle 2006,
Abbadi et al. 2014). These algorithms are also hard to apply to systems with
nonholonomic constraints.

2.6 Sampling-Based Path Planning

As shown in the previous section there are multiple algorithms that are guaran-
teed to find a solution to a solvable path planning problem. However, the issues
pointed out in the previous section also motivate us to look for other solutions.
Sampling-based path planning algorithms have been very popular in robotic
navigation literature [LaValle 2006; Ljungqvist 2020]. Sample-based algorithms
simplify the planning problem by sampling down the continuous configuration
space into discrete points. This has several advantages over the continuous ap-
proach seen in the last section. First, sampling-based algorithms are in general
more efficient than complete algorithms [Kuffner and LaValle 2000]. Second,
sampling-based algorithms often do not set any restrictions on the format of
the obstructions in the environment. That is obstruction defined as analytic ge-
ometric shapes, point clouds, and occupancy grids can be used. This is because
sampling-based algorithms only use virtual collision detection on the sampling
point to navigate the obstructions. Complete algorithms rely on utilizing the
geometric properties of the environment to guarantee a solution. This section
will present three different families of sampling-based approaches, that are all
relevant for the path planning problem for the vehicle-trailer systems. First, a
lattice-graph search based algorithm will be described, then Rapidly Exploring
Random Tree (RRT) and some relevant derivatives of RRT will be discussed
and in the end hybrid A* will be presented.

First, it is useful to define the expected performance of planning algorithms from
the notion of completeness. From LaValle 2006 and Jean-Paul Laumond, Sekha-
vat, and Lamiraux 1998 there are three levels of completeness. An algorithm is
said to be

• Complete if for all input the algorithm in finite time resolves whether or
not the problem is solvable.

• Resolution Complete if the algorithm finds a solution in finite time if
one exists and if the sampling resolution of the grid is fine enough.

• Probabilistic Complete if the probability of finding a solution goes
towards 1 as time goes to infinity, if a solution exists.

Completeness is important but we also often care how well the path performs
on some metric. For instance, we may care about the length of the path, or the
maximum curvature, and so on. This is referred to as the optimality of the al-
gorithm for some cost function. The cost function is denoted Cost(x(t)s) where
x(t)s is the solution path return by the algorithm. According to Ljungqvist
2020 and Karaman and Frazzoli 2011 an algorithm is said to be

13

• Resolution Optimal if the algorithm finds the optimal solution x(t)s∗
in finite time if one exists in the sampling resolution of the algorithm.

• Asymptotic Optimal if the cost Cost(x(t)s) approaches the optimal
cost Cost(x(t)s∗) when time goes to infinity.

Optimality can be achieved using exact path planning algorithms as shown in the
previous section, but only for a few selected problems such as maximum clear-
ance and minimum distance LaValle 2006. For most problems with holonomic
constraints, one can only hope to design an algorithm that is resolution optimal
or probabilistic optimal. With these properties in mind, a few sampling-based
methods that previously have been utilized for path planning for vehicle-trailer
systems will be presented.

2.6.1 Lattice Graph Search

The lattice-graph based path planner was first introduced in Pancanti et al.
2004. The lattice graph is constructed by discretizing the state space of the path
planning problem into a regular grid of nodes. Each node represents a distinct
state of the system. The system can transition from one node to another with
a set of precomputed feasible paths. Then A* is used to search through the
lattice graph for the shortest path to the goal state that does not collide with
the environment. Fig. 2.3 shows an illustration of a simple lattice graph for a
car-like vehicle. In this illustration, the x and y directions are discretized into a
regular grid and the heading can have four orientations. The motion primitives
that define the node transitions are shown on the left in Fig. 2.3.

Node transitions

Lattice graph

Figure 2.3: A simple lattice graph constructed from the motion primitives to
the left. A path found from x0 to xgoal is highlighted on the lattice graph.

Ljungqvist demonstrates the use of a lattice graph search method for a general
2-trailer systems in Ljungqvist, Axehill, and Löfberg 2018; Ljungqvist, Evestedt,
et al. 2019. The state space is discretized such that x, y has a resolution of 1m.
The orientation θ is discretized into 16 different angles and β is can take on

14

tree discrete angles. An Optimal Control Problem (OCP) was formalized and
solved to connect nodes to a subset of the nearby nodes to create the transitions.
Ljungqvist, Axehill, and Helmersson 2016 reports that the selection of which
nodes to connect is a hard manual process, that greatly affects the performance
of the algorithm. Selecting too many transitions will exponentially increase the
running time of the algorithm, however too few limits the maneuverability of
the system. The limited number of nodes also limits the maneuverability of
the path found by the planner. An advantage to the lattice graph approach is
that the algorithms are resolution optimal and resolution complete [Pivtoraiko,
Knepper, and Kelly 2009].

2.6.2 Hybrid A*

A second sample-based category of path planning algorithms is Hybrid A*.
Dolgov et al. 2008 demonstrates the use of Hybrid A* for a car navigating in
complex environments at the 2007 DARPA Urban Challenge.

There are multiple implementations of Hybrid A*, but we will present the algo-
rithm presented by Dolgov et al. 2008 as an introduction. Hybrid A* discretizes
the configuration space into a regular grid in x and y direction as well for the
heading for every position. Similar to RRT Hybrid A* builds a tree structure
of poses. Each pose has a cost associated with it. The tree expands by selecting
the node in the tree with the lowest cost. The node expands by a predefined
set of motion primitives. The motion primitives are chosen such that they guar-
antee that they will bring the vehicle into a diffident grid cell than that of the
selected node. Dolgov et al. 2008 uses a constant steering angle to construct
the motion primitive. An illustration of the tree expansion is shown in Fig. 2.4.
Whenever a grid cell is reached it is marked as visited. If a motion primitive
causes a collision or brings the vehicle into an already visited grid cell, the tree is
not expanded with this primitive. This alone will create a viable path planner,
however, the search is in every direction. It is therefore common to add several
biases in the form of potential fields.

Figure 2.4: Illustration of how Hybrid A* expands the motion tree

15

Dolgov et al. 2008 thee potential fields are used to increase to the performance
of Hybrid A*. The first is a nonholonomic distance heuristic, that estimates the
distance to the goal pose for a car-like vehicle if no obstructions are present. This
distance cab be found by using Reeds-Shepp paths [Reeds and Shepp 1990]. This
distance will almost always be longer then the Euclidean distance. The second
potential field uses the A* on the obstruction grid to calculate the distance from
every cell to the goal pose as a walk between cell ignoring the nonholonomic
constraints of the vehicle. This eliminates the exploration of dead-ends and
guides the vehicle towards the goal pose. The third potential field is a Voronoi
field. The Voronoi field is calculated by first creating a Voronoi diagram which
gives the distance to the closest obstruction for every grid cell. The Voronoi
field is then calculated from the Voronoi diagram such that the middle between
two obstructions always has a cost of zero, and maximum cost at the edge of an
obstruction. The Voronoi field ensures that the vehicle keeps a distance from
obstructions, without rendering narrow corridors nontraversable.

Due to the discrete nature of the steering input, the paths generated by Hybrid
A* are sub-optimal and often oscillate right and left. Dolgov et al. 2008 solves
this by solving a non-linear optimization problem, minimizing the path length
as well as avoiding obstructions. The result is a smooth path that Dolgov et
al. 2008 reports often is close to the global optimal solution. The reported
performance is good; the running time for the whole algorithm was 50–300ms.

B. Li et al. 2019 demonstrates that Hybrid A* algorithm can be used for a
3-trailer system. The paper uses an optimization step on the path found by
Hybrid A* to decrease the length and curvature. The reported running time of
the algorithm was on the order of 1-minute, making it not suitable for many
real-time applications.

Nordeus 2015 published an open-source code along with a nonacademic blog
post explaining Hybrid A*. The open-source code contains a video game-like
environment where a Hybrid A* path planner is demonstrated. Interestingly, the
planner runs within a second on the same test computer as this thesis’s results
were generated. Nordeus 2015 demonstrates that the method is also able to
return a feasible path for a 1-trailer system. The video game demonstration is
free to download and easy to set up on a windows computer.

2.6.3 Rapidly Exploring Random Trees

Rapidly Exploring Random Trees (RRT) are a group of path planning algo-
rithms that have become quite popular for mobile robotics.

RRT uses a tree structure of nodes. Each node in the tree represents a state.
Each node has one parent node, and as many children nodes as necessary. If two
nodes are connected together that means that there is a collision-free straight
path between them. Since RRT places nodes randomly, it is not possible to
reach a goal pose xgoal, and one must therefore define a goal region Xgoal in a
ball around xgoal.

16

Algorithm 1: Basic RRT

1 Tree.Init(x0)
2 while Tree does not contain node in Xgoal do
3 xrand ← RandomState()
4 xnearest ← Tree.Nearest(xrand)
5 xnew,P← Steer(xnearest, xrand)
6 if CollisionFree(P) then
7 Tree.AddNode(xnew, xnearest)

(a)

Path

(b) (c)

Figure 2.5: Figure (a) to (c) shows the one iteration of a successful expansion
of a random tree. (a) A state xrand is selected at random from the configu-
ration space. (b) A path from the closest node in the tree xnearest to xrand
is constructed. The end of the path is located at xrand and named xnew. (c)
Since the path does not collide, that is it does not enter Xobs, xnew is added to
the tree.

To construct the tree x0 is initialized as the root of the tree. While the tree
structure does not contain a node within the goal region the algorithm will loop
through the following steps. A random state xrand in the input space is sampled.
Then the closest state in the tree to xrand is found and named xnearest. Then
a steering function is used to construct a path P from xnearest to xrand. The
steering function is simply a function that constructs a path towards any state.
For completeness with other algorithms in this thesis, the end of the path is
named xnew. If the path does not collide with the environment xnew is added
to the tree as a node with xnearest as the parent. The algorithm for a simple
implementation of RRT is shown in Algorithm 1. Fig. 2.5 shows an example of
a successfully expansion of a tree.

RRT is probabilistic complete for holonomic systems [LaValle 2006]. RRT is
known to perform better than lattice graph algorithms for problems with high

17

Figure 2.6: RRT with limitation of expansion length

dimensions [Noreen, Khan, Habib, et al. 2016] due to the exponential growth
experienced by lattice graph-based methods for higher dimensions. A big draw-
back of RRT is that the solutions are almost always sub-optimal, and there is
no mechanism in the algorithm for improving the path. Running RRT over a
longer period of time will enable more nodes to reach the goal region and slightly
decrease the length from the shortest path. However, the RRT will quickly reach
a lower bound on the path length which usually is significantly higher than the
shortest possible path.

There is a huge number of variations of RRT that change its behavior. One of
the most common modifications is to limit the expansion length as described
in Brandt 2006. If the the distance between xrand and xnearest is higher then
some expansion threshold ε the steering function will place xnew at a distance ε
in direction of xrand from xnearest. The successfully limited expansion is shown
in Fig. 2.6. Limiting the expansion distance does two things, first, it limits
overshoot where the tree expands too far in a direction as seen in Fig. 2.7a.
Second, since long paths have a higher probability of crossing an obstruction,
more random samples would have to be made before a new collision-free path
to a new node could be made. Another alternative is a greedy method where
the steer function always will return a collision-free path up to the nearest
obstructions. Kuffner and LaValle 2000 argues that this can be more efficient
since every call to the nearest neighbor search will result in a new node being
added to the tree.

Basic RRT expands in all directions and will therefore not only find a path to

18

Occupancy Grid

0 0.5 1 1.5 2 2.5

X [meters]

0

0.5

1

1.5

2

2.5

Y
 [
m

e
te

rs
]

(a) Basic RRT with no limit on
expansion distance

Occupancy Grid

0 0.5 1 1.5 2 2.5

X [meters]

0

0.5

1

1.5

2

2.5

Y
 [
m

e
te

rs
]

(b) Basic RRT with ε = 0.1

Occupancy Grid

0 0.5 1 1.5 2 2.5

X [meters]

0

0.5

1

1.5

2

2.5

Y
 [
m

e
te

rs
]

(c) Basic RRT with ε = 0.1 and
0.1 chance of setting xrand = xgoal

Figure 2.7: Three implementations of RRT. The red circle is the goal region
Xgoal, Xobs is the black regions, the blue graph is the full graph of the RRT,
the red path is the path found by the RRT from x0 to the goal region Xgoal.

the goal region but also to all other reachable regions. To increase performance
it is common to add some bias to the expansion of the tree. For example can
we can set xrand = xgoal for some fraction of the expansion iterations. LaValle
2006 warns that biasing can also be dangerous. Adding bias to the algorithm
will sometimes result in worse performance if not done carefully.

Fig. 2.7 shows three implementation of RRT with the some of the modifications
discussed above.

The non-optimal behavior of basic RRT makes it unsuitable for many applica-
tions. RRT* which was introduced by Karaman and Frazzoli 2011 has therefore
become very popular [Noreen, Khan, Habib, et al. 2016] as it will return a path
that converges to an optimal solution with time. An implementation of RRT*
is shown in Algorithm 2.

RRT* works by first expanding the tree in the same manner as basic RRT.
However, every node has a cost Cost(x) associated with it that gives the cost
of getting from the root node x0 to the node. Whenever a path Pnearest has
successfully been connected to xnew from the closest node in the tree xnearest,
xnew is not immediately added to the tree as in basic RRT. An effort is first
made to connect the node to a set of nearby nodes Xnear that are within a
distance η such that the cost of getting from the root node to xnew is as small
as possible. After a node is added to the tree, the tree is rewired. This is done
by constructing paths to Xnear and checking if a route from xnew will decrease
the cost of getting from the root node to the nearby node xnear. If that is the
case xnew is set as the parent of the xnear. The rewiring step is essentially to
look for what new shortcuts xnew enabled when it was added to the tree.

