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Abstract

Measurement of today’s value of the Hubble parameter H0 by using type 1a supernovae as stan-
dard candles give H0 = 73.7± 1.4 km/s/Mpc, while measurement using the CMB as a standard
ruler give H0 = 67.4± 0.5 km/s/Mpc. This is a problem. The measurements from type 1a su-
pernovae use the luminosity light intensity relation (LLR) (1.1), whose derivation is based on
premises that do not directly seem to relate to electromagnetism. The aim of this master the-
sis is to see if Maxwell’s equations in curved spacetime imply a different relation between lumi-
nosity, observed light intensity, redshift and comoving distance of a light source than the LLR.
The advanced and retarded Green’s function that solve the Lorentz gauge conditional Maxwell’s
equations (2.13) for the four-potential A are constructed. But a problem arises. It is not clear
if four-potentials produced by the two Green’s functions actually fulfill the Lorentz gauge con-
dition. Two sufficient conditions (6.5) for fulfillment of the Lorentz gauge condition are given.
But if they hold is not checked. The result is therefore inconclusive. Assuming the Lorentz gauge
condition is fulfilled, the conclusion is that Maxwell’s equations in curved spacetime imply a re-
lation between luminosity, light intensity, redshift and comoving distance identical to the LLR.

Figure 1: 7. December 185 AD saw Chinese astronomers a type 1a supernova on the sky. The four
space telescopes Chandra, XMM-Newton, Spitzer, and WISE took infrared and X-ray photographies
of its remnant to compile it into the image shown above.
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Sammendrag

Måling av dagens verdi av Hubble-parameteren H0 med type 1a supernovaer som standard can-
dles gir H0 = 73.7± 1.4 km/s/Mpc, mens måling ved hjelp av CMB som standard ruler gir
H0 = 67.4± 0.5 km/s/Mpc. Dette er et problem. Målinger fra type 1a supernovaer bruker
en luminositetlysintensitetsrelasjon (LLR) (1.1) som er basert p̊a premisser som ikke direkte
ser ut til å ha noe med elektromagnetisme å gjøre. Målet med denne masteroppgava er å se
om Maxwells likninger i krum romtid gir en annen sammenheng mellom luminositet, observert
lysintensitet, rødforskyving og comoving avstand til en lyskilde enn LLR. Den avanserte og re-
tarderte greensfunksjonen som løser lorentzgaugebetinga Maxwells likninger (2.13) for firepoten-
sialet A. Men det oppst̊ar et problem. Det er ikke klart om fire-potensialer produsert av de to
greensfunksjonene faktisk oppfyller lorentzgaugebetingelsen. To tilstrekkelige krav (6.5) for til-
fredsstilling av lorentzgaugebetingelsen gis. Men om de stemmer sjekkes ikke. Resultatet er der-
for ikke entydig. Forutsatt at lorentzgaugebetingelsen er oppfylt er konklusjonen at Maxwells
likninger i krum romtid gir en relasjon mellom luminositet, lysintensitet, rødforskyving og co-
moving avstand identisk lik LLR.
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Preface

I chose to write a master thesis in cosmology not because I am particularly interested in cosmology,
but because it involves general relativity and other kinds of physics that I like. I was first consider-
ing writing a thesis about viscous cosmology in which my supervisor Iver H. Brevik specializes. Bre-
vik mentioned that there is a possibility that including viscosity in cosmology can resolve the Hubble
tension. But I remembered one formula from a cosmology course I took in Switzerland that have a
derivation I was unsatisfied with. ”Maybe that formula is wrong and therefore causes the Hubble ten-
sion” I thought. I decided to use Maxwell’s equations in curved spacetime to derive my own version of
it. That turned out to be hard, until I stumbled upon a book called ”The wave equation on a curved
space-time”, and everything got much easier.

This entire process has teached me more than what I have learned during the 3 years bachelor program
at NTNU. That doesn’t mean I have not learned much during the bachelor, but the bachelor program
has given me foundation to learn new things faster. I have learned that fiber bundles and vector bun-
dles are genius mathematical constructions to describe physics in coordinate independent ways. I have
learned that distribution theory on pseudo-riemannian manifolds is the right language to use when
working with partial differential equations. More specific to the master thesis have I learned that grav-
ity can theoretically scatter light in addition to bending it. I have also learned that non-equilibrium
thermodynamics is an incomplete theory that needs more research. I tried to apply it when I consid-
ered writing about viscous cosmology.

I will thank my mother Gunnhild Vikhamar and my brother Oskar Vikhamar-Sandberg for valuable
feedback on the thesis. I will also thank my friends Gabriele Piattoli and Jostein Brunvær Steffensen
for moral support and some help in the end. Finally, I will thank my supervisor Iver H. Brevik for
his patiency and openness to let me explore unorthodox methods.
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Notation and conventions

Throughout this thesis, let (M, g) be a (n + 1)-dimensional orientable and time oriented lorentzian
manifold of signature (−+ ++), also called spacetime. It represents the universe.

Notation

∀ reads ”for all”. ∃ reads ”there is”.

〈, 〉 is used for application of the metric tensor g on tangent vectors or cotangent vectors or for cotan-
gent vectors applied on tangent vectors. A short hand notation 〈X〉2 ≡ 〈X,X〉 is used.

Einstein’s summation convention is used in component notation of tensors and other arrays, if not
stated otherwise. Greek indices are spacetime indices and take values {0, 1, 2, 3} while Latin indices
are space indices and take values {1, 2, 3}.

Abstract index notation is used for tensors and tensor fields as an abstract coordinate independent
notation for contraction between tensors. Abstract index notation should not be confused with in-
dex notation for components of tensors even though it is the exact same notation. Repeating in-
dices, where one is lower and the other is upper, are contracted. For example, AµνB β

α ν is a tensor
contraction over the index ν. Big Greek letters are used for multispacetime indices. For example
AM ≡ Aµ1,...,µr , where M ≡ (µ1, . . . , µr).

A vertical line | is used in a self-made abstract index notation for bitensor fields and distributions.
A bitensor field is written as for example, Aµν |

γ
αβ (p, q). The spacetime indices to the left of | belong

to the left spacetime argument p and the spacetime indices to the right belong to argument q.

ω ∈ Ωn+1(M) denotes the volume form induced by the metric g. In any ordered basis (e0, . . . , en) in
TpM at a point p ∈M ω

∣∣
p

= ±
√
− det ge0∧· · ·∧ en, where det g is the determinant of the matrix

gµν ≡ 〈eµ, eν〉 and (e0, . . . , en) is the dual basis of (e0, . . . , en). The sign in front of
√
− det g depends

on choice of orientation ofM and the orientation of (e0, . . . , e3) which doesn’t matter as far as one
is consistent.

d in front of a differential form denotes exterior derivative. For example dα ∈ Ωk+1(M) is the exterior
derivative of α ∈ Ωk(M).

y is used for inner product or contraction between a tangent vector X ∈ TpM and a k-form α ∈∧k TpM written like so: Xyα.

R denotes the Riemann or Ricci tensor depending on number of indices.

∇ denotes the covariant derivative from the Levi-Civita connection.
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≡ ∇µ∇µ is the notation for the d’Alembert operator.

Γ(E), where E −!M is a fiber bundle, denotes smooth sections of E −!M.

Reg(f) denotes the regular values of a smooth function f ∈ C∞(M).

T(r,s)(M) ≡ Γ (TM⊗r ⊗ T ∗M⊗s) is short hand notation for smooth type (r, s) tensor fields.

D(r,s)(M) ≡ Γc (TM⊗s ⊗ T ∗M⊗r) denotes the space of type (r, s) test functions on spacetime M.
They are smooth type (s, r) tensor fields with compact support.

D′(r,s)(M) denotes the space of type (r, s) tensor distributions on spacetimeM. It is defined as the

algebraic dual of D(r,s)(M).

If u ∈ D′(r,s)(M), application of u on a test function φ ∈ D(r,s)(M) is written as 〈u, φ〉, 〈u(p), φ(p)〉,〈
uMN , φ

N
M

〉
or
〈
uMN(p), φNM(p)

〉
. The point p is not a evaluation point. It is just an abstract sym-

bol showing what is contracted against what. The indices M and N are also just abstract indices
demonstrating contraction.

� is used for outer tensor product of two vector bundles E −!M and F −! N written
E � F −!M×N .

[v], where v is a vector in a vector space, denotes the column representation of v wrt. some specified
basis. Additionally, a sub- or superscript can be given to specify the basis. For example [v]B, where
B is the specified basis.

↪−! is used for inclusions and injections.

A◦ denotes the interior and A denotes the closure of a subset A of a topological space.

AB ≡
∏

b∈B A, when A and B are sets.

τX , where X is a topological space, denotes the topology of X.

Conventions

Speed of light c = 1 by letting length and time have same dimension.

The vacuum permeability µ0 = 1 by in addition letting voltage and electric current have same di-
mension.

When ”submanifold” is mentioned, embedded submanifold is meant, unless stated otherwise.
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Chapter 1

Introduction

There is a crisis in cosmology. We know our universe is expanding. We also know its expansion is ac-
celerating [3]. However, when we try to measure how fast the universe expands with different methods,
we get different results. And it doesn’t stop there. The measurements come equipped with error bars,
and the error bars do not even overlap! This is called ”The crisis in cosmology”. This is important
because it tells us that something within field of cosmology is wrong.

Cosmology is limited by what we can measure. We can measure the electromagnetic radiation seen on
the night sky. More specifically, we can measure quantities such as angles between light sources, light
intensity, frequency of light, polarization of light and period of pulsating sources. From this there are
three main quantities we use in cosmology: light intensity I, angle θ, redshift z and pulsation period
T . What we can’t measure are cosmic time and distances. Objects are simply too far away.

In order to calculate time and distances, astrophysicists have come up with two main methods, ”the
cosmic distance ladder” and ”the reverse cosmic distance ladder”. In short, the cosmic distance ladder
uses several tools suitable for different length scales to calculate distances based on the observables
(I, θ, z, T ). The length scales are ordered from shortest to longest. The first tool is based on simple
geometry. The second tool needs to be calibrated by the first tool, the third by the second and so
on. The last tool measures the light from type 1a supernovae, which is a type of standard candle.
The reverse distance ladder, however, starts with far distances and works towards us. One starts by
looking at the angular power spectrum of the CMB and compares it to the distribution of galaxies we
can see today. A big difference between the reverse distance ladder and the distance ladder is that the
reverse distance ladder needs a cosmological model to evolve the universe’s expansion history from far
back in time till now. It is ”model-dependent”.

With each of these two methods to compute lengths it is possible to compute today’s expansion rate
H0, called the Hubble parameter. The crisis in cosmology is essentially that cosmic distance ladder
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gives a value of H0 = 73.7± 1.4 km/s/Mpc [4], while the reverse cosmic distance ladder gives H0 =
67.4± 0.5 km/s/Mpc [2]. This means something must be wrong. There are two main possibilities.
Either the measurements are wrong or the theory is wrong. If the measurements are wrong, it can
either be that there are bigger errors than estimated or that we measure something else than we think.
If the theory is wrong, there are many possibilities. Maybe the standard candles and standard rulers
in the cosmic distance ladder aren’t as standard as we think. Maybe the ΛCDM model is not good
enough for modelling the expansion history of the universe. Maybe the cosmological principle is a bad
approximation.

One of the distance measuring tools in the cosmic distance ladder are standard candles. A standard
candle is a light source whose luminosity L is known. One can compute the distance to a standard
candle by measuring the light intensity I and redshift z from it, since there is a relation between L,
I, z and the comoving distance χ.

I =
L

4π(1 + z)2a2
0χ

2
(1.1)

This equation is referred to as the luminosity light intensity relation (LLR) in this master thesis. A
derivation of this relation goes as follows:

Let there be a comoving light source. It has constant comoving distance χ to Earth, since Earth
is also assumed to be roughly comoving. The light source emits light at cosmic time t1 that
hits Earth at cosmic time t0. A photon has a four-momentum P (λ) ∈ Tγ(λ)M which is parallel
transported along its trajectory γ which is a lightlike geodesic from the source to the the Earth.
In normalized comoving coordinate basis P (λ) is (~k0(λ), ~k(λ)) and k0 = |k|. k0 is the pho-
ton’s frequency and k is its wave vector. Parallel transport in the flat FRW metric implies that
d
dλ
a (t (γ(λ))) k0(λ) = 0, so a(t1)k0

1 = a(t0)k0
0, where k0

1 and k0
0 are the emitted and observed fre-

quency. Let n(t, k) be the number of photons with four-momentum k ever emitted by the source
until cosmic time t so that the total number of photons ever emitted is n(t) =

∫
R3 ṅ(t, k)d

3k

|~k| .

Then L =
∫
R3 ~k0ṅ(t1, k)d

3k

|~k| . The function t1(t0) is the solution to χ =
∫ t0
t1

dt
a(t)

. Since χ is con-

stant, differentiating by t0 gives dt1
dt0

= a1

a0
. Set

St0 ≡
{

(t0,χ) ∈M
∣∣∣∣ |χ| = ∫ t0

t1

dt

a(t)

}
to be the comoving sphere centered at the light source and tangenting the Earth. From the met-
ric one can compute its area to be 4πa2

0χ
2. If we assume the light source has spherical symmetry

2



in its rest frame, then

I(t0) =

d
dt0

∫
R3 ~a1

a0
k0n(t1(t0), k)d

3k

|~k|
4πa2

0χ
2

=
L+

(
H1 − a0

a1
H0

)
E

4π
a2

0

a2
1
a2

0χ
2

,

where E =
∫
R3 ~k0n(t1, k)d

3k

|~k| is the total amount of energy ever emitted by the light source until

time t1. Since the lifetime of a light source is much less than H−1
1 and H−1

0 , I ≈ L

4π
a2
0
a2
1
a2

0χ
2

=

L
4π(1+z)2a2

0χ
2 .

χ

t

Light cone

Sphere of comoving
radius χ, St0

t1

Source

Eartht0

χ

Figure 1.1: Visualization of light radiating from a source and hitting Earth at a comoving spere
around the source.

This derivation is based on Sean Carroll’s notes [1] p. 230.

The aim of this thesis is to test the following hypothesis:
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Maxwell’s equations in curved spacetime imply a different relationship among I, z, χ and L than
the luminosity light intensity relation (1.1).

If this hypothesis is true, then this different formula for standard candles produces a different value
for H0, and maybe match the value produced by the reverse cosmic distance ladder.

In the following chapter, classical electromagnetism is briefly presented to set conventions. That is be-
cause several well-known equations in electromagnetism depend on choice of metric signature. Then
a presentation of distribution theory on pseudo-riemannian manifolds follows in chapter 3. Chapter 4
applies that theory to construct an advanced and retarded Green’s function to solve Maxwell’s equa-
tions. The retarded Green’s function is used in chapter 5 to derive the main result of the thesis. In
the result/discussion chapter some possible shortcomings of this study are discussed. Suggestions for
further study are raised in the conclusion chapter.
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Chapter 2

Maxwell’s equations in curved spacetime

2.1 The electromagnetic field

The electromagnetic field (also called electromagnetic tensor) is a two-form F ∈ Γ (T ∗M∧ T ∗M). It
is defined experimentally by the Lorentz force equation

fµ = F µ
ν j

ν , (2.1)

where f ∈ TM is the four-force density acting at a point on a piece charge , and j ∈ TM is the
charge’s four-current density (often just called four-current) at that point. To determine F experi-
mentally, one brings in a small test charge to the system in question and measures the force acting
on it. Let p ∈M be the position of an observer with four-velocity u ∈ TpM normalized by 〈u〉2 = −1.
Then charge density, current density, electric field and magnetic field relative to the observer u is

ρ = −uµjµ (2.2)

j = (gµν + uµuν) jµeν ∈ TpM (2.3)

E = uνF
νµeµ ∈ TpM (2.4)

B =
1

2
ωµναβu

νFαβeµ ∈ TpM, (2.5)

where (e0, . . . , e3) is any ordered basis in TpM.

2.2 Maxwell’s equations and the four-potential A

Maxwell’s equations read

5



Gauss-Faraday law dF = 0 (2.6)

Gauss-Ampére law ∇µF
νµ = jν , (2.7)

where j ∈ Γ(TM) is the four-current density. Because [∇ν ,∇µ]F µν = Rµ
ανµF

αν + Rµ
βνµF

µβ =

−RανF
αν +RβµF

µβ = 0 + 0 = 0,

∇νj
ν =∇ν∇µF

νµ

=
1

2
∇ν∇µF

νµ − 1

2
∇ν∇µF

µν

=
1

2
[∇ν ,∇µ]F νµ

=0.

We get that the Gauss-Ampére law implies conservation of charge.

∇µj
µ = 0. (2.8)

Lemma 1 (Poincaré lemma)
Let N be a contractible manifold and α ∈ Ωk(N ) and dα = 0. Them ∃β ∈ Ωk−1(N ) so that

α = dβ.

This means that on a contractible open subset U ⊆ M of spacetime there is a covector field A ∈
Γ(T ∗U) such that

F = dA. (2.9)

A is called a four-potential of F . Note that A is not unique, since A′ ≡ A+df is also a four-potential
of F for all smooth functions f ∈ C∞(M). Choice of A is called choice of gauge. To relate the four-
potentials to more familiar electric and magnetic potential V and A relative to an observer u ∈ TpM
we have

V = −uµAµ (2.10)

A = (gµν + uµuν)Aνeν ∈ TpM, (2.11)

so in an orthonormal basis (u, e1, e2, e3),

Aµ = (V,A). (2.12)

6



Write the Gauss-Ampére equation in terms four-potential.

jν = −∇µF
µν

= −∇µ (∇µAν −∇νAµ)

= − Aν + ([∇µ,∇ν ] +∇ν∇µ)Aµ

= − Aν +∇ν∇µA
µ +Rµ ν

αµ A
α

= − Aν +∇ν∇µA
µ +Rν

µA
µ.

If we impose the Lorentz gauge condition

∇µA
µ = 0,

we get

Lorentz gauge conditional Gauss-Ampére law for A − Aν +Rν
µA

µ = jν (2.13)

Lorentz gauge condition ∇µA
µ = 0. (2.14)

To justify the existence of a Lorentz gauged four-potential of an electromagnetic field F , we know there
exists a four-potential A of F from the Poincaré lemma. Pick an f ∈ C∞(M) so that f = −∇µA

µ.
Then A′ ≡ A+df satisfy the Lorentz gauge condition. The existence of f can at least be guaranteed
locally (Theorem 4.5.1 in [6]).
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2.3 The electromagnetic energy momentum tensor

The Lorentz force equation (2.1) together with Maxwell’s equations gives

f ν = F ν
α j

α Lorentz force

= −F ν
α∇µF

µα Gauss-Ampére

= −∇µ (F ν
αF

µα) +∇µF
ν
αF

µα

= −∇µ (F ν
αF

µα) +
1

2

(
∇µF

ν
α −∇αF

ν
µ

)
F µα F µα = −Fαµ

= −∇µ (F ν
αF

µα) +
1

2

(
∇µF

ν
α +∇αF

ν
µ

)
F µα

= −∇µ (F ν
αF

µα)− 1

2
∇νFαµF

µα Gauss-Faraday

= −∇µ (F ν
αF

µα) +
1

4
∇ν (FµαF

µα)

= −∇µ

(
F µαF ν

α −
1

4
gµνFαβFαβ

)
.

