
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Birk Dybesland Ramberg

Topological Data Analysis and the
Activations in a Convolutional Neural
Network

Master’s thesis in Industrial Mathematics
Supervisor: Marius Thaule
Co-supervisor: Melvin Vaupel
December 2021M

as
te

r’s
 th

es
is

Birk Dybesland Ramberg

Topological Data Analysis and the
Activations in a Convolutional Neural
Network

Master’s thesis in Industrial Mathematics
Supervisor: Marius Thaule
Co-supervisor: Melvin Vaupel
December 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

TOPOLOGICAL DATA ANALYSIS AND THE ACTIVATIONS IN
A CONVOLUTIONAL NEURAL NETWORK

BIRK D. RAMBERG

Abstract. Topological Data Analysis (TDA) is concerned with studying the
shape of data. TDA can extract valuable qualitative and quantitative informa-
tion from complicated datasets. Convolutional Neural Networks (CNNs) have
state-of-the-art performance on a variety of tasks, but are not fully under-
stood. Through studying the activations of neurons at an intermediate layer
in a CNN, we can gain a better understanding, both of a particular CNN,
and of CNNs in general. A set of activations constitute an interesting, but
complex dataset. In this thesis, I review a number of TDA methods which is
then applied to the dataset of activations. This leads to what I call the Map-
per Activation Atlas. I also investigate clusters of activations with persistent
homology and UMAP, identifying and parametrising circular structure.

Sammendrag. Topologisk dataanalyse (TDA) omhandler studiet av datas
form. TDA kan finne verdifull kvalitativ og kvantitativ informasjon fra kom-
pliserte dataset. Convolutional Neural Networks (CNNs) løser et mangfold
av oppgaver bedre enn noen annen teknologi, men er ikke fullstendig forstått.
Gjennom å studere aktiveringer av nevroner i et mellomliggende lag i en CNN,
kan vi oppnå en bedre forståelse, både av den spesifikke CNN, og av CNNs
generelt. Et set av aktiveringer utgjør et interessant, men komplekst datasett.
I denne oppgaven gjennomgår jeg et antall TDA-metoder, som senere blir an-
vendt på datasettet av aktiveringer. Dette leder til det jeg kaller the Mapper
Activation Atlas. Jeg undersøker også klustere av aktiveringer med persistent
homologi og UMAP, og identifiserer og parametriserer sirkelstruktur.

Acknowledgements

I would like to thank Magnus Bakke Botnan for his excellent introductory notes
about TDA, and Rune Haugseng for neat notes on algebraic topology. I also thank
Erik Rybakken for a piece of code for doing circular parametrisation.

Most deserving of praise are my supervisor Marius Thaule and PHD student
Melvin Vaupel for their guidance, knowledge, patience, feedback, excitement and
dedication.

I would like to thank my family and friends for their support. Lastly, I thank
everyone who has listened patiently to me talking about topology, TDA or neural
networks.

Date: December 23, 2021.
1

2 BIRK D. RAMBERG

Contents

Acknowledgements 1
1. Introduction 3
2. Topological Data Analysis 6
3. Topological Spaces, Homeomorphisms and Homotopy Equivalences 6
4. Simplicial Complexes 10
5. Simplicial Homology 13
6. Persistent Homology 16
7. Circular Parametrisation 25
8. Mapper 29
9. UMAP 36
10. The Space of Activations 40
11. Activation Atlases 53
12. Finding Loops 59
13. Further Work 73
References 75

TDA AND THE ACTIVATIONS IN A CNN 3

1. Introduction

Over the last 20–30 years, there has emerged methods designed to study the
shape of data, seen through the lens of topology. Initially, the main topic was
the homology inference problem [38]: How can we infer the topological invariant
homology of a space from samples from the space? To solve this problem, the ideas
of persistence were applied: In order to infer the homology, we study the change
in the homology across different scales of the dataset. We can thus understand the
dataset at different scales and are able to distinguish noise or local structure (which
is highly scale dependent) from global structure (which is not as scale dependent).
Through the work of Edelsbrunner et al. [15], Zomorodian and Carlsson [64] and
Bauer [4], among others, persistent homology has become the main technique in the
field of Topological Data Analysis (TDA).

Persistent homology has recently found applications within a broad variety of
fields. For example, Perea et al. [39], [17] analyse (quasi-)periodic time series data
by applying persistent homology to the sliding window embedding. Satisfyingly,
they detect loop structure for periodic data and torus structure in quasi-periodic
data. Moreover, persistent homology has found a number of applications in tandem
with other machine learning methods [21], for example in the Topological Autoen-
coder [31], Neural Persistence [41] and topological regularisation of classifiers [11].

Later, perhaps inspired by the success of applying the theory of simplicial com-
plexes and algebraic topology to data analysis, new topologically inspired methods
like Mapper [50], UMAP [30] and ToMaTo clustering [10] have found a wide range
of applications. For example, Mapper has been used to identify subgroups of dia-
betes type 2 [26] and to study medical data of cancer patients [28].

Most major, recent breakthroughs in machine learning have come from applica-
tions or enhancements of deep neural networks. For example, the Natural Language
Processing (NLP) system GPT-3 [5] and the protein structure predictor AlphaFold
[23] attracted massive attention in 2020. In particular, computer vision has be-
come an especially suitable area for Convolutional Neural Networks (CNNs). The
developments and improvements of CNNs in computer vision, and especially image
recognition, have been fuelled by the ImageNet dataset [13] and the analogies with
the brain. In addition, the wide range of useful applications of computer vision sys-
tems in everything from social media and image processing to autonomous vehicles
has helped drive the development.

While the state-of-the-art performance of the systems speak for itself, the theory
behind deep (convolutional) neural networks has not been able to keep up with the
rapid improvements. One might say that we know that deep neural networks can
perform complex tasks incredibly well, but we are not quite sure about why they
work so well. For example, why does the heavy overparameterisation not lead to
overfitting? The traditional approach in terms of generalisation has been to follow
the principle of Occam’s razor [60] : “Entities should not be multiplied beyond
necessity”. In machine learning, this translates to not allowing more freedom for
the model than what is required for solving the task sufficiently. Deep learning is
a breach of this paradigm. For example, in the paper exploring this topic [63], the
authors find that state-of-the-art image classification CNNs can easily fit a random
labelling of the images, illustrating the models’ ability to express essentially any
relationship. This is also confirmed by the theory of expressivity [18].

4 BIRK D. RAMBERG

Moreover, the black box [55] nature of deep neural networks makes it difficult
to distinguish a well-trained neural network from a poorly trained one. If we do
not understand how the neural network works and what it has learned, we do not
know what kinds of applications that would be suitable. In that case, we also do
not understand when and why the network fails. This introduces a huge barrier
to the applicability of the technology, despite its state-of-the-art performance. For
many applications the risk associated with under-performance is too large to justify
the introduction of a system that we can not understand, and therefore not trust.
Hence, research aimed at understanding deep neural networks better is of great
importance.

In particular, understanding CNNs has been a focus of such research. For ex-
ample, significant research has been devoted to feature visualisation, creating visu-
alisations of what different parts of the CNN look for. Attribution research makes
methods for understanding why the network produced a particular output. For
example, one could ask an image classification CNN which parts of an image that
were relevant for making the classification that it did. In the paper [9], the au-
thors create an Activation Atlas, combining ideas from feature visualisation and
attribution research to create a global view of how the CNN sees a set of images.

Some research for understanding CNNs takes a more abstract approach. Carlsson
and Gabrielsson [7] study the weights (arranged in spatial patches) of a CNN with
methods from Topological Data Analysis. In the first layer they find a primary
circle corresponding to edges of different orientation in the images, as well as a
secondary and tertiary circle. Furthermore, they find the whole space of patches
to lie on a Klein bottle, and illustrate that enforcing this behaviour of the weights
in CNNs can be beneficial [27]. Their results are consistent with a similar analysis
performed on patches in natural images [8] and on the visual cortex of monkeys
[6]. This consistency suggests that studying the CNN can help to understand the
brain (at least the parts responsible for vision) better, and vice versa. Moreover,
the consistency with the space of image patches suggests that the weights of a CNN
in a sense mimic the data it is given. The CNN only looks for things that actually
exist in the images it is trained on.

Carlsson and Gabrielsson also apply their method of studying spatial filters, that
is, filters that look only at spatial combinations of activations in the previous layer,
not at combinations of activations across different channels. See Section 10 or [3]
for details about CNNs. They find structure in the deeper layers of CNNs like
vgg16 [49]. However, while this approach sheds much light on the weights in the
first layer, where the spatial filters are what is of most interest, the approach has
some drawbacks when applied to the deeper layers. Arguably, much of the power
of CNNs comes from the ability to combine different features detected into more
complex features in the subsequent layers. Considering the weights in the form of
spatial filters allows only analysis of the networks ability to combine spatial patterns
of a single channel. For example, their approach allows only to understand how the
network combines vertical edges at different spatial locations, while the combination
of edges of all directions is arguably more relevant.

One approach to address this challenge is to consider vectors of weights across
channels instead of patches across spatial locations. This comes with the opposite
weakness of not allowing for analysis of the spatial patters used to assemble different
features into more complex features. However, since considering the weights in their

TDA AND THE ACTIVATIONS IN A CNN 5

natural cuboid format is infeasible due to the high dimensionality (∼ 105), I will in
this thesis focus on the vectors across channels.

When studying the brain, the “weights” of the neurons in the brain are of course
not readily obtainable, as they are for a CNN. What we can (fairly) easily access
are the activations in different neurons. This approach is taken by Rybakken et al.
[43]. Working with neural activation data from mice, they detect a circular feature
and find a correspondence with the head directions of the mice. This paper serves
as an example of how one can reveal specific features about a complicated space
to gain partial understanding. This conceptual approach will also be taken in this
thesis.

In line with the observation that the CNNs “look for what exists”, we will study
the space of activations rather than the space of weights in this thesis. This places
the work in this thesis closer to the work by Rybakken et al. [43] and Carter et al.
[9] on Activation Atlases. However, the work by Carlsson et al. [8, 7, 6, 27] is of
great relevance and inspiration.

1.1. Outline. This thesis is roughly divided into three parts. The first part (Sec-
tions 2 – 9) gives a brief introduction to a number of methods from Topological Data
Analysis, with a focus on the intuition behind the methods. The second part (Sec-
tions 10 – 12) focuses on convolutional neural networks, methodologies for analysing
the space of activations and results obtained with the methodologies. The last part
(Section 13) consists of thoughts and discussions about potential future work.

In Section 2, the ideas of Topological Data Analysis are introduced and the
problem that Topological Data Analysis tries to solve is formulated. In Section 3, we
give a brief background on topology. We define topological spaces, homeomorphisms
and homotopy equivalences. For more about the basics of topology I refer to [32].
In Section 4, we introduce simplicial complexes, an essential building block for the
theory of Topological Data Analysis. In Section 5, we introduce simplicial homology,
a topological invariant. I refer the reader to [33, Chapter 1] for more about simplicial
complexes and simplicial homology. In Section 6, we explain persistent homology.
Persistent homology is often described in the language of persistence modules and
category theory, but we avoid these topics for accessibility. For this reason, the
parts of the theory involving the decomposition of persistence modules, inference
of the homology groups and stability of persistent homology are left out. I refer
the reader to [14, Chapters VII and VIII], [36, Chapters 1–5] or my introduction
to persistent homology [40] for the theory. We also include a subsection about
preprocessing often applied to data before the computation of persistent homology.
In Section 7, we review the method for obtaining a circular parametrisation from a
computation of persistent (co)homology, as introduced in the paper [47]. In Section
8, we review Mapper [50]; a method that turns a dataset into a graph. In Section 9,
I give a brief introduction to the manifold learning dimensionality reduction method
UMAP [30], inspired by the description given on “How UMAP Works” from [25].
For the full theory and details of UMAP I refer the reader to the original paper
[30].

In Section 10, we review neural networks and convolutional neural networks.
We introduce the space of activations and discuss briefly features visualisation and
attribution. Moreover, we discuss some of the work performed by Carlsson et al.
on the weights of CNNs. For more about neural networks, I refer the reader to [3].
In Section 11, we review and discuss the Activation Atlas from [9], and propose a

6 BIRK D. RAMBERG

new kind of activation atlas; the Mapper Activation Atlas. Some applications of
the Mapper Activation Atlas are presented. In Section 12, we investigate clusters
of the space of activations with a combination of the methods UMAP, persistent
cohomology with circular parametrisation and Mapper to reveal and explain loop
structures in subsets of the data.

Finally, in Section 13, I summarise and present ideas for further work that seem
worthwhile pursuing.

2. Topological Data Analysis

We often want to study the shape of data, since the shape carries high-level
information. Relevant questions to ask could be: Does the data divide into clusters,
or does the data seem to be connected? If we can divide the data into clusters,
what is the shape of the clusters themselves? Does the data lie on some manifold?
Does the data exhibit any form of circularity or periodicity? Does the data have
any flares?

These questions are of a topological nature and could therefore be investigated
with tools from topology. After all, topology is the study of shape. When looking for
the topological properties sketched above it is often advantageous to have methods
that can disregard other properties of the data than those we are interested in.
This might help to reveal the properties that we are truly interested in. In some
ways one might say topology at its core is essentially about disregarding most
properties of spaces in order to investigate what we are left with. This “disregarding”
is done formally through the definition of topological spaces and the notions of
homeomorphisms and homotopy equivalences. This is, in my opinion, the strongest
argument for the use of topological methods on data.

2.1. Problem Description. The problem we will address can usually be stated
in a very general way. Let M be a metric space. We are given data, in the form
of a point cloud, that is a finite set of points P ⊆ M , with a metric. We assume
that the data are sampled from some topological space K ⊆ M , potentially with
some noise. What can we say about the topology of the space K, and under what
assumptions?

Remark 2.1. It is clear that we must assume some relationship between the point
cloud P and the space K. Typical assumptions could be that we assume that P is
sampled from K with some noise, or that K is a high density region of a probability
density distribution that the samples in P are assumed drawn from.

The first problem we encounter is that P is a point cloud, so from a topological
perspective P is simply |P | disconnected points, with no interesting topological
properties. We will overcome this challenge by associating more interesting topo-
logical spaces with the point cloud P . A simple example would be to consider the
space we obtain by taking the union of balls of radius r, centered at all the points
in P . See Figure 1. Under sensible assumptions, the union of balls shares much of
the topology of the space we are really investigating, K.

3. Topological Spaces, Homeomorphisms and Homotopy Equivalences

The idea of disregarding properties of spaces in topology is formalised through the
definition of topological spaces and the notions of homeomorphisms and homotopy
equivalences. For example, in topology one would consider two circles with different

TDA AND THE ACTIVATIONS IN A CNN 7

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Figure 1. A point cloud and balls with fixed radius centered at
the points.

radii to be essentially the same. A topologist would not even care whether the circle
is actually a circle or an ellipse or any other kind of loop. The loop is, however,
topologically different from a disk or a line segment. For a thorough introduction
to topology see the book by Munkres [32].

We start by stating the formal definition of a topological space.

Definition 3.1. A topological space is a set X, endowed with a topology T
on X. The topology T is a collection of subsets of X that are called open, and T
satisfies the properties:

• The empty set ∅ and X are both in T .
• Any union of subsets in T is also in T .
• Any finite intersection of subsets in T is also in T .

Remark 3.2. The above definition allows us to generalise the concept of continuity.
However, in this thesis, we will not have to worry about the abstract properties of
a topology since we will be working with the metric topology, which we will define
shortly.

Example 3.3. Let X be any set. Then the power set P(X), that is the collection
of all subsets of X, is a topology on X. This is called the discrete topology on X.
All subsets of X are open.

The collection {∅, X} is also a topology on X. This is called the indiscrete
topology on X. No subsets, except ∅ and X are open.

We will only deal with metric spaces in this thesis.

Definition 3.4. A metric space is a set X with a metric d : X×X → R satisfying,
for any x, y, z ∈ X:

• d(x, y) = 0 if and only if x = y
• d(x, y) = d(y, x)
• d(x, z) ≤ d(x, y) + d(y, z)

Theorem 3.5. Let X be a metric space with metric d. Define Td as the collection
of subsets U ⊆ X such that for any x ∈ U there exists r > 0 such that B(x; r) ⊆ U ,
where B(x; r) is the open ball with radius r centered at x and

B(x; r) = {y ∈ X : d(x, y) < r}.

8 BIRK D. RAMBERG

Then X is a topological space with topology Td. We call Td the metric topology
on X induced by d.

See the book by Munkres [32, Chapter 2] for proof.
Since all the spaces we are dealing with are metric spaces, when we say that a

space is a topological space, we mean that it has the metric topology induced by
the metric.

If X is a topological space and U ⊆ X is a subset of X, there exists a topology
on U that consists of the pairwise intersections of U with all open subsets of X.
This is called the subspace topology on U .

If X and Y are topological spaces then there is an induced topology on the set
X × Y that is called the product topology. See Munkres [32, Chapter 2].

If X is a topological space and ∼ an equivalence relation on the elements of X,
there exists a topology on the set of equivalence classes X/ ∼ called the quotient
topology.

3.1. Continuous Maps and Homeomorphisms.

Definition 3.6. Let X and Y be topological spaces with topologies TX and TY ,
respectively. A map f : X → Y is continuous if for any open set V ∈ TY the
preimage of V under f ,

f−1(V) = {x ∈ X : f(x) ∈ V }
is open in X, i.e. f−1(V) ∈ TX .

If X and Y are metric spaces with the metric topologies, then the definition of
a continuous map is equivalent the common (ϵ − δ)-definition of continuity from
analysis, see [32, Theorem 21.1].

Definition 3.7. Let X and Y be topological spaces. A homeomorphism is a
continuous bijection f : X → Y such that f−1 : Y → X is also a continuous
bijection. If there exists a homeomorphism between X and Y we say that they are
homeomorphic spaces.

Homeomorphisms formalises the idea of continuous transformations of topolog-
ical spaces. The intuition is that if a space X can be continuously deformed into
another space Y , then X and Y are, from a topological perspective, “the same”.
This is similar to how two isomorphic groups are “the same” from an algebraic
perspective. From the definition of homeomorphisms one can easily deduce that
homeomorphism define an equivalence relation on topological spaces. This is the
equivalence relation we refer to when we are talking about “up to homeomorphism”.

Since a homeomorphism gives a 1-1 correspondence between elements and open
sets in X and Y , it preserves all properties that can be expressed in terms of the
elements and topology of a space. Any such property is called a topological property
or a topological invariant, since it is invariant under homeomorphisms. The aim
of topology as a mathematical branch is to classify spaces up to homeomorphism.
Considering spaces up to homeomorphism allows us to disregard properties of spaces
that are not invariant under homeomorphisms.

3.2. Homotopy Equivalence. Classifying spaces up to homeomorphism turns
out to be incredibly hard. In many cases, we therefore classify spaces up to ho-
motopy equivalence instead. This is a coarser equivalence relation, in the sense

TDA AND THE ACTIVATIONS IN A CNN 9

Figure 2. Three topological spaces and maps between them. The
maps f1 and g1 are homotopy equivalences, but not homeomor-
phisms. The maps f2 and g2 are homeomorphisms.

Figure 3. Three topological spaces and maps between them. All
maps are homeomorphisms. The spaces are homotopy equivalent,
but not homeomorphic, to the circle S1.

that any two spaces that are homeomorphic are also homotopy equivalent. On the
other hand, many spaces are homotopy equivalent, but not homeomorphic. Homol-
ogy, which is an important topological invariant in this thesis, is invariant under
homotopy equivalences.

