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Abstract—One of the attractive benefits of slotless machines is
low losses at high speeds, which could be emphasized by a careful
stator core loss assessment, potentially available already at the
pre-design stage. Unfortunately, mainstream iron loss estimation
methods are typically implemented in the finite element analysis
(FEA) environment with a constant-coefficients dummy model,
leading to weak extrapolations with huge errors. In this paper,
an analytical method for iron loss prediction in the stator core
of slotless PM machines is derived. It is based on the extension
of the 2-D field solution over the entire machine geometry. Then,
the analytical solution is combined with variable- or constant-
coefficient loss models (i.e., VARCO or CCM), which can be
efficiently computed by vectorized post-processing. VARCO loss
models are shown to be preferred at a general level. Moreover,
the paper proposes a lookup-table-based (LUT) solution as an
alternative approach. The main contribution lies in the numerical
link between the analytical field solution and the iron loss
estimate, with the aid of a code implementation of the proposed
methodology. First, the models are compared against a suffi-
ciently dense dataset available from laminations manufacturer
for validation purposes. Then, all the methods are compared for
the slotless machine case. Finally, the models are applied to a
real case study and validated experimentally.

Index Terms—Slotless machine, analytical method, Laplace’s
equation, magnetic field, stator core, iron losses, rotational losses.

I. INTRODUCTION

SLOTLESS machines benefit from eliminating the slotting
effect and additional related losses, as well as the cogging

torque. It is an attractive low-noise solution for machines
operating at ultra-high speeds. As of today, different works
have been dealing with the analytical modeling of slotless ma-
chines [1]–[5]. The analytical field solution has been utilized to
propose an iron loss estimate method based on constant coeffi-
cients [6]. Moreover, an extended method has been formulated
with a two-component iron loss calculation in a soft magnetic
composite stator core [3]. The finite iron permeability was
also considered, as for SMC material, assuming infinite iron
permeability would lead to a non-negligible discrepancy with
respect to a real case.

In a general instance, the iron losses evaluation can be
divided into two main steps. The first step is the flux density
estimation in the iron parts carrying a time-varying magnetic
field. To this end, the generalized field solution considering
different magnet patterns will be used for a general evaluation
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Fig. 1. Generic sample geometry of the domains of an inrunner with three
phases and two poles. Stator core is region V, studied hereafter.

of the flux density in the stator core. The second step is to
combine the post-processing of the estimated magnetic field
with a suitable model defining the losses in the iron material.

The scope of this paper is to investigate a wide range of
loss models applied to the analytical field solution of slotless
machines. First, the different loss modeling approaches are
benchmarked against the available lamination loss dataset.
Then, they are further compared on the post-processing of the
analytical field solution of the slotless machine itself, assessing
their performance results. Although the consolidated research
in analytical modeling of electrical machines [7]–[10] and the
several contributions on the development of lamination loss
models [11]–[14], no concerted effort has been put on how to
effectively merge these two topics for the sake of achieving
computationally efficient design procedures. This paper ex-
tends what was presented in [15], where the link between the
two topics mentioned was outlined regarding the numerical
implementation. In addition, the code implementation [16]
is made available, and the proposed experimental validation
remarks on the applicability of a plethora of available meth-
ods, which have not yet been presented and evaluated in a
comprehensive, comparable framework, as in this paper.

The remainder of the paper is organized as follows. First,
Section II presents the literature review of existing iron loss
models, which will be used in the final iron loss estimate.
Then, Section III derives the the magnetic field in the stator
core analytically. The loss estimation methods and results are
provided in Section IV. In Section V, the proposed framework
is further highlighted. Finally, Section VI provide experimental
validation before Section VII concludes the paper.
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II. REVIEW OF LOSS MODELS FOR LAMINATION STEEL

In the iron losses evaluation for electric steel laminations,
Bertotti’s equation represent the most adopted and widely
accepted model for estimating iron losses. In the frequency do-
main, the different specific loss contributions can be summed
up, yielding a total loss density (p) as a function of magnetic
flux density (B) and frequency (f )

p = KeB
2f2︸ ︷︷ ︸

pe

+KaB
1.5f1.5︸ ︷︷ ︸
pa

+KhB
αf︸ ︷︷ ︸

ph

, (1)

where the three terms represent the eddy currents contribution
(pe), the anomalous loss contribution (pa), and the hysteresis
contribution (ph), respectively. The anomalous loss is also
known as excess loss [17]–[19], and it has been identified
as an effect of the interactions between magnetic domain
walls in iron laminations [20]. The different coefficients (Ke,
Kh, Ka, and α) are to be determined by properly fitting
the available experimental data. When dealing with FEA-
based iron loss analysis, the following time-based analytical
formulations becomes handier with transient analysis [17]–
[19], [21], where T is the fundamental electrical time period,
yielding

p =
Ke

2π2

1

T

∫ T

0

∣∣∣∣dBdt
∣∣∣∣2 dt︸ ︷︷ ︸

pe

+
Ka

8.76

1

T

∫ T

0

∣∣∣∣dBdt
∣∣∣∣1.5 dt︸ ︷︷ ︸

pa

+
Kh

T
Bα︸ ︷︷ ︸

ph

(2)
Different modified versions of the above-written equations
have also been utilized. In [11], it was pointed out that the
separation between eddy currents and anomalous loss contribu-
tion is questionable. Nevertheless, it is perceived that adopting
a good fitting model based on only hysteresis and eddy
currents contributions would inevitably include anomalous loss
phenomena if any contribution exists.