The energy momentum tensor T ∈ Γ (TM⊗ TM) of the electromagnetic field is therefore defined as

T µν ≡ F µαF ν
α −

1

4
gµνFαβFαβ, and (2.15)

∇µT
µν = −f ν . (2.16)
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Chapter 3

Distribution theory on
pseudo-riemannian manifolds

3.1 Tensor distributions on pseudo-riemannian manifolds

Functions that are solutions to partial differential equations must have a certain degree of smoothness.
However, this is sometimes too restricitve when trying to solve them. One way to work around that
is to extend the function space to include some new objects that are not smooth functions. But in
some sense they are possible to differentiate and do other operations on which one can do with smooth
functions. Distributions are such objects. The idea of distributions is to utilize the concept of duality
from linear algebra. Instead of describing a smooth tensor field u ∈ T(r,s)(M) by evaluating it at points
p ∈M, one integrates it against test functions φ ∈ Γc (TM⊗s ⊗ T ∗M⊗r) like so:

〈u, φ〉 ≡
∫
M
u(q)MNφ(q)NMω(q), (3.1)

where ω is the volume form induced by the metric, and Mr ≡ (µ1, . . . µr) and Ns ≡ (ν1, . . . νr) are
multispacetime indices. Define the space of test functions as the R-vector space

D(r,s)(M) ≡ Γc
(
TM⊗s ⊗ T ∗M⊗r) . (3.2)

Distributions are then defined as linear forms acting on test functions. For example the Dirac delta
distribution δp with support at p ∈M is defined by evaluating the test functions at p.

〈δp, φ〉 ≡ φ(p) ∀φ ∈ C∞c (M). (3.3)

A small note about notation: sometimes it is convenient to write 〈u(q), φ(q)〉 instead of 〈u, φ〉. Or
even write u(q) = v(q). It does not mean that u(q) is a function evaluated at q!
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3.2 Topology and convergence

All vector spaces considered in this thesis are real. But the lemmas that follow work in the complex
case also.

Lemma 2 (Universal property of subspace topology)

Let X be a topologic space and A
ι

↪−! X a subspace (subset equipped with subspace topology). Then

∀ topological spaces Z and ∀ functions Z
f
−! A

f is continuous ⇐⇒ ι ◦ f is continuous.

Z

A X

ι◦f
f

ι

Lemma 3 (Universal property of product topology)
Let {Xi}i∈I be an indexed family of topological spaces. Equip

∏
i∈I Xi with the product topology. Then

∀ topological spaces Z and ∀ functions Z
f
−!

∏
i∈I Xi

f is continuous ⇐⇒ πi ◦ f is continuous ∀i ∈ I.

Z

∏
i∈I Xi Xi

f
πi◦f

πi

Here,
∏

i∈I Xi
πi−! Xi denote the canonical projections.

Lemma 4
Let V be a vector space, and equip its algebraic dual V ′ with product topology. Then V ′ is a Hausdorff
topological vector space.

Proof is on p. 77.

Lemma 5
Let V,W be two vector spaces, V ′ and W ′ their algebraic duals and V

T
−! W linear. Equip V ′ and

10



W ′ with product topology. Then the adjoint map

W ′ T ′
−! V ′

φ 7! 〈φ, T ·〉

is continuous.

Proof is on p. 78.

Def 1
A type (r, s) tensor distribution is an element of the dual of D(r,s)(M) denoted D′(r,s)(M). D′(r,s)(M)
is given the product topology.

In literature, this topology is often referred to as weak* topology. Subspace topology of product topol-
ogy and weak* topology are actually the same thing. Because of lemma 5, whenever we have a linear

transform D(k,l)
T
−! D(r,s)(M), it induces a continuous linear transform D′(r,s)

T ′
−! D′(k,l)(M). Also,

distributions are usually required to be continuous wrt. a certain topology on the test functions. This
is not required here since it has no use in this thesis.

The purpose of distributions is to generalize smooth fields. If u ∈ T(r,s)(M) and 〈u, φ〉 = 0 ∀φ ∈
D(r,s), then u = 0. That means smooth tensor fields are uniquely determined by how they act on test
functions, so there is an injection

T(r,s)(M) ↪−! D′(r,s)(M). (3.4)

This is essential for distributions being a generalization because if (3.4) was not injective, distributions
that are smooth in a region could have non-unique values in that region. This is important when trying
to multiply distributions (definition 3.13).

One advantage of topologizing the space of distributions is regularization. Regularization means to
find a net of smooth functions {fλ}λ∈Λ that converges to a distribution u = limλ∈Λ fλ ∈ D′(r,s)(M).
Smooth functions are easier to work with than general distributions. After applying continuous op-
erations T to the regularized distribution fλ one takes the limit. By continuity Tu = T (limλ∈Λ fλ) =
limλ∈Λ Tfλ. Another advantage is simply that one can define new distributions as limits of other dis-
tributions. That technique is utilized when constructing Green’s functions in chapter 4.
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3.3 Operations on distributions

If u ∈ T(r,s)(M) is a smooth tensor field, one can multiply it with another smooth tensor field f ∈
T(k,l)(M). When integrated against a test function one gets

〈f ⊗ u, φ〉 =

∫
M
fAB u

M
Nφ

BN
AMω

=
〈
uAB, f

M
N φ

BN
AM

〉
.

Two smooth tensor fields u, v ∈ T(r,s)(M) can be added, and when integrated against test functions
one gets

〈u+ v, φ〉 =

∫
M

(
uMN + vMN

)
φNMω

= 〈u, φ〉+ 〈v, φ〉.

This way, those operations can be extended to distributions.

〈fu, φ〉 ≡
〈
uAkBl , f

M
N φ

BlN
AkM

〉
(3.5)

〈u+ v, φ〉 ≡ 〈u, φ〉+ 〈v, φ〉. (3.6)

By lemma 5 the map

D′(r,s)(M) −! D′(r+k,s+l)(M)

u 7! f ⊗ u

is continuous ∀f ∈ D(k,l)(M). By lemma 4 the maps

R×D′(r,s)(M)
·
−! D′(r,s)(M) and D′(r,s)(M)×D′(r,s)(M)

+
−! D′(r,s)(M)

(λ, u) 7! λ · u (u, v) 7! u+ v

are also continuous.

Another important operation is covariant differentiation of tensor fields. If u ∈ T(r,s)(M), ∇u ∈
Γ
(
TM⊗r ⊗ T ∗M⊗(s+1)

)
. From the divergence theorem and compactness of suppφ one gets

〈∇u, φ〉 =

∫
M
∇νu

M
Nφ

νN
Mω

=

∫
M

(
∇ν

(
uMNφ

νN
M

)︸ ︷︷ ︸
vector field

−uMN∇νφ
νN

M

)
ω

= −
∫
M
uMN∇νφ

νN
Mω.
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Define therefore covariant differentiation of tensor distributions by

〈∇u, φ〉 ≡ −
〈
uMN ,∇νφ

νN
M

〉
. (3.7)

This definition generalizes covariant differentiation of smooth tensor fields. By lemma 5 the map

D′(r,s)(M)
∇
−! D′(r,s+1)(M)

u 7! ∇u

is continuous. Direct computation by application on test functions shows that Leibniz’s rule holds
also for product of a tensor field f ∈ T(k,l)(M) and a tensor distribution u ∈ D′(r,s)(M).

∇ (f ⊗ u) = ∇f ⊗ u+ f ⊗∇u. (3.8)

3.4 Extending distributions to act on bigger set of functions

Def 2 (Restriction of distributions)
Let u ∈ D′(r,s)(M) and U ∈ τM. The restriction u

∣∣
U
∈ D′(r,s)(U) is defined by

〈
u
∣∣
U
, φ
〉
≡

〈
u(p),

{
φ(p), p ∈ U
0, p ∈M \ suppφ

〉
∀φ ∈ D(r,s)(U). (3.9)

This is well-defined since M 3 p 7!

{
φ(p), p ∈ U
0, p ∈M \ suppφ

is smooth by the gluing lemma of

smooth functions, and since suppφ is compact, it is a test function on M.

Def 3 (Support)
Let u ∈ D′(r,s)(M). The support of u is

suppu ≡M\
{
p ∈M

∣∣ ∃U ∈ τM so that p ∈ U and u
∣∣
U

= 0
}
. (3.10)

Note that support is always closed.

When a tensor distribution u ∈ D′(r,s)(M) acts on a test function φ ∈ D(r,s)(M), u only cares about
the values of φ on an arbitrarily small neighbourhood of suppu∩ suppφ. This suggests the following
definition of extension of u.
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Def 4 (Extension of distributions)
Let u ∈ D′(r,s)(M). u can be extended to a function on the set

T(r,s)(suppu,M) ≡
{
φ ∈ T(r,s)(Uφ)

∣∣ suppu ⊆ Uφ ∈ τM and suppφ ∩ suppu is compact
}

by defining
〈u, φ〉 ≡ 〈u, φ̃〉 ∀φ ∈ T(r,s)(suppu,M), (3.11)

where φ̃ ∈ D(r,s)(M) is any test function so that φ̃ = φ on a neighbourhood V of suppu∩ suppφ and

supp φ̃ ⊆ suppφ.

Proof for that the extension is well-defined is found on p. 78. Note that T(r,s)(suppφ,M) is not a
vector space. That means linearity is lost when a distribution u ∈ D(r,s)(M) is extended to to act on
T(r,s)(suppu,M).

3.5 Singular support and multiplication of distributions

Def 5 (Singular support)
Let u ∈ D′(r,s)(M). The singular support of u is

singsuppu ≡M\
{
p ∈M

∣∣ ∃ open U around p so that u
∣∣
U
∈ T(r,s)(U)

}
. (3.12)

Note that like support, singular support is also closed, and singsuppu ⊆ suppu. If two scalar distribu-
tions u, v ∈ D′(M) have disjoint singular support, it is possible to multiply them in a way that extends
multiplication of smooth functions. Pick a ρ ∈ C∞(M) so that ρ

∣∣
singsuppu

= 0 and ρ
∣∣
singsupp v

= 1.

Define the product as
〈u · v, φ〉 ≡ 〈v, ρuφ〉+ 〈u, (1− ρ)vφ〉. (3.13)

The proof for that this is well-defined is on p. 79. The product is associative, commutative and ex-
tending the product of smooth functions. Also for multiplication of distributions u, v ∈ D′(M) with
disjoint singular support, Leibniz’s rules holds.

(u · v)′ = u′ · v + u · v′. (3.14)

3.6 Composition

An operation on distributions that is much used in physics is composing a scalar distribution u ∈
D′(Rm) with a smooth S ∈ C∞(M,Rm), where suppu ⊆ Reg(S) is assumed. Let s ∈ Reg(S). The
preimage theorem says that S−1({s}) ⊆M is an orientable submanifold of codimension m.
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Theorem 1 (Leray form)

Let M S
−! Rm be smooth and s ∈ Reg(S). Then ∃!ωS,s ∈ ΩdimM−m (S−1({s})) so that

dS1
q ∧ . . . dSmq ∧ ωS,s = ω(q) ∀q ∈ S−1({s}). (3.15)

ωS,s is called a Leray form.

Proof can be found by using induction on lemma 2.9.2 in [6].

Theorem 2 (Composition)
Let u ∈ D′(R) and S ∈ C∞(M) with suppu ⊆ Reg(S). ∀φ ∈ D(M) define

Reg
(
S
∣∣
suppφ

)
φS−! R (3.16)

s 7!

∫
S

∣∣−1

suppφ
({s})

φωS,s,

where S−1({s}) is given the orientation so that ωS,s > 0. Then φS ∈ T(0,0) (suppu,M) and the
composition or pullback u ◦ S, defined by

〈u ◦ S, φ〉 ≡ 〈u, φS〉 ∀φ ∈ D(M), (3.17)

is a scalar distribution onM. Furthermore, the operation generalizes composition when u is smooth,
and the map

{u ∈ D′(R) | suppu ⊆ Reg(S)} −! D′(M)

u 7! u ◦ S

is continuous.

The next theorem is a version of the chain rule for distributions.

Theorem 3
Let u ∈ D′(R), S ∈ C∞(M) and suppu ⊆ Reg(S). Then

d(u ◦ S) = (u′ ◦ S) · dS. (3.18)

This is theorem 2.9.2 in [6].
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3.7 Bitensor distributions

Two pseudo-riemannian manifolds (M, g) and (N , h) have natural product (M×N , g⊕h) which is
also a pseudo-riemannian manifold. The metric g ⊕ h is defined by

(TpM⊕ TqN )× (TpM⊕ TqN )
g⊕h(p,q)
−−−−! R

(X1 ⊕ Y1, X2 ⊕ Y2) 7! g(X1, X2) + h(Y1, Y2) ∀(p, q) ∈M×N .

Given two vector bundles E −! M and F −! N one can construct the external tensor product
E � F −!M×N . It is a new vector bundle whose fibers are tensor products of E and F ’s fibers.
That is, (E � F )(p,q) = Ep ⊗ Fq ∀(p, q) ∈M×N .

Def 6

1. A scalar bitensor field is an element of C∞(M×M).

2. A type (r, s)� (k, l) bitensor field is an element of

T(r,s)�(k,l)(M) ≡ Γ
((
TM⊗r ⊗ T ∗M⊗s)� (TM⊗k ⊗ T ∗M⊗l)) .

It is handy with an abstract index notation for bitensor fields when doing tensor contractions. For
A ∈ T(r,s)�(k,l)(M) write

AMN |PΣ(p, q).

Here, M , N , P and Σ are multispacetime indices of length r, s, k and l, and (p, q) ∈M×M. The no-
tation can also serve as component notation. Let’s generalize smooth bitensor fields to distributions.
Define first type (r, s)� (k, l) bitensor test functions as

D(r,s)�(k,l)(M×M) ≡ Γc
((
TM⊗s ⊗ T ∗M⊗r)� (TM⊗l ⊗ T ∗M⊗k)) . (3.19)

Def 7
A type (r, s)� (k, l) bitensor distribution is an element of the dual of D(r,s)�(k,l)(M×M), denoted

D′(r,s)�(k,l)(M×M).

D′(r,s)�(k,l)(M×M) is equipped with the weak* topology.

Likewise as for tensor distributions, there is an inclusion of smooth bitensor fields,

T(r,s)�(k,l)(M) ↪−! D′(r,s)�(k,l)(M). (3.20)
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A bitensor distribution u ∈ D′(r1,s1)�(k1,l1)(M) can be multiplied by a bitensor field

f ∈ T(r2,s2)�(k2,l2)(M) like so:

〈f ⊗ u, φ〉 ≡
〈
uAB|MN , fPΣ |HΘ · φΣB

PA|ΘNHM
〉

(3.21)

∀φ ∈ D(r1+r2,s1+s2)�(k1+k2,l1+l2)(M).

This generalizes standard fiberwise tensor product of smooth bitensor fields. Bitensor distributions
can be differentiated covariantly the same way as tensor distributions, but now there are two deriva-
tives.

D′(r,s)�(k,l)(M)
left
∇
−! D′(r,s+1)�(k,l)(M)

and

D′(r,s)�(k,l)(M)
right

∇
−−! D′(r,s)�(k,l+1)(M).

They are defined by 〈
left

∇u, φ
〉
≡ −

〈
uMN |BA,

left

∇νφ
νN

M |AB
〉

(3.22)

and 〈
right

∇u, φ
〉
≡ −

〈
uMN |BA,

right

∇αφ
N
M |αAB

〉
. (3.23)

Let me suggest a more compact abstract index notation of left and right covariant differentiation of

bitensor distributions. Write
left

∇u ∈ D′(r,s+1)�(k,l)(M) and
right

∇u ∈ D′(r,s+1)�(k,l)(M) as

uMN ;ν |AB and uMN |AB;β. (3.24)

Again, by lemma 5 multiplication by smooth bitensor field and left and right covariant differentiation
are continuous operations D′(r,s)�(k,l)(M) −! D′(a,b)�(c,d)(M) wrt. the weak* topology. Leibniz’s rule

still applies, so ∀u ∈ D(r1,s1)�(k1,l1)(M) and ∀v ∈ D(r2,s2)�(k2,l2)(M)

left

∇(u⊗ v) =
left

∇u⊗ v + u⊗
left

∇v and
right

∇(u⊗ v) =
right

∇u⊗ v + u⊗
right

∇v. (3.25)

The same goes for the chain rule. ∀S ∈ C∞(M×M) and ∀u ∈ D′(R) where suppu ⊆ Reg(S)

left

d(u ◦ S) = (u′ ◦ S) ·
left

dS and
right

d(u ◦ S) = (u′ ◦ S) ·
right

dS. (3.26)
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Chapter 4

Green’s functions to solve Maxwell’s
equations

In this chapter, two Green’s functions are developed to solve the Lorentz gauge conditional Gauss-
Ampére equation (2.13) for the four-potential A in four-dimensional spacetime. Define the wave op-
erator

Γ(TM)
L≡− +R
−−−−−−! Γ(TM) (4.1)

Aµ 7! − Aµ +Rµ
νA

ν . (4.2)

Then (2.13) can be written as

LA = j. (4.3)

Note that the operator L is self-adjoint. If u is a smooth vector field and φ a vector test function,

〈Lu, φ〉 = 〈u,Lφ〉. (4.4)

This is useful later. To develope the two Green’s functions, three bitensor fields need to be defined.

4.1 Synge’s world function

Imagine two points p, q in spacetimeM. We want a coordinate invariant way to measure the distance
between the points. If there is a unique geodesic between the points, one can take the square geodesic
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distance defined by 〈X〉2 where p = expq(X). Note that X ∈ TqM is unique from the uniqueness of
the geodesic, and one would get the same if one chose the Y ∈ TpM so that q = expp(Y ). However,
geodesics between points need neither to exist nor to be unique. Therefore, we must restrict the region
we are looking at.

Def 8
An open set Ω ⊆M is called geodesically convex if ∀p, q ∈ Ω ∃! geodesic between p and q.

It can be proven that all points ofM has a geodesically convex neighbourhood. Define the world func-
tion on a geodesically convex domain Ω ⊆M as follows

The world function Ω× Ω
σ
−! R (4.5)

(p, q) 7!
1

2
〈X〉2, where p = expq(X).

Y

−Y = d
(
expq

)
X
X

X

q = eY

p = eX

Figure 4.1: The world function can be computed from half of the square length of X = exp−1
q (p) or

from half of the square length of Y = exp−1
p (q). It doesn’t matter which one chooses, and the world

function is hence symmetric.

The world function has some properties that are useful later in this chapter. It is smooth separately in
each argument, because the exponential map acts diffeomorphically on tangent vectors. The inverse
exponential map

Ω× Ω
exp−1

−−−! TΩ (4.6)

(q, p) 7! exp−1
q (p)
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is assumed continuous wrt. the product topology on Ω × Ω. Consequently, the world function also
becomes continuous wrt. the product topology. Now, keep q ∈ Ω constant, choose normal coordinates
(X0, . . . , X3) around q and differentiate wrt. p.

left

∂µσ(p, q) = ∇µ

(
1

2
XνX

ν

)
= Xµ

= −
(
exp−1

p (q)
)
µ
.

Then contract it with itself.

left

∂µσ(p, q)
left

∂µσ(p, q) = XµXµ

= 2σ(p, q).

Now compute the d’Alembert of σ in the normal coordinates around q.

∇µ

left

∂µσ = ∇µX
µ

= ∂µX
µ + ΓαµµX

α

= δµµ +
1

2
Xα∂α det g

det g

= (n+ 1) +
1

2

∂−Y det g

det g
.