Homotopy equivalences comes from the definition of homotopic maps. Informally,
two maps are homotopic if one can be continuously deformed into the other.

Definition 3.8. Let X and Y be topological spaces and f, g : X → Y continuous
maps. If there exists a continuous map H : I ×X → Y satisfying

H(0, x) = f(x) and H(1, x) = g(x)

for all x ∈ X, we say that f and g are homotopic maps. We call H a homotopy
between f and g.

Here I ⊆ R is the interval [0, 1] with the metric topology and I × X has the
product topology.

It follows fairly easily from the definition that homotopy defines an equivalence
relation on the set of continuous functions between topological spaces X and Y .
We write [f] for the equivalence class of maps that are homotopic to f .

Definition 3.9. Let X and Y be topological spaces and f : X → Y a continuous
map. If there exists a continuous map g : Y → X such that the composition f ◦ g
is homotopic to the identity map idY on Y and the composition g ◦ f is homotopic

10 BIRK D. RAMBERG

to the identity map idX on X, we say that f is a homotopy equivalence. If such
f and g exist, we say that X and Y are homotopy equivalent spaces.

This definition is very similar to Definition 3.7 of a homeomorphism. The def-
inition of homeomorphism could be phrased in the same format as Definition 3.9,
but requiring

f ◦ g = idY and g ◦ f = idX ,

where the homotopy equivalence definition requires

[f ◦ g] = [idY] and [g ◦ f] = [idX].

Hence, homotopy equivalence is a weaker notion of similarity between spaces than
homeomorphism.

Example 3.10. In Figure 2, the spaces are locally homeomorphic to the interval
R, except at the point P in the leftmost space. The maps f1 and g1 are examples
of homotopy equivalences that are not homeomorphisms, since the flare can not be
continuously deformed and becomes a part of the loop. This can be seen from the
fact that the interval I is not homeomorphic to a point. In Figure 3, the spaces are
all two-dimensional manifolds, that is they are locally homeomorphic to R2, so the
flare can be continuously shortened until it is part of the deformed annulus, thus
all maps in Figure 3 are homeomorphisms.

4. Simplicial Complexes

In topological data analysis, simplicial complexes are an essential ingredient,
both for persistent homology and, to a lesser extent, for Mapper. We can repre-
sent many topological spaces as purely combinatorial abstract simplicial complexes.
Starting with the point cloud P , we will construct simplicial complexes that should
resemble the space of interest K. For more details on simplicial complexes and sim-
plicial homology see the book on algebraic topology by Munkres [33]. The majority
of this section is taken from “An Introduction to Persistent Homology” [40] written
by me.

Definition 4.1. A set of points {p0, p1, . . . , pn} ⊆ Rd is said to be geometri-
cally independent if the vectors (p1 − p0), (p2 − p0), . . . , (pn − p0) are linearly
independent.

Definition 4.2. Given a geometrically independent set of points {p0, p1, . . . , pn},
the n-simplex spanned by these points is the set{

n∑
i=0

tipi : ti ≥ 0,

n∑
i=0

ti = 1

}
,

that is the set of convex combinations of the points; the convex hull. The subset of
the n-simplex opposite the j-th vertex, that is{

n∑
i=0

tipi : ti ≥ 0,

n∑
i=0

ti = 1, tj = 0

}
,

is called the j-th face of the n-simplex.

We say that an n-simplex has dimension n, since it can be thought of as a
subspace of Rn.

TDA AND THE ACTIVATIONS IN A CNN 11

Figure 4. The standard 2-simplex. Illustration taken from [62].

Example 4.3. The 2-simplex spanned by the points {(1, 0, 0), (0, 1, 0), (0, 0, 1)} in
R3 is an equilateral triangle, as illustrated in Figure 4. This simplex is called the
standard 2-simplex. In general, the n-simplex spanned by the unit vectors in Rn+1

is called the standard n-simplex.

Example 4.4. Let ∆n be the standard n-simplex and ∆′
n any n-simplex, both in

Rn+1. Define f : ∆′
n → ∆n on x ∈ ∆′

n by

f(x) =

n∑
i=0

tiei, x =

n∑
i=0

tipi

where ei is the i-th unit vector in Rn+1 and {pi}i are the points spanning ∆′
n.

Clearly, f is a homeomorpism. Thus, any n-simplex is homeomorphic to the stan-
dard n-simplex (and equivalently all n-simplices).

For spaces that are sufficiently well-behaved from a topological perspective we
can create a homeomorphic (or homotopy equivalent) space built by simplices. The
space built by simplices can often be easier to investigate.

Remark 4.5. We can never have an infinite amount of data, so the spaces we deal
with in a data-setting will not be of a pathological sort.

Definition 4.6. A simplicial complex L is a finite collection of simplices such
that

• Every face of a simplex in L is also in L.
• If any two simplices in L have a non-empty intersection, then the intersec-

tion is also in L.

If L has a d-simplex, but no (d+1)-simplices, we say that L has dimension d. If
K is a simplicial complex that consists only of simplices that are in L, then K is a
sub-complex of L.

Since every face of a simplex in a simplicial complex L is also in L, we see in
particular that the union of the vertices of all simplices in L are in L. These points
are the 0-simplices and we call the set of these the vertex set.

Example 4.7. Let (V,E) be a graph with vertices V and edges E. Then (V,E) is
a simplicial complex with vertex set V and the edges as 1-simplices spanned by the

12 BIRK D. RAMBERG

(a) A graph and a simpli-
cial complex embedded in
R2

(b) A graph that is embed-
ded such that it has an in-
tersection

(c) A simplicial complex

Figure 5. Graphs and simplicial complexes.

two endpoints of each edge in E. We need to be careful with how we embed the
vertex set so that no edges intersect, except for in the vertices. This is illustrated in
Figure 5. The graph in Figure 5b can also be associated with a simplicial complex,
but then we need to embed the points in a suitable way, potentially in a higher-
dimensional space.

In this way, we can consider a simplicial complex as a higher-order generalisation
of graphs, where we not only have edges between points, but also higher-order
simplices. This is illustrated in Figure 5c. For the generalised graph to be a
simplicial complex, we must require that all edges that enclose a filled-in triangle
are edges in the graph, since all faces of a simplex in L must also lie in L. This is
of course also necessary for higher-order generalisations.

As shown in Example 4.4, all n-simplices are homeomorphic. This means that we
can capture the topology of a simplicial complex in the dimensions of the simplices
and how they are connected. For this reason we introduce the purely combinatorial
abstract simplicial complex.

Definition 4.8. An abstract simplicial complex A on the (vertex) set V , is a
finite collection of non-empty subsets of V , such that if σ ∈ A, then all non-empty
subsets of σ are also in A.

Example 4.9. Let L be a finite simplicial complex with vertex set V =
{p1, p2, . . . , pm}. Let the set {q0, q1, . . . , qn} ⊆ V lie in A, if and only if the n-
simplex spanned by the points {q0, q1, . . . , qn} lies in L. Then A is an abstract
simplicial complex.

Indeed, let ρ be {q0, q1, . . . , qn} with one point removed. The simplex spanned
by this subset is a face of σ and so the simplex lies in L. Therefore, the set ρ lies
in A. By induction, A satisfies definition 4.8.

If we let the elements in the sets of an abstract simplicial complex L correspond
to points in Rd, satisfying certain criteria, we can associate a simplicial complex |L|
with the abstract one. The simplicial complex |L| is a geometric realisation of L.
The abstract simplicial complex L is purely combinatorial, while |L| is a topological
space consisting of the union of all the simplices in L. An abstract simplicial
complex with n vertices has a trivial geometric realisation in Rn by associating
the vertices with the unit vectors. We could also associate the vertices with a
geometrically independent set of points and consider the (n − 1)-simplex spanned
by these points. The simplicial complex is then a sub-complex of the simplicial

TDA AND THE ACTIVATIONS IN A CNN 13

A B

C

D E

A B

C

D E

Figure 6. Geometric realisations of the abstract simplicial com-
plex {A,B,C,D,E,AB,AC,BC,CD,CE,DE,ABC,CDE}. As-
sociating different points with the vertices of the abstract simplicial
complex results in different geometric realisations.

complex consisting of the (n − 1)-simplex with all its faces, faces of the faces and
so on. The simplicial complex can thus be realised as a subspace of the (n − 1)-
simplex which again can be considered a subspace of Rn−1. It can also be shown
that any abstract simplicial complex of dimension d has a geometric realisation in
R2d+1. Conversely, any geometric simplicial complex has an associated abstract
simplicial complex. The geometric simplicial complex is a geometric realisation of
its associated abstract simplicial complex.

Example 4.10. In Figure 6, we see how an abstract simplicial complex can be
geometrically realised as a simplicial complex. We associate the vertices in the
abstract simplicial complex with points in a space, in this case R2. Different choices
of points will result in different geometric realisations.

For the remainder of this thesis, “simplicial complexes” will be abstract simplicial
complexes, and “realised simplicial complexes”, will refer to the simplicial complex
from Definition 4.6, which is an actual topological space.

5. Simplicial Homology

One of the most essential tools from algebraic topology is homology. For any
topological space, we assign groups, the homology groups, that are invariant un-
der homotopy equivalences (and therefore also homeomorphisms). This provides
a good tool to distinguish topologically distinct spaces. To study the topology of
data we will use persistent homology, a method that is based on computing the ho-
mology groups of spaces associated with the data at different “scales”. We will here
introduce simplicial homology briefly. For a thorough introduction to simplicial
homology, see [33, Chapter 1].

Definition 5.1. Let L be a simplicial complex. A simplicial n-chain on L with
coefficients in the abelian group G, is a finite sum of the form∑

λ∈Λ

cλσλ,

where σλ ∈ L is an n-simplex and cλ ∈ G, for all λ in some finite index set Λ.

14 BIRK D. RAMBERG

The group of simplicial n-chains on L over G is written Cn(L;G). This is the free
abelian group on the set of n-simplices in L. Addition is defined component-wise.
If G is a field, then Cn(L;G) is a vector space. We write C•(L;G) to refer to the
groups of simplicial n-chains in all dimensions. We have that C•(L;G) is a chain
complex, see [19, Chapter 2.1], but we will not bother to introduce chain complexes
here.

Remark 5.2. Usually, we will have coefficients in Z,R,Q or in the finite fields
Fp. The finite field F2 creates a particularly simple situation where signs and
orientations do not matter.

An n-simplex has (n − 1)-simplices as its faces. These faces constitute the n-
simplex’ boundary.

Definition 5.3. We can define a map on an n-simplex σ = {p0, p1, . . . , pn} by

∂(σ) =

n∑
i=0

(−1)i∂iσ,

where ∂iσ is the i-th face of σ, that is the set {p0, . . . pi−1, pi+1, . . . , pn}. We can ex-
tend linearly to obtain a unique group homomorphism ∂ : Cn(L;G) → Cn−1(L;G),
that is, we define

∂

(∑
λ∈Λ

cλσλ

)
=
∑
λ∈Λ

cλ∂(σλ),

which can easily be verified to be a group homomorphism. We call this operator
the boundary operator.

Remark 5.4. Strictly speaking, this defines a boundary operator ∂ on Cn(L;G)
for each n ∈ N, but we will understand which of these boundary operators we are
dealing with from the dimension of the n-chains we apply it to.

Remark 5.5. The sign in Definition 5.3 captures the orientation of the simplices.
Since the definition uses the ordering of the vertices that form a simplex, and we
have defined abstract simplices as sets, we need to be a bit careful. Therefore, we
require a total ordering of the vertex set, and denote simplices with the vertices
in increasing order. In practice, we usually use coefficients in F2, so the signs in
Definition 5.3 do not matter, and therefore the ordering of vertices is irrelevant.

A straightforward computation of ∂(∂(σ)), for an n-simplex σ, will show that
every face of a face occurs one time with positive sign and one time with a negative
sign. This yields the following result, which is necessary for the construction of the
homology groups.

Lemma 5.6. The composition ∂ ◦ ∂ = 0.

Definition 5.7. The group of simplicial n-cycles Zn(L;G) ⊆ Cn(L;G) is the
kernel of the boundary operator, i.e.

Zn(L;G) = ker(∂ : Cn(L;G) → Cn−1(L;G)).

The group of simplicial n-boundaries Bn(L;G) ⊆ Cn(L;G) is the image of
the boundary operator, i.e.

Bn(L;G) = Im(∂ : Cn+1(L;G) → Cn(L;G)).

TDA AND THE ACTIVATIONS IN A CNN 15

Figure 7. A simplicial complex L.

The n-th simplicial homology group Hn(L;G) is the quotient group

Hn(L;G) = Zn(L;G)/Bn(L;G).

Remark 5.8. The above defines simplicial homology of a simplicial complex. Based
on similar ideas, we can define singular homology of any topological space, but this
is beyond the scope of this thesis. The takeaway here is that (singular) homology
is defined for any topological space, so it does for example make sense to speak
about the homology of Pr. Moreover, if a space X is homotopy equivalent to the
geometric realisation of a simplicial complex L, then the simplicial homology of
L coincides with the singular homology of X. See the lecture notes by Haugseng
[20] for a good introduction to singular homology, or Hatcher [19, Chapter 2.1] for
definitions and proof of the above result.

The homology groups consists of the cycles that are not boundaries, and two
cycles are considered the same if they differ by a boundary.

In Figure 7 we see a simplicial complex, say L. Let us investigate the 0-
dimensional simplicial homology group H0(L;Fp) of this simplicial complex. We
order the simplices lexicographically to allow p ̸= 2. We denote the n-simplices
without the set brackets, e.g. ABH = {A,B,H}. The vertex A is clearly a 0-cycle.
In fact, any vertex is a 0-cycle. In particular, B is also a 0-cycle. But we see that
B − A = ∂AB, that is, A and B differ by a boundary, so [A] = [B] in H0(L;Fp).
Similarly B and C differ by a boundary and belong to the same class in H0(L;Fp).

16 BIRK D. RAMBERG

We thus see that the group H0(L;Fp) consists of one class for each path-component
in L.

Let us now consider the 1-dimensional simplicial homology group H1(L;Fp).
Consider the simplicial 1-chain BD +DF + FH −BH. We see that in

∂(BD +DF + FH −BH)

every vertex B,D,F and H occurs one time with a positive sign and once with a
negative sign, so BD+DF +FH −BH is a 1-cycle. The 1-chain BC +CD−BD
is also a 1-cycle, by the same argument, but this is exactly the boundary of the
2-simplex BCD, so [BC + CD −BD] = 0 in H1(L;Fp). The 1-chain BC + CD +
DF +FH −BH is also a 1-cycle, but it differs from BD+DF +FH −BH by the
boundary of BCD, so they belong to the same homology class. After continuing
this process, we would conclude that H1(L;Fp) consists of 1 non-zero element,
represented by BD +DF + FH −BH.

Notice that the simplicial complex in Figure 7 is homotopy equivalent to the circle
S1, and hence, they have the same homology groups in all dimensions, namely

H0(S
1;Fp) = Fp, H1(S

1;Fp) = Fp

and Hn(S
1;Fp) = 0 for all n ≥ 2.

Intuitively, a 1-cycle is a 1-boundary if and only if everything the cycle encloses
is also part of the simplicial complex. Moreover, two 1-cycles enclose the same
hole if and only if they differ by a boundary. The higher-dimensional intuition is
similar, but holes are replaced by n-dimensional voids. Intuitive interpretation can
also become significantly more tricky when the homology groups involve torsion
subgroups, as happens for example for non-orientable spaces like the Klein bottle
or the real projective space RP2.

6. Persistent Homology

Recall the problem description: We have a metric space M , a point cloud P ⊆ M ,
sampled from the space K ⊆ M , and we want to study the topology of K. We need
to associate topologically meaningful spaces to the point cloud P , and the union of
closed balls

Pr = {x ∈ M : min
p∈P

d(p, x) ≤ r}

is a good candidate for such a space. Then Pr is also a subspace of M and has the
metric topology. We could represent the space Pr as a realised simplicial complex
and compute the simplicial homology. This would give us information about the
topology of Pr and under certain assumptions about K.

For now, assume r is fixed. We want to compute the simplicial homology of Pr.
The Čech complex is a natural candidate for a simplicial complex that is closely
related to the union of balls Pr.

Definition 6.1. Given a metric space M and a point cloud P ⊆ M , the Čech
complex of P at scale r is

Čechr(P) =

{
σ ⊆ P :

⋂
p∈σ

Br(p) ̸= ∅

}
,

where Br(p) denotes the closed ball of radius r, centred at p.

TDA AND THE ACTIVATIONS IN A CNN 17

The Nerve Theorem establishes the relationship between Pr and Čechr(P). We
first need to define nerves.

Definition 6.2. Let U = {Ui}i∈I be a finite collection of sets. The nerve of U is
the simplicial complex

N (U) = {σ :
⋂
i∈σ

Ui ̸= ∅}.

Theorem 6.3 (The Nerve Theorem). Let U be a collection of closed convex sets
in Rn such that any intersection between sets in U is contractible or empty. Then
|N (U)| is homotopy equivalent to

⋃
U∈U U .

This theorem is typically stated without proof in the literature. See for example
the book by Edelsbrunner and Harer [14, p. III.2] for a general statement of the
theorem. For a discussion and proof of another formulation of the theorem see
Hatcher [19, Corollary 4G.3].

Remark 6.4. A contractible space is a space that is homotopy equivalent to a
point.

The Nerve Theorem tells us that the geometric realisation of the Čech complex
is actually homotopy equivalent to the union of balls Pr. The homology of the
space Pr is therefore the same as the simplicial homology of the Čech complex of
P at scale r. The simplicial homology of Čechr(P) can be computed through the
reduction of a matrix representing the boundary operator in the basis given by the
simplices in all dimensions in the Čech complex [64]. From the reduced matrix we
can systematically read off the homology groups of the simplicial complex in all
dimensions.

Example 6.5. Let us compute the simplicial homology of the Čech complex in
Figure 8, with coefficients in Fp. Denote the simplicial complex by X. The complex
consists of the vertices

X0 = {A,B,C,D,E, F},

the 1-simplices

X1 = {AB,AC,BC,BD,CF,DE,DF,EF}

and the 2-simplices

X2 = {ABC,DEF}.

Up to a maximal given dimension of interest n, the boundary operators in all
dimensions form a linear transform on vector spaces

C0(X;Fp)⊕ · · · ⊕ Cn(X;Fp) → C0(X;Fp)⊕ · · · ⊕ Cn−1(X;Fp).

18 BIRK D. RAMBERG

Figure 8. The Čech complex of the point cloud with 6 points
A,B,C,D,E and F at the scale indicated by the green disks.

We can therefore represent the boundary operator as a linear transformation rep-
resented by the matrix

D =

A . . . F AB AC BC BD CF DE DF EF ABC DEF



A 1 1
B −1 1 1
C −1 −1 1
D −1 1 1
E −1 1
F −1 −1 −1
AB 1
AC −1
BC 1
BD
CF
DE 1
DF −1
EF 1
ABC
DEF

,

TDA AND THE ACTIVATIONS IN A CNN 19

where all the other entries are 0. Simplicial homology can now be computed by
reducing the boundary operator matrix. In our case, this results in

dimH0(X;Fp) = 1,

since any pair of vertices differ by the boundary of a path between them. We also
get

dimH1(X;Fp) = 1,

since the cycle BD+DF −CF −BC is not a boundary. The cycles AB+BC−AC
and DE +EF −DF are both boundaries, while the cycles like AB +BD+DF −
FC − AC differ from BD + DF − CF − BC by a boundary. The 2-dimensional
homology group H2(X;Fp) is zero.

