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Abstract

Approaches for systematizing information of relatedness between organisms is important in

biology. Phylogenetic analyses based on sets of highly conserved genes are currently the

basis for the Tree of Life. Genome-scale metabolic reconstructions contain high-quality

information regarding the metabolic capability of an organism and are typically restricted to

metabolically active enzyme-encoding genes. While there are many tools available to gen-

erate draft reconstructions, expert-level knowledge is still required to generate and manually

curate high-quality genome-scale metabolic models and to fill gaps in their reaction net-

works. Here, we use the tool AutoKEGGRec to construct 975 genome-scale metabolic draft

reconstructions encoded in the KEGG database without further curation. The organisms are

selected across all three domains, and their metabolic networks serve as basis for generat-

ing phylogenetic trees. We find that using all reactions encoded, these metabolism-based

comparisons give rise to a phylogenetic tree with close similarity to the Tree of Life. While

this tree is quite robust to reasonable levels of noise in the metabolic reaction content of an

organism, we find a significant heterogeneity in how much noise an organism may tolerate

before it is incorrectly placed in the tree. Furthermore, by using the protein sequences for

particular metabolic functions and pathway sets, such as central carbon-, nitrogen-, and sul-

fur-metabolism, as basis for the organism comparisons, we generate highly specific phylo-

genetic trees. We believe the generation of phylogenetic trees based on metabolic reaction

content, in particular when focused on specific functions and pathways, could aid the identifi-

cation of functionally important metabolic enzymes and be of value for genome-scale meta-

bolic modellers and enzyme-engineers.

Introduction

Phylogenetic trees have been important in systematizing information in biology for several

centuries [1]. While the mathematical construction of these trees has not changed significantly

over the years, the biological basis used for generating the phylogenetic trees has changed radi-

cally, especially during the last decades and years due to the fast development in sequencing

technology [1–3]. This research field is still not settled, as exemplified by the recent change
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from using 16/18 S rDNA to a selection of conserved (ribosomal) proteins/genes still a topic

for research [2–4].

Additionally, whole genome and genome-scale data approaches allowed by the rapid devel-

opment in computational methods and computation hardware are broadening the species tree

among all taxa [5–7], for example by gaining an increased resolution by reducing statistical

errors due to too few comparisons [8]. One rising challenge is that this may lead to an increase

in systematic errors [8]: Further errors can occur since genes may mutate due to evolutionary

pressures, genes with unrelated functions may introduce artifacts into the process of generat-

ing the tree of life [3], or genes can be rearranged, nucleotides substituted or even parts of

genes (for example introns) lost [9]. Depending on the research question under investigation,

exactly these changes and differences might be highly interesting. Currently, there exists sev-

eral approaches to integrate more sequencing data into phylogeny determinations, as for

example the use of whole-genome-scale phylogeny [10]. Here however, we will focus on using

genome-scale metabolic reconstructions as the foundation for determining phylogenetic trees

based on metabolic capability.

A genome-scale metabolic reconstruction consists of as many as possible metabolic reac-

tions that are encoded in an organism’s genome, thus representing the organism’s capabilities

by its metabolic repertoire: Based on the presence of a gene in the genome, the organism can

(in theory) perform a certain biochemical reaction and convert involved metabolites. The stan-

dard genome-scale metabolic model does not include information whether the respective pro-

teins are expressed in the organism or not. While more advanced approaches that expand

these models with a variety of ‘omics data to include such information is also possible, they

have only been implemented for a limited set of organisms so far [11–14].

Lineage information is highly relevant when creating genome-scale metabolic models: Par-

ticularly in the process of model curation, it provides an important aid in the identification of

possible gaps using genomic information from closely related organisms [15–17]. However,

lineage information is also quite useful in determining potential horizontal gene transfers in

models for Bacteria and fungi [10, 18, 19]; for example the sequences of Staphylococcus aureus,
Streptococcus pyogenes, Escherichia coli K-12, and Bacillus subtilis indicate horizontal/ lateral

gene transfers [20–23]. In this way, phylogeny can be of high relevance not only for curating a

genome-scale metabolic model, but in particular for metabolic- and cell engineering.

When an organism is experiencing changes in its natural environment, adaptations may

change the genes encoding active metabolic enzymes. In yeast, for example, entirely different

pathways are expressed in anaerob versus aerob conditions. Traditional phylogenetic analyses

would likely identify the adapted yeast strain as an unevolved yeast even after thousands of

generations, since they are based on the use of highly conserved and stable genes. Due to

changes in environmental selective pressures, mutations could accumulate in inactive meta-

bolic genes [24, 25]. These mutations could render such enzymes less effective, causing a fit-

ness disadvantage or even lethality when the organism is transferred back into the original

environment [24–26]. We are then left with the curious situation where the adapted organism

is considered by conserved genes to be identical to its origin, yet unable to live in its perceived

natural habitat.

Mutations that allow adaptation to the new environment also occur in active genes (such as

regulatory genes or genes coding for metabolic enzymes) to support evolution towards maxi-

mal growth fitness only after a few hundred generations [27–29]. Additionally, the organism

could increase its metabolic repertoire through horizontal gene transfer from other organisms

already present in the new environment. The additional and mutated genes may lead to arti-

facts in whole genome comparisons [3], potentially further complicating such analyses. In con-

trast to using whole-genome sequence-data or conserved genes to determine the similarity
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between a pair of organisms, the occurrence of a metabolic reaction depends on genome anno-

tation, which is based on the detected level of sequence similarity. Consequently, binary com-

parison of presence of metabolic capability is independent of the immediate genetic sequence,

and therefore, not subject to these mentioned artifacts.

The KEGG database (Kyoto Encyclopedia of Genes and Genomes [30–32]) has in the past

been used as a starting point for calculating organism-distance measures that are based on

metabolic capability [33]. The resulting phylogenetic tree showed good correlation with evolu-

tionary distances between the organisms [33]. This allows for comparing distant organisms

across domains and offers to improve model building and curation for distant organisms or a

poor data basis [34].

When engineering a pathway for increased production of specific compounds, typically

closely related organisms are consulted for genome-scale reconstruction curation, but also for

selecting a source organism for inclusion of such reactions. Knowledge about a previous hori-

zontal gene transfer can allow for easier metabolic engineering if transformations from this

strain are already known to work in vivo. It may also provide actionable knowledge for model

curation, specifically in identifying and solving gaps in pathways when not based on conserved

genes but instead metabolic functionality. An example application of such a systematic

approach is the computational tool CoReCo, which is designed to generate gap-less genome-

scale metabolic models by integrating data using a probabilistic framework [34].

While methods based on tallying the presence or absence of metabolic functions can be

computationally quite efficient, there is also much insight to be gained in explicitly analyzing

metabolic enzyme similarities. To determine the changes and similarities among taxa, we pres-

ent a method that uses purely evidence-based genome-scale metabolic reconstructions gener-

ated by AutoKEGGRec that only rely on the well-established KEGG database without any

further curation [14]. In addition to a network-based binary comparison, we also conducted

comparisons based on enzyme sequences of reactions present in each genome-scale metabolic

reconstruction to investigate clustering among the organisms. This allows for highly specific

comparisons based on single or a set of pathways, such as central carbon-, nitrogen-, or sulfur-

metabolism, to a more non-specific whole-organism comparison using all the metabolic reac-

tions to identify not only common reactions but conserved proteins across organisms.