The adoption of constant loss coefficients may give reason-
able results when the fitting to experimental data is optimized
around the most probable or rated operating condition. Thus, it
can be a reasonable model when fixed speed operation and low
load variation are expected. The physical phenomena govern-
ing iron losses in electrical steel laminations still represents
a wide-open research topic for its inherent complexity. In
fact, it is hard to imagine that a set of constant coefficients,
adopted with any of the two above-mentioned models, could
extensively and accurately describe such phenomena in a wide
frequency and flux density range.

In [12]–[14], different loss models based on variable loss
coefficients (Kh(f,B) and Ke(f,B)) are proposed, showing
an improved fitting of experimental data compared to standard
models based on constant coefficients (CCM). Referring to the
models proposed in [11] and [12], two variable-coefficients-
based iron loss models (VARCO) and a constant-coefficients-
based model will be presented and applied to the proposed
analytical method.

Another important aspect that is usually overlooked is the
effect of having a rotational magnetic field when it comes
to estimating iron losses. Although in some works, the as-
sumption of having a purely alternating magnetic field is
still considered [22], it appears much more reasonable to

accept the rotational nature of the flux density, whereby, in
the iron region, the flux density variation is determined by
the simultaneous pulsation of two orthogonal flux density
components [13], [21], [23].

In [21], the variation of the two orthogonal flux density
components is shown, for a slotted machine, in a tooth, and
in the back iron. The rotational behavior of the field does not
appear in the teeth. The latter may be one of the reasons why
in some works, the assumption of an alternating magnetic field
may lead to reasonable results, as the loss contribution from
the teeth may be the most relevant one [24]. In this regard,
considering slotless machines leads to the obvious conclusion
that the rotational loss contribution has to be considered, being
the flux density in the stator core rotational, by nature.

It has been shown experimentally, in several instances [25]–
[28], that summing up the alternating loss contribution from
the two orthogonal flux density components may lead to wrong
iron loss estimates. Nonetheless, it is worth pointing out that
characterizing the loss behavior of a lamination specimen
requires sophisticated pieces of equipment [27], [28] which
are not generally available in every research facility. Therefore,
an analytical extrapolation of the data presented in Fig. 3 of
reference [25] will be presented, to test the impact of the
rotational effect.

III. STATOR CORE ANALYTICAL FIELD FORMULATION

The simple 2-D geometry of a slotless machine depicted in
Fig. 1 enables defining accurate and computationally efficient
analytical field solutions, as presented in [4], [18], [19].
Herein, the field problem is constructed upon the following
fundamental assumptions.

1) The 3-D end-effects are neglected, i.e., the magnetic
vector potential is treated as a scalar quantity lying
orthogonal to the 2-D plane in all domains;

2) The magnetic permeability of rotor and stator core
(regions I and V, respectively) is assumed to be infinite;

3) The formulation of the field from the stator current
assumes the relative permeability of permanent magnets
to be equal to unity;

4) For any magnets pattern, in region II the magnetization
distribution is defined for modeling the field from the
magnets array;

5) The stator winding is assumed to carry a three-phase
balanced and symmetric sinusoidal current.

The permanent magnet and stator current field contributions
are considered separately in the definition of the final field
formulation. The procedure presented herein allows defining
the field solution in the whole 2D domain comprehensively.
Nevertheless, the main focus will be in the iron region whereon
the field solution is post-processed for the iron loss estimation
procedure. The problem definition is thoroughly described in
[8], with a particular focus on numerical aspects. In this work,
the same field formulation is extended into the iron region, and
no air gap is assumed to exist between the winding and iron
yoke region.
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A. Stator Currents Contribution

In a cylindrical coordinate system (r,ϑ,z) the formulation of
the problem in the stator core region obeys to the following
Laplace’s equation:

∇2A =
1

r

∂

∂

[
r
∂Az
∂r

]
+

1

r2
∂2Az
∂θ2

= 0 (3)

where A is the magnetic vector potential, and Az its only
scalar component. Using the method of separation of variables
along with the Fourier series expansion to account for all the
harmonics introduced by the source of the field, the solution
to eq. (3) can be expressed as

AJz,V(r, θs, t) =
∞∑

kp=5p,11p,...

(
A+
kp,Vr

kp +A−kp,Vr
−kp
)

cos(kpθs + ωt)

+

∞∑
km=1p,7p,...

(
A+
km,Vr

km +A−km,Vr
−km

)
cos(kmθs − ωt),

(4)

where the coefficients A+
m and A−m are to be determined by

enforcing boundary conditions with the field solution in the
winding region at the radius Rs. The flux density of the 2-D
problem can be expressed as a function of the scalar magnetic
potential as it follows:

BJr,V(r, θs) =
1

r

∂AJz,V(r, θs)

∂θs
(5)

BJθ,V(r, θs) = −
∂AJz,V(r, θs)

∂r
(6)

By means of the latter expressions it is possible to set the
following boundary conditions, that must hold for each and
every harmonic component and any angular coordinate ϑ:

BJr,V
∣∣
r=Rso

=
1

r

∂AJz,V
∂ϑs

∣∣∣∣∣
r=Rso

= 0 (7)