We get four properties of σ that are used later.

i) σ(p, q) = σ(q, p) (4.7)

ii)
left

∂µσ(p, q) = −Yµ (4.8)

iii)

〈
left

dσ,
left

dσ

〉
= 2σ (4.9)

iv)
left

σ = dimM+
1

2

∂−Y det g(p)

det g(p)
, where Y ≡ exp−1

p (q). (4.10)

4.2 The van Vleck determinant

The van Vleck determinant is a function of same signature as the world function σ. That is, it is de-
fined on geodesics joining two points p, q ∈M. It is defined as follows.
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The van Vleck determinant Ω× Ω
κ
−! R (4.11)

(p, q) 7!

∣∣∣∣det
left

∂
right

∂σ(p, q)

∣∣∣∣1/2
|det g(p) · det g(q)|1/4

,

where the differentiation

is done in any

coordinates around

p and q. The same

coordinates must be

used for g(p) and g(q).

This is well-defined since if we let x and x′ be two coordinate systems around p and let y and y′ be
two coordinate systems around q,

σ;µ|;ν =
∂x′α

∂xµ
∂y′β

∂yν
σ′;α|;β

gµν(p) =
∂x′α

∂xµ
∂x′β

∂xν
g′αβ(p)

gµν(q) =
∂y′α

∂yµ
∂y′β

∂yν
g′αβ(q)

and

|detσ;µ|;ν |1/2

| det g(p)|1/4 · | det g(q)|1/4
=

∣∣∣ det ∂x′

∂x

∣∣∣1/2 · ∣∣∣det ∂y′

∂y

∣∣∣1/2 · |detσ;µ|;ν |1/2∣∣∣ det ∂x′

∂x

∣∣∣1/2 · | det g(p)|1/4 ·
∣∣∣det ∂y′

∂y

∣∣∣1/2 · | det g(q)|1/4

=

∣∣detσ′;µ|;ν
∣∣1/2

| det g′(p)|1/4 · | det g′(q)|1/4
.

Since σ is symmetric and partial differentiation commutes, κ is symmetric. A simpler formula can be
derived for κ if one chooses normal coordinates (X0, . . . , Xn) around q to differentiate wrt. both q

and p. From equation 4.8 and the symmetry of σ,
right

∂νσ(p, q) = −Xν(p) = −ηναXα(p) in the normal
coordinates.

left

∂µ
right

∂νσ(p, q) =
∂

∂Xµ

∣∣∣
p
− ηναXα

= −ηναδαµ
= −ηµν

This and the fact that gµν(q) = ηµν give an expression for the van Vleck determinant that is easier
to compute.
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κ(p, q) = |det g(p)|−1/4 ,
where g is computed

in normal coordinates around q.
(4.12)

Properties of the van Vleck determinant:

i) κ(p, q) = κ(q, p) (4.13)

ii)
left

dκ(p, q) = −1

4

d (det g)p
det g(p)

κ(p, q),
where g is in normal

coordinates around q.
(4.14)

4.3 Parallel transport

Parallel transport is a linear isomorphism between tangent spaces determined by a curve joining them.
Let [0, 1]

γ
−!M be a curve joining so that q = γ(0) and p = γ(1). The parallel transport

TqM
P
−! TpM

Z0 7! Z(1)

is defined by solving the IVP {
∇γ̇Z = 0

Z(0) = Z0

}
. (4.15)
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Z(0)

Z(λ)

Z(1)

q = γ(0)

p = γ(1)

γ(λ)

Figure 4.2: Parallel transport of vector Z along a curve γ provides a way to compare tangent vectors
across different tangent planes. But the comparison is curve dependent.

Parallel transport does not depend on choice of parameterization of γ. A useful property of parallel
transport is that it preserves the metric and time orientation. Preservation of the metric means that

〈PZ1, PZ2〉 = 〈Z1, Z2〉 ∀Z1, Z2 ∈ TqM. (4.16)

It is useful to describe parallel transport as a bitensor field. Again, when working in a geodesically con-
vex domain Ω ⊆M there is a unique geodesic between any two points. Use parallel transport along
the geodesics to define parallel transport as a bitensor field P ∈ Γ (TΩ� T ∗Ω). Applying equation
(4.16) on basis vectors in TqM gives

〈Peµ, P eν〉 = 〈eµ, eν〉〈
Pα|µ(p, q)eµ, P

β|ν(p, q)eν
〉

= 〈eµ, eν〉
Pα|µ(p, q)P β|ν(p, q)gαβ(p) = gµν(q).

Since parallel transport is defined by an IVP, and IVPs have unique solutions, parallel transporting
from q to p and then back to q again gives identity. That means

P µ|α(q, p)Pα|ν(p, q) = δµν

P µ|α(q, p)Pα|ν(p, q)P β|ν(p, q)︸ ︷︷ ︸
gαβ(p)

= δµνP
β|ν(p, q)

P µ|β(p, q) = P β|µ(q, p).
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Also, directly from the definition of parallel transport

left

∇−Y P (p, q)Z0 =
left

∇γ̇(1)P (γ(1), q)Z0

= ∇γ̇(1)Z(1)

= 0 ∀Z0 ∈ TqM.

Properties of parallel transport bitensor field:

i) P µ|ν(p, q) = P ν |µ(q, p) (4.17)

ii)
left

∇−Y P (p, q) = 0, where q = expp(Y ). (4.18)

4.4 Causality

Def 9
A tangent vector X ∈ TM is

1. timelike if 〈X〉2 < 0

2. lightlike if 〈X〉2 = 0 and X 6= 0

3. spacelike if 〈X〉2 > 0 or X = 0.

Every tangent vector falls into exactly one of these three categories. A tangent vector is called causal
if it is either timelike or lightlike.

Def 10
Let p ∈M. Two causal tangent vectors X, Y ∈ TpM have same time orientation if

〈X, Y 〉 < 0

or

X and Y are both lightlike and X = λY for a λ > 0.

This is an equivalence relation on causal vectors in TpM. There are exactly two equivalence classes,
and they are called future-directed and past-directed vectors.
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This means that causal tangent vectors can be partitioned into future-directed and past-directed tan-
gent vectors. Recall thatM is assumed to be time oriented. That meansM is equipped with a contin-
uous designation of future-directed and past-directed tangent vectors among the causal tangent vec-
tors all across itself. By continuity, parallel transport preserves time orientation.

Z is ±-directed ⇐⇒ PZ is ±-directed ∀Z ∈ TqM, (4.19)

where ”+” means future and ”−” means past.

Def 11
Let p ∈ Ω. Define the future and past light cone together with its inside and whole as

i) J±(p) ≡ expp ({X ∈ TpM | X is zero or ± directed}) ∩ Ω

ii) D±(p) ≡ expp ({X ∈ TpM | X is timelike and ± directed}) ∩ Ω

iii) C±(p) ≡ expp ({X ∈ TpM | X is lightlike and ± directed}) ∩ Ω

iv) J(p) ≡ J−(p) ∪ J+(p)

v) D(p) ≡ D−(p) ∪D+(p)

vi) C(p) ≡ C−(p) ∪ C+(p).

For all subsets A ⊆ Ω define

i) J±(A) ≡
⋃
q∈A J±(q) and J(A) ≡

⋃
q∈A J(q)

ii) D±(A) ≡
⋃
q∈AD±(q) and D(A) ≡

⋃
q∈AD(q).

Note that J±(p) is closed in Ω, D±(p) is open and C±(p) ⊆ Ω is a submanifold of codimension 1. It

is because exp−1
p (Ω)

expp
−−! Ω is a diffeomorphism and the preimage theorem.

Proposition 1
Let p ∈ Ω. Then

D±(p) =D± (J±(p)) = J± (D±(p)) = D± (D±(p)) (4.20)

J±(p) =J± (J±(p)) . (4.21)

Proof is on p. 80.
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Proposition 2

Ω =
⋃
p∈Ω

D±(p). (4.22)

Proof is on p. 81.

4.5 The advanced and retarded Green’s function

The retarded and advanced Green’s function that solve the Lorentz gauge conditional Gauss-Ampére
equation (2.13) are constructed with reference to Friedlander’s book [6]. Let q ∈ Ω and j ∈ TqM.
The goal is to find G±,j ∈ D′(1,0)(Ω) so that

LG±,j = jδq. (4.23)

Here, δq is the Dirac delta distribution on Ω. Start by writing G±,j as

G±,j ≡
1

4π
UjδC±(q) +

1

4π
V±,j, (4.24)

where
δC±(q) ≡ lim

ε#0
1J±(q) · δ

(
σq + ε2

)
∈ D′(Ω), (4.25)

1J±(q) is the indicator function on J±(q), Uj ∈ T(1,0)(Ω) and V±,j ∈ D′(1,0)(Ω). The denominator 4π

is explained later. It is the area of unit 3-sphere. Notice that δ (σq + ε2) ∈ D′(Ω) is not defined for
ε = 0 because supp δ = {0} * Reg(σq). The multiplication in (4.25) is defined because 1J±(q) and
δ (σq + ε2) have disjoint singular support. It is not obvious that the distribution limit in (4.25) exists,
but it appears when we find a more computable expression for it.

The strategy is to apply the wave operator L on G±,j and see what choice of coefficients Uj and V±,j
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that makes G±,j a Green’s function. By using Leibniz’s rule and the chain rule distributions,

∇α

(
UjδC±(q)

)
=∇α lim

ε!0

(
Uj1J±(q)δ

(
σq + ε2

))
= lim

ε!0
∇α

(
Uj1J±(q)δ

(
σq + ε2

))
by continuity

= lim
ε!0
∇αUj1J±(q)δ

(
σq + ε2

)
+ Uj ∂α1J±(q)δ

(
σq + ε2

)︸ ︷︷ ︸
=0

because of disjoint supports

+Uj1J±(q)δ
′ (σq + ε2

)
∂ασq

∇α∇α

(
UjδC±(q)

)
=∇α

(
lim
ε!0
∇αUj1J±(q)δ

(
σq + ε2

)
+ Uj1J±(q)δ

′ (σq + ε2
)
∂ασq

)
= lim

ε!0
∇α
(
∇αUj1J±(q)δ

(
σq + ε2

)
+ Uj1J±(q)δ

′ (σq + ε2
)
∂ασq

)
by continuity

= lim
ε!0
∇α∇αUj1J±(q)δ

(
σq + ε2

)
+∇αUj ∂

α1J±(q)δ
(
σq + ε2

)︸ ︷︷ ︸
=0

because of disjoint support

+∇αUj1J±(q)δ
′ (σq + ε2

)
∂ασq +∇αUj1J±(q)δ

′ (σq + ε2
)
∂ασq

+ Uj ∂
α1J±(q)δ

′ (σq + ε2
)︸ ︷︷ ︸

=0
because of disjoint supports

∂ασq + Uj1J±(q)δ
′′ (σq + ε2

)
∂ασq∂ασq︸ ︷︷ ︸

=2σq

+ Uj1J±(q)δ
′ (σq + ε2

)
∇α∂ασq

= lim
ε#0

UjδC±(q) + (2∇αUj∂
ασq + Uj σq) 1J±(q)δ

′ (σq + ε2
)

+ 2Ujσq1J±(q)δ
′′ (σq + ε2

)
.

The Dirac delta distribution on R satisfies

tδ(t) = 0

because 〈tδ(t), φ(t)〉 = 〈δ(t), tφ(t)〉 = 0 · φ(0) = 0 ∀φ ∈ D(R). Differentiate twice.

δ(t) + tδ′(t) = 0

δ′(t) + δ′(t) + tδ′′(t) = 0

tδ′′(t) = −2δ′(t).

That means
σqδ
′′ (σq + ε2

)
= −ε2δ′′

(
σq + ε2

)
− 2δ′

(
σq + ε2

)
. (4.26)

Insert into
(
UjδC±(q)

)
.(

UjδC±(q)

)
= lim

ε#0
UjδC±(q) + (2∇αUj∂

ασq + Uj σq − 4Uj) 1J±(q)δ
′ (σq + ε2

)
− 2Uj1J±(q)ε

2δ′′
(
σq + ε2

)
,
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so

L
(
UjδC±(q)

)
= lim

ε#0
LUjδC±(q) − (2∇αUj∂

ασq + Uj σq − 4Uj) 1J±(q)δ
′ (σq + ε2

)
(4.27)

+ 2Uj1J±(q)ε
2δ′′
(
σq + ε2

)
.

To compute limε!0 1J±(q)ε
2δ′′ (σ + ε2), let φ ∈ D(Ω) and use definition 3.13 of product of distributions.

〈
1J±(q) · ε2δ′′

(
σq + ε2

)
, φ
〉

= ε2

〈
δ′′
(
σq + ε2

)
, ρ±,ε · 1J±(q)︸ ︷︷ ︸

smooth

·φ

〉
+ ε2

〈
1J±(q), (1− ρ±) · 0 · φ

〉
= ε2

〈
δ′′(t),

∫
σ−1
q ({t−ε2})

ρ±,ε1J±(q)φωσq ,t−ε2

〉

= ε2
d2

dt2

∣∣∣∣
0

∫
σ−1
q ({t−ε2})

ρ±,ε1J±(q)φωσq ,t−ε2

= ε2
d2

dt2

∣∣∣∣
ε2

∫
σ−1
q ({−t})

ρ±,ε1J±(q)φωσq ,−t = (∗),

where ρ±,ε ∈ C∞(Ω) is 1 on a singsupp δ (σq + ε2) = σ−1
q ({−ε2}) and 0 on singsupp 1J±(q) = C±(q).

xi

x0

singsupp 1J+(q) = C+(q)

singsupp 1J−(q) = C−(q)

singsupp δ (σq + ε2) = σ−1
q ({−ε2})

q

Figure 4.3: The drawing shows that singular support of 1J±(q) and δ (σq + ε2) are disjoint as long as
ε 6= 0. As ε approaches zero, singsupp δ (σq + ε2) approaches singsupp 1J−(q) ∪ singsupp 1J+(q).
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To find the Leray form ωσq ,−t ∈ Ω3
(
σ−1
q ({−t})

)
, choose normal coordinates Ω

(x0,...,x3)≡(x0,x)
−−−−−−−−−−! R4

around q. Then ω(x) =
√
| det g(x)|dx0 ∧ · · · ∧ dx3. dσq(x) = ∂µσq(x)dxµ = ηµνx

νdxµ.

dσq(x) ∧
(
−
√
| det g(x)| 1

x0
dx1 ∧ dx2 ∧ dx3

)
=ηµνx

νdxµ ∧
(
−
√
| det g(x)| 1

x0
dx1 ∧ dx2 ∧ dx3

)
=η00x

0dx0 ∧
(
−
√
| det g(x)| 1

x0
dx1 ∧ dx2 ∧ dx3

)
=
√
| det g(x)|dx0 ∧ · · · ∧ dx3

=ω(x).

On the submanifold σ−1
q ({−t}), x0 = ±

√
|x|+ 2t. So the three spacial coordinates x = (x1, x2, x3)

work as a global coordinate system on σ−1
q ({−t}). The unique Leray form is therefore

ωσq ,−t

∣∣∣∣
σ−1
q ({−t})∩J±(q)

(x) = ∓
√∣∣∣det g

(
±
√
|x|2 + t,x

)∣∣∣dx1 ∧ dx2 ∧ dx3√
|x|2 + 2t

, t > 0. (4.28)

One can now convince oneself that the limit δC±(q) = limε#0 1J±(q)δ (σq + ε2) exists by using the ex-
pression for the Leray form ωσq ,−ε2 . ∀φ ∈ D(Ω)

〈
1J±(q)δ

(
σq + ε2

)
, φ
〉

=

∫
R3

φ
(
±
√
|x|2 + 2ε2,x

)√∣∣∣det g
(
±
√
|x|2 + 2ε2,x

)∣∣∣ d3x√
|x|2 + 2ε2

(4.29)

〈
δC±(q), φ

〉
=

∫
R3

φ (±|x|,x)
√
|det g (±|x|,x)|d

3x

|x|
. (4.30)
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Insert (4.28) for the Leray form in (∗), and then go over to polar coordinates (r, θ, ϕ).

(∗) =ε2
d2

dt2

∣∣∣∣
ε2

∫
R3

φ
(
±
√
|x|2 + 2t,x

)√∣∣∣det g
(
±
√
|x|2 + 2t,x

)∣∣∣ d3x√
|x|2 + 2t

=ε2
d2

dt2

∣∣∣∣
ε2

∫ ∞
0

∫ 2π

0

∫ π/2

−π/2
φ
(
±
√
r2 + 2t, r, θ, ϕ

)√∣∣∣det g
(
±
√
r2 + 2t, r, θ, ϕ

)∣∣∣ cos θdθdϕ︸ ︷︷ ︸
≡ψ(±

√
r2+2t,r)

r2dr√
r2 + 2t

=ε2
∫ ∞

0

∂2

∂t2

∣∣∣∣
ε2
ψ
(
±
√
r2 + 2t, r

) r2

√
r2 + 2t

dr

=ε2
∫ ∞

0

∂2
0ψ
(
±
√
r2 + 2ε2, r

) r2

(r2 + 2ε2)3/2
dr

∓ 2ε2
∫ ∞

0

∂0ψ
(
±
√
r2 + 2ε2, r

) r2

(r2 + 2ε2)2dr

+ 3ε2
∫ ∞

0

ψ
(
±
√
r2 + 2ε2, r

) r2

(r2 + 2ε2)5/2
dr.

Since φ has compact support, (x0, r)(Ω) 3 (x0, r) 7! ∂2
0ψ (x0, r) also has compact support and there-

fore has a finite supremum. Denote the length (Lebesgue measure) of r(supp ∂2
0ψ) ⊆ R by C. Since

the radial coordinate Ω
r
−! R is continuous and supp ∂2

0ψ is compact, r(supp ∂2
0ψ) is compact and

hence C < ∞. We also have the inequality r2

(r2+2ε2)3/2 ≤ 21/2

33/2
1
ε
∀r ≥ 0. That means the first integral

can be bounded by 21/2

33/2C sup(x0,r)∈(x0,r)(Ω) |∂2
0ψ (x0, r)| 1

ε
.∣∣∣∣∣ε2

∫ ∞
0

∂2
0ψ
(
±
√
r2 + 2ε2, r

) r2

(r2 + 2ε2)3/2
dr

∣∣∣∣∣ ≤ ε2
21/2

33/2
C sup

(x0,r)∈(x0,r)(Ω)

∣∣∂2
0ψ
(
x0, r

)∣∣ 1

ε
,

so

lim
ε#0

ε2
∫ ∞

0

∂2
0ψ
(
±
√
r2 + 2ε2, r

) r2

(r2 + 2ε2)3/2
dr = 0.

As for the second and third integral, do the substitution s ≡ 1
ε
r.∣∣∣∣ε2 ∫ ∞

0

∂0ψ
(
±
√
r2 + 2ε2, r

) r2

(r2 + 2ε2)2dr

∣∣∣∣ =

∣∣∣∣ε2 ∫ ∞
0

∂0ψ
(
±
√
ε2s2 + 2ε2, εs

) ε2s2

(ε2s2 + 2ε2)2 εds

∣∣∣∣
=

∣∣∣∣ε∫ ∞
0

∂0ψ
(
±
√
ε2s2 + 2ε2, εs

) s2

(s2 + 2)2ds

∣∣∣∣
≤ ε sup

r≥0

∣∣∣∂0ψ
(√

r2 + 2ε2, r
)∣∣∣ ∫ ∞

0

s2

(s2 + 2)2ds︸ ︷︷ ︸
finite

,
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so

lim
ε#0

ε2
∫ ∞

0

∂0ψ
(
±
√
r2 + 2ε2, r

) r2

(r2 + 2ε2)2dr = 0.