19

Algorithm 2: RRT*

1 Tree.Init(x0)
2 while time < TimeLimit do
3 xrand ← RandomState()
4 xnearest ← Tree.Nearest(xrand)
5 xnew, Pnearest ← Steer(xnearest, xrand)
6 if CollisionFree(P) then
7 Xnear ← Tree.Near(xnew, η)
8 xmin ← xnearest
9 cmin ← Cost(xnearest) + Cost(Pnearest)

// Connect to the node with minimal cost

10 for xnear,c ∈ Xnear do
11 Pnear,c ← Steer(xnear,c, xnew)
12 if CollisionFree(Pnear,c) and

Cost(xnear,c) + Cost(Pnear,c) < cmin then
13 xmin ← xnear,c
14 cmin ← Cost(xnear,c) + Cost(Pnear,c)

15 Tree.AddNodeWithParent(xnew,xmin)
// Rewire the tree

16 for xnear,r ∈ Xnear do
17 Pnear,r ← Steer(xnear,r, xnew)
18 if CollisionFree(Pnear,r) and

Cost(xnew,c) + Cost(Pnear,r) < Cost(xnear,r) then
19 Tree.SetParent(xnear,r, xnew)

The threshold η could be changed dynamically to increase performance, but
should not be scaled faster than a factor of log(N)/N where N is the total num-
ber of nodes. An alternative to finding the nearby nodes by distance is to select
Xnear as the k-nearest neighbors. k can also be scaled dynamically, however
it should not be decreased below a constant threshold kRRT∗ = 2(n+1)e(1+1/n)

[Karaman and Frazzoli 2011].

The RRT algorithms presented above, all assume that the mobile robot can fol-
low lines that are C0 smooth. That is the path is continuous, but its derivative
is not. For many systems, this may not be an issue, as discussed above. For
non-holonomic systems such as a vehicle-trailer system, this may lead to paths
that are impossible to follow. Closed-loop RRT (CL-RRT) was introduced in
Kuwata et al. 2009. CL-RRT utilizes a controller to stabilize the dynamics of
the robotics system. When a random sample is drawn to expand the tree, a
reference from the closest nodes is formed. A Steer function then generates
a path towards the random sample by simulating the closed-looped robotic
system with the reference as an input. This ensures RRT can be used with

20

systems with unstable dynamics, such as a vehicle-trailer system in reverse mo-
tion. Ljungqvist implemented a CL-RRT path planner for a two-trailer system
in Evestedt, Ljungqvist, and Axehill 2016.

Karaman and Frazzoli 2013 present a framework for RRT* for systems with
nonholonomic constraints. They successfully demonstrated the RRT* on a no-
slip car. The results showed however that the rate of convergence was very slow
and only increased the shortest path by about 5% after 100000 iterations.

Several smart methods for biasing RRT have been investigated. Theta* RRT is
an RRT algorithm for nonholonomic systems which was introduced in Palmieri,
Koenig, and Arras 2016. The method searches through the environment using
Theta* prior to building the tree. Theta* is an algorithm similar to A* in that
it finds the shortest way from one point to another in a regular grid [Nash et
al. 2007], however, Theta* can return a path of any angle. The expansion of
RRT is than limited to a ball around the path found by the Theta*. In large
spaces, this significantly reduces the space for which the tree has to explore.
However, the method it not suited for applications where for instance a u-
turn is required, since Theta* does not take the nonholonomic constraints into
consideration. In Ichter, Harrison, and Pavone 2018 a method for generating
bias for nonholonomic sampling-based planners is presented. Ichter, Harrison,
and Pavone 2018 using a learning-based method that finds good sampling points
for a nonholonomic system. A very fast deep-learning-based method is presented
in Y. Li et al. 2018 called Neural-RRT. This method is more suited for holonomic
systems since the training dataset is based on A*. However, the paper shows
the potential of utilizing neural networks with RRT.

2.7 Metrics and Nearest Neighbor Search

For RRT it is essential to measure the distance between two states. [LaValle
2006, Ljungqvist, Axehill, and Helmersson 2016]. When the RRT expands the
tree towards a random state, the state in the tree that is the closest is selected
to be expanded from. For the RRT algorithm to be probabilistic complete a
metric must be used to measure the distance [LaValle 2006]. A metric ρ has 4
properties that must hold

• Nonnegativity ρ(xa,xb) ≥ 0.

• Reflexivity ρ(xa,xb) = 0 IFF xa = xb.

• Symmetry ρ(xa,xb) = ρ(xb,xa).

• Triangle inequality ρ(xa,xb) + ρ(xb,x3) ≥ ρ(xa,x3)

The most familiar metric for most people is the euclidean distance defined as

ρe(xa,xb) =

n∑
i=1

(xa,i − xb,i)2 (2.24)

21

This is a good way of measuring the distance in many situations, but falls short
for many applications. For instance take the case of a robot described by a pose
x = [x, y, θ]. If robot has the pose xa = [0, 0, 0] and we want to measure the
distance to xb = [0, 0, 2π−0.1], clearly the euclidean distance does not provide a
satisfying answer. Therefore, there are numerous other useful metrics that can
be used for distance mobile robotics. For instance, LaValle 2006 gives a metric
for the distance between two points on Rk × Sl that fulfill all four properties of
a metric. A point on the manifold is defined by x = [q1, q2, ..., qk, θ1, θ2, ..., θl]
where qi ∈ R and θi ∈ S. The metric between the points xa and xb is then
given by

ρs(xa,xb) =

√√√√ k∑
i=1

(qa,i − qb,i)2 +

l∑
i=1

(cos(θa,i)− cos(θb,i))2 + (sin(θa,i)− sin(θb,i))2

(2.25)

In many cases, a metric does not provide a good estimation of path length be-
tween two poses. This is the case for nonholonomic systems, where two states
can be as close as we want in metric space, but the system must travel a con-
siderably longer distance in reality. For instance, a car has to drive 1 meter
forward and then reverse to move 10 cm to the left. For these situations, it is
often more useful to use a psuedometric [LaValle 2006; Noreen, Khan, Habib,
et al. 2016]. This is a function that behaves somewhat like a distance, but does
not satisfy all the criteria for a metric. An examples of the use of psudometrics
can be seen in Kvarnfors 2019 where a Dubins path is used as an heuristic of
the distance. Other exampled of psychometric are cubic Bezier curve which was
used by Lee, Song, and Shim 2014 and Reeds-Shepp paths.

Often most of the computational time of an planning algorithm is used on
finding the nearest neighbors using some distance measurement [LaValle 2006;
Atramentov and LaValle 2002]. For metric spaces, a Kd-tree can be used to
efficiently search the space for close nodes as shown in Atramentov and LaValle
2002. This dramatically reduces the computational time. For algorithms relying
on psudometrics a Kd-tree cannot be used as the space cannot be used directly.
Often the psudometrics are also very computationally expensive to compute
which significantly limits the performance of algorithms [Noreen, Khan, Habib,
et al. 2016]. It is therefore beneficial to compute the psudometric in advance
and store it in a lookup table. This is done for path planning for vehicle-trailer
systems in Kvarnfors 2019 and Evestedt, Ljungqvist, and Axehill 2016.

2.8 Dubins Path

A popular tool for path planning are the famous Dubins paths. Dubins path
was introduced in Dubins 1957 and solves the following problem.

Assume a vehicle that moves in R2 × S that can move along a continuous path

22

R
R

L

R S

L

Figure 2.8: Two example of Dubins path between two poses. The top path is
a RLR path and the one under is a RSL path

with a maximum curvature κm = 1
Rm

, where Rm is the minimum turning radius.
Assume that vehicle can be controlled such that the curvature of the path it
follows can change instantaneously. What is the shortest feasible path between
any two poses?

Dubins proved that the shortest path always consists of two semi-circles of radius
Rm joined by a line segment, or three semi-circles of radius Rm. There are 6
combinations of arches that can create the shortest path: (RSR, RSL, LSR,
LSL, RLR, LRL), where R is a right turn, L is a left turn and S is a straight
segment. Fig. 2.8 shows two examples of Dubins paths connecting two poses.

A known issue one often encounter when using Dubins path for path following
is that a Dubins path does not have continuous curvature. For instance a car
that is set to follow a Dubins path, would have to stop at the joint between
two aches to change steering direction. This can be solved by using smoother
paths such as Clothoids or Fermat’s Spiral, which is widely used in the vehicle
autonomy literature Lekkas 2014.

2.9 Flat Local Planner

As described previously the general 1-trailer system is differential flat for a se-
lected output. This is easy to miss, as it is many times in the literature stated
that the n-trailer system with no hitch offset is differently flat [LaValle 2006;
Lamiraux and Laumond 2000; Ljungqvist, Evestedt, et al. 2019] without men-
tioning that 1-trailer system with hitch offset is also flat. Manav and Lazoglu
2021 which describes a path generation method for a general 1-trailer system
fails to mention that an analytic method is available. Other such as B. Li et

23

al. 2019 wrongly states that no vehicle-trailer system with hitch offset is flat,
however this is somewhat corrected further down in the paper.

Nevertheless, Fliess et al. 1997 and Rouchon, Michel Fliess, Lévine, et al. 1993
demonstrates how a local planner can be derived using the flat properties of the
general 1-trailer system. The method is more complicated then for a N-trailer
systems without hitch offset.

Fliess et al. 1997 proposes the following flat output p(x) = [p1(x), p2(x)]T for
a general vehicle-trailer system

p1 = x1 − L2 cos(θ2)− L(β)
L2 sin θ2 +M1 sin θ1√

M2
1 + L2

2 + 2M1L2 cos(β)
(2.26a)

p2 = y1 − L2 sin(θ2) + L(β)
L2 cos θ2 +M1 cos θ1√
M2

1 + L2
2 + 2M1L2 cos(β)

(2.26b)

where L(β) is defined by the elliptical integral

L(β) = M1L2

∫ β

0

cos(σ)√
M2

1 + L2
2 + 2M1L2 cos(σ)

dσ (2.27)

Geometrical p is a point that are in vicinity of the vehicle-trailer system, but
will change its relative location as a function of β. Note that for systems with no
hitch offset, M1 = 0 the path becomes P ≡ [x2, y2] which significantly simplifies
the mathematics.

Fliess et al. 1997 demonstrated how this input can be used to generate a feasible
path between any two poses xfrom and xto. This is achieved by creating a
sufficiently smooth curve P (s) between p(xfrom) and p(xto). P (s) must fulfill
the constraints set by Eq. (2.26) and Eq. (2.16) at P (xfrom) and P (xto). These
constraints can be found by taking the derivative of P with respect to arc length.

dP

ds
=

r1 − r2
‖r1 − r2‖

(2.28a)

d2P

ds2
= κv (2.28b)

ds = J(β, δ)ds1 (2.28c)

Where the position of rear wheel axle and the trailer axle is labeled r1 and r2
respectively. v is a unit vector orthogonal to dP

ds and κ is the curvature of P
and is given by

κ =
− sinβ

ρ cosβ + L(β) sinβ
(2.29)

J(β, δ) is defined by

24

J(β, δ) = (L2 +M1 cosβ −M2
1 /L1 sinβ tan δ)(ρ cosβ + sinβL(β))/ρ2 (2.30a)

ρ =
√
M2

1 + L2
2 + 2M1L2cos(β) (2.30b)

Fliess et al. 1997 states that a path P can easily be found with any regular
parameterization such as a polynomial. Kvarnfors 2019 demonstrates the use
of a polynomial with maximum curvature constraints as a path for a simple
1-trailer system.

κ is a one-to-one function from [γ, 2π−γ] to R. Where is defined by the function

cos γ
√
M2

1 + L2
2 − 2M1L2 cos γ = 2M1L2 sin γ

∫ γ

π

cos(σ)√
M2

1 + L2
2 − 2M1L2 cosσ

d

(2.31)

The state of the vehicle-trailer system can found directly by solving for [x2, y2, θ2, β]
in Eq. (2.26) and Eq. (2.28) for any point on P using numerical methods for
inverting κ(β).

The use of differential flatness in path planning is however limited. This might
be due to reported issues when including constraints and adding performance
measure om the path [Ljungqvist, Evestedt, et al. 2019]. The need to numer-
ically invert κ(β) and solve the integral L(β) makes this methods relatively
computationally expensive.

2.10 Optimal Local Planner

Another approach to exact local planning is to formulate the problem as a
Optimal Control Problem(OCP). The problem can then be solved with nonlinear
programming (NLP).

Holmer 2016 uses Direct Multiple Shooting [Bock and Plitt 1984] to minimize
the path for a vehicle-trailer system. The optimal planner used a path found
by a RRT to initialize the optimizer. B. Li et al. 2019 also used NLP to smooth
the path found by a planner for a vehicle-trailer with an optimizer. In general
it seems to us that the NLP is not a feasible method for generating feasible
local paths for a RRT. We have not been able to find any examples of RRT that
where implemented with Steer functions based on NLP. We therefore assume
that using NLP for RRT is not efficient for real time applications due to the
time consuming process of solving the OCP.