Results and discussion

Starting from a set of 975 organisms (see S7 Table for details on the organisms) selected from

the KEGG database currently consisting of 6, 758 organisms, we investigate the penetration of

metabolic reactions, i.e. how is the metabolic reaction-set of an organism comprised of reac-

tions that are unique to that organism or reactions that are used by many organisms. Note

that, our selection consists of 134 Eukaryota (24.8% of all KEGG Eukaryota), 773 Bacteria

(13.1%) and 68 Archaea (20.3%). Our selected set of organisms implement a total of RT = 6,

154 different metabolic reactions (see Materials and methods section for further details). If the

metabolic reaction sets are dominated by common reactions, a binary presence or absence test

as basis for generating organism-distance measures will provide low resolution in differentiat-

ing between organisms.

Defining a reaction present in less than 10% of the organisms as low penetration (LP), more

than 90% as high penetration (HP), and presence in 35 − 65% as medium penetration (MP),

we find that an average organism is composed of 7±7% LP, 25±5% MP, and 14±6% HP reac-

tions. Note, that more than half (58%) of the reactions present in the data set of 975 organisms

are counted as LP reactions (3, 571). We hypothesize that the LP reactions are associated with
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highly specialized biochemical functions not associated with central pathways. Similarly, it

seems reasonable to assume that HP reactions are part of central pathways.

To gain a better understanding of the biochemical functions associated with the HP reac-

tion set, we analyzed their KEGG pathway association (see S6 Table for details). Focusing on

an HP subset of reactions, those present in at least 925 of the organisms, we find that these 78

reactions are associated with 176 KEGG pathways, of which 64 reactions are in the four enzy-

matic classes transferase (29), ligase (23), isomerase (7), and oxidoreductase (5). In Fig 1 we

give a more detailed overview of the pathway association for these 78 reactions.

Note that, many reactions are associated with multiple pathways in KEGG, and surpris-

ingly, six of the HP reactions are not assigned to any KEGG pathway. Most of the HP reac-

tions are connected with central carbon metabolism and nucleotide- and amino acid

synthesis, the central elements for living organisms, in support of our centrality hypothesis.

However, we do find exceptions to this: The KEGG reactions R03596 (937 organisms, oxido-

reductase, selenocompound metabolism pathway), R09372, oxidoreductase (937 organisms,

no assigned enzyme group, selenocompound metabolism pathway), R04771 (945 organisms,

transferase, no assigned pathway), and R04773 (965 organisms, ligase, selenocompound

metabolism and metabolic pathways) are not in central carbon metabolism pathways. These

reactions all contain selenium-based-compounds. Selenium is an element appearing in

Eukaryota, Bacteria, and Archaea [35–37]. Specifically, Nancharaiah and Lens [37] show a

16S rRNA phylogentic tree of selenium oxyanion-respiring microorganisms, including Pseu-
domonas, Bacillus, and Clostridium showing the diversity to their selected organisms. For the

current selction of 975 KEGG organisms, selenium is an essential component for a subset of

Eukaryotes and Bacteria as they are selenium-reducing. These organisms use selenium oxya-

nions as electron acceptors reducing it to insoluble and nontoxic selenium used in further

pathways [37]. We observe however, that for most of the 975 organisms, selenium is neither

essential nor significantly beneficial, yet in fact 96.1% of the organisms contain multiple sele-

nium metabolizing reactions.

Next, we investigate the level of shared pathway association between LP and HP, finding

that 2,794 (78.4%) of the LP reactions are not associated with metabolites found in HP reac-

tions. Furthermore, 1,295 (36.3%) of the LP reactions are not assigned to any KEGG pathway

Fig 1. Pathway association among most frequently shared reactions. The 78 reactions found in at least 925 of the 975 organisms are associated with

176 different KEGG pathways. Note that, six of these high-penetration reactions have no pathway assignment in the KEGG database.

https://doi.org/10.1371/journal.pone.0240953.g001
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at all (see Materials and methods for details), in contrast to only 27 (18.5%) of the reactions

from the HP reaction set, in support of our centrality hypothesis. These results highlight the

importance of a functional-capability focus when implementing organism clustering. We

therefore conclude that the use of the diverse organism-fingerprints, consisting of high-speci-

ficity (LP reactions) in combination with HP and MP reactions generates phylogenetic trees

with organism placements that agree with traditional methods.

In Fig 2, we show the histogram of shared reactions among the 975 organisms (black sym-

bols). We note that there is only 12 reactions that are common to all the 975 organisms, and

total of 146 present in 90% or more of the organisms. In fact, the largest number of reactions

are used in only a few organisms, with 375 reactions appearing in only a single organism.

As a contrast to the empirical data, we generate 106 randomly selected reaction sets for each

of the 975 organisms and calculate the expected reaction penetration in each of the random

organism draws. Fig 2 shows that the number of shared reactions for the random sets (red) is

quite different from the empirical results in the low and high range: In the empirical set, we

find a significantly larger number of LP and HP reactions (panels B and C). For the random

sets, we instead find that the largest number of reactions is present in approximately half of the

available organisms (MP). Here, it is also quite rare for reactions to be present in only a few or

many of the organisms. In Fig 2, panel C clearly indicates the importance of shared reactions

in the empirical bio-chemical reaction networks, which we will further exploit for the phyloge-

netic analysis.

Fig 2. Reaction penetration in the organism set. Data from empirical networks from KEGG (black) are plotted against 106 randomly generated

organism reaction sets (red), together with the standard deviation curve (blue). A) Histogram of shared reactions (the number of organisms in which a

reaction is used) among the 975 KEGG organisms with a bin size of 5. B) and C) show a magnification of panel A) in the LP and HP ranges, with bin

size of unity.

https://doi.org/10.1371/journal.pone.0240953.g002
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Fingerprint-based network comparison

We generated a phylogenetic tree using a binary metabolic network comparison approach by

using a presence / absence test on all reactions for each pair of organism in the set of 975

organisms (Fig 3, see Materials and methods for details). As expected, we notice that the

domains are separated into Eukaryota (purple), Bacteria (blue), and Archaea (green). How-

ever, we also discovered some misplaced organisms (black band) that were placed at the root

of the tree, leading us to question the approaches and the stability of the network. To study the

robustness of the resulting phylogenetic tree to perturbations in the particular reaction con-

tent, we conducted a sensitivity analysis by introducing a fixed level of random reactions z into

each organism (see Materials and methods for details). The results for the level of whole-tree

comparisons in Table 1 show that the one-percent-level perturbation of the reaction network

generates highly similar trees when conducting the perturbation experiment 106 times (see

Materials and methods for details). Note that we use the z = 0 tree as our reference (correct

placement) in the comparisons.

Fig 3. Phylogenetic tree using binary fingerprint comparison from KEGG. Using KEGG 975 organisms, the resulting tree displays a clear separation

between the domains, splitting into groups such as plants, fish, birds, mammals and fungi. The red circle marks the edge of the terrabacteria group to

others, such as proteobacteria. Figure created with [38].

https://doi.org/10.1371/journal.pone.0240953.g003
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Fig 4 shows a histogram of the probability of correct placement of tree-neighborhoods for

the 975 individual organisms. For the z = 0.01 level of randomness, we find that 83.9% of the

organisms have an unchanged neighbourhood over the 106 instances, and only 5 organisms

show less than a 80% chance of correct placement. Increasing the level of randomness to z =

0.025, we find a slight reduction in the fraction of always correctly placed organism to 80.5%.