The third integral is

ε2
∫ ∞

0

ψ
(
±
√
r2 + 2ε2, r

) r2

(r2 + 2ε2)5/2
dr = ε2

∫ ∞
0

ψ
(
±
√
ε2s2 + 2ε2, εs

) ε2s2

(ε2s2 + 2ε2)5/2
εds

=

∫ ∞
0

ψ
(
±ε
√
s2 + 2, εs

) s2

(s2 + 2)5/2
ds.

Take the limit ε # 0.

lim
ε#0

ε2
∫ ∞

0

ψ
(
±
√
r2 + 2ε2, r

) r2

(r2 + 2ε2)5/2
dr

= lim
ε#0

∫ ∞
0

ψ
(
±ε
√
s2 + 2, εs

) s2

(s2 + 2)5/2
ds

=

∫ ∞
0

lim
ε#0

ψ
(
±ε
√
s2 + 2, εs

) s2

(s2 + 2)5/2
ds

=ψ(0, 0)

∫ ∞
0

s2

(s2 + 2)5/2
ds︸ ︷︷ ︸

= 1
6

=

∫ 2π

0

∫ π/2

−π/2
φ (0, 0, θ, ϕ)︸ ︷︷ ︸

=φ(q)

√
|det g (0, 0, θ, ϕ)|︸ ︷︷ ︸

=1

sin2 θdθdϕ · 1

6

=
2π

3
φ(q).

We get at last
lim
ε#0

〈
ε21J±(q) · δ′′

(
σq + ε2

)
, φ
〉

= 2πφ(q) ∀φ ∈ D(Ω).

lim
ε#0

ε21J±(q) · δ′′
(
σq + ε2

)
= 2πδq. (4.31)

Now plug that into (4.27).

L
(
UjδC±(q)

)
= lim

ε#0
4πUjδq + LUjδC±(q) − (2∇αUj∂

ασq + ( σq − 4)Uj) 1J±(q)δ
′ (σq + ε2

)
. (4.32)

Now apply L on V±,j. But if V±,j shall cancel terms in L
(
UjδC±(q)

)
that prevent UjδC±(q) from being

a Green’s function, V±,j must have a singularity at C±(q). Write therefore

V±,j = 1J±(q) ·Wj, (4.33)
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where Wj ∈ T(1,0)(Ω) is a smooth vectorfield. Now comes a trick. Note that

1J±(q) = lim
ε#0

1J±(q) · θ
(
−σ − ε2

)
, (4.34)

where θ ∈ D′(R) is the Heaviside step function. Also, the Heaviside step function satisfies

θ′(t) = δ(t). (4.35)

Apply L on V±,j = limε#0 1J±(q)θ (−σ − ε2)Wj.

∇αV±,j =∇α

(
Wj · lim

ε#0
θ
(
−σq(p)− ε2

)
1J±(q)

)
= lim

ε#0
∇α

(
Wj · θ

(
−σq − ε2

)
1J±(q)

)
by continuity

= lim
ε#0
∇αWjθ

(
−σq − ε2

)
1J±(q) +Wj θ

′ (−σq − ε2)︸ ︷︷ ︸
=δ(−σ−ε2)=δ(σ+ε2)

(−1)∂ασq1J±(q)

+Wj θ
(
−σq − ε2

)
∂α1J±(q)︸ ︷︷ ︸

=0 because of disjoint support

∇α∇αV±,j =∇α

(
lim
ε#0
∇αWjθ

(
−σq − ε2

)
1J±(q) −Wjδ

(
σ + ε2

)
∂ασq1J±(q)

)
= lim

ε#0
∇α
(
∇αWjθ

(
−σq − ε2

)
1J±(q) −Wjδ

(
σ + ε2

)
∂ασq1J±(q)

)
= lim

ε#0
Wjθ

(
−σq − ε2

)
1J±(q) +∇αWj θ

′ (−σq − ε2)︸ ︷︷ ︸
=δ(σq+ε2)

(−1)∂ασq1J±(q)

+∇αWj θ
(
−σq − ε2

)
∂α1J±(q)︸ ︷︷ ︸

=0

−∇αWjδ
(
σq + ε2

)
∂ασq1J±(q)

−Wjδ
′ (σq + ε2

)
∂ασq∂ασq︸ ︷︷ ︸

=2σq

1J±(q) −Wjδ
(
σq + ε2

)
σq1J±(q)

−Wj δ
(
σq + ε2

)
∂ασq∂

α1J±(q)︸ ︷︷ ︸
=0

= lim
ε#0

Wjθ
(
−σq − ε2

)
1J±(q) + (−2∂ασq∇αWj − σqWj) 1J±(q)δ

(
σq + ε2

)
− 2Wjσδ

′ (σq + ε2
)
.

Since tδ′(t) = −δ(t),
σqδ
′ (σq + ε2

)
= −δ

(
σq + ε2

)
− ε2δ′

(
σq + ε2

)
. (4.36)
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Insert into V±,j.

V±,j = lim
ε#0

WjH
(
−σq − ε2

)
1J±(q) + (−2∂ασq∇αWj − σqWj + 2Wj) 1J±(q)δ

(
σq + ε2

)
− 2Wjε

2δ′
(
σq + ε2

)
= Wj1J±(q) + (−2∂ασq∇αWj − ( σq − 2)Wj) δ± − 2Wj lim

ε#0
ε2δ′

(
σq + ε2

)
.

limε#0 ε
2δ′ (σq + ε2) can be computed in similar fashion to limε#0 ε

2δ′′ (σq + ε2). Let φ ∈ D(Ω).

〈
ε2δ′

(
σq + ε2

)
, φ
〉

= ε2

〈
δ′(t+ ε2),

∫
σ−1
q ({t})

ρ±φωσq ,t

〉

= −ε2 d
dt

∣∣∣∣
ε2

∫
σ−1
q ({−t})

ρ±φωσq ,t

= −ε2 d
dt

∣∣∣∣
ε2

∫
R3

φ
(
±
√
|x|2 + 2t,x

)√∣∣∣det g
(
±
√
|x|2 + 2t,x

)∣∣∣ d3x√
|x|2 + 2t

= −ε2 d
dt

∣∣∣∣
ε2

∫ ∞
0

ψ
(
±
√
r2 + 2t, r

) r2

√
r2 + 2t

dr

= −ε2
∫ ∞

0

∂

∂t

∣∣∣∣
ε2
ψ
(
±
√
r2 + 2t, r

) r2

√
r2 + 2t

dr

= ∓ ε2
∫ ∞

0

∂0ψ
(
±
√
r2 + 2ε2, r

) r2

r2 + 2ε2
dr︸ ︷︷ ︸

−!0 since r2

r2+ε2
≤1

+ ε2
∫ ∞

0

ψ
(
±
√
r2 + 2ε2, r

) r2

(r2 + 2ε2)3/2
dr︸ ︷︷ ︸

−!0 by equation 4.5

.

lim
ε#0

ε2δ′
(
σq + ε2

)
= 0. (4.37)

That means
LV±,j = LWj1J±(q) + (2∂ασq∇αWj + ( σq − 2)Wj) δC±(q). (4.38)

The wave operator applied on G±,j becomes

4πLG±,j =4πUjδq + (LUj + 2∂ασq∇αWj + ( σq − 2)Wj) δC±(q) + LWj1J±(q) (4.39)

− lim
ε#0

(2∇αUj∂
ασq + ( σq − 4)Uj) 1J±(q)δ

′ (σq + ε2
)︸ ︷︷ ︸

support within D±(q)

.
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If

Uj(q) =j (4.40)

Transport equation for Uj 2∂ασq∇αUj + ( σq − 4)Uj =0 on D±(q) (4.41)

Transport equation for Wj 2∂ασq∇αWj + ( σq − 2)Wj =− LUj on C±(q) (4.42)

Wave equation in vacuum LWj =0 on D±(q), (4.43)

G±,j satisfies (4.23) and hence is a Green’s function. To solve (4.40 - 4.43), assume there are smooth
solutions Uj,Wj ∈ T(1,0)(Ω). By restricting the transport equations to geodesics they become ODEs.
Let X ∈ TqM be causal and set γ(λ) ≡ eλX . Then evaluated on γ(λ),

∂ασq(λ)∇αUj(λ) = λ
DUj
dλ

and ∂ασq(λ)∇αWj(λ) = λ
DWj

dλ
.

Then

2λ
DUj
dλ

+ ( σq − 4)Uj = 0 (4.44)

2λ
DWj

dλ
+ ( σq − 2)Wj = −LUj. (4.45)

By (4.10), σq(λ) = 4 + 1
2

λ d
dλ

det g(λ)

det g(λ)
. Plug in and solve the transport equation for Uj.

2λ
DUj
dλ

+
1

2

λ d
dλ

det g

det g
Uj =0

|det g|1/4 DUj
dλ

+
d

dλ

(
|det g|1/4

)
Uj =0

|det g|1/4 P (q, λ)
DUj
dλ︸ ︷︷ ︸

= d
dλ

(P (q,λ)Uj)

by the definition of D
dλ

+
d

dλ

(
|det g|1/4

)
P (q, λ)Uj =0

d

dλ

(
|det g|1/4 P (q, λ)Uj

)
=0

|det g|1/4 P (q, λ)Uj =Uj(q) = j by (4.40)

Uj(λ) = |det g(λ)|−1/4 P (λ, q)j.
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Solve the transport equation for Wj.

2λ
DWj

dλ
+

(
1

2

λ d
dλ

det g(λ)

det g(λ)
+ 2︸ ︷︷ ︸

=2|det g|−1/4 d
dλ(λ|det g|1/4)

)
Wj = −LUj

2λ |det g|1/4 P (q, λ)
DWj

dλ︸ ︷︷ ︸
= d
dλ

(P (q,λ)Wj)

+2
d

dλ

(
λ |det g|1/4

)
P (q, λ)Wj = − |det g|1/4 P (q, λ)LUj

2
d

dλ

(
λ |det g|1/4 P (q, λ)Wj

)
=− |det g|1/4 P (q, λ)LUj

λ |det g|1/4 P (q, λ)Wj =− 1

2

∫ λ

0

|det g(λ′)|1/4 P (q, λ′)LUj(λ′)dλ′

+ Z︸︷︷︸
integration constant

∈ TqM

Wj(λ) =− 1

2λ

∫ λ

0

κ(λ, q)

κ(λ′, q)
P (λ, λ′)LUj(λ′)dλ′

+
1

λ
κ(λ, q)P (λ, q)Z.

Since Wj is assumed to be smooth, the integration constant Z = 0. The solutions are

Uj(p) =κ(p, q)P (p, q)j ∀p ∈ J(q) (4.46)

Wj

∣∣∣
C±(q)

(p) =− 1

2

∫ 1

0

κ(p, q)

κ(γ(λ), q)
P (p, γ(λ))LUj(γ(λ))dλ, ∀p ∈ C±(q), (4.47)

where γ(λ) ≡ eλX

and p = expq(X).

This can be confirmed by testing the solutions against (4.40 - 4.42). Determining W on all J±(q) can
be done by solving the boundary value problem

LWj(p) = 0 ∀p ∈ D±(q)

Wj(p) = Wj

∣∣∣
C±(q)

(p) ∀p ∈ C±(q)

 . (4.48)

According to theorem 4.5.1 in Friedlander’s book [6], this boundary value problem has a solution if
one requires Ω to be a ”causal domain”. Ω ⊆M is defined to be a causal domain if
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i) Ω is geodesically convex

ii) J−(p) ∩ J+(q) is compact ∀p, q ∈ Ω. (Causal diamonds are compact)

p

q

Ω

Figure 4.4: Causal diamonds may fail to be compact if for example part of them is ”outside” the
geodesically convex domain Ω.

That concludes the existence of a two Green’s functions C and G+,j given by

G±,j =
1

4π
UjδC±(q) +

1

4π
Wj1J±(q),

where Uj(p) = κ(p, q)P (p, q)j

and Wj is a solution to (4.48).
(4.49)

With these two Green’s functions we can prove the main result of this chapter.

Def 12
A subset B ⊆ Ω is

i) future-compact if B ∩ J+(p) is compact ∀p ∈ Ω

ii) past-compact if B ∩ J−(p) is compact ∀p ∈ Ω.
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Note that a ∓-compact subset B ⊆ Ω is closed since

Ω \B =
⋃
p∈Ω

D∓(p) \B

=
⋃
p∈Ω

D∓(p) \ (B ∩ J∓(p)︸ ︷︷ ︸
closed because it’s compact

)

is open.

Lemma 6
Let B ⊆ Ω be ∓-compact. Then B ∩ J∓(K) is compact ∀ compact K ⊆ Ω.

Proof is on p. 82.

Lemma 7
Let Ω be a causal domain and let B ⊆ Ω be ∓-compact. Then J±(B) is ∓-compact.

Proof is on p. 82. Define

T±,(r,s)(Ω) ≡
{
u ∈ T(r,s)(Ω)

∣∣ suppu is ∓-compact
}

(4.50)

D′±,(r,s)(Ω) ≡
{
u ∈ D′(r,s)(Ω)

∣∣ suppu is ∓-compact
}
. (4.51)

Define U and W as bitensor fields in T(1,0)�(0,1)(Ω) and bitensor distribution V± ∈ D′(1,0)�(0,1)(Ω).

Uj
µ(p) ≡ Uµ|ν(p, q)jν (4.52)

Wj
µ(p) ≡ W µ|ν(p, q)jν (4.53)

V±,j
µ(p) ≡ V±

µ|ν(p, q)jν (4.54)

∀j ∈ TqΩ. Here comes the main result of this chapter.

Theorem 4 (Existence and uniqueness of solution)
Let Ω be a causal domain. Then

T±,(1,0)(Ω)
L
−! T±,(1,0)(Ω) and D′±,(1,0)(Ω)

L
−! D′±,(1,0)(Ω)

are bijective with inverses

T±,(1,0)(Ω)
G±
−! T±,(1,0)(Ω) and D′±,(1,0)(Ω)

G±
−! D′±,(1,0)(Ω)

given by
〈G±u, φ〉 =

〈
u,G′±φ

〉
∀φ ∈ D(1,0)(Ω),
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where

G′±φ
ν(q) =

1

4π

∫
C±(q)

Uµ|ν(p, q)φµ(p)ωσq ,0(p) +
1

4π

∫
D±(q)

Wµ|ν(p, q)φµ(p)ω(p). (4.55)

Furthermore, ∀j ∈ T±,(1,0)(Ω)

G±j
ν(p) =

1

4π

∫
C∓(p)

Uν |µ(p, q)jµ(q)ωσp,0(q) +
1

4π

∫
D∓(p)

W ν |µ(p, q)jµ(q)ω(q) ∀p ∈ Ω.

(4.56)

Proof is on p. 83.

4.6 Integral equation for W

It turns out there is an easier equation than the boundary value problem (4.48) to describe the bitensor
field W . From equation (4.38), (4.42) and (4.43),

LV±,j = −LUjδC±(q). (4.57)

Since V±,j ∈ D′±,(1,0)(Ω), theorem 4 says that

V±,j = −G±
(
LUjδC±(q)

)
. (4.58)

Let φ ∈ D(1,0)(Ω) and apply V±,j on φ.

〈V±,j, φ〉 =
〈
−G±

(
LUjδC±(q)

)
, φ
〉

=−
〈
LUjδC±(q), G

′
±φ
〉
.∫

D±(q)

Wj
µφµω =−

∫
C±(q)

LUjµG′±φµωσq ,0

=− 1

4π

∫
C±(q)

LUjµ(p)

(∫
C±(p)

Uα|µ(p′, p)φα(p′)ωσp,0(p′)

)
ωσq ,0(p)

− 1

4π

∫
C±(q)

LUjµ(p)

(∫
D±(p)

Wα|µ(p′, p)φα(p′)ω(p′)

)
ωσq ,0(p).

The first integration region is

Σ1 ≡{(p, p′) ∈ Ω× Ω | p ∈ C±(q) and p′ ∈ C±(p) ∩ suppφ and p′ /∈ C±(q)}
= {(p, p′) ∈ Ω× Ω | p ∈ C±(q) ∩ C∓(p′) and p′ ∈ D±(q) ∩ suppφ}
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because C± (C±(q)) \ C±(q) ⊆ D±(q) (proposition 1). Note that requirement p′ /∈ C±(q) is forced,
but doesn’t affect the first integral because all (p, p′) ∈ Ω×Ω for which p′ ∈ C±(q) has measure zero.

C±(q)
σp′

∣∣
C±(q)

−−−−−! R is a submersion whenever p′ /∈ C±(q). In that case, the preimage theorem says that

σp′
∣∣−1

C±(q)
({0}) = C∓(p′)∩C±(q) is an orientable two-dimensional submanifold of Ω. Through a Leray

form, factorize ωσq ,0 ∈ Ω3 (C±(q)) as described in theorem 1.

ωσq ,0 = ω(σq ,σp′ ),0
∧ dσp′

for a unique ω(σq ,σp′ ),0
∈ Ω2 (C∓(p′) ∩ C±(q)). So∫

C±(q)

LUjµ(p)

(∫
C±(p)

Uα|µ(p′, p)φα(p′)ωσp,0(p′)

)
ωσq ,0(p)

=

∫
Σ1

LUjµ(p)Uα|µ(p′, p)φα(p′)ωσq ,0(p) ∧ ωσp,0(p′)

=

∫
Σ1

LUjµ(p)Uα|µ(p′, p)φα(p′)ω(σq ,σp′ ),0
(p) ∧ dσp′(p) ∧ ωσp,0(p′)

=

∫
Σ1

LUjµ(p)Uα|µ(p′, p)φα(p′)ω(σq ,σp′ ),0
(p) ∧ (−1) dσp(p

′) ∧ ωσp,0(p′)︸ ︷︷ ︸
=ω(p′)

=

∫
D±(q)

(∫
C±(q)∩C∓(p′)

LUjµ(p)Uα|µ(p′, p)ω(σq ,σp′ ),0
(p)

)
φα(p′)ω(p′)

The orientation of the manifolds integrated over is chosen so that the differential forms are positive.
The second integration region is

Σ2 ≡{(p, p′) ∈ Ω× Ω | p ∈ C±(q) and p′ ∈ D±(p) ∩ suppφ}
= {(p, p′) ∈ Ω× Ω | p ∈ C±(q) ∩D∓(p′) and p′ ∈ D±(q) ∩ suppφ}

because D± (J±(q)) = D±(q) (proposition 1). So∫
C±(q)

LUjµ(p)

(∫
D±(p)

Wα|µ(p′, p)φα(p′)ω(p′)

)
ωσq ,0(p)

=

∫
Σ2

LUjµ(p)Wα|µ(p′, p)φα(p′)ωσq ,0(p) ∧ ω(p′)

=

∫
D±(q)

(∫
C±(q)∩D∓(p′)

LUjµ(p)Wα|µ(p′, p)ωσq ,0(p)

)
φα(p′)ω(p′).

Equation 4.58 written out becomes

Wj
α(p′) =− 1

4π

∫
C±(q)∩D∓(p′)

LUjµ(p)Wα|µ(p′, p)ωσq ,0(p)

− 1

4π

∫
C±(q)∩C∓(p′)

LUjµ(p)Uα|µ(p′, p)ω(σq ,σp′ ),0
(p).
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Recall that V±(p, q) = 1J±(q)(p) ·W (p, q). The bitensor distribution V∓ ∈ D′(1,0)�(0,1)(Ω) satisfies

V∓
µ|ν(p, q) =− 1

4π

∫
D±(p)∩C∓(q)

V∓
µ|α(p, p′)

left

LUα|ν(p′, q)ωσq ,0(p′) (4.59)

− 1

4π

∫
C±(p)∩C∓(q)

Uµ|α(p, p′)
left

LUα|ν(p′, q)ω(σp,σq),0(p′)

∀p, q ∈ Ω, where ω(σp,σq),0 ∈ Ω2 (C±(p) ∩ C∓(q)) is the Leray form satisfying

dσp(p
′) ∧ dσq(p′) ∧ ω(σp,σq),0(p′) = ω(p′) ∀p′ ∈ C±(p) ∩ C∓(q).

