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Abstract
Lithium-ion batteries represent an enormous industry and is shown to be
a cornerstone in reducing greenhouse gasses. As the electrification of the
transportation sector continues to increase, the potential gains of extending
the life span of lithium-ion batteries are significant. This optimization of
life span will only be possible given an adequate estimation of the internal
dynamics and state of the battery. One such internal state is the State of
Charge.

This thesis will act as a continuation of the project thesis. The project thesis
recorded experimental data, and different models were designed and iden-
tified. This thesis aims to estimate the state of charge using a model-based
estimation technique. The estimation methods implemented and compared
are the extended Kalman filter and the central difference Kalman filter.

With these estimation methods, the system manages to correct for a wrong
initial state of charge and estimate it within a 5% bound. The relation from
the state of charge to the open circuit voltage is also investigated, and two
methods are tested, a parametric polynomial and linear interpolation. Real-
world data noise can often be a problem, and a zero-phase low pass filter is
used with good results.
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Sammendrag
Litium-ion-batterier representerer en enorm industri og har vist seg å være
en sentral teknologi for å redusere klimagasser. Ettersom elektrifiseringen
av transportsektoren fortsetter å øke, vil de potensielle gevinstene ved å for-
lenge levetiden til litium-ion-batterier være betydelige. Denne optimalis-
eringen av levetiden vil kun være mulig gitt et tilstrekkelig estimat av den
interne dynamikken og batteriets tilstand. En av disse interne tilstandene er
batteriets restkapasitet.

Denne oppgaven vil fungere som en fortsettelse av prosjektoppgaven. Pros-
jektoppgaven hentet inn eksperimentelle data, og ulike modeller ble de-
signet og identifiserte parameterne. Denne oppgaven tar sikte på å estimere
batteriets restkapasitet ved hjelp av en modellbasert estimeringsteknikk.
Estimeringsmetodene som er implementert og sammenlignet er det utvid-
ede Kalman-filteret og sentral-forskjells-Kalman-filteret.

Med disse estimeringsmetodene klarer systemet å korrigere for en feil ini-
tial ladetilstand og estimere den innenfor en grense på 5%. Forholdet fra
batteriets restkapasitet til åpen kretsspenning undersøkes også, og to metoder
testes, et parametrisk polynom og lineær interpolasjon. Målestøy fra den
virkelige verden kan ofte være et problem i eksperimentelle data, og et
nullfase lavpassfilter brukes med gode resultater.
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Chapter 1
Introduction

With the first introduction of battery technology, a fundamental problem
has been to estimate the remaining energy [3]. When the automotive in-
dustry started using batteries in the tractive systems in the form of Battery
Electrical Vehicle (BEV)s and Hybrid Electrical Vehicle (HEV)s, the prob-
lem became crucial in order to estimate the available driving range [3]. The
current trend for tractive system batteries is Lithium-Ion Battery (LIB)s,
which makes monitoring the battery internal states essential, not just for
the available range, but also from a safety perspective [4]. Operating the
battery pack outside its operating area may have dire consequences [5].

The system which is responsible for estimating the remaining energy, also
known as State of Charge (SoC), is the Battery Management System (BMS).
Its tasks include, but are not limited to SoC & SoH estimation, safety & pro-
tection, charging control, thermal management, and cell balancing [3]. To
fulfil these tasks, a BMS has several features to control and monitor the
state of the battery at the battery cell level and the entire battery pack. The
monitored states are the cell voltage, temperature, and current.
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For SoC estimation, there is a multitude of solutions [6]. The primary input
to most of these is the current. Although it is possible to use the voltage
directly, this will often lead to inaccurate results. The simplest method is
to integrate the current over time, known as Coulomb counting. A model-
based approach where a mathematical model of the cell is fed the current
as input allows the introduction of the voltage measurements in the form of
a filtering method [7].

The electrification of the transportation section has been identified as a cru-
cial component to reduce humanity’s greenhouse gas emissions [8]. Bat-
teries act as a green revolution to the internal combustion engine and a po-
tentially essential part of the smart energy grid [3]. With the performance
from LIBs stagnating, the ability to optimize the life span will be very im-
portant, as a small increase leads to a large global effect [9]. This is where
SoH comes in, and an important step for SoH estimation is a accurate SoC
estimate.

1.1 Background

This thesis build upon the project thesis[10]. In where a test regime was
developed and executed on a Lithium Cobalt Oxide pouch cell. Addi-
tionally the experimental data was used to create parameters for Equivalent
Cell Model (ECM) using the Matlab product, Simulink Design Optimiza-
tion [11]. The workflow of the project thesis is visualized in fig. 1.1.

1.2 Strategy

Once the model was set up in Simulink, the current was fed into the model,
and the paramaters were optimized such that the square of the measured
value minus the model output was minimized. Resulting from the project
thesis was a set of model parameters (θ(z(t)) that changes with the SoC

2



Battery cell testing

Maximum Capacity Test

Open Circuit Voltage 
(OCV) Test

Hybrid Pulse Power 
Characterisation

Dynamic Test

Simulink Design 
Optimisation

Battery cell model

?

?

OCV(z)

Q

OCV from State of 
Charge Look up table

Battery capacity

Validationy

Figure 1.1: The strategy of the project thesis which built the foundations of this
thesis.

(z(t)). All of the parameters was trained using a Hybrid Pulse Power Char-
acterization (HPPC), and in order to validate the performance a dynamic
load cycle was used.

The parameters and experimental data gives a good foundation for imple-
menting and validating different Kalman filters. The reason for implement-
ing the filtering methods is in order to correct for a bad initial SoC when
the system starts up, and correct for drift as the system runs.

1.3 Strategy and structure

The goal of this thesis is to implement and validate two different nonlin-
ear Kalman filters. An Extended Kalman filter (EKF) and a Sigma Point
Kalman Filter (SPKF). Two different SPKF will be presented, the Un-
scented Kalman Filter (UKF) and Central-Difference Kalman filter (CDKF),
and the latter is the one that will be implemented. In order to narrow the
workload it will only be implemented one of the models from the project
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Figure 1.2: The work performed in this thesis.

thesis. The Open Circuit Voltage (OCV) curve will also be revisited, as the
EKF requires the derivatve of the OCV curve, which needs some processing
in order to attenuate the noise.

The thesis will start with the necessary theory in order to understand the
Kalman filter and the battery model. By first introducing the governing
principles for a LIB and then building up the foundation for Kalman filter-
ing starting from basic statistics. Once the reader has enough knowledge
and understand the goal of a battery model, the battery modelling will be
briefly described. Next, the application of the chosen battery model in the
framework of a EKF are shown, before the final section mainly describes
the theory behind the updated OCV curve.

Before introducing the results a short interlude on the methodology used
for the results will presented. The methodology section will present the
way the experiments has been set up. Finally the results will be discussed
and a conclusion will be drawn based on the results and the theory.

The results of the thesis are briefly summarized in fig. 1.2

4



1.4 Contribution

The author performed the collection of experimental data in [10]. The
modelling is adapted mainly from [12], with the parameter identification
performed by the author in [10].

This thesis adopts the implementation of the filters from [1] with a model
and parameters from [10]. In other words, this thesis performs SoC on
lithium cobalt oxide batteries with very demanding load cycles. Figure 1.2
illustrates the contributions with regards this thesis and the project thesis.

5



Chapter 2
Theory

This chapter will start by explaining some of the governing principles in
LIBs and then explain the different Kalman filters. The thesis will establish
a foundation from basic statistics, random processes, and Kalman filters.
As mentioned in the preamble, two filters will be investigated: EKF and
SPKF. The following section goes through the adaption of these filters to a
LIB model. Essential tools when applying the Kalman filters to the LIB are
curve fitting and derivatives.

2.1 Lithium-ion batteries working principle

To model LIBs, a rudimentary knowledge of the internals is necessary. This
section will briefly describe the working principles of a LIB with a focus
on what is the most important properties for this thesis. The most impor-
tant factors when modelling is the SoC, OCV and polarizing voltages. To
understand these terms, some basic principles within electrochemistry are
necessary.

6



Figure 2.1: A schematic illustration of a Cobalt Oxide LIB[13]

2.1.1 A brief introduction to electrochemistry

In fig. 2.1 the innards of a LIB is shown. This model has a lithium cobalt
oxide cathode and a graphite (carbon) anode. The cathode and anode are
electrodes and will be defined as the positive and negative electrodes, as
the role of anode and cathode changes depending on the direction of the
current. The naming is summarised in table 2.1.