However, increasing to z = 0.05% this has dropped significantly to 52.1%, and with z = 0.10 we

find that only 40.1% of the organisms are always correctly placed.

We continue by taking a closer look at three organisms with approximately the same num-

ber of metabolic reactions in KEGG and that are correctly placed in the z = 0 tree compared to

the tree of life (see Table 2). Their response to increasing levels of perturbations in their reac-

tion networks is quite dissimilar: While they respond quite similarly to z = 0.01 and z = 0.025

levels of randomness result, increasing z further has drastic effects. Already z = 0.05, which on

Table 1. Sensitivity analysis of phylogenetic tree.

z 0.01 0.025 0.05 0.10

K(z) 0.980 0.948 0.805 0.670

Introducing a fixed level of random reactions z results in trees that showed a similarity K(z) to the unperturbed tree

(K(0)).

https://doi.org/10.1371/journal.pone.0240953.t001

Fig 4. Histogram of the probability for correct placement of an organism using noisy reaction network. In this analysis, we use the organism

placement without noise (z = 0, see Fig 3) as reference for correct placement. For all 975 organisms, 106 instances of each metabolic network with 1%

(black) randomized metabolic reactions, 2.5% (blue), 5% (purple), and 10% (yellow).

https://doi.org/10.1371/journal.pone.0240953.g004
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average corresponds to a perturbation of only 76 reactions, the probability for Xanthomonas to

be correctly placed decreases to 0.83%. For z = 0.10, this has dropped to 0.56. In stark contrast,

we observe that the highly curated Saccharomyces reaction set is ultra stable. Even at the 10%

noise level, the yeast is correctly placed 99% of the time. We argue, that this sensitivity analysis

gives an indication about the quality of the reaction network.

Furthermore, the correct placement of a specific organism depends on the network size and

the percentage of miss-annotated reactions or missing/added reactions: It is to be expected

that a selection of 975 organisms across all domains from the (currently) 6, 758 organisms in

the KEGG database will include some organisms with a low number of annotated reactions.

Indeed, some of the incorrectly placed organisms in Fig 3 are “Candidatus”-organisms that

have been characterized but not yet been cultured. The set of 975 organisms contains 37 Can-
didatus strains, of which 17 are placed incorrectly: Not only are they outside of the expected

groupings, but instead they are placed near the root of the tree. Consequently, they contain

few reactions that are able to generate close similarity with other organisms. The Candidatus
strains make up almost half of the 35 misplaced organisms in Fig 3, highlighted with a black

arc. However, the incorrectly placed strains are only associated with an average of 360±190

metabolic reactions in the KEGG database, in contrast to the average of 1, 200±500 for the 940

correctly placed organisms (for details see S8 Table). An example of a incorrectly placed Can-
didatus strain is KEGG ID hcc with the name Candidatus Hodgkinia cicadicola TETUND1.

This is an entry with only 71 reactions, of which 0% are LP, 21.1% MP, and 32.4% HP (see

Table 2).

On the opposite end of the spectrum among incorrectly placed organisms is the organism

with the KEGG ID loki, an Archaea within the Asgard group according to taxonomy, a “com-
posite genome assembled from a metagenomic sample” from the Arctic Mid-Ocean Spreading

Ridge, located 15 km from Loki’s Castle active vent site [39]. It contains 845 reactions, 12.1%

of which are LP type, 26.1% MP, and 15.6% HP type, and thus, it is within the expected distri-

bution among LP / MP / HP reactions (see Table 2). Note however, 7.9% of its LP reactions

are only present in less than 1% of the organisms. These highly specific and unique reactions

decrease the potential overlap with other species which would allow for a similarity-based

placement within the tree. We find it reasonable to assume that these strains are missing a

large number of metabolic reactions while also containing few strain-representative metabolic

reactions, making a high quality binary reaction-presence comparison difficult. Consequently,

we cannot expect to place them correctly in the phylogenetic tree.

Since most of the organisms contain a balanced mixture of LP, MP and HP reactions, the

whole-metabolism comparison is capable of generating a clear separation between Eucaryotes

and Procaryotes, and within the domains, a clear separation through multiple taxonomic levels

Table 2. Sensitivity analysis of specific networks.

Organism Placement state # reactions z = 0.01 z = 0.025 z = 0.05 z = 0.10 HP MP LP

Xanthomonas campestris (xcc) C 1,520 0.99 0.97 0.83 0.56 9.61 30.9 5.59

Saccharomyces cerevisiae (sce) C 1,523 1.00 1.00 0.99 0.99 9.59 19.9 11.5

Bacillus subtilis (bsu) C 1,518 0.99 0.98 0.95 0.81 9.62 27.4 5.67

Lokiarchaeum sp. (loki) N 845 1.00 1.00 0.76 0.56 15.6 26.1 12.1

Borreliella burgdorferi (bbu) N 309 1.00 0.98 0.56 0.21 29.5 19.7 0.32

Candidatus Hodgkinia cicadicola (hcc) N 71 1.00 1.00 1.00 0.65 32.4 21.1 0.00

Six organisms of which three are placed correctly (C) and three incorrectly (N) in Fig 3. The organisms are specified by their KEGG codes and are compared by their

sensitivity to correct placement and their reaction-penetration composition.

https://doi.org/10.1371/journal.pone.0240953.t002
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down to families. In Fig 3 the organism clustering is indicated by colored bands, and the

domains Archaea (green), Eukaryota (purple), and Bacteria (blue) are highlighted separately.

Within Eukaryota, the phyla are sub-grouped as expected, all fish are placed within actinopter-

ygii (ccar, sasa) and are separated from mammalia (hsa, ggo), within the subgroup of tetra-

poda, also placing sauropsida with the selected organisms correct. Next to mammalia, nearly

equidistant, are viridiplantae before fungi, where aspergillus (ang) and penicillium (pcs) clus-

ter as expected. Within Archaea, the euryarchaeota are correctly split into stenosarchae and

other organisms present in the 975-organism data set.

The Bacteria domain is with 773 (79.3%) of the organisms the largest part in our data set.

The gram-positive lactobacillaceae—and streptococcaceae-family (lpl and sphy) separate as

expected and cluster with closely related organisms within the class of bacilli, where a correct

placement of the staphylococcaceae- and bacillaceae-family (sau and bsu) within the bacillales

order is achieved. The terrabacteria group is clearly distanced from the other bacteria, marked

by a red circle in Fig 3. The first class in proteobacteria that separates is alphaproteobacteria,

followed by the large group of gammaproteobacteria. Separation into xanthomonadales (xcc),

pseudomonadales (ppu and pae), oceanospirillales, and enterobacterales (eco and eal), to

name a few, is achieved in high accordance with phylogenetic trees based on conserved genes

[40]. Thus, conducting a binary finger-print comparison based on whole-genome metabolic

reaction content generates a reliable tree with high accuracy and is computationally fast.