Equation (4.59) has a physical interpretation. One can attempt solving it for V∓ with fixed point it-
eration, starting with V∓ = 0. Assuming the iteration converges to the unique solution, the solution
becomes a series expansion

V∓
µ|ν(p, q) (4.60)

=
∞∑
k=1

∫
D±(p)∩C∓(q)

ωσq ,0(pk)

−4π
. . .

∫
D±(p)∩C∓(p3)

ωσp3 ,0(p2)

−4π

∫
C±(p)∩C∓(p2)

ω(σp,σp2 ),0(p1)

−4π
Uµ|α1(p, p1)

left

LUα1|α2(p1, p2) . . .
left

LUαk |ν(pk, q).

The first term in the series can be interpreted as light moving along the future light cone C+(p) from a
light source situated at p. Then it gets scattered into the inside of the light coneD+(p) to end up at the
point q. The second term can be interpreted as light first moving along the light cone C+(p) to then
get scattered into D+(p), and then get scattered a second time to finally end up at q. More generally,
the k-th term represents light moving from p to q getting scattered k times during its journey. The

bitensor fields U and
left

LU evaluated at lightlike separated points completely describe the scattering
process. In theory, gravity doesn’t just bend light by bending geodesics. It also scatters it!
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C−(q) ∩ C+(p)

C−(q) ∩D+(p)
q

p

Figure 4.5: The integration regions in equation (4.59)
showed in red and blue.

q

p

p1

p2

p3

p4

J+(p) ∩ J−(q)

Figure 4.6: Illustration of the fourth
term in the series expansion solution
(4.60) for V∓. p1, . . . , p4 are integrated
over in the term. The term can be in-
terpreted as light scattering four times
from p to q on the causal diamond
J+(p) ∩ J−(q).

4.7 Light source and luminous particles

The aim in this section is to use intrinsic properties of macroscopic light sources, such as type 1a su-
pernovae, to describe light emission from the light sources. The idea is to divide a macroscopic light
source into small compact pieces of matter that stays compact, also called particles. The purpose is
that if the size of the particles are much less than the typical wavelengths that the particles emit, a
useful approximation can be made. To model a luminous particle let Iτ

γ
−! M be a timelike curve

parametrized by proper time so that 〈γ̇〉2 = −1. γ describes the trajectory of the particle. For each
τ ∈ Iτ define the spacelike submanifolds

Σ(τ) ≡ expγ(τ)

(
(Span γ̇(τ))⊥

)
∩ Ω. (4.61)

These hypersurfaces are the spatial parts of the particle’s local rest frames as it moves along γ. On
Σ(τ) construct a volume form by contracting the 4-form ω induced by g against the coordinate vector
field ∂

∂y0 ∈ Γ (TΣ(τ)). ωΣ(τ) ≡ ∂
∂y0yω. Define the moments

Kr(τ) ≡
∫

Σ(τ)

y⊗r ⊗ d
(
expγ(τ)

)−1

y
j · ωΣ(τ) ∈ Tγ(τ)Ω

⊗(r+1), (4.62)
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where y(q) ≡ exp−1
γ(τ)(q). Define

Mµ1...µr|µν ≡ Kµ1...µrν|µ −Kµ1...µrµ|ν . (4.63)

Note that Mµ1...µr|µν = −Mµ1...µr|νµ. The moments Kr(τ) satisfy an approximate differential relation.

Kµ1...µr|µ(τ) ≈ 1

r + 1

(
D

dτ
Kµ1...µrµ|0(τ) +

r∑
l=1

Mµ1...µ̂l...µr|µµl(τ)

)
. (4.64)

A hat on an index means that the index is absent. To prove (4.64), a definition and a lemma is needed.

Def 13 (The horizontal derivative of the exponential map)
Let p ∈M and X ∈ TpM. The horizontal derivative dH expX of the exponential map is defined by

TpM
dH expX−−−−−! TeXM

[γ] 7!
d

dτ

∣∣∣∣
0

expγ(τ)

(
P τ
γX
)
,

where Tγ(0)M
P τγ
−! Tγ(τ)M is parallel transport along the curve γ.

Lemma 8 (Total derivative is sum of vertical and horizontal derivative)

Let I
X
−! U ⊆ TM be a vector field along a curve I

γ
−!M. Then

d

dτ

∣∣∣∣
0

exp(X(τ)) = d
(
expp

)
X(0)

DX

dτ
(0) + dH expX(0) γ̇(0). (4.65)

Proof is on p. 85.

Proof of approximation (4.64).
For each τ ∈ Iτ extend e0(τ) ≡ γ̇(τ) to an ordered orthonormal basis (e0(τ), . . . , e3(τ)) in Tγ(τ)Ω so
that eµ(τ) is smooth wrt. τ . Let τ0 ∈ Iτ . Construct normal coordinates (y0, . . . , y3) around γ(τ0).

Then expγ(τ0) (yµ(q)eµ) = q ∀q ∈ Ω. In these normal coordinates, define Jν ≡
√
| det g|jν . Then
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from conservation of charge (equation (2.8)), ∂νJ
ν =

√
| det g|∇νj

ν = 0.

Ki1...ir|k =

∫
R3

yi1 . . . yirJkd3y

=

∫
R3

∂l
(
yk
)
yi1 . . . yirJ ld3y ∂l

(
yk
)

= δkl

= −
∫
R3

yk∂l
(
yi1 . . . yirJ l

)
d3y

= −
r∑

m=1

∫
R3

ykyi1 . . . ∂l
(
yim
)︸ ︷︷ ︸

=δiml

. . . yirJ ld3y −
∫
R3

ykyi1 . . . yir ∂lJ
l︸︷︷︸

=−∂0J0

d3y

= −
r∑

m=1

∫
R3

yi1 . . . ˆyim︸︷︷︸
not present

. . . yirykJ imd3y +

∫
R3

yi1 . . . yiryk∂0J
0d3y︸ ︷︷ ︸

≡Qi1...irk|0

= −
r∑

m=1

Ki1...̂im...irk|im +Qi1...irk|0

= −
r∑

m=1

M i1...̂im...ir|imk −
r∑

m=1

Ki1...̂im...irim|k

︸ ︷︷ ︸
rKi1...ir |k

+Qi1...irk|0.

(1 + r)Ki1...ir|k = Qi1...irk|0 +
r∑

m=1

M i1...̂im...ir|kim .

To relate Qi1...irk|0 with D
dτ
Ki1...irk|0,

D

dτ

∣∣∣∣
τ0

K |0(τ)

=
D

dτ

∣∣∣∣
τ0

∫
R3

yj1 . . . yjsJ0d3y · ej1 ⊗ · · · ⊗ ejs

=

∫
R3

yj1 . . . yjs
∂

∂τ

∣∣∣∣
τ0

J0
(
expγ(τ)

(
ykek(τ)

))
d3y · ej1 ⊗ · · · ⊗ ejs

+

∫
R3

yj1 . . . yjsJ0d3y · D
dτ

∣∣∣∣
τ0

ej1 ⊗ · · · ⊗ ejs .

Define zµ(τ,y) as the solution to

expγ(τ)

(
ykek(τ)

)
= expγ(τ0) (zµ(τ,y)eµ(τ0)) .
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Differentiate wrt. τ at τ = τ0.

∂

∂τ

∣∣∣∣
τ0

expγ(τ)

(
ykek(τ)

)
=

∂

∂τ

∣∣∣∣
τ0

expγ(τ0) (zµ(τ,y)eµ(τ0))

dH
(
expγ(τ0)

)
ykek

e0 + d
(
expγ(τ0)

)
ykek

(
yi
Dei
dτ

)
= d

(
expγ(τ0)

)
ykek

(
∂zµ

∂τ
eµ

)
dH
(
expγ(τ0)

)
ykek

e0 + yid
(
expγ(τ0)

)
ykek

(
Dei
dτ

)
=
∂zµ

∂τ
∂µ.

Apply dyν .

∂z0

∂τ
(τ0,y) =

〈
dy0, dH

(
expγ(τ0)

)
ykek

e0

〉
+ yi

〈
dy0, d

(
expγ(τ0)

)
ykek

(
Dei
dτ

)〉
=
〈
dy0, dH

(
expγ(τ0)

)
ykek

e0

〉
︸ ︷︷ ︸

≈1 if particle small

+yi
〈
e0,

Dei
dτ

〉

∂zj

∂τ
(τ0,y) =

〈
dyj, dH

(
expγ(τ0)

)
ykek

e0

〉
+ yi

〈
dyj, d

(
expγ(τ0)

)
ykek

(
Dei
dτ

)〉
=
〈
dyj, dH

(
expγ(τ0)

)
ykek

e0

〉
︸ ︷︷ ︸

≈0 if particle small

+yi
〈
ej,

Dei
dτ

〉
,

where (e0, . . . , e3) is the dual basis of (e0, . . . , e3).

∂

∂τ

∣∣∣∣
τ0

J0
(
expγ(τ)

(
ykek(τ)

))
=

∂

∂τ

∣∣∣∣
τ0

J0
(
expγ(τ0) (zµ(τ,y)eµ(τ0))

)
=
∂zµ

∂τ
∂µJ

0(0,y)

≈ ∂0J
0(0,y) + yi

〈
eµ,

Dei
dτ

〉
∂µJ

0(0,y).
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Insert into D
dτ
K |0.

D

dτ
K |0

≈
∫
R3

yj1 . . . yjs
(
∂0J

0(0,y) + yi
〈
eµ,

Dei
dτ

〉
∂µJ

0(0,y)

)
d3y · ej1 ⊗ · · · ⊗ ejs

+

∫
R3

yj1 . . . yjsJ0d3y · D
dτ
ej1 ⊗ · · · ⊗ ejs

=Q|0

+

〈
eµ,

Dei
dτ

〉∫
R3

yj1 . . . yjsyi∂µJ
0(0,y)d3y · ej1 ⊗ · · · ⊗ ejs +

∫
R3

yj1 . . . yjsJ0d3y · D
dτ

(ej1 ⊗ · · · ⊗ ejs)︸ ︷︷ ︸
≈0 if the particle’s acceleration is small compared to its interior oscillation of charges

.

So

Ki1...ir|k ≈ 1

1 + r

(
D

dτ
Ki1...irk|0 +

r∑
m=1

M i1...̂im...ir|kim

)
.

Another intrinsic quantity of luminous particles is the direction in which they emit light. A direction
can be described by a tangent vector which is normalized in some way. Let p ∈ Ω be the position of
an observer. Define the direction vector from the particle towards the observer,

ς(τ, p) ≡ − 1〈
γ̇(τ), exp−1

γ(τ)(p)
〉 exp−1

γ(τ)(p) ∈ Tγ(τ)Ω. (4.66)

Then 〈γ̇(τ), ς(τ, p)〉 = −1, and ς is an intrinsic quantity of the luminous particle.
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Chapter 5

Electromagnetic waves in flat FRW
universe

This chapter uses the mathematics developed in the two previous chapters to derive the relation be-
tween luminosity, redshift, observed light intensity and comoving distance implied by Maxwell’s equa-
tions in curved spacetime.

5.1 The flat FRW universe and comoving coordinates

The flat FRW universe is the manifold

M ≡ It × R3, (5.1)

where It ⊆ R is an open interval. The canonical global coordinate system on M is denoted

(t, χ1, χ2, χ3). M
t
−! It is called cosmic time, andM

χ=(χ1,χ2,χ3)
−−−−−−−−! R3 are called comoving coordinates.

M is equipped with the metric g given by

ds2 = −dt2 + a(t)2
((
dχ1
)2

+
(
dχ2
)2

+
(
dχ3
)2
)
. (5.2)

Sometimes the entire coordinate system (t,χ) is referred to as comoving coordinates. I
a
−! 〈0,∞〉 is

called the scale factor and is a function of cosmic time. The idea of this spacetime is that each time
slice is homogeneous and isotropic in accordance with the cosmological principle. The galaxies are as-
sumed to roughly be standing still in the comoving coordinate system. The scale factor then describes
at what rate the galaxies are diverging from each other. Note that the scale factor is not physical since
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multiplying it with a positive number doesn’t change physics. But the Hubble parameter, defined by

H(t) ≡ a′(t)

a(t)
, (5.3)

is physical and descibes the expansion rate of the universe over cosmic time.

5.2 The wave operator L = − +R

To compute the wave operator T+,(1,0)(M)
L
−! T+,(1,0)(M) from the Lorentz gauge conditional Maxw-

ell’s equations (2.13), the Christoffel symbols and the Ricci tensor of (M, g) are needed. In comoving
coordinates one gets

Γii0 =
a′

a
and Γ0

ii = aa′ and the rest = 0,

R00 = −3
a′′

a
and Rii = aa′′ + 2 (a′)

2
and the rest = 0.

i is NOT summed over. In any coordinate system the d’Alembertian of a vector field A is

∇α∇αA
µ = ∂α∂αA

µ + 2Γµβγ∂βA
γ − Γαββ∂αA

µ +
(
∂δΓµδγ + ΓµαβΓβαγ − ΓµγβΓβδδ

)
Aγ. (5.4)

In comoving coordinates the d’Alembertian of A is

∇α∇αA
0 = ∂α∂αA

0 − 3
a′

a
∂0A

0 + 2
a′

a
∂jA

j + 3

(
a′

a

)2

A0 (5.5)

∇α∇αA
i = ∂α∂αA

i − 5
a′

a
∂0A

i + 2
a′

a3
∂iA

0 −

(
a′′

a
+ 2

(
a′

a

)2
)
Ai, (5.6)

and the Ricci tensor operating on A is

(RA)0 ≡ R0
νA

ν = 3
a′′

a
A0 (5.7)

(RA)i ≡ Ri
νA

ν =

(
a′′

a
+ 2

(
a′

a

)2
)
Ai. (5.8)

The wave operator in comoving coordinates becomes

LA0 = −∂α∂αA0 + 3
a′

a
∂0A

0 − 2
a′

a
∂jA

j + 3

(
a′′

a
−
(
a′

a

)2
)
A0 (5.9)

LAi = −∂α∂αAi + 5
a′

a
∂0A

i − 2
a′

a3
∂iA

0 + 2

(
a′′

a
+ 2

(
a′

a

)2
)
Ai. (5.10)

I used Maxima CAS with the packages ”ctensor” and ”itensor” to carry out the calculations.
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5.3 The exponential map

The exponential map

TpM ⊇ Uq
expq
−−!M (5.11)

X 7! γ(1)

is computed by solving the geodesic equation

γ̈µ + Γµαβγ̇
αγ̇β = 0 (5.12)

from λ = 0 to λ = 1 with initial values {
γ(0) = p

γ̇(0) = X

}
.

Uq denotes the maximal domain of expq. Since geodesics parallel transport their tangent vector along
themselves

d

dλ
〈γ̇(λ), γ̇(λ)〉 = 0. (5.13)

Writing out the geodesic equation in comoving coordinates one gets

ẗ = −aa′ |χ̇|2 (5.14)

χ̈i = −2
a′

a
ṫχ̇i. (5.15)

t(0) = t0

χ̇i(0) =
1

a0

X i

 , a0 ≡ a(t0).

Multiply (5.15) χ̇i and integrate.

χ̇iχ̈i = −2
a′

a
ṫχ̇iχ̇i

a4 d

dλ

(
1

2
|χ̇|2

)
= −2a3a′ṫ|χ̇|2

a4 d

dλ

(
1

2
|χ̇|2

)
+

d

dλ

(
1

2
a4

)
|χ̇|2 = 0

d

dλ

(
a4|χ̇|2

)
= 0

|χ̇| = a0

a2
|X|.
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By equation (5.13),

d

dλ

(
−ṫ2 + a2|χ̇|2

)
= 0

−ṫ2 + a2|χ̇|2︸ ︷︷ ︸
=
a2
0
a2 |X|2

= 〈X〉2

ṫ = ±
√
−〈X〉2 +

a2
0

a2
|X|2 (5.16)

±
∫ 1

0

ṫ(λ)√
−〈X〉2 +

a2
0

a2(t(λ))
|X|2

dλ = 1

±
∫ t(1)

t0

dt′√
−〈X〉2 +

a2
0

a2(t′)
|X|2

= 1.

Equation (5.16) says that if X is causal (hence also non-zero), t(λ) is invertible. Now integrate |χ̇|.

|χ(1)| = |X|
∫ 1

0

a0

a(t(λ))2
dλ

= |X|
∫ t(1)

t0

a0

a(t′)2

1

ṫ(λ(t′))
dt′ assuming X is causal

= ±|X|
∫ t(1)

t0

a0

a(t′)2

dt′√
−〈X〉2 +

a2
0

a(t′)2 |X|2
.

This was not a complete derivation, but it suggests what the exponential map looks like. In order
to prove the following formula one needs to check if the geodesic equation and initial condition are
satisfied. The exponential map restricted on causal vectors X (that is X 6= 0 and 〈X〉2 ≤ 0) is

exp(t0,χ0)(X) =


(
f−1
X (1), χ0 + sgn(X0)

f−1
X (1)∫
t0

a(t0)

a(t)2
√
hX(t)

dtX

)
, X 6= 0

(t0,χ0) , X = 0

, (5.17)

where

It
hX−! R

t 7! −〈X〉2 +
a(t0)2

a(t)2
|X|2
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and

It
fX−! R

t 7! sgnX0

t∫
t0

dt√
hX(t)

.

Note that fX is not defined for X = 0.

5.4 Parallel transport along causal geodesics

Let X ∈ TpM be a causal vector and consider the geodesic γ(λ) ≡ eλX . Set q ≡ eX . Then parallel

transport TpM
P (p,q)
−−−! TqM in matrix form wrt. the orthonormal basis (e0, . . . , e3) is given by

Peµ = Pµ|ν(p, q)eν . (5.18)

The parallel transport IVP (4.15) in the basis (e0, . . . , e3) is
dZ0

dλ
= −a

′

a
γ̇jZj

dZi

dλ
= −a

′

a
γ̇iZ0

Z(0) = Z0 ∈ TpM

 . (5.19)

The solution is

P0|0(p, q) =
1

2

(
mX(t1)

mX(t0)
+
mX(t0)

mX(t1)

)
(5.20)

P0|j(p, q) = sgn(X0)
1

2

(
mX(t1)

mX(t0)
− mX(t0)

mX(t1)

)
X̂j (5.21)

Pi|0(p, q) = sgn(X0)
1

2

(
mX(t1)

mX(t0)
− mX(t0)

mX(t1)

)
X̂i (5.22)

Pi|j(p, q) = δij +

(
1

2

(
mX(t1)

mX(t0)
+
mX(t0)

mX(t1)

)
− 1

)
X̂iX̂j, (5.23)

where

mX(t) ≡
√
hX(t) +

a(t0)

a(t)
|X|

and p = (t0,χ0) and q = (t1,χ1) in comoving coordinates.
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5.5 The van Vleck determinant

From equation (4.12) the van Vleck determinant κ(p, q) can be computed by first differentiate the
exponential map to find the linear transform

TpM
d(expp)X−−−−−! TeXM, (5.24)

and then calculate the matrix of the metric tensor in normal coordinates,

gµν ≡
〈
d
(
expp

)
X
eµ, d

(
expp

)
X
eν
〉
. (5.25)

The van Vleck determinant is then κ(p, q) = | det g|−1/4. Define the matrix ξ(X) by

d
(
expp

)
X
eµ ≡ ξνµ(X)eν . (5.26)

Then

gµν =
〈
ξαµ (X)eα, ξ

β
ν (X)eβ

〉
= ξαµ (X)ξβν (X)〈eα, eβ〉
= ξαµ (X)ξβν (X)ηαβ

= −ξ0
µ(X)ξ0

ν(X) + ξiµ(X)ξiν(X).