2.11 Collision Detection

Collision detection can be a complex matter, and a lot of methods exists that
tries to optimize the collision detection processes. Collision detection is of course

25

essential for path planning as it is used to determine whether or not a path is
feasible in the real wold. Many collision detection methods is based on objects
constructed from polygons such as the methods described in Ericson 2004. Poly-
gon defined collision tests are beneficial for applications where these polygons
are easy to define, such as in computer games and in controlled environment
such as a factory.

As mention previously, most modern mobile robots construct a point cloud of
environment from a SLAM algorithm [Pan et al. 2013]. Constructing polygons
from this point clouds is a very challenging task. It is therefore common in
robotic application to use a regular grid to do collision detection on [Figueiredo
et al. 2010]. Each rectangle in the grid has a value associated with it which
represents weather the rectangle has an obstruction inside of it. Such a grid is
called a occupancy grid. A point cloud generated by an SLAM algorithm can be
converted into the occupancy gird by for instance using the techniques described
in Meyer-Delius, Beinhofer, and Burgard 2012 and T. Collins, J. Collins, and
Ryan 2007.

26

3 Method

This chapter presents the CL-RRT* path planner algorithm as implemented in
this thesis. Two local path planners are presented in this section. One local
planner is exact in that it creates a feasible path between two chosen states.
This planner is implemented in the Connect function. The name Connect is
chosen because the exact planner ”Connects” two states exactly. The second
local planner is not exact, but creates a path that approaches the desired state.
The function using this planner is called Steer. This names is chosen because
the second planner ”steers” the vehicle-trailer system towards a state but not
necessarily exactly to the state.

This chapter also describe how collision detection is implemented and how a
the length of the path crated by the local planners are approximated with a
heuristic.

Lastly this chapter presents the CL-RRT* algorithm that utilizes all the tech-
niques described above.

3.1 Connect Function - Exact local path planning

By exact local planning, we mean an algorithm that solves the path planning
problem of Eq. (2.2) by creating a path between two poses given that there are
no obstructions. An exact local planner is necessary for implementing RRT*
for nonholonomic systems. This is because RRT* rewires the tree, changing the
parent of nodes. When a rewiring is performed one must be sure that the path
from the new parent to the node goes exactly to the node. Else one cannot
guarantee that the children of the node can also be reached. Finding such a
method that is fast enough for path planning is often challenging. [Karaman and
Frazzoli 2013]. We believe the method presented in this thesis is a novel method,
and its use for path planning will be investigated. The method presented in this
thesis generates paths between a start state xfrom to a goal state xto. The path
is not a perfect connection and can have a small deviation from the end states
which will be investigated in Section 4.2. However, if the precision is within
a few centimeters and we assume that it is good enough to enable the use of
CL-RRT* for a vehicle-trailer system. Karaman and Frazzoli 2013 supports
that an exact planner only needs to be exact to within a few centimeters such
that the real world vehicle, can use the path as a reference. The alternative
method for constructing exact local paths is to formulate the problem as an
OCP and solve it with an optimizer as described in Section 2.10. This can be
time-consuming and RRT* is therefore not been used for vehicle-trailer systems
before Evestedt, Ljungqvist, and Axehill 2016. The other method is to use
the deferentially flatness property of the vehicle-trailer system as described in
Section 2.9. This technique still requires the selection of a smooth enough path
that does not exceed the boundaries on . For every iteration of the flat planner,
an integral must also be solved numerically. The method presented here, has
very few computational processes for each iteration of the simulation, making

27

it an alternative to the flat method.

The algorithm for exact local path planning is divided into 3 stages and im-
plemented in the Connect function. The three stages are illustrated in Fig. 3.1
where the paths for each stage are shown. An overview of the exact planner will
be given here first, and then the details will be derived and explained in detail
in the following pages.

20 30 40 50

5

10

15

20

25

30

35

40

Stage 1

x
from

x
to

20 30 40 50

5

10

15

20

25

30

35

40

45
Stage 2

x
from

x
to

20 30 40 50

5

10

15

20

25

30

35

40

45
Stage 3

x
from

x
to

Modified Dubins Path

Forward Path

Reverse Path

Figure 3.1: The three stages of the exact local planner. Stage 1: Modified
Dubins Path Guidance. Stage 2: Forward Dubins Path following for feasible
path generation. Stage 3: Reverse path following for exact path generation and
connection. Notice how stage 2 misses xto and how stage 3 is able to approach
the path from stage 2

Stage 1 creates a Dubins path from the start state xfrom to the end state
xto. The Dubins path used in this thesis is slightly modified to achieve better
performance of the local planner. A segment called the approach arch is added
to the end of the Dubins path. The approach segment is curved such that a
trailer in steady-state will have the desired β value at the endpoint.

At Stage 2 a simulation of the vehicle trailer is performed. The Vehicle-trailer
system uses an LQR controller to follow the modified Dubins path from stage
1. Since the vehicle-trailer system starts at xfrom we are guaranteed that this
xfrom is connected with a feasible path to all other states of the simulated path.
However, the end state xto is not likely to lay exactly on the path. This is solved
in stage 3.

Stage 3 takes advantage of the time reversibility property of Section 2.4.2 to
achieve an exact local planner. The vehicle-trailer is simulated in reverse from
xto to xfrom using the path generated by stage 2 as a reference and an LQR
controller. Due to the time reversibility property, we can also use θ, β, and
δ values from stage 2 as a reference and feed-forward to the controller. The
vehicle-trailer which starts in xto will quickly start to tightly track the path of

28

stage 2. Since the path of stage 2 is feasible the vehicle-trailer can easily follow
the path to the xfrom.

Due to the time reversibility property this algorithm works for both forward and
reverse motion. The only modification that is needed to adapt the algorithm
to reverse motion is to start stage 2 from xto and stage 3 from xto. A big
advantage of this method is that the modified Dubins path of stage 1 can be
used as an initial collision test for the path. This greatly reduces the number of
simulations done by the global planner, which increases performance.

3.1.1 Modified Dubins Path

Due to the highly nonlinear nature of the exact local planner problem, a tradi-
tional control system is not sufficient to bring the vehicle to any pose. To solve
this we use a modified version of the Dubins path. Dubins paths where covered
in Section 2.8 and these paths can provide a guidance path for the vehicle as
they create a continuous path from two general poses. The local planner must
be able to connect all four states [x2, y2, θ2, β] of the system. The Dubins path
creates a continuous path for the tree first states, however, it does not take β
into account. We observed during initial testing that after stage 2 of the local
planner the vehicle-trailer system would not be sufficiently close to the desired
xto. We solve this by adding a semicircle with a fixed length at the end of the
Dubins path, with a radius Ra equal to the steady-state turning radius of βto.
An example of this path is shown in Fig. 3.2. The steady state curvature will be
derived in the next section. This allows the vehicle-trailer system to have a few
meters to settle down from the more chaotic maneuvering around the Dubins
path before approaching xto and should therefore be closer xto.

The Dubins paths are not feasible both due to the discontinuity in the curvature
of the Dubins path. This is not an issue as stage 2 will generate a smooth and
feasible path close to the modified Dubins path, and does not need to be perfect
as stage 3 will do the final connection between xfrom and xto

Other paths where considered for instance Continous Sharpness Turns as in-
troduced in Oliveira et al. 2018 and demonstrated on a vehicle-trailer system
in Kvarnfors 2019. Other paths of interest are Clothoids and Fermat’s spirals.
However, the modified Dubins paths has the advantage that there is only three
different curvatures on the path, one for the straight segment, one for the Dubins
path turning radius and one for the approach arch. This allows us to precom-
pute the feed forward of the input which saves significant amounts of computing
time.

3.1.2 LQR Path Follower

The path follower presented here is inspired by the works of Ljungqvist, Axe-
hill, and Helmersson 2016. There are two main differences. First is that this
thesis models and controls a 1-trailer vehicle while Ljungqvist, Axehill, and
Helmersson 2016 models and controls a 2-trailer vehicle. The second is that

29

-10 0 10 20 30 40

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Approch Arch

Dubins Path

x
from

x
to

Figure 3.2: An example of the modified Dubins path with the extra segment
shown in blue.

Ljungqvist, Axehill, and Helmersson 2016 uses the velocity of the last trailer as
the input, while this thesis uses the velocity of the vehicle. This avoids some of
the singularities described in Ljungqvist, Axehill, and Helmersson 2016.

The controller is designed around a model of the system in Frenet frame. The
system of Eq. (2.16) can be described as a deviation from a nominal path given
as a set of transverse coordinates. We assume that the nominal path is feasible.
Since the nominal path xn(s1,n) is feasible the kinematic constrains of Eq. (2.16)
must also hold for the nominal path. The nominal path can be described by

xn(s1,n) =


x2,n(s1,n)
y2,n(s1,n)
θ2,n(s1,n)
βn(s1,n)

 (3.1)

∂xn(s1,n)

∂s1,n
= v̄1f̄(xn(s1,n),un(s1,n)) (3.2)

Where s1,n is the distance traveled by the vehicle on the nominal path. The
vehicle-trailer system can then be modeled as a deviation from the path xn.
For every state x(s1) there are a state xn(s1,n(s1)) which is regarded as the
closest. The Euclidean distance is used to determine the closest states, and the
relationship between s1 and s1,n is therefore defined as

s1,n(s1) := arg min
s1,n

∥∥∥∥[x1(s1)
y1(s1)

]
−
[
x1,n(s1,n)
y1,n(s1,n)

]∥∥∥∥
2

(3.3)

30

Given a s1 the state of the vehicle-trailer system can be uniquely described in a
ball around the nominal path by three transverse coordinates [z2(s1), θ̃2(s1), β̃(s1)].
z2(s1) is the lateral deviation from the nominal path. The heading error of the
trailer is defined as θ̃2(s1) := θ2(s1)−θ2,n(s1). The vehicle-trailer relative angle

error is defined as β̃(s1) := β(s1)− βn(s1).

Since δ always enters Eq. (2.16) as tan(δ) we substitute u = tan(δ). And around
the nominal path we have ũ = u− un.

The relationship between the distance traveled by the vehicle relative to the
distance traveled on the nominal path is given by

∂s1,n
∂s1

=
v̄1 cos θ̃1(s1)

1− κn(s1)z1(s1)
(3.4)

Where κn(s1) is the curvature of the nominal path and z1(s1) is the lateral
deviation of the vehicle. To simplify the equations we assume that κn(s1)z1(s1)
is small so that we can write

∂s1,n
∂s1

≈ v̄1 cos(θ̃1) (3.5)

The transverse dynamics of the trailer-vehicle system around the nominal path
can then be derived by using the chain rule on Eq. (3.2) which gives

∂z2
∂s1

= v2sin(θ̃2) (3.6a)

∂θ̃2
∂s1

= −v̄1
L1 sin(βn + β̃) +M1 cos(βn + β̃)(un + ut)− cos θ̃2(L1 sinβn +M1un cosβn)

L1L2
(3.6b)

∂β̃

∂s1
= −v̄1

L1 sin(βn + β̃) + (L2 +M1 cos(βn + β̃))(un + ut)− cos θ̃2(L1 sinβn + un(L2 +M1 cosβn))

L1L2
(3.6c)

We are only interested in the transverse dynamics for the purpose of designing
a stabilizing controller. The transverse states of the transverse dynamics are
gathered into a vector p̃(s1) = [z2, θ̃2, β̃]T . And the transverse dynamics can be
written as

∂p̃

∂s1
= f̃(p̃, ũ,pn,un) (3.7)

From Eq. (3.6) the system can be linearized around paths in steady-state. The
linearized transverse dynamics has the form

∂ ˆ̃p

∂s1
= A(pn,un)ˆ̃p + B(pn,un)ˆ̃u (3.8)

31

Where

A(pn,un) =
∂f̃(p̃, ũ,pn,un)

∂p̃

∣∣∣∣
p̃=[0,0,0]T

(3.9a)

B(pn,un) =
∂f̃(p̃, ũ,pn,un)

∂ũ

∣∣∣∣
p̃=[0,0,0]T

(3.9b)

We will consider two paths; a straight path and a circular path.

3.1.3 Linearization for Straight Paths

For a straight path that is in steady-state the nominal values pn are trivial to
find and given by

βn,s(s1) = n (3.10a)

δn,s(s1) = 0 (3.10b)

And θ2,n does not enter into Eq. (3.6) and is therefore not needed in the cal-
culations of the linearized transverse dynamics. Using Eq. (3.10) and Eq. (3.9)
we can derive As and Bs matrices for straight paths.

As =

0 v̄1 0
0 0 −v̄1/L2

0 0 −v̄1/L2

 (3.11a)

Bs =

 0
−v̄1 M1

L1L2

−v̄1 L2+M1

L1L2

 (3.11b)

3.1.4 Linearization for Circular Path

For circular paths, the steady-state nominal state values can be derived from
the geometric properties of the vehicle in steady-state. From Fig. 3.3 we can
find a relationship between nominal vehicle-trailer angle βn,c and the turning
radius of the trailer R2

tanβn,c =
L2 + sign(M1)

√
M2

1 + L2
y

R2
=
L2 +M1

√
1 + tan2 βn,c
R2

(3.12)

Solving for βn,c yields

βn,c(R2) = −sign(R2) tan−1

(
L2|R2|+M1

√
L2
2 −M2

1 +R2
2

M2
1 −R2

2

)
(3.13)

32

Figure 3.3: Illustration of the geometrical relationship of the vehicle-trailer
system in steady state.

