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Abstract

With the constant increase of Lithium-Ion Batteries (LIBs) in the trans-
portation sector, the benefit of utilising the batteries to their full extent be-
comes more and more apparent. In order to fully utilise LIBs, there are
multitudes of techniques to extend the battery lifespan. An important fac-
tor is to avoid over or under voltages, as this not only increases performance
deterioration due to battery aging, but can be dangerous.

This project has been undertaken as a member of the student organisation
Revolve NTNU and will focus on characterising the impedance, which is
a important step in order to extract maximum performance from the cells.
There are many ways to create a model. One way, which is the method
explored in this paper, is to do charge/discharge testing of a cell in order
to create an Equivalent Circuit Model (ECM). Once a single cell has been
sufficiently modelled the entire battery package can be modelled, although
not a focus in this project.

In order to create a good model the test plan should take the application of
the battery package in consideration. This battery package will be used in a
race car application, and therefore the dynamics are much more aggressive
than for a road vehicle. By using previous data from Revolve NTNU races,
a custom test plan has been designed.

By performing these tests, different characteristics of the cell can be mea-
sured, while the rest of the parameters can be trained using optimising tech-
niques and hybrid pulse power characterisation data. Once these model
have been designed and trained, they are validated using a custom load cy-
cle for the cells based on actual lap data from previous races.
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Chapter 1
Introduction

1.1 Background

Revolve NTNU is a student organisation participating in the Formula Stu-
dent competitions on behalf of the Norwegian University of Science and
Technology (NTNU). In less than a year they design and manufacture a Bat-
tery Electric Vehicle (BEV) for racing purposes. The change from Internal
Combustion Engine (ICE) to BEV started in 2014 with an extensive market
survey of energy storage technologies for electric race car applications.[2]
Due to the multitude of factors in battery cell testing the manufacturers’
data sheet seldom provides enough information in order to estimate how
the cell will function within the given application. Therefore a thorough
investigation into the characteristics of the chosen cell was performed in
2016[3]. With the focus of performance with regards to discharge- and
charge capabilities, temperature development, and life cycling, the system
still lacked State of Charge (SoC) and State of Power (SoP) estimation.
While earlier attempts used electrochemical impedance spectroscopy in or-
der to create a model of the cell,[4] this project will try to create a model
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using Hybrid Pulse Power Characterisation (HPPC), i.e. input-output data.

1.2 Motivation

Due to the growing concerns over the emissions of greenhouse gasses a
global shift towards electric vehicles is underway. The increasing use of
these electrified vehicles within the transport sector not only improves the
air quality in urban areas[5], but can also provide a distributed energy stor-
age solution for the implementation of the rapidly evolving smart grid[6].
However, without a sophisticated and accurate Battery Management Sys-
tem (BMS), the use of Li-ion batteries will not be optimal. Li-ion battery
systems employed in high power systems such as BEVs require a sophisti-
cated monitoring system to ensure safe and reliable operation. Especially
at low SoC, accurate estimation of SoP will allow the system to extract the
full potential of the battery package, which is very relevant in a competi-
tion where the potential of each system has to be maximised in order to
save weight and increase performance.

Most commercial BMS for BEVs limit the maximum and minimum allow-
able SoC as well as limiting the regenerated energy in order to increase the
lifespan of the battery package. The battery package in Revolve NTNU is
built to last two seasons, which means that the lifespan can be shortened in
order to increase performance. This leads to using more of the SoC range,
which means that the impedance must be modelled such that the BMS can
limit the current at low SoC.

1.3 Strategy

As described in fig. 1.1 the approach is to do testing on a cell using a ded-
icated battery tester. The data collected from these tests will then be used
to find parameters for an Equivalent Circuit Model (ECM). Some of the
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Maximum Capacity Test

Open Circuit Voltage 
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Hybrid Pulse Power 
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Simulink Design 
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Q

OCV from State of 
Charge Look up table

Battery capacity

Validationy

Figure 1.1: The intended strategy of this project.

parameters can not be directly measured from the data, so an optimising
approach using discharge/charge pulses will be used for the remaining pa-
rameters. Finally, the model will be validated using a custom dynamic load
cycle.

This project uses two cells with cobalt oxide (LiCoO2) chemistry. These
cells have been used for multiple years in Revolve. They have a high en-
ergy density, 189W/kg and very high power capabilities for pulses, which
is very important for a BEV. It also allows large charge currents which al-
lows us to regenerate large currents at high speeds, which means less use
of hydraulic brakes. For further details the data sheet can be found in chap-
ter C.
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Chapter 2
Theory

2.1 Lithium-ion batteries working principle

2.1.1 A brief introduction to electrochemistry

The working principles of Lithium-Ion Batteries (LIBs) can be simpli-
fied into two simple Oxidation-Reduction (redox) reactions. Namely when
lithium leaves one electrode and enters the other which is called intercala-
tion. This takes two forms depending on whether the cell is being charged
or discharged. The anode and cathode will switch place when going from
charging to discharge, which is why this project has resolved to using the
terminology of negative and positive electrode. See table 2.1 for the rela-
tionship between anode, cathode and electrodes.

Table 2.1: Terminology of electrodes.

Electrode Charging Discharging
Negative electrode Cathode Anode
Positive electrode Anode Cathode

4



Figure 2.1: A schematic illustration of a Cobalt Oxide LIB[7]

In fig. 2.1 the structure of a LIB can be seen. The cell possesses two elec-
trode with current collectors, a separator, and an electrolyte. The current
collector is a piece of copper or aluminium plastered onto the electrode to
conduct electrons. Both electrodes consist of a lattice structure, which can
be thought of as a shelf, upon which the lithium ions are placed during
charging/discharging. When the cell is fully charged, the positive electrode
is stacked full of lithium ions. When the cell is fully discharged the negative
electrode is saturated with the lithium ions. 1 When discussing LIBs they
are usually denoted by the active material in the positive electrode. The
LIBs used in this project are denoted LCO for Lithium Cobalt Oxide.

The chemical reactions taking place in the cell can be summarised by the
following two half-reactions:

1This is a simplification, as the negative electrode will not not contain Li1C6 but rather
an average lithium concentration Lix̄C6 where x̄ is around 0.6 − 0.7 depending on the
chemistry of the electrodes.[8].
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Charging:
Positive electrode:

LiM � Li1−xM + xe− + xLi+

Negative electrode:

C6 + xe− + xLi+ � LixC6

Discharging
Positive electrode

Li1−xM + xe− + xLi+ � LiM

Negative electrode

LixC6 � C6 + xe− + xLi+

WhereM defines the active material in the LIB. During charging there is an
applied electrical field over the cell. In the positive electrode the electrons
are pulled towards the negative electrode due to the applied field. When the
electrons leave the lithium, the lithium molecules are turned into cations
(positively charged lithium ions) which travel through the electrolyte to-
wards the negative electrode. In the negative electrode the electrons bond
with the lithium cations and insert themselves into the graphite.