Differentiate expp at X to find ξ(X) with help from the implicit function theorem and Leibniz’s in-
tegral rule.

ξ0
0(X) =A (5.27)

ξ0
j (X) =BX̂j (5.28)

ξi0(X) =CX̂i (5.29)

ξij(X) =Dδij + EX̂iX̂j, (5.30)

where

A = X0
√
hX(t1)

∫ t1

t0

dt

hX(t)3/2
(5.31)

B = |X|
√
hX(t1)

∫ t1

t0

(
a(t0)2

a(t)2
− 1

)
1

hX(t)3/2
dt (5.32)

C =
∣∣X0

∣∣ |X|∫ t1

t0

(
a(t0)

a (t1)
− a(t0)a(t1)

a(t)2

)
dt

hX(t)3/2
(5.33)

D = sgnX0

∫ t1

t0

a(t0)a(t1)

a(t)2

dt√
hX(t)

(5.34)

E = |X|2 sgnX0

∫ t1

t0

(
a(t0)

a(t1)
− a(t0)a(t1)

a(t)2

)(
a(t0)2

a(t)2
− 1

)
1

hX(t)3/2
dt. (5.35)
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g00 = −A2 + C2

g0i = (−AB + C (D + E)) X̂i

gij = D2δij +
(
−B2 + 2DE + E2

)
X̂iX̂j.

Choose the basis vectors (e1, e2, e3) so that X̂ = (1, 0, 0) for easier calculations without loss of gener-
ality because of spherical symmetry.

det g = det


−A2 + C2 −AB + C (D + E) 0 0

−AB + C (D + E) −B2 + (D + E)2 0 0
0 0 D2 0
0 0 0 D2


=
((
−A2 + C2

) (
−B2 + (D + E)2)− (−AB + C (D + E))2) ·D4

=(∗).

I used Maxima to substitute the expressions for A, B, C, D and E and simplify. The Maxima code
is listed in listing B.1 in appendix B.

(∗) = −
∣∣X0

∣∣2 hX(t1)

(∫ t1

t0

a0a1

a(t)2

dt

hX(t)3/2︸ ︷︷ ︸
=
a1
a0

〈X〉2
|X|2

∫ t1
t0

dt

hX (t)3/2

+
a1
a0

1
|X|2

∫ t1
t0

dt√
hX (t)

)2(∫ t1

t0

a0a1

a(t)2

dt√
hX(t)

)4

= −
∣∣X0

∣∣2 hX(t1)
a1

a0

1

|X|2

(
1 + 〈X〉2

∫ t1

t0

dt

hX(t)3/2

)2
(∫ t1

t0

a0a1

a(t)2

dt√
hX(t)

)4

.

On the last equality, fX(t1) = 1 has been used. So

det g = −a
2
1

a2
0

|X0|2 hX(t1)

|X|4

(
1 + 〈X〉2

∫ t1

t0

dt

hX(t)3/2

)2
(∫ t1

t0

a0a1

a(t)2

dt√
hX(t)

)4

, (5.36)

and for 〈X〉2 = 0

det g = −
(

1

|X|

∫ t1

t0

a1

a(t)
dt

)4

. (5.37)

5.6 The four-potential of j

Now we use theorem 4. Since the four-current j of a light source has past-compact support, the unique
solution to the Lorentz gauge conditional Maxwell’s equations LA = j that also has past-compact
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support is

Aµ(p) =
1

4π

∫
R3

1

κ
(p;−|x|,x)P µ|ν (p;−|x|,x) jν (p;−|x|,x) d3x+

1

4π

∫
D−(p)

W µ|ν(p, q)jν(q)ω(q),

(5.38)
where (x0,x) = (x0, . . . , x3) are any normal coordinates around p. Substituting the expression for
det g found in the previous section one gets

Aµ(p) =

∫
R3

P µ|ν(p;−|x|,x)jν (−|x|,x)
1

|x|

∣∣∣∣∫ t1

t0

a1

a(t)
dt

∣∣∣∣ d3x

4π|x|
(5.39)

+
1

4π

∫
D−(p)

W µ|ν(p, q)jν(q)ω(q).

The first term is unscattered light coming directly from the light source. The second term is called
”the tail”.

5.7 The luminosity light intensity relation from Maxwell’s

equations

Let j ∈ T+,(1,0)(M) be the four-current of a luminous particle. The goal now is to calculate the light
emitted by the particle in terms of intrinsic properties. The particle moves along a timelike curve
Iτ

γ
−!M parameterized by proper time τ so that 〈γ̇〉2 = −1. The Earth is assumed to be comoving.

For each position p ∈ M of the Earth there is a unique τ(p) ∈ Iτ and r(p) ∈ R3 so that eιp(r(p)) =
γ(τ(p)). Set q(p) ≡ γ(τ(p)). Start with equation (5.39), but drop the tail.

Aµ(p) =

∫
R3

1

κ(p, eιp(x))
P µ|ν(p, eιp(x))jν

(
eιp(x)

) d3x

4π|x|
, (5.40)

where ιp is defined by

R3 ιp
−! TpM (5.41)

x 7! −|x|e0 + xjej.

Define also

TqM
πV−! R3 and TqM

pV−! R (5.42)

yµe′µ 7! y yµe′µ 7! y0.

Define the Lorentz transform matrix Λ by

eµ ≡ Λν
µe
′
ν . (5.43)
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Then Λ is of the form

Λ =

[
Λ0

0 Λ0
j

Λi
0 Λi

j

]
=

[
Λ0

0 `T

λ L

]
. (5.44)

Since ηµν = Λµ
αΛν

βηαβ, η = ΛTηΛ. Notice that η = ΛTηΛ⇒ η−1 =
(
ΛTηΛ

)−1 ⇒ η = ΛηΛT . So both
Λ and ΛT are Lorentz transforms.

η = ΛTηΛ =⇒ LTL = I + ``T and Λ0
0` = LTλ (5.45)

η = ΛηΛT =⇒ LLT = I + λλT and Λ0
0λ = L`. (5.46)

We have

e′0 = V = V µeµ = V µΛν
µe
′
ν

=⇒ V µΛ0
ν = 1 and V µΛi

µ = 0

⇐⇒ Λ0
0V

0 + ` ·V = 1 and λV 0 + LV = 0

=⇒ LTλ︸︷︷︸
Λ0

0`

V 0 + LTL︸︷︷︸
=I+``T

V = 0

(
Λ0

0V
0 + ` ·V

)︸ ︷︷ ︸
=1

`+ V = 0

V = −`.

Do the coordinate transform

ι−1
p

(
exp−1

p

(
expq (Nq)

))
exp−1

p

(
expq (Nq)

)
expq (Nq) Nq πV (Nq)

ιp

φ

expp exp−1
q πV .

φ is bijective. Taking the derivative at x ∈ ι−1
p

(
exp−1

p

(
expq (Nq)

))
one gets

R3 TpM Teιp(x)M TqM R3
d(ιp)x

dφx

d(expp)ιp(x)
d(expq)

−1

exp−1
q (eιp(x)) πV .
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Define

πV (Nq) ι−1
p

(
exp−1

p

(
expq (Nq)

))
exp−1

p

(
expq (Nq)

)
TqM Nq Rφ−1

y0

ιp expp exp−1
q pV

.

Differentiate y0 at y = 0.

R3 R3 TpM TqM TqM Rdφr
−1

d(y0)
0

d(ιp)r
d(expp)ιp(r)

d(exp−1
q )

q
=idTqM pV

.

pV eµ = pV Λν
µe
′
ν = Λ0

µ

πV eµ = πV Λν
µe
′
ν = Λi

µe
′
i

d (ιp)r u =
d

dλ

∣∣∣∣
0

− |λu + r|e0 + (λuj + rj)ej = −r̂ · ue0 + ujej.

So in the orthonormal basis (e0, . . . , e3)

[pV ] =
[
V 0 −VT

]
and [πV ] =

[
λ L

]
and

[
d (ιp)r

]
=


−1 0 0
1 0 0
0 1 0
0 0 1

 .
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[dφr] = [πV ]
[
d
(
expp

)
ιp(r)

] [
d (ιp)r

]
=
[
λ L

] 
A B 0 0
C D + E 0 0
0 0 D 0
0 0 0 D



−1 0 0
1 0 0
0 1 0
0 0 1


= (B − A)λr̂T + L

E +D − C 0 0
0 D 0
0 0 D


︸ ︷︷ ︸

≡G

.

By Woodbury matrix identity

[dφr]
−1 = (LG)−1 − 1

1 + r̂T (LG)−1 (B − A)λ
(LG)−1(B − A)λr̂T (LG)−1

= G−1L−1 − (B − A)

1 + (B − A) r̂TG−1︸ ︷︷ ︸
r̂T

E+D−C

L−1λ︸ ︷︷ ︸
− V
V 0

G−1 L−1λ︸ ︷︷ ︸
− V
V 0

r̂TG−1︸ ︷︷ ︸
r̂T

E+D−C

L−1

= G−1

(
I3 +

B−A
E+D−C

V 0 − B−A
E+D−C r̂ ·V

Vr̂T

)
L−1.

Evaluating the equations (5.31) - (5.35) at X = ιp(r) gives

B − A = −a0

a1

(5.47)

E +D − C =
a0

a1

. (5.48)

We the get

[dφr]
−1 = G−1

(
I3 −

1

V 0 + r̂ ·V
Vr̂T

)
L−1. (5.49)
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Now calculate the derivative of y0 at y = 0 in matrix form.[
d
(
y0
)
0

]
= [pV ]

[
d
(
expp

)
ιp(r)

] [
d (ιp)r

]
[dφr]

−1

=
[
V 0 −V

] 
A B 0 0
C D + E 0 0
0 0 D 0
0 0 0 D



−1 0 0
1 0 0
0 1 0
0 0 1

 [dφr]
−1

=
[
V 0 −V

] 
B − A 0 0

E +D − C 0 0
0 D 0
0 0 D


 1
E+D−C 0 0

0 1
D

0
0 0 1

D

(I3 −
1

V 0 + r̂ ·V
Vr̂T

)
L−1

=
[
V 0 −V

] 
−1 0 0
1 0 0
0 1 0
0 0 1

(I3 −
1

V 0 + r̂ ·V
Vr̂T

)
L−1

=−
(
V 0r̂T + VT

)(
I3 −

1

V 0 + r̂ ·V
Vr̂T

)
L−1

=−
(

1

V 0 + r̂ ·V
r̂T + VT

)
L−1.

Using the following identities of the Lorentz transform Λ:

LTL = I3 + ` `T︸︷︷︸
= 1

Λ0
0
λTL(

LT − 1

Λ0
0

`λT︸ ︷︷ ︸
=L−1

)
= I3

L−1 =

(
I3 −

VVT

|V 0|2

)
LT .

We arrive at [
d
(
y0
)
0

]
= − 1

V 0 + r̂ ·V

(
r̂T +

1

V 0
VT

)
LT (5.50)
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To calculate det dφιp(r) use the matrix determinant lemma.

∣∣det dφιp(r)

∣∣ =

∣∣∣∣∣∣det

−a0

a1

λr̂T + L

a0

a1
0 0

0 D 0
0 0 D

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
1− a0

a1

[
1 0 0

] a1

a0
0 0

0 1
D

0
0 0 1

D

 L−1λ︸ ︷︷ ︸
=− 1

V 0 V


∣∣∣∣∣∣∣ |detL|︸ ︷︷ ︸

=V 0

a0

a1

D2

=
a0

a1

D2
(
V 0 + r̂ ·V

)
=
a0

a1

1

κ2

(
V 0 + r̂ ·V

)
.

Approximation 1: f � H

Aµ(p) =

∫
R3

1

κ(p, ey
0(y)e′0+yje′j)

P µ|ν(p, ey
0(y)e′0+yje′j)jν

(
ey

0(y)e′0+yje′j)
) 1

4π|x(y)|
1∣∣det dφx(y)

∣∣d3y

≈ 1

4πr(p)

P µ|ν(p, q(p))
κ(p, q(p)) ·

∣∣det dφr(p)

∣∣ ∫R3

jν
(
y0(y),y

)
d3y.

Approximation 2: wavelength � size of luminous particle

Jν (y0,y) ≡
√
|det g (y0,y)|jν (y0,y). Assume limk!∞

∣∣∣∣∫ y0(y)
0 ∂k+1

0 Jν(t,y)(y0(y)−t)
k
dt

k!

∣∣∣∣ � |Jν (y0(y),y)|

∀y within the region of the particle. Taylor’s theorem says then that Taylor expanding wrt. y0 about
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0 should give a good approximation.∫
R3

Jν
(
y0(y),y

)
d3y

≈
∫
R3

∞∑
n=0

1

n!
∂n0 J

ν(0,y)
(
y0(y)

)n
d3y by the assumption

=

∫
R3

∞∑
n=0

1

n!
∂n0 J

ν(0,y)
(
∂iy

0(0)yi
)n
d3y +O

(
1

r2

)

=
∞∑
n=0

∫
R3

1

n!
∂n0 J

ν(0,y)
(
∂iy

0(0)yi
)n
d3y +O

(
1

r2

) by Fubini-Tonelli theorem if
∞∑
n=0

∫
R3

∣∣∂n0 jν(0,y) (∂iy
0(0)yi)

n∣∣ d3y

n!

converges,

=
∞∑
n=0

∂i1y
0(0) . . . ∂i1y

0(0)

n!

∫
R3

yi1 . . . yin∂n0 J
ν(0,y)d3y +O

(
1

r2

)
≈
∞∑
n=0

∂i1y
0(0) . . . ∂i1y

0(0)

n!

DnKi1...in|ν

dτn
(τ(p))

≡Eν
(
∂iy

0(0)e′i
)
. (5.51)

Consider the pullback bundle γ∗TM
πγ∗TM
−−−−! Iτ . E is defined as the bundle morphism

γ∗TM
E
−! γ∗TM

ς 7!
∞∑
n=0

ςµ1 . . . ςµn
n!

DnKµ1...µn|

dτn
(πγ∗TM(ς)) .

Define E(τ) ≡ E (∂iy
0(0)e′i(γ(τ))) ∈ Tγ(τ)M . Insert into Aµ(p).

Aµ(p) ≈ 1

4πr(p)κ(p, q(p)) ·
∣∣det dφr(p)

∣∣︸ ︷︷ ︸
≡Z(p)

Pµ|ν(p, q(p))Eν (τ(p)) .

Z = 4πr
a0

a1

1

κ

(
V 0 + r̂ ·V

)
. (5.52)

To calculate dτ(p) ∈ TpM , use the implicit function theorem. The equation

γ(τ) = eι(t0,χ0)(r)

can be written as
F µ (t0,χ0; τ, r) = 0,
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where

F 0 (t0,χ0; τ, r) ≡ 1− 1

r

∫ t0

γ0(τ)

a(t)

a(t0)
dt

F i (t0,χ0; τ, r) ≡ γi(τ)− χi0 − r̂i
∫ t0

γ0(τ)

dt

a(t)
.

∂F 0

∂t0
= H0 −

1

r

∂F i

∂t0
= − 1

a0

r̂i

∂F 0

∂χj0
= 0

∂F i

∂χj0
= −δij

∂F 0

∂τ
=
a1

a0

1

r
γ̇0 ∂F i

∂τ
= γ̇i +

1

a1

γ̇0r̂i

∂F 0

∂rj
=
r̂j

r

∂F i

∂rj
=

1

a1κ
·
(
−δij + r̂ir̂j

)
.

Again, to simplify calculations, choose the comoving coordinates so that r̂ = (r, 0, 0).

∂F

∂(τ, r)
=

[
a1

a0

1
r
γ̇0 r̂j

r

γ̇i + 1
a1
γ̇0r̂i 1

a1κ
·
(
−δij + r̂ir̂j

)]

=


a1

a0

1
r
γ̇0 1

r
0 0

γ̇1 + 1
a1
γ̇0 0 0 0

γ̇2 0 − 1
a1κ

0

γ̇3 0 0 − 1
a1κ

 .
The implicit function theorem says

∂(τ, r)

∂(t0,χ0)
= −

[
∂F

∂(τ, r)

]−1
∂F

∂(t0,χ0)

[
∂τ
∂t0

∂τ
∂χ0

∂r
∂t0

∂r
∂χ0

]
= −


a1

a0

1
r
γ̇0 1

r
0 0

γ̇1 + 1
a1
γ̇0 0 0 0

γ̇2 0 − 1
a1κ

0

γ̇3 0 0 − 1
a1κ


−1 

H0 − 1
r

0 0 0
− 1
a0

−1 0 0

0 0 −1 0
0 0 0 −1


[
∂τ
∂t0

∂τ
∂χ0

∂r
∂t0

∂r
∂χ0

]
=


a1

a0

1
γ̇0+a1γ̇1 a1

1
γ̇0+a1γ̇1 0 0

1− rH0 − a2
1

a2
0

γ̇0

γ̇0+a1γ̇1 −a2
1

a0

γ̇0

γ̇0+a1γ̇1 0 0
a2

1

a0

κγ̇2

γ̇0+a1γ̇1 a2
1

κγ̇2

γ̇0+a1γ̇1 −a1κ 0
a2

1

a0

κγ̇3

γ̇0+a1γ̇1 a2
1

κγ̇3

γ̇0+a1γ̇1 0 −a1κ

 .
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Thus,

dτ =
1

V 0 + r̂ ·V

(
a1

a0

dt+ a1r̂idχ
i

)
=
a1

a0

1

V 0 + r̂ ·V
(
e0 + r̂ie

i
)
.

∂µτ =
a1

a0

1

V 0 + r̂ ·V
(ιp(r̂))µ , (5.53)

where V (τ) ≡ γ̇(τ). dτ is lightlike so
〈dτ〉2 = 0. (5.54)

From the definition of ς in equation (4.66),

[ς] = − 1〈
V, exp−1

q (p)
〉 [exp−1

q (p)
]

= − 1〈
V, λ exp−1

q (p)
〉λ [exp−1

q (p)
]

∀λ ∈ R

=
1

V 0 + r̂ ·V


1
−1
0
0

 , where λ was picked so that exp−1
q (p) =


1
−1
0
0

 .

[P (q, p)]
[
g−1dτ

]
=


1
2

(
a1

a0
+ a0

a1

)
1
2

(
a1

a0
− a0

a1

)
0 0

1
2

(
a1

a0
− a0

a1

)
1
2

(
a1

a0
+ a0

a1

)
0 0

0 0 1 0
0 0 0 1

 a1

a0

1

V 0 + r̂ ·V


−1
1
0
0



=
1

V 0 + r̂ ·V


−1
1
0
0

 .
g−1 here is the inverse metric tensor that make covariant vectors contravariant. By inverting the par-
allel transport, we get

∂µτ = −P µ|ν(p, q)ςν . (5.55)
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Write ς in the basis (e′0, . . . , e
′
3).