The idea is that by exerting an external electrical field onto the electrodes
such that the negative electrode experiences an elevated potential compared
to the positive electrode, the lithium ions will flow from the positive to the
negative electrode. When the battery is fully charged, the negative elec-
trode will be saturated with lithium ions in the sense that adding more can
significantly affect aging [14], or worse, initiate a thermal runaway [15]. In
the other direction, when discharging, the electrodes are connected through
a load, and the lithium ions will flow the other way into the positive elec-
trode, with the electrons flowing in the external circuit.

The percentage of lithium in the negative electrode is what decides the
SoC. When the electrode receives or relinquishes lithium, the electrode as

7



a whole will change its electrode potential. It is this potential difference
between the electrodes that define the OCV.

Table 2.1: Terminology of electrodes.

Electrode Charging Discharging
Negative electrode Cathode Anode
Positive electrode Anode Cathode

2.1.2 Electrochemical impedance

When a cell discharges, it will be a voltage drop when measuring the ter-
minal voltage. Similarly, there will be a voltage rise in the terminal voltage
when charging. The OCV will only change based on the SoC change. The
terminal voltage, v(t), is the voltage that would be measured at the battery
cell poles, and with the OCV as Uocv, the voltage drop can be defined as

UP = Uocv − v(t),

where UP is the polarizing voltage. This polarization voltage will be further
elaborated on in section 2.1.7.

2.1.3 C-rate

C-rate is a measure of the rate at which a battery is being charged or dis-
charged. 1C is defined as the current the battery could maximum deliver in
one hour with its nominal rated capacity. The battery will be empty after
discharging it with a current of 1C for one hour. Note that even though a
20C rate should empty the battery in 3 minutes, this will most certainly not
be the case due to Peukert’s law [16]. In addition, a larger current will lead
to a larger polarizing voltage leading to reaching the lower cut-off voltage
before the battery is fully discharged.

8



2.1.4 State of Charge

As stated previously, the lithium concentration in the negative electrode
(and consequently in the positive electrode) decides the SoC. The LIB man-
ufacturer defines an upper and lower voltage limit on the cell. However,
this can be bypassed with extensive testing [17], if the cell is shown by ex-
periments to safely be able to store more energy and handle the increased
voltage.

The SoC is defined by these limits set by the manufacturer or experiments.
The battery cell is fully charged when relaxed, and the terminal voltage
reads approximately the upper limit. Conversely, when the cell is relaxed,
and the terminal voltage reads approximately the lower limit, the cell is
fully discharged.

In order to relate the fully charged and fully discharged state, the cell’s
capacity is needed. Due to the effect of Peukert’s law, the capacity will
depend on the C-rate chosen to measure the capacity. The cell manufacturer
defined the capacity given a certain C-rate [16]. The test usually discharges
because charging introduces some side effects, which are denoted by the
Coulombic efficiency [18]. The Coulombic efficiency is usually denoted by
η, but the effect is small and would only cause a slight drift of the value
while charging.

Once these values are all known the change in SoC can be modelled as such

ż(t) = z(t0)− 1

Q

∫ t1

t0

η(t)i(t)dt, (2.1)

where z denotes the SoC, Q is the capacity and i(t) is the applied current.
This describes the SoC from a point in time, t0, until a future point in time
t1.
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2.1.5 State of Health

The two main factors that lead to performance loss and inevitably the end of
life for a LIB are the capacity and power fade. Capacity fade is the process
where the LIB receives a reduced capacity and is mainly due to the loss of
cyclable lithium and active materials in the electrodes. These are results of
unwanted side reactions in the cell and can, to some degree, be blamed on
the growth of the Solid Electrolyte Interface (SEI). The SEI is a vital layer
that forms on the electrode surface, in the interface between the electrode
and electrolyte. This layer forms on the negative electrode during the bat-
tery’s first charging cycle. By doing the first charging cycle in a controlled
environment with a low current, the SEI becomes densely packed[19] and
thus hinders the decomposition of the graphite into the electrolyte. How-
ever, over time this layer will continue to grow. The layer is created by
incapacitating lithium, which reduces the cell’s capacity. Another issue is
that the impedance of the cell increases. When the impedance increases,
the current capabilities decrease due to the voltage drop. This phenomenon
is known as power fade. For a more comprehensive overview of these aging
mechanisms, see [20].

2.1.6 Open circuit voltage

The Open Circuit Voltage (OCV) is formally defined as

Uocv = u+
ocp − u−ocp (2.2)

whereUocv is the OCV while u·ocp is the open circuit potential of the positive
and negative electrode, respectively. As mentioned previously, the potential
is a function of lithium concentration in the specific electrode. The OCV
is the equilibrium point of the cell at a given SoC when neglecting self
discharge and other phenomenons acting over a large time horizon.
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Establishing a relationship between the OCV and SoC can be done with
testing. The common way to do this is by dividing the SoC into discrete
steps, for example, 20, such that there is one point for each 5%. Next, the
cell is fully charged, left to rest for a long time, and then the voltage is
logged. The cell is then discharged a 20th part, and the procedure is re-
peated. Berckmans et al. [21] used a method called quasi-open circuit volt-
age. This method discharges/charges the cell at a small current, where the
idea is that the cells will be at equilibrium the entire cycle. In the previous
work, a current of C

30
was used.

In addition to lithium concentration, the potential of the electrodes is also
dependant on the temperature [22]. Therefore the experiments are often
performed in controlled conditions and repeated at different temperatures.
In addition to SoH the relationship also depends on pressure[23] and a hys-
teresis effect [24] further complicates the modelling.

The modelling of the OCV-SoC relationship is also found to be crucial
when it comes to battery State of Health (SoH) monitoring, as OCV data
often reflect battery aging and performance degradation [25]. This is also
what makes it difficult to model the relationship, as it depends on the SoH
which is difficult to model without an abundance of test data over the bat-
tery cell life cycle [26].

2.1.7 Polarizing voltages

Another way to visualize the polarising voltages is through a Nyquist dia-
gram of the impedance response. In fig. 2.2 such a response can be seen.
A negative imaginary impedance is a capacitive impedance, and a positive
imaginary value is an inductive load. At very high frequencies, the induc-
tance in the current collectors and wiring becomes dominating. The first
part of the capacitive impedance is the SEI, which is usually merged into
the charge transfer, as it plays a minor part. At least on relatively new cells
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[19]. The charge transfer can resemble a subdued semicircle [27]. Further-
more, diffusion, or mass transport as it is named here, resembles a straight
line.

Figure 2.2: Nyquist plot for a battery showing the different regions corresponding
to an electrochemical process [28]
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Figure 2.3: The upper plot shows the ap-
plied current pulse, while the lower plot
shows the voltage response. The figure
shows how the entire polarizing voltage
(∆V ) is a sum of the ohmic voltage drop
(∆V1) and the (∆V2), the voltage drop
due to diffusion is negligible on such a
short time interval [29].

In the following section, the pre-
viously defined terms are related
to an actual voltage response. In
fig. 2.3 the R0 is the ohmic
impedance and can be thought of as
the resistance through the cell, i.e.,
if you were to measure the cell at
a relaxed state, this is the quantity
you would measure. The RCT (ω)

is the charge transfer impedance.
This is due to the charge building
upon the electrodes at the interface
to the electrolyte. This quantity can
only be observed when the cell is
under a load and will go back to
chemical energy once the cell goes
back to a relaxed state. RP (ω)

is the diffusion impedance, and it
arises due to the lithium concen-
tration in the electrode surface de-
creasing, the lithium ions have to travel further. Once the cell relaxes, the
concentration gradient of lithium in the electrode will commingle. Note
that the charge transfer and diffusion are dependant on frequency while the
ohmic is not.

These three phenomenons are listed in the order of their timescales. The
ohmic impedance is instantaneous, the charge transfer activates within a
few seconds, and the diffusion can take much longer. Summed, they com-
pose the polarization voltage. The charge transfer and diffusion do not
only introduce an impedance which creates a voltage drop but also affect
the voltage when the current is switched off, as seen in the lower part of
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fig. 2.3.

The inductive and capacitive impedance is reactive. This means that once
the current through the cell is removed, the energy spent activating these
different loads will to some degree, go back to being chemical energy. The
effect this has on the terminal voltage of the cell is called polarising. Polar-
izing refers to any voltage deviance from the OCV due to memory effects
from the applied current on the LIB. In order to model the polarising ef-
fects, a good impedance model will be necessary.

2.2 Description of a random process

This paper introduces filtering techniques for a more accurate estimation of
various states within the LIB from noisy measurements. Before proceeding
with the filtering, it is necessary to describe the nature of noise. This section
will start with some simple results from probability theory before venturing
onto white Gaussian noise and Brownian motion.