33

The vehicle-trailer is in steady state while following the path. This means that
∂βn,c

∂s1
= 0. un,c can be found by solving for un,c = tan δn,c in Eq. (2.16d) which

yields

un,c(βn,c) = − L1 sinβn,c
L2 +M1 cosβn,c

(3.14)

The linearization around the nominal circular path can now be found by using
Eq. (3.9), and inserting Eq. (3.13) and Eq. (3.14). This yields

Ac =

0 v̄1
L1 cos βn,c−M1 un,c sin βn,c

L1
0

0 0 −v̄1 L1 cos βn,c−M1 un,c sin βn,c

L1 L2

0 0 −v̄1 L1 cos βn,c−M1 un,c sin βn,c

L1 L2

 (3.15a)

Bc =

 0

−v̄1M1 cos βn,c

L1 L2

−v̄1 L2+M1 cos βn,c

L1 L2

 (3.15b)

3.1.5 LQ gain

The LQR is a well-known and popular technique. Assuming that the system
Eq. (3.8) is unconstrained the LQR technique can be used to find the opti-
mal gain for the controller[Chen 1999]. In the case of path following we are
minimizing the cost function

J =

∫ ∞
0

ˆ̃pTQˆ̃p + ˆ̃uTR ˆ̃u ds1 (3.16)

The optimal gain K can be calculated from

K = R−1BTP (3.17)

Where P is found by solving the Riccati equation

ATP + PA− PBR−1BTP + Q = 0 (3.18)

Applying Eq. (3.11) and Eq. (3.15) to Eq. (3.17) and Eq. (3.18), we can find
the optimal gain for straight paths Ks and circular paths Kc.

3.1.6 Dubins Path Following Controller

With the results from the previous section we will derive two path following
controllers. One controller for following Dubins paths, consisting of straight
lines and semi-circles, and one controller for following a general feasible path.
Note however that the Dubins path is not a feasible path, but can be seen as

34

a guidance path for the system. In the transition between different path types,
the controller will change. It is at these transitions that it is impossible for
the vehicle-trailer system to follow the path. A small deviation form the path
is expected at these points, but if the deviation is not so large that vehicle-
trailer system leaves the region where the linearization is valid, the system will
asymptotically approach the path again.

If the curvature of the semi circles in known in advanced the optimal gain can
be precalculated to save computational cost during tracking. While the rear
end of the trailer is closest to a straight path the control input is calculated as

p̃(s1) =

 z2(s1)
θ2(s1)− πp
β(s1)

 (3.19a)

us(s1) = −Ksp̃(s1) (3.19b)

δs(s1) = tan−1 us(s1) (3.19c)

Where πp is the angle of the straight path relative to the inertial x-axis.

When the rear end of the trailer is closest to a circular path the steering input
is calculated as

p̃(s1) =

 z2(s1)
θ2(s1)− θ2,n,c(s1)

β(s1)− βn

 (3.20a)

uc = un,c −Kcp̃(s1) (3.20b)

δc(s1) = tan−1 uc(s1) (3.20c)

Where θ2,n,c(s1) is the angle of the tangent of the nominal path at s1.

3.1.7 Feasible Path Following Controller

Given a nominal path that satisfy Eq. (3.2) another controller is used. Simula-
tions show that the optimal gain only changes marginally as a function of R2.
We therefore use a constant value for the controller gain. This allows us to only
compute Ks once while initializing the algorithm, saving significant amounts of
computational time during simulation. The controller is realized as

p̃(s1) =

 z2(s1)
θ2(s1)− θ2,n,p(s1)
β(s1)− βn,p

 (3.21a)

up = un,p −Ksp̃(s1) (3.21b)

δp(s1) = tan−1 up(s1) (3.21c)

Where θ2,n,p, βn,p and un,p are the values used by the vehicle-trailer system
which generated the feasible path at the closest point to the controlled vehicle-
trailer system.

35

Desired Path

Driven Path

Point of
intersection

Figure 3.4: A vehicle following a path that was generated at δlim as input.
Due to the disturbance the vehicle is not able to track the path before the
intersection point

3.1.8 Constraints on β and δ

For most vehicles the steering angle δ is constrained within some range δ ∈
[−δlim, δlim]. This limits the turning rate of the vehicle. If a reference path is
constructed such that it saturates δ this can cause issues when following the
path with a controller. Say a vehicle is following a path with the maximum
curvature as shown in Fig. 3.4. Then a disturbance slightly pushes the vehicle
such that the heading now point outwards from the circular arch. Since δ is fully
saturated while following the path, the vehicle will drive a significant distance
before the path circle and driving circle intersects.

Another consequence of the constraint on δ is that for most vehicle-trailer system
there exists a minimum value of |β| < π/2 in reverse motion for which the
vehicle-trailer system cannot avoid a jack-knifed configuration. This is the case
for any vehicle where L2 > M1 [Hejase et al. 2018]. Almost all vehicles satisfy
this condition.

Both of these issues can be solved by using a smaller range of δ such that
δ ∈ [−δlim + ε, δlim − ε], where ε > 0. This will allow the real world vehicle
control system to have some margin around the nominal δ to stabilize the system
around the generated path. The simulations that generates the path for the
exact local planner can still result in a jack-knife configuration, however, these
path will be discarded and not used by the RRT.

36

3.1.9 Connect Function

The exact local planned is implemented in the Connect Function. The function
takes the start state xfrom, the end state xto and an occupancy grid as inputs.
A psudocode implementation of the function is shown in Algorithm 3. Starting
at stage 1 where xfrom to xto is connected with a modified Dubins path. The
path of stage 1 is then used to do a cheap collision check on the path to be
followed. Stage 2 then simulates a vehicle-trailer system following the Dubins
path in forward direction using the controller of Section 3.1.6. The control input
and states from the simulations is saved and used as the nominal path Pfwd for
stage 3. It is likely that the vehicle-trailer will miss the xto, however it is very
likely that the system will be close to xto. During the stage 3 the feasible path
controller of Section 3.1.7 is used to to follow the reverse path of stage 2, but
this time the vehicle starts in the state xto. Since stage 2 ended the simulation
close to xto, it is likely that the vehicle-trailer system starts within the region of
attraction around the path created by the LQR controller of Section 3.1.7. The
system will approach the feasible path created by stage 2 and follow it to xfrom.
In this way we can cheaply construct an exact feasible path from xfrom to xto.
It is important that the vehicle at stage 2 does not use the full range of motion
for δ as some buffer is needed for stage 3 to stabilize around the feasible path as
described in Section 3.1.8. During stage 3 collision checks are done periodically
on the full geometry of the vehicle on the occupancy grid. This will be descried
in Section 3.4. If the connect function is able to simulate the vehicle-trailer
along the path without collision, tree nodes for the RRT is distributed with a
set interval on the path. These nodes are referred to as a branch since they
together provide a non branching tree path from xfrom to xto. Each node in
the branch has a state associated with it as well as a path to the previous node.

Because of the time-reversible property of the system, a path for a reversing
vehicle can easily be constructed by switching xfrom and xto as shown in Algo-
rithm 3.

The construction of the modified Dubins path is somewhat expensive to calcu-
late, but it only need to be done once per connection. Since a collision check
can be done on this path, quite a few connections can be aborted early before
the more expensive vehicle trailer simulation must performed. The functions
used by control system is very simple and only requires simple addition and
multiplications. The most computationally expensive part is the closest point
calculations that finds the closes point from the trailer to the Dubins path as
well as for the forward path.

3.2 Steer Function - Local Path Planning

Close Loop RRT requires a steering function to expand the tree. The steering
function is a function that generates a path towards a general pose, but without
guarantee for that it will actually hit the pose. The controller designed for
the steering function in this thesis is based on the steering function described

37

Algorithm 3: Connect

Input: xfrom, xto, DriveDirection
Output: ConnectionMade, TreeBranch

1 if DriveDirection = Forward then
2 xstart ← xfrom, xend ← xto
3 else
4 xstart ← xto, xend ← xfrom

5 ModDubPath ← ConstructModDubPath(xstart, xend)
6 if Collision(ObstructionMap, ModDubPath) then
7 return ConnectionMade ← failed

8 xfwd,0 ← xstart
9 Pfwd ← xfwd,0

10 while End of ModDubPath not reached do
11 xfwd,i+1 ← DubinPathControlStep(xfwd,i, ModDubPath, v̄1 = 1)
12 Pfwd ← [Pfwd,xfwd,i+1]

13 xrev,0 ← xend
14 Prev ← xrev,0
15 while Start of Prev not reached do
16 xrev,i+1 ← FeasablePathControlStep(xrev,i, Pfwd, v̄1 = −1)
17 if Collision(ObstructionMap, xrev,i) then
18 return ConnectionMade ← failed

19 Prev ← [Pfwd,xrev,i]

20 if DriveDirection = Forward then
21 Prev ← Flip(Prev)

22 TreeBranch ← DistributeNodes(Prev)
23 return ConnectionMade ← succsess, TreeBranch

in Evestedt, Ljungqvist, and Axehill 2016. The controller of original paper is
designed for a 2-trailer system, and therefore the some controller is not used
in this thesis, but the same principles are used for the 1-trailer system in our
thesis.

The steering control system has two stages, a pure-pursuit trailer heading ref-
erence generator, and a low level heading controller.

3.2.1 Heading Reference

Due to the nonlinear nature of moving from one pose to another for a nonholo-
nomic system a guidance function is needed. The guidance law is similar to the
enclousure based Line of Sight (LOS) guidance law as described in Chapter 12
of Fossen 2011. Given a target pose qto = [xp, yp, θp] a line segment can be con-
structed through the [xp, yp] with a with an angle of θp relative to the x-axis.
The pure-pursuit heading is defined as θe = θlos − θ2. Where θlos is defined

38

Figure 3.5: Diagram of the geometric relations for the pure-pursuit controller

as the angle of the a line through the trailer axis and the point of intersection
[xlos, ylos] between the target line and the line-of-sight circle of radius Lr around
the trailer position. See Fig. 3.5 for a better visual explanation of the geometric
relationships. If the line does not intersect, the closest point on the circle to the
target line is used as the intersection point. This is shown in Fig. 3.6.

The point of intersection can be found by solving for [xlos, ylos] in the equations

tan(θp) =
yp − ylos
xp − xlos

(3.22a)

(xlos − x2)2 + (ylos − y2)2 = L2
r (3.22b)

If Eq. (3.22) gives two real solutions, there will be two solutions for θlos. In
this case the θlos that is closest to θp is choosen.

θlos = atan2(ylos, xlos) (3.23)

If no real solutions to Eq. (3.22) can be found it means that the line is outside
of the LOS circle. In this case θlos can be found from

a = −sin(θ2)(x2 − x2) + cos(θp)(y2 − yp); (3.24a)

θe = θp − sign(a)
π

2
− θ2; (3.24b)

39

Figure 3.6: Diagram of the geometric relations for the pure-pursuit controller
when the line though xp is outside of the look-ahead circle.

3.2.2 Steering Control

A reference value for δ and β are created by using a circular arch that is tan-
gential to the trailer at the trailer axis and intersects with the target line at
[xlos, ylos]. This is shown as a blue arch in Fig. 3.5 and Fig. 3.6. The radius
of this circular arc can be calculated from the geometrical relationship as a
function of θe and is given by

R2,e(θe) =
Lr

2 sin θe
(3.25)

To approach this turning radius we use the steady state β-value for circular arcs
as given in Eq. (3.13) as a reference. The steady state value for tan δ as given
in Eq. (3.14) is used as feed forward.

The steering angle is then set by

δ = δn,c(R2,e)−K(β − βn,c(R2,e)) (3.26)

Where K is the controller gain. K can be fond experimentally. We found that
a wide range of values worked for K.

3.2.3 Steer Function

When the RRT algorithm expands the tree, an exact local planner is not needed
Kuwata et al. 2009. The steer function therefore constructs a path that will come
close to xto and run faster then the Connect Function. The psudocode for the
Steer Function is presented in Algorithm 4.

40

Algorithm 4: Steer

Input: xfrom, xto, DriveDirection, ε
Output: TreeBranch

1 if DriveDirection = Forward then
2 v̄1 ← 1
3 else
4 v̄1 ← −1

5 x0 ← xfrom
6 TreeBranch ← Ø
7 P ← x0

8 PrevNodeIndex ← 0
9 while xi+1 is not close to xend and distance traveled < ε do

10 xi+1 ← LOSControlStep(xi, v̄1)
11 if Collision(ObstructionMap, xrev,i) then
12 return ConnectionMade ← failed, Ø

13 P ← [P ,xi+1]
14 if DistanceSinceLastNode > NodeInterval then
15 TreeBranch ← [TreeBranch, Node(xi+1, P , PrevNodeIndex)]

PrevNodeIndex ← i

16 TreeBranch ← [TreeBranch, Node(xend, P , PrevNodeIndex)]
17 return ConnectionMade ← succsess

3.3 Distance Heuristic

As described in Section 2.7 it is important to have a good heuristic to be able
to make good guesses on which nodes that will be able to connect to each other.
In this context, we are interested in finding a heuristic that approximates how
far away two states are from each other, given that they should be connected
with a feasible path. The closed-loop vehicle trailer system is highly nonlinear,
and euclidean distance would therefore not work as a heuristic of the distance
to travel. The length of a modified Dubins path could be used as a heuristic.
However, it is very costly to construct modified Dubins paths to every node to
determine which one is the closest one. Motivated by Holmer 2016; Evestedt,
Ljungqvist, and Axehill 2016 we, therefore, use two lookup tables with the
distance from the origin to a grid of states around the origin as a heuristic. One
lookup table is for the Steer Function, and one is for the Connect Function.
The reason for having two lookup tables is that these functions produce quite
different results, both in terms of distance to each grid node, but also in terms
of which regions can be reached by the functions.