During discharge the electrodes are connected through a load. This allows
electrons from the negative electrode to travel to the positive electrode due
to the potential differences. When electrons leave the negative electrode the
remaining lithium, now a cation, will exit the graphite structure and enter
the electrolyte. Due to the concentration gradient in the electrolyte the
cations will start drifting towards the positive electrode to find an electron
to bond with. This will occur as long as there is a potential difference which
causes a current between the electrodes.

2.1.2 Electrochemical impedance

The LIB can be described at a microscale level using charge/mass conser-
vation in the electrodes, electrolyte, and how the lithium travels between
them. Common for most of these is that there is a diffusion mechanism,
usually in the form of Fick’s laws. The diffusion plays an important role
in the modelling of impedance and is difficult to model correctly. In LIB
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Figure 2.2: Nyquist Plot for a Battery Showing the Different Regions Correspond-
ing to an Electrochemical Process[9]

the difficulty is perhaps easier to see using an electrochemical impedance
spectroscopy result plotted in a Nyquist diagram. An excellent example of
this can be found in the Analog Device circuit note[9].

In the diagram fig. 2.2, the impedance profile of a LIB can be visualised.
The impedance increases for lower frequencies, and decreases for higher
frequencies, even having an inductive tail which is not related to the chem-
ical effects of the internals of the cells, but in stead due to the current col-
lector and wiring to the cells. What is interesting with this graph is that
the angle of the impedance at low frequency, marked with mass transport
(diffusion) in the figure. This will be further investigated in the modelling
section.
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2.1.3 Polarising voltages

In addition to the diffusion impedance there is also inscribed a double layer
capacitance and charge transfer. These are related to the inner workings of
the cell by the charge build up on the electrode surface and the the resistance
across the barrier between the electrode and electrolyte. It should also be
noted that these, with the exception of the inductive tail are capacitive loads.
This means that once the current through the cell is removed, the energy
spent activating these different loads will to some degree go back to being
chemical energy. The effect this has on the terminal voltage of the cell are
called polarising. Polarising means any voltage deviance from the OCV
due to memory effects from the applied current on the LIB. In order to
be able to model the polarising effects a good impedance model will be
necessary.

2.1.4 Constant current - constant voltage

CC-CV is a common charging strategy for LIBs, and can also be used for
discharging. The algorithm starts with a constant current. The current is
kept constant until the a certain voltage is reached. The protocol then moves
into the constant voltage step where the terminal voltage is kept constant by
adjusting the current. The algorithm concludes once a sufficient low current
has been reached. An example for charging can be seen in fig. 2.3

Figure 2.3: Constant current - constant voltage charge.[1]
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2.1.5 Open circuit voltage

The Open Circuit Voltage (OCV) is formally defined as

Uocv = u+
ocp − u−ocp (2.1)

where Uocv is the OCV while u·ocp is the open circuit potential of the pos-
itive and negative electrode, respectively. The potential is a function of
lithium concentration in the specific electrode. In other words, depending
on the amount of lithium substance in the electrode, the voltage changes,
which means that depending on the current SoC the OCV will change. The
OCV is the equilibrium point of the cell at a given SoC, when neglecting
self discharge and other phenomenons acting over a large time horizon.
Establishing a relationship between the OCV and SoC can be done with
testing. Berckmans et al. [10] used a method called quasi-open circuit volt-
age. This method discharges/charges the cell at very low current, where the
idea is that the cells will be at an equilibrium the entire cycle. They used a
current of C

25
, where the C-rate is a measure of the rate at which a battery is

being charged or discharged. 1C is defined as the current the battery would
deliver in one hour with its nominal rated capacity.

2.1.6 State of charge

State of Charge will be defined as the average lithium concentration versus
the maximum possible concentration in the negative electrode. The average
lithium concentration stoichiometry can be defined as

ψ =
c−avg
c−max

(2.2)
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where c− denotes the concentration of lithium in the negative electrode.
Then the SoC at any given time is

zk =
ψk − ψ0%

ψ100% − ψ0%

(2.3)

where the 100% and 0% subscript is at respectively CC-CV charged to Vmax
and discharged to Vmin at a given temperature of 25◦C.

The SoC can not be measured directly, but must rather be inferred. There
are many ways to estimate the SoC[11] [12] [13], but as the focus of this
thesis is the impedance modeling, a simple Coulomb counting method has
been applied. Coulomb counting is a type of Book-keeping estimation,
where by keeping track of how much current that has been delivered from
the batteries, a relative accurate SoC can be found. The problem can be
formulated as

z(t) = z(t− 1)− 1

Q

∫ t

t−1

I(t)η(t)dt (2.4)

Where Q is the capacity of the cell, I(t) is the applied current (positive
current is discharge) and η is the coulombic efficiency[14]. It is a measure
of how much the charge current contributes to charging the cell in the pres-
ence of losses due to side reactions in the cell. In this thesis η is assumed
to be unity. The discrete form with a sampling time equal to ∆T is

z[k] = z[k − 1]− 1

Q
I[k]∆T (2.5)

2.1.7 State of power

State of Power (SoP) is a measure of the capabilities of a cell to deliver a
certain power for a certain time. In the general sense this includes limit-
ing based on the polarising voltages in case of under/over voltage. There
are also other reasons you would want to limit the power, such as ther-
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mal considerations and conserving State of Health (SoH). This project will
limit itself to the polarising voltages. In order to make sure the cell does
not experience an under or overvoltage based on the polarising effect, the
impedance must be modelled. The model must be able to predict the volt-
age accurately for a relatively short time horizon.

There is a multitude of ways to limit the power from the cell, but they are
usually sorted into two groups: Model based and characteristics maps[15].
A map is a Look Up Table (LUT) which may or may not be adaptive in the
sense that it modifies the map while operating, contrary to using offline cell
testing data. So given the SoC and temperature and perhaps other factors,
the Battery Management System (BMS) can predict which loads are ac-
ceptable. Due to the aforementioned ageing mechanism in the cell, a static
map will not stay relevant for the cells entire lifespan.

The other way to estimate the available power is by use of a model. If a
satisfactory model has been designed, it can be simulated with an arbitrary
current in order to predict the future voltage. A important factor here is the
time horizon, or how long the model should predict ahead. This is highly
dependent on the application of the LIBs.