(
BJr,V =

1

r

∂AJz,V
∂ϑs

= BJr,IV

)∣∣∣∣∣
r=Rs

(8)

Boundary condition of eq. (7) is nothing more than the
magnetic insulation applied to the outer boundary and justified
by the infinite iron permeability assumption; whereas eq. (8)
gives the continuity of the radial flux density component on
the interface between stator winding (Bwr,J ) and iron core
(Bstr,J ). The boundary conditions linking the different field
formulations in the different regions constitute a linear system
of equations, reported here in a preconditioned matrix form as
an extension of what was reported in [8]

WC−1Cy = c, (9)

where y holds the unknown terms in the different regions,
W is the coefficients matrix derived from the boundary
conditions, c is the right-hand-side term holding the constant
terms, and C is the preconditioner as described in [8]. The
different terms are reported in eqs. (10)-(13), where the
different harmonic orders (kp,km) are merged into a single

one (m) since eq. (9) must hold for any harmonic order.
The system can be solved numerically for all the different
harmonics, or symbolically. In the latter case, one can solve
the system once for all, and assemble the different analytical
formulations in the different regions. The formulations so
obtained hold for any inrunner topology representable as in
Fig. 1. It is paramount to write the field expressions with the
solution coming out of the preconditioned system in eq. (9),
i.e., Cy as it is numerically accurate regardless of the motor
to be studied [8]. Any expression not reported here explicitly
can be found in [8] as the same nomenclature is adopted.

B. Permannet Magnets Field Contribution

The magnets are modeled through their magnetization distri-
bution in the respective region as widely done in the literature
[29]–[32]. The magnetization distribution is expressed as a
Fourier series along the radial and circumferential direction as
follows

Mr =

∞∑
n=1p,3p,...

Mrn cos (nϑr), (14)

Mϑ =

∞∑
n=1p,3p,...

Mϑn sin (nϑr), (15)

where Mrn and Mϑn are the resulting Fourier series coeffi-
cients given by the sum of the contributions of all the magnets
belonging to the array to be studied. The implicit expression
of the aforementioned contributions is reported in Appendix
of [29] or Appendix A of [8]. Moreover, the angular coor-
dinate ϑr is here referred to the rotating coordinates system,
differently from the stator current field solution where ϑs is
integral with the global coordinates system. Once the source
of the field problem is modeled, the procedure described in
[8], [30] can be followed to obtain the field solution due to
permanent magnets in the airgap and winding regions:

AMz,V(r, θ) =

∞∑
n=1p,3p,...

(
A+
n,Vr

n +A−n,Vr
−n
)

sin(nθr) (16)

The same boundary conditions as eqs. (7) and (8) can then
be applied to the magnets field solution as follows.

BMr,V
∣∣
r=Rse

=
1

r

∂AMz,V
∂ϑs

∣∣∣∣∣
r=Rse

= 0 (17)

(
BMr,V =

1

r

∂AMz,V
∂ϑs

= BMr,III

)∣∣∣∣∣
r=Rs

(18)

These two boundary conditions allow to find the two un-
knowns A+

n and A−n . The linear system resulting from all the
boundary conditions can be written in matrix form, yielding

AP−1Px = b, (19)

where the coefficients matrix A, the unknown vector x, the
vector holding the constant terms b and the preconditioner P
are reported in eqs. (20)-(23), and all the terms not explicitly
reported can be found in [8].
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W =


Rm−1so R−m−1so 0 0 0 0
Rm−1s R−m−1s −Rm−1s −R−m−1s 0 0

0 0 −Rm−1s R−m−1s 0 0
0 0 −Rm−1w −R−m−1w Rm−1w R−m−1w

0 0 −Rm−1w R−m−1w Rm−1w −R−m−1w

0 0 0 0 Rm−1r −R−m−1r

 (10)

c =

[
0 , AJmRs ,

2AJmRs
m

, AJmRw ,
2AJmRw
m

, 0

]t
(11)

y =
[
A+
m,V , A

−
m,V , A

+
m,IV , A

−
m,IV , A

+
m,III , A

−
m,III

]t
(12)

C−1IN = diag
(
R−m+1
so , Rm+1

s , R−m+1
s , Rm+1

w , R−m+1
w , Rm+1

r

)
(13)

A =


Rn−1so R−n−1so 0 0 0 0
Rn−1s R−n−1s −Rn−1s −R−n−1s 0 0

0 0 Rn−1s −R−n−1s 0 0
0 0 µrR

n−1
m −µrR−n−1m −Rn−1m R−n−1m

0 0 Rn−1m R−n−1m −Rn−1m −R−n−1m

0 0 0 0 µrR
n−1
r −µrR−n−1r

 (20)

x =
[
A+
n,V , A

−
n,V , A

+
n,III , A

−
n,III , A

+
n,II , A

−
n,II

]t
(21)

b =

[
0 , 0 , 0 ,

APM,ϑ(Rm) + µ0Mϑn

n
APM,r(Rm) ,

APM,ϑ(Rr) + µ0Mϑn

n

]t
(22)

P−1IN = diag
(
R−m+1
so , Rm+1

s , R−m+1
s , Rm+1

m , R−m+1
m , Rm+1

r

)
(23)

The system is solved symbolically to obtain the analytical
expression of the field formulation in the whole domain. The
code of the different field formulations is available from [33].
The expressions of the radial and circumferential component
of the flux density in the stator core due only to the magnets’
contributions are found as follows.