The each state of the grid is named xgrid = [x2,g, y2,g, θ2,g, βg]
T . xgrid is

bounded such that xgrid ∈ [−R,R]× [−R,R]× [0, 2π]× [−π/4, π/4]. Where R
is the maximum distance from the origin of the grid. xgrid are then spaced out
evenly such that xgrid contains the origin as well as the boundaries. Since the

41

steering function cannot control the β-value, the lookup table does only hold
values for β = 0. The Connect Function and Steering function are then used to
create a path to every xgrid and the length of the path is saved in a lookup table.
To get the heuristic from any xfrom to any xto one only needs to transform xto
such that the origin is set to [x2,from, y2,from]T and is align with θ2,from. If the
xto is to far away from xfrom, such that it is not covered by the lookup table,
the closest point on the lookup table is used pluss the euclidian distance to that
point. For point inside the grid, linear interpolation is used between the grid
points to get an estimate for the travel distance.

Lookup heuristic for the connect function accepts paths that are within 0.5m
of xgrid and the origin; all other are marked as having distance at infinity. This
tells the Cl-RRT* algorithm not to bother with trying to connect two states
that we have found unreachable with the connect function during the heuristic
calculation phase. Precision is important for connections, and close connections
will not be used. For the Steering function, precision is not as important,
because the steering function should only explore in a general direction. The
heuristic, therefore, has a quartic penalty on the distance from xgrid to the
endpoint of the path generated with the steering function. This ensures that
regions in the grid where the steering function generally performs well, are
smooth, and have low cost. At the edges of the stable regions, the cost increases
quickly, and the heuristic will therefore be able to determine that the vehicle
should not try to steer in this direction. Visualizations of the heuristic lookup
tables can be seen in the results in Section 4.2 and Section 4.3.

3.4 Implementation of Collision Detection

This thesis utilizes a regular occupancy grid for collision detection. This is done
for several reasons. First, as mentioned in Section 2.11, a map produced by a
SLAM algorithm can be converted to an occupancy grid without too much effort,
and this is a common technique in the mobile robotics community. Second, it is
easy to construct artificial environments for testing the system, using an image
editor tool to draw a map. Third, the logic collision detection can be made
very simple by also using an occupancy grid for the vehicle-trailer system. The
occupancy grid for the vehicle-trailer system is constructed in the following
way. For each rigid body of the vehicle-trailer system, a geometric collision
boundary is created by combining rectangles such that the 2d cross-section of
the rigid body is well represented. Each rigid body has d different occupancy
grid, each representing a distinct angle for θ1 and θ2. For each angle, the
rectangle representing the collision boundaries of the vehicle is rotated to the
angle. Then the rectangles are digitized into an occupancy grid, for each cell
marking it as occupied if one of the rectangles of the vehicle-trailer system is
present inside.

Collision tests are performed by taking the occupancy grid of the vehicle and the
trailer for the closest angles and translating them onto the occupancy map. If
any of the grid cells with an obstruction from the environment and the vehicle-

42

10 15 20 25 30 35 40 45

x [m]

10

15

20

25

30

35

40

y
 [
m

]

Figure 3.7: A visualization of the collision detection system. The open space is
deep blue, the obstructed environment, here from a parking lot, is in light blue,
the vehicle-trailer system is in green, and the area of intersection indicating a
collision is in yellow. The resolution of the occupancy grids are 4px/m.

trailer system overlap a collision is detected. Fig. 3.7 shows an example of the
occupancy grid of the vehicle-trailer system overlayed on an occupancy grid of
the environment.

This method has the advantage that any shape can easily be represented as long
as its geometry is not more complicated than what can be represented by the
occupancy grids’ resolution. In this thesis the resolution of the occupancy grid
are res = 4pxm and the number of angles are d = 64.

This method is not precise due to the round error that will occur. The error of
the occupancy grid representation of the vehicle-trailer system can be calculated.
In this thesis, the trailer is the longest rigid body at L2 = 5.7m. It rotates
around the wheel axle, making the whole rigid body act like an arm. The
maximum error due to rounding of the angles can be calculated as

Eangle = sin

(
2π

d

)
L2/2 = sin

(
2π

64

)
5.7m/2m = 0.28m (3.27)

There will also be a rounding error from the position. This is because the
environment occupancy grid and the vehicle-trailer system must be aligned.
Maximum rounding error is calculated as

Epos =
1

res

1

2
px =

1

4

m

px

1

2
px = 0.125m (3.28)

Padding around the vehicle-trailer occupancy grids is therefore required. In our

43

case, a padding of 0.5m is sufficient to guarantee no collision in real life.

3.5 Closed Loop Rapidly Exploring Random Tree Star

The algorithm developed in this thesis is inspired by the works of Evestedt,
Ljungqvist, and Axehill 2016; Kvarnfors 2019. This thesis extends upon these
techniques by merging them with RRT*. This is to decrease the length of the
path generated by the path planning algorithm. The extension is only possible
with the exact local planner that is fast enough for real-time applications as
mentioned in Evestedt, Ljungqvist, and Axehill 2016. The exact local planner
also enables more precise connections to the goal state than what is described in
Evestedt, Ljungqvist, and Axehill 2016. This thesis also has added a smoothing
step to the final path returned by the CL-RRT* this is to decrease non-intuitive
and sub-optimal behavior as reported in Evestedt, Ljungqvist, and Axehill 2016.

3.5.1 Tree Structure

CL-RRT* build a tree of nodes and paths from the initial root pose x0 of
the vehicle. Each node is referred to with a x which is intentional the same
notation as for states. This is because each node is primarily is a state, but
also has secondary properties associated with it. First, each node has a link to
its parent and its children. Each node also has the length of the path from the
root node. Reverse motion has double the weight of forward motion. This is to
encourage the vehicle to drive forward. Lastly, the path from the parent node
to itself is also stored with each node. Whenever a shortcut is found such that
a parent of a node will be updated, the root distance of that node and all its
children, will be updated recursively.

Whenever the Connect of Steer functions creates a path from xfrom to xto,
these states are connected with a series of nodes Pnew with a maximum distance
between them. This series of nodes is called a limb, to be consistent with the
tree analogy. Since there cannot be any forks on the limb, we can define the
length of the limb length(Pnew) to be the distance of the path that goes from
xfrom to xto through all the nodes Pnew.

3.5.2 Algorithm Overview

The tree updates in 5 stages. A short description of the stages will be given
first as an overview and then an in-dept description will be given underneath.
Fig. 3.8 gives an illustrated overview of the flow of the algorithm.

Stage 1 finds a semi-random state xnew that is within the configuration space
that the tree can easily expand to. Stage 2 looks at the nearby nodes of xnew
to find a path to xnew such that xnew has as short path to the root node as
possible. Stage 2 will then add a limb Pnew from the tree to xnew. Stage 3
looks at the new nodes Pnew to see if they enable shortcuts in the tree to other
nearby nodes. Stage 3 is the stage that is unique to RRT*. Stage 4 takes all

44

the nodes of Pnew and checks if any of them can be connected to the goal state.
After the maximum time has elapsed, the shortest path from the tree is made
smoother by finding shortcuts within the path.

There are many implementation details that are needed for the algorithm to
run efficiently. There are two processes that are consuming the most processing
time, the nearest neighbor search and simulation of the closed-loop system.
Therefore the implementation utilizes the heuristics for many applications in
order to save computational time.

3.5.3 Stage 1: Random Exploration

First a random state xrand is chosen from the open input space Xfree. To slightly
improve performance, motivated by Informed RRT* Gammell, Srinivasa, and
Barfoot 2014, xrand is only sampled inside of an ellipsoid defined by ||xrand −
x0||2 +xrand −xgoal||2 < Cost(Xshortest), where Xshortest is the shortest path
in the tree from x0 to xgoal. This somewhat limits the space in which to select
random states. Mark however that this limit is conservative because it do not
take the nonholonomic constraints into consideration.

Then ksteer near nodes Xnear that are estimated to have the shortest path
length to xrand is found in the tree using the steering distance heuristic from
Section 3.3. The nodes in Xnear are in sorted order. The Steer function from
Section 3.2.3 is then used to steer from closest node xnearest of Xnear to xrand.
If the steer function returns a collision free if will return a limb xnew. If the Steer
function does not return a collision free path, a new random pose is selected,
and the process starts over again. Evestedt, Ljungqvist, and Axehill 2016 uses
a greedy Steering function, while our implementation uses a ε limited Steering
function. After some initial testing, we found the ε to be slightly better. Our
intuition is that this is due to the greedy algorithm quickly increasing the size
of the tree with nodes that are not that useful since they go directly into an ob-
struction. The ε approach will not expand the tree on every iteration, however,
when the tree is expanded, it is likely to be in a more open area.

3.5.4 Stage 2: Semi-optimal Path from Root to New Node

At stage 2 the algorithm has a limb Pnew extending from from tree towards
xrand. At the end of this limb is the node xnew,end. Now the algorithm will try
to find a shorter path from x0 to xnew,end. This is done by sorting Xnear by
each xnear length to the root and the length the steer heuristic estimates a path
from xnear to xnew,end will have. The steer function is used from each xnear
until a limb Pmin from xnear to xnearest is created that makes for a shorter
path from the root to xnew,end. Then the limb Pmin is added to the tree.

45

3.5.5 Stage 3: Finding Shortcuts to Other Nodes and Rewire the
Tree

Next, the algorithm will try to find shortcuts in the tree that is enabled by
Xnew,i. This is done by finding a set of kconnect closest nodes Xreachable that the
heuristic estimates has the shortest path from xnew,end to xreachable,j . Starting
at the node that is closest to the root on the limb the algorithm checks with
the heuristic for the estimated distance from the root via Xnew,i to xreachable.
If this distance is smaller then the path through the tree to xreachable,j then
the Connect function is used to make an exact connection between Xnew,i and
xreachable,j . If Connect returns a collision-free limb, then xreachable,j removes
its path to the old parent and uses the limb as the new parent. xreachable,j is
then removed from Xreachable since we now have found what is most likely the
shortest path via Pnew to it. This process is continued until there are no mode
nodes in Xreachable or we have checked all the nodes up to xnew,end.

Mark that we do not find a new set of Xreachable for every xnew,i. This is to
save processor time. The assumption here is that the nodes that are reachable
from xnew,end would also be quite close to the rest of Pnew. This saves the
number of times the closes nodes must be found as well as the number of calls
to the Connect function.

Stage 3 is quite computationally expensive, and does not expand the tree into
new regions. This stage is therefore not included until the tree has reached the
goal state. At that point, we know that the tree is big enough to reach the
goal, and we can therefore allow for slower exploration for the benefit of more
optimal paths in the tree.

3.5.6 Stage 4: Goal Connections

At this stage, the algorithm loops through the nodes of the limb Pnew and tries
to make a collision-free path to the goal state. If it is successful the limb from
Xnew,i to xgoal is added to the tree. This step significantly reduces the time it
takes the tree to reach xgoal or the region around xgoal. Also due to the exact
local planner, we can also expect the tree to create a path that reaches very
close to xgoal.

3.5.7 Path smoothing: Finding Shortcuts on the Shortest Path

The tree expansion process can sometimes lead to inefficient paths, that makes
goes zig-zag or does unnecessary loops. Stage 2 and 3 are designed to minimize
this behavior, but these stages are based on heuristics and only check a limited
number of near nodes. The resulting path can therefore have non intuitive and
sub-optimal behavior. To reduce this behavior, all the nodes in the shortest
path Xshortest are tested for a reconnection with the other nodes in Xshortest.
Starting with the nodes that are furthest apart and working with nodes that
are tighter and tighter together until all combinations are covered. This is of

course an computationally expensive process, as it involve (n−1)(n−2)
2 calls to the

46

Algorithm 5: CL-RRT*

1 while time < TimeLimit do
// Stage 1: Find a random state that the tree can connect to

2 xrand ← RandomSate()
3 Xnear ← Tree.kNearSorted(xrand, ksteer)
4 xnearest ←Xnear[1]
5 Xnear ←Xnear \ xnearest

6 Pnew ← Steer(xnearest, xrand)
7 if CollisionFree(Pnew) AND xnew ≈ xrand then

// Stage 2: Minimize the distance from the root to the new

node

8 Xmin ← Pnew

9 cmin ← Cost(xnearest) + Cost(Xnearest)
10 Xnear ←

SortBy(Xnear, Cost(xnear,i) + SteerHeuristic(xnear,i,xnew,end))
11 foreach xnear,i ∈Xnear do
12 [EstimatedLimbLength, ShortestDirection]←

SteerHeuristic(xnear,i,xnew,end)
13 if Cost(xnear,i) + EstimatedLimbLength < cmin then
14 Xnew,m ← Steer(xnear, xrand)
15 if Cost(xnear,i) + Cost(Xmin) < cmin then
16 Xmin ←Xnew,m

17 Break

18 Tree.AddLimb(Xmin)
// Stage 3: Find shortcuts enabled by the new nodes.

19 Xreachable ← Tree.kReachable(xnew, kconnect)
20 foreach xreachable,i ∈Xreachable do
21 [EstimatedLimbLength, ShortestDirection]←

ConnectHeuristic(xnew,xreachable,i)
22 if Cost(xnew) + EstimatedLimbLength < Cost(xreachable,i) then
23 Pshortcut ← Connect(xnew,xreachable, ShortestDirection)
24 if CollisionFree(Pshortcut) then
25 Tree.ReconnectThrought(xreachable,i,xnew,Pshortcut)

// Stage 4: Try to connect to the goal state xgoal.
26 XtoGoal ← Connect(xnew,xgoal, Forward)
27 if CollisionFree(XtoGoal) then
28 Tree.AddNodePath(XtoGoal)

29 XtoGoal ← Connect(xnew,xgoal, Reverse)
30 if CollisionFree(XtoGoal) then
31 Tree.AddNodePath(XtoGoal)

Connect function where n is the number of nodes in Xshortest. An illustration
of the smoothing step is shown in Fig. 3.9 and a pseudocode implementation is
shown in Algorithm 6.