2.1.8 Aging mechanisms

The two main factors that lead to performance loss and inevitably end of
life for a LIB, are capacity and power fade. Capacity fade leads to re-
duced capacity and is mainly due to the loss of cyclable lithium and loss of
active materials in the electrode. These are all results of unwanted side-
reactions in the cell, and can to some degree be blamed on the growth
of the solid electrolyte interface. The solid interface layer is a important
layer which is formed during the first charging cycle of the battery on the
negative electrode. By doing the first charging cycle in a controlled en-
vironment with low current the Solid Electrolyte Interface (SEI) becomes

11



densely packed and thus hinders the decomposition of the graphite into
the electrolyte. However, over time this layer will continue to grow. The
layer is created by incapacitating lithium, which reduces the capacity of the
cell. Another issue is that the impedance of the cell increases. When the
impedance increases, the current capabilities decrease as well, due to the
voltage drop. This phenomenon is known as power fade. Note that this is
only one of many factors that affect capacity and power fade. For a more
comprehensive overview see [16].

2.2 Equivalent circuit models

Equivalent Circuit Model (ECM) uses electrical circuit elements to define
a behavioural approximation to how a cell’s voltage responds to different
input-current stimuli.[17] By using knowledge of common electronic el-
ements, it is possible to define a circuit that has behaviour that closely
matches the observed behaviour of the battery cell. Once a satisfying model
has been found, it can be trained using data from offline testing. This of
course should be an iterative process, where different models are trained
and tested in order to compare the performance. In order to compare per-
formance, a test dataset, which has not been used to train the system, will
be used for validation.

2.2.1 Building blocks

ECMs are built using a combination of voltage sources, resistors and ca-
pacitors. It is also possible to use a current source, which would result
in a so-called Norton equivalent. The voltage equivalent is known as the
Thévenin variant.

Plotting the frequency response of the different elements in a Nyquist dia-
gram gives a good intuition of how the different elements work, and espe-
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cially when adding the elements together.

The ideal Resistor is represented as a point along the real axis in the Nyquist
diagram fig. 2.4. This should come as no surprise, as the ideal resistor is
independent of frequency. Next the impedance of an ideal capacitor in the

Resistor

−1 1 2 3

−2

−1

1

2

Re

−Im

Response in a Nyquist diagram

Figure 2.4: Nyquist plot of a resistor

laplace domain is

Z(ω) =
1

jωC
(2.6)

where C is the capacitance and j is the imaginary number. This equation
shows how the impedance decreases at higher frequencies which is visu-
alised in fig. 2.5.

Once these basic elements are combined, interesting things start to happen.
A resistor and capacitor in parallel creates a semicircle in the Nyquist plot,
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Capacitor

−1 1 2 3

−2

−1

1

2

Re

−Im

Response in a Nyquist diagram

ω ↑

Figure 2.5: Nyquist plot of a capacitor

as seen in fig. 2.6

Z(ω) = R ‖ 1

jωC
(2.7)

1

Z(ω)
=

1

R
+ jωC (2.8)

=
jωRC + 1

R
(2.9)

Z(ω) =
R

jωRC + 1
(2.10)

Although not as evident as the capacitor, but it is easy to see that if ω = 0

the impedance will be R and if ω �∞ the impedance will tend towards 0.
Next, a more uncommon element called the Warburg impedance[18] will
be investigated. The Warburg element is actually a special case of a Con-
stant Phase Element (CPE) which gives a constant phase shift regardless of
frequency. Mathematically they can be denoted in the following manner

CPE(ω, α) =
1

W (jω)α
(2.11)
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RC-Circuit

−1 1 2 3

−2

−1

1

2

Re

−Im

Response in a Nyquist diagram

ω ↑

Figure 2.6: Nyquist plot of a RC circuit in parallel

Where W is the impedance coefficient and α ∈ [0, 1] is a parametrisation
of the phase shift. By setting α = 1 an ideal capacitor is achieved and the
phase shift is π

2
, while for α = 0 the element reduces to an ideal resistor

and the phase shift is 0. Setting α to any value in between will require
fractional calculus. For example, the Warburg element, which is a CPE
where α = 1

2
corresponds to taking a half-derivative.[19]. To conclude, the

Warburg element impedance can be seen in fig. 2.7.

ZW (ω) =
1

W
√

(jω)
(2.12)

with

arg(ZW ) = arg(j−
1
2 ) (2.13)

= −π
4

(2.14)

and is visualised in fig. 2.7
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Warburg element
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Figure 2.7: Nyquist plot of a Warburg element

2.2.2 Randles circuit

Bringing all of these aforementioned elements together results in the well
established Randles circuit[20]. This model can be seen in fig. 2.8 and tries
to explain the following chemical processes:

• Rs: The solution resistance.

• Rct: The resistance for the charge transfer, in other words, the barrier-
resistance between the solid and electrolyte.

• Cdl: Double layer capacitance, which is the charge that builds up on
the surface of the solid.

• Zw: Warburg element, which explains the diffusion reaction.

However, as will be shown later this circuit can be both simplified and made
more complex.
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Figure 2.8: The Randles Circuit

2.2.3 n-RC models

By taking the Randles circuit and neglecting the Cdl term and merging Rs

and Rct into R0 the following model remains fig. 2.9 The next step is to

R0

W

Figure 2.9: A simplified Randles circuit

estimate the Warburg element with RC circuits[21] as shown in fig. 2.10.
In this mode R0 describes the ohmic resistance, which is non-dependent
on the frequency, while the RiCi tries to describe the dynamics of the cell.
This opens up for a family of models where the models are denoted by the
number of RC circuits in series.

2.2.4 ESC models

Another family of models are the Enhanced Self-Correcting (ESC)[22]
which adds the additional element of hysteresis. The electrodes in Li-
ion batteries relax to different OCV values after discharging and charging,
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Figure 2.10: Estimation of Warburg element using multiple RC circuit in parallel.
As the amount of RC circuit goes to infinity, this circuit will behave exactly as a
Warburg element.

even for the same stoichiometry. In other words, with the same percentage
lithium in the electrodes, the voltage will still depend on whether the last
operation was a charge or whether it was a discharge. This indicates that
there is hysteresis in the terminal voltage. What is even more complex is
that the hysteresis is also a function of SoC[23]

The addition of 1-state hysteresis is implemented using the following model[22]

h[k] = e−|
η[k−1]i[k−1]∆T

Q |h[k − 1]−
(

1− e−|
η[k−1]i[k−1]∆T

Q |
)
sgn(i[k])

(2.15)

vhyst = Mh[k] (2.16)

where η is the coulombic efficiency assumed to be unity. M controls the
amplitude of the hysteresis voltage.

hyst R0

R1

C1

Figure 2.11: ESC Model with one RC circuit.
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2.2.5 Discrete models

At this point it makes sense to describe the system mathematically. An
example with a 1-RC circuit will be used.