However, if we are interested in a function-based comparison between a set of organisms

instead of a whole-genome comparison, a more detailed comparison including sequence infor-

mation is needed: First, we can expect that focusing on a small subset of metabolic reactions

will render many pairwise comparisons as either a perfect or a zero match, thus being unable

to reasonably discriminate between them. Second, genes transferred into a broad-host-range

plasmid can reach not only closely related organisms. This allows for fast genetic drift and

numerous genotypes since, e.g. organisms sharing an environment will have a chance of shar-

ing genetic material, and eventually, some of this will encode for metabolic reactions that are

beneficial in this environment [18]. The binary network comparison will not change notably

due to such processes (see Eq (1)). Similarly for sequence comparisons that take all metabolic

reactions into account. We propose that a possible solution to the challenge of conducting a

narrow function-based comparison with high discriminatory power is to compare the protein

sequences of selected reactions from the draft metabolic reconstructions. In the following, we

report the result from such an analysis.

Protein-based network comparisons

We start by selecting a subset of 21 selected organisms from different regions in the phyloge-

netic tree (see Fig 3) to serve as our reference set. By limiting the analysis to a smaller set of

organisms, it is more straightforward to study the direct consequences of different versions of

the comparison algorithm and to assess consequences of a narrow function focus. Addition-

ally, the computational run-time is significantly faster for sequence comparisons of 21 organ-

isms versus 975. We re-generate the binary-reaction set comparison-tree for the 21-organism

reference set based on Eq (1) to serve as a gold-standard for the sequence-based analysis with

focus on specific (small) sets of metabolic functions. In Fig 5, we see that the separation

between domains and even the smaller groupings can be achieved with a high degree of agree-

ment with the 975-organism tree (Fig 3). Most of the color coded clusters are grouped as in the

large phylogenetic tree; even though small differences can be observed. Note that, when com-

paring the details of Figs 3 and 5, any observed difference is solely caused by the reduction in

number of organisms included in the comparison.
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As shown in Table 4, the number of reactions vary vastly among the set of 21 organisms:

We find 2,624 biochemical reactions in H. sapiens but only 723 in H. pylori. The number of

genes increases significantly, since many organisms have reactions encoded by multiple gene

products through enzyme complexes or isozymes. Additionally, each of these genes may

include introns or exons, silent mutations and other variations. Consequently we will compare

the protein sequences associated with each enzymatic reaction that are available in the KEGG

database to reduce a possible error in cross-domain-comparisons.

From the KEGG pathways, we first used all available reactions in our 21-organism reference

set (see Table 4 for details). Due to the possibility that a reaction only appears in one of the

organisms in the pairwise comparison, we found it necessary to add a penalty score (see

Materials and methods section for details). We found it further necessary to implement a solu-

tion for multiple enzymes in a single reaction, either isozymes or enzyme clusters, as a basis

for the pairwise biochemical reaction-comparison. In the following two sections, we discuss

the reasoning for and impact of the respective methodologies.

Impact of penalty score on the phylogenetic trees. Pairwise binary reaction-comparison

result in either true or false responses. However, when implementing a sequence-based com-

parison, we are interested in the possibility of a more graded response to cases where a reaction

is only present in one organism. A penalty score is in essence the application of a low similarity

score for such cases. This penalty score affects very similar organisms that (a) share many reac-

tions, and (b) have a high sequence similarity the least, similar to organisms that share (a) few

reactions with (b) a low similarity score.

Table 4. The 21 chosen organisms in this study grouped according to order.

Order ID No. reactions No. genes average genes per reaction organism color

Mammalia hsa 2624 9672 3.69 Homo sapiens red

ggo 2603 9949 3.82 Gorilla gorilla gorilla red

oor 2569 7984 3.11 Orcinus orca red

Neopterygii sasa 2504 17553 7.01 Salmo salar blue

els 2507 9613 3.83 Esox lucius blue

ccar 2404 17255 7.18 Cyprinus carpio blue

Fungi ang 1965 4942 2.52 Aspergillus niger CBS 513.88 yellow

sce 1522 3012 1.98 Saccharomyces cerevisiae S288c yellow

pcs 1931 4288 2.22 Penicillium rubens Wisconsin 54-1255 yellow

Proteobacteria pae 1716 3244 1.89 Pseudomonas aeruginosa PAO1 green

ppu 1606 2866 1.78 Pseudomonas putida KT2440 green

xcc 1523 2640 1.73 Xanthomonas campestris pv. campestris ATCC 33913 green

hpy 723 925 1.28 Helicobacter pylori 26695 green

eco 1743 2737 1.57 Escherichia coli K-12 MG1655 orange

elp 1714 2743 1.6 Escherichia coli P12b orange

eal 1610 2571 1.6 Escherichia albertii KF1 orange

sty 1634 2623 1.61 Salmonella enterica subsp. enterica serovar Typhi CT18 orange

Bacilli sau 1131 1660 1.47 Staphylococcus aureus subsp. aureus N315 black

bsu 1520 2408 1.58 Bacillus subtilis subsp. subtilis 168 black

lpl 993 1684 1.7 Lactobacillus plantarum WCFS1 black

spyh 760 1049 1.38 Streptococcus pyogenes HSC5 (serotype M14) black

This table also lists their KEGG IDs, number of registered metabolic reactions, number of genes, average number of genes per metabolic reaction, organism name and

the associated coloring scheme.

https://doi.org/10.1371/journal.pone.0240953.t004
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We conduct our assessment of possible penalty scores using all available reaction-based

enzyme sequences for each pair of organisms (Fig 6). We find that a clear separation between

Eukaryota and Bacteria could be achieved for all values of the penalty score. To evaluate the

impact on highly similar organisms, we focus on the two E. coli strains and the E. albertii
strain, with KEGG organism IDs eco, elp, and eal respectively. They are all encoded in orange

colors in the 21-organism tree figures. The relative distance between eco, elp and eal do not

change when varying the penalty score: As expected, eco and elp are always closer related in

comparison to eal. The value of their similarity score,hS(A, B)i (see Eq (7)) changes, which for

closely related organisms means a small change in distance in the tree.

However, for distantly related organisms the penalty score has a larger impact due to the

nature of Eq (7). This is clearly evident for the green-labeled part of the phylum of proteobac-

teria. The organisms in the phylum proteobacteria are labeled green and orange, orange for

the included family of enterobacteriaceae. While the Pseudomonas strains ppu and pae (green)

cluster together with small differences in the tree distance, the response to varying penalty

scores for the more distant Xanthomonas (xcc) and Helicobacter (hpy) does not follow a clear

pattern. For a penalty score of 0.25, we find hpy clusters outside of Bacteria, whereas for a

range of values of −0.25 to 0 it’s grouped with bacilli (black). At a penalty score of 0.1, hpy is

similarly distant to all Bacteria. When ignoring the use of a penalty (see Fig 6F), hpy clusters

again outside of Bacteria. This shows that, for very close organisms the impact of the penalty

score is potentially smaller, especially when few reactions are compared.

Fig 5. Reference phylogenetic tree using binary network-based fingerprint comparisons. For the set of 21 organisms using all reactions, the resulting

tree shows clear separation between the domains. We note that the reaction network of H. pylori is different from the other Bacteria, and that the carp

(Cyprinus carpio) was expected to cluster with the other fish.

https://doi.org/10.1371/journal.pone.0240953.g005

PLOS ONE Genome-scale reconstructions to assess metabolic phylogeny and organism clustering

PLOS ONE | https://doi.org/10.1371/journal.pone.0240953 December 29, 2020 11 / 24

https://doi.org/10.1371/journal.pone.0240953.g005
https://doi.org/10.1371/journal.pone.0240953


Therefore, depending on the question asked, we believe it prudent to (a) either ignore the

use of a penalty, or (b) use a penalty score that has minimal impact on the similarity score

between closely related organisms while at the same time modifies cluster assignments among

more distantly related organisms to be more aligned to “true functional similarity”.