At this point we can make two observations that solve the question of how to
choose the radius r. We will work with coefficients in a finite field Fp, so the
homology groups will be vector spaces.

Observation 6.6. For r′ ≤ r we have that Čechr′(P) ⊆ Čechr(P), similarly to
how we have Pr′ ⊆ Pr. For a finite point cloud P , we have a finite number of values
of r where Čechr(P) changes. In other words, there exist r0, r1, . . . , rn such that

(1) Čechr0(P) ⊆ Čechr1(P) ⊆ · · · ⊆ Čechrn(P),

and for any r ∈ R, we have that Čechr(P) = Čechri(P), for some 0 ≤ i ≤ n.

Observation 6.7. Define the scale of a n-simplex σ to be the smallest ri such
that σ ∈ Čechri(P) from (1). Let D be the boundary operator on C•(Čechrn(P);Fp),
represented in the basis consisting of all the simplices in Čechrn(P), ordered in in-
creasing scale firstly and increasing dimension secondly. Then D is upper diagonal,
since the boundary of a simplex has lower dimension and is a sum of simplices with
smaller or equal scale. It follows that if we reduce the matrix D, we have also re-
duced the sub-matrices that represent the boundary operators on C•(Čechri(P);Fp)
for all 0 ≤ i ≤ n.

Example 6.8. Consider again the simplicial complex in Figure 8. The basis for
the boundary operator matrix is in this example already ordered as described in
Observation 6.7. Let Y be the smaller Čech complex that consists of the same
vertices and edges, but without the 2-simplices. Let D′ be the boundary operator
matrix for Y . Then D′ is the submatrix of D obtained by removing the two rows
and columns corresponding to ABC and DEF . If we reduce D with a method that
respects the ordering of the basis, then D′ reduced is a submatrix of D reduced.

If Z is the Čech complex from Figure 8, but also containing the edges BF and
CD and the 2-simplices BCD, BCF , BDF and CDF , the ordering of the basis
should be

A,B, . . . , F,AB,AC, . . . , EF,ABC,DEF,BF,CD,BCD,BCF,BDF,CDF.

By computing the reduced boundary operator matrix with this basis we get the
reduced versions of both D and D′ as submatrices.

We see that if we compute the simplicial homology of Čechr(P), we simultane-
ously compute the simplicial homology of Čechr′(P) for all r′ ≤ r, and there are a
finite number of relevant such values r′.

We can actually retrieve more information from the reduced version of D. By
starting with only the simplices of scale r0 we can find generators (which must be

20 BIRK D. RAMBERG

Figure 9. Čech complexes at different scales, indicated by the
green disks.

Figure 10. Čech complexes at different scales, indicated by the
green disks.

cycles that are not boundaries) for the homology groups of different dimensions.
When we include the simplices of scale r1, some of the generators may become
boundaries, some new cycles may appear and some of the generators will remain
generators. We can continue this process and include the simplices of scale r2, r3 up
to rn. Subject to being able to represent the generators in a suitable basis, we can
track the birth and death of the generators of different dimensions as we increase
the scale.

Not only have we computed the homology of Pr at all values of r, but we also
track the generators across different scales. We could for example identify that a
particular loop is present in Pri , Prj and all values of r between ri and rj . That
is far more useful than being able to say that we know there is a loop in both Pri

and Prj , but without knowing whether it is the same loop or not. This is the idea
behind persistence.

Remark 6.9. We can always represent the generators in a suitable basis, see the
paper on computing persistent homology [64]. The result is, however, best explained
using functoriality and persistence modules, which we will not discuss here. See
[36, Chapter 1.2] or [40, Section 7.2] for the result.

Example 6.10. Consider the Čech complexes at different scales in Figure 9 and
Figure 10. Let X(1), X(2), X(3) and X(4) denote the simplicial complexes from left
to right in Figure 9 and Y (1), Y (2), Y (3) and Y (4) the complexes in Figure 10. For
ease of notation, let us define the n-th Betti number of a simplicial complex Z with
coefficients Fp

βn(Z;Fp) = rankHn(Z;Fp) = dimHn(Z;Fp),

TDA AND THE ACTIVATIONS IN A CNN 21

Figure 11. Persistence barcode for the simplicial complexes in
Figure 9 (left) and Figure 10 (right). The x-axis is the scale of the
Čech complexes of the point clouds in Figure 9 and Figure 10.

Figure 12. Persistence diagrams for the simplicial complexes in
Figure 9 and Figure 10. The axes correspond to the scale of the
Čech complexes.

where the last equality holds because Fp is a field and hence Hn(Z;Fp) is a vector
space. We can compute the Betti numbers of the simplicial complexes and get that

β0(X
(1)) = 7 β0(X

(2)) = 4 β0(X
(3)) = 1 β0(X

(4)) = 1

β1(X
(1)) = 0 β1(X

(2)) = 1 β1(X
(3)) = 1 β1(X

(4)) = 0,

with coefficients in Fp. This computation can be done efficiently by reducing only
the boundary operator matrix for X(4). We also get

β0(Y
(1)) = 8 β0(Y

(2)) = 1 β0(Y
(3)) = 1 β0(Y

(4)) = 1

β1(Y
(1)) = 0 β1(Y

(2)) = 1 β1(Y
(3)) = 1 β1(Y

(4)) = 0,

The 0-dimensional Betti numbers are not the same but the 1-dimensional Betti
numbers are the same for X(i) and Y (i) for all 1 ≤ i ≤ 4. But the spaces we are
investigating are quite different in terms of 1-dimensional holes. In Figure 9 there
are two structures that result in non-zero Betti numbers, while in Figure 10 there
is only 1, but this one seems more “significant”, in some sense of the word. Let us

22 BIRK D. RAMBERG

try to track the generators for the 1-dimensional homology groups in the complexes
from left to right.

In X(1) there are no 1-cycles. In X(2) the 1-cycle AB+BD−CD−AC is born. In
X(3) the cycle DE+EG−FG−DF is born, while the 1-cycle AB+BD−CD−AC
just died. In X(4) all 1-cycles are dead. To summarise, one generator is born in
X(1) and dies in X(2), while one generator is born in X(2) and dies in X(3).

In Figure 10 a 1-cycle is born in Y (2), is present in Y (3) and dies in Y (4).
We can draw the birth and death of the generators as a barplot. This is done in

Figure 11, where we have set the distances between the closest points in Figure 9
and Figure 10 to be 1. The x-axis in the plot corresponds to the scale of the Čech
complex.

The barcode tells us the scale of birth and death of the generators of the different
homology groups. Barplots are a common way to visualise the output from persis-
tence homology. The most common way to visualise the output is as a persistence
diagram. In a persistence diagram we represent each bar as a point with its birth
and death as its coordinates. Figure 12 shows persistence diagrams of the barcodes
from Figure 11. We can see the length of the bar, or the persistence of the gen-
erator, as the corresponding point’s distance from the diagonal in the persistence
diagram. In this example we see that the loop in Figure 10 is more persistent than
those in Figure 9, and this seems to be because it is a more prominent feature of
the point cloud.

The theory behind persistent homology justifies the idea that the most persistent
features (long bars) correspond to global features in the data [14], while short-lived
features (short bars) are attributed to noise, local features or local structure in the
data [2]. In this thesis we will use persistent homology to detect global features in
the data.

6.1. The Vietoris–Rips complex. When computing persistent homology (or co-
homology) we rarely deal with the Čech complex, but rather the Vietoris–Rips
complex. This is because the Vietoris–Rips complex is combinatorially simpler and
better suited for computations.

Definition 6.11. The Vietoris–Rips complex at scale r of a point cloud P , in
a metric space, is the simplicial complex

VRr(P) = {σ ⊆ P : diam(σ) ≤ 2r}.
The diameter of a subset σ is defined as

diam(σ) = max
p,q∈σ

d(p, q),

where d is the metric of the metric space.

Note that the properties of the Čech complex that we use in Observations 6.6 and
6.7 also apply to the Vietoris–Rips complex, so we can replace the Čech complex
with the Vietoris–Rips complex in the computation of persistent homology, of course
with potentially different results.

Remark 6.12. From the definition, we can observe that a simplex σ is in VRr(P)
if and only if for any pair of vertices p, q ∈ σ the edge {p, q} is in VRr(P). Thus,
VRr(P) is determined entirely by its vertices and edges. When computing per-
sistent homology with Vietoris–Rips complexes this results in far fewer short-lived

TDA AND THE ACTIVATIONS IN A CNN 23

homology generators than with the Čech complex. For example, when using the
Čech complex, any three points forming an acute triangle will result in a short-lived
generator in dimension 1. The number of scales of interests, as defined in Observa-
tion 6.6, will also be strictly smaller when we use the Vietoris–Rips complex.

The geometric realisation of the Vietoris–Rips complex is not homotopy equiv-
alent to the union of balls Pr, but we can easily derive the relation

Čechr(P) ⊆ VRr(P) ⊆ Čech2r(P).

We can strengthen this relationship and obtain

Čechr(P) ⊆ VRr(P) ⊆ Čech2δr(P),

where δ =
√

d
2(d+1) , see [14, Chapter III.2] for proof (they prove the above result,

even though their statement of the result is weaker). Intuitively, we see that the
Čech complex and the Vietoris–Rips complex are very similar. Using functoriality
of homology, interleaving distances and the stability of persistent homology, we can
prove that replacing the Čech complex with the Vietoris–Rips complex results in
bounded small perturbation of the persistence diagram, see [36, Chapter 5.1].

All computations of persistent (co)-homology in this thesis are done with the
Ripser software [4], which uses Vietoris–Rips complexes.

6.2. Preprocessing for Persistent Homology. Persistent homology is highly
sensitive to outliers. For example, a single point in the middle of a circle will
dramatically decrease the death time of the generator corresponding to that circle.
Persistent homology is also impractical to compute for very large datasets (>∼
10000). In order to address these weaknesses, one usually does some preprocessing
of the data before computing persistent homology. We do combinations of two
kinds of preprocessing in this thesis: Codensity Filtration and Denoising.

6.2.1. Codensity Filtration.

Definition 6.13. Let P be a point cloud with a metric d. For a positive natural
number k we define the k-codensity of a point p ∈ P to be d(p, y), where y is the
k-th closest point to p in P .

Remark 6.14. The inverse 1
d(p,y) is an estimate for the density at point p. For

small k this density approximation is quite local, while for large k the codensity
essentially becomes an eccentricity measure, that is a measure of how far from the
centre of data the point p lies.

We will use codensity to estimate the density of the point cloud P and then
filter away points in low-density regions. This will reduce the number of points and
focus on the shape of high density regions. This is in line with Remark 2.1 about
considering the points in P to be samples drawn from a probability distribution on
the metric space M . In this case we are interested in the topology of the subspace of
high probability, which should correspond to regions of M that are densely sampled.

Figure 13 illustrates how a codensity filtration might help reveal underlying
structure in noisy data. The codensity parameter k is essential to separate what is
global and local structure of the data. The number of points we keep is also very
essential to choose right, as illustrated by the figure.

24 BIRK D. RAMBERG

Figure 13. A circle with radius 1 sampled with Gaussian noise at
different codensity filtrations levels. Codensity parameter k = 500
is the same for all plots.

6.2.2. Denoising. The spaces we work in are typically high-dimensional and there-
fore quite sparsely populated with points. Moving the points to lower-dimensional
parts of the whole space is helpful in remedying the curse of dimensionality [57] for
this application. We do this by an iterative denoising.

Definition 6.15 (Denoising). Given a natural number k, the denoising algo-
rithm can be described as follows.
P ′ = ∅
for p in P do

add the centroid of p and its k nearest neighbours to P ′

end for
return P ′

Remark 6.16. If P ⊆ M with M ̸= Rm for some m, one might have to define
what “centroid” of a set of points in M should mean, but we always have M = Rm

in this thesis when we apply denoising.

Remark 6.17. Definition 6.15 refers to one iteration of the denoising algorithm.
Some times we will repeat the denoising process a couple of times.

This denoising process has the property that it collapses high-dimensional sub-
spaces spanned by the data points into lower-dimensional spaces. Figure 14 il-
lustrates this on a dataset from a noisy circle. It is quite clear that the denoising
process destroys the local structure of the dataset by introducing spurious local pat-
terns, like those visible after 3 iterations. However, the global structure is preserved,
at least after just a few iterations. The denoising parameter k from Definition 6.15
determines what is considered global structure. In the limit, the data will converge
to a number of dense 0-dimensional clusters, as it is starting to do after 5 iterations
in Figure 14. In practice, 1 or 2 iterations is typically chosen.

The denoising process can easily create structure that is not actually present in
the data, as seen in the third plot in Figure 14. We illustrate this by doing denoising
on random uniform data in Figure 15. After one iteration we see that the denoising
shrinks the boundaries of the data, and therefore gets a high density region on the
boundary. This results in spurious loop structures emerging after 3 and 5 iterations.
We should therefore be a bit careful with results obtained after doing denoising. In
addition, it seems to be a good idea to not do more than 1 iteration of denoising.

TDA AND THE ACTIVATIONS IN A CNN 25

Figure 14. Different iterations denoising of a noisy circle. De-
noising parameter k = 50. Uniform noise

Figure 15. Different iterations denoising of random uniform data.
Denoising parameter k = 100. Spurious structure arises when
doing multiple iterations.

There is little reason to expect such kind of spurious structures arising after doing
codensity filtration only.

7. Circular Parametrisation

Many times after identifying a persistent loop in a dataset, we might be inter-
ested in getting a parametrisation of the loop. This could be useful in order to
investigate the loop further or to reduce the dimensionality of the dataset. Simpli-
cial cohomology, the dual of simplicial homology, will give us a way to create such a
parametrisation, following the work of de Silva, Morozov and Vejdemo-Johansson
[47].

7.1. Simplicial Cohomology. First we need to define simplicial cohomology.

Definition 7.1. Let L be a simplicial complex. An n-cochain in L over the group
of coefficients G is a homomorphism ϕ : Cn(L;Z) → G. The group of n-cochains
in L over G is the group of such homomorphisms

Cn(L;G) = Hom(Cn(L;Z), G),

where addition is defined by (α+β)(σ) = α(σ)+β(σ) for α, β ∈ Hom(Cn(L;Z), G)
and σ ∈ Cn(L;Z).

Remark 7.2. With coefficients in a field F, the simplicial cohomology groups
C•(L;F) are vector spaces; the dual vector spaces of the simplicial homology groups
C•(L;F).

26 BIRK D. RAMBERG

In order to define simplicial cohomology we need a coboundary operator.

Definition 7.3. The coboundary operator ∂n : Cn(L;G) → Cn+1(L;G) is the
group homomorphism defined by

∂n(α)(σ) = α(∂n+1(σ)),

for σ ∈ Cn+1(L;Z) and α ∈ Cn(L;G), where ∂n+1 : Cn+1(L;Z) → Cn(L;Z) is the
boundary operator on simplicial (n+ 1)-chains.

Remark 7.4. The coboundary operator takes n-cochains to (n + 1)-cochains, as
opposed to the boundary operator which takes n-chains to (n− 1)-chains.

We can define simplicial cohomology similarly to how we defined simplicial ho-
mology earlier.

Definition 7.5. Let L be a simplicial complex and G the group of coefficients.
The group of simplicial n-cocycles Zn(L;G) ⊆ Cn(L;G) is the kernel of the
coboundary operator, i.e.

Zn(L;G) = ker(∂n : Cn(L;G) → Cn+1(L;G)).

The group of simplicial n-coboundaries Bn(L;G) ⊆ Cn(L;G) is the image of
the coboundary operator, i.e.

Bn(L;G) = Im(∂n−1 : Cn−1(L;G) → Cn(L;G)).

The n-th simplicial cohomology group Hn(L;G) is the quotient group

Hn(L;G) = Zn(L;G)/Bn(L;G).

From the universal coefficient theorem for cohomology, see [19, Theorem 3.2], we
can deduce that since Hn(L;F) is a vector space for all n, that

Hn(L;Fp) ∼= Hn(L;Fp).

In other words, simplicial homology and cohomology agree when we have coefficients
in a field.

So what was the point of introducing simplicial cohomology when it turns out
to be the same as simplicial homology in the case we are interested in? There are
at least two answers to this question.

Notice that we can represent the coboundary operator as a matrix D′ with re-
spect to the same basis as in Observation 6.7, ordered in increasing scale firstly, but
decreasing dimension secondly. This will again make the matrix D′ upper diago-
nal and all the arguments following the observations the same. We can therefore
compute persistent homology indirectly by computing persistent cohomology, and
it turns out that this is considerably faster in practice (when combined with certain
tricks) [4].

The main reason to introduce simplicial cohomology in this thesis is that it
allows us to create a circular parametrisation of the loops we find with persistent
(co)homology.

7.2. Circular Parametrisation. In the paper [47], de Silva, Morozov and Vejdemo-
Johansson introduce a procedure for obtaining a circular parameter from the results
of a computation of persistent cohomology. We start by making explicit what we
mean by a circular parameter.

The dimensionality reduction problem is usually stated as follows: Given a point
cloud P with a metric d, find a mapping P → Rn, for some, typically small, n ∈ N,

TDA AND THE ACTIVATIONS IN A CNN 27

0

/2

3 /2

2

Figure 16. Data P sampled from a manifold M ∼= S1, coloured
by the angle in S1, under a homeomorphism M → S1.

preserving the intrinsic structure of the data. What is meant by “preserving the
intrinsic structure of the data” could be defined in a variety of ways. For example,
some methods aim to create an embedding that makes the smallest possible change
to the pairwise distances between points, some do this but focusing only on the
pairwise distances between nearby points (local methods) and others by emphasis-
ing the longer distances (global methods). Other methods assume that the data P
is sampled from an n-dimensional manifold M , and should therefore be embeddable
in Rn (at least locally), and aim to essentially find a homeomorphism between the
manifold and the embedding space Rn.

Common for most dimensionality reduction methods is that they aim to embed
the data in the space Rn, but this is clearly not a suitable space for all kinds of
data. The simplest example is of course the circle S1, which is a 1-dimensional
manifold that cannot be embedded in R1. If we have data P that lies on a circle,
or any loop that is homeomorphic to S1, the best representation of the data is
the distance along the loop from some point of reference. This is illustrated in
Figure 16. We understand that the suitable dimensionality reduction for P is a
function θ : P → S1, not a function P → Rn for some n. We call θ a circular
parametrisation of P and the values associated with each point in P under θ, the
circular parameters.

Finding a circular parametrisation of a loop in a dataset is considerably more
difficult than it first might seem. This is in part due to the fact that data rarely
looks like that in Figure 16. For example, the data might be of a higher dimension,
it might be noisier so the loop is thicker, perhaps the loop does not constitute the
whole space or the density of the data might change significantly across the loop.
Moreover, there might be more than 1 loop present in the data, for example if the
data lies on the torus S1 × S1.

28 BIRK D. RAMBERG

In the paper [47] by de Silva, Morozov and Vejdemo-Johansson, the authors
design a circular parametrisation based on the equation from homotopy theory

(2) [X,S1] = H1(X;Z),
where X is a topological space with the homotopy type of a cell complex (see [33,
Chapter 4 §38], and [X,S1] is the set (which also has a group structure that makes
(2) a isomorphism [19, Theorem 4.57]) of homotopy equivalence classes of continu-
ous maps X → S1. Since maps X → S1 are exactly the circular parametrisations we
are looking for, non-zero elements in H1(X;Z), i.e. cocycles in X, provide us with
a good starting point for creating circular parametrisations on X. If H1(X;Z) = 0,
no loops are present in the data so we need not bother with looking for circular
parametrisations.