+
−

R0

R1

C1

OCV (z(t))

+

v(t)

−

Figure 2.12: ESC Model with one RC circuit.

Where the OCV is modelled as a function of SoC. Using Kirchhoff’s law
of voltage

v(t) = OCV (z(t))− vR0(t)− vR1‖C1(t) (2.17)

the voltage across the RC circuit is equal to the current through R1 times
R1. By using Kirchoff’s law of current, the current can be calculated as
such

i(t) = iR1(t) + iC1(t)

iR1(t) = i(t)− iC1(t)

iR1(t) = i(t)− C1v̇C1(t)

By substituting vC1(t) = R1iR1(t) the following ordinary differential equa-
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tion is found
i̇R1(t) = − 1

R1C1

(iR1(t) + i(t)) (2.18)

which has the common state space form

ẋ = Ax+Bu (2.19)

and can therefore easily be discretised using a zero-order hold (ZOH)[24]
assuming the different states are constant between samples. Using ZOH
results in

Ad = eA∆T (2.20)

Bd = A−1(Ad − I)B (2.21)

Where Xd is the discretised version of X and A is assumed to be non-
singular. With eq. (2.18)A = − 1

R1C1
and B = 1

R1C1
which leads to

Ad = eA∆T

= e
− ∆T
R1C1 (2.22)

Bd = A−1(Ad − I)B

= −R1C1(e
− ∆T
R1C1 − 1)

1

R1C1

= −(e
− ∆T
R1C1 − 1) (2.23)

If the model has n RC circuits the system will have the following form

i̇R[k] =



e
− ∆T
R1C1 0 . . . 0

0 e
− ∆T
R2C2

...
... . . .

0 . . . e−
∆T
RnCn


iR[k−1]+


−(e

− ∆T
R1C1 − 1)

−(e
− ∆T
R2C2 − 1)

...

−(e−
∆T
RnCn − 1)

 i[k]

(2.24)

These diagonal elements of the Ad will be named pi so that p1 = e
− ∆T
R1C1 .

The name is chosen because they are the poles of the system. By looking
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at the diagonal canonical form[24], this is clearly. G = R1

(s+p1)
+ R2

(s+p2)
+

· · ·+ Rn
(s+pn)

.

d
dt


x1

x2

...
xn

 =


−p1 0 · · · 0

0 −p2 · · · 0
...

... . . . ...
0 0 · · · −pn


︸ ︷︷ ︸

A


x1

x2

...
xn


︸ ︷︷ ︸

z

+


1

1

1

1

u

y =
[
R1 R2 · · · Rn

]
︸ ︷︷ ︸

C

z

A measure that will be used to analyse the results is the sample autocorre-
lation function. It is used to measures the correlation between yt and yt+k
where k = 0, . . . , K and yt is a stochastic process. The autocorrelation for
lag k is

rk =
ck
c0

where ck = 1
T

∑T−k
t=1 (yt − ȳ) (yt+k − ȳ) c0 is the sample variance of the

time series.

2.3 Parameter Estimation

Parameter Estimation is a branch of statistics that involves using sample
data to estimate the parameters of a distribution. By simulating the system
with a given set of parameters, a simulated signal, ysim can be compared to
a measured signal, yref in which both systems are excited by the same input.
By using the simulated signal and measured signal it is possible the set up
a optimisation problem. By solving the problem, the optimal parameters
which causes the simulated signal to mimic the measured signal as good as
possible with the chosen model can be found.
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By defining a parameter vector θ the optimisation problem can be defined
as follows

min
θ

F (θ) (2.25)

where F (θ) is a cost function. Different cost functions and methods change
how the optimisation problem is set up.

The residual or error is defined as

e(t, θ) = yref (t)− ysim(t, θ) (2.26)

Some common cost functions can be found in section 2.3 but it is possible
write any cost function, as long as it returns the correct type for the chosen
solver. Usually either a scalar (SSE or SAE) or a vector such as the raw
residuals.

Cost Function Formulation

Sum Squared Error (SSE)
∑N

i=1 e
2
i

Sum Absolute Error (SAE)
∑N

i=1 |ei|

Raw Residuals


e1

e2

...

en



Squared Error


e2

1

e2
2
...

e2
n


Table 2.2: Common cost functions.

Some solvers allows the user to provide constraints on the parameters. For
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example the SoC must be greater than zero and less than one. Constrains
will be denoted as

ci(θ) = 0, i ∈ E (2.27)

ci(θ) ≥ 0, i ∈ I (2.28)

where ci ∈ E are the equality constraints, and ci ∈ I are the inequality
constraints.

2.3.1 Nonlinear least square

Nonlinear Least Square is a method that tries to minimise the squares of the
residuals with methods such as Gauss-Newton and Levenberg-Marquardt[25].
The problem when using these types of methods can be formulated as fol-
low

min
θ

N∑
i=1

e2
i (θ), s.t. C(θ) ≥ 0 (2.29)

These methods have good performance, but are dependent on the derivative,
which can be an issue with discrete systems. Most nonlinear optimisation
problems can not guarantee that the solution is the global solution, and this
also applies to these least square methods.

2.3.2 Simplex search

The Nelder-Mead downhill simplex method is another method to solve the
optimisation problem[26]. It uses a simplex in order to constrain the prob-
lem, and based on certain rules the simplex is morphed and flipped in order
to find a minimum. This method is derivative free, which means it can work
well on problems where the derivative is difficult to obtain, such as discrete
systems. However, it in turn requires more computational power for the
same results [27]. It is also not possible to set constrains using the simplex
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search algorithm. As with nonlinear least square there is no guarantee that
the method arrives at the global minimum.

2.4 Battery cell testing

HPPC and Electrochemical Impedance Spectroscopy (EIS) are both meth-
ods that are frequently used for characterisation of LIBs. HPPC is a general
term for using applied pulses and measuring the voltage and possibly the
temperature at different battery states. Afterwards these pulses can be used
in varying degrees to estimate the parameters of the model.

Electrochemical Impedance Spectroscopy (EIS) on the other hand typically
consists of applying a sinusoidal current (galvanostatic mode) of a certain
amplitude and frequency, and measuring the amplitude and phase shift of
the output voltage. From the applied current and measured voltage it is
possible to find the impedance of the cell. Then it is possible to fit for
example the Randles circuit to the experimental data.

Many attempts using both HPPC and EIS have been tried, and while both
usually show good results using the different techniques, HPPC has been
chosen for this thesis. This is mainly due to the simplified experiments
and the fact that the experiment will more closely mimic the actual appli-
cation of the cells. Finally getting good results for EIS requires knowledge
about the equipment and methods,[28] while HPPC is more forgiving and
requires less background knowledge.