Taking these considerations into account, we found a penalty score of 0.25 be a good choice

for the 21-organism sequence alignment analysis. The reasoning is based on the fact that, we

achieve a high similarity with the tree based on conserved genes, even though hpy is placed

away from the other proteobacteria and barely more similar to bacilli. However, the overall

distances are more reasonable when comparing distantly related organisms. This is exempli-

fied with the black labeled bacilli being more similar at a penalty score of 0.25. Additionally

when focusing on specific functionality, we are not generating trees with the intent of compar-

ing them to those resulting from conserved genes-comparisons. Instead, our reference tree is

that in Fig 5.

Multiple enzyme comparisons for a single reaction. Even though similarities at the

whole-organism level (whole genome comparisons) are of high interest, specific functional

Fig 6. Effect of penalty score using all metabolic reactions in the 21 genome-scale networks. The different panels refer to the penalty score used:

(A) −0.25, (B) −0.1, (C) 0, (D) 0.1, (E) 0.25 and (F) no use of penalty. The color codes and KEGG IDs of the organisms are shown in Table 4.

https://doi.org/10.1371/journal.pone.0240953.g006

PLOS ONE Genome-scale reconstructions to assess metabolic phylogeny and organism clustering

PLOS ONE | https://doi.org/10.1371/journal.pone.0240953 December 29, 2020 12 / 24

https://doi.org/10.1371/journal.pone.0240953.g006
https://doi.org/10.1371/journal.pone.0240953


similarity is of high relevance in e.g. the field of metabolic engineering. Sequence similarities

for a narrowly selected set of metabolic reactions, functionalities, and pathways can generate

important insight into complex relationships based on horizontal gene transfer or mutations.

Many reactions included in a genome-scale metabolic network are encoded by multiple genes

where the enzymes are isozymes or complexes catalyzing the metabolic reactions.

For the cases with several genes encoding a single metabolic reaction, we generated all pair-

wise sequence comparisons between two organisms (see Materials and methods section for

details). The largest similarity score, independent of sequence size or number of sequences

present, was selected. While this approach could lead to a high similarity score caused by a

small part of a protein complex (possibly not even part of the active site), the final similarity

score between two organisms is based on the average of all protein similarity comparisons (Eq

(7)). Thus when comparing many reactions, the impact of the alignment-score from a single

protein is smaller than in case of just a few reactions. Since only the highest similarity is used,

we argue that even small amounts of reactions generate accurate measurements.

Whole-genome metabolic protein sequence similarity tree. The phylogenetic tree

resulting from a similarity calculation using our 21-organism reference set based on sequence

comparisons is shown in Fig 7A. It includes all reactions present in the genome-scale meta-

bolic network with a penalty score of 0.25. To further facilitate comparisons with the corre-

sponding binary network-based fingerprint (Fig 5), we have provided a side-by-side rendering

in S1 Fig. In Fig 7A, Eukaryota and Bacteria separate as expected when using the metabolic

enzyme sequence comparison for the whole metabolic network. In contrast to the binary net-

work fingerprint (Fig 5), the selected E. coli strains share a higher similarity than salmon and

pike, including E. albertii. The reason is that essential genes in bacteria are more conserved

than nonessential genes [18, 41]. This illustrates the power of the approach utilizing potentially

shared protein sequences for metabolic similarity. The higher reproduction cycle of microor-

ganisms, including the possibility of exchange of genetic material and thus functionality from

other organisms in the same environment, allows for a fast adjustment to new or changing

environments. The conserved essentiality is also expressed by the fact that many metabolic

reactions are encoded by a single gene in Bacteria, in contrast to more complex organisms

which encode metabolic functionality often by multiple genes, compare Table 4.

All strains meet the expected distance, even within the proteobacteria, where the orange

marked family of enterobacteriaceae clusters in close proximity. Proteobacteria and bacilli are

as distant as expected, however H. pylori clusters outside yet still within Bacteria. Note, that

hpy has the smallest reaction network in this dataset of 21 organisms, reducing possible reac-

tion overlap with other organisms. Streptococcus is with its 760 reactions similar in size, yet the

metabolic overlap with the other organisms is larger (see Fig 6 for more details).

Consequently, we argue, that including a higher resolution using active enzyme sequences

improves the computationally fast and good functioning approach of binary metabolic net-

work fingerprinting further. Not surprisingly, however, comparing all sequences for all organ-

isms is significant more computational demanding.

Consequence of specific metabolic functions on the phylogenetic trees. While compar-

ing the whole genome-scale metabolic network on a protein sequence-basis can reveal similar-

ities on an organism-level, we are particularly interested in similarities of metabolic reaction

subsets i.e. implementation of metabolic function. This includes organism-specific functional-

ity or analysis of conserved pathways such as the TCA cycle. As a proof of concept, here we

have selected several sets of metabolic reactions based on the HP data set (see Materials and

methods section for details on the selected reaction sets). Note, that their selection is inspired

by the HP data set, but driven by the KEGG pathways making some of the reactions absent in
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all organisms. We use the penalty score of 0.25 which imposes a high dissimilarity (penalty) on

the respective missing reaction.

In Fig 7, panels B to F, we show the phylogenetic trees resulting from the selected reaction

sets. In panel B we used the protein sequences for the set of 203 metabolic reactions shared

between all of the 21 organisms, which represents 28% of the H. pylori metabolic reactions,

further emphasizing the importance of these reactions. The figure shows that the orca whale is

closer related to the human than to the gorilla. Furthermore E. coli K12 MG1655 and S. enter-
ica are more similar than E. albertii and E. coli P12b, in sharp contrast to previous findings and

the common understanding of the Tree of Life. Although the similarity among mammals is

lower than expected using traditional comparisons, this similarity analysis is solely based on

the protein sequences of the 203 KEGG metabolic reactions shared in the 21-organism refer-

ence set. Here, the choice of penalty score has no effect, since all the reactions and therefore at

least one protein sequence, is available for all pair-wise sequence alignments.

Fig 7. 21 organisms compared by different reactions present in the genome-scale metabolic reconstructions. A) is a comparison based on all

reactions in the network, B) refers to all shared reactions, C) is the TCA set, D) is based on the DNA metabolism set, E) compares the pyruvate

metabolism set, and F) is with the glycolysis set. The color code and the KEGG IDs of the organisms are shown in Table 4, the KEGG reaction IDs are

listed in the Supplementary material.

https://doi.org/10.1371/journal.pone.0240953.g007
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Using protein sequences from metabolic reactions present in the TCA cycle (Fig 7C), we

find that the separation between Bacteria and Eukaryota is disturbed by S. pyogenes (spy),

which is the second smalles organism with its 760 metabolic reactions. Within the Bacteria,

only the family of enterobacteriaceae clusters as expected. The TCA set also generates high

relative similarity between human and gorilla. The relative distance to the orca whale thus is

more in accordance with traditional clustering.