2.2.1 Probability theory and random variables

The probability of an event A will be denoted P (A). The following defini-
tion gives the conditional probability:

P (A|B) =
P (A ∩B)

P (B)
, (2.3)

whereA andB are to events andA∩B denotes the event thatA and B hap-
pens. Another important definition is independence which if the following
holds

P (A|B) = P (A), P (B|A) = P (B), (2.4)

the events are independent.
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The entire sample space gets a special symbol, Ω. By partitioning Ω into
a countable class Bn and given an event A the following sum will result in
probability

P (A) =
∑
n

P (A ∩Bn) =
∑
n

P (A|Bn)P (Bn). (2.5)

Finally the backbone of all Bayesian filtering, Bayes’ rule is stated:

P (A|B) =
P (B|A)P (A)

P (B)
⇔ Posterior =

Likelihood× Prior
Normalization

. (2.6)

Bayes’ rule opens up for Bayesian filtering, which is a form of optimal

filtering formulated in the Bayesian framework. Optimal refers to the filter
being statistically optimal when filtering a signal corrupted by noise. More
on this in section 2.3.

Probability mass and density functions describe discrete and continuous
probability distributions, respectively. A Probability Mass Function (PMF)
has a countable sample space, while a Probability Density Function (PDF)
has an uncountable sample space. The Gaussian random variable is an
example of a PDF and has the following form

N(x;µ, σ) =
1

σ
√

2π
exp

(
−1

2

(x− µ)2

2σ2

)
, (2.7)

where µ is the expected value of f(x) and σ2 is the variance. The expected
value is the theoretical outcome on average as the number of experiments
goes to infinity. The variance is a measure of the spread of the data. A
high variance means the data is more spread out, and extreme values will
be more likely. A low variance on the other side means that the data will be
less spread, and extreme values are less likely to be observed.
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Figure 2.4: An illustration of the variance in a Gaussian distribution. The percent-
ages describe how much data is within the different sigma limits. The 3σ limit will
contain 99.7% of the data.

2.2.2 The multivariate Gaussian distribution

The Gaussian distribution has some excellent computational properties,
which makes it possible to find closed-form solutions when adding and
multiplying the Gaussian’s [30]. The univariate Gaussian from eq. (2.7) can
be generalized to the multivariate version by exchanging the mean µ with a
vector of means, µ. The variance σ will be a matrix Σ which contains the
variance of each random variable on the diagonal and the cross-correlation
on the off-diagonal elements. Due to the cross-correlation being a sym-
metric relation, the covariance matrix must also be symmetric [30]. It is
also a positive semi-definite matrix, which intuitively can be thought of as
a negative variance is impossible. The formula can be seen in the following
equation:

N(x;µ,Σ) =
1

(2π)
n
2 |Σ| 12

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (2.8)

Without going into the proofs, the following properties hold for the multi-
variate Gaussian [31]:

• A multivariate Gaussian distribution is still Gaussian after an affine
transformation.
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• The conditional distribution of two Gaussian distributions is Gaus-
sian.

• The marginal distribution of a jointly Gaussian distribution is still
Gaussian.

• The sum and difference of two Gaussian distributions are still Gaus-
sian, given that they are independent.

2.2.3 Stochastic processes

A stochastic process is an ensemble of random variables. Each realiza-
tion of a stochastic process is a function. In other words, if a space of all
valid functions for the stochastic process is defined, a realization will be
a point(function) in this space. A typical discrete stochastic process is the
random walk. The random walk in one dimension models the behavior
of a particle in which the distance moved between time steps is a random
variable. The process can then be used to give parameters of a model the
flexibility to change. In other words, by modelling the parameters as a ran-
dom variable, the Kalman filter can push the parameters in the statistically
optimal direction. If the random variable deciding the displacement is a
Gaussian, the walk is called a Gaussian random walk. Having a Gaussian
random walk makes it easy to tune the volatility of the parameter. By in-
creasing sigma, the parameter is likely to make more significant steps.

A mathematical model of one-dimensional Gaussian random variable has
the following form

x[0] = x0 (2.9)

x[k + 1] = x[k] + N (µ, σ) (2.10)

where µ is usually zero. From this formulation, the µ can be thought of as a
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bias, while the σ gives the uncertainty. For example, modelling something
that degrades over time would probably give better results with a bias to
the random walk. It is also possible to make the bias and uncertainty time-
dependent. It makes sense to decrease the uncertainty if the initial guess is
non-optimal and the system gets consistently closer to the true model. In
other words, if the system has a consistent filter [30].

2.2.4 Statistical approximations

Although modelling a random variable as Gaussian is a simplification, but
as mentioned in section 2.2.2 it has some remarkable properties which will
make the filtering algorithm much simpler. It will also allow a closed form
solution for the Kalman filter.

Approximating a Gaussian from a set of samples usually involves calculat-
ing the mean and the covariance given some method or weighing the points.
It also includes the case where the process itself is not strictly Gaussian but
is assumed Gaussian due to the aforementioned reasons.

A non-linear transformation of a Gaussian distribution is, in most cases, not
a Gaussian after the transformation. A Gaussian can be approximated after
the transformation using many solutions. Points from the original distri-
bution can be generated, then propagated through the non-linear function.
Afterward, they can be reconstructed into a Gaussian [32]. The main is-
sue with this is that it potentially requires a large amount of computational
power. Another issue that is more related to the Gaussian itself is that it
can only handle unimodal systems[31], that is, a single peak. Regarding
the computational issue, a solution exists. The unscented transformation.
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2.3 Filtering

In the context of filtering in this paper, the goal is to estimate the current
value given past and current observation. The obvious observation with
regards to battery estimation is the voltage. However, the goal is often
to estimate a hidden state, SoC. Thus the observations, given as voltage
measurements, must be related to the SoC through what is often referred to
as the measurement equation.

An important assumption for many filtering algorithms and indeed every
technique in this thesis is the Markov assumption. In simple terms the
Markov assumption in a discrete system with a state vector and a obser-
vation, the current state relies only on the previous state, and similarly the
observation must only depend on the current state. From a probabilistic
framework the they can be formalised as

p(xk|x1, . . . ,xk−1,yk, . . . ,yk−1) = p(xk|xk−1), (2.11)

p(yk|x1, . . . ,xk,yk, . . . ,yk−1) = p(yk|xk), (2.12)

Where xk denotes the state and yk the observation. If these assumptions
did not hold, the equations would grow linearly with time and become in-
tractable.

The goal of filtering with application to LIB then becomes to estimate the
internal state of the LIB given the voltage measurements. This is illustrated
in fig. 2.5. Note that extending the state vector to include other internal
variables in the cell is possible. By turning a parameter into a time varying
state, e.g., by modelling as a random walk, the state vector can be aug-
mented to include the additional states.

19



Hidden state
x(t)

V

Observed state
y(t)

+-

Figure 2.5: The relation between the state and observation in LIB

2.3.1 Bayesian estimation

Bayesian estimation attempt to compute the hidden states x0:k where the
notation 0:k denotes the time series from x0, . . . ,xk, from the observed
measurements y1:k. Under the Markov assumption the joint probability
simplifies greatly to

p(x0:k, y1:k) = p(x0)
k∏
i=1

p(yi|xi)p(xi|xi−1). (2.13)

Equation (2.13) calculates the entire joint probability. However, when fil-
tering, the probability distribution of interest is associated with the current
states conditioned on the measurements up to the current time step. This
leads to the backbone of all the methods used in this thesis: the predict and
update step.

The prediction step, also known as the Chapman-Kolmogorov equation,
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follows from the total probability theorem and is given by

p(xk|y1:k−1) =

∫
p(xk,xk−1|y1:k−1)dxk−1. (2.14)

The update is proportional to the product of the measurement likelihood
and the predicted state, and given by

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1k−1)
∝ p(yk|xk)p(xk|y1:k−1) (2.15)

Where the factors are denoted:

• p(xk|y1:k−1) - Prediction
• p(xk|y1:k) - Update
• p(yk|xk) - Likelihood
• p(yk|y1k−1) - Normalisation

These two equations, eq. (2.14) and eq. (2.15) together makes up the Bayes
filter and is illustrated in fig. 2.6

Prediction step Update step

Predicted state

Updated state

Initial state

Measurement (y)Input (u)

Figure 2.6: The recursive nature of the Bayes filter visualised

2.3.2 Kalman filter

A classic and much used filtering technique is the Kalman filter. The
Kalman filter is a special case of the Bayes filter, where both the process
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and measurement models are Gaussian and linear. In that case, the Bayes
filter will have a closed-form solution, and in addition, it will also be the
optimal solution. Here optimal refers to the fact that the Kalman filter will
be the minimum mean square error estimator, which in mathematical terms
is formulated as

x̂MMSE(y) = argminx̂MSE = E{x|y}, (2.16)

where x̂ denotes the estimator.