BMr,V(r, ϑ) =

∞∑
n=1p,3p,...

GS(n)fSr(r, n) cos (nϑr) (24)

Bstϑ,m(r, ϑ) = −
∞∑

n=1p,3p,...

GS(n)fSϑ(r, n) sin (nϑr) (25)

The structure of the latter two flux density expressions follows
the one adopted in [8], [30] which appears to be optimized
for numerical implementation. The functions GS(n), fSr(r, n)
and fSϑ(r, n) are expressed, yielding

GS(n) =
2KB(n)((
Rs
Rso

)2n

− 1

) ,

fSr(r, n) =

(
r

Rso

)n−1(
Rm
Rso

)n+1

−
(
Rm
r

)n+1

,

fSϑ(r, n) =

(
r

Rso

)n−1(
Rm
Rso

)n+1

+

(
Rm
r

)n+1

.

(26)

The latter field expressions have been validated already in
[15]; therefore, the field comparison with FEA is here omitted.
In this work, a different case study is examined and tested
experimentally. All the useful data are reported in Table I

TABLE I
SPM MACHINE DATA (COURTESY OF ALVA INDUSTRIES)

Symbol Description Machine specification
Rr inner magnets radius 35.1mm
Rm outer magnets radius 40.1mm
Rw winding radius 37mm
Rs stator inner radius 43.6mm
Rso stator outer radius 44.7mm
la active length 30mm
Br PM remanence 1.415T
µmag PM permeability 1.05
Rmp mid-PM-to-pole ratio 0.5
p pole pairs 14

The employed lamination (20JNEH1200) is a thin gauge
electric steel with 0.2 mm thickness and a 0.97 stacking factor
according to supplier’s data. The supplied laminations loss
data were measured according to the procedure accurately
described in [34], ensuring reproducibility of the data.

IV. ANALYTICALLY BASED IRON LOSS ESTIMATION

In the following, different iron loss models, taken from the
literature, are briefly introduced and adopted with the proposed
methodology to test its flexibility. The developed method will
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be presented as a post-processing procedure from the field
solution, as obtained in the previous section, to estimate iron
losses in the laminated stator core. As in [15] the armature
field solution was shown not to have a significant impact on
the overall iron loss, the following part will focus only on the
no-load field solution, as expressed in eqs. (24), (25) and its
experimental validation.

A. Stator Core Discretization Method for Iron Loss Analysis

The previous section shows that the field solution is a
continuous function in the whole 2-D domain, dependent on
the radial and the angular position. Based on eqs. (1) or (2),
the integration of the flux density function along the iron
core surface is required for evaluating iron losses. As, in a
general instance, the flux density is raised to a non-integer
exponent, the analytical integration along the radial direction
becomes not feasible; thus, a numerical integration based on
the rectangular rule is proposed as an effective solution for
the method. In the 2-D problem, the implementation of the
rectangular rule consists of dividing the iron core’s radial
thickness into smaller radial sub-segments whereon the flux
density is assumed to be constant. Namely, in each sub-
segment, the flux density depends only on the rotor position.
Therefore, only the integration over time or, equivalently,
with respect to the stator angular coordinate, is needed; this
is a simple integration of sine/cosine. Moreover, the latter
operation is easily vectorizable, and thus, computationally
efficient. The discretization is also shown in Fig. 2 with four
sub-segments; the flux density is evaluated upon the respective
mid-points.

By using the loss model described in eq. (1), the peak
flux density (B) becomes a matrix holding all the harmonic
components in each radial sub-segment. Whereas, in eq. (2)
the flux density is still a matrix containing the time-varying
function (value at each time instant) on each sub-segment;
thus, the differentiation can still be numerically approximated
and vectorized. In particular, it is fairly easy to apply this
method to the load condition operation. In fact, the magnets
field variation with the rotor angular coordinate represents the
time variation with respect to the static coordinate (ϑs), while
for the stator current field, ϑs can be set equal to zero, and the
angle variation is given by ω · t. Moreover, the linearity of the
problem does allow to add up the two different contributions
in the iron core. A flowchart of the analytical loss estimation
procedure is summarized in Fig. 3. As the field solution and
the iron loss estimate have been already validated through FEA
in [15], the same analyses will be omitted here; however, the
experimental validation will be shown instead.

B. Description and Analysis of Investigated Loss Models

The different iron loss models are briefly described in the
following.

Where not explicitly specified, the losses are computed
as the mere sum of iron losses due to radial and tangential
components. The last case, i.e., VARCOrot will consider the
rotational effect for comparison.

Fl
ux

de
ns
ity

(B
)[
T]

Fig. 2. Analytical field map of the case study over one pole, with the stator
core discretization for integration purpose.

2-D analytical
field solution

Loss
model

Eqs. (24) & (26)
Eqs. (1), (2),
(28), (29), or (30)

Table I

Field
formulation

Post
processing

Iron core
losses

Machine
geometry

Fig. 3. Flowchart of the analytical loss prediction model in this paper, used
for results presented in Tables II and VI.