In Fig 7D, we show the phylogenetic tree resulting from the protein sequence comparison

of a set of DNA-metabolism reactions, also based on the HP reaction set. This reaction set also

contains all reactions shared among all 975 organisms. While we observe that all distances

increase, the relative sub-groupings do not change as Bacteria and Eukaryota are separated as

expected. The clade of euteleostomi as well as the family of enterobacteriaceae and class of

bacilli form clusters, which are as expected with the exception that salmon and carp switched

their relative similarity to pike. Note that, the other organisms in the class of gammaproteobac-

teria (xcc and hpy) are not placed with the other gammaproteobacteria but instead share simi-

larities with all Bacteria.

In contrast when we use a metabolic reaction set based on pyruvate metabolism (Fig 7E),

we find the largest relative dissimilarity of all the compared reaction sets (panels B-F). Surpris-

ingly, the expected determination of domains is still achieved. The phylogenetic tree displayed

in panel F is based on a set of only seven metabolic reactions from glycolysis that are present in

most metabolic networks. Similar to panel E, the relative distance of all organisms is high com-

pared with the other reaction sets. Note that, in several of the figure panels the distance of mul-

tiple organisms are nearly identical, e.g. in panel 3 for Escherichia and the mammals. This

result suggests that that the protein sequences for these organisms in the chosen metabolic

reaction sets are equally distant to each other.

For a more quantitative analysis of the phylogenetic tree similarities, we calculated the simi-

larity K(A, B) between all pairs of phylogenetic trees in Fig 7 based on a branch comparing

approach (further details in Materials and Methods section and Ref. [42]). We find some inter-

esting patterns from this network comparison (see Table 3). Panels E and F have a low similar-

ity (�0.35) with the other panels. Compared to the all reactions panel (A), the score of 0.25 for

E and F respectively is the lowest, and panels D and B share a similarity of 0.45 with A. We

conducted this tree similarity analysis as an indication for the over all organism similarity to

evaluate large dissimilarities. These dissimilarities show reaction sets that vary in sequence

similarity that the tree is re-ordered and some organisms cluster differently.

Close organisms were expected to cluster closely, which is achieved for many groups. The

smallest set of reactions compared here was seven (glycolysis set), the largest 21 reactions

(TCA set). Comparing the relative distances between these two plots shows a clear difference:

While the small number of reactions leads to a large difference for even very close organisms

such as the two E. coli strains, the large set of reactions shows a very high similarity. The pair-

wise comparison of the two E. coli strains, a similarity of 0.73 in A, 0.78 in B, 0.58 in C, and

Table 3. Similarity score K(A, B) from the pairwise comparison of phylogenetic trees shown in Fig 7.

A) all reactions B) all shared C) TCA set D) DNA set E) pyruvate set F) glycolysis set

A) all reactions 1.0 0.45 0.35 0.45 0.25 0.25

B) all shared 1.0 0.40 0.40 0.30 0.35

C) TCA set 1.0 0.35 0.25 0.35

D) DNA set 1.0 0.25 0.30

E) pyruvate set 1.0 0.20

F) glycolysis set 1.0

https://doi.org/10.1371/journal.pone.0240953.t003
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0.53 in F thus shows the clear pattern: In A all reactions are used which also includes a penalty

score for the binary reaction difference. Additionally dissimilar enzyme sequences via the aver-

age organism similarity influence the scores. In panel B only reactions are compared which are

present in all strains. This leads to a pure sequence similarity based comparison and thus to

closer organisms within E. coli.
The distances between organisms in the phylogenetic trees of panels C to F is a direct result

of the particular selection of metabolic reaction sub-sets, or specific metabolic functions. A

consequence of smaller reaction sets is that some of the chosen metabolic functions are not

or only partly present in a given organism set. The difference can be seen when comparing

the pike (els) to E. coli K-12 MG1655 (eco) for the TCA set shown in panel C. Firstly, the

organisms differ in the presence of four reactions: KEGG reaction IDs R00344, R00432,

R00709, and R01197. R01197 is the only reaction present in eco but not in els. For these reac-

tions, the penalty score is used in the comparison. A closer inspection shows that the more

complex organism, els, has a larger repertoire of alternative reactions for the succinate:CoA

ligase, the enzyme catalyzing this reaction.

The biochemical transformation of succinly-CoA to succinate is an important reaction in

the TCA cycle and encoded via the different enzymatic reactions with KEGG reaction IDs

R00405, R00432, R00727, and R10343. Reaction R00405 allows for ATP production in eco and

els. reactions R00432 and R00727 are responsible for GTP and ITP respectively in the pike. In

fact, they are present in all selected 21 Eukaryota. This shows the higher metabolic versatility

of the Eukaryota in this central succinate:CoA ligase reaction. Reaction R10343 has no involve-

ment of any energy equivalent and is present in neither of these two organisms, however in is

included in pae, ppu and xcc. Thus, for the similarity analysis of eco and eal, this reaction has

no impact. The difference of eal and eco is consequently based on the four binary reaction dif-

ferences that are included with a penalty score of 0.25 and on the sequence differences for the

remaining 17 reactions.

We have shown, that the analysis of selected reactions generates a set-specific similarity.

We find that the similarity strongly depends on the reactions and thus varies for the reaction

sets. The reaction distribution within the family of enterobacteriaceae is so similar that they

cluster together in all panels in Fig 7. We notice however, a clear increase in their relative dis-

tances (height of the branches in the phylogenetic trees). For eco and eal, this is based on the

direct sequence difference and variation in reaction availability. The large difference in panel E

indicates huge variation amongst all organisms for this reaction set. We find that the analysis

of reaction sets together with whole-genome metabolic comparison can increase the knowl-

edge for specific organisms. We would expect phylogenetic trees resulting from specific meta-

bolic function comparisons to differ from the expected Tree of Life in both distance and

clustering. However, these trees are not intended to serve as replacements for the Tree of Life.

Instead, they have a role as knowledge basis for engineering purposes when combining reac-

tion sets of multiple organisms.

Conclusion

Here, we have developed and analyzed an organism-clustering method based on genome-scale

metabolic capability. We used the previously published Matlab function AutoKeggRec [14] to

generate 975 genome-scale metabolic draft reconstructions based on the KEGG database. This

reaction set represents various phlya from all domains of life. We find a strong similarity

between the binary metabolic network-based fingerprint organism-clustering and the Tree of

Life, in agreement with previous studies [33]. When using all available KEGG metabolic reac-

tions for the organisms, we would expect that the resulting phylogenetic tree should have
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strong similarities with the accepted Tree of Life. Incorrectly placed organisms within the phy-

logenetic tree share a small overlap of metabolic reactions with other organisms. That is caused

by two factors: Their small metabolic reaction network due to incomplete or significantly miss-

ing reaction annotations, or a large number of highly specialized metabolic reactions com-

bined with a small number of more common metabolic reactions. We observed a similar effect

when reducing the number of organisms from 975 to 21, as some relationships were changed.

When analyzing the binary genome-scale networks’ similarities, we find that high-specificity

reactions (LP reactions) and the more common MP reactions generate an accurate placement

of the organisms in the hierarchical clustering of organisms. Furthermore, a correct placement

of an organism also depends on the presence of HP reactions, since without these the organ-

isms tend not to be grouped within their expected domains.