When applying the Kalman filter, the state reduces to a Gaussian random
variable, which can be parameterized as a vector of means and a covariance
matrix. The mean values are the expected state values, and the covariance
matrix introduces an uncertainty value of the different states. This can in
turn, be used to create an error bound on our estimates. An example of
this is shown in fig. 2.7 where an arbitrary state from one of Matlabs many
examples are plotted together with the 1σ bound [2].

The most critical property for the residuals is that they appear to be white
noise with zero mean.

2.3.3 Extended Kalman filter

The Kalman filter, as mentioned, requires that the models are linear, which
in many cases is sufficient, and the model is or can be linearized around a
particular point. Compared to the standard Kalman filter, the extended is a
Taylor approximation. By assuming that the noise is additive, i.e.

xk = f(xk−1,uk) + qk−1, (2.17)

yk = h(xk,uk) + rk, (2.18)
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Figure 2.7: A state plotted together with its 1σ error bounds gathered from Matlab
example code [2].

where xk ∈ Rn is the state, the uk ∈ Rd is the input and y ∈ Rm is
the measurement. The q and r represent zero mean Gaussian noise with
covariance matrices R and Q. Usually, the additive noise is modelled as
static processes, and thus the subscript can be omitted. The significance
of these assumptions should not be understated. In essence, it claims that
E[f(x)] = f(E[x]) which is generally not true and is one of the reasons
why the EKF in general performs worse the more non-linear the system is.
The more quantifiable reason for the reduced performance is because the
Taylor series is truncated only to contain the first two terms. The linear
terms.
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With the assumptions in eq. (2.17) the next step is to linearize the system.
This thesis will gloss over the details and present the needed matrices to
implement the filter. For a detailed derivation [32]. The following notation
will be used

• A Superscript ”−”, x− indicates a predicted value.

• A Superscript ”+”, x+ indicates a estimated value, which is updated
based on current measurement.

• A hat, x̂ indicates an estimate.

• A tilde, x̃ indicates an error, i.e. x̃ = x− x̂

• A bar, x̄ indicates the mean value of x.

Âk =
∂f (xk, uk) + qk

∂xk

∣∣∣∣
xk=x̂+k

(2.19)

B̂k =
∂f (xk, uk) + qk

∂qk

∣∣∣∣
qk=q̄k

(2.20)

Ĉk =
∂h (xk, uk) + rk

∂xk

∣∣∣∣
xk=x̂−k

(2.21)

D̂k =
∂h (xk, uk) + rq

∂rk

∣∣∣∣
rk=r̄k

(2.22)

eq. (2.19) is the linearized state matrix, eq. (2.20) is the linearized input
matrix, eq. (2.21) is the linearized output matrix and eq. (2.22) is the lin-
earized feed through matrix [33]. In section 2.4.1 these will be derived for
a ECM.

In this formulation, the noises are scalar. There is a process noise on the
current input, which quantifies the current measurements’ noise and, in
addition, it also encompasses the modelling noise. The other noise vari-
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able is the voltage measurement, which is more tangible than the process
noise. The voltage measurement can be defined - at least initially - using the
datasheet of the voltage measurement. Finally, the initial covariance of the
state vector must be chosen. The method of finding good values for these
will be further investigated in the methodology chapter. However, there are
a few general guidelines.

An essential aspect of tuning the filter is whether the ground truth is avail-
able. If the ground truth is available, it is possible to apply residual analysis
to check that the residuals appear to be generated from a white noise pro-
cess. If the residuals are white noise, it means that there is nothing less to
be gained from tuning/modelling. Another desired characteristic is that the
residuals should be zero mean.

Figure 2.8: Visualisation of the unscented transformation, on the left side you see
the carefully chosen sigma points, on the right side you see them after the nonlinear
transformation f(x).

2.3.4 Unscented transform

The unscented transformation is visualised in fig. 2.8. The unscented trans-
form defines a systematic way to choose the points to be propagated through
a nonlinear transformation and then be reconstructed to create an approxi-
mate Gaussian. This differs from using a linearized version of f(x) as can
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be seen in fig. 2.9.

The EKF takes a nonlinear function and partial distribution information
of the state of a system but applies an approximation to the known func-
tion rather than to the imprecisely-known probability distribution. A better
approach would be to use the exact nonlinear function applied to an ap-
proximating probability distribution.[34]. So the difference in a sense is
that neither solution knows the posterior, but the EKF approximates the
nonlinear function such that it is a simple affine transformation. However,
the unscented transformation makes no approximation and uses the full ac-
curacy of the nonlinear transformation. It can then construct the posterior
from imperfect knowledge of the distribution.

2.3.5 Sigma point Kalman filter

The EKF is a great tool, but as mentioned, it has its issues when the system
embodies very nonlinear behavior. By introducing the SPKF, a statistical
linearization can be used instead.
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Input Gaussian
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Linearized Gaussian

Unscented Gaussian
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 Nonlinear function

Figure 2.9: In this figure, an example of the unscented transform compared to
traditional linearization is shown. The nonlinear function has a very gentle rise
before the linearized point and steep after. The unscented transformation accounts
for this by putting two sigma points close together and the last far away from
the rest. This gives a more reasonable result compared to the linearization. This
example is adopted from [1].
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There are in general six steps linked to the SPKF method.

1. State-estimate time update.

2. Error-covariance time update.

3. Output estimate.

4. Estimator gain matrix.

5. State-estimate measurement update.

6. Error-covariance measurement update.

Which are the same broad steps as in the EKF, but the differences become
clear already at the first step. When generating the sigma points, all the
input distributions are combined into a single augmented state vector xak
and covariance Σxa

k
, where

xak =

xkqk
rk

 , Σxa
k

=

Σx̃,k 0 0

0 Σq̃ 0

0 0 Σr̃

 ,

where the process noise is defined as N (qk,Σq̃) and the measurement
noise as N (rk,Σr̃). Using this distribution, a set of sigma points are gen-
erated and split into three sets, one for each group in xak. For each set
2n+ 1 points will have been generated, where xak ∈ Rn. Once these sigma
points are generated, they can be used to generate the state prediction and
covariance, the estimator gain, and the measurement update state and its
covariance. For details of the next steps, see [35].

Although this chapter has focused mostly on the unscented transform, it
is a sigma point method. There are several different methods to select the
sigma points and reassemble them after a transformation [32]. The SPKF
are Kalman filters that uses the methods of propagating carefully chosen
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γ α
(m)
0 α

(m)
k α

(c)
0 α

(c)
k

CDKF h h2−L
h2

1
2h2

h2−L
h2

1
2h2

UKF
√
L+ λ λ

L+λ
1

2(L+λ)
1

L+λ
+ (1− α2 + β) 1

2(L+λ)

Table 2.2: Formulas to calculate the sigma point weights for UKF and CDKF.[1]

(sigma) points through the non-linear function. In this thesis, two varia-
tions of the SPKF will be introduced, namely the Unscented Kalman Filter
(UKF) and the Central-Difference Kalman filter (CDKF). Note that the only
way they differ is in the weighting constants. The difference can be seen in
table 2.2. This table requires some explanation.

Given a set of L sigma points X the mean value is calculated as

x̄ =
n∑
i=0

α
(m)
i X i,

and the covariance using the following formula

Σx̃ =
n∑
i=0

α
(c)
i (X i − x̄)(Xi − x̄)T .

The UKF has the following tuning factors λ, α and β where λ is decided
by the following equation

λ = α2(L+ κ)− L, (2.23)

where κ is another tuning parameter. α and κ decides the spread of the
sigma points around the mean. β is used to prior belief on the distribution[36].
If the distribution is Gaussian, β = 2 [1].

The CDKF on the other hand, only has one tuning variable h, which by
setting equal to

√
3 assumes a Gaussian distribution.
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2.4 Lithium-ion battery modelling

Based on the previous work, an Equivalent Cell Model (ECM) with series
resistance and four resistor-capacitor circuits. The results from the different
models from the previous work can be seen in section 2.4. In this table,
the 4-RC model performs the best, except for the enhanced self-correcting
model [37], but due to that model adding hysteresis, this thesis has opted for
the 4-RC model. The resistor-capacitor circuits are completely decoupled,
so adding more of them is straightforward. Even though the computational
complexity increases. For details about the proposed models, see [10].

Model RMSE

0-RC 23.00

1-RC 12.60

2-RC 19.94

3-RC 10.73

4-RC 10.00

ESC 2-RC 10.83

ESC 4-RC 9.22

Table 2.3: RMSE values for the different models collected from the project thesis
[10].