As in the previous sections about persistent homology, we first encounter the
problem that X in (2) is a topological space while the point cloud P we are deal-
ing with has the discrete topology. We will again overcome this by associating a
simplicial complex to the point cloud, typically a Vietoris–Rips complex VRr(P).
Through a computation of persistent cohomology, we find a significant cocycle to
use as a starting point and identify a scale r of the simplicial complex where this
cocycle is present. If we find no significant cocycles with persistent cohomology,
we conclude that the data is unsuitable for a circular parametrisation. If we find a
significant cocycle, we can choose as scale r some value between the scales of birth
and death for this cocycle. Then the cocycle will be present in the simplicial com-
plex VRr(P), and we can use this cocycle to construct a circular parametrisation
of the space VRr(P).

A cocycle in VRr(P) found with persistent cohomology is an element in
H1(VRr(P);Fp), not in H1(VRr(P);Z). However, through a few theoretically
justified steps, see original paper [47], we can obtain a circular parametrisation
θ : VRr(P) → S1. In practice, the method takes as inputs a cocycle and the
edges in the simplicial complex at the chosen scale, solves an optimisation problem
that essentially minimises the change of the circular parameter along the edges of
the simplicial complex, and returns the circular parameter for all vertices that are
present in the cocycle. From the circular parameter values on the vertices, the cir-
cular parametrisation θ : VRr(P) → S1 can be determined on the whole simplicial
complex. This allows us to compute a circular parameter value for previously un-
seen points through interpolation, as long as they lie within the simplicial complex
VRr(P).

Constructing a circular parametrisation from significant cocycles (loops) detected
with persistent cohomology makes it easier to unwrap the meaning of the loop, as
well as providing us with a tool to indicate the loop in other visualisations of the
data. Thus, the circular parametrisation procedure allows us to build stronger
confidence in the results of a computation of persistent cohomology. Moreover,
the quantitative nature of the circular parametrisation makes it useful for further
quantitative investigations, as opposed to the qualitative nature of a result like
“presence of significant cocycle(s)”.

TDA AND THE ACTIVATIONS IN A CNN 29

Figure 17. Reeb graphs of the torus for projections on different
axes.

8. Mapper

In this section I will introduce Mapper; a tool for unsupervised exploratory
analysis of topological properties of data, particularly useful for high-dimensional
datasets. Mapper was first introduced in [50] by Singh et al.

Before we introduce Mapper, let us define Reeb graphs. As we will see later,
Mapper can be understood as a discrete approximation of a Reeb graph.

Definition 8.1. Let X be a topological space and f : X → R a continuous function
on X. We will often refer to f as the filter function. For t ∈ R, let f−1(t) be
the preimage image of t under f in X, also known as the fibre. The Reeb graph
of X with respect to f is the quotient space X/∼, where ∼ is the equivalence
relation such that x ∼ y if and only if f(x) = f(y) and x and y lie in the same
path-component in the fibre f−1(f(x)).

Example 8.2. Let T be the surface of revolution that is homeomorphic to the two-
torus T2 = S1 × S1, embedded in R3 so that the central circle lies in the xy-plane.
Let f : T → R be the projection on the y-axis and g : T → R the projection on
the z-axis. In Figure 17 we see the Reeb graphs for the different functions. This
illustrates the idea that the Reeb graph gives us a simplified version of the space
X as seen through the lens of the filter function. Different functions can result in
different Reeb graphs. The projection on the y-axis recovers the hole in the middle
of the torus, while the projection on the z-axis recovers the enclosed hole of the
torus.

We can also define a “Reeb graph”, which will not necessarily be a graph, for
filter functions that are f : X → Rm for m > 1 in the same way as in Definition
8.1.

Let f : X → R2 be the projection on any two non-parallel axes for the surface
of revolution T. The preimage under f of any point in R2 will then consist of the
intersection between T and a straight line. This preimage will then consist of 0, 1,
2, 3 or 4 disconnected points. Thus the “Reeb graph” of T with respect to f is then
homeomorphic to T itself.

Let T′ denote the surface of revolution that is homeomorphic to the filled-in two-
torus S1×D2, where D2 is the unit disk. Again we can consider T′ embedded as in
Figure 17. The “Reeb graph” of T′ with respect to the projection on the xy-plane
is homeomorphic to the annulus, e.g. {x ∈ R2 : 1 ≤ ∥x∥ ≤ 2}. The “Reeb graph”
of T′ with respect to the projection on the xz-plane is homeomorphic to the upper
right Reeb graph in Figure 17 times the unit interval I.

30 BIRK D. RAMBERG

Figure 18. The Mapper pipeline. Left: The two dimensional
data. The covering is illustrated with the lines and the overlap of
the covers with the yellow region. The filter function is the projec-
tion on the vertical axis. Second from the left: The preimages of
the covering. Second from the right: One node per cluster in each
of the preimages. Right: We get a graph by adding edges between
any clusters with points in common.

In our setting, we view data as a point cloud. In practice, P is not an interesting
topological space, since it consists only of disconnected points. Any point in P is
its own path-component. and therefore the Reeb graph of P is homeomorphic to P ,
regardless of the filter function. It is clear that in order to construct a meaningful
analogy of the Reeb graph in the finite, discrete setting we are dealing with, we
have to relax our notions of continuity.

The first way we do this is by looking at clusters of data instead of path-
components. Intuitively, if we assume that P is sampled from some space K,
clusters in the data will correspond to path-components in K. Clustering methods
are built on different assumptions, but they all aim at partitioning a dataset in a
similar way as we can partition a topological space into path-components.

The second adjustment we do, is to consider preimages of open sets instead of
fibres. We see that since P is finite, only a finite number of fibres can be non-empty,
and this would make our analogy of the Reeb graph highly disconnected.

Definition 8.3 (Mapper). Let P be a point cloud, f : P → Rm a filter function
for some m ∈ N and U = {Ui} a finite cover of Im f . Assume also that we have a
clustering algorithm that partitions any subset V ⊆ P into clusters V1, V2, . . . , Vn.

Now, since U is a cover of Im f , we have a cover of P

f∗(U) = {f−1(U) : U ∈ U}.

By clustering each set f−1(U) ∈ f∗(U) into subsets we get another cover of P

f̂∗(U) = {V : V is a cluster in f−1(U) for f−1(U) ∈ f∗(U)}.

The Mapper complex is the nerve of this cover

N (f̂∗(U)).

In practice, we usually talk about the Mapper graph which is simply the 1-
skeleton of the Mapper complex.

Example 8.4. Figure 18 illustrates the Mapper pipeline. We see that the circle
and the flare are both preserved in the resulting Mapper graph.

TDA AND THE ACTIVATIONS IN A CNN 31

Figure 19. Three dimensional synthetic data, coloured by the y-
coordinate value.

Figure 20. Mapper graph of the data in Figure 19. Projection
on the y-axis is used as filter function. The covering is balanced,
with 25 intervals and overlap 0.3. For clustering we use DBSCAN
[16] with eps 0.2 and min_samples 9. The min_intersection is 1.
The data is coloured by the average y-value in each node.

32 BIRK D. RAMBERG

Figure 21. Uniform random data (X ∼ U([0, 1]), Y ∼ U([0, 1]))
coloured with the labels found by k-means clustering with k = 4.

Remark 8.5. The Mapper complex is defined as a nerve. A goal for Mapper could
be to recover the homotopy type of the data, as is the case if the assumptions
of the Nerve Theorem (Theorem 6.3) are satisfied. These assumptions depend on
what kind of clustering algorithms are used. The Reeb graph does, for example, not
always recover the homotopy type of the original space, as the example in Figure 17
illustrates. It is easy to see that in this case the fibres are not contractible, and
this is the reason the nerve theorem does not apply. It is not easy to do these
considerations about unknown spaces, like those we typically deal with in a data
setting.

When applying Mapper to a dataset we have to make many choices of methods
and parameters. We need to choose a filter function on the dataset, a cover U and a
way to cluster the data. In this thesis we will use projection on one or two principal
components [22] as filter function. We will cover the image of the filter function
by intervals or rectangles. The intervals and rectangles will either all be equal in
size, we call this a “uniform” covering, or all contain the same number of points in
their preimage, we call this a “balanced” covering. The intervals or rectangles must
have a specified overlap, and we define this in terms of the fractional overlap with
the next interval or rectangle, in terms of area of rectangles or length of intervals.
We will use scikit-learn’s [37] k-means clustering implementation, choosing only
the number of clusters. Some times we will use ToMaTo clustering [10, 1] instead
of k-means. For better robustness to outliers and noise, we sometimes increase the
number of points two nodes must have in common for an edge to join them. We
refer to this as the min_intersection. We use giotto-tda’s [54] implementation of
Mapper.

Example 8.6. Let us apply Mapper to the synthetic data in Figure 19. The result
is shown in Figure 20. We see that we get two connected components in the Mapper
graph, corresponding to the “connected components” in the data. The line segment
looks like a line segment in the Mapper graph as well. The loop is present in the
Mapper graph, but with three flares instead of the one that we have in the original
data. The short flares are due to the “thickness” of the loop. This is the same thing
that happened with the Reeb graph of the torus in Example 8.2.

TDA AND THE ACTIVATIONS IN A CNN 33

Figure 22. Mapper graph of uniform data. The filter function is
projection on the two components. We use a balanced 8× 8 cover
with 0.3 overlap. For clustering we use ToMaTo clustering with
k = 50 and τ = 0.5. The min_intersection is 1. The points are
coloured by the average x-value of the data points belonging to the
node.

Figure 23. Mapper graph of uniform data. Filter function is
projection on the two components. We use a balanced 8× 8 cover
with 0.3 overlap. For clustering we use k-means clustering with
k = 4. The min_intersection is 1. The points are coloured by the
average x-value of the data points belonging to the node.

34 BIRK D. RAMBERG

Example 8.7. This example illustrates Mapper’s sensitivity to the clustering
method. Consider the random uniform data in Figure 21. With projection on
the two components as the filter function, we would expect the Mapper graph of
such data to look like a grid, regardless of the other parameter choices. Consider
then the colouring in Figure 21 showing the clustering obtained with k-means clus-
tering (k = 4). From a topological perspective, we see that k-means clustering fails
dramatically at capturing the connected components in the data, since it is only
1 such component. From the theoretical perspective, this is unfortunate for our
interpretation and understanding of the Mapper graph. In practice, this behaviour
introduces highly spurious shape in the Mapper graph.

In Figure 22 we see the Mapper graph obtained with ToMaTo clustering. The
graph looks like a grid, like we would expect. In Figure 23 obtained with k-means
clustering, on the other hand, the graph looks nothing like the data. This happens
because each preimage of the rectangular covering, looks exactly like the data in
Figure 21, and therefore k-means clusters the preimages of the cover in the way
illustrated in the figure. This creates horizontal and vertical divides, since no points
are shared between the clusters in the same preimage. From the colouring we can
conclude that the Mapper graph is not completely nonsensical, since connected
nodes consist of points that lie close together. The problem is just that some nodes
that consist of points that are close are not connected.

It would of course be fairly pointless to apply Mapper to such simple data.
However, when we deal with data which has simple shape, like that in Figure 21,
we would hope that the Mapper graph reflects this. It certainly can, but it is more
dependent on the clustering algorithm than we might like.

Consider a slightly more realistic setting, where the data does not lie perfectly
on the plane as in Figure 21, but close. We model this as the three-dimensional
random uniform data X ∼ U([0, 1]), Y ∼ U([0, 1]), Z ∼ U([0, 0.2]). The same Map-
per procedure with k-means now produces the Mapper graph in Figure 24, which
captures the two-dimensional manifold structure in the data. The explanation, is
that even though most of the variance of the data is in the xy-plane, the variance
in the z-direction is significant in the preimages of the covering. Thus, we end up
with a clustering of the preimages like that in Figure 25, and while this also divides
the one connected component into 4 clusters, it does not introduce the unfortunate
cuts we had in the previous example.

Despite k-means poor performance at preserving the 2-dimensional data, I claim
that k-means can be a useful clustering function for the Mapper pipeline. The data
we work with is high-dimensional and noisy, and we therefore expect the problems
we encountered in Example 8.7 to be irrelevant. Compared to other clustering
methods like DBSCAN [16, 44] or ToMaTo [10] clustering, k-means clustering pro-
duces clusters of similar size. It runs faster than essentially any clustering, and it
is far easier to choose the number of clusters than some sensible distance threshold
like we need for DBSCAN (which gets even more difficult with high-dimensional
data as we will have). With a specified number of clusters it is also easier to specify
the resolution (the number of nodes) of the Mapper graph. We just need to be
careful with making bombastic statements about the shape of the data based solely
on Mapper graphs. This is important regardless of the clustering method chosen,
since the Mapper pipeline is highly sensitive to most of its parameters and choices
of methods.

TDA AND THE ACTIVATIONS IN A CNN 35

Figure 24. Mapper graph of three-dimensional uniform data
X ∼ U([0, 1]), Y ∼ U([0, 1]), Z ∼ U([0, 0.2]). Filter function is
projection on the two components. We use a balanced 8× 8 cover
with 0.3 overlap. For clustering we use k-means clustering with
k = 4. The min_intersection is 1. The points are coloured by the
average x-value of the data points belonging to the node.

Figure 25. Qualitative visualisation of a preimage of the cov-
ering of three-dimensional uniform data X ∼ U([0, 1]), Y ∼
U([0, 1]), Z ∼ U([0, 0.2]), coloured by the clustering labels. The
separation along the z-axis results in points with similar (x, y)-
coordinates being assigned to different clusters.

36 BIRK D. RAMBERG

9. UMAP

We want to understand the shape of the space K from which the data, i.e. the
point cloud P , is sampled. If the data lies in a high-dimensional space, this can be
difficult. Another approach to the problem is to try to reduce the dimensionality
of the data, while preserving the topology. For example, if we can reduce it to 2
or 3 dimensions, we can visualise it and find the topology from the visualisation.
Thus, we have transformed our problem into a dimensionality reduction problem,
where we pay special attention to topological properties of the data (which is not
the case for many dimensionality reduction methods).

Recall the general dimensionality reduction problem formulation: We have data
P from a high-dimensional space, and we want to find a function, f : P → E,
where E is a low-dimensional space, typically chosen to be Rm for some relatively
small m. We want the function f to preserve certain properties of the data, so that
we can deduce things about P from the low-dimensional embedding of the data
f(P) ⊆ E.

What we mean by “preserving certain properties” in the above formulation is
one of the choices that has to be made when designing or choosing a dimension-
ality reduction method for an application. The variance of the data (PCA [22]),
pairwise distances (MDS [24]) or local pairwise distances (t-SNE [29]) are examples
of properties that many dimensionality reduction methods aim to preserve. In our
case, the topology (or the shape) of the data is the property that we want to pre-
serve. This places us in the domain of manifold learning dimensionality reduction.
Explicitly, we assume P ⊆ M , that is, that the data lies on some manifold M .

McInnes, Healy and Melville introduce in [30] the manifold learning dimension-
ality reduction method UMAP (Uniform Manifold Approximation and Projection),
which solves the problem stated above. Justifying whether a dimensionality reduc-
tion method actually preserves the manifold is in fact a far from trivial task. On
the other hand, measuring the preservation of pairwise distances, either locally or
globally, is a simple task, at least empirically. In order to justify the suitability of
the method, UMAP is designed with strong justification from the theory of alge-
braic topology and fuzzy simplicial sets developed by Spivak in [51]. However, for
the purposes of this thesis we will not require to understand in detail the theory
that justifies the construction. We will therefore focus on how UMAP works in
practice, to get an intuitive understanding. The explanation of UMAP given here
is inspired by the similar description given in the UMAP documentation [25] under
“How UMAP Works”.

The UMAP algorithm can roughly be summarised in two steps:
(1) Create a simplicial complex from the data.
(2) Find a layout of the data in a predefined embedding space that through

the (almost) same procedure produces as similar a simplicial complex as
possible.

Remark 9.1. We do not actually create a simplicial complex, but a (fuzzy) simpli-
cial set from the data. For the intuitive understanding we will, however, work with
simplicial sets, since they are far easier to understand, in line with the description
given in “How Does UMAP Work” [25].

9.1. Creating the Fuzzy Simplicial Complex. Assume that the data P lies in
Rn for some positive n ∈ N. As previously mentioned, the Čech complex is a good

TDA AND THE ACTIVATIONS IN A CNN 37

simplicial complex to associate with a point cloud, since its geometric realisation
is homotopy equivalent to the union of balls Pr by the Nerve Theorem (Theorem
6.3). As before, we encounter the problem of choosing the scale r.

UMAP is built on the assumption that the data P lies on a manifold M , and
that there exists a Riemannian metric such that the data is uniformly distributed
on the manifold with regard to that metric. However, the Riemannian metric and
the metric on Rn might not agree, since data is rarely uniformly distributed in Rn.
Moreover, we do not know the Riemannian metric we assumed exists. To overcome
this, we approximate the Riemannian metric locally.

If we place a ball with a suitable radius on the manifold, with respect to the
Riemannian metric, it should contain approximately the same number of points
regardless of its location, since the data is uniformly distributed with respect to
this metric. We can use this observation to approximate the Riemannian metric
locally by flipping it around. For p ∈ P , a ball centred at p containing k points,
should have the same volume, regardless of the point p. Hence, we can obtain a
local approximation dp of the Riemannian metric for each point p ∈ P by scaling
the metric d on Rn such that the distance to the k-th nearest neighbour of p is
1 in the local metric. In the Riemannian metric, a suitable scale for the Čech
complex is the average distance to the k-th nearest neighbour, since then all points
will be connected to approximately k other points. In the local approximation, this
amounts to making a Čech complex with scale 1 in the local metrics. The 1-skeleton
of the Čech complex will simply be the k-neighbour graph of the dataset; each point
has an edge to all its k-th nearest neighbours.

Remark 9.2. The local metrics we have designed do not constitute a global metric,
so speaking about the Čech complex at scale 1 with the local metrics is a bit
imprecise. We actually mean that we create a space

P ′ =
⋃
p∈P

B(p; rp) ⊆ Rn,

where rp is the distance to the k-th nearest neighbour of p. The collection
{B(p; rp)}p∈P satisfies the assumptions of the Nerve Theorem (Theorem 6.3) so
the nerve of this collection gives a simplicial complex with a geometric realisation
that is homotopy equivalent to P ′. This nerve is what we mean when we refer to
the Čech complex with the local metrics above.

Example 9.3. Figure 26 shows data lying on the circle S1. In the left plot the data
is uniformly distributed in R2, so the euclidean metric and the Riemannian metric
agree. Here, the average distance to the third nearest neighbour provides a good
scale for the Čech complex. In the middle plot, the data is not uniformly distributed
in R2. With the same scale as in the left figure, we now fail to capture the underlying
manifold. In the right plot, we see the union of balls with fixed radius, but in the
local approximation to the Riemannian metric. The local approximation helps us
to capture the manifold structure.