24



Chapter 3
Methodology

3.1 Setup

In this project the Chroma 17020 Regenerative Battery Pack Test System
[29] has been used to perform the different test sequences. Specifically the
the 200VDC version which is designed for larger batteries/battery pack-
ages. This makes the voltage and current accuracy/resolution slightly worse
than the ideal situation.
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Figure 3.1: The Chroma 17020 test system. The top modules are the DC/AC
Bi-Direction Converter, the unit with the display is the Charge/Discharge Con-
troller while the lower elements are the Regenerative Charge/Discharge Tester. The
Charge/Discharge Controller gets a list of steps from the PC, which the Regenera-
tive Charge/Discharge Tester performs using power from the DC/AC Bi-Direction
Converter.
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Figure 3.2: The AES climate chamber used in this project from Angelantoni Test
Technologies.
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Figure 3.3: The cells are connected to the charger using a short self-made wire in
order to alleviate the cell tabs from mechanical stress. The temperature sensors are
mounted using thermal paste and tape.
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The cells have been placed in a climate chamber as shown in fig. 3.2, in or-
der to control the ambient temperature. With the addition of a temperature
sensor on the body of the pouch cell fig. 3.3 it is possible to monitor the
cell temperature for safety measures and validation. The setup is visualised
in fig. 3.4

Climate chamberChroma 17020

Temp

Battery

Figure 3.4: The cells are connected to the Chroma 17020 using two sets of wires:
one for the main current path and another for the voltage measurement. The tem-
perature sensor is fastened to the pouch of the cell using a thermal paste.

Chroma 17020 comes with a software where the different hardware setup,
cell specification and recipes are defined. The first step is to choose the
channels and whether they are connected in parallel. Each channel can
deliver and receive 30A. The next step is to specify the cell parameters
with regards to safety. By adding a SOA from the cell data sheet, the recipe
will not allow charge/discharge outside of this. It will also protect in the
case of over temperatures. The system will stop executing the recipe if the
system exits the predefined SOA. After selecting the following parameters
found in table 3.1

the recipes can be created. They are lists of steps the discharge-charge tester

1This is due to limit of the test system. Two channels can only deliver 60A even though
the cells can handle more.
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Table 3.1: Safety parameters

Parameter Explanation Value
OVP Over voltage protection 4.2
UVP Under voltage protection 3.0
TP Temperature protection 55◦C

CCP Charge current protection 54A
DCP Discharge current protection 60A1

should perform. For example,

1. CC-CV charge cell to 4.1V

2. CC discharge cell to 3.0V with C
30

A

3. CC-CV charge cell to 3.7V

More advanced features are also possible and will be explained in the de-
scription of each test.

3.2 Choice of tests

In order to properly model the cells they need to be tested under various
conditions in order to excite the different states. As this project focuses on
SoC and SoP the testing for SoH has been deprioritised. Thus the following
four tests are chosen

• Maximum Capacity Test

• OCV Test

• HPPC

• Dynamic Tests

Before starting the tests the cells are cycled a few times in order to mitigate
effects of being stored.
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3.2.1 Maximum Capacity Test

By charging the cell with a CC-CV algorithm to the upper cut-off level, at a
given temperature, and then discharging it with a CC, the time and current
can be multiplied in order to find the capacity. For these cells the chosen
rate is C

3
≈ 2.183A at 25◦C.

Maximum Capacity test

1. Set the temperature to 25◦ and let the cell rest for 1 hour to
attain a uniform temperature throughout the cell.

2. CC-CV charge to Vmax with cut-off at C
30

.

3. Rest for 1 hour.

4. CC discharge to Vmin at C
3

and 25◦.

5. CC-CV charge to Vnom. This step is optional, but it is wise to
always leave the cell at a voltage that allows storing it away.

3.2.2 OCV Test

The purpose of this test is to map the relationship between SoC and OCV.
By discharging to the lower cut-off voltage the cell is slowly charged to
the upper cut-off voltage. Due to the hysteresis effect[30] the process is
repeated from fully charged to fully discharged. Finally the cell is charged
up to Vnom. This test is performed at different ambient temperatures, due to
the effect of temperature on the OCV[31]. The different test temperatures
(Tt) have been chosen on the basis of the application of the battery package,
and thus the expected temperatures of the different competitions.

Tt = {25 35 45 55} (3.1)
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OCV Test

1. Set the temperature to the current test temperature and let the
cell rest for 1 hour to attain a uniform temperature throughout
the cell.

2. CC-CV cells to Vmin with cut-off at C
30

.

3. Rest the cell for 1 hour to attain a uniform temperature
throughout the cell.

4. CC the charge cell at C
30

to Vmax.

5. Rest cells for 1 hour

6. CC discharge cell at C
30

to Vmin.

7. CC-CV charge to Vnom. This step is optional.
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3.2.3 HPPC

Hybrid Pulse Power Characterisation (HPPC) is a test method which can
be used to characterise battery cells[32]. It uses a pulse which is applied at
certain steps in order to evaluate the voltage response at these points. Due to
the extensive data available in Revolves’ log storage the HPPC test can be
designed with regards to the application. By looking at the logged current
from a race, the magnitude and duration of the peaks can be found and
placed in a HPPC framework. A slightly modified version of the method
found in Motloch et al. [32], which is more similar to the loads the battery
cell will experience. The finished pulse can be seen in fig. 3.5.

As can be seen in fig. 3.5, the cell - after a sufficient rest period - is ex-
cited first with a medium-high discharge current over a relatively long pe-
riod and after a very small rest it is discharged for the same period. Then
this discharge-charge pulse is repeated with even higher current, but much
shorter duration.

The following steps of SoC have been chosen, where the first and last steps
have 5% step size due to the more non-linear behaviour at the start and end
of the cycle. This also allows better modelling of the impedance at lower
SoC which is much more interesting as the cell SoP will simply be limited
by the data sheet, in the middle area of the SoC curve.

SOCt =
(

95 90 85 70 60 50 40 30 25 20 15 10 5
)
(3.2)

Note that in order to avoid leaving the SOA the first three pulses does not
contain a very large charge current, and likewise with the discharge on the
two last pulses.
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Figure 3.5: The entire HPPC experiment as well as a single pulse.

3.2.4 Dynamic Test

In order to properly validate the model a few dynamic load cycles has been
conducted. These are based on actual current profiles from previous Re-
volve races. In order to use them with the test equipment, some prepro-
cessing had to be done. Linear interpolation was used to fill inn missing
data. The dI

dt
had to be smoothed due to the limited slew rate of the equip-

ment. The signal was also downsampled in order to cut down the number of
points the testing software had to process. Lastly a safety check was done
to make sure that the cell is never discharged or charged beyond the SOA
with regards to amplitude and duration.