Within the HP reaction set we find universal reactions in central pathways that metabolize

amino acid and nucleotide based compounds besides selenium processing reactions. The HP

reaction set is thus associated with an ubiquitous central metabolism across all organisms. Fur-

ther analysis generating a metabolic core network based on these data, curating and gap filling

them, can increase the fidelity of similarity analyses founded on genome-scale metabolic reac-

tion information on a systems level. Additionally, it can help in the process of curating similar

and new organismal metabolic networks as well as revising annotations for existing ones.

In contrast, we find that the LP reactions which are shared between only a few organisms

consist of 58% of the 6, 154 metabolic reactions present in the data set of 975 organisms. Since

78.4% of these reactions do not share metabolites with HP reactions and 36.3% are not associ-

ated with a pathway in the KEGG database, we conclude that these reactions are highly special-

ized metabolic reactions. However, since the LP reactions are quite abundant in the data set,

they play an important role in combination with the MP reactions to achieve correct place-

ment among closely related organisms. For example, the KEGG reaction ID R00025 is present

in fungi, bacilli, and in parts of the proteobacteria, not in neopterygii, mammalia, or entero-

bacteriaceae. When combined with other reactions clustering for Eukaryota and Prokariota,

this reaction can contribute to the difference between enterobacteriaceae and pseudomona-

dales on a binary level. In contrast, it will not provide the ability to differentiate between E. coli
and S. entericia since it’s not present for these organisms. In order to improve the resolution of

the comparisons, we implemented a protein sequence-similarity measure with the possibility

for selecting smaller reaction sets and pathways composed of specific reactions.

Using the protein sequence data, we find a higher level of agreement between the resulting

phylogenetic tree and the tree of life for the reduced data set. The additional data within the

enzymatic reaction sequences can therefore compensate for the small overlap in diverse organ-

isms. We found differences in clustering when applying the similarity analysis to various reac-

tion selections based on the HP reaction set. Consequently, we hypothesize that using the

protein-sequence based similarity analysis focused on specific metabolic reaction subset may

aid in the identification of functionally important mutations and adaption-relevant gene trans-

fers across species, families or even phyla.

Materials and methods

In the following, we describe the two different approaches employed to generate the meta-

bolic-network based phylogenetic trees. Both methods are based on the availability of draft

genome-scale metabolic reconstructions from KEGG, using the AutoKEGGRec function [14].

This function runs in Matlab and interfaces with the COBRA toolbox 3.0 [43] for genome-

scale metabolic modelling. Briefly described, AutoKEGGRec will access the KEGG database

using identifiers for organisms and generate genome-scale draft reconstructions based on only
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the genetic information. This starting point will typically be subject to automatic as well as

manual curation, gap-filling and improvements based on additional information in the

standard model-creation steps [17]. In this work we only used data available in the KEGG

database.

Calculations and figure generations were performed in Matlab 2017b: The Matlab function

seqlinkage was used with the default setting ’average’ for an unweighted pair group method

average (UPDMA) clustering of the pairwise comparisons [44]. To create the figures the func-

tion plot was used with the Type-setting ’square’.
Using AutoKEGGRec, we downloaded the full reaction table for 975 selected organisms.

The provided KEGG organism codes (see Table 4 for 21 organisms and S1 Table for the

N = 975 organisms) were used as input for AutoKEGGRec, and a community draft model as

well as individual draft models were generated. Furthermore, we used the AutoKEGGRec

option to generate the organism-reaction-gene matrix (ORG), which is used as the knowl-

edge-base for this work (see Ref. [14] for further details). The total number of reactions cov-

ered by the set of N organisms is RT = 6, 154 out of 10, 995 reactions present in the KEGG

database (56.2%).

Note, that the 21 organisms are largely a subset of the 975 selected KEGG organisms chosen

based on distribution and their prominence. The color code given in Table 4 for the organisms

is consistent throughout the manuscript.

Binary metabolic network comparison

The first method for generating phylogenetic trees is based on using the organism-reaction-

gene (ORG) matrix generated by AutoKEGGRec by transforming it into a binary matrix

where a unit entry indicates that the given reaction is present in the organism, and a zero entry

when it is absent, refer to Table 5. Therefor this is a whole-network comparison of the organ-

isms, resulting in a metabolic functional similarity. We use this binary matrix as the starting

point for an all-to-all pair-wise comparison between the organisms by calculating the Jaccard

index [45]J(A, B) between the pair of rows corresponding to organisms A and B:

JðA;BÞ ¼
jA
T

Bj
jA
S

Bj
: ð1Þ

We illustrate the procedure with the following example: The similarity of the two organisms

A and B is calculated following Eq (1) and using the toy data shown in Table 5 as

JðA;BÞ ¼
jR01;R06;R07;R11j

jR01;R02;R05;R06;R07;R08;R10;R11j
¼

4

8
¼ 0:5: ð2Þ

Table 5. Example binary representation of the transposed of the ORG matrix from AutoKEGGRec for two organisms, A and B.

Organism R01 R02 R03 R04 R05 R06 R07 R08 R09 R10 R11

A 1 1 0 0 1 1 1 1 0 0 1

B 1 0 0 0 0 1 1 0 0 1 1

SR(A, B) 0.87 X 0 0 X 0.93 0.75 X 0 X 0.89

This matrix is used as input for the binary network based similarity calculation, the SW align data is the result of the metabolic-reaction-based protein sequence

alignments.

https://doi.org/10.1371/journal.pone.0240953.t005
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For improved calculation speed, only reactions occurring in at least one organism were

included, and empty KEGG reactions were removed. The pair-wise similarity scores were

stored in a matrix, saved as a Newick-formatted file, and visualized in either Matlab or iOTL

[38].

Sensitivity analysis. We investigate the sensitivity of our results to inaccuracies in reac-

tion-associations with organisms by performing a random sampling analysis. In this way, we

can assess the effect of varying levels of incorrect assignment of reactions to organisms on our

conclusions, i.e. the consequence of incorrect loss and acquisition of reactions. First, we gener-

ate an instance of each network for each of the 975 organism. Second, we introduce the noise-

level z. The choice of z = 0.01 means that, for each reaction in a network instance, there is a 1%

chance that it is removed and a randomly (uniformly) selected reaction not assigned to the

organism is chosen instead. In this way, the number of reactions for each organism stays con-

stant. In the case of E. coli, the network consists of RE = 1, 743 KEGG reactions. With z = 0.01,

we will remove 17 of these reactions and replace them with the same number drawn from the

RT − RE = 9, 252 remaining possible reactions. In our sensitivity analysis, we use z 2 {0.01,

0.025, 0.05, 0.1}. Third, we conduct an all-against-all binary comparison of the metabolic net-

works using Eq (1).

The topology of the phylogenetic tree TB resulting from level z of randomness in metabolic

reactions is compared to the reference (z = 0) tree TA by counting interior branches that return

the same partitions. Defining F(ξ;TA, TB)2{0, 1} as a binary function that takes the value unity

(zero) if the interior tree branch nearest the organism ξ is identical (dissimilar) in trees TA and

TB, we have

KðTA;TBÞ ¼
1

N

XN

x¼1

Fðx;TA;TBÞ; ð3Þ

where the numeric score K(TA, TB) 2 [0, 1] reflects the level of similarity between trees TA and

TB, with unity being identical. The method is described in detail in Refs. [42, 46, 47]. Briefly,

the approach consists of first calculating a new rooted tree for each organism ξ using the sub-
tree function in Matlab. The getcanonical function ensures a leaf sorted tree. For each leaf

(organism), the local similarity is compared with the Matlab function isequal, resulting in the

binary score F(ξ;TA, TB) for the nearest branch. This process is repeated a total of L = 106 times

for each of the chosen noise levels z, resulting in an average similarity score K(z) for the L pair-

wise comparisons.