1) Constant Coefficients Model (CCM): The CCM uses
eq. (1) for fitting all the available lamination loss data to
find a general equation to be applied to any frequency and
flux density value. The comparison of the lamination loss
data against the proposed fitting model produced a significant
relative error, which is shown in Fig. 4.
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%
]

Flux density (B) [T]

Fig. 4. Relative percentage errors of constant coefficients model (CCM)
using eq. (1) (linear interpolation of available points).
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Fig. 5. Relative percentage error between experimental loss data and
estimated loss with CAL2 eq. (27) iron loss model (linear interpolation
between available points).

2) Two-Component Loss Model With Variable Coefficients
(CAL2 [12]): The power loss density function for CAL2 is
reported in [12] and expressed as

p = ke(f,B)f2B2︸ ︷︷ ︸
pe

+ kh(f,B)fB2︸ ︷︷ ︸
ph

, (27)

where the dependency on the frequency of the coefficients
kh and ke is neglected by splitting the lamination loss data
into two frequency ranges whereon the only dependency on
the flux density is considered. In particular, the first range
considers all the loss curves in the range 1-200 Hz and the
second in the range 200−2000 Hz. A sixth-order polynomial
is used to express the flux density dependency of the two
coefficients for both ranges. It is worth emphasizing that the
model so constructed results to be the composition of two sub-
models where the dependency on the frequency of the different
coefficients is neglected. On the ”break-point” frequency, i.e.,
200 Hz in this case, either of the two sub-models can be
adopted. The first comparison between Fig. 4 and Fig. 5 shows
that this type of model can be extensively used in the whole
experimental data range, without any need of re-fitting the
experimental data themselves when a different operating point
(f,B) is to be considered for the loss computation.

3) Iron Loss Model With all Variable Coefficients (VAR-
COext): The VARCOext model assumes the three-components
loss equation having all the coefficients as variables depending
on flux density and frequency, and it can be seen as an
extension of what is called VARCO in [12], yielding

p = ke(f,B)f2B2︸ ︷︷ ︸
pe

+ ka(f,B)f1.5B1.5︸ ︷︷ ︸
pa

+ kh(f,B)fBα(f,B)︸ ︷︷ ︸
ph

.

(28)
The method for finding the different coefficients follows the
procedure described in [11]; however, as the aim is to have an
equation with explicit dependency on the frequency and flux
density, the proposed representation of α(f,B) and kh(f,B),
which was based on some look-up tables in [11], was here
approximated by means of interpolating functions giving a

Flux density (B) [T]

R
el
at
iv
e
er
ro
r[
%
]

Fig. 6. Relative percentage error between experimental data and estimated
loss with all variable coefficients VARCOext eq. (28) (interpolation of available
points).

reasonable fit in the two different frequency ranges 1-200 Hz
and 200-2000 Hz, with the ”break-point” frequency at 200
Hz. The relative error with respect to the lamination loss data
produced by this loss model is represented in Fig. 6.

4) Rotational Field Effect Appllied to VARCOext Loss
Model (VARCOrot): With the aim of including the rotational
effect in the iron loss computation model, VARCOext was
chosen as a best-fit model for the iron losses calculation. The
rotational loss factor function (γ), can be expressed as

γ =
Prot

P (Bmaj) + P (aBmaj)
, (29)

where a is the ratio between minor axis (Bmin) and major axis
(Bmaj) component in the iron core flux density locus. From
the analytical field solution, it is easy to extract major and
minor axis components; therefore, the axis ratio can be found
over each radial sub-segment for each harmonic component.
Meaning that, yet again, an analytical function γ(a,Bmaj)
can be easily applied to the iron loss estimation method as a
correction for the results obtained with the previous models
based on summing the contribution of the two orthogonal
components. The experimental results presented in Fig. 3 of
reference [25] were conveniently extrapolated and shown in
Fig. 7. However, it is worth mentioning that the experimental
data in the same reference were obtained at 50 Hz fixed
frequency for a specific lamination specimen which is different
from the one employed in the presented case study. In fact,
the purpose here is to show how flexibly such a method can
be applied to the proposed methodology.

The following interpolating function gave a good fit to the
data shown in Fig. 7:

γ = p0 + p1aBpk + p2a+ p3a
2, (30)

where the different coefficients are found to be : p0 = 1,
p1 = −0.3252, p2 = 0.3684, p3 = −0.1357. Using an
analytical expression of the loss factor allows for the direct



IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS 7

Lo
ss
fa
ct
or
fu
nc
tio
n

Peak flux density [T] Aspect ratio (a)

Fig. 7. Extrapolated data from Fig. 3 of reference [25]

use of the vectorized field solution to find the loss factor for
each harmonic over each radial position [16].

5) Look-Up-Table based Iron Loss Estimate (LUT): A
different way to estimate the iron losses starting from the
lamination loss data is to resort to a lookup table approach.
As the main advantage, this method requires very little data
post-processing when compared to the other models; besides,
the computational efficiency is preserved.

The stator core discretization method can still be employed,
and makes the approach very easy to develop. As already
mentioned, each radial position holds a given flux density for
each harmonic order. Therefore, the task is simply to locate
them in the lamination loss dataset, i.e., in the lookup table
(LUT), to find the loss density of each harmonic component
over each radial position (see Fig. 2). There are two main
paths to proceed on with the implementation. In the first case,
each flux density value from the field solution is located on
the closest available point in the LUT. This method can lead
to a rather high inaccuracy insofar as the resolution of the
data in the flux density and frequency domain is poor. In the
second case, the loss density over the available data points
is interpolated; in this way the field solution represents a set
of scattered data points to be located onto this continuous
interpolated data-set. The drawback of this approach is that it
is highly sensitive to the type of interpolation, especially when
the solution lies in-between two experimental data points. The
LUT method can be described qualitatively by the following
expression

P = ρfela

∫
S

[ ∞∑
i=1

pexp,interp(fi, |B|i)

]
dS, (31)

where, i represents a single operating point over a certain ra-
dial position, described with its flux density and frequency; the
integral over the iron surface is performed numerically through
the stator core discretization method described beforehand.