Since we have local metrics, we can weigh the edges of the graph (1-skeleton of the
Čech complex), by the length of the edges. Since the local metrics are inconsistent,
we can interpret the result as a directed weighted graph, where an edge from p to
q is weighted with a function of the distance dp(p, q) in the local metric on p, while
the edge from q to p is weighted with a function of the distance dq(p, q) in the local

38 BIRK D. RAMBERG

Figure 26. Left: Uniform data X and the union of balls Xr in-
dicated with the green circles. Middle: Non-uniform data Y (with
noise) and the union of balls Yr indicated with the green circles.
Right: Non-uniform data Y (with noise) and the union of balls Y ′

r ,
scaled by the local density.

metric on q. Explicitly, to deal with the curse of dimensionality [57], the authors
set the weight of the edge from p to q in the graph to

w(p, q) = exp

(
−(dp(p, q)− ρp)

σp

)
,

where ρp is the local distance to the nearest neighbour of p, dp is the local metric on
p and σp is a constant normalising the sum of the weights of all the edges originating
at p.

So far, we have created a weighted directed graph. To obtain an undirected
graph, we replace each pair of edges (p, q), (q, p) and weights w(p, q), w(q, p), with
an undirected edge (p, q) with weight given by the fuzzy union

w′(p, q) = w(p, q) + w(q, p)− w(p, q)w(q, p).

If we interpret w(p, q) and w(q, p) as the probabilities that the directed edges (p, q)
and (q, p) exist, respectively, the new weight w′(p, q) is the probability that at least
one of the directed edges exist. We have thus obtained a fuzzy simplicial complex
(or a weighted undirected graph), representing the dataset, like in Figure 27.

Remark 9.4. It is possible that we have an edge (p, q), but not an edge (q, p) in
the directed graph, and in this case the above definition does not make sense. We
resolve this by setting the weight w(q, p) = 0 if the edge (q, p) is not present in the
graph, very much in line with the probability interpretation of the weights.

The theory presented in [30, Section 2], justifies the choices taken above and
proves that the fuzzy simplicial complex (set) we have created faithfully captures
the topology of the space we are investigating. I refer the reader to the discussions
in the paper for details.

Remark 9.5. There are no limitations to generalise the above procedure to con-
sider higher-order simplices in the fuzzy simplicial complex. However, the authors
of UMAP have decided that they see little gain in accuracy and a high compu-
tational cost of doing so. Therefore, the current implementation of UMAP [25]
considers only 1-simplices.

TDA AND THE ACTIVATIONS IN A CNN 39

Figure 27. Fuzzy simplicial complex (1-skelelon) obtained from
the point cloud Y from Figure 26. The edges are coloured according
to their weight (red is high, blue is low).

9.2. Optimising a Layout. Now we want to find a layout of the dataset in an
embedding space E of our choice that has a similar representation as the one we
computed for P in the previous subsection. The embedding space E could for
example be R2 or R3, but in some special cases it might be suitable to embed
the data on the sphere S2, the torus S1 × S1 or some other space. If we apply
dimensionality reduction as a preprocessing step before applying machine learning
techniques to the data, we might sometimes want to embed the data in Rn for fairly
large n.

Given an embedding of the data P in the embedding space E, that is, a function
f : P → E, we can find a fuzzy simplicial complex of the point cloud f(P) with the
same procedure as in the previous subsection. However, we want the embedding to
have a fairly uniform distribution and a globally sensible metric. Therefore, we leave
out the step of finding the local metrics based on the local density estimates. The
distance to p’s nearest neighbour ρp is also a size we would want to be fairly similar
for all the points in the embedding. Hence, we give this value as a hyperparameter.
This gives us a procedure to obtain a fuzzy simplicial complex from the embedding.

We now need a measure of similarity between the two fuzzy simplicial complexes.
The creators of UMAP argue that in line with the probability interpretation used
earlier, the suitable measure of similarity is the cross-entropy [56]. Let w : P ×P →
R be the weight function of the fuzzy simplicial complex of the original data P and
u : P×P → R the weight function of the fuzzy simplicial complex of the embedding
f(P). Then, the loss function becomes∑

p,q∈P

[
w(p, q) log

(
w(p, q)

u(p, q)

)
+ (1− w(p, q)) log

(
1− w(p, q)

1− u(p, q)

)]
.

This function can be made differentiable with respect to the layout in the embedding
space. The layout can then be optimised with stochastic gradient descent. This
yields the UMAP algorithm.

40 BIRK D. RAMBERG

10. The Space of Activations

We are going to explore the topology of the space of activation vectors in an
intermediate layer of a convolutional neural network (CNN). Specifically, we will
explore these activations obtained by feeding patches from the ImageNet dataset
to the CNN known as GoogLeNet. For completeness, we give a brief description of
neural networks and convolutional neural networks here.

10.1. Neural Networks.

Definition 10.1. A neural network Φ is a finite sequence of functions Rn → Rm

of the form
v 7→ φ(Av + b),

where A ∈ Rm×n is the weight matrix, b ∈ Rm is the bias and φ : R → R is a
continuous non-linear function. We call φ the activation function and interpret
φ(Av + b) as applying the function φ element-wise to the vector Av + b.

Each function is called a layer. The weight matrix, bias, activation function and
dimensions n,m can of course be different for the different layers in the network.

The neural network defines a function Φ : Rnx → Rny from an input space to an
output space, where nx and ny are the dimensions of the input space and output
space, respectively.

Remark 10.2. Without the non-linearity of the activation function, the network
Φ would simply be a linear function. In practice ReLU (Rectified Linear Unit),

x 7→ max(x, 0)

is the most common activation function. The activation function in the final layer is
commonly chosen to be different from the activation functions in the intermediate
layers, depending on the purpose of the neural network. With ReLU as activation
function, sufficiently large neural networks are capable of approximating essentially
any function Rn → Rm for arbitrary n,m ∈ N, cf. survey of expressivity of neural
networks [18].

Neural networks can be used to model complex relationships in data. Given sam-
ples of data and a target variable, we can iteratively optimise the weight matrices
and biases of the neural network to obtain a function that predicts the target, if
given data. The optimisation is done with variations of gradient descent. See [3]
for more about neural networks and training of neural networks, that is the optimi-
sation of the weights in order to make the network model the relationship between
input and output data. Neural networks’ capability of expressing essentially all
kinds of relationships [18] makes them useful in a wide variety of tasks. Moreover,
overparametrised neural networks, that is neural networks with many layers and/or
high dimensionality of the layers, achieve state-of-the-art performance on a huge
variety of machine learning tasks, such as ImageNet [13], the NLP system GPT-3
[5] and the protein structure predictor AlphaFold [23].

10.2. Convolutional Neural Networks. A convolutional neural network (CNN)
is a neural network with one or more convolutional layers, designed to pay attention
to the format of the input data. The most common application is on image data,
and we will explain convolutional neural networks designed for image data only.
The CNN that we will investigate was designed to do image classification. For
example, if we feed an image of a dog to the neural network, we want the network

TDA AND THE ACTIVATIONS IN A CNN 41

Figure 28. An image from the ImageNet database [13] split into
overlapping patches. In a CNN, the size of patches, specified by
the dimension of the kernels, are typically much smaller than in
this example.

to output the label corresponding to “dog”, or maybe the particular breed of dog
like “English Setter”. In order to train the network to classify the images into k
distinct classes we have data in the form of pairs (x, y), where x ∈ Rn×m is an
image (in this case grayscale) and y ∈ 1, 2, 3, . . . , k is the class the image belongs
to, e.g. “dog”.

We could make a neural network as in Definition 10.1 by considering the image
x ∈ Rn×m as a vector in Rnm, simply by flattening the image, and train a neural
network to classify the images, by considering the labels {1, 2, . . . , 1000} as a subset
of R1000, for example by doing one-hot-encoding [61]. The problem with this ap-
proach is that we lose information about the relative positions of the pixels in the
image. Another practical problem is that the space Rnm is very high-dimensional
and the task of classifying images is quite complex, so we would require very large
weight matrices and many layers.

A way we could deal with the high dimensionality would be to split the image up
into patches and train a network that takes smaller images as inputs. This could

42 BIRK D. RAMBERG

Figure 29. An image classification CNN architecture. Image
from [52].

greatly reduce the number of parameters required to train in the neural network.
One could also argue that this approach makes sense, since it enforces the “nearness”
between pixels in the same patch, in the sense that what the network sees in the
upper right corner should not depend on a pixel value in the lower left corner. In
addition, a classification of an image should not depend on the location of the dog
in the image, and therefore it makes sense to apply the same network to all the
patches. In this way, we could make the classifier more robust to translations of the
images. Since we do not know exactly the location of the patterns we are looking
for in the image, we might also want to make overlapping patches from the image,
like in Figure 28.

The same argument could be applied to the task that the first layer in a neural
network tries to perform, even if we do not know exactly what task this is. Whatever
the task is, the network should not care about a pixel in the lower left corner
when looking at the upper right corner. Therefore, each layer should look at
patches independently of each other. This is exactly what a convolutional layer
does. Moreover, the output of a convolutional layer can be understood as a stack
of images or an image with many channels, and this allows us to let convolutional
layers follow convolutional layers in a neural network.

The CNN exploits the relative positions of the pixels. This is actually just a
sparse version of the general neural network from Definition 10.1, where we force a
large number of entries in the weight matrices to be zero as well as enforcing groups
of weights to have the same value. It is, however, more convenient to describe the
convolutional neural network using different notation.

Definition 10.3. (Convolutional Layer) A convolutional layer is a function f :

Rn×m×l → Rn′×m′×l′ . The function is determined by l′ kernels, the bias b ∈
Rn′×m′×l′ and the activation function φ : R → R. A kernel of size s is an
element in Rs×s×l. For x ∈ Rn×m×l, the output at the index (i, j, p) is

f(x)i,j,p = φ(⟨k, x′⟩+ bi,j,p)

where k is the p-th kernel in the convolutional layer, bi,j,p is the bias at index
(i, j, p). The inner product is the usual dot product and x′ ∈ Rs×s×l is defined by

x′
i′,j′,p′ = xi+i′,j+j′,p′ ,

that is a part of the output of the previous layer indexed by i′ and j′.

Remark 10.4. Other parameters are often used to define a convolutional layer,
such as stride or padding, and a pooling layer is often added after convolutional

TDA AND THE ACTIVATIONS IN A CNN 43

Figure 30. A cuboid of activations. Illustration taken from [35].

layers. We will not concern ourselves with details of what happens at the boundaries
of the images or considerations relating to stride and pooling. These techniques are
present in the network we are investigating, but the details of these techniques are
assumed to be of little relevance to the spaces we are studying. See the book by
Aggarwal [3, Chapter 8] for more details.

Remark 10.5. A convolutional layer can be understood as a transformation of
data in the shape of a cuboid, as illustrated in Figure 30. A stack of l images
represents the input of a convolutional layer. An RGB image can for example be
represented as a stack of three images, one of each colour.

In line with the inspiration taken from the brain, we refer to each “entry” or
“pixel” in the cuboid as a neuron. If we have a high value at a neuron at a particular
layer, we say the neuron has a high activation.

We will refer to the position in the images as the spatial activations. For example,
let us say we have a 28 × 28 RGB image, represented as a stack of three images.
The spatial activation, say (4, 8), is then represented as a vector of three elements,
or three neurons, corresponding to the three colours.

We refer to each “image” as the channel activation. In the RGB example we have
three channels, as illustrated in Figure 31. Two neurons in the same channel, but
at different spatial locations are activated by the same patterns in the input image,
but placed at different locations. In this way, the activations in a channel tell us
“what” the network sees, while the spatial activations tell us “where” in the image
the network sees things. This information is what allows the network to combine
different patterns at different locations into even more complex patterns in the next
layer.

A convolutional neural network usually consists of a number of convolutional
layers, followed by some fully connected layers, like the layers defined in Definition
10.1. Figure 29 shows an example of a typical convolutional neural network archi-
tecture, visualised as the format of an image as it passes through the layers of the
network. For the convolutional layers, the input and output data format is a cuboid
of activations or a stack of images, as in the “feature learning” part of the figure.
In the “classification” part of the network, the data is in the format of vectors, as
in Definition 10.1.

In the image classification setting, the convolutional layers do in a sense detect
general features in the images, while the later fully connected layers classify the

44 BIRK D. RAMBERG

red average : 123 green average : 125 blue average: 103 original

Figure 31. The channel activations of an RGB image. The av-
erage activations show that green is the most prominent colour in
the image, while blue is the least prominent colour. Original image
on right hand side is taken from the ImageNet database [13].

images based on the features. The difficulty of understanding convolutional neural
networks stems in part from the fact that during training the network simultane-
ously learns both the feature representation, as well as how to classify the images
based on the features. In a simpler setting, we could first learn features of the
images and then train a classifier when the features are already learned. A simple
example could be to use a number of the principal components [22] of the data as
the features and then train a logistic classifier [59] on these features. In this case, it
is easier to understand the features we create. In a convolutional neural network,
the features are in a sense specialised for the task the network is trained to do, as
well as to the data it is trained on. This usually makes the features very useful,
but also difficult to understand.

Let us say that we have trained a convolutional neural network to classify im-
ages of cats and dogs. It is not a trivial task to create good features for such an
application. It is also not easy to even understand what separates a good feature
from a bad feature. Let us say that we noticed that one of the features of the
network seems to identify whether or not there is a bowl of milk in the image, and
this increases the networks certainty that the image is of a cat. Whether this is a
good or a bad feature depends on the application we have in mind. For example, if
the network is intended to classify dogs and cats for a self-driving car, the feature
is probably completely useless. If it is intended to automatically tag images on
social media, the bowl of milk is probably a very useful feature. The knowledge
that the network we have trained sees bowls of milk as a feature is, however, very
useful information in both cases. The issue is that this kind of understanding of the
network is very hard to obtain. Past and ongoing research aims to create methods
for getting a better understanding of the features created by convolutional neural
networks. See for example [35, 34, 9].

10.3. GoogLeNet. We will investigate the convolutional neural network called
GoogLeNet that was introduced in the paper [53] and won the 2014 ImageNet Large
Scale Visual Recognition Challenge [42]. The architecture is shown in Figure 32.
The network is built around the Inception module, which is just a concatenation of
convolutional layers of different strides in a specific design. See [3, Chapter 8.4.4]
for details. In GoogLeNet, the inception modules are named “3a”, “3b”, “4a” and so
on. For our purposes it suffices to view the inception modules as a slightly more

TDA AND THE ACTIVATIONS IN A CNN 45

Figure 32. The architecture of GoogLeNet. Illustration from [9].

complicated convolutional layer. The triangles in the figure are pooling layers,
reducing the spatial resolution of the data propagating through the network.

10.4. Space of Activations. Since a convolutional neural network is simply a se-
quence of functions Rn×m×l → Rn′×m′×l′ , we can investigate the activations at an
intermediate layer of the network. For example, we can look at the activations after
transforming the image up to the “4b” module, but before passing it to the “4c”
module. Let I = R256×256×3 be the space of 256×256 RGB images. There are mul-
tiple choices of metrics on this space, for example we can flatten the images and use
euclidean distance between the vectors. Formally, the sequence of functions defines
a function Ψ4b : I → Rn×m×l, taking images as input and returning the activations
after the “4b” module. We can of course define Ψ3a,Ψ3b, . . . ,Ψ5b similarly. For an
image x ∈ I the activation Ψ4b(x) is an element of Rn×m×l. For a set of images
P we obtain a point cloud of activations P4b = Ψ4b(P) ⊆ Rn×m×l. If we assume
that there exists a space K ⊆ I of “real” images, we can define K4b = Ψ4b(K). By
assumption, we have P ⊆ K and thus P4b ⊆ K4b. The aim of the remainder of the
thesis is to investigate the shape of the space K4b from the samples P4b.

Remark 10.6. Instead of assuming a space K of “real” images, we could assume a
space of “likely” images. For example, if we can assign a probability density function
p : I → R describing the probability of encountering an image from different regions
of I, we could define K = {x ∈ I : p(x) > c}, for some cutoff parameter c > 0. In
this case we do not have P ⊆ K and P4b ⊆ K4b, but we have that the probability
that an image x ∈ P lies in K, and consequently its activations Ψ4b(x) in K4b, is
high (depending on c).

The point cloud of activations P4b is a subset of the space R14×14×512, which has
dimension 100352, and for the other layers we have a similarly high dimensionality.
In order to work in a more approachable dimension, we argue that we are not
particularly interested in the spatial location of the activations, but rather in the
kind of patterns that the CNN looks for and finds. The spatial location is of course
important in order for the network to combine features in the subsequent layers,
but for our analysis of the space of activations, we will disregard it completely. We
argue that this allows us to focus on how the network sees different concepts in
images.

As discussed, each image corresponds to a cuboid of activations p ∈ Rn×m×l in
an intermediate layer, e.g. P4b ⊆ R14×14×512. Explicitly, we obtain a more suitable
space by sampling an activation vector at a random spatial location in p, that is,
we obtain the vector at the spatial position indexed by i and j

(pi,j,1, pi,j,2, . . . , pi,j,l)
T ,

46 BIRK D. RAMBERG

where the entries now are the channel activations. See Figure 30 for a visualisa-
tion of the cuboid of activations. Sampling one such vector from each cuboid of
activations in P4b, we obtain a point cloud P ′

4b ∈ R512, with a dimensionality that
is far more approachable. We do the same for the other point clouds P4a, . . . , P5b.
We could claim that we now investigate what combinations of channel activations
appear in real images. For the rest of the thesis we refer to the the point clouds
P ′
4a, P

′
4b, . . . , P

′
5b when we write P4a, P4b, . . . , P5b. For example, by P4b we mean the

point cloud where we have reduced the dimensionality, so P4b ⊆ R512.
Since we are not particularly concerned with the length of the vectors we are

dealing with, but rather with their directions, we will later normalise their length.
This will be discussed shortly. For this reason, we will usually refer to vectors of
activations with elements corresponding to channel activations as directions.

Remark 10.7. We could have taken a more sophisticated approach to obtaining
a space that allows us to investigate how the network sees different concepts.

I suggest two steps in order to achieve this. Firstly, average out the spatial
location of the points in P4b and obtain points in R512. That is, for each channel in
Figure 30 we replace the channel with the average value in the channel. Secondly,
instead of passing images from the space of RGB images I, pass small patches.
Explicitly, for each image x ∈ I, we randomly choose a patch of some size, e.g.
80 × 80, and zero out the pixels in the rest of the image, potentially adding noise
to the zeroed out pixels.

Why should we look at patches instead of images? Or in other words, why
do we bother with step 2? Imagine we passed images and then averaged out the
spatial locations. Say, somewhat simplistically, that channel 4 detects cats and
channel 120 detects dogs in the 4b-layer. If we then passed an image x ∈ I showing
both a cat and a dog, the activation Ψ4b(x) would have a high activation at the
4-th channel at one spatial location and a high activation at the 120-th channel at
another spatial location. After averaging we would have high activations in both the
4-th and the 120-th channel. Such a direction is unlikely to ever occur in the same
spatial location, but when we look at whole images, essentially all combinations of
directions could be plausible. By superimposing different patches, which is exactly
what constitutes an image, we would get activations in the whole space R512, and
the little information we could retrieve would only tell us what kinds of objects and
patterns that usually occur together in images, but at different locations. We could
for instance probably conclude that dogs occur frequently together with grass and
infrequently together with water. This is not the kind of information we are looking
for, so only performing step 1 would produce an unsuitable space to investigate.

What happens when we combine step 1 and step 2? Zeroing out most parts of
the images ensures that distinct objects or patterns, such as dogs and cats, do not
appear in the same image and thus the same activation. In effect, we are looking at
what kind of directions, that is, combinations of channel activations, that appear
in the same (or close) spatial locations. The hypothesis is that some directions do
not exist, or are extremely uncommon.