47

Stage 1: Steer
towards random pose

Stage 2: Find shorter
path to the steered

point

Stage 3: Find new
shortcuts

Stage 4: Try to
connect to goal state

Stage 5: Find
shortcuts within

shortest path to goal

Goal
reached?

No

Yes

Yes

Time Limit
Exceeded?

Collision

free?

No

Yes

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Collision

free?

Goal
reached?

CL-RRT*

No

Steer towards

random pose

Find shorter path

Find shortcuts

Connect to goal

Find shortcuts
 on path

Figure 3.8: Flow diagram showing an overview of the CL-RRT* algorithm
illustrated with an sample tree on the left. Mark that the tree in the illustration
has straight paths between the nodes. In the real algorithm these paths would
be smooth.

48

Path by smoothing

Original shortest path

Figure 3.9: Illustration of the path being improved by the smoothing step

Algorithm 6: Path Smoothing

// Find shortcuts on shortest path

1 foreach Unordered combination of nodes xfrom,xto in Xshortest starting with
the pair of nodes with the highest amount of node in between do

2 [EstimatedLimbLength, ShortestDirection]←
ConnectHeuristic(xfrom,xto)

3 if Cost(xfrom) + EstimatedLimbLength < Cost(xto) then
4 Pshortcut ← Connect(xfrom, xto, ShortestDirection)
5 if CollisionFree(Pshortcut) then
6 Tree.ReconnectThrought(xreachable,i,xnew,Pshortcut)

7 Break

49

4 Results

4.1 Simulation Setup

The results generated in this chapter are all based on simulation on a vehicle-
trailer system with the parameters are given in Table 4.1. The parameters are
taken from a not public datasheet of the Mafi T 230e electric tractor. The
tractor is used for container handling at seaports and therefore represents an
application were backing up with a trailer is of great interest.

Parameter Value
L1 3 m
M1 -0.68 m
L2 5.7 m

Table 4.1: Vehicle-trailer parameters used for validating the path planning
framework

The vehicle is simulated with explicit fixed-step Runge-Kutta method of 4th
order with a step length ∆s1 = 0.2m for the Connect function and ∆s1 = 1.0m.
See Chapter 14 in Egeland and Gravdahl 2002 for details on this method. The
reason for the different step lengths is that the Connect function’s performance
in terms of reaching the endpoints was significantly worse with a higher step
length. The Steer function was more robust to higher step lengths than the
Connect function. They were therefore given different step lengths to increase
performance.

Multiple tuning parameters need to be set to run the simulations. The following
parameters were used while testing CL-RRT*.

Parameter Value
ε 23 m
Node Interval 5 m
k nearest Steer 5
k nearest Connect 15

Table 4.2: Tuning parameters that were used for CL-RRT*

The algorithm was implemented in MATLAB. The test reported in this section
was performed on an Asus ZenBook with a Intel(R) Core(TM) i7-8565U CPU
@ 1.80GHz processor.

To test the performance of the CL-RRT* algorithm, two test environments
where designed. The Parking Lot environment simulates a realistic use-case of
path planning algorithm. The enviroments can be seen in Fig. 4.1. The Parking
Lot is 60 by 60 meters and includes obstructions in the middle of the map that
simulate obstructions such as a pillar or construction work. Each parking spot
has a wall on each side. This is to simulate the parking spot having parked

50

Parking Lot

0 10 20 30 40 50 60

x [m]

0

10

20

30

40

50

60
y
 [
m

]

(a)

Maze

x
goal

0 10 20 30 40 50 60

x [m]

0

10

20

30

40

50

60

y
 [
m

]

(b)

Figure 4.1: The two test environments. The initial position is marked with a
visualization of the vehicle. In the Parking lot a goal state is placed randomly
in one of the narrow parking spots. In the Maze the goal position is shown
marked with xgoal

cars or trailers on both sides, such that the vehicle trailer system must carefully
navigate between them. The vehicle-trailer system starts with a random state
in the lower-left corner. A random pose inside one of the parking spots is chosen
as the goal state.

The second map is a Maze-like environment. The Maze tests the ability of
the algorithm to navigate in an unstructured environment with many scattered
obstructions. The Maze has many possible paths between the obstructions that
can reach the goal. This will test the ability of our algorithm to not settle for a
sub-optimal solution but to look for other possibilities. This particular scenario
may not be very realistic; however, it represents environments that will be hard
for humans to navigate and test the generality of the algorithm.

4.2 Evaluation of Exact Local Planner

This section will evaluate the performance of the exact local planner. Much
of the properties of the Connect function can be analyzed by investigating the
heuristic lookup tables from Section 3.3.

4.2.1 Success Rate

The lookup table contains the distance to each grid cell in 80 by 80 meter grid
for θ2,to ∈ S and β ∈ [−π/4, π/4]. The grids are visualized in Fig. 4.2 toFig. 4.4.
For each value of βto the rate of successful connection between the xfrom and
xto was calculated. The resulting success rates can be seen in Table 4.3.

51

βto Success Rate Approach Arch Success Rate Dubins Path
0 99.39% 98.33%
π/8 95.46% 75.43%
π/4 81.46% Not tested

Table 4.3: The exact local planner success rate with and without an approach
arch added to the Dubins path.

2, to
=

to
= 0

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]

2, to
= -3/4

to
= 0

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]

2, to
= -1/2

to
= 0

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]

2, to
= -1/4

to
= 0

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]

2, to
= 0

to
= 0

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]

2, to
= 1/4

to
= 0

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]

2, to
= 1/2

to
= 0

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]
2, to

= 3/4
to

= 0

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]

Figure 4.2: The distance heuristic for a 80m× 80m grid with βg = 0. Deeper
blue means closer to the origin, and green means further away. Yellow indicates
that the vehicle was not able to reach this state.

2, to
=

to
= 1/8

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]

2, to
= -3/4

to
= 1/8

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]

2, to
= -1/2

to
= 1/8

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]

2, to
= -1/4

to
= 1/8

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]

2, to
= 0

to
= 1/8

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]

2, to
= 1/4

to
= 1/8

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]

2, to
= 1/2

to
= 1/8

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]

2, to
= 3/4

to
= 1/8

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]

Figure 4.3: The distance heuristic for a 80m× 80m grid with βg = π/8.

52

2, to
=

to
= 1/4

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]

2, to
= -3/4

to
= 1/4

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]

2, to
= -1/2

to
= 1/4

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]

2, to
= -1/4

to
= 1/4

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]

2, to
= 0

to
= 1/4

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]

2, to
= 1/4

to
= 1/4

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]

2, to
= 1/2

to
= 1/4

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]

2, to
= 3/4

to
= 1/4

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]

Figure 4.4: The distance heuristic for a 80m× 80m grid with βg = π/4.

It is clear that the exact local planner works best for small angles of βto. For
bigger values of βto the performance goes considerably down.

4.2.2 Modification of Dubins Path

An evaluation of the exact local planner was also performed with and without
the approach arch of the Dubins path. Fig. 4.5 and Fig. 4.6 shows an example
of the difference between a connection attempt between two poses, with and
without an approach arch. On Stage 2 of Fig. 4.5 it looks like the vehicle
perfectly reaches xto, however β and θ2 might not align with that of xto. In this
case, these values are so far off that the reversing vehicle-trailer system cannot
maintain tracking of the stage 2 path and the system can not recover from a
jack-knife configuration. When a 5m approach arch is added, the end state of
stage 2 is closer to xto, and the reversing vehicle-trailer system of stage 3 has
no problem tracking the path of stage 2 and generating a successful local path.

From comparing the success rate of the heuristic function, which is reported in
Table 4.3, it is clear that the approach arch greatly improved the success rate
of the planner.

4.2.3 Accuracy

The Connect function does not create a perfect connection between two states.
The endpoints of the path created by the Connect function will deviate a from
the desired states xto and xfrom.

The ρs distance for R2 × S2, as described in Section 2.7, was used to measure
how close the Connect function comes to connection two states. The distance

53

0 10 20 30

-35

-30

-25

-20

-15

-10

-5

0

Stage 1

x
from

x
to

0 10 20 30

-35

-30

-25

-20

-15

-10

-5

0

Stage 2

x
from

x
to

0 10 20 30

-35

-30

-25

-20

-15

-10

-5

0

Stage 3

x
from

x
to

Modified Dubin Path

Forward Path

Reverse Path

Figure 4.5: Fail attempt at exact local path planning between xfrom =
[0, 0, 0, 0]T and xto = [30,−30, 2π/5, π/8]T ; without the approach arch. Stage
3 got to far away from the nominal path created by stage 2 and therefore lost
tracking.

0 10 20 30

-40

-35

-30

-25

-20

-15

-10

-5

0
Stage 1

x
from

x
to

0 10 20 30

-40

-35

-30

-25

-20

-15

-10

-5

0
Stage 2

x
from

x
to

0 10 20 30

-40

-35

-30

-25

-20

-15

-10

-5

0
Stage 3

x
from

x
to

Modified Dubin Path

Forward Path

Reverse Path

Figure 4.6: Successful attempt at exact local path planning between xfrom =
[0, 0, 0, 0]T and xto = [30,−30, 2π/5, π/8]T ; with a approach length of 5 m.

is then measured as

d = ρs(xfrom,PConnect(0)) + ρs(xto,PConnect(T)) (4.1)

We will use the unit meters for this distance, knowing this is a miss use of a
meter since it also represent a deviation in orientation. However, meters are
used since they give an upper bound on the deviation in euclidean distance of
the position.

The Connect function was sampled within a grid of 60 times 60 grid with 8
values of θ2 evenly distributed from 0 to 2π and two values of β; 0 and π/8.
Negative value for β was not examined since the result will be symmetric to the
positive result. A histogram of Connect path’s deviations from xto and xfrom
can be seen in Fig. 4.7.

Not including the distances above 0.5 meter, which will be discarded by the
planner, 99.5% of the endpoints where within 0.20 m of their desired state.

54

Figure 4.7: A histogram showing the ρs distance between the endpoints of the
path created by the Connect function and xfrom and xto in the heuristic lookup
table. The bin above 1 includes everything from 1 up to infinity.

4.3 Evaluation of the steer function

The heuristic lookup tables generated for the Steer function can be seen in
Fig. 4.8 and Fig. 4.9. It is clear that the Steer function does not reach major path
of the configuration space. Even though better coverage would likely increase
the performance of the RRT algorithm, it is not critical for the algorithm to
work. This is because the heuristic lookup table estimate based on the previous
simulation if a state can be reached with the steer function, before an actual
simulation with collision check is performed. Since the set of states which are
reachable with the Steer function seam to mostly be continuous for most of the
configuration space, it is reasonable to assume that the heuristic will be able to
determine the outcome of a simulation in most cases.

4.4 CL-RRT*

4.4.1 Parking Lot

To test the CL-RRT* algorithm in a realistic scenario 100 simulations were
performed in the Parking Lot as described in Section 4.1. For each randomly
generated scenario, the planning algorithm was given 30 sec to find the best
path possible.

To investigate the effectiveness of the stages implemented in this thesis, three
different versions of the algorithm were tested. The base case is a simple basic
implementation of CL-RRT which is the algorithm of Section 3.5 without stage
3 and stage 5. That is, the algorithm will not look for shortcuts whenever a new
node is added, and it will not go through the final path and look for shortcuts.
The second and third algorithms, are CL-RRT* with and without smoothing.
The Connect function is used for goal connection in all cases, because not in-
cluding any goal connection in CL-RRT would make the algorithm extremely
slow. Both Kuwata et al. 2009 and Evestedt, Ljungqvist, and Axehill 2016 used
goal connection in their implementation of CL-RRT.

55

2, to
=

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]

2, to
= -3/4

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]

2, to
= -1/2

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]

2, to
= -1/4

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]

2, to
= 0

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]

2, to
= 1/4

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]
2, to

= 1/2

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]

2, to
= 3/4

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]

Figure 4.8: Distance to each grid state with the vehicle-trailer system con-
trolled by the Steer function in forward travel direction. Deeper blue means
closer to the origin, and green means further away. Yellow indicates that the
vehicle was not able to reach this state.

2, to
=

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]

2, to
= -3/4

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]

2, to
= -1/2

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]

2, to
= -1/4

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]

2, to
= 0

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]

2, to
= 1/4

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]

2, to
= 1/2

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]

2, to
= 3/4

-40 -20 0 20 40

x [m]

-40

-20

0

20

40

y
 [
m

]

Figure 4.9: Distance to each grid state with the vehicle-trailer system con-
trolled by the Steer function in reverse motion.

56

Description CL-RRT CL-RRT* CL-RRT*
without smoothing with smoothing

Average time to first path 1.24 s 1.22 1.21
Average length of first path 162.63 m 162.63 m 162.63 m
Success rate 99.0 % 99.0 % 99.0 %
Average length of final path 137.07 m 125.02 m 121.53 m

Table 4.4: The performance values for CL-RRT and CL-RRT* for the Parking
Lot map.