Another thing to keep in mind is to not charge the cell at high SoC which
is solved by running an initial curve in order to burn off some of the energy
first. This is also how Revolve actually solves this issue at races, where
kinetic regenerative braking is only activated until after it is deemed safe.
The two resulting waveforms can be found in fig. 3.6 and the experiment in
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fig. 3.7. At this point the heat generation in the cell starts to matter, and has
been included in the plot.
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Figure 3.6: Load cycles used in the dynamic test.
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Figure 3.7: Data from a dynamic experiment. First the three initial waveforms
can be observed, which reduce the SoC. Once the SoC is at a safe level the main
waveform is applied until the SoC is ≈ 0. A short resting period between the
waveforms has been added to reduce the heat generation, as well as seeing how
well the relaxation phase i modelled.

3.3 Modelling

The following models have been tested by estimating the parameters and
validating the performance.

• 0-RC

• 1-RC

• 2-RC

• 3-RC

• 4-RC

• 2-RC-ESC
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• 4-RC-ESC

The model has been implemented using Simulink and can be viewed in the
appendix chapter B. A conceptual diagram can be found in fig. 3.8. The pa-
rameters have been found using the Simulink Design Optimalization tool-
box, which in turn used a simplex method in order to match the simulated
output with the measured voltage response of the cell. In order to reduce
the amount of parameters that has to be estimated, some simple calculations
on the test data will be performed to find a relationship between SoC and
OCV, and capacity.

Current input

Parameter 
selector

State 
equation Output 

equation Voltage output

i

?

iR

z

v

Figure 3.8: A conceptual diagram of the Simulink program. The parameters are
either an initial guess for the optimising problem or the finished LUTs which has
been populated by the optimisation program.

3.3.1 State of Charge and Open Circuit Voltage

Firstly a relationship between SoC and OCV must be found. This is done
using the OCV testdata where a centerline between the discharge and charge
curve for a given temperature is found using linear interpolation. The in-
terpolation is split into a thousand, so that a resolution of 0.1% is achieved.
From this process five LUTs are built, one for each temperature in eq. (3.1).
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3.3.2 Capacity

As the applied current is known together with the total discharge time, the
capacity can be found using

Q =
TI

3600

where T is the total discharge time in milliseconds. I is the applied current.

3.3.3 Model parameters

The next part is to split each HPPC pulse into its own dataset. For each
pulse there are three entities. These are the timestamps, applied current
and measured voltage. The state of charge for each pulse is found by using
the aforementioned LUT. These pulses will be used to create LUTs of the
different remaining parameters of the cell, which will be resistance, time
constants or hysteresis.

The model is implemented as a difference equation, i.e. discretely. The
complexity of the model can be tuned by adjusting the number of parame-
ters. Parameters are turned off by setting them to zero and removing them
from the parameter vector of the optimisation problem.

As described in the theory section the equations have been discretised, and
therefore the unit delay block has been used, which takes a signal x[k]

and returns x[k − 1]. The input signal, which is current for simulation
and voltage for validation has been given a sample time of 200ms. Even
with the sampling time set to 10ms in the Chroma software, the resulting
measurements had a sampling time of 200ms. As the higher sampling time
is not a large issue, a solution was not pursued. With this sampling time the
solver was set to a discrete fixed step solver with step size of 10ms. This
gave a good trade-off between performance and accuracy.
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In order to optimise the values of the parameters the optimisation problem
was set up with a current timeseries as input, and the measured voltage as
output. In the Simulink Design Optimisation Toolbox[33] this is done by
setting up an experiment, where the input and output are defined. Next the
initial values are chosen. In this problem the only initial value is the initial
SoC z0. The parameters are chosen based on which model it is currently
optimising. Once all of this has been set up the optimisation starts. Perhaps
due to the discrete nature of the problem, the least square methods did not
return good results and often diverged. The Simplex search algorithm on
the other hand returned good values, slower than least square, but stable
and accurate.

An issue with the Simplex search is that it is not possible to bound the
optimisation parameters. Bounding parameters on this problem is quite
important as negative values of Ri would cause the system to be unstable.
If the poles are greater than 1, pi > 1 the discrete system is unstable as
well.

For each model a table of 14 values for each parameter was created. Each
value stemming from a pulse from the HPPC experiment. Then a LUT
for each parameter was designed and implemented in Simulink in order to
verify the model.
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Chapter 4
Results

This chapter presents the results from the previous testing and modelling.
First the results from the OCV test, then the maximum capacity tests, pa-
rameter estimation results and finally the validation data. In the parameter
section the 4−RC ESC model is presented, as well as the R0 value across
the models, to see the overall trend for that parameter. For the validation
data an attempt to make the data more relevant for further modelling was
made. It is assumed that when using a feed back filtering method slowly
varying errors are easily removed.
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4.1 Battery test results

The result from the OCV test is the SoC LUT can be viewed in fig. 4.1. One
for each temperature. Note that they are very similar. That is the reason that
adding a temperature dependant factor in the OCV was deprioritised.
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Figure 4.1: The different look-up tables for open circuit voltage given state of
charge and temperature.

In fig. 4.2 It is interesting to note the similarities between the two cells
under testing and how the measured capacity increases during the three
first experiments. This is not uncommon in LIBs, but it justifies the cycling
that was performed before starting the tests.
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Figure 4.2: The results from the different maximum capacity tests.

4.2 Parameter values

The resistance parameters of the 4−RC ESC model can be seen in fig. 4.3.
The impedance has a tendency to increase as the SoC goes down. This
coincides nicely with established research on the evolution of impedance
during a cycle. [34][35]

R1 seems to disappear entirely, and by looking at the corresponding time
constant in fig. 4.4 it seems to tend towards zero as well. In other words, as
the SoC goes lower, one of the RC circuits seem to disappear. R2 and R3

seems to switch roles at about 1000s, but they have different time constant,
so it might be that as the SoC goes down, another dynamic in the cells starts
to take over.
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Figure 4.3: The resistance parameters over time for the ESC 4-RC model. The
Rtot shows the summed resistance of all the resistors.

The poles or rather, the time constants shown in fig. 4.4 do not correlate
with the SoC, which is also indicated in [34] where the capacitance in the
model was mostly stationary across the SoC spectrum. RC4 however has a
strong correlation with the SoC. This is also the
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Figure 4.4: The time constant parameters over time for the ESC 4-RC model. Note
that they have been transformed to RC using pi = exp( ∆T

RiCi
) with ∆T = 0.05

Another interesting observation is that the hysteresis as seen in fig. 4.5 turns
negative after about eight minutes. This is a result of using the Simplex
search method, which means no constraints can be set. The optimiser has
no idea what it is optimising, so it will simply tune the parameters until the
results looks good enough. A reason this might happen is due to the SoC
not being modelled good enough, it can use the hysteresis effect to act as if
the OCV is higher or lower than what it is.
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Figure 4.5: The hysteresis value over the validation data set.