The model, fig. 2.10 will simply be stated in this thesis, for details on de-
riving it see [10] or [12]. In order to forshadow the EKF implementation,
the model is stated with the process noise, q[k] added to the current, and
measurement noise r[k] to the measurement equation.
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The state equation:(
z[k + 1]

iR[k + 1]

)
︸ ︷︷ ︸

xk+1

=

(
1 0

0 ARC

)
︸ ︷︷ ︸

A

(
z[k]

iR[k]

)
︸ ︷︷ ︸

xk

+

(
−∆t

Q

BRC

)
︸ ︷︷ ︸

B

(i[k] + q[k]),︸ ︷︷ ︸
uk

(2.24)

where

iR =


iR1

iR2

iR3

iR4


describes the current through each resistor except R0, and the matrices are
defined as

ARC =


exp(− ∆t

R1C1
) 0 0 0

0 exp(− ∆t
R2C2

) 0 0

0 0 exp(− ∆t
R3C3

) 0

0 0 0 exp(− ∆t
R4C4

)


and

BRC =


1− exp(− ∆t

R1C1
)

1− exp(− ∆t
R2C2

)

1− exp(− ∆t
R3C3

)

1− exp(− ∆t
R4C4

)

 .

∆t is the sampling frequency.

The measurement equation:

v[k] = OCV (z[k])−R0i[k]−
4∑
j=1

RjiRj
[k] + r[k]. (2.25)

Some assumption with this model:
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Figure 2.10: ECM with fourRC circuit and a series resistance. The OCV is given
as a function of SoC (z(t)) and the terminal voltage is denoted by v(t)

• Coulombic efficiency is neglected.

• Hysteresis effect is neglected.

• The OCV (z[k]) does not depend on temperature.

The models have to be adopted for use with the EKF and SPKF For the
SPKF there is no change in the model per se, only the algorithm changes.
The EKF on the other hand, requires extensive changes to linearize the
model for each time step.

2.4.1 Implementing the extended Kalman filter

The linearized state and input matrices are simple to find, as the system has
the form in eq. (2.24). By using the following fact [38]

dAx

dx
= A

eq. (2.19) becomes

Âk =
∂f(xk, uk, qk)

∂xk
= A,
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and eq. (2.20) becomes

B̂k =
∂f(xk, uk, qk)

∂qk
= B.

Note that A and B are diagonal so transposing does not change the result
(AT = A).

The linearized output matrix, eq. (2.21), is

Ĉk =

(
∂OCV (zk)

∂zk

∣∣∣
zk=ẑ−k

R1 R2 R3 R4

)
,

which is interesting due to the derivative of the OCV curve. It should be
noted that every derivative is evaluated in the predicted point, but it is only
relevant for the OCV derivative.

Finally the feed through matrix, eq. (2.22)) after linearizing is trivial and
equal to

D̂k = 1

In order to find the derivative of the OCV curve, an empirical method is
necessary. The following sections will start with the construction of the
OCV curve, and then the derivative.

2.5 Curve fitting and derivative

There are many different methods to model the relationship between the
OCV and SoC[39][40]. In this thesis, two methods have been investigated
to model this relationship. Curve fitting and interpolation. The chosen
method will affect the derivative of the fitted curve, and for the interpola-
tion, it will be evident that some filtering is needed.
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2.5.1 Least square and curve fitting

In order to fit a curve to a set of data, it is common to use a least square
method. By assuming the structure of the fitted curve, i.e., as a polynomial
of a certain order, the coefficients can be found such that the square of the
residuals is minimized. By defining the residual as such

ri = yiŷi, (2.26)

the optimization problem can be formulated in the following manner

min
θ
r2, (2.27)

where θ is the vector of coefficients and r2 is a vector of the squared resid-
uals.

By defining the design matrix, X where each row is a sample, and the
columns match the value of the coefficients. For example, given the fol-
lowing samples

y =


1

1

2

3


and the following structure

ŷi = θ0x
0
i + θ1x

1
i + θ2x

2
i ,
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the design matrix will have the following values

X =


10 11 12

10 11 12

20 21 22

30 31 32

 =


1 1 1

1 1 1

2 2 4

3 3 9

 .

The estimated points will then have the following equations

ŷ = Xβ, θ =


θ0

θ1

...
θn

 ,

and the optimization problem, eq. (2.27) can be solved [41].

2.5.2 Interpolation

Interpolation is a method that can be used to relate discrete samples to
achieve a greater resolution in experimental data. There are many ways
to relate the discrete points. By relating the points using functions that can
be constants, linear, polynomial, or splines [42]. Depending on the sam-
pling frequency and the frequency of the sampled process, these functions
will have different effects. Usually, if the sampling frequency is high com-
pared to the process dynamics, the chosen methods will not significantly
affect the results. The relationship between the process dynamics and the
sampling frequency will be further discussed in the methodology chapter.
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2.5.3 Finite difference

The definition of the derivative is

lim
h→0

f(x+ h)− f(x)

h
(2.28)

which is easy to use when the function to differentiate is well behaving. In
the experimental data, after interpolation the function becomes a piece-wise
continuous function which often can contain small sharp changes which can
make the derivative very noise.

A solution is to use the finite difference method. Instead of letting h → 0

it is instead chosen as a finite value h → ∆h. By defining one of the three
following differences

• Forward difference ∆h[f ](x) = f(x+ h)− f(x).

• Backward difference ∇h[f ](x) = f(x)− f(x− h).

• Central difference δh[f ](x) = f
(
x+ h

2

)
−f
(
x− h

2

)
.

which can be related to the derivative eq. (2.28) with [43]

lim
h→0

f(x+ h)− f(x)

h
≈ ∆h[f ](x)

h
. (2.29)

Before doing the finite difference derivative, the experimental data will usu-
ally need to be filtered, in which case a zero phase filter might be necessary.
Significant noise or outliers in the experimental data might lead to differen-
tiating noise.

The different finite difference methods are illustrated in fig. 2.11. Both
forward and central difference are non-causal operations. For most cases
the central difference will be the best method, except perhaps in very non-
linear cases, but then again none of the methods will perform very good.
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Figure 2.11: The three different finite-difference methods mentioned in this thesis.

For a time series object this can be done easily by iterating over series and
calculating the difference and scaling with the sampling frequency.

2.5.4 Zero phase filtering

If collected experimental data contains some noise, the derivative will mag-
nify the noise as conventional finite-difference approximations will greatly
amplify any noise present in the data. When applying a traditional low-pass
filter that will require delaying the signal for a moderate period of time, al-
lowing the computation to predict into the future. This delay is manifested
in the new signal as a phase shift. In some operations this phase shift is un-
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acceptable in many applications, and for offline data there are alternatives
in order to avoid this phase shift.

A popular solution is to use a zero phase filter. A method of zero phase
filtering is forward-backward filtering [44]. In order to both filter the data,
and keep the phase shift zero a recursive filter can be applied both forward
and backwards over the signal, which would then zero out the phase shift.
When applying the filter both forward and backwards, one can think of
the forward as the normal way to filter which in the z-domain can be de-
notedHf (z) and the backwards filtering becomes the flipped filterHb(z) =

FLIP (Hf (z)). The flipped filter signal is FLIP (x) = X(z−1) [44] so that
the combined filtering can be written as

Y (z) = H(z−1)[H(z)X(z)]. (2.30)

If the filter is further constrained to real filters eq. (2.30) can be written
using the Fourier transform

Y (ejω) = H(e−jω)[H(ejω)X(ejω)] = |H(ejω)|2X(ejω)

which shows that the filter is purely real-valued, i.e. its phase is zero and
consequently there are no phase distortions.
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Chapter 3
Methodology

This chapter summarises the foundation for how the experiments are set
up. It starts with the models being used and how it is derived if relevant.
Next, the test data in use is described, and finally, the implementation and
performance measurement of the Kalman filters are introduced.

3.1 Model

In this section, the construction of a ground truth of the SoC will be pre-
sented. The OCV curve and its derivative and finally the choice of model.

3.1.1 Ground truth

In order to quantify the performance of the filters, a ground truth was estab-
lished for the SoC. Although it is not strictly necessary [45], it makes the
validation easier [30].

In order to construct the ground truth, the cumtrapz method in Matlab
was used. It uses a Trapezoidal integration scheme. By using the voltage
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at the end of the relaxation phase, before the load cycle starts, a initial SoC
was found using the inverse of the SoC to OCV relationship.

Using this method to find the ground truth is doable in this case because it is
done on offline data. With a accuracy of 0.1%chapter A gives a maximum
error of 30mA. If one assumes that the noise, to some degree, has a zero
mean, the total error will be minimal when doing coulomb counting. Once
the shape of the curve has been found, it can be shifted with an offset, such
that it matches the experimental data quite well [46].