The simulations were done in such as way that the randomly generated states
xrand as well as the x0 and xgoal would be the same for both CL-RRT and
CL-RRT*. This was done to minimize variance in the performance between the
two algorithms as a function of the randomly placed nodes in the configuration
space. However, since CL-RRT and CL-RRT* will produce somewhat different
trees, the variance between the two methods due to the random nodes will be
increased as the algorithm expands the tree.

The average time it took to find the first path, the average length of the first
path, and the average length of the path after 30 sec can be seen in Table 4.4 for
both CL-RRT and CL-RRT*. The 16 first scenarios with the path visualized
can be seen in Fig. 4.12 and Fig. 4.13.

The results from the simulations can be seen in Table 4.4. Since our implemen-
tation enables the connection part of CL-RRT* after the first goal connection
is made, the time to the first path to goal as well the length of the goal path
should be the same. Some variation in the time is expected due to variations in
the scheduler of the computer used for simulation.

The CL-RRT* improves the shortest length of the path from 137.07m to 125.02m
Mark that these lengths include the double penalty for reversing. Adding the
smoothing stage, stage 5, after CL-RRT* has run improves the average shortest
path to 121.53 m. From the 100 simulations that were performed, 23 solutions
were improved by the smoothing stage, with an average improvement of 14.8 m.

From the visualizations in Fig. 4.12 and Fig. 4.13 we see that many of the
shortest paths are exactly the same, or very similar, however, there are a few
cases where CL-RRT* performs significantly better. These are the situations
where CL-RRT has settled on a suboptimal solution where shortcuts can clearly
be made. For example see 4a and 3c in Fig. 4.12 and Fig. 4.13. CL-RRT finds a
solution by backing up around the obstruction, both taking a longer route and
using the penalized baking maneuvers. CL-RRT* is able to find a shortcut by
baking up a little, then driving forwards, and then back into the parking spot.
It seems like both of the algorithms in general provide smooth, and intuitive
solutions to the path-planning problem in the Parking Lot.

57

Figure 4.10: CL-RRT*

0 5 10 15 20 25 30

time [s]

120

130

140

150

160

le
n
g
th

 [
m

]

Average path length to goal pose

CL-RRT

CL-RRT*

Figure 4.11: Plot of the average length of the shortest path over time for
CL-RRT*.

58

Figure 4.12: First 16 paths found in the Parking Lot simulation using CL-
RRT after 30 sec. Yellow are obstructions, the green paths are trailer in reverse
motion, white in forward motion and red are nodes in the tree.

59

Figure 4.13: First 16 paths found in the Parking Lot simulation using CL-
RRT* after 30 sec.

60

(a) (b)

Figure 4.14: The average length of the shortest path to the goal pose in the
Maze as a function of time. The blue regions show the maximum and minimum
length, the 10 to 90 percentile and 25 to 75 percentile.

Description CL-RRT CL-RRT* CL-RRT*
without smoothing with smoothing

Average time to first path 4.73 s 3.63 3.63
Average length of first path 194.31 m 193.67 m 193.67 m
Success rate 100.0 % 100.0 % 100.0 %
Average length of final path 162.27 m 153.76 m 143.27 m
Standard deviation of final path 23.5634 m 18.8164 m 18.7228 m

Table 4.5: The performance values for CL-RRT and CL-RRT* for the Maze
environment.

4.4.2 Maze

The path planner was also tested in a more chaotic environment which we call
the Maze. The scenario was simulated 50 times each for CL-RRT and CL-
RRT*. To investigate the rate of convergence to the optimal solution the initial
state and the goal state were the same through all the simulations. For each
simulation, the planner was given 60 seconds to approach the optimal solution.
The optimal solution to the problem was not found explicitly, however, the
solution found by the planner with the shortest length can be used as an upper
estimate of the optimal solution. If the algorithm is asymptotically optimal the
average solution should at least approach the upper estimate of the optimal
solution.

Fig. 4.14 shows the average length of the paths as a function of time. The
average length is going down, and the spread of the solutions is getting smaller.
The sudden improvement of the solutions found by CL-RRT* at the end in
Fig. 4.14b is due to the smoothing of step 5 of the planning algorithm. The key
values of the path found after 60 sec in shown in Table 4.5.

61

Function Time used Calls Avg Time per Call
Connect 128.02s 6228 0.0206s
kNearSorted 74.71s 3588 0.0208s
Steer 41.9s 8796 0.0048s
kReachable 33.88s 1359 0.0249s
Others (including initializations) 32.22s
Total 310.73s

Table 4.6: The time used by the most time-consuming functions for 10 runs
of 30 sec in the Parking Lot environment.

4.5 Run-time Analysis

It is important for many systems to run in real-time, preferably multiple times
per second. This section will analyze the run-time of the algorithm to determine
the bottlenecks for future work. The MATLAB profiler tool was used to time
the algorithm. This slows the algorithm down by about 25%, however, assume
that the relative time between the different functions stays approximately the
same.

The profiler was tested on the Parking Lot environment as this scenario is seen
as the most realistic scenario. 10 path-finding scenarios, each with different
random seeds, were used to generate the analyze the performance. For each
scenario, the planner was given 30 seconds to find a solution and improve upon
it. The Steer, Connect, kNearSorted and kReachable functions take up 89.6
% of the computational time. The remaining time is utilized to initialize the
vehicle-trailer’s occupancy grid, calculate the LQR gain for the controllers, and
build the tree during the tree expansion. The timing of each function is shown
in Table 4.6. A chart visualizing the proportions of time for each function is
shown in Fig. 4.15. On average, the Connect function used 4.3 times more time
then the Steer function.

62

Figure 4.15: Pie chart showing the proportion of time taken by the most
time-consuming functions.

63

5 Discussion

5.1 Evaluation and Future Work on the Connect Function

From the results in Section 4.2 we see that the Connect function can create a
path between two states in a significant portion of the configuration space. Most
of the connections are made such that the distance from the path endpoints to
the states is within 0.2 m. We believe the endpoints of the path from the
Connect function are close enough to the desired states that a vehicle using the
path as a reference would not suffer in performance from the step between the
endpoint of one path to another. This should be verified either with simulations
of tire dynamics or with a real-life vehicle-trailer system.

The Connect function is about 4 times slower than the Steer function. Further
tests should be performed to check this performance up against an exact local
planner formulated as an optimal control problem. An interesting approach
would be to do stage 1 and 2 of the Connect function and then do gradient
descent on the last stage so that the endpoint aligned with the desired goal
state. We suspect that the gradient descent method would be slower due to the
relatively simple calculations performed in the Connect function.

The Connect function should also be measured up against the flat planner de-
scribed in Section 2.9. Calculating a step of the flat planner requires both
solving an integral and numerically finding a value through Newtons method.
To increase the speed of the calculations, it might be beneficial to sacrifice some
accuracy for speed by precomputing these values. This would be an interesting
direction for future work.

The step length of the simulations in the Connect function was much shorter
than that of the Steer function. The running time of the Connect function is
directly proportional to the simulation step length. We have two suggestions for
improving this. The first one could use the line-of-sight controller of Section 3.2
to generate the reference path from stage 2. Since the simulations with a line-
of-sight controller allow for longer step lengths this would probably increase
performance. However, one would lose the ability to do a collision check on
the Dubins path before doing simulations. In addition, as seen in Section 4.3
is the line-of-sight controller stable in a smaller area then the Dubins path
based controller. This could also hurt the performance of the overall algorithm.
Therefore further investigations are needed on different methods of designing
the Connect function.

A fixed-step Runge-Kutta method was used for the simulations. We believe
that a variable step method could improve performance. This is because the
dynamics of the systems is slow while following straight paths, and a larger step
length can be used. In this thesis, the step length was set to a small value such
that the simulation was stable for all cases.

The exact local planner only requires the system to be time reversible. It would

64

be interesting to investigate the possibility of using this method for other sys-
tems, such as a 2-trailer system.

5.2 Evaluation and Future Work on CL-RRT*

We see from the Parking Lot simulations that the CL-RRT* was successful at
creating paths to the goal states. In terms of finding the shortest path, it was a
bit better than CL-RRT. From Fig. 4.11 we see that path from CL-RRT* about
12 % shorter than that of CL-RRT. In the Maze environment, the convergence
rate was very slow. For the CL-RRT* to be asymptotic optimal we would expect
the solutions to at least approach the upper estimate of the optimal solution.
From Fig. 4.14 we see that the average solution does not converge to the optimal
solution or it does so at a rate that is impractical for most applications. We
see a similar result when comparing the convergence rate of CL-RRT* with the
convergence rate reported in Karaman and Frazzoli 2013. This might indicate
that RRT* is not a viable solution for nonholonomic systems with real-time
requirements.

The code was written in MATLAB. This might have been a big limiting factor
on the computational time of the algorithm. We see it as very likely that imple-
menting the algorithm in a language such as C++ would improve performance.

The simulations show that the first path was found within a few seconds in
most cases. Then it would take an additional 10 to 30 sec before the iterative
improvements of the algorithm would lower the path length. This execution
time is too slow for many real-time applications. In an environment that is
changing, the real-time requirements become even more challenging. Then the
autonomous system would have to stop and recalculate the path again. In a few
industrial settings, the algorithm could still be useful. For example take the use-
case described in Section 1 of the vehicle-trailer operating at a sea port. In this
case, the vehicle-trailer system must park a trailer in a controlled environment.
10 to 20 sec calculation time before parking the trailer can be seen as acceptable
in this case.

For many scenarios, finding the optimal solution is not necessary. In these cases,
the algorithm could be aborted early. Even toughed a better solution could be
fund by spending an additional 20 sec on letting CL-RRT* expand the tree; this
makes little sense if the path found only saves 2 sec of travel time.

An oversight that was made while implementing the CL-RRT* algorithm is
that the time-reversible property of the vehicle-trailer system could be taken
advantage of while updating the parents of a node. Say a shorter path has been
found to node x1. In the current implementation, only root distance of the
children and of x1 are recursively updated when the distance to x1 is updated.
However, since the system is time-reversible, it is possible that a shorter path to
the parent of x1 can be found by taking a route through x1. Implementing the
update of distances through the parents would likely improve the converging
rate of the algorithm.

65

As described in Section 2.6.3 there is a theoretical lower limit to the number of
neighbors that must be checked during the shortcut stage of RRT*. In our case
we are searching thought 4 dimension [x2, y2, θ2, β] which gives kConnect,min =
106. In our implementation we only used kConnect = 15. We did not find any
benefits from increasing kConnect. This is likely due to the increased number of
calls to the Connect functions which slowed the algorithm down. kConnect,min
is derived in Karaman and Frazzoli 2011 for a vehicle without non-holonomic
constraints. Although not reported in the results, multiple tests were performed
by finding the nearest neighbors and reachable nodes using a fixed maximum
distance instead of k-nearest. We found that this did not make any significant
changes to the performance of the algorithm.

RRT-based methods for nonholonomic systems have a few issues that are hard
to avoid. We believe there are three main issues with RRT for nonholonomic
systems that are avoided by other methods:

• Doing k-nearest-search on every iteration is time consuming and inefficient
compared to Hybrid A* and Lattice-graph search which can save states in
a heap data structure..

• Many of the nodes generated by RRT are very close to each other, due
to the nonholonomic constraints. We see it as unlikely that these nodes
provide much in terms of exploring of the configuration space. Hybrid A*
and Lattice-graph search both have mechanisms for ensuring that nodes
are evenly spread out.

• Each time the tree is expanded a simulation of closed loop system must be
performed. This is time consuming. Both Hybrid A* and Lattice-graph
search uses precomputed paths when expanding.

We therefore think there are reason to believe that Hybrid A* or Lattice-graph
search perform better when a short path is desired. The drawback of using
Hybrid A* or Lattice-graph search is that these explore the configuration space
densely. Meaning that all states, at the sampling resolution of the algorithms,
are explored outwards from the initial state. For problems with wide open areas,
RRT based methods might performer better then the two others. An interest-
ing development in RRT is the use of learning based methods as described in
Section 2.6.3 to find better states to expand the tree to. This might significantly
reduce the number of expansions needed before the tree reached the goal state.

66

6 Conclusion

In this thesis the path planning problem for a vehicle-trailer system has been
investigated. The goal has been to create a path planner for a 1-trailer system in
a controlled industrial setting such as a sea port. A new method for generating
a close to exact path between any two states of the vehicle-trailer system has
been proposed. It was demonstrated that the new method for local planning
was successful at generating paths between a wide range of states.

This thesis has demonstrated that CL-RRT* can be implemented for a vehicle-
trailer system. To the authors knowledge this has not been shown before. This
was achieved by using the exact local planner for rewiring of RRT-tree. The
results showed that the planner was successful at creating feasible paths for
the system in an realistic scenario. In the simulations the CL-RRT* algorithm
gave solutions that where on average about 10% shorter then CL-RRT. When
testing the CL-RRT* planner in a big and complicated environment, it was
observed that the solution found by the planner converged very slowly to the
optimal solution. For applications that require to find a the shortest path other
methods such as Hybrid A* and Lattice-graph search might be better options.

67

References
Abbadi, Ahmad et al. (2014). “Spatial guidance to RRT planner using cell-

decomposition algorithm”. In: 20th international conference on soft comput-
ing, MENDEL. Vol. 2014.

Atramentov, Anna and Steven M LaValle (2002). “Efficient nearest neighbor
searching for motion planning”. In: Proceedings 2002 IEEE International Con-
ference on Robotics and Automation (Cat. No. 02CH37292). Vol. 1. IEEE,
pp. 632–637.