C. Loss Models Comparison

Fig. 8 shows the flowchart of the proposed procedure to
validate the results of the loss models against the available
dataset. Each data point of the test schedule and the different
loss models evaluated against measurements are depicted. It is
worth mentioning that the methodology in itself is applicable
to any dataset, with the only difference that the interpolating

Loss model

ExperimentTest schedule

VARCOrot
VARCOext
CAL2
CCM
LUT Eq. (31)

Eq. (1)
Eq. (27)
Eq. (28)
Eq. (29), ref. [25]

1 Hz
50 Hz
60 Hz

100 Hz
200 Hz
400 Hz
500 Hz
700 Hz

1000 Hz
2000 Hz

0.1 T
0.2 T
0.3 T
0.4 T
0.5 T
0.6 T
0.7 T
0.8 T
0.9 T
1.0 T
1.1 T
1.2 T
1.3 T
1.4 T
1.5 T
1.6 T
1.7 T
1.8 T
1.9 T

Post-processed
losses

Measured
lossesRing-shaped test samples

ref. [34]

Error
Experimental
dataset

+

-

Fig. 8. Experimental data comparison for the models in this paper used for
results presented in Figs. 4, 5, and 6, and Tables II, III, and IV, respectively.

polynomials will probably have different orders depending on
the dataset discretization. A dense dataset like the one used
in this instance allows for smooth data interpolation from the
different variable coefficient loss models.

As a quantifiable comparison between the models, the
Normalized Root Mean Square Deviation (NRMSD) between
lamination loss data and loss models is evaluated on the same
data points as follows

RMSD =

√√√√∑
i

(pmod,i − pexp,i)2

N
,

NRMSD =
RMSD

pexp,max − pexp,min
,

(32)

where pexp,i and pmod,i are lamination loss data, and estimated
loss over the same operating point i; N is the total number of
data points within the considered range; while pexp,max and
pexp,min are the maximum and minimum loss values within
the range, respectively.

In order to assess the different models, the NRMSD index
is evaluated first for fixed available frequency values by
sweeping over the available flux density data points; the results
comparing the different loss models are reported in Table III.
The same index is also evaluated at fixed available flux density
values by sweeping over the available frequency data points,
and the results are shown in Table III. Overall, Tables III and
IV remark on what is shown in Figs. 4, 5 and 6 by means of
a different index, which highlights the goodness of variable
coefficients-based models; by definition, the LUT approach
gives 0 % error.

It is worth mentioning that the available laminations loss
data-set was rather dense throughout the frequency and flux
density domain (around 170 data pints). The same variable
coefficients loss models applied to different and more coarse
data-sets should be tuned differently, e.g., setting a different
break-point frequency and using different polynomials in the
two ranges. Nonetheless, the same procedure is employable.
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TABLE II
MAXIMUM PERCENTAGE ERROR FROM EXPERIMENTAL DATA WITH

DIFFERENT LOSS MODELS (ABSOLUTE VALUE)

CCM CAL2 VARCOext LUT
Maximum 100% 3.9% 1.6% 0%
percentage error at 50Hz at 50Hz at 1000Hz (exp.

and 1.9T and 0.1T and 0.2T data)

TABLE III
NORMALIZED ROOT MEAN SQUARE DEVIATION (NRMSD) FOR

DIFFERENT FREQUENCIES OVER THE WHOLE FLUX DENSITY SWEEP
(0.1-1.6T) FROM FIGS. 4, 5 AND 6

Frequency CCM CAL2 VARCOext LUT
50Hz 30.3% 0.77% 0.17% 0.00%
60Hz 29.7% 0.87% 0.14% 0.00%
100Hz 18.4% 0.7% 0.11% 0.00%
400Hz 3.2% 0.18% 0.26% 0.00%
700Hz 1.8% 1.06% 0.14% 0.00%
1000Hz 1.4% 1.04% 0.17% 0.00%
2000Hz 1.2% 0.54% 0.18% 0.00%

TABLE IV
NORMALIZED ROOT MEAN SQUARE DEVIATION (NRMSD) FOR

DIFFERENT FLUX DENSITIES OVER THE WHOLE FREQUENCY SWEEP
(1-2000Hz) FROM FIGS. 4, 5 AND 6

Flux density CCM CAL2 VARCOext LUT
0.1T 11.3% 0.64% 0.13% 0.00%
0.2T 3.1% 0.45% 0.4% 0.00%
0.4T 2.1% 0.73% 0.19% 0.00%
0.5T 2.2% 0.68% 0.07% 0.00%
0.7T 1.9% 0.7% 0.06% 0.00%
0.8T 1.7% 0.68% 0.09% 0.00%
1.0T 1.1% 0.63% 0.07% 0.00%