ςµeµ = ςµΛν
µe
′
ν

ς ′µ = Λµ
ν ς
ν

=

[
V 0 −VT

− 1
V 0LV L

]
1

V 0 + r̂ ·V


1
−1
0
0


=

1

V 0 + r̂ ·V

[
V 0 + r̂ ·V
−L

(
r̂ + 1

V 0 V
)]

=

[
1

[d (y0)0)]
T

]
.

Then

Eν
(
∂iy0(0)e′i

)
=
∞∑
n=0

∂i1y
0(0) . . . ∂i1y

0(0)

n!

DnKi1...in|ν

dτn

=
∞∑
n=0

ςi1 . . . ςin
n!

DnKi1...in|ν

dτn

= E(ς).

ςµE
µ = ς0︸︷︷︸

=−1

E0 + ςi

∞∑
n=0

ςi1 . . . ςin
n!

DnKi1...in|µ

dτn

≈ −E0 + ςi

∞∑
n=0

ςi1 . . . ςin
n!

1

n+ 1

Dn

dτn

(
DKi1...inν|0

dτ
+

n∑
l=1

M i1...îl...in|νil

)
by approximation 4.64

= −E0

∞∑
n=0

ςi1 . . . ςinςi
(n+ 1)!

Dn+1Ki1...ini|0

dτn+1
+
∞∑
n=0

n∑
l=1

ςi1 . . . ςinςi
(n+ 1)!

DnM i1...îl...in|iil

dτn︸ ︷︷ ︸
=0

= −E0 + E0 +K |0

= K |0.

So

ςµ
DEµ

dτ
≈ d

dτ
(ςµE

µ) =
dK |0

dτ
= 0
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because K |0 is the total electric charge of the particle, which is conserved. To find the electromagnetic
field generated by j, exterior differentiate A.

Fµν(p) = ∂µAν(p)− ∂νAµ(p)

= ∂µ

(
1

Z
Pν |αEα

)
− ∂ν

(
1

Z
Pµ|αEα

)
≈ 1

Z

(
Pν |α

DEα
dτ

∂µτ − Pµ|α
DEα
dτ

∂ντ

)
because wavelength � distance to observer,

=
1

Z

DEα
dτ

(Pν |α∂µτ − Pµ|α∂ντ)

= − 1

Z

DEα
dτ

(
Pν |αPµ|βςβ − Pµ|αPν |βςβ

)
= − 1

Z
Pµ|αPν |β

(
ςα
DEβ
dτ
− ςβ

DEα
dτ

)
.

Define

Fαβ(ς) ≡
(
DEα
dτ

(ς)ςβ −
DEβ
dτ

(ς)ςα

)
. (5.56)

Then

Fµν(p) ≈
1

Z(p)
Pµ|α(p, q)Pν |β(p, q)Fαβ. (5.57)
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Note that F ∈ TqM ∧ TqM is an intrinsic quantity of the luminous particle. Now calculate the con-
tribution to Tµν(p) from two luminous particles, (1) and (2).

Tµν(p) =

(∑
n

1
(n)

Z

(n)

Pµ|β
(n)

Pα|εFβε

)(∑
m

1
(m)

Z

(m)

Pν |δ
(m)

Pα|σFδσ

)

− 1

4
gµν(p)

(∑
n

1
(n)

Z

(n)

Pα|ε
(n)

P β|δF εδ
)(∑

m

1
(m)

Z

(m)

Pα|γ
(m)

Pβ|ζFγζ
)

=
∑
n

1
(n)

Z 2

(n)

Pµ|β
(n)

Pα|ε
(n)

Pα|σ︸ ︷︷ ︸
=gεσ

(
(n)
q

)
(n)

Pν |δFβεFδσ −
1

4
gµν(p)

1
(n)

Z 2

(n)

Pα|ε
(n)

Pα|γ︸ ︷︷ ︸
=gεγ

(
(n)
q

)
(n)

P β|δ
(n)

Pβ|ζ︸ ︷︷ ︸
=gδζ

(
(n)
q

) F
εδFγζ

+
∑
n,m

cross terms︸ ︷︷ ︸
≈0

≈
∑
n

1
(n)

Z 2

(n)

Pα|µ
(n)

P β|ν
(

(n)

F σ
α

(n)

F βσ −
1

4
gαβ

(
(n)

q
) (n)

F σδ
(n)

F σδ

)
.

(n)

F α
µ

(n)

F να =
1

(n)

Z 2

(n)

ς µ
D

(n)

Eα

dτ
− (n)

ς α
D

(n)

Eµ

dτ

(n)

ς ν
D

(n)

Eα

dτ
− (n)

ς α
D

(n)

Eν

dτ


=

1
(n)

Z 2

(n)

ς µ
D

(n)

Eα

dτ

(n)

ς ν
D

(n)

Eα

dτ
− (n)

ς µ
D

(n)

Eα

dτ

(n)

ς α︸ ︷︷ ︸
≈0

D
(n)

Eν

dτ
− (n)

ς ν
D

(n)

Eα

dτ

(n)

ς α︸ ︷︷ ︸
≈0

D
(n)

Eµ

dτ
+

(n)

ς α
(n)

ς α︸ ︷︷ ︸
≈0

D
(n)

Eµ

dτ

D
(n)

Eν

dτ


=

1
(n)

Z 2

D
(n)

Eα

dτ

D
(n)

Eα

dτ

(n)

ς µ
(n)

ς ν

(n)

Fαβ
(n)

Fαβ ≈

(n)

ς α
D

(n)

Eβ

dτ
− (n)

ς β
D

(n)

Eα

dτ

(n)

ς α
D

(n)

Eβ

dτ
− (n)

ς β
D

(n)

Eα

dτ


= 2

D
(n)

Eβ

dτ

D
(n)

Eβ

dτ

(n)

ς α
(n)

ς α︸ ︷︷ ︸
≈0

−2
(n)

ς α
D

(n)

Eα

dτ︸ ︷︷ ︸
≈0

(n)

ς β
D

(n)

Eβ

dτ︸ ︷︷ ︸
≈0

≈ 0.

Define
(n)

Tµν (ς) ≡ D
(n)

Eα

dτ
(ς)

D
(n)

Eα

dτ
(ς) ςµςν . (5.58)
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This quantity is also intrinsic to the luminous particle. Summing over all ordered pair of particles
n ∈ {1, . . . , N} gives

Tµν(p) ≈
∑
n

1
(n)

Z 2

(n)

Pµ|α
(n)

Pν |β
(n)

Tαβ. (5.59)

Define

L ≡ 1

4π

∑
n

D
(n)

Eα

dτ

D
(n)

Eα

dτ
. (5.60)

This is an intrinsic quantity to the light source. A priori, it depends on the direction from the light
source towards the observer. However, by assuming spherical symmetry of the light source, L is inde-
pendent of the direction. It is then just a number intrinsic to the light source. The Poynting vector
measured at p ∈M is

S = T 0iei

≈
∑
n

1
(n)

Z 2

(n)

P 0|α
(n)

P i|β
D

(n)

Eα

dτ

D
(n)

Eα

dτ
ςαςβei

=
∑
n

1
(n)

Z 2

D
(n)

Eα

dτ

D
(n)

Eα

dτ
∂0τ∂iτei

= −
∑
n

1(
4πr a0

a1

1
κ

(
(n)

V 0 + r̂ ·
(n)

V

))2

D
(n)

Eα

dτ

D
(n)

Eα

dτ

a2
1

a2
0

(
(n)

V 0 + r̂ ·
(n)

V

)2

r̂

≈ − 1

4π
a4

0

a4
1
a2

1 |χ1 − χ0|
2

1

4π

∑
n

D
(n)

Eα

dτ

D
(n)

Eα

dτ︸ ︷︷ ︸
=L

r̂.

The light intensity I is the length of the Poynting vector.

I = |S| ≈ L

4π
a2

0

a2
1
a2

0χ
2

=
L

4π(1 + z)2a2
0χ

2
.

The measured light intensity due to the first part of the Green’s function is

I ≈ L

4π(1 + z)2a2
0χ

2
, (5.61)

65



where L is intrinsic to the light source and can therefore be calibrated in the case of standard can-
dles. What about the tail part of the Green’s function? The tail term is difficult to calculate. This
is discussed in the next chapter.
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Chapter 6

Result and discussion

The result (5.61) and equation (1.1) that was derived in the introduction are identical. However, equa-
tion (5.61) involves only the contribution from the singular part of the retarded Green’s function G−,p
given in (4.49), that is, only the non-scattered light.

6.1 Limitations

6.1.1 The tail

Contribution from the tail term V−,p ∈ D′(1,0)(Ω)⊗TpM involves an integral over both space and time,

whereas the singular part UpδC(p) ∈ D′(1,0)(Ω)⊗ TpM involves an integral over the three-dimensional
past light cone. As mentioned at the end of section 4.5, the tail part can be the physically interpreted
as light scattered by gravity, and the singular part describes the unscattered light. The components
of V−,p is listed in appendix B. It’s components contain terms proportional to one of the following four
terms:

1

a2
0χ

2

H

a0χ
H2.

All are of dimension [length]−2. The contribution to A(p) from the tail is

Aµtail(p) =
1

4π

∫
R3

∫
It

V−,p
µ|ν(t,χ)jν(t,χ)a(t)3dtd3χ. (6.1)
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Fourier transform a3V−,p and j.

j(ω,χ) ≡
∫
It

j(t,χ)e−iωt
dt√
2π

(6.2)

V−,p(ω,χ) ≡
∫
It

V−,p(t,χ)a(t)3e−iωt
dt√
2π
. (6.3)

Then by unitarity of Fourier transform,∫
It

V−,p
µ|ν(t,χ)jν(t,χ)a(t)3dt =

∫
R
V−,pµ|ν(ω,χ)jν(ω,χ)dω. (6.4)

In order for the time integral to not oscillate to zero, j and V−,p must contain frequencies of common
magnitude as seen in equation (6.4). This seems unlikely because the frequencies of V−,p are probably

of magnitude 1
a0χ

,
√

H
a0χ

and H. The magnitude of these parameters in the case of a type 1a supernova

are shown in the following table:

Quantity Order of magnitude

1
a0χ

<10−11 s−1 [5]√
H
a0χ

<10−15 s−1

H ≈10−19 s−1 [4]

Table 6.1: Typical order of magnitude of three quantities associated with the position of a type 1a
supernova at cosmic time t1 relative to Earth. a0 is the scale factor evaluted at t0 = now, χ is the
comoving distance between Eart and the supernova andH is the typical value of the Hubble parameter
on the cosmic time interval [t1, t0].

In order to measure such low frequencies one has to detect light from the light source over a period of
at least 7000 years. Such low frequencies do not contribute to the observed light intensity. Therefore,
the tail term due to the gravity of the flat FRW universe doesn’t seem to contribute to the observed
light intensity.

This whole reasoning may suggest that gravity only scatters low frequencies, and the stronger the
gravity is the higher frequencies can be scattered.

6.1.2 The Lorentz gauge

There is one possibility that renders almost everything from chapter 4 and beyond invalid. That is
whether the Lorentz gauge (2.14) is satified. Four-potentialsA produced by the retarded Green’s func-
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tion G−,p given in (4.49) satisfy equation (2.13). In the simpel case of Minkowski space, the Lorentz
gauge is satisfied as a consequence of conservation of charge (2.8). But that doesn’t mean A also sat-
isfies the Lorentz gauge in the case of curved spacetime. However, there are two conditions that to-
gether with conservation of charge imply the Lorentz gauge condition. Consider κ, σ, U , V±, 1± ≡
1{(p,q)∈Ω2 | p∈J±(q)} and δ± ≡ limε#0 1±δ (σ + ε2) all as bitensor distributions. The two conditions are

left

∇µU
µ|ν = −

right

∂νκ and
right

∂µ
left

∇αV±
α|ν −

right

∂ν
left

∇αV±
α|µ = 0. (6.5)

We then have

left

∇µG±,p
µ|ν = lim

ε#0

left

∇µU
µ|ν1±δ

(
σp + ε2

)
+ Uµ|ν

left

∂µ
(
1±δ

(
σ + ε2

))︸ ︷︷ ︸
=1±

left
∂µ(δ(σ+ε2))

+
left

∇µV±
µ|ν .

Uµ|ν
left

∂µ
(
δ
(
σ + ε2

))
= κP µ|νδ′

(
σ + ε2

)left

∂µσ

= −κ
right

∂νσδ
′ (σ + ε2

)
= −κ

right

∂ν
(
δ
(
σ + ε2

))
.

Using the two conditions (6.5),

left

∇µG±
µ|ν = lim

ε#0
−

right

∂νκ1±δ
(
σ + ε2

)
− κ1±

right

∂ν
(
δ
(
σ + ε2

))︸ ︷︷ ︸
=
right

∂ν(1±δ(σ+ε2))

+
left

∇µV±
µ|ν

= −
right

∂ν (κδ±) +
left

∇µV±
µ|ν .

By the Poincaré lemma (lemma 1), if Ω ⊆M is contractible, there is a function Ω×Ω
Φ
−! R so that

left

∇µV±
µ|ν =

right

∂νΦ.
left

∇µG±
µ|ν =

right

∂ν (−κδ± + Φ) .

This means

∇µA±
µ(p) =

〈
left

∇µG±
µ|ν(p, q), jν(q)

〉
=

〈
right

∂ν (−κδ± + Φ) , jν
〉

= −
〈
−κδ± + Φ,∇νj

ν︸ ︷︷ ︸
=0

〉
= 0,

so the Lorentz gauge is satisfied by the two conditions.
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6.2 Comparison with standard theory

In this thesis I have given two derivations that by first glance don’t seem to have anything to do with
each other, mathematically speaking. But they imply the same equation

I ≈ L

4π(1 + z)2a2
0χ

2
.

Is that a coincidence? A sphere in a cosmic time slice t−1({t0}) of comoving radius χ has area
4πa(t0)2χ2. A naive guess of the luminosity light intensity relation would therefore be

I =
L

4πa2
0χ

2
.

The two extra factors (1+z) and (1+z) in the denominator have different explanations in two deriva-
tions. In the derivation in the introduction, one factor (1 + z) is from parallel transport of photon
four-momentum, and the other (1+z) is from the fact that dt1

dt0
= a1

a0
. In the derivation given in chap-

ter 5, both factors (1 + z) and (1 + z) are from parallel transport since the energy momentum tensor
is a second order tensor.
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Chapter 7

Conclusion

The purpose of this thesis was to test the hypothesis that Maxwell’s equations in curved spacetime
(2.6) and (2.7) imply a different relation between luminosity, measured light intensity, redshift and
comoving distance of a light source than equation (1.1). With disregard to wether the solution for the
four-potential constructed with the Green’s function derived in section 4.5 satisfies the Lorentz gauge
condition, this master thesis has falsified the hypothesis and therefore verified that the luminosity light
intensity relation (1.1) used for standard candles is in accordance with Maxwell’s equations in curved
spacetime. Otherwise, the study is inconclusive.

7.1 Summary

The luminosity light intensity relation (1.1) was derived from a premise that a light source can be
described by a function n(t, k) that is the number of photons the light source has ever emitted after
cosmic time t with four-momentum k, and that the four-momentum is parallel transported through
spacetime. In the following two chapters, distribution theory on curved spacetime together with the
construction of the advanced and retarded Green’s function for solving Maxwell’s equations for the
four-potential was carried out based on the theory in Friedlander’s book [6]. The two Green’s functions
revealed a different way gravity can interact with light in addition to bending it by bending geodesics.
Gravity also scatters light. The scattering is described by the tail term V± of the Green’s functions
given in equation (4.49). The retarded Green’s function with the tail term ignored was applied to-
gether with a type of multimoment expansion (5.51) of the four-current of individual particles. Then
the contribution to the electromagnetic field from each particle was summed over. The correspond-
ing electromagnetic energy momentum tensor was calculated from the electromagnetic field, which
the Poynting vector/light intensity is part of. Everything intrinsic to the light source was absorbed
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into the parameter L, which is the luminosity of the light source. The derivation ended up with exact
same result as equation (1.1).

7.2 Suggestion for further study

7.2.1 Investigate fulfillment of Lorentz gauge condition

Since the Green’s functions ability to solve Maxwell’s equations depends on whether they produce
Lorentz gauged four-potentials out of conserved four-currents, it is worth investigating whether the
Lorentz gauge actually is fulfilled. I recommend starting by checking if the two conditions (6.5) are
true. They are sufficient conditions, but maybe not necessary.

7.2.2 FRW universe with k = ±1

In this master thesis, only the flat FRW universe (k = 0) was considered. One can do the same calcu-
lations for open (k = +1) and closed (k = −1) FRW universe. Maybe it gives a different result than
equation (1.1).

7.2.3 Scattering by the tail term

Gravity scatters light according to Maxwell’s equations. When light is scattered, objects appears dim-
mer because some light scatters away. But on the other hand, an observer sees noise that he/she would
not see if it wasn’t for the scattering. However, it seems unlikely that the gravity of the flat FRW uni-
verse contributes significant extra noise due to scattering from the discussion in section 6.1.1. The fact
that objects appear dimmer because of scattering is automatically taken care of by the singular part
of the Green’s function (4.49). But it may be that strong local gravity which the FRW metric does
not describe can influence the propagation of light and thereby change the LLR. This is a difficult
problem since it is hard to do exact calculations. In an article by R. Mankin and T. Laas, R. Tam-
melo [7] a perturbative method of describing scattering by the tail term is developed. A suggestion
for further study is to determine if the the tail term V− can give significant contribution to observed
light intensity due to strong local gravity the light encounters.
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Appendix A

Tail of Green’s function restricted on
light cone

Recall equation (4.47).