3.1.2 Open Circuit Voltage

Two methods for creating a static relationship between the SoC and OCV
were attempted. Common for both was to first preprocess the experimental
data by averaging multiple runs. The results can be seen in fig. 3.1. All
of the data is performed at the same temperature, 25 degC, and with such
small currents, there is no temperature increase. There is some difference
between the maximum and min mum data, which is because a constant
current, even though small, will still cause some voltage drop, which makes
the cells lower cut-off voltage trigger before the SoC reaches zero. Some
of it can also be attributed to the hysteresis [47]. For details about the
experiment, see [10].

Averaging the data series had the beneficial side effect of smoothing some
noise. For the first method, using the least square method to fit a polyno-
mial of order 10 to the data with the Matlab Curve Fitting toolbox [48]. A
weights vector for the points was added, where the start point (0, 3) and en
point (1, 4.2) had a slightly higher weight. For the actual implementation,
the values were precomputed and put in a LUT.

Another common way to solve some of the issues related to modelling the
OCV is to contract the operating area somewhat. In this thesis, the operat-
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Figure 3.1: Experimental OCV data.

ing area of the SoC has been set to 2.5% to 97.5%. This solves two issues:
extrapolating both solutions mentioned above is far from ideal, and the sec-
ond issue is that the physical phenomenon is particularly non-linear at its
endpoints [23].

In order to validate the different methods, a pre-tuned filter is run with the
three different methods. It should be mentioned that ideally, the filter would
be tuned optimally for each OCV data, but this is practically infeasible.

After running the filter with the different methods, the resulting SoC es-
timate is compared to the ground truth. Since the ground truth does not
contain the initial SoC the truth is shifted vertically in order to minimize
the error.
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3.1.3 Choice of model

Several different equivalent circuit models were created in the previous
work, and their parameters were identified. All the models were built on
one or more resistor-capacitor circuits in parallel, where the numbers var-
ied from one to four. The other main difference was whether or not they
included a hysteresis effect. The performance increase from including hys-
teresis did not amount to much. Therefore these models have been aban-
doned due to the complexity of the hysteresis model.

When adding more resistor-capacitor circuits, the complexity of modelling
does not increase particularly. Moreover, the added computational power
needed is still reasonably small given a state vector of size two or five. The
complexity is about O(n3) [49] where n denotes the size of the state vector.

The temperature has been dropped due to insufficient data for accurately
modeling it.

3.1.4 Parameters

The 4-RC model has the following nine parameters:

• R0 - Ohmic resistance

• R1 −R4 - Dynamic resistances

• RC1 −RC4 - Dynamic time constants

Where each of them contains 14 evenly spaces values across the SoC specter,
which are linearly interpolated. The state vector contains the SoC as well
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as the current in each resistor-capacitor circuit:

x =


z

iR1

iR2

iR3

iR4

 (3.1)

3.2 Test data

The data set used to tune and validate the filters can be seen in fig. 3.3.
It contains pulses that have been adopted from actual race data performed
by Revolve NTNU during a competition in Germany. The first 3 pulses
have no kinetic energy regeneration, as the polarizing voltage causes the
cell voltage to exceed the maximum allowed.
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Figure 3.2: Load cycles used in the dynamic test.
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Figure 3.3: Data from a dynamic experiment. First, the three initial waveforms
can be observed, which reduce the SoC. Once the SoC is at a safe level, the main
waveform is applied until the SoC is ≈ 0. A short resting period between the
waveforms has been added to reduce the heat generation and see how well the
relaxation phase is modelled.

3.2.1 Upsampling

Early experimenting showed a slight delay in the Kalman filter output. In
order to amend this, the input signals were upsampled by a factor of 2,
which simulates that the filter runs at 100 Hz. The difference can be seen in
fig. 3.4. The number of samples in the time series was doubled, and the last
element was removed to avoid extrapolation. Then the new elements were
linearly interpolated.

3.3 Filters

This section goes through the initial setup for the filters. Based on the noise,
some adjustments will be made to the CDKF. A short strategy for tuning
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Figure 3.4: The voltage output of the filters zoomed in to see the delay.

the filter and lastly, how they will be evaluated.

3.3.1 Noise and uncertainty

The EKF works optimally for Gaussian noise. The SPKF however, has a
tuning factor that can determine the assumption on the noise with the tun-
ing parameters. As mentioned in the theory section, the two most common
SPKF are the unscented Kalman filter and the central-difference Kalman
filter, where the UKF is more tunable and can usually be tuned better when
the noise is non-Gaussian. In this thesis, the noise is assumed to be Gaus-
sian, which will give a better basis for evaluating them against each other.
Therefore the CDKF has been chosen.

With the CDKF the table table 3.1 can be used to find the weights of the
sigma points when finding the new mean and covariance after the non-linear
transformation.
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γ α
(m)
0 α

(m)
k α

(c)
0 α

(c)
k

Formula h h2−n
h2

1
2h2

h2−n
h2

1
2h2

Value
√

3 −2
3

1
6

−2
3

1
6

Table 3.1: Table for the CDKF point weights.

3.3.2 Tuning

From the data sheet of the measurement equipment chapter A the initial
voltage uncertainty has been set. With about 0.04% error on the 200 VDC
model, the measurement uncertainty, R, has been set to 80 mV. Based on
the current measurement, the process noise, Q, was set to 30 mA. However,
once these were set, trial and error started. Narrowing in on the final results
proved realizable with an ideology that the voltage measurements were only
supposed to slightly correct the model, and the model itself would be able
to track the SoC well on its own.

3.3.3 Evaluating

In order to evaluate the performance of the Kalman filters, the estimated
SoC will be the primary metric. With regards to the estimated SoC the
response of the system and the overall error will be important factors.

3.3.4 Timing

Matlab has a sophisticated tool for profiling the code [50], that allows for
reports on how long the code runs for and how much time it spends on each
line. This makes it easy to see which parts of the code take the longest and
compare them.
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Chapter 4
Results

This section will present the results from the two different methods of creat-
ing the OCV curve, in section 4.1. The curve fitting method on a 10th order
polynomial and the linear interpolation. The derivative of the linear inter-
polation method was quite noisy, and therefore a second-order zero-phase
filter was applied to it.

The main results are the performance of the EKF and the CDKF. In order
to test them, two experiments has been ran: One in which the initial SoC
is close to the actual SoC, and another where the initial SoC is set to 50%.
Each filter has its own section, and the final section tries to measure the
performance against each other.

fig. 4.1 demonstrates how the different results has been generated, and how
the experimental data has been used.
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Figure 4.1: From the experimental data three quantities are retrieved, the mea-
sured voltage (v[k]), current (u[k]), and initial SoC (z0). By exciting the model
with u[k] and the ẑ[k] from the filter output, a voltage estimate (ŷ[k]) is generated.
The current is integrated to create the true z[k], while the filter outputs the estimate
ẑ[k].

4.1 Open Circuit Voltage

The following figures fig. 4.2 and fig. 4.3 shows the fitted curve and the in-
terpolation with no filtering. A filtered version of the interpolation version
can be seen in fig. 4.4. It is interesting to note that the same peaks on the
derivative are visible on fig. 4.2 and fig. 4.3 and, to a lesser extent, the noisy
one, as peaks are hard to make out at all due to the noise.

The differentiated curve is very close to zero at certain parts, especially
from the 0.2 − 0.4 SoC segment. The derivative is used as a scaling factor
in the EKF, but this seems not to affect the results. The considerable rise
in the derivative, as the SoC goes below 0.2, however, seems to affect the
results very much on both the EKF and CDKF as will become apparent in
the coming section. First, the results from using the different OCV curves
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Figure 4.2: OCV and its derivative using curve fitting.

will be presented.

4.2 Derivative and filtering

In this section, the results from using different OCV curves and their deriva-
tives are presented.

For the curve fitting where the result was a 10th order polynomial, the
derivative is straightforward to find and has the nice property of being
noiseless in a signal sense. If one would extend the concept of noise to also
include discrepancies between the true relation between OCV and SoC it
would likely contain more noise than the interpolated version. This noise
would not be white, making the assumptions slightly worse. The assump-
tion of white noise is not given even though the relationship was perfectly
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Lookup table method
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Figure 4.3: OCV and its derivative using linear interpolation.

modelled in any case. The result of a pre-tuned EKF is shown in fig. 4.5. It
should also be mentioned that the fitted curve is treated as an actual function
in the thesis and would naturally be turned into a LUT with pre-computed
values in most use cases.