We achieve much of the same by sampling the cuboid of activations at a random
spatial location, as we do in this thesis. These points surely tell us about what
kinds of directions that are present in R512. One disadvantage of this approach is
that the exact interpretation of spatial activations is somewhat tricky. For example,
a dog face might produce high activations corresponding to eyes and fur at similar

TDA AND THE ACTIVATIONS IN A CNN 47

Figure 33. Left: sample image from imageNet. Middle: activa-
tions after convolution with the vertical edge patch. Right: acti-
vations after convolution with the horizontal edge patch. Patches
are visualisations of the convolution kernels.

spatial locations, but not exactly at the same spatial locations. In addition, the
field of reception, that is the part of the input image that a certain neuron can react
to, is very large for layers deep into the network, and this makes the interpretation
difficult. The two steps described above would give similar results to the random
spatial sampling, but with some added translational flexibility and well-defined
fields of reception.

We do not implement this way of obtaining the point cloud in this thesis, due
to the significant workload and computational resources required to collect such
activations. The lucid [45] library provides easy access to the random spatial
location activation point cloud, and therefore we simply use this. Whether or not
the suggested approach would yield qualitatively different results remains an open
question.

10.5. Feature Visualisation. As previously mentioned, substantial research has
been dedicated to investigate the workings of CNNs. One of the major achieve-
ments has been in the field of feature visualisation. In its simplest form, feature
visualisation is about making suitable visualisations of how the network sees an
image or what the network looks for.

Let us start with a simple example to get the intuition for feature visualisation.
For simplicity, assume that we have trained a CNN to classify grayscale images.
The first layer of the network is then quite easy to visualise. We see that since a
grayscale image lies in Rn×m×1, the kernels of the first layer lie in Rs×s, where s is
the stride. These can be visualised as patches like the ones shown in Figure 33. The
convolution operation of the first layer is thus easily understood as the creation of
one image as in Figure 33 per kernel. The resulting images show how well each part
of the original image matches the respective kernel. In the example in Figure 33 the
kernels detect vertical and horizontal edges in the image. It is well understood that
the first layer of well-trained CNNs is mainly concerned with detecting edges, and
potentially colours. This aligns well with the present understanding of the visual
cortex of mammals, which is part of the inspiration for the CNN design in the first
place.

48 BIRK D. RAMBERG

Figure 34. Mapper graph from spatial patches in the first layer
of a CNN trained on the CIFAR-10 FINN REF dataset. FROM
CARLSSON [7].

Example 10.8. Carlsson et al., [8], [6], identified edges of different directions as the
most common patches that occur in natural images, and that these patches form a
circle, parametrised by the angle of the edges. Moreover, they found two secondary
circles that seem to detect edges that are not gradients across the patches, but
in some ways sharper. They identified the shape of the overall space as a Klein
bottle and parametrised the three-circle model that represents the most commonly
occurring patches. More recently, Carlsson and Gabrielsson [7] found the same
primary circle as well as the secondary circles in the kernels of the first layer in
well-trained convolutional neural networks. See Figure 34.

The kernel that gets a maximal activation from a patch is the kernel that is equal
to the patch. Thus, that the weights exhibit the same structure as the patches in
natural images fits our intuition. The kernels are simply looking for what is actually
present in the images. Intuitively, kernels that look for patterns in the images that
simply do not occur are useless. This suggests a general approach to improving
CNNs: One could study the shape of the input space and design the architecture
and the weights accordingly.

This is done by Love et al. [27]. The kernels do not fill the entire space of Rs×s×1,
but a subspace that can be parametrised. The authors create CNNs where the first
layer kernels are parametrised to lie on the primary circle or on the three-circle
model parametrised by the Klein bottle (with some added flexibility). This results
in significant speedup in training, as well as significant increase in generalisation
across datasets.

TDA AND THE ACTIVATIONS IN A CNN 49

This example illustrates how feature visualisation can help us make sense of the
structures that we find in data. The fact that we can visualise the patches on the
primary circle found in natural images strengthens the result, since the we can see
that the circle corresponds to a rotation. In addition, the visualisation allows us
to conclude that the primary circle in the patches of natural images is the same as
the primary circle found in the kernels of the convolutional neural networks. These
considerations become significantly harder in subsequent layers.

The discussion involving Figure 33 would become slightly more complicated if
we had RGB images, since then the kernels would lie in Rs×s×3 instead, and would
therefore not be as easy to visualise. A kernel could for example detect vertical
edges in the red image, but horizontal edges in the blue image, and it is not trivial
to understand what convolution with such a kernel would produce. In deeper layers
in the convolutional network, the kernels lie in Rs×s×l, where l typically is larger
than 100. Visualising this kernel in a sensible way is certainly challenging. It also
makes matters even more complicated that for the deeper layers of the network,
we do not even have a good understanding of the stack of images the kernel is
convolved with, like we did in the first layer.

A successful approach to these challenges has been to visualise what the parts
of the network are looking for in the image space. Explicitly, let us say we want to
better understand the neuron at the spatial location (5, 5) of the 9-th channel in
the 4-th layer of a convolutional network. We can try to visualise what this neuron
looks for in the input space, since this is interpretable as an image. We want to
generate a synthetic input image that maximises the activation of this particular
neuron. This is naturally phrased as an optimisation problem. Using techniques
like regularisation, frequency penalisation, parametrisation and transformation ro-
bustness on the optimisation problem we get interpretable visualisations of what
kind of images that activate the particular neuron.

In the same way that we can find images that activates a single neuron, we
can also find images that activate a set of neurons, for example all the neurons
in a channel. In this way we can visualise what kind of patterns that activates a
channel, without paying attention to the spatial location of such a pattern.

The neurons (and channels) represent the directions of the standard basis for
the space of activations Rm×n×l. It is not unreasonable to believe that these direc-
tions carry some special meaning, but other directions in this space might also be
meaningful. In particular, the directions that correspond to images in the dataset
are of particular interest. These directions can also be visualised in the same way
as the neurons, channels or general sets of neurons. Explicitly, when passing an
image to the network, the activations in a layer will be a vector in Rm×n×l. We can
visualise this direction as a synthetic image that maximises the activation projected
onto that direction. In a similar way we can look at the direction in the space Rl,
obtained by averaging out the spatial dependency in the channels, and visualise this
direction as an image. This last procedure will be used extensively in this thesis.
See [34] for more details on feature visualisation. The visualisations presented in
this thesis are all created with the lucid python library [45].

10.6. Normalisation. The vectors in the point cloud P4b have different lengths.
The histogram in Figure 35 resembles a chi distribution, in line with an assumption
that the value of a single component of the activation vector follows a normal
distribution.

50 BIRK D. RAMBERG

Figure 35. Histogram of the length of the activation vectors from
the point cloud P4c.

In the paper on Activation Atlases [9], the authors mainly use cosine similarity
as their similarity measure, implicitly normalising the lengths of the activation
vectors. For the remainder of this thesis we normalise the activation vectors, so we
consider only their directions, not their lengths. The main reason for doing this, is
that the feature visualisation methods we introduce in the next subsection produce
visualisations of the directions, disregarding the length of the vectors.

A relevant question is whether two images of different concepts could result in
activation vectors with the same direction but with different lengths. The research
on feature visualisation seems to build on an implicit assumption that this is not the
case, since the visualisations usually aim to maximise the activation in a direction,
not to match the length of the actual vector. Essentially, we end up with the
assumption that the direction specifies the concept, while the length of the vector
says something about certainty or match with the concept. For example, one might
expect an image and a blurred version of the same image to produce activation
vectors with the same direction, but with different lengths. This argument does
also to some extent justify normalisation of the vectors.

Given the assumption above, do the lengths of the vectors carry any information
about the network, or do they only express a “certainty” of the detection of a
concept?

We visualise the difference between vectors in P4c with different lengths in Fig-
ure 36 via the following process. We bin the vectors in P4c in 10 bins of ascending
order according to their unnormalised lengths. We cluster each bin with k-means
clustering, and from each cluster we take a random representative that we visu-
alise. The rows in Figure 36 correspond to the bins of the data, while the columns
correspond to the clusters. Hence, the upper row consists of visualisations of short
vectors, while the bottom row consists of visualisations of long vectors. Recall that
the visualisations are visualisations of directions and hence do not differentiate
between different lengths of the vectors we visualise.

Remark 10.9. We apply k-means clustering to the bins, in order to choose repre-
sentatives from the data that captures some of the variability within each bin.

There seem to be some discernible patterns in the figure. Consider, for instance,
the visualisations of greenery. They seem to be present only in the upper rows,
meaning that vectors in such directions typically are short. On the other hand, fur,

TDA AND THE ACTIVATIONS IN A CNN 51

avg length:645 avg length:658 avg length:618 avg length:628 avg length:607 avg length:635 avg length:582 avg length:641 avg length:620 avg length:634

avg length:771 avg length:769 avg length:770 avg length:768 avg length:766 avg length:769 avg length:771 avg length:772 avg length:768 avg length:766

avg length:852 avg length:852 avg length:852 avg length:854 avg length:851 avg length:851 avg length:853 avg length:854 avg length:852 avg length:851

avg length:923 avg length:922 avg length:923 avg length:921 avg length:921 avg length:922 avg length:923 avg length:921 avg length:922 avg length:923

avg length:988 avg length:987 avg length:989 avg length:988 avg length:988 avg length:988 avg length:989 avg length:987 avg length:987 avg length:989

avg length:1058 avg length:1056 avg length:1055 avg length:1058 avg length:1056 avg length:1055 avg length:1058 avg length:1057 avg length:1057 avg length:1060

avg length:1134 avg length:1132 avg length:1135 avg length:1134 avg length:1135 avg length:1135 avg length:1135 avg length:1132 avg length:1135 avg length:1132

avg length:1228 avg length:1226 avg length:1228 avg length:1232 avg length:1228 avg length:1233 avg length:1232 avg length:1230 avg length:1232 avg length:1230

avg length:1369 avg length:1356 avg length:1365 avg length:1370 avg length:1369 avg length:1369 avg length:1368 avg length:1364 avg length:1361 avg length:1369

avg length:1967 avg length:1721 avg length:1718 avg length:1740 avg length:1725 avg length:2029 avg length:1708 avg length:1672 avg length:1874 avg length:1603

Figure 36. Visualisations of representatives from clusters (k-
means) in the activations P4c, binned in 10 bins according to the
length of the unnormalised vectors. Each row corresponds to one
bin of vectors with similar length. The rows are sorted in ascend-
ing length of the vectors. The columns correspond to the clusters
within each bin.

eyes, snouts and human-looking features seem to predominantly lie in the bottom
rows, indicating that vectors in these directions typically are long. These patterns
indicate that some directions typically have longer activation vectors than others.

52 BIRK D. RAMBERG

Figure 37. Histograms of values of mean and standard deviation
for each channel in the data P4c, unnormalised. That is for each
channel (of the 512) we compute the mean and standard deviation
in the data P4c. The plots are histograms of the 512 mean values
(left) and 512 standard deviation values (right).

The same phenomenon is illustrated in Figure 37. Some channels, which are just
some specific directions, tend to have higher means and standard deviations. One
could hypothesise that the network in some sense represents the relative importance
of concepts in the size of the activations. This brings us to the next subsection.

10.7. Direction Attribution. Another branch of research in the explainability of
CNNs is related to attribution, that is, to what extent do the neurons, channels,
spatial locations or directions matter. For the CNN, which is trained to do classifi-
cation, something matters if it is important for the classification. Quantifying this
is again non-trivial and an ongoing field of research is dedicated to this task. See for
example the papers on saliency maps [48] and Grad-CAM [46]. We will intention-
ally leave how to measure importance vague, since we are mainly interested in the
high-level discussions involving attribution. We will not perform any attribution
computations in this thesis, but the concept is introduced to get a more complete
picture of the explainability research on CNNs.

Specifically, what we want is a function a : P4b → R that measures the impor-
tance of each direction in P4b, or the point cloud in other layers. Since we are not
looking at the complete images, but rather at random spatial locations, we want
to measure how much the network cares about what it sees in a specific location.
For example, a patch showing grass is probably not given much significance by
the network, while a patch with a pair of eyes probably is. If we can measure
the significance, we could focus our attention on the subspaces that are of high
significance.

One could also have attribution functions that measure the importance of a
direction for a classification of a specific label, e.g. how much does this direction
contribute to a hypothetical classification of an image as “grey whale”. We refer to
the latter as class attribution.

Meaningful functions on the activation vectors give good filter functions for the
Mapper algorithm, as well as allowing for additional manipulation and better in-
terpretation of the point cloud of activations.

TDA AND THE ACTIVATIONS IN A CNN 53

Figure 38. Creation of an Activation Atlas. A random spatial
activation is sampled for each image presented to the network.
UMAP is applied to the space P4c to obtain the middle scatterplot.
The points are grouped into grid points. For each grid point we
create a visualisation of the average activation within that point.
Figure taken from [9].

11. Activation Atlases

In [9] the authors create an Activation Atlas from the point cloud of activations,
e.g. P4c from layer 4c. The Activation Atlas aims to summarise information about
the point cloud P4c in an accessible format. A brief explanation will follow. For a
more thorough introduction to the Activation Atlas I refer the reader to the original
paper [9].

The creation of an Activation Atlas is described in Figure 38. UMAP is applied
to the point cloud, e.g. P4c, to get a projection to R2. The subspace in R2 populated
by the UMAP projection is then divided into a grid. We take the average activa-
tion within each rectangle in the grid and visualise the average activation. The
visualisations are then arranged in the grid, so that concepts considered similar by
the network hopefully are placed close together.

Remark 11.1. Note that in the paper [9] they use one million activations to create
their atlases. In addition, the parameters of the UMAP dimensionality reduction
are not necessarily the same as in the paper, since they are not explicitly stated.
This is assumed to be the reason for the minor differences between the atlases.
However, the overall pictures drawn by the atlases agree. Note also that we do
not normalise the activations in this case, simply because they do not normalise
the activations in the paper [9] introducing the Activation Atlas. However, the
normalisation matters only for the averaging within grid-cells, not for the UMAP
dimensionality reduction, since we use cosine-similarity as the similarity measure.

We perform this process on the layer 4c and obtain Figure 39. We can see
from the Activation Atlas which concepts that lie close in the space of activations.
Intuitively, we would hope that semantically similar concepts lie close in this space.
The overall impression from Figure 39 is that concepts are grouped together in

54 BIRK D. RAMBERG

0 200 400 600 800 1000 1200 1400

0

200

400

600

800

1000

1200

1400

Figure 39. Activation Atlas for the 100 000 activations in layer
4c, with grid size 20× 20.

certain areas of the space, like animal features in the lower left flare, and humans
and clothes in the upper left flare. Looking into the details, we can find small
surprises, like the appearance of dog faces in the lower right and upper right regions.
We might say that there seems to be some “semantic confusion”. Why does this
happen? Some possible explanations might be:

• Weaknesses in the feature visualisation method.
• The network actually associates semantically different concepts, that is, the

Activation Atlas reveals the “true” story.
• The dimensionality reduction method fails to capture the actual shape of

the space of activations.

Since feature visualisation is not the focus of this thesis, and because the feature
visualisation methods seem to work quite well in general, we will not consider the
first explanation.

TDA AND THE ACTIVATIONS IN A CNN 55

If the Activation Atlas tells the true story (though not necessarily the full story),
the semantic confusion could be valuable information about the network. It might
tell us something about how the network is different from the human brain. Or
perhaps the confusion is actually a weakness in the network, and that investigating
it further could allow us to either improve it or exploit it. In general, the Activation
Atlas could help us reveal things that look “weird” from the human perspective, and
these things might be worthwhile to investigate further.

That the dimensionality reduction method fails to capture the actual shape of
the space could again be due to different problems. We can roughly group them
into two:

• Data problems: Not enough data, poor sampling methods, etc.
• Problems with the dimensionality reduction: The method is not appropriate

or the task is unachievable.

For the first of these problems we refer to the discussion in the previous section on
how we obtained the activations we are considering. The second set of problems
might be resolved with a different method of dimensionality reduction, e.g. t-SNE
instead of UMAP. But what if the space we are investigating simply cannot be sen-
sibly embedded into R2? To overcome this, I propose to use Mapper instead of the
dimensionality reduction method to create another type of Activation Atlas. Using
Mapper, we are able to preserve more complex shapes from the high-dimensional
space in our visualisation.

11.1. Mapper Activation Atlas. Let us describe the Mapper Activation Atlas
pipeline. From the point cloud, e.g. P4c, we construct a Mapper graph (with suit-
able parameters). In the Mapper graph, each node corresponds to a set of points
from the original point cloud. We can therefore visualise each node as the feature
visualisation of the average activation of the points belonging to the node. In this
way we can capture the connectivity properties of the data in the high-dimensional
space, without having to enforce the 2-dimensional embedding on it.

Let us see what a Mapper Activation Atlas can look like. Figure 40 shows a
Mapper Activation Atlas of the point cloud P4c. The images are a bit small for this
format. In the same way that the Activation Atlas works better in an interactive
format, like the format of the atlases presented in [9], the Mapper Activation Atlas
would greatly benefit from an interactive format. Especially, zooming, hovering,
rearrangement of the graph layout (which is somewhat arbitrary using igraphs
[12] graph layout algorithms) and adjustment of the min_intersection parameter
could greatly help to get more out of the Mapper Activation Atlas. All of these
interactions could also be achieved without re-computation of the Mapper graph
and visualisations of the nodes. Interactivity with parameters of the filter function,
covering and clustering would of course be beneficial for choosing suitable param-
eters, but this would come at a significant computational cost. At least, the static
figure presented here is a PDF, so zooming is encouraged.

It looks quite messy compared to the normal Activation Atlas in Figure 39.
However, some features of the data seems to have become clearer in this atlas. For
instance, in the lower right we see a flare consisting mainly of what seem to be dog
faces, and this flare is quite weakly connected with the rest of the data. UMAP
identifies this as a flare (lower left in Figure 39), but not as distinctly as Mapper
does. In addition, the Mapper Activation Atlas seems to suggest that the part of

56 BIRK D. RAMBERG

10 5 0 5 10 15

10

5

0

5

10

15

20

Figure 40. A Mapper Activation Atlas of P4c. Projection on the
first two principal components is used as the filter function. The
cover is balanced, 8× 8 rectangles with 0.3 overlap. The clustering
used is k-means clustering with k = 5. The min_intersection is
100.

the space that is visualised as greenery is not as strongly connected to the rest of
the space as the UMAP projection suggests. Lastly, also here we see the semantic
confusion between animal faces and buildings, like that in the upper right region in
Figure 39.

In Figure 41 we see a Mapper Activation Atlas of the same point cloud P4c, but
with fewer rectangles in the cover and with lower overlap. This creates a cleaner
figure, while losing a lot of detailed information. It is encouraging to see that
the dog-looking flare is still present in the lower right corner. This atlas seems
to suggest that the main parts of the data roughly belong to one of five groups:
greenery, buildings and human-made things, ground, fruit-like things and dog-like
things. It also shows us how these concepts are connected. The presence of the loop
with greenery in the left part of the figure illustrates a shortcoming of the original

TDA AND THE ACTIVATIONS IN A CNN 57

5 0 5 10 15

5

0

5

10

15

Figure 41. A Mapper Activation Atlas of P4c. Projection on the
first two principal components is used as the filter function. The
cover is balanced, 6× 6 rectangles with 0.1 overlap. The clustering
used is k-means clustering with k = 5. The min_intersection is
40.

Activation Atlas: It does not preserve and visualise loops or holes well, in parts due
to the dimensionality reduction and in parts due to grid structure enforced on the
visualisations.