As mentioned in the theory section the Warburg element causes a 45◦ phase
shift. From the following plot fig. 4.6, which shows a bode plot of the pa-
rameter values in the 4 − RC model, it can be observed that the system
has a phase shift at low frequencies. The shift is almost 45◦. If the train-
ing (HPPC) contained longer pulses the shift would probably shift towards
lower frequencies.
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Figure 4.6: Bode plot of the estimated 4-RC model.

An issue that arose during the optimisation stage is that when left running
for a long time the resistance on some of the RC pairs turned negative,
which caused the system to be unstable for certain SoC ranges. This would
mean that the RC pair would generate power which does not make sense
in the way the circuit should work. It might be a result of the phenomeno-
logical approach to modelling. There are underlying chemical phenomena
which might not be explainable by such a simple model as an ECM.

In fig. 4.7 R0 has the same trend over all of the plotted models. This means
that although the optimisation problem and model do not describe directly
the underlying phenomenons it is still able to describe the increase in the
ohmic resistance at lower SoC.
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4.3 Validation set

All the validation results are based on the same dynamic data presented in
the method chapter. They have been simulated until they reach approxi-
mately 5% SoC, this is due to the extreme nonlinearities at the lower 5%

range. Regardless of the difficulty of modelling, the cells will not be dis-
charged that low, as an average pulse will easily drive the cells under the
cut-off voltage.

By taking the autocorrelation of the error signal it is possible to see how
a value depends on the previous values. In the optimal situation the auto-
correlation would be an impulse at the zero-lag, which means that the error
is white noise. This implies that the model models everything except for
noise. However, by investigating fig. 4.8 there are clear patterns in the error
signal for every model. The patterns are likely a result of not tracking the
SoC particularly well. It could also be due to the relationship between SoC
and OCV not being accurate enough, if it is wrong in a section the error
will be systematic over that section.

A reason for the OCV becoming less accurate could be that the cell has
aged in between when the OCV test and when the HPPC tests ran, which
would change the OCV[36][37]. However, the cells should not have aged
much as they have been through a maximum of 25 cycles, but it indicates
a problem with static impedance modelling when the model needs to accu-
rately estimate a cell throughout the lifecycle of the cell.

In section 4.3 and fig. 4.10 the normalised error of the n − RC and ESC
4 − RC models can be seen. It is clear that the relaxation phase is better
explained for each added RC circuit. The ESC models also tends to be
more flat then the n − RC models. Likely due to the added hysteresis
effect.

In order to visualise the polarising voltage error a zoomed in version of the
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Figure 4.8: Sample autocorrelation of the 4-RC model. 200 lags are equivalent to
10s with a sample time of 0.05s.

previous plots were made. They can be seen in fig. 4.11 and fig. 4.12.
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Figure 4.9: The error from the different n-RC models. The error has been de-
trended in order to center it them around 0V. Note that 2-RC has been left out
due to poor results likely stemming from bad initial values for the optimisation
problem.
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Figure 4.12: The percentage error zoomed in on a pulse for the ESC n-RC models

A method to solve the issue of the low frequency error is by using a low-
pass filter in order to find the center line. By shifting the filtered curve the
phase shift due to the filter can be corrected. Finally the filtered signal can
be subtracted from the original signal as seen in fig. 4.13.

The new sampled autocorrelation exhibits less autocorrelation than before
the filtering and can be seen in fig. 4.14. It clearly has less autocorrela-
tion for higher order lag. The assumption here is that this slow varying
error should be rather easy to fix using methods such as online filtering. A
Kalman filter for example should not have any problem with this error, and
has been used with success in many projects. [4] [38]

Now it is possible to take the RMSE of the filtered signal to evaluate the
error that is most relevant to this model. The RMSE values for each model
can be seen in section 4.3. As mentioned previously the 2−RC model is a
result of bad optimisation.
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Figure 4.13: Using a low-pass filter, the mean of the error has been removed in
order to create a better RMSE measure.

The RMSE value is calculated as follows

RMSE =

√
1

n
eTe (4.1)

where e is the raw residual vector.

Another interesting fact is that the simulated voltage response tends to over-
estimate the voltage compared to the measured voltage, which can be seen
clearly in fig. 4.15. The exact reasoning behind this is difficult to say pre-
cisely. The HPPC pulses are quite long, and has ample time to rest in
between most likely causes the model to work better on long pulses instead
of shorter and more dynamic load cycles. It would be interesting to train
the model with much shorter pulses and observe how that would affect the
results. The fact that the HPPC pulses are quite long means that it is more
important that the simulation is more correct during the entire pulse. So, for
example in the 0−RC model, the R0 will be chosen such that the average
error is as small as possible.
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Figure 4.14: Sample autocorrelation of the 4-RC model after adjusting for sea-
sonality. 200 lags are equivalent to 10s with a sample time of 0.05s.

A thing to consider with regards to the pulses are how long the initial part
before the pulses start should be, and how long of a resting period after
the pulse are finished. By minimising these sections of the pulse, the pa-
rameters would describe the pulses in greater details, and not the relaxation
phase.
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Model RMSE

0-RC 23.00

1-RC 12.60

2-RC 19.94

3-RC 10.73

4-RC 10.00

ESC 2-RC 10.83

ESC 4-RC 9.22

Table 4.1: RMSE values for the different models after adjusting for seasonality.
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Figure 4.15: The simulated versus the measured voltage for the ESC 4 − RC
model normalised using the low-pass filtering technique.
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Chapter 5
Conclusion and further work

5.1 Conclusion

In this project a test plan for LIBs was designed and performed. From the
gathered data several models were designed and by using parameter opti-
mising the parameters not directly found from the test data were inferred.
Finally the models were validated, using some assumptions that the slow
varying error was possible to fix using a better SoC estimation. From the
results, found in section 4.3, RMSE values under 10mV were achieved.

It is the authors’s hypothesis that much of the error comes from a dispro-
portional test plan compared to the application of the LIBs, which the vali-
dation data was based on. It is therefore evident that the test plan has to be
tailor-made to the application of the LIBs. The model itself has not been
the main priority as a lot of work was put in to gathering data. By spend-
ing more time with the model and adding a filtering method the results can
become much more accurate. [39]

As hypothesised in the theory section the ECM will try to mimic the be-
haviour of the Warburg element at low frequencies, which is exactly what
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it did for the 4 − RC model. The hysteresis effect resulted in a smaller
RMSE, but it also grew negative which is counter intuitive compared to
the reason it was added. It also did not contribute very much to the results,
which means it might be beneficial to choose a simpler model without the
nonlinearities.