Figures fig. 4.6 and fig. 4.7 show the empirical curves with no filtering
and zero-phase filtering. The effect of a noisy derivative is seen on the
3σ bound. Other than that, the estimate looks identical, which means that
filtering does not assist the estimate to any great extent, but the bounds will
behave better. The fact that the noise made the derivative turn negative at
some points did not have any serious effect on the estimate. It should not
matter regarding the updated observation covariance matrix as the Hessian
of the measurement equation is squared. However, calculating the new gain
matrix should affect the result. It likely made no difference due to the small
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Lookup table method with zero-phase filter on the derivative
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Figure 4.4: OCV and its derivative using linear interpolation. The derivative was
filtered using a second-order Butterworth zero-phase filter.

magnitude, and the filter can quickly fix it in the subsequent iterations.
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Figure 4.5: SoC and its error with 3σ bound. This is with the fitted curve and
analytical derivative.

Figure 4.6: SoC and its error with 3σ bound. In this version a interpolation be-
tween the measured points have been used with a finite difference derivative.
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Figure 4.7: SoC and its error with 3σ bound. In this version a interpolation be-
tween the measured points have been used with a finite difference derivative. The
derivative has in addition been treated with a zero-phase filter to remove some
noise.
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Figure 4.8: The output of the model with a 50% initial SoC

4.3 Model results

This section is structured first to show how the model alone is inadequate
given a wrong initial SoC. It then moves on to present the result of the EKF,
the CDKF and finally some comparisons between the Kalman filters.

4.3.1 No filtering

In fig. 4.8 the results of the model without any Kalman filtering are shown.
Clearly, the results are not satisfactory unless the initial SoC is known,
which in general will not be the case. An interesting fact with this plot is
that the load pulses seem to be way off for the three last pulses. This is due
to the increase in the resistor parameters as the SoC decreases [51].
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4.3.2 Extended Kalman filter

All the EKF results have been conducted using the LUT solution for the
OCV as well as the filtered derivative.

The SoC estimate using a good initial guess is shown in fig. 4.9. Here
the initial guess is within 2% of the actual SoC. On the left right of the
figure, the estimated SoC can be seen together with the ground truth. In
many of the load phases, the filter seems to exaggerate the used energy,
and the relaxation phase gives the battery time to approach the actual OCV
which fixes the drift. This is of course not optimal and suggests that the
filter should trust the model more than the voltage measurements. How-
ever, when tuning the filter, weighing the current measurements more, and
decreasing the uncertainty of the initial SoC sort of pivoted the estimated
curve counterclockwise.

Another part of the figure is the SoC error with its bounds. It is clear from
the graph alone that the error has a non-zero autocorrelation. This is another
issue with the system. If the problem is perfectly filtered, the remaining
noise should be white. Nevertheless, the error at least seems to be zero-
mean.

The second result related to the good guess is the output of the full model
with the filter. The left side of fig. 4.9 shows the estimated voltage.

There is not too much interesting with this result, as the goal is to estimate
the SoC. At the lower voltage, the discretization of the LUT can be seen.
The peaks are overestimated by the filter and model, which could be either
that the model parameters are wrong. That is, the resistor values and time
constants. Alternatively, it could be that the resistor-capacitor currents are
exaggerated by the EKF. In the relaxation phases between the loads, the
filter does an excellent job of tracking the voltage. However, by looking
at both the SoC estimate and the output, it seems that the relaxation phase,
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(a) The voltage output. (b) The estimated SoC.

Figure 4.9: Results of EKF with a good initial SoC.

where the SoC should be constant due to no current flowing in or out, still
changes in the estimate. This suggests that resistor-capacitor circuits do not
model the polarizing voltages well enough, and the EKF has to do that part
as well.

The previous work trained the model parameters using Hybrid Pulse Power
Characterization (HPPC) [10]. These have relatively short relaxation phases
between the pulses, which might cause the model to fail with such long re-
laxation phases. The HPPC used 20 seconds between the pulses, while the
pauses between the load cycles are about 5 minutes.

In the next experiment the initial SoC was set to 50% and as seen in fig. 4.10
the EKF does a great job of correcting the initial error after about 5 minutes.
When tuning the filter, it turned into a compromise between how fast it
corrects the initial and how much it diverges at the 2000 seconds mark.
This will be expanded more on in the SPKF section, as this problem is even
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Figure 4.10: Results of EKF with a bad initial SoC.

more visible with that filter.

Interestingly, the relaxation phases behave better with the bad initial guess.
A natural explanation would be that the error covariance gives a higher
accuracy on the SoC state due to getting better feedback when adjusting
it, which makes it more difficult for the EKF to change it. However, the
variance bound is shown with the good and the bad guess, which is very
similar, which contradicts this.

Another observation is that in both experiments, the SoC is underestimated,
or in other words, the mean of the error is positive. It is important to re-
member that the ground truth SoC is constructed. That means it can be
wrong, especially in the offset on the y-axis of the curve, or in other words,
the initial SoC of the ground truth.

The output, as can also be seen in fig. 4.10, resembles the output of the good
guess reasonably well, except for the beginning where the SoC has a signif-
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icant error. It seems to struggle more during the relaxation phases, which is
likely due to the filter giving more confidence in the voltage measurements
due to the poor model results for the first 5 minutes.

The final tuning variables can be seen in section 4.3.2. Note that the initial
uncertainty for all the resistor-capacitor currents is equal. As mentioned

Parameter R Q x0, iRi
x0, z

Value 2 2 · 10−2 5 5 · 10−2

Table 4.1: The final tuning parameters for the EKF.

in the methodology chapter, the R value can be set by using the datasheet
of the measuring equipment, but only tuning the Q proved inadequate for
getting a good response from the filter. In practice, the R and Q values
prefer the model output over the measurement. Whenever R has tuned to
less or equal uncertainty as the Q the filter changed the SoC much more
and much faster. The filter fixed the polarising voltages by changing the
SoC which is a unwanted behavior.

There are two things of interest for the initial uncertainty on the state vector.
Namely, the high uncertainty of the resistor-capacitor currents and the low
uncertainty of the SoC. It would make sense that the SoC uncertainty would
have a value of 1

6
such that the true SoC would always be within the 3σ

bound if the initial guess was set to 0.5. It was observed that by decreasing
this further, the filter would not be able to change the SoC too fast, which
hindered that the filter tried to estimate polarising voltages with the SoC.
For the iRi

, the author suspects that it is an opposite problem here, that
the peaks should decay fast, and if they do not, the filter quickly becomes
unstable. At least, that was the observed behavior.

4.3.3 Central Difference Kalman filter

For the CDKF the same data set has been used and the LUT for the SoC.
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Figure 4.11: Results of CDKF with a good initial SoC.

In fig. 4.11 the observed behaviour of the CDKF is great until the 2000

seconds mark. As mentioned, this is a problem with both filters and is
probably due to the OCV curve. What happens in the OCV curve at around
20% SoC is that the experimental data diverge the most. Additionally, the
temperature starts to have a much greater effect on the OCV, as can be seen
in [10]. It is therefore assumed that the error between the true OCV at this
section is wrong compared to the modelled OCV.

The strange behavior of the 3σ bound jumping up is due to the Cholesky
factorization of the state covariance becoming positive definite. This can
happen if any of the diagonal values are negative. The ad hoc solution
takes the diagonal elements’ absolute value. The 3σ bound at the end is
very small, which means slight numerical noise can lead to any diagonal
elements becoming negative.

It looks like the filter uses only the model itself and does not use the voltage
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measurements to correct the SoC, but that would mean that the SoC would
be a constant in the SoC error graph. This is the optimal behavior, as the
model will be able to handle the SoC well with Coulomb counting, given
that the initial SoC is correct. Then the filter can simply fix the drift [6].

The output, to the left in fig. 4.11, shows a distressing problem with the
SPKF. The iRi

states are badly estimated and cause the voltage output esti-
mate to be quite bad. Especially during the 2000 second mark.

With the CDKF the only interesting state becomes the SoC. It is also possi-
ble to see how the Cholesky factorization affects the results during the low
SoC. This is a combination of the SoC increasing and the rapid change of
the OCV at this SoC level.

The final experiment is the CDKF with a bad initial guess. The SoC can
be seen in fig. 4.12. Here, as with the EKF the initial SoC has been set to
50%. After only a few seconds, the estimated SoC has stabilized, although
with a bit of an overshoot. After the initial settling time, the plot is almost
identical to the experiment with the good guess. This is a much quicker
response than the EKF, but the CDKF suffers from the same issue that
there is a compromise between how fast the response is and how well it
estimates in the 2000 seconds mark. The voltage output can also be seen in
fig. 4.12, but this is also identical to the previous experiment.

In table section 4.3.3 the final parameters of the CDKF can be seen.