In a similar way as for the regular Activation Atlas, including attribution in-
formation into an interactive visualisation of the Mapper Activation Atlas could
provide even more information about the workings of the CNN. This could for ex-
ample allow us to understand which parts of the space that are typically relevant
to specific classifications, as is also done with Activation Atlases in [9]. I further
conjecture that attribution functions, either as measures of general importance or
class attributions, could provide good filter functions for Mapper.

58 BIRK D. RAMBERG

Figure 42. The whole space of activations P4c visualised in 2d
with UMAP. The colours correspond to clusters found with k-
means clustering with k = 20.

c0 s5371 c1 s5834 c2 s4638 c3 s5443 c4 s3016

c5 s5460 c6 s4760 c7 s4519 c8 s4976 c9 s4572

c10 s6051 c11 s4126 c12 s6345 c13 s4058 c14 s4854

c15 s6004 c16 s6466 c17 s5374 c18 s3969 c19 s4164

Figure 43. Visualisations of cluster centroids of the clusters from
Figure 42. The titles tell the cluster number and how many points
belong to it. For example “c5 s5460” means that the visualisation
is of cluster 5, and that cluster 5 contains 5260 directions.

TDA AND THE ACTIVATIONS IN A CNN 59

Figure 44. Visualisation with UMAP of the points from cluster 5
in Figure 42, coloured by 1/codensity. The axes are the two dimen-
sions of the UMAP embedding of the data into two dimensions.

12. Finding Loops

In figure Figure 42 we visualise the data in two dimensions. This is a global
view of the dataset. What happens if we zoom in, to look at the local structure in
the dataset? While UMAP preserves some of the local structure, we can certainly
preserve more by considering only the points in the region we are interested in. For
points within a specific region it is also more likely that the uniformity assumption
of UMAP is satisfied.

Let us investigate cluster number 5, which is illustrated in Figure 43 and located
in the lower left of Figure 42. This cluster seems to correspond with the flare
found in the Mapper figure Figure 40. We can start by visualising this subset of
data, again using UMAP. See Figure 44. The high density region seems to form
a loop in the data. Is this loop actually present in the data or an artefact of the
dimensionality reduction? And if present in the data, what does it mean?

We can use persistent cohomology to investigate the presence of loops in the data.
We do codensity filtration cf. Definition 6.13 with codensity parameter k = 100
to keep 2000 points and denoise cf. Definition 6.15 one iteration with denoising
parameter k = 100. We then compute persistent cohomology of the resulting
point cloud. The result is shown in Figure 45. We find a very persistent loop
in the dataset. With circular parametrisation, we parametrise the loop found in
the filtered dataset. Figure 45 shows UMAP visualisations of the data at different
stages of preprocessing, coloured by the circular parameter. It is quite clear that
the loop we find in the high-dimensional space is the same loop corresponding to the
high-density regions in Figure 44. We confirm this in Figure 46 with similar plots,
but with a PCA [22] dimensionality reduction. We conclude that the loop must be
fairly flat, in the sense that it mainly lies in a plane. Moreover, the variance across
the loop constitutes the main part of the variance in the dataset.

60 BIRK D. RAMBERG

Figure 45. Persistence diagram for the points in cluster 5 from
Figure 43, codensity filtered to 2000 points with codensity param-
eter k = 100, denoised one iteration with denoising parameter
k = 100. UMAP visualisation of different datasets. Points are
coloured by the circular parameter obtained for the most persis-
tent cocycle found. Points that do not occur in the cocycle are
coloured black.

Figure 46. PCA projection of cluster 5 from Figure 43, coloured
by inverse codensity and circular parameter. In the plot to
the right, the points that are filtered out before computing the
parametrisation are coloured black.

TDA AND THE ACTIVATIONS IN A CNN 61

0 2 4 6 8

3

4

5

6

7

8

9

Figure 47. UMAP projection of codensity filtered data coloured
by circular parameter. Visualisations of centroids of points binned
according to the circular parameter value.

Remark 12.1. The parameters for the preprocessing are chosen through trial and
error. We should therefore be careful not to draw premature conclusions based
only on a persistence diagram obtained with a bit of “p-hacking” [58]. The other
investigations that we carry out in addition to persistent homology justify the use
of minor “p-hacking” to choose the parameters.

The next natural question to ask is: Why is there a loop in the cluster? Let us
try to explore this by visualising the change that occurs along the circle. This is
done in Figure 47.

From Figure 47 it seems like the points very roughly can be partitioned into 4
groups: Faces of small furry animals (bottom right), body and fur of small furry
animals (bottom left), faces of larger animals with rougher fur (top right), and
body and fur of larger animals with rougher fur (top left). Given this partition
the circular structure makes sense. The connection between faces of small furry
animals, and body parts of large animals with rough fur is not strong.

62 BIRK D. RAMBERG

Figure 48. Mapper graph of cluster number 5 from Figure 43.
First, the 2000 points of lowest codensity with codensity param-
eter k = 100 are filtered out. As filter functions we have used
the projection on the first two principal components. The cov-
ering has 6 balanced intervals in each direction, with 0.3 overlap.
For clustering we used k-means clustering with k = 3. We have
min_intersection 5. The colour indicates the average value of the
circular parameter within each node.

Figure 49. UMAP visualisation of the cluster, coloured with k-
means clustering labels.

TDA AND THE ACTIVATIONS IN A CNN 63

Figure 50. Visualisations of the clusters from Figure 49. For each
cluster, we cluster again with k-means and visualise each cluster as
the visualisation of a random representative from the cluster. The
title i.j means that the image is a visualisation of cluster j from
cluster i from Figure 49.

We can reformulate the question we are asking to try to explain the loop in
another way. Instead of trying to figure out what the loop “means”, we can ask
why we do not have (many) points in the hole the data loops around. Let us start
by visualising the few points that lie in this hole. In Figure 49 we visualise the
dataset where we colour by the clusters found with k-means clustering. Firstly, we
notice that the dimensionality reduction seems to preserve most of the information
found by k-means. From Figure 45 we see that mainly cluster 6 contains the low
density points that lie in the hole we detected. In Figure 50 we visualise sample
representatives from 8 clusters found with k-means clustering in each of the clusters

64 BIRK D. RAMBERG

Figure 51. UMAP visualisation of the points belonging to flare
5 in layer 4b P

(5)
4b . Coloured by 1/codensity.

from Figure 49, e.g. the plot labelled 6.4 is a visualisation of a random representative
from the fourth cluster within cluster number 6 from Figure 49. Thus each row
contains visualisations that together should capture the variance within each cluster
from Figure 49. Looking closely at the visualisations of cluster 6 (the row with titles
6.0, 6.1, . . . , 6.7), they look a bit like nonsensical mixes of faces of fairly different
animals. Maybe this can explain the low density in the hole. It seems at least that
the other clusters represent slightly clearer and more understandable concepts.

12.1. Same Cluster in Other Layers. Each image in the input space corre-
sponds to a vector in P4c, but also to a vector in P4b and P4d. Thus, we get a
bijection between the points in P4c and those in P4b, or any other layer. Using this,
we might ask the question: What does the loop we have just found look like in the
other layers?

Let P
(5)
4c ⊆ P4c denote the points in cluster number 5 from Figure 43 that we

just studied. By P
(5)
4b ⊆ P4b we refer to the points in P4b that correspond to P

(5)
4c

under the bijection just introduced. We similarly define P
(5)
4d ⊆ P4d and the subset

in the input space P (5) ⊆ P . We let Q
(5)
4c ⊆ P

(5)
4c denote the codensity filtered

cluster with 2000 points and codensity parameter k = 100, as in Figure 45. Again
we define Q

(5)
4b , Q(5)

4d and Q(5) via the bijection. Thus, Q(5)
4b refer to the codensity

filtered cluster, but the codensity is calculated from the distances in the space P4c,
not in P4b.

TDA AND THE ACTIVATIONS IN A CNN 65

Figure 52. UMAP visualisations of the points in the flare P
(5)
4b

(left) and codensity filtered Q
(5)
4b (right). Points that do not appear

in the cocycle are coloured gray.

Figure 53. UMAP projection of codensity filtered data Q
(5)
4b

coloured by circular parameter found in Q
(5)
4c . Visualisations of cen-

troids of points binned according to the circular parameter value.

66 BIRK D. RAMBERG

Figure 54. Persistence diagram for the points in P
(5)
4b , codensity

filtered to 2000 points with codensity parameter k = 200, denoised
one iteration with denoising parameter k = 300. UMAP visual-
isation of different datasets. Points are coloured by the circular
parameter obtained for the most persistent cocycle found. Points
that do not occur the cocycle are coloured black.

12.1.1. Layer 4b. We start by visualising P
(5)
4b in Figure 51. There seems to be a

hole in this space as well, but it is definitely not the main feature of the space, as
it is in layer 4c. Is the hole we can see in Figure 51 the same as that in P

(5)
4c ? Via

the bijection we can also associate the circular parameter we computed on Q
(5)
4c to

the points in Q
(5)
4b . We colour the points with this parameter in Figure 52, to see if

the loops correspond.
It seems that parts of the loop we see in Figure 45 corresponds to the one we see

in Figure 51, since the circular parameter found in Q
(5)
4c wraps around the whole in

Q
(5)
4b . The image is, however, not as clean in layer 4b as in 4c. For example, there

is a green area in the left of the left plot in Figure 51, in addition to some general
disagreement between the visualised loop and the circular parameter in both plots.
This might be the explanation for the comparably high difficulty of detecting loops

TDA AND THE ACTIVATIONS IN A CNN 67

Figure 55. UMAP visualisation of the points belonging to flare
5 P

(5)
4d in layer 4d. Coloured by 1/codensity.

in Q
(5)
4b with persistent homology. It is, however, clear that the circular parameter

found in Q
(5)
4c to a large extent explains the loops we see in Figure 52.

In Figure 53 we visualise the points along the loop detected in Q
(5)
4b . The visual-

isations tell a similar story to that in Figure 47, but it seems the concepts are not
as clearly separated by the CNN in this layer.

Figure 54 illustrates my most successful attempt at a circular parametrisation of
the space P

(5)
4b , with codensity filtration, denoising and persistent cohomology all

computed from the distances in P4b. The circular parameter does seem to describe
the loop around the lower right hole, but the loop is clearly not as dominant as
in P

(5)
4c , cf. Figure 45. An example with a poor parametrisation is of course not

any proof that no good parametrisation can be found, but Figure 54 is illustrative
of the results obtained by choosing a number (∼ 10) of different parameters for
the preprocessing. This is quite contrary to the loop found in P

(5)
4c , which was dis-

tinctly detected by persistent homology for most choices of reasonable preprocessing
parameters.

12.1.2. Layer 4d. We can also investigate what happens with the flare in the next
layer, that is we investigate P

(5)
4d . As always, we start with a simple UMAP visual-

isation, coloured by 1/codensity in Figure 55. Here, it seems like the the loop has
been cut, and is in the process of splitting into two distinct components. This is
confirmed also by the clustering of the whole space of activations in layer 4d, shown
in Figure 56. Figure 57 shows the overlaps of each cluster obtained with k-means

68 BIRK D. RAMBERG

Figure 56. The whole space of activations P4d visualised with
UMAP. The colours correspond to clusters found with k-means
clustering with k = 20.

mixed4b mixed4c mixed4d

cluster0
cluster1
cluster2
cluster3
cluster4
cluster5
cluster6
cluster7
cluster8
cluster9

cluster10
cluster11
cluster12
cluster13
cluster14
cluster15
cluster16
cluster17
cluster18
cluster19

41 0 0
1 0 1

18 0 11
33 0 7
35 0 3

160 5460 6
6 0 16
8 0 180

119 0 3151
103 0 0

0 0 1
452 0 1
21 0 3

192 0 0
21 0 1823
3 0 163
1 0 5

49 0 30
77 0 58

4120 0 1 0

1000

2000

3000

4000

5000

Figure 57. Number of common points with P
(5)
4c for each cluster

found with k-means on the point clouds P4b and P4d.

TDA AND THE ACTIVATIONS IN A CNN 69

Figure 58. UMAP visualisations of the points in the flare P
(5)
4d

(left) and codensity filtered Q
(5)
4d . Points that do not appear in the

cocycle are coloured gray.

Figure 59. UMAP projection of codensity filtered data Q
(5)
4d

coloured by circular parameter found in Q
(5)
4c . Visualisations of cen-

troids of points binned according to the circular parameter value.

70 BIRK D. RAMBERG

Figure 60. The whole space of activations P4e visualised in 2d
with UMAP. The colours correspond to clusters found with K-
means clustering with k = 20.

clustering on P4b and P4d. We see that in 4b the cluster P (5)
4c is almost entirely con-

tained within a cluster. In 4d, the cluster P
(5)
4c has split into two different clusters.

We can also notice from Figure 56 that the flare we are investigating (bottom left
corner) seems to become more separated from the rest of the full space.

Figure 58 confirms that the loop that has been cut apart is the same loop that
we found in P

(5)
4c . Maybe the loop we found was simply a symptom of the way that

layers in the CNN disentangle concepts. The network seems to tear a hole in the
middle of the “disk” and then tear it apart into two distinct semi-circles. A question
to investigate further could be: Is this a common way for the network to divide a
“disk” into two parts, and why does it happen (at least here)?

In Figure 59 we see that the two flares that are cut apart do not have much in
common anymore. It seems like the network at this point starts to make a large
distinction between animal faces and furry body parts.

TDA AND THE ACTIVATIONS IN A CNN 71

Figure 61. Visualisation with UMAP of the points from cluster
5 in Figure 42, coloured by 1/codensity.

Figure 62. Persistence diagram for the points in cluster 12 from
Figure 60, codensity filtered to 1500 points with codensity param-
eter k = 100, denoised one iteration with denoising parameter
k = 100. UMAP visualisation of different datasets. Points are
coloured by the circular parameter obtained for the most persis-
tent cocycle found. Points that do not occur in the cocycle are
coloured black.

72 BIRK D. RAMBERG

3 4 5 6 7 8 9 10

3

4

5

6

7

Figure 63. UMAP projection of codensity filtered data in cluster
12 from Figure 60, coloured by circular parameter. Visualisations
of centroids of points binned according to the circular parameter
value.

12.2. Cluster in Layer 4e. Let us briefly review another example of a loop found
using a similar approach. We first start by visualising the full space of activations
P4e in Figure 60.

We see that cluster number 12 in the upper left corner is quite weakly connected
from the rest and seems to exhibit a loop structure according to the UMAP dimen-
sion reduction. The visualisation of the cluster in Figure 61 shows mild symptoms
of a loop. After codensity filtration and denoising, persistent cohomology detects
a very significant loop in the data, and the circular parameter is intuitive, as illus-
trated in Figure 62.

Figure 63 displays a visualisation of the data points along the circular parameter.
We will not go further into the details to try to justify the presence of this loop. The
example is meant to illustrate how the method is able to identify loops in the data
rather easily. Similar investigations have been performed on all the other clusters in
P4c from Figure 42. In no clusters, except cluster 5, did the UMAP visualisation as
in Figure 42 reveal a large circular structure. Persistent cohomology of codensity
filtered and denoised clusters rarely gave significant features. In the rare cases
when it did, the circular parameter, visualised as in Figure 45 seemed nonsensical,
suggesting that the loops detected were of the spurious, or at least local, sort.

TDA AND THE ACTIVATIONS IN A CNN 73

13. Further Work

In this final section I will summarise and present ideas for further work that
seem worthwhile pursuing, based on the intuition achieved through the work on
this thesis. Some of the ideas have already been discussed or presented in the
relevant sections, while some are first introduced in this section.

13.1. Collection of Activations. In Section 10, the method used to obtain chan-
nel activation vectors, and their normalised directions, is explained and discussed. I
also propose another way of collecting activation vectors, randomly choosing patches
from images and averaging across each of the channel activations. Whether the
point clouds obtained in such a way would be similar or not to the point clouds we
have investigated in this thesis is difficult to say. However, regardless of which point
cloud that is the most “suitable”, investigation of the agreements and disagreements
seem interesting and potentially enlightening to me.

13.2. Attribution. As briefly mentioned in Section 10, good attribution functions
could provide useful additional information about the point clouds of activations
that we are investigating. If we had a measure of importance the network associates
with an activation, we could use this to focus our attention on the activations of
high importance, at least initially.

A consequence of both sampling methods discussed previously, is that the dis-
tribution of the activations reflect the distribution of the occurrence of patches (or
concepts) in the images. For example, activations associated with grass are ex-
tremely common, simply since they are very common in images. These activations
are not very relevant to the classifications of images. On the other hand, human
features are very relevant for classifications, but are not very common in the images.
For some purposes this could be unfortunate. For example, it makes (co)density
filtrations across very different areas of the point clouds a bad idea. For dimen-
sionality reduction methods, like UMAP for the Activation Atlas, the dense regions
containing things like grass, ground and water, might be given too much attention,
at the cost of high-attribution regions. Binning, filtering or re-sampling based on
attribution values seem like good ideas.

13.3. Layers. In Section 12 we investigate the same subset of activations across
multiple layers, to see the evolution of the loop found in layer 4c. This is a very
basic example of the use of the complex structure of the dataset that is due to the
correspondence between activations in different layers.

Given the random sampling of a spatial activation, does the correspondence
between layers constitute a sensible (whatever that means) function between the
spaces we have investigated? It is reasonable to expect a spatial activation with a
visualisation like a dog face in P4c, to not have a visualisation like water in P4d.
On the other hand, if the functions between layers did “nothing”, why would we
need so many layers, which we know that we do? We can therefore expect the
functions between layers to do more than “nothing”, while still preserving some
properties of the space. One might expect that we could design sensible continuous
functions between simplicial complexes associated with the point clouds from the
correspondences. Given such functions, the connection between “doing nothing” and
the functions being homeomorphisms is intuitive. This vague observation together

74 BIRK D. RAMBERG

with the functoriality of most topological methods suggest that topological methods
might be suitable for the study of the transformations between layers.

13.4. Compare Different CNNs. To compare the point clouds of activations
across different CNNs seems like a fascinating idea. To what extent could one
find agreements between the networks? In the case of disagreements: Are any of
the behaviours preferable? Can we associate the disagreements with any known
strengths or weaknesses of the different models? Explicit questions could be: Does
a vgg16 CNN [49] have a layer where the activations look similar to P4c, with the
“dog flare”? Can we find the same loops in the two networks? Do the networks
show the same kinds of “semantic chaos” in (Mapper) Activation Atlases?

13.5. Interactive Mapper Activation Atlas. Methods like the Activation At-
las benefit greatly from being interactive, since this allows for more information to
be presented in an approachable way. Moreover, interactivity can give robustness
and better understanding regarding hyperparameters. As discussed in Section 11, I
believe the Mapper Activation Atlas would benefit greatly from an interactive im-
plementation, especially with regards to the min_intersection parameter, zooming,
and manual rearrangement of the graph layout.

13.6. Higher Resolution Mapper. In Section 11, we introduced the Mapper
Activation Atlas. In the pipeline described to create the Mapper Activation Atlas,
the number of covers in the cover used to compute the Mapper graph, determines
the number of nodes in the Mapper graph and thus the number of images, i.e. the
resolution, of the Mapper Activation Atlas. Hence, the “dimensionality reduction”,
that is, the creation of the graph from the data, depends on the resolution we want
for the output visualisation. For example, we might want to compute the Mapper
graph from the data with a very high number of covers, thus obtaining a high
number of nodes in the graph. With the simple pipeline proposed in Section 11,
the resulting Mapper Activation Atlas would have a very high number of nodes,
and therefore too many visualisations of directions to be of any use whatsoever.
This might be unfortunate.