The work in this project could also be seen a an initial assessment of the
different models, where more effort can be put into a subset of the already
chosen models. Then a natural choice would be to further explote the capa-
bilities on the 4 − RC model and the equivalent ESC model. As these has
the lowest RMSE.

5.2 Further work

Here is a list of things the author suggests as further work.

State of Health. By collecting more data on the cells with more cycles it
would be possible to generate a map of model parameters based on SoC and
SoH. It would also be interesting to look at the parameters at different tem-
peratures by doing HPPC at different temperatures. The author collected
HPPC data at different temperatures, but it was not prioritised to make the
parameter LUTs dependent on temperature. The Simulink design optimi-
sation toolbox also features an adaptive LUT, which looks like it would
simplify the work flow.

Online parameter and state estimation. The results clearly showed the
importance of a good SoC estimation. It would therefore be a natural step
to next investigate methods for estimating the SoC with a model-based ap-
proach. In addition the parameters of the model could benefit from being
adaptively estimated.

Other types of modelling. There are different methods for modelling a
battery cell. Comparing the performance of a equivalent circuit model and
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a physical model and perhaps more data driven approaches such as a neural
network which has been used by Bezha and Nagaoka [40]. It could be
interesting to look at a continuous plant, which would open up for more
types of optimisation.
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Appendix A

Chroma 17020 extracts

Overview 

1-5 

Model 69225-200-4 69225-500-4  
Channel 4 4 

Charge Mode 
Voltage Range  0-200Vdc  0-500Vdc ** 
Maximum Current 30A 13A 
Max Power 2.5KW 2.5KW 
CC Mode Accuracy 0.1% stg.+ 0.05% F.S. 0.1% stg.+ 0.05% F.S. 
Current Resolution 5mA 1mA 
CV Mode Accuracy 0.1% stg.+ 0.05% F.S. 0.1% stg.+ 0.05% F.S. 
Voltage Resolution 5mV 5mV 
CP Mode Accuracy 0.2% stg.+ 0.1% F.S. 0.2% stg.+ 0.1% F.S. 
Power Resolution 0.5W 0.5W 

   
Discharge Mode 

Voltage Range * 0-200Vdc  0-500Vdc ** 
Maximum Current 30A 13A 
Max Power 2.5KW 2.5KW 
CC Mode Accuracy 0.1% stg.+ 0.05% F.S. 0.1% stg.+ 0.05% F.S. 
Current Resolution 5mA 1mA 
CV Mode Accuracy 0.1% stg.+ 0.05% F.S. 0.1% stg.+ 0.05% F.S. 
Voltage Resolution 5mV 5mV 
CP Mode Accuracy 0.2% stg.+ 0.1% F.S. 0.2% stg.+ 0.1% F.S. 
Power Resolution 0.5W 0.5W 

   
Measurement 

Voltage Range 0-200Vdc 0-500Vdc 
  Voltage Accuracy 0.02% rdg.+ 0.02% F.S. 0.02% rdg.+ 0.02% F.S. 
  Voltage Resolution  5mV 5mV 

Current Range 12A/30A 4.8A/13A 
Current Accuracy 0.05% rdg.+ 0.05% rng. 0.1% rdg.+ 0.05% rng. 

  Current Resolution 3mA 1mA 
Power Range 2500W 2500W 

  Power Accuracy 0.07% rdg.+ 0.07% F.S. 0.12% rdg.+ 0.07% F.S. 
  Power Resolution 0.3W 0.3W 
  Temperature Range 0-90°C 0-90°C 
  Temperature Accuracy ±2°C ±2°C 
  Temperature Resolution 0.1°C 0.1°C 

 
Note * 0V discharge definition and charge/discharge operation range are as Figure 1-1 

and Figure 1-2 shown. 
** Voltage range is 45-500VDC when model 500V is operated in battery simulator. 

 
V-I operation ranges of 69225/69212 series are shown as the following table. It is drawn by 
the data gotten by the experiment of 5m length output wire.   
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Appendix B

Simulink model
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State	Equation
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Appendix C

Cell datasheet

深圳市风云电池有限公司 SHENZHEN MELASTA BATTERY CO., LTD
产品规格书（Product Specification） 型号（Model No.）SLPBB042126HN 6550mAh 10C 3.7V

制造商保留在没有预先通知的情况下改变和修正设计及规格说明书的权力

Melasta reserves the right to alter or amend the design, model and specification without prior notice

2

1. 序言 PREFACE

此规格书适用于深圳市风云电池有限公司的锂聚合物可充电电池产品

The specification is suitable for the performance of Lithium-Polymer (LIP) rechargeable battery produced by the
SHENZHEN MELASTA BATTERY CO., LTD.

2. 型号 MODEL

SLPBB042126HN 6550mAh 10C 3.7V

3. 产品规格 SPECIFICATION

单颗电池规格 Specifications of single cell

◆电芯正极材料 Cell Cathode Material LiCoO2

◆标称容量 Typical Capacity① 6550mAh

◆标称电压 Nominal Voltage 3.7V

◆ 充电条件
Charge Condition

最大电流
Max. Continuous
charge Current

13.1A

峰值充电
Peak charge current

64A(≤0.5sec)
54A(≤1sec)

电压 Voltage 4.2V±0.03V

◆ 放电条件
Discharge
Condition

Max Continuous
Discharge Current 65.5A

Peak Discharge Current 98.25A(≤3sec)

Cut-off Voltage 3.0V

◆交流内阻 AC Impedance(mOHM) <3.0

◆循环寿命【充电:1C,放电:10C】
Cycle Life【CHA:1C,DCH:10C】 >100cycles

◆使用温度
Operating Temp.

充电 Charge 0℃~60℃

放电 Discharge -20℃~70℃

◆ 电芯尺寸
Cell Dimensions

厚度 Thickness(T) 10.7±0.3mm

宽度Width(W) 42±0.5mm

长度 Length(L) 127.5±0.5mm

极耳间距
Distance between 2

tabs
21±1mm

◆ 极耳尺寸
Dimensions of
Cell tabs

极耳材料 Tab Material Nickel-plated
Copper

极耳宽度 Tab Width 12mm

极耳厚度 Tab
Thickness 0.2mm

极耳长度 Tab Length 30±1.5mm

◆重量 Weight(g) 128.5±3.0g

①标称容量：0.2C,4.2V~3.0V@23℃±2℃
Typical Capacity:0.2C,4.2V~3.0V@23℃±2℃

W

L

T

2
±
1

22±1
12±0.2

6
±
1

Tab width

Distance between 2 tabs
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