Bock, Hans Georg and Karl-Josef Plitt (1984). “A multiple shooting algorithm
for direct solution of optimal control problems”. In: IFAC Proceedings Vol-
umes 17.2, pp. 1603–1608.

Bolu, Ali and Ömer Korçak (2021). “Adaptive Task Planning for Multi-Robot
Smart Warehouse”. In: IEEE Access 9, pp. 27346–27358.

Borisov, Alexey Vladimirovich and Ivan Sergeevich Mamaev (2005). “On the
history of the development of the nonholonomic dynamics”. In: arXiv preprint
nlin/0502040.

Brandt, David (2006). “Comparison of a and rrt-connect motion planning tech-
niques for self-reconfiguration planning”. In: 2006 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, pp. 892–897.

Bresson, Guillaume et al. (2017). “Simultaneous localization and mapping: A
survey of current trends in autonomous driving”. In: IEEE Transactions on
Intelligent Vehicles 2.3, pp. 194–220.

Cadena, Cesar et al. (2016). “Past, present, and future of simultaneous localiza-
tion and mapping: Toward the robust-perception age”. In: IEEE Transactions
on robotics 32.6, pp. 1309–1332.

Chen, Chi-Tsong (1999). “Linear System Theory and Design”. In:
Chitsaz, Hamidreza et al. (2009). “Minimum wheel-rotation paths for differential-

drive mobile robots”. In: The International Journal of Robotics Research 28.1,
pp. 66–80.

Collins, Thomas, JJ Collins, and Donor Ryan (2007). “Occupancy grid mapping:
An empirical evaluation”. In: 2007 mediterranean conference on control &
automation. IEEE, pp. 1–6.

Dolgov, Dmitri et al. (2008). “Practical search techniques in path planning for
autonomous driving”. In: Ann Arbor 1001.48105, pp. 18–80.

Dubins, Lester E (1957). “On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions and
tangents”. In: American Journal of mathematics 79.3, pp. 497–516.

Duleba, Szabolcs et al. (2021). “Ranking the key areas for autonomous prov-
ing ground development using Pareto Analytic Hierarchy Process”. In: IEEE
Access 9, pp. 51214–51230.

Egeland, Olav and Jan Tommy Gravdahl (2002). Modeling and simulation for
automatic control. Vol. 76. Marine Cybernetics Trondheim, Norway.

Ericson, Christer (2004). Real-time collision detection. Crc Press.
Evestedt, Niclas, Oskar Ljungqvist, and Daniel Axehill (2016). “Motion planning

for a reversing general 2-trailer configuration using Closed-Loop RRT”. In:

68

2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, pp. 3690–3697.

Figueiredo, Mauro et al. (2010). “An efficient collision detection algorithm for
point cloud models”. In: ’2010. Citeseer, pp. 30–37.

Fliess, M et al. (1997). “Controlling nonlinear systems by flatness”. In: Systems
and Control in the Twenty-first Century. Springer, pp. 137–154.

Fliess, Michel et al. (1995). “Flatness and defect of non-linear systems: introduc-
tory theory and examples”. In: International journal of control 61.6, pp. 1327–
1361.

Fossen, Thor I (2011). Handbook of marine craft hydrodynamics and motion
control. John Wiley & Sons.

Gammell, Jonathan D, Siddhartha S Srinivasa, and Timothy D Barfoot (2014).
“Informed RRT*: Optimal sampling-based path planning focused via direct
sampling of an admissible ellipsoidal heuristic”. In: 2014 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. IEEE, pp. 2997–3004.

Golwala, Sunil (2014). “Lecture notes on classical mechanics for physics 106ab”.
In: Publisher: CreateSpace Independent Publishing Platform.

Hart, Peter E, Nils J Nilsson, and Bertram Raphael (1968). “A formal basis for
the heuristic determination of minimum cost paths”. In: IEEE transactions
on Systems Science and Cybernetics 4.2, pp. 100–107.

Hejase, Mohammad et al. (2018). “Constrained backward path tracking control
using a plug-in jackknife prevention system for autonomous tractor-trailers”.
In: 2018 21st International Conference on Intelligent Transportation Systems
(ITSC). IEEE, pp. 2012–2017.

Holmer, Olov (2016). Motion planning for a reversing full-scale truck and trailer
system.

Ichter, Brian, James Harrison, and Marco Pavone (2018). “Learning sampling
distributions for robot motion planning”. In: 2018 IEEE International Con-
ference on Robotics and Automation (ICRA). IEEE, pp. 7087–7094.

Karaman, Sertac and Emilio Frazzoli (2011). “Sampling-based algorithms for
optimal motion planning”. In: The international journal of robotics research
30.7, pp. 846–894.

– (2013). “Sampling-based optimal motion planning for non-holonomic dynam-
ical systems”. In: 2013 IEEE International Conference on Robotics and Au-
tomation. IEEE, pp. 5041–5047.

Kuffner, James J and Steven M LaValle (2000). “RRT-connect: An efficient
approach to single-query path planning”. In: Proceedings 2000 ICRA. Millen-
nium Conference. IEEE International Conference on Robotics and Automa-
tion. Symposia Proceedings (Cat. No. 00CH37065). Vol. 2. IEEE, pp. 995–
1001.

Kuwata, Yoshiaki et al. (2009). “Real-time motion planning with applications
to autonomous urban driving”. In: IEEE Transactions on control systems
technology 17.5, pp. 1105–1118.

Kvarnfors, Karl (2019). Motion Planning for Parking a Truck and Trailer Sys-
tem.

69

Lamiraux, Florent and J-P Laumond (2000). “Flatness and small-time controlla-
bility of multibody mobile robots: Application to motion planning”. In: IEEE
Transactions on Automatic Control 45.10, pp. 1878–1881.

Laumond, Jean-Paul, Sepanta Sekhavat, and Florent Lamiraux (1998). “Guide-
lines in nonholonomic motion planning for mobile robots”. In: Robot motion
planning and control. Springer, pp. 1–53.

LaValle, Steven M (2006). Planning algorithms. Cambridge university press.
Lee, Dasol, HanJun Song, and David Hyunchul Shim (2014). “Optimal path

planning based on spline-RRT* for fixed-wing UAVs operating in three-dimensional
environments”. In: 2014 14th International Conference on Control, Automa-
tion and Systems (ICCAS 2014). IEEE, pp. 835–839.

Lekkas, Anastasios M (2014). “Guidance and path-planning systems for au-
tonomous vehicles”. In:

Li, Bai et al. (2019). “Tractor-trailer vehicle trajectory planning in narrow en-
vironments with a progressively constrained optimal control approach”. In:
IEEE Transactions on Intelligent Vehicles 5.3, pp. 414–425.

Li, Yang et al. (2018). “Neural network approximation based near-optimal mo-
tion planning with kinodynamic constraints using RRT”. In: IEEE Transac-
tions on Industrial Electronics 65.11, pp. 8718–8729.

Ljungqvist, Oskar (2020). Motion planning and feedback control techniques with
applications to long tractor-trailer vehicles. Vol. 2070. Linköping University
Electronic Press.

Ljungqvist, Oskar, Daniel Axehill, and Anders Helmersson (2016). “Path fol-
lowing control for a reversing general 2-trailer system”. In: 2016 IEEE 55th
Conference on Decision and Control (CDC). IEEE, pp. 2455–2461.

Ljungqvist, Oskar, Daniel Axehill, and Johan Löfberg (2018). “On stability for
state-lattice trajectory tracking control”. In: 2018 Annual American Control
Conference (ACC). IEEE, pp. 5868–5875.

Ljungqvist, Oskar, Niclas Evestedt, et al. (2019). “A path planning and path-
following control framework for a general 2-trailer with a car-like tractor”. In:
Journal of field robotics 36.8, pp. 1345–1377.

Manav, Ahmet Canberk and Ismail Lazoglu (2021). “A Novel Cascade Path
Planning Algorithm for Autonomous Truck-Trailer Parking”. In: IEEE Trans-
actions on Intelligent Transportation Systems.

Meyer-Delius, Daniel, Maximilian Beinhofer, and Wolfram Burgard (2012). “Oc-
cupancy grid models for robot mapping in changing environments”. In: Twenty-
Sixth AAAI Conference on Artificial Intelligence.

Nash, Alex et al. (2007). “Thetaˆ*: Any-angle path planning on grids”. In:
AAAI. Vol. 7, pp. 1177–1183.

Nordeus, Erik (2015). Self-driving-vehicle. https://github.com/Habrador/
Self-driving-vehicle.git.

Noreen, Iram, Amna Khan, Zulfiqar Habib, et al. (2016). “Optimal path plan-
ning using RRT* based approaches: a survey and future directions”. In: Int.
J. Adv. Comput. Sci. Appl 7.11, pp. 97–107.

70

https://github.com/Habrador/Self-driving-vehicle.git
https://github.com/Habrador/Self-driving-vehicle.git

Oliveira, Rui et al. (2018). “Trajectory generation using sharpness continuous
dubins-like paths with applications in control of heavy-duty vehicles”. In:
2018 European Control Conference (ECC). IEEE, pp. 935–940.

Palmieri, Luigi, Sven Koenig, and Kai O Arras (2016). “RRT-based nonholo-
nomic motion planning using any-angle path biasing”. In: 2016 IEEE Inter-
national Conference on Robotics and Automation (ICRA). IEEE, pp. 2775–
2781.

Pan, Jia et al. (2013). “Real-time collision detection and distance computa-
tion on point cloud sensor data”. In: 2013 IEEE International Conference on
Robotics and Automation. IEEE, pp. 3593–3599.

Pancanti, Stefania et al. (2004). “Motion planning through symbols and lat-
tices”. In: IEEE International Conference on Robotics and Automation, 2004.
Proceedings. ICRA’04. 2004. Vol. 4. IEEE, pp. 3914–3919.

Pivtoraiko, Mihail, Ross A Knepper, and Alonzo Kelly (2009). “Differentially
constrained mobile robot motion planning in state lattices”. In: Journal of
Field Robotics 26.3, pp. 308–333.

Reeds, James and Lawrence Shepp (1990). “Optimal paths for a car that goes
both forwards and backwards”. In: Pacific journal of mathematics 145.2,
pp. 367–393.

Rouchon, Pierre, Michel Fliess, Jean Lévine, et al. (Jan. 1992). “Flatness and
motion Planning: the Car with n-trailers”. In: European Control Conference.

– (1993). “Flatness, motion planning and trailer systems”. In: Proceedings of
32nd IEEE Conference on Decision and Control. IEEE, pp. 2700–2705.

Schwarting, Wilko, Javier Alonso-Mora, and Daniela Rus (2018). “Planning
and decision-making for autonomous vehicles”. In: Annual Review of Control,
Robotics, and Autonomous Systems 1, pp. 187–210.

Sekhavat, Sepanta et al. (1998). “Multilevel path planning for nonholonomic
robots using semiholonomic subsystems”. In: The international journal of
robotics research 17.8, pp. 840–857.

Svestka, Petr and Jules Vleugels (1995). “Exact motion planning for tractor-
trailer robots”. In: Proceedings of 1995 IEEE International Conference on
Robotics and Automation. Vol. 3. IEEE, pp. 2445–2450.

Unity (2020). Inner Workings of the Navigation System Kernel Description.
url: https : / / docs . unity3d . com / Manual / nav - InnerWorkings . html

(visited on 11/11/2021).
Yang, Fan et al. (2019). “Automatic indoor reconstruction from point clouds in

multi-room environments with curved walls”. In: Sensors 19.17, p. 3798.

71

https://docs.unity3d.com/Manual/nav-InnerWorkings.html

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Edvard Grødem

Closed-Loop-RRT* path planning for
a vehicle-trailer system

Master’s thesis in Cybernetics and Robotics
Supervisor: Sebastien Gros
January 2021

M
as

te
r’s

 th
es

is

	Introduction
	Motivation
	Problem Statement
	Outline

	Background
	The Terminology and Problem Formulation of Path Planning
	Nonholonomic Constraints
	Differential Flat Systems
	Vehicle-Trailer System Kinematics
	Time Independent Form
	Time Reversibility

	Exact Path Planning
	Sampling-Based Path Planning
	Lattice Graph Search
	Hybrid A*
	Rapidly Exploring Random Trees

	Metrics and Nearest Neighbor Search
	Dubins Path
	Flat Local Planner
	Optimal Local Planner
	Collision Detection

	Method
	Connect Function - Exact local path planning
	Modified Dubins Path
	LQR Path Follower
	Linearization for Straight Paths
	Linearization for Circular Path
	LQ gain
	Dubins Path Following Controller
	Feasible Path Following Controller
	Constraints on and
	Connect Function

	Steer Function - Local Path Planning
	Heading Reference
	Steering Control
	Steer Function

	Distance Heuristic
	Implementation of Collision Detection
	Closed Loop Rapidly Exploring Random Tree Star
	Tree Structure
	Algorithm Overview
	Stage 1: Random Exploration
	Stage 2: Semi-optimal Path from Root to New Node
	Stage 3: Finding Shortcuts to Other Nodes and Rewire the Tree
	Stage 4: Goal Connections
	Path smoothing: Finding Shortcuts on the Shortest Path

	Results
	Simulation Setup
	Evaluation of Exact Local Planner
	Success Rate
	Modification of Dubins Path
	Accuracy

	Evaluation of the steer function
	CL-RRT*
	Parking Lot
	Maze

	Run-time Analysis

	Discussion
	Evaluation and Future Work on the Connect Function
	Evaluation and Future Work on CL-RRT*

	Conclusion