I propose to separate the resolution of the Mapper graph and the resolution
of the Mapper Activation Atlas visualisation. A simple approach would be to
visualise only a subset of the nodes in the Mapper graph, based on the intuition
that points that are closely connected probably have very similar visualisations.
Other approaches could involve some sort of “clustering” of the nodes in the Mapper
graph, or binning of nodes based on some functions, such as a circular parameter.
Regardless of the approach, the goal is to allow computation of a Mapper graph with
a high number of nodes for a potentially more accurate representation of the shape
of the space, while still making the Mapper Activation Atlas visually approachable
for humans.

Finally, it is worth mentioning that the Mapper Activation Atlas could certainly
be improved by making better choices of methods and parameters, especially for
the clustering method.

REFERENCES 75

References

[1] Louis Abraham. tomaster: Topological Mode Analysis on Steroids. https:
//pypi.org/project/tomaster/. 2021.

[2] Henry Adams and Michael Moy. Topology Applied to Machine Learning: From
Global to Local. 2021. arXiv: 2103.05796 [math.AT].

[3] Charu C. Aggarwal. Neural Networks and Deep Learning. A Textbook. Cham:
Springer, 2018, p. 497. isbn: 978-3-319-94462-3. doi: 10.1007/978-3-319-
94463-0.

[4] Ulrich Bauer. “Ripser: efficient computation of Vietoris-Rips persistence bar-
codes”. In: J. Appl. Comput. Topol. 5.3 (2021), pp. 391–423. issn: 2367-1726.
doi: 10.1007/s41468-021-00071-5. url: https://doi.org/10.1007/
s41468-021-00071-5.

[5] Tom B. Brown et al. Language Models are Few-Shot Learners. 2020. arXiv:
2005.14165 [cs.CL].

[6] Gunnar Carlsson. “Topology and data”. In: Bull. Amer. Math. Soc. (N.S.)
46.2 (2009), pp. 255–308. issn: 0273-0979. doi: 10.1090/S0273-0979-09-
01249-X. url: https://doi.org/10.1090/S0273-0979-09-01249-X.

[7] Gunnar Carlsson and Rickard Brüel Gabrielsson. “Topological Approaches
to Deep Learning”. In: Topological Data Analysis. Ed. by Nils A. Baas et al.
Cham: Springer International Publishing, 2020, pp. 119–146. isbn: 978-3-030-
43408-3.

[8] Gunnar Carlsson et al. “On the local behavior of spaces of natural images”. In:
Int. J. Comput. Vis. 76.1 (2008), pp. 1–12. issn: 0920-5691. doi: 10.1007/
s11263-007-0056-x. url: https://doi.org/10.1007/s11263-007-0056-
x.

[9] Shan Carter et al. “Activation Atlas”. In: Distill (2019).
https://distill.pub/2019/activation-atlas. doi: 10.23915/distill.00015.

[10] Frédéric Chazal et al. “Persistence-Based Clustering in Riemannian Mani-
folds”. In: Journal of the ACM 60 (June 2011). doi: 10.1145/1998196.
1998212.

[11] Chao Chen et al. “TopoReg: A Topological Regularizer for Classifiers”. In:
CoRR abs/1806.10714 (2018). arXiv: 1806.10714. url: http://arxiv.org/
abs/1806.10714.

[12] Gabor Csardi and Tamas Nepusz. “The igraph software package for complex
network research”. In: InterJournal Complex Systems (2006), p. 1695. url:
https://igraph.org.

[13] J. Deng et al. “ImageNet: A Large-Scale Hierarchical Image Database”. In:
CVPR09. 2009.

[14] Herbert Edelsbrunner and John Harer. Computational Topology - an Intro-
duction. American Mathematical Society, 2010, pp. I–XII, 1–241. isbn: 978-
0-8218-4925-5.

[15] Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. “Topological
Persistence and Simplification”. In: (Jan. 2003).

[16] Martin Ester et al. “A Density-Based Algorithm for Discovering Clusters in
Large Spatial Databases with Noise”. In: Proceedings of the Second Interna-
tional Conference on Knowledge Discovery and Data Mining. KDD’96. Port-
land, Oregon: AAAI Press, 1996, pp. 226–231.

https://pypi.org/project/tomaster/
https://pypi.org/project/tomaster/
https://arxiv.org/abs/2103.05796
https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.1007/s41468-021-00071-5
https://doi.org/10.1007/s41468-021-00071-5
https://doi.org/10.1007/s41468-021-00071-5
https://arxiv.org/abs/2005.14165
https://doi.org/10.1090/S0273-0979-09-01249-X
https://doi.org/10.1090/S0273-0979-09-01249-X
https://doi.org/10.1090/S0273-0979-09-01249-X
https://doi.org/10.1007/s11263-007-0056-x
https://doi.org/10.1007/s11263-007-0056-x
https://doi.org/10.1007/s11263-007-0056-x
https://doi.org/10.1007/s11263-007-0056-x
https://doi.org/10.23915/distill.00015
https://doi.org/10.1145/1998196.1998212
https://doi.org/10.1145/1998196.1998212
https://arxiv.org/abs/1806.10714
http://arxiv.org/abs/1806.10714
http://arxiv.org/abs/1806.10714
https://igraph.org

76 REFERENCES

[17] Hitesh Gakhar and Jose A. Perea. Sliding Window Persistence of Quasiperi-
odic Functions. 2021. arXiv: 2103.04540 [math.AT].

[18] Ingo Gühring, Mones Raslan, and Gitta Kutyniok. Expressivity of Deep Neu-
ral Networks. 2020. arXiv: 2007.04759 [cs.LG].

[19] Allen Hatcher. Algebraic topology. Cambridge: Cambridge University Press,
2002, pp. xii+544. isbn: 0-521-79160-X; 0-521-79540-0.

[20] Rune Haugseng. Lecture notes in Algebraic Topology 1. Nov. 2020.
[21] Felix Hensel, Michael Moor, and Bastian Rieck. “A Survey of Topological

Machine Learning Methods”. In: Frontiers in Artificial Intelligence 4 (2021),
p. 52. issn: 2624-8212. doi: 10.3389/frai.2021.681108. url: https:
//www.frontiersin.org/article/10.3389/frai.2021.681108.

[22] Harold Hotelling. “Analysis of a complex of statistical variables into principal
components.” In: Journal of Educational Psychology 24 (1933), pp. 498–520.

[23] John M Jumper et al. “Highly accurate protein structure prediction with
AlphaFold”. In: Nature 596 (2021), pp. 583–589.

[24] J. B. Kruskal. “Multidimensional scaling by optimizing goodness of fit to a
nonmetric hypothesis”. In: Psychometrika 29 (1964), pp. 1–27. issn: 0033-
3123. doi: 10 . 1007 / BF02289565. url: https : / / doi . org / 10 . 1007 /
BF02289565.

[25] Leland McInnes and Tim Sainburg and Graham Clendenning and Sebastian
Pujalte. UMAP: Uniform Manifold Approximation and Projection for Dimen-
sion Reduction. https://umap-learn.readthedocs.io/en/latest/index.
html. [Online; accessed 20-December-2021]. 2021.

[26] Lei Li et al. “Identification of type 2 diabetes subgroups through topological
analysis of patient similarity”. In: Science Translational Medicine 7 (2015),
311ra174–311ra174.

[27] Ephy Love et al. “Topological Deep Learning”. In: ArXiv abs/2101.05778
(2021).

[28] Pek Yee Lum et al. “Extracting insights from the shape of complex data using
topology”. In: Scientific Reports 3 (2013).

[29] Laurens van der Maaten and Geoffrey E. Hinton. “Visualizing Data using
t-SNE”. In: Journal of Machine Learning Research 9 (2008), pp. 2579–2605.

[30] Leland McInnes and John Healy. “UMAP: Uniform Manifold Approximation
and Projection for Dimension Reduction”. In: (Feb. 2018).

[31] Michael Moor et al. Topological Autoencoders. 2021. arXiv: 1906 . 00722
[cs.LG].

[32] J.R. Munkres. Topology. Featured Titles for Topology. Prentice Hall, Incorpo-
rated, 2000. isbn: 9780131816299. url: https://books.google.no/books?
id=XjoZAQAAIAAJ.

[33] James R. Munkres. Elements of Algebraic Topology. Addison Wesley Publish-
ing Company, 1984. isbn: 0201045869. url: http://www.worldcat.org/
isbn/0201045869.

[34] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. “Feature Visu-
alization”. In: Distill (2017). https://distill.pub/2017/feature-visualization.
doi: 10.23915/distill.00007.

[35] Chris Olah et al. “The Building Blocks of Interpretability”. In: Distill (2018).
https://distill.pub/2018/building-blocks. doi: 10.23915/distill.00010.

https://arxiv.org/abs/2103.04540
https://arxiv.org/abs/2007.04759
https://doi.org/10.3389/frai.2021.681108
https://www.frontiersin.org/article/10.3389/frai.2021.681108
https://www.frontiersin.org/article/10.3389/frai.2021.681108
https://doi.org/10.1007/BF02289565
https://doi.org/10.1007/BF02289565
https://doi.org/10.1007/BF02289565
https://umap-learn.readthedocs.io/en/latest/index.html
https://umap-learn.readthedocs.io/en/latest/index.html
https://arxiv.org/abs/1906.00722
https://arxiv.org/abs/1906.00722
https://books.google.no/books?id=XjoZAQAAIAAJ
https://books.google.no/books?id=XjoZAQAAIAAJ
http://www.worldcat.org/isbn/0201045869
http://www.worldcat.org/isbn/0201045869
https://doi.org/10.23915/distill.00007
https://doi.org/10.23915/distill.00010

REFERENCES 77

[36] Steve Y. Oudot. Persistence Theory: From Quiver Representations to Data
Analysis. Mathematical Surveys and Monographs 209. American Mathemat-
ical Society, 2015, p. 218. url: https://hal.inria.fr/hal-01247501.

[37] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal
of Machine Learning Research 12 (2011), pp. 2825–2830.

[38] Jose A. Perea. A Brief History of Persistence. 2019.
[39] Jose A. Perea and John Harer. “Sliding windows and persistence: an applica-

tion of topological methods to signal analysis”. In: Found. Comput. Math. 15.3
(2015), pp. 799–838. issn: 1615-3375. doi: 10.1007/s10208-014-9206-z.
url: https://doi.org/10.1007/s10208-014-9206-z.

[40] Birk Ramberg. An Introduction to Persistent Homology. June 2021.
[41] Bastian Rieck et al. “Neural Persistence: A Complexity Measure for Deep Neu-

ral Networks Using Algebraic Topology”. In: CoRR abs/1812.09764 (2018).
arXiv: 1812.09764. url: http://arxiv.org/abs/1812.09764.

[42] Olga Russakovsky et al. “ImageNet large scale visual recognition challenge”.
In: Int. J. Comput. Vis. 115.3 (2015), pp. 211–252. url: https://doi.org/
10.1007/s11263-015-0816-y.

[43] Erik Rybakken, Nils Baas, and Benjamin Dunn. “Decoding of neural data us-
ing cohomological feature extraction”. In: Neural Comput. 31.1 (2019), pp. 68–
93. issn: 0899-7667. doi: 10.1162/neco_a_01150. url: https://doi.
org/10.1162/neco_a_01150.

[44] Erich Schubert et al. “DBSCAN revisited, revisited: why and how you should
(still) use DBSCAN”. In: ACM Trans. Database Syst. 42.3 (2017), Art. 19,
21. issn: 0362-5915. doi: 10.1145/3068335. url: https://doi.org/10.
1145/3068335.

[45] Ludvig Schubert. Lucid. https://github.com/tensorflow/lucid. 2021.
[46] Ramprasaath R. Selvaraju et al. “Grad-CAM: Visual Explanations from Deep

Networks via Gradient-Based Localization”. In: International Journal of Com-
puter Vision 128.2 (Oct. 2019), pp. 336–359. issn: 1573-1405. doi: 10.1007/
s11263-019-01228-7. url: http://dx.doi.org/10.1007/s11263-019-
01228-7.

[47] Vin de Silva and Mikael Vejdemo-Johansson. “Persistent cohomology and cir-
cular coordinates”. In: Proceedings of the 25th annual symposium on Compu-
tational geometry - SCG ’09 (2009). doi: 10.1145/1542362.1542406. url:
http://dx.doi.org/10.1145/1542362.1542406.

[48] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. “Deep Inside Con-
volutional Networks: Visualising Image Classification Models and Saliency
Maps.” In: CoRR abs/1312.6034 (2013). url: http://dblp.uni-trier.de/
db/journals/corr/corr1312.html#SimonyanVZ13.

[49] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks
for Large-Scale Image Recognition”. In: CoRR abs/1409.1556 (2015).

[50] Gurjeet Singh, Facundo Memoli, and Gunnar Carlsson. “Topological Methods
for the Analysis of High Dimensional Data Sets and 3D Object Recognition”.
In: Eurographics Symposium on Point-Based Graphics. Ed. by M. Botsch et
al. The Eurographics Association, 2007. isbn: 978-3-905673-51-7. doi: 10.
2312/SPBG/SPBG07/091-100.

[51] David I. Spivak. Metric Realization of Fuzzy Simplicial Sets. 2012.

https://hal.inria.fr/hal-01247501
https://doi.org/10.1007/s10208-014-9206-z
https://doi.org/10.1007/s10208-014-9206-z
https://arxiv.org/abs/1812.09764
http://arxiv.org/abs/1812.09764
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1162/neco_a_01150
https://doi.org/10.1162/neco_a_01150
https://doi.org/10.1162/neco_a_01150
https://doi.org/10.1145/3068335
https://doi.org/10.1145/3068335
https://doi.org/10.1145/3068335
https://github.com/tensorflow/lucid
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1007/s11263-019-01228-7
http://dx.doi.org/10.1007/s11263-019-01228-7
http://dx.doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1145/1542362.1542406
http://dx.doi.org/10.1145/1542362.1542406
http://dblp.uni-trier.de/db/journals/corr/corr1312.html#SimonyanVZ13
http://dblp.uni-trier.de/db/journals/corr/corr1312.html#SimonyanVZ13
https://doi.org/10.2312/SPBG/SPBG07/091-100
https://doi.org/10.2312/SPBG/SPBG07/091-100

78 REFERENCES

[52] Sumit Saha. A Comprehensive Guide to Convolutional Neural Networks —
the ELI5 way. https :/ / towardsdatascience . com /a - comprehensive -
guide - to - convolutional - neural - networks - the - eli5 - way -
3bd2b1164a53. [Online; accessed 20-December-2021]. 2018.

[53] Christian Szegedy et al. “Going deeper with convolutions”. In: 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2015),
pp. 1–9.

[54] Guillaume Tauzin et al. “giotto-tda: a topological data analysis toolkit for
machine learning and data exploration”. In: J. Mach. Learn. Res. 22 (2021),
Paper No. 39, 6. issn: 1532-4435.

[55] Wikipedia contributors. Black box — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=Black_box&oldid=
1053753402. [Online; accessed 20-December-2021]. 2021.

[56] Wikipedia contributors. Cross entropy — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=Cross_entropy&oldid=
1045652153. [Online; accessed 18-December-2021]. 2021.

[57] Wikipedia contributors. Curse of dimensionality — Wikipedia, The Free En-
cyclopedia. [Online; accessed 18-December-2021]. 2021. url: https://en.
wikipedia.org/w/index.php?title=Curse_of_dimensionality&oldid=
1059361687.

[58] Wikipedia contributors. Data dredging — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=Data_dredging&oldid=
1058121117. [Online; accessed 15-December-2021]. 2021.

[59] Wikipedia contributors. Logistic regression — Wikipedia, The Free Ency-
clopedia. https://en.wikipedia.org/w/index.php?title=Logistic_
regression&oldid=1060778010. [Online; accessed 22-December-2021]. 2021.

[60] Wikipedia contributors. Occam’s razor — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=Occam%27s_razor&
oldid=1060371999. [Online; accessed 20-December-2021]. 2021.

[61] Wikipedia contributors. One-hot — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=One- hot&oldid=
1059604951. [Online; accessed 23-December-2021]. 2021.

[62] Wikipedia contributors. Simplex — Wikipedia, The Free Encyclopedia.
https : / / en . wikipedia . org / w / index . php ? title = Simplex & oldid =
1060160718. [Online; accessed 22-December-2021]. 2021.

[63] Chiyuan Zhang et al. “Understanding Deep Learning (Still) Requires Rethink-
ing Generalization”. In: 64.3 (Feb. 2021), pp. 107–115. issn: 0001-0782. doi:
10.1145/3446776. url: https://doi.org/10.1145/3446776.

[64] Afra Zomorodian and Gunnar Carlsson. “Computing persistent homology”.
In: Discrete Comput. Geom. 33.2 (2005), pp. 249–274. issn: 0179-5376. doi:
10.1007/s00454-004-1146-y. url: https://doi.org/10.1007/s00454-
004-1146-y.

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://en.wikipedia.org/w/index.php?title=Black_box&oldid=1053753402
https://en.wikipedia.org/w/index.php?title=Black_box&oldid=1053753402
https://en.wikipedia.org/w/index.php?title=Cross_entropy&oldid=1045652153
https://en.wikipedia.org/w/index.php?title=Cross_entropy&oldid=1045652153
https://en.wikipedia.org/w/index.php?title=Curse_of_dimensionality&oldid=1059361687
https://en.wikipedia.org/w/index.php?title=Curse_of_dimensionality&oldid=1059361687
https://en.wikipedia.org/w/index.php?title=Curse_of_dimensionality&oldid=1059361687
https://en.wikipedia.org/w/index.php?title=Data_dredging&oldid=1058121117
https://en.wikipedia.org/w/index.php?title=Data_dredging&oldid=1058121117
https://en.wikipedia.org/w/index.php?title=Logistic_regression&oldid=1060778010
https://en.wikipedia.org/w/index.php?title=Logistic_regression&oldid=1060778010
https://en.wikipedia.org/w/index.php?title=Occam%27s_razor&oldid=1060371999
https://en.wikipedia.org/w/index.php?title=Occam%27s_razor&oldid=1060371999
https://en.wikipedia.org/w/index.php?title=One-hot&oldid=1059604951
https://en.wikipedia.org/w/index.php?title=One-hot&oldid=1059604951
https://en.wikipedia.org/w/index.php?title=Simplex&oldid=1060160718
https://en.wikipedia.org/w/index.php?title=Simplex&oldid=1060160718
https://doi.org/10.1145/3446776
https://doi.org/10.1145/3446776
https://doi.org/10.1007/s00454-004-1146-y
https://doi.org/10.1007/s00454-004-1146-y
https://doi.org/10.1007/s00454-004-1146-y

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Birk Dybesland Ramberg

Topological Data Analysis and the
Activations in a Convolutional Neural
Network

Master’s thesis in Industrial Mathematics
Supervisor: Marius Thaule
Co-supervisor: Melvin Vaupel
December 2021M

as
te

r’s
 th

es
is

	Acknowledgements
	1. Introduction
	2. Topological Data Analysis
	3. Topological Spaces, Homeomorphisms and Homotopy Equivalences
	4. Simplicial Complexes
	5. Simplicial Homology
	6. Persistent Homology
	7. Circular Parametrisation
	8. Mapper
	9. UMAP
	10. The Space of Activations
	11. Activation Atlases
	12. Finding Loops
	13. Further Work
	References