Parameter R Q x0, iRi
x0, z h

Value 2 · 10−1 2 · 10−4 2 2 · 10−1
√

3

Table 4.2: The final tuning parameters for the CDKF.
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Figure 4.12: Results of CDKF with a bad initial SoC.

4.4 EKF versus CDKF

The results of the EKF and the CDKF can be seen in fig. 4.13. Both filters
proved adequate at correcting for a wrong initial state. The CDKF responds
much faster than the EKF, albeit with some overshoot. The increased re-
sponse rate seems to have some unwanted side effects at the 2000 s mark.

For the timing analysis the EKF performs slightly better than the CDKF
as seen in table 4.3. A lot of this can be contributed to the LUTs, as the
algorithms spends about 0.3s getting one value from a LUT for the entire
data series. The EKF only has to get two values, the OCV and its derivative,
while the CDKF has to get 9 values (sigma points) from the OCV LUT.
After correcting for this, they have very similar running time.

Total time
EKF 5.5 s
CDKF 7.8 s

Table 4.3: The timing of the algorithm.
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Chapter 5
Conclusion

In this thesis, the problem of estimating SoC under a highly dynamic cur-
rent load has been examined. The basics of battery cell chemistry and cell
modelling techniques were reviewed, and a simple 4-RC ECM was devel-
oped for a model based estimation process. After a review of statistics and
Bayesian estimation, the fundamentals of the EKF and two SPKF methods
was presented, where the chosen SPKF was the CDKF due to fewer tuning
variables.

The EKF and CDKF both showed great potential in correcting for initial
SoC error, with the CDKF advancing on the correct SoC much faster than
theEKF. This can probably be attributed to the tuning, as the CDKF seems
more aggressive than the EKF and, as seen, overshoots and performs much
worse at the start of the downwards curving of the OCV curve.

When estimating the resistor currents (iRj
) the CDKF faltered, giving one

the one hand much to small values, and later much higher estimates. The
filtered was initially tuned to understate these resistor currents, as that gave
the best results on the SoC estimation at the expense of the voltage output.
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A issue was the lack of load cycle tests. More waveforms should have been
generated and run in order to have multiple sets of data. This would allow
multiple data sets for tuning and distinct validation sets. However, the data
set used here has a demanding load, with the cell being excited quickly at
almost maximum discharge and maximum charge. So in it should have an
easier time estimating the SoC on less demanding loads.
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Chapter 6
Further work

As this thesis is somewhat broad in the problems it tackles, this chapter will
go through some of the areas where more in-depth research can be helpful.

6.1 Open Circuit Voltage

As a potentially large issue, the OCV modelling should experiment more
on. One way to do this is by trying different parametric models, as done in
[23], or even a non-parametric method which is done in [52]. An interesting
new area is to attempt to both generate and update the OCV curve while the
system runs, as in [53] online [53].

6.2 State of Charge estimation

Kalman filtering is one of many ways to estimate the SoC. In [54] the use
of particle filters is investigated. A modern data-driven approach is to use
neural networks, as performed in [55].
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6.3 Parameter estimation

In order to expand on the BMS a useful metric to estimate is the State
of Power (SoP). The SoP quantifies the maximum power possible to exert
from the LIB. In order to make a good estimation of this, the SoC estimation
has to be sound, as well as the impedance model [56].

In order to improve the impedance model, the EKF and CDKF can also be
extended to include the parameters as states [32]. This has been performed
in [57] with good results, although they do not state which chemistry the
cells used.
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Alexander Blömeke, and Dirk Uwe Sauer. An Algorithm for an On-
line Electrochemical Impedance Spectroscopy and Battery Parameter
Estimation: Development, Verification and Validation. Journal of En-

ergy Storage, 30, 8 2020. ISSN 2352152X. doi: 10.1016/j.est.2020.
101517.

[41] Norman Richard Draper and Harry Smith. Applied regression

analysis. Wiley series in probability and mathematical statistics.
Wiley, New York [u.a.], 1966. ISBN 0471221708. URL http:

//gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=

1016&TRM=ppn+022791892&sourceid=fbw_bibsonomy.

[42] John Trangenstein. Interpolation and Approximation. Springer, 01
2017. ISBN 978-3-319-69109-1. doi: 10.1007/978-3-319-69110-7
1.

[43] C. Jordan, K. Jordán, and H.C. Carver. Calculus of Finite Differ-

ences. AMS Chelsea Publishing Series. Chelsea Publishing Company,
1965. ISBN 9780828400336. URL https://books.google.

no/books?id=3RfZOsDAyQsC.

73

http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+022791892&sourceid=fbw_bibsonomy
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+022791892&sourceid=fbw_bibsonomy
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+022791892&sourceid=fbw_bibsonomy
https://books.google.no/books?id=3RfZOsDAyQsC
https://books.google.no/books?id=3RfZOsDAyQsC


[44] Alan V. Oppenheim and Ronald W. Schafer. Discrete-Time Signal

Processing. Prentice Hall Press, USA, 3rd edition, 2009. ISBN
0131988425.

[45] Shushuai Li, Christophe De Wagter, and Guido C. H. E. de Croon.
Unsupervised tuning of filter parameters without ground-truth applied
to aerial robots. IEEE Robotics and Automation Letters, 4(4):4102–
4107, 2019. doi: 10.1109/LRA.2019.2930480.

[46] Kiarash Movassagh, Sheikh Arif Raihan, Balakumar Balasingam, and
Krishna Pattipati. A critical look at coulomb counting towards im-
proving the kalman filter based state of charge tracking algorithms in
rechargeable batteries. 2021.

[47] C. R. Birkl, E. McTurk, M. R. Roberts, P. G. Bruce, and D. A.
Howey. A parametric open circuit voltage model for lithium ion
batteries. Journal of The Electrochemical Society, 162(12):A2271–
A2280, 2015. doi: 10.1149/2.0331512jes. URL https://doi.

org/10.1149/2.0331512jes.

[48] Inc. The MathWorks. Simulink Curve Fitting. Natick, Massachusetts,
United State, 2021. URL https://mathworks.com/help/

curvefit/.
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Appendix A

Chroma 17020 extracts

Overview 

1-5 

Model 69225-200-4 69225-500-4  
Channel 4 4 

Charge Mode 
Voltage Range  0-200Vdc  0-500Vdc ** 
Maximum Current 30A 13A 
Max Power 2.5KW 2.5KW 
CC Mode Accuracy 0.1% stg.+ 0.05% F.S. 0.1% stg.+ 0.05% F.S. 
Current Resolution 5mA 1mA 
CV Mode Accuracy 0.1% stg.+ 0.05% F.S. 0.1% stg.+ 0.05% F.S. 
Voltage Resolution 5mV 5mV 
CP Mode Accuracy 0.2% stg.+ 0.1% F.S. 0.2% stg.+ 0.1% F.S. 
Power Resolution 0.5W 0.5W 

   
Discharge Mode 

Voltage Range * 0-200Vdc  0-500Vdc ** 
Maximum Current 30A 13A 
Max Power 2.5KW 2.5KW 
CC Mode Accuracy 0.1% stg.+ 0.05% F.S. 0.1% stg.+ 0.05% F.S. 
Current Resolution 5mA 1mA 
CV Mode Accuracy 0.1% stg.+ 0.05% F.S. 0.1% stg.+ 0.05% F.S. 
Voltage Resolution 5mV 5mV 
CP Mode Accuracy 0.2% stg.+ 0.1% F.S. 0.2% stg.+ 0.1% F.S. 
Power Resolution 0.5W 0.5W 

   
Measurement 

Voltage Range 0-200Vdc 0-500Vdc 
  Voltage Accuracy 0.02% rdg.+ 0.02% F.S. 0.02% rdg.+ 0.02% F.S. 
  Voltage Resolution  5mV 5mV 

Current Range 12A/30A 4.8A/13A 
Current Accuracy 0.05% rdg.+ 0.05% rng. 0.1% rdg.+ 0.05% rng. 

  Current Resolution 3mA 1mA 
Power Range 2500W 2500W 

  Power Accuracy 0.07% rdg.+ 0.07% F.S. 0.12% rdg.+ 0.07% F.S. 
  Power Resolution 0.3W 0.3W 
  Temperature Range 0-90°C 0-90°C 
  Temperature Accuracy ±2°C ±2°C 
  Temperature Resolution 0.1°C 0.1°C 

 
Note * 0V discharge definition and charge/discharge operation range are as Figure 1-1 

and Figure 1-2 shown. 
** Voltage range is 45-500VDC when model 500V is operated in battery simulator. 

 
V-I operation ranges of 69225/69212 series are shown as the following table. It is drawn by 
the data gotten by the experiment of 5m length output wire.   
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