V. FLEXIBILITY OF ANALYTICAL LOSS ASSESSMENT

The same iron loss models can be applied to FEA. The
typical starting point is a time-domain simulation sweeping
through the machine periodicity. Once the field solution is
available, one can use the built-in integration operations for the
time domain loss estimate. On the other hand, the procedure
would be more tedious for the frequency-based loss estimate.
In this case, one way of proceeding would be to load the
solution on an element-basis and post-process it to transform it
into the frequency domain. The frequency-based loss models
can be applied on an element-by-element base; in the end,
the loss contributions from all elements are summed together.
This process is typically automated through routines capable of
building the FEA model, solving it, and dealing with all these
post-processing operations. Nevertheless, the computational
time turns out to be orders of magnitudes longer than the
time taken by the analytical model. In this regard, it is worth
highlighting that for the analytical-based method, the angular
variation of the no-load field distribution represents the time
variation; this makes it possible to directly operate with the
analytical expression both in the time and frequency domain.
The time harmonics reflect, in fact, the space harmonics
included in the field solution. Nonetheless, treating the field
solution either in the time domain and frequency domain is

Search
coil

Lamination
stack

Assembled rotor +
Dummy stator

Fig. 9. Tested prototype. Assembled rotor and dummy stator on the right;
laminations stack with search coil on the left.

easily vectorizable, as shown in the available code [16]. To
give an example of the proposed methodology’s computational
advantage, the time domain loss assessment is carried out
in FEA, and the computational time is compared with the
proposed analytical method. The FEA model of a single-pole
sector counts 42903 quadratic elements and 567 in the iron
core; the time-dependent simulation runs over 100 steps in
the whole electrical period. The problem is solved using a
processor Intel(R) Core(TM) i9-10900K CPU at 3.70 GHz
with 64 GB RAM at 2933 MHz; the whole simulation takes
4 min and 37 s to run. On the other hand, the analytical model
delivers the same result for the same operating point in only
43 ms (i.e., nearly 6400 times lower or > 99.98 %). The
hardware used for the analytics is an Intel(R) Core(TM) i7-
8665U CPU at 1.90 GHz with 16 GB RAM at 2400 MHz.
The analytical model considered 100 space harmonics from
the magnets field solution, 2000 points for the time/angle
discretization, and 40 points were used to discretize the radial
direction. The discretization and the number of harmonics
can be heavily reduced and still maintain a decent level of
accuracy. Nevertheless, the FEA model was not optimized
either, so the final comparison can be considered to be fair.

VI. MAIN RESULTS AND EXPERIMENTAL VALIDATION

Measuring the iron loss component out of an assembled
motor is undoubtedly a non-trivial challenge. In most cases,
loss separation methods are used on existing motors, resorting
to more or less reliable models to segregate the different loss
components. These methodologies come along with several
sources of uncertainty that cannot be neglected. In this work,
an existing slotless PM motor has been modified (Fig. 9) to
deliver a satisfactory level of accuracy in the loss separation
method. To this end, the original motor was equipped with
a ”dummy” non-conductive stator portion that emulates the
original slotless winding to achieve the same mechanical losses
in the airgap as in the real motor.

The following test procedure was adopted for the experi-
mental validation:
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Fig. 10. Peak flux density measurement over each pole, and comparison.

1) Experimental validation of flux density on the inner
stator core surface;

2) End-effect correction factor determination through in-
duced voltage in ”search coil” model and experimental
measurement;

3) Iron-free prototype testing for mechanical loss measure-
ment; and,

4) Assembled prototype testing for no-load loss measure-
ment.

The different points are described in the following along
with the obtained results.

A. Experimental Field Validation

The initial step in the experimental validation is to verify the
analytical field solution used for the iron loss estimate. This
was done using a gaussmeter (Hirst magnetics GM08). A slot
was derived on the outer surface of the dummy stator where
the gaussmeter probe could be inserted (Fig. 9).The probe was
inserted between the dummy stator and the stator core, facing
the latter one. The measurement was taken at half the axial
length for the axial leakage to be negligible. The flux density
was proven to be sinusoidal, and the peak flux density on the
inner iron surface was measured over each pole.

In Fig. 10, the measured flux density through the gauss-
meter is shown along with its error band (±0.03[T ]). The
measurement showed a maximum variation of around 5% in
the peak flux density, and the estimated flux density through
the analytical model falls into the range of each measured
value, although slightly below the average. The reason for this
deviation is likely to be that the Hall-effect sensor in the probe
measures farther in the airgap than estimated; this makes the
measured flux density slightly higher than the estimated one.

B. Search Coil Model and End-Effect Correction

Proceeding with the loss analysis at this stage would in-
evitably produce inconsistent results, considering that a 2D
model is being used to simulate a 3D structure. Usually, 3D
FEA is employed to develop correction factors accounting for

Fig. 11. Search coil representation from Fig. 9 on the 2D analytical field
map.

axial leakage; however, analytical alternatives do exist [35].
With the prototype available, and with the aim of validating the
proposed iron loss models, an alternative experimental method
has been developed. The idea is to measure the induced voltage
in a coil wound around the stator core ring (left Fig. 9).
The search coil can be represented in the analytical 2D field
solution (Fig. 11); it is a one pole sector of a radial section
of what is shown in Fig. 9. To find the analytical expression
of the induced voltage, the coil is assumed to have negligible
radial thickness; this condition is nearly met in reality as a
0.14 mm Litz wire strand was used.