When conducting the pairwise tree similarity analysis related to Fig 7, with results reported

in Table 3, we implemented a non-binary version of F(ξ;TA, TB): We scale each branch similar-

ity by weight factors that are inversely proportional to the selected number of organisms. Each

of the N − 1 branch comparisons is scaled by (N − η)/(N − 1), where η denotes the branch

number (in increasing sequence). For a tree with four organisms this means the first branch is

scaled by (4 − 1)/3, the second closest by (4 − 2)/3, and the last is scaled by (4 − 3)/3. Conse-

quently, we define

Fðx;TA;TBÞ ¼
2

N

XN� 1

Z

N � Z
N � 1

~FðZ; x;TA;TBÞ: ð4Þ

Note that for this situation, F(ξ;TA, TB) 2 [0, 1], whereas ~FðZ; x;TA;TBÞ 2 f0; 1g is a binary

function. This ensures higher impact of local (dis)similarity in the respective comparisons.

Shared pathway association within LP content. AutoKEGGRec provides all data linked

for a molecule or reaction in KEGG for the models. This includes pathway IDs and links other
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data base besides the chemical reaction required for the genome-scale reconstruction. We

used the chemical reaction linked by the reaction ID to identify KEGG compound IDs in the

LP, MP, and HP reaction set. This allows for a fast and easy comparison for these sets, and an

association of a compound to another reaction set. For the pathways linked to reactions we use

the reaction IDs to scan whether they have pathway information stored.

Alignment of metabolic-reaction protein sequences

Our second approach is based on aligning the amino-acid sequence(s) corresponding to the

KEGG-coded reactions for all pairs of organisms. The enzyme(s) catalyzing each reaction of

each organism according to KEGG were stored within the ORG matrix. In Table 5, each entry

of unity is replaced by the protein sequences linked to this reaction.

For each KEGG reaction R, the sequences were aligned using the swalign function in

matlab, which performs a local alignment using the Smith-Waterman (SW) algorithm [48]

with the default scoring matrix BLOSUM50 for proteins. The swalign function generates the

locally aligned sequences and a score as output which was normalized using the SW score of

each protein against itself. Consequently, percentual similarities of the protein sequences were

generated as an alignment score:

SRðAi;BjÞ ¼
swalignðproteinAi protein BjÞ

swalignðproteinAi; proteinAiÞ
; ð5Þ

with Ai and Bi being individual protein sequences associated with reaction R in the two organ-

isms, and we define the total alignment score SR(A, B) for reaction R as

SRðA;BÞ ¼ max
i;j
½SRðAi;BjÞ�: ð6Þ

Further, we define the average comparison score as

hSðA;BÞi ¼
1

nR

X

R
SRðA;BÞ; ð7Þ

where nR is the number of reactions included in the comparison between organisms A and B.

An example calculation is shown in Table 6, where the two organisms A and B are com-

pared based on the respective protein sequences of their metabolic reaction R01. For this reac-

tion, each protein of organism A has been locally aligned and normalized to each protein of

organism B, resulting in an all-against-all similarity score matrix for the protein sequences

associated with R01 in the two organisms.

The resulting pair-wise similarity score for organisms A and B based on reaction R01 is

SR01(A, B) = 0.87, and in general SR(A, B) is calculated for each of the shared reactions as

shown in Table 5. Reactions, which are present in one organism but not the compared strain,

Table 6. Example of protein sequence alignment of the shared metabolic reaction R01 of the two organisms A and B.

Protein B1 Protein B2 Protein B3 Protein B4

Protein A1 0.87 0.48 0.81 0.83

Protein A2 0.65 0.55 0.23 0.78

Protein A3 0.78 0.69 0.55 0.62

In the two organisms, the metabolic function of R01 is linked to three and four proteins. The Smith-Waterman algorithm with the BLOSUM50 scoring matrix was used

for the pairwise sequence alignment.

https://doi.org/10.1371/journal.pone.0240953.t006
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offer the possibility for different scores to include the reaction, a scheme of the three different

variants (one-to-one, one-to-many, and one-to-non) is illustrated in Fig 8.

In Fig 8, reaction R01 illustrates the simplest case of comparisons, where each of the three

organisms A, B, and C contain R01, which is encoded with a single enzyme. In contrast for

reactions R02 and R04, organism B does not contain this metabolic capability, which excludes

a sequence alignment. This is also shown in Table 5 with an entry of value X. We suggest that

an excluded reaction can be accounted for in the functional similarity scoring in two ways:

First, ignoring this reaction for the comparison, thus truly excluding it. Second, setting the

comparison score to a scalar value serving as a possible penalty for this reaction comparison.

Table 7 shows the consequence of different penalty values on the example using the data in

Table 5. The reactions R03 and R04 in Fig 8 show the case of multiple sequences for one meta-

bolic function as previously described.

Organisms selected for comparison

The 975 organisms used in the comparisons were manually selected amongst Eukaryota,

Archaea, and Bacteria based on availability and distribution in the KEGG database. Organism

families with many members, e.g. the E. coli species has 65 different strains stored in the

KEGG database, were represented with multiple entries, whereas a strain occurring once

might not be selected. This method of including organisms was chosen to evaluate the correct

groupings of species, especially with regards to close strains compared to distant strains. A

complete listing of the selected organisms’ KEGG IDs can be found in S1 Table.

The further subset of 21 organisms was selected in sets of threes, where two organisms are

considered closer related to each other than to the third one based on standard sequence align-

ments, as shown in Table 4. This is illustrated by H. sapiens, G. gorilla, and O. orca: all three are

mammals, two are closer related to each other than to the third one. Thus, the 21 organisms

Fig 8. Four different reactions (R01-R04) for three different organisms (A-C) are compared. In reaction R01, a standard comparison with one

enzyme in each organism is shown. Reaction R02 is not present in organism B, resulting in replacing the score with the penalty. Reactions R03 and R04

show the possibility of multiple proteins for one reaction (complexes and isozymes) and with the reaction missing in organism B, respectively. Below

each case we show the resulting scores for the respective reaction comparisons.

https://doi.org/10.1371/journal.pone.0240953.g008

Table 7. Consequence of the penalty scores in combination with the example comparison of organism A and B in Table 5.

Penalty value -0.25 -0.1 0 0.1 0.25 ignore penalty

hS(A, B)i 0.305 0.38 0.43 0.48 0.55 0.86

Note that J(A, B) = 0.5 as a contrast.

https://doi.org/10.1371/journal.pone.0240953.t007
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cover a large taxa range in the Tree of Life, while at the same time some organisms are very

closely related. In Fig 3, we have highlighted 16 of the 21 organisms within the tree of life to

illustrate the coverage and distribution of the selected set of 21 organisms. The groupings cho-

sen of different taxa are color coded consistently throughout the manuscript.

Access to the KEGG database using AutoKEGGRec to generate the genome-scale metabolic

networks and extracting the protein sequences from KEGG was conducted during August

2018.
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