Without reporting the intermediate steps, the analytical
expression of the induced voltage is expressed as

Ecoil =Nt
1

∆ϑ
Rm

∑
n

[(
Rs
Rse

)n(
Rm
Rse

)n
−
(
Rm
Rs

)n]
·

· Gs(n)

n
laωr{−sin(nωrt)− sin[n(∆ϑ− ωrt)]},

(33)

where ∆ϑ is the angle covered by the coil, Nt is the number
of turns, and ωr is the mechanical angular frequency. The
coil was distributed over one pole pitch to maximize the net
flux linkage. The resulting number of turns (Nt = 61.5) and
the angle of the actual coil (∆ϑ = 0.2351 rad) were plugged
into eq. (33). The induced voltage was measured from 500 to
3500 rpm with steps of 500 rpm. For each speed, the voltage
waveform acquisition was performed so that all the poles
were captured. The average peak voltage was then compared
with the estimated voltage, to give the correction factor as
Ecoil,peak/Emeas,peak. This operation repeatedly produced a
consistent value of 0.82 to be multiplied by the flux density
fed into the iron loss models to account for the end-effect.

C. Mechanical Loss Measurement

For the mechanical loss measurement, the iron-free proto-
type shown in (Fig. 9) was tested. Any conductive part in the
testbed was far enough from the magnets, so any interaction
could be neglected. The braking torque was measured from a
standard back-to-back setup with the supplied motor driving
the tested prototype. The torque is measured through a contact-
less torque sensor (DR-3000, 2 Nm rated torque, 0.05 accuracy
class) in the speed range 500-3500 rpm with steps of 500
rpm. A wide acquisition window was taken over each speed
to minimize the impact of vibrations and speed instability,
especially in the higher speed range. Furthermore, two sets
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Fig. 12. Iron losses comparison between the different analytical based
models and measured values on the proposed prototype (specified Table I).The
measurement are taken with 0.05% accuracy in the torque reading and ±1
rpm in the speed reading.

of measurements were taken for each speed to ensure better
consistency of the results.

D. Total Loss Measurement and Iron Loss Separation

For the iron loss measurement, the stator core was placed
in position around the dummy stator. The same test routine
described in the previous section was performed to measure
the total losses. The mechanical losses obtained at the previous
step are then subtracted from the total losses, leaving the
iron loss component. The same operating points are simulated
analytically with all the described iron loss models by scaling
the flux density with the correction factor obtained from the
search coil, i.e., 0.82 to be multiplied to the analytical flux
density components. The results are shown in Fig. 12; in
addition, the NRMSD is evaluated for each model over the
shown operating range to quantify the deviation (see Table V).
The measurements are reported without error-band because the
instrument’s accuracy makes it unnoticeable. However, a non-
quantifiable error may still exist because the readings may be
affected by non-perfect vibration-induced noise filtering.

The scaled flux density in the stator core has the main
component ranging from 1.4 to 1.3 T from the inner to the
outer radius, respectively. Around this flux density value, all
the different models provide an acceptable fit to the lamination
loss data. For this reason, the deviation between the different
models is not so remarkable in Fig. 12. From the same figure,
one can notice how the rotational effect in the VARCOrot
model acts as a reduction factor; this finds an explanation
in the trend of the extrapolated expression of the rotational
loss factor γ from Fig. 7. In fact, in the proposed case study,
the radial and circumferential component of the flux density
have their axis ratio varying between 0.3 to 0.5 with the
peak flux density going from 1.3 to 1.4 T; in this operating
range, the rotational loss factor γ acts as a reduction factor
for the iron losses computed as a mere sum of the two

orthogonal contributions [25]. Even though Fig. 12 suggests
the different models (VARCO in particular) to be suitable
candidates for iron loss estimate through analytical modeling,
it is worth mentioning that the several sources of uncertainty in
the proposed validation may hide some inherent inaccuracies
for the proposed models themselves. As an example, if the
end-effect correction factor was greater in reality than what
was estimated, the predicted loss curves in Fig. 12 would be
lifted up; in such a scenario, CCM, CAL2, LUT, VARCOrot
would perform better than VARCO. To fully address the
validity of the proposed loss models would require different
testing prototypes to operate under different magnetic loadings
to cover a broader spectrum and filter out the effect of
manufacturing tolerances. Finally, the decent level of accuracy
produced by the LUT methods has to be attributed to the rich
available dataset; the same models may largely underperform
compared to the others if a poorer dataset was available.

VII. CONCLUSION

In this paper, the analytical field solution in the stator iron
core of slotless machines is derived from Maxwell’s equations.
The proposed method for post-processing the field results and
calculate the iron losses is described in detail. The flexibility
of the method was tested by using different iron loss models,
suggesting that the problem can be easily vectorized, thus,
leading to a computationally efficient procedure which could
be used already in a pre-design phase and/or optimization
procedure. The different loss models showed that having a
good fit of experimental loss data for a given specimen may
be even more important than having a very accurate field
solution for evaluating iron losses. In this regard, some best-fit
iron loss models were proposed to overcome the latter issue.
Finally, the different loss models have been benchmarked
against measured losses on a test prototype. In this regard,
it is worth mentioning that a suitable model accounting for
axial leakage should be included to have a reliable iron loss
estimate already in the design phase. Furthermore, one should
make sure that the analytical field model is suited for the
assumption of not accounting for iron saturation.
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