W0
µ|ν(p, q) ≡ −1

2

∫ 1

0

κ(p, q)

κ(p, γ(λ))
P µ|α(p, γ(λ))

left

LUα|ν(γ(λ), q)dλ

This is the tail part of the Green’s function restricted on the light cone C±(q). The formula is ex-
plicit, but hard to calculate by hand. I used Maxima to calculate it. The Maxima commands I wrote
is contained in a .wxmx file that can be downloaded here:
https://github.com/Vikhamar/The-Hubble-tension-and-electromagnetic-waves-in-flat-

FRW-universe/blob/main/calculationofW0.wxmx

It can be opened in the free Maxima interface wxMaxima. W0 depends only on cosmic time, so we
can write W0(t0, t1) instead of W0(q, p). Here is the result:

W0
0|0(t0, t1) =−

ln
(
a(t1)
a(t0)

)
2r2a (t1)2 −

3 |X0|H (t1)

4X0ra (t1)
+

|X0|
(∫ t1

t0

( d
dt
a(t))

2

a(t)3 dt

)
a (t0)2

4X0ra (t1)2 (A.1)

−
|X0|

(∫ t1
t0

1
a(t)3 dt

)
a (t0)2

4X0r3a (t1)2 +
|X0|H (t0) a (t0)

4X0ra (t1)2 +
|X0|

∫ t1
t0

( d
dt
a(t))

2

a(t)
dt

2X0ra (t1)2

+
1

4r2a (t1)2 −
|X0| a (t0)2H (t1)

4X0ra (t1)3 − a (t0)2

8r2a (t1)4 −
|X0|

(∫ t1
t0

( d
dt
a(t))

2

a(t)5 dt

)
a (t0)2

2X0r

+
|X0|

(∫ t1
t0

1
a(t)5 dt

)
a (t0)2

4X0r3
+

3 |X0|H (t0)

4X0ra (t0)
+

1

8r2a (t0)2
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−
3 |X0|

∫ t1
t0

( d
dt
a(t))

2

a(t)3 dt

4X0r
−
|X0|

∫ t1
t0

1
a(t)3 dt

4X0r3

W0
0|j(t0, t1) =

− |X0| ln
(
a(t1)
a(t0)

)
2X0r2a (t1)2 −

3H (t1)

4ra (t1)
−

(∫ t1
t0

( d
dt
a(t))

2

a(t)3 dt

)
a (t0)2

4ra (t1)2 (A.2)

+
3
(∫ t1

t0

1
a(t)3 dt

)
a (t0)2

4r3a (t1)2 +
H (t0) a (t0)

4ra (t1)2 −

(∫ t1
t0

1
a(t)2 dt

)
a (t0)

r3a (t1)2 +

∫ t1
t0

( d
dt
a(t))

2

a(t)
dt

2ra (t1)2

+
|X0|

X0r2a (t1)2 +
X0

4 |X0| r2a (t1)2 +
a (t0)2H (t1)

4ra (t1)3 − 4 |X0| a (t0)

3X0r2a (t1)3 +
|X0| a (t0)2

8X0r2a (t1)4

+

(∫ t1
t0

( d
dt
a(t))

2

a(t)5 dt

)
a (t0)2

2r
−

(∫ t1
t0

1
a(t)5 dt

)
a (t0)2

4r3
+

(∫ t1
t0

1
a(t)4 dt

)
a (t0)

r3
+

H (t0)

4ra (t0)

+
5 |X0|

24X0r2a (t0)2 −
3
∫ t1
t0

( d
dt
a(t))

2

a(t)3 dt

4r
−

3
∫ t1
t0

1
a(t)3 dt

4r3

X̂j

W0
i|0(t0, t1) =

− |X0| ln
(
a(t1)
a(t0)

)
2X0r2a (t1)2 +

H (t1)

4ra (t1)
+

(∫ t1
t0

( d
dt
a(t))

2

a(t)3 dt

)
a (t0)2

4ra (t1)2 (A.3)

−

(∫ t1
t0

1
a(t)3 dt

)
a (t0)2

4r3a (t1)2 +
H (t0) a (t0)

4ra (t1)2 +

∫ t1
t0

( d
dt
a(t))

2

a(t)
dt

2ra (t1)2 +
X0

4 |X0| r2a (t1)2

+
a (t0)2H (t1)

4ra (t1)3 +
|X0| a (t0)2

8X0r2a (t1)4 +

(∫ t1
t0

( d
dt
a(t))

2

a(t)5 dt

)
a (t0)2

2r
−

(∫ t1
t0

1
a(t)5 dt

)
a (t0)2

4r3

− 3H (t0)

4ra (t0)
− |X0|

8X0r2a (t0)2 +
3
∫ t1
t0

( d
dt
a(t))

2

a(t)3 dt

4r
+

∫ t1
t0

1
a(t)3 dt

4r3

X̂ i

W i
0|j(t0, t1) =

− |X0|
(∫ t1

t0

1
a(t)4 dt

)
a (t0)2

2X0r3a (t1)
+
|X0|

(∫ t1
t0

1
a(t)3 dt

)
a (t0)

X0r3a (t1)
+

1

3r2a (t0) a (t1)
(A.4)
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−
|X0|

∫ t1
t0

1
a(t)2 dt

2X0r3a (t1)
− 1

2r2a (t1)2 +
a (t0)2

6r2a (t1)4

δij

+

− ln
(
a(t1)
a(t0)

)
2r2a (t1)2 +

|X0|H (t1)

4X0ra (t1)
+
|X0|

(∫ t1
t0

1
a(t)4 dt

)
a (t0)2

2X0r3a (t1)

−
|X0|

(∫ t1
t0

1
a(t)3 dt

)
a (t0)

X0r3a (t1)
− 1

3r2a (t0) a (t1)
+
|X0|

∫ t1
t0

1
a(t)2 dt

2X0r3a (t1)

−
|X0|

(∫ t1
t0

( d
dt
a(t))

2

a(t)3 dt

)
a (t0)2

4X0ra (t1)2 +
3 |X0|

(∫ t1
t0

1
a(t)3 dt

)
a (t0)2

4X0r3a (t1)2 +
|X0|H (t0) a (t0)

4X0ra (t1)2

−
|X0|

(∫ t1
t0

1
a(t)2 dt

)
a (t0)

X0r3a (t1)2 +
|X0|

∫ t1
t0

( d
dt
a(t))

2

a(t)
dt

2X0ra (t1)2 +
7

4r2a (t1)2

− |X0| a (t0)2H (t1)

4X0ra (t1)3 − 2a (t0)

3r2a (t1)3 −
7a (t0)2

24r2a (t1)4 −
|X0|

(∫ t1
t0

( d
dt
a(t))

2

a(t)5 dt

)
a (t0)2

2X0r

+
|X0|

(∫ t1
t0

1
a(t)5 dt

)
a (t0)2

4X0r3
−
|X0|

(∫ t1
t0

1
a(t)4 dt

)
a (t0)

X0r3
− |X0|H (t0)

4X0ra (t0)
− 5

24r2a (t0)2

+
3 |X0|

∫ t1
t0

( d
dt
a(t))

2

a(t)3 dt

4X0r
+

3 |X0|
∫ t1
t0

1
a(t)3 dt

4X0r3

X̂ iX̂j
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Appendix B

Maxima command

Listing B.1: Maxima code
(%i1 ) de c l a r e ( in t eg ra t e , l i n e a r ) ;
(% i2 ) hXt1 : X0ˆ2−Xˆ2+a0ˆ2/a1ˆ2∗Xˆ2 ;

/∗ Subs t i tu t e the i n t e g r a l s ∗/ ;
(%i3 ) A: subst (

i n t e g r a t e (hX( t )ˆ(−3/2) , t , t0 , t1)=g2 ,
expand (X0∗hXt1 ˆ(1/2)∗ i n t e g r a t e (hX( t )ˆ(−3/2) , t , t0 , t1 ) ) ) ;

(% i4 ) B: subst ( [
i n t e g r a t e (hX( t )ˆ(−3/2) , t , t0 , t1)=g2 ,
i n t e g r a t e (1/ a ( t )ˆ2∗hX( t )ˆ(−3/2) , t , t0 , t1)=g3 ] ,
expand (X∗hXt1 ˆ(1/2)∗ i n t e g r a t e ( ( a0ˆ2/a ( t )ˆ2−1)∗hX( t )ˆ(−3/2) , t , t0 , t1 ) ) ) ;

(% i5 ) C: subst ( [
i n t e g r a t e (hX( t )ˆ(−3/2) , t , t0 , t1)=g2 ,
i n t e g r a t e (1/ a ( t )ˆ2∗hX( t )ˆ(−3/2) , t , t0 , t1)=g3 ] ,
expand ( abs (X0)∗X∗ i n t e g r a t e ( ( a0/a1−a0∗a1/a ( t )ˆ2)∗hX( t )ˆ(−3/2) , t , t0 , t1 ) ) ) ;

(% i6 ) D: subst ( [
i n t e g r a t e (1/ a ( t )ˆ2∗hX( t )ˆ(−1/2) , t , t0 , t1)=g1 ] ,
expand (X0/abs (X0)∗ i n t e g r a t e ( a0∗a1/a ( t )ˆ2∗hX( t )ˆ(−1/2) , t , t0 , t1 ) ) ) ;

(% i7 ) E: subst ( [
i n t e g r a t e (1/ a ( t )ˆ2∗hX( t )ˆ(−1/2) , t , t0 , t1)=g1 ,
i n t e g r a t e (hX( t )ˆ(−3/2) , t , t0 , t1)=g2 ,
i n t e g r a t e (1/ a ( t )ˆ2∗hX( t )ˆ(−3/2) , t , t0 , t1)=g3 ,
i n t e g r a t e (1/ a ( t )ˆ4∗hX( t )ˆ(−3/2) , t , t0 , t1)=g4 ] ,
expand (X0/abs (X0)∗Xˆ2∗ i n t e g r a t e ( ( a0/a1−a0∗a1/a ( t )ˆ2)∗ ( a0ˆ2/a ( t )ˆ2−1)∗hX( t )ˆ(−3/2) , t , t0 , t1 ) ) ) ;

/∗ The s u b s t i t u t i o n s g1 , g2 , g3 and g4 are not l i n e a r l y independent . Subs t i tu r e r e l a t i o n s . ∗/
(%i8 ) detg : radcan ( subst ( [

g4=1/a0ˆ2/Xˆ2∗( g1+(−X0ˆ2+Xˆ2)∗ g3 ) ,
g2=1/(X0ˆ2−Xˆ2)∗(X0/abs (X0) − a0ˆ2∗Xˆ2∗g3 ) ] ,
expand(((−Aˆ2+Cˆ2)∗(−Bˆ2+(D+E)ˆ2) − (−A∗B+C∗(D+E))ˆ2)∗Dˆ 4 ) ) ) ;

/∗ Subs t i tu t e i n t e g r a l s back ∗/
(%i9 ) detg : subst ( [

g1=i n t e g r a t e (1/ a ( t )ˆ2∗hX( t )ˆ(−1/2) , t , t0 , t1 ) ,
g3=i n t e g r a t e (1/ a ( t )ˆ2∗hX( t )ˆ(−3/2) , t , t0 , t1 ) ] ,
detg ) ;

This code can be find in the file vanvleck.wxmx in the github repository
https://github.com/Vikhamar/The-Hubble-tension-and-electromagnetic-waves-in-flat-

FRW-universe/blob/main/vanvleck.wxmx.
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Appendix C

Proofs

Proposition 3 (Maximum over compact space preserves continuity)

Let X and K be topological spaces and K be non-empty and compact. Let X×K f
−! R be continuous.

Then

X
fmax
−−! R

x 7! max
k∈K

f(x, k)

is continuous.

Proof.
First note that the maxima exist because K is non-empty and compact, and f is continuous wrt.
K. To prove that fmax is continuous, let x0 ∈ X and let ε > 0. Need to show ∃U ∈ τX so that
x0 ∈ U ⊆ f−1

max (〈fmax(x0)− ε, fmax(x0) + ε〉). The maxima of f exist, so ∃k0 ∈ K so that f(x0, k0) =
fmax(x0). Since fmax(x0) ≥ f(x0, k) ∀k ∈ K, the slice {x0} × K ⊆ f−1 (〈−∞, fmax(x0) + ε〉).
Since f is continuous on {x0} × K, ∀k ∈ K ∃Uk ∈ τX and ∃Vk ∈ τK so that (x0, k) ∈ Uk ×
Vk ⊆ f−1 (〈−∞, fmax(x0) + ε〉). {Vk | k ∈ K} is an open cover of K. By compactness, there is a fi-
nite subcover {Vk1 , . . . , VkN}. Since f is continuous wrt. X at x0, ∃U0 ∈ τX so that x0 ∈ U0 and
U0 × {k0} ⊆ f−1 (〈fmax(x0)− ε, fmax(x0) + ε〉). Set U ≡ U0 ∩

⋂N
n=1 Ukn . Then x0 ∈ U and U ×K ⊆

f−1 (〈−∞, fmax(x0) + ε〉). Let now x ∈ U . Since x ∈
⋂N
n=1 Ukn , f(x, k) ∈ 〈−∞, fmax(x0) + ε〉 ∀k ∈

K, and since fmax is a maximum (not just a supremum), fmax(x) ∈ 〈−∞, fmax(x0) + ε〉. Since x ∈ U0,
f(x, k0) ∈ 〈fmax(x0)− ε, fmax(x0) + ε〉, and since fmax(x) ≥ f(x, k0), fmax(x) ∈ 〈fmax(x0)− ε,∞〉. We
have x0 ∈ U ⊆ f−1

max (〈−∞, fmax(x0) + ε〉). fmax is continuous.

Proof of lemma 4.
Evaluation is continuous by the universal property of product topology as seen from the diagram
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V ′

RV R

〈·,v〉

πv

.

It says namely that V ′ ↪−! RV is continuous ⇐⇒ 〈·, v〉 is continuous ∀v ∈ V . Continuity of scalar
multiplication and vector addition follow from the universal property of product topology and sub-
space topology, from that multiplication and addition of real numbers are continuous and from that
the following two diagrams

R× V ′ R× R

V ′ RV R

·

id×〈·,v〉

·

πv

and

V ′ × V ′ R× R

V ′ RV R

+

〈·,v〉×〈·,v〉

+

πv

commute ∀v ∈ V . Since R is Hausdorff, and any product of Hausdorff spaces is Hausdorff, and any
subspace of a Hausdorff space is Hausdorff, V ′ is Hausdorff.

Proof of lemma 5.
Since 〈T ′·, v〉 = 〈·, T v〉 and evaluation 〈·, w〉 is continuous ∀w ∈ W ′, 〈T ′·, v〉 is continuous ∀v ∈ V .
From the universal property of product topology and subspace topology

W ′

V ′ RV R

〈T ′·,v〉T ′

πv

T ′ is continuous ⇐⇒ 〈T ′·, v〉 is continuous ∀v ∈ V . So T ′ is continuous.

Proof of well-definedness in definition 4.
Existence of φ̃:
Since suppφ ∩ suppu is compact and Uφ is locally compact, ∃V ∈ τUφ so that suppφ ∩ suppu ⊆ V

and V is compact. And since V is compact, ∃W ∈ τUφ so that V ⊆ W and W is compact. Choose a
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partition of unity {ρi}i∈I subordinate to the open cover
{
V,M\W

}
. Set

ρ ≡
∑
i∈I

supp ρi⊆V

ρi and φ̃(p) ≡

{
ρ(p) · φ(p), p ∈ Uφ
0, p ∈M \W.

Since ρ
∣∣
V

= 1 and ρ
∣∣
M\W = 0, the two expressions for φ̃ agree on the value zero where their domains

overlap. Since Uφ andM\W are both open, and both expressions are smooth, the gluing lemma for
smooth functions says that φ̃ is smooth. Since W is compact and supp φ̃ ⊆ supp ρ ⊆ W , supp φ̃ is
compact. We conclude that φ̃ ∈ D(r,s)(M), φ = φ̃ on V which is a neighbourhood of suppu∩ suppφ

and supp φ̃ ⊆ suppφ.

M
su

ppu

supp
φ

V

W

Uφ

ρ = 1

ρ = 0

Figure C.1: Overview over which sets containing/intersecting which sets.

Independence of choice of φ̃:

Let φ̃1, φ̃1 ∈ D(r,s)(M) be two test functions so that φ̃1 = φ̃2 on a neighbourhood V of suppu∩suppφ

and supp φ̃1 ∪ supp φ̃2 ⊆ suppφ. Need to show that
〈
u, φ̃1

〉
=
〈
u, φ̃2

〉
. Set ψ ≡ φ̃1 − φ̃2. Since ψ is

zero on V and V is open, suppψ ∩ V = Ø. Since supp φ̃1 ∪ supp φ̃2 ⊆ suppφ, suppψ ⊆ suppφ \ V .
That means suppψ ∩ suppu = Ø and ψ

∣∣
M\suppu

∈ D(r,s) (M\ suppu). From the definition support

of u, u
∣∣
M\suppu

= 0. That means 〈u, ψ〉 =
〈
u
∣∣
M\suppu

, ψ
∣∣
M\suppu

〉
= 0. So

〈
u, φ̃1

〉
=
〈
u, φ̃2

〉
.

Proof for that definition (3.13) is well-defined.
Existence of ρ:
Since manifolds are normal Hausdorff, and singsuppu and singsupp v both are closed, ∃ open U ⊆M
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containing singsupp v so that singsuppu∩U = Ø. ρ can be constructed by a partition of unity {ρi}i∈I
subordinate to the open cover {U,M\ singsupp v} of M. Set

ρ ≡
∑
i∈I

supp ρi⊆U

ρi.

M
singsuppu

singsupp v

U

ρ = 1

ρ = 0

Figure C.2: Overview over which sets containing/being disjoint from which sets.

Independence of choice of ρ:
Let ρ1, ρ2 ∈ C∞(M) be two functions that are both 0 on singsuppu and 1 on singsupp v. Then

(〈v, ρ1uφ〉+ 〈u, (1− ρ1)vφ〉)− (〈v, ρ2uφ〉+ 〈u, (1− ρ2)vφ〉)
=〈v, (ρ1 − ρ2)︸ ︷︷ ︸

0 on
singsuppu∪ singsupp v

uφ〉+ 〈u, (ρ2 − ρ1)︸ ︷︷ ︸
0 on

singsuppu∪ singsupp v

vφ〉

=

∫
V

v(ρ1 − ρ2)uφω −
∫
V

u(ρ2 − ρ1)vφω

=0, where V ≡M\ (singsuppu ∪ singsupp v) .

Proof of proposition 1.
D± (J±(p)) = D±(p):
D± (J±(p)) ⊇ D±(p) holds because p ∈ J±(p). To show D± (J±(p)) ⊆ D±(p), let p0 ∈ J±(p) and
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p1 ∈ D±(p0). Need to show that p1 ∈ D±(p). If p0 = p, there is nothing to show. Let therefore

p0 6= p. Let [0, 1]
γ
−! Ω be the geodesic from p0 = γ(0) to p1 = γ(1). Define

[0, 1]
f
−! R

λ 7! σ(p, γ(λ)).

Then f(0) = 0 and f ′(0) = 〈dσp(γ(0))︸ ︷︷ ︸
±-directed

,

timelike and ±-directed︷︸︸︷
γ̇(0)〉 < 0, since p0 ∈ J±(p) and p1 ∈ D±(p0). If we can

show that f
∣∣
〈0,1]

< 0, then γ(〈0, 1]) ⊆ D(p). And since p0 ∈ J±(p) \ {p} together with that the path-

connected components of J(p) \ {p} are J−(p) \ {p} and J+(p) \ {p}, we must have that γ([0, 1]) ⊆
J±(p)\{p}, and hence p1 ∈ D±(p). Assume therefore f

∣∣
〈0,1]

≮ 0. Then the set {λ ∈ 〈0, 1] | f(λ) ≥ 0}
is non-empty. Define λ2 ≡ inf {λ ∈ 〈0, 1] | f(λ) ≥ 0}. Now, since γ is C1, f ′ is continuous and since
f ′(0) < 0, ∃λ0 ∈ 〈0, 1] so that f ′

∣∣
[0,λ0〉

< 0. Since f(0) = 0, f
∣∣
〈0,λ0]

< 0. That means λ0 < λ2. The

mean value theorem says that ∃λ1 ∈ 〈λ0, λ2〉 so that f(λ2)−f(λ0) = (λ2−λ0)·f ′(λ1). By the definition
of λ2, f(λ2) ≥ 0. That means f(λ2) − f(λ0) > 0 and hence f ′(λ1) > 0 (∗). From the definition of
λ2, f

∣∣
[0,λ2]

≤ 0. That means γ ([0, λ2]) ⊆ J(p) \ {p}. Again, since the path-connected components of

J(p) \ {p} are J−(p) \ {p} and J+(p) \ {p}, and γ(0) ∈ J±(p) \ {p}, γ ([0, λ2]) ⊆ J±(p). Since γ(λ1) ∈
J±(p) and parallel transport preserves time orientation (4.19), dσp(γ(λ1)) = P (γ(λ1), p) exp−1

p (γ(λ1))
is causal and ±-directed. Since dσp(γ(λ1)) and γ̇(λ1) have same time orientation and one is causal
and one is timelike, f ′(λ1) = 〈dσp(γ(λ1)), γ̇(λ1)〉 < 0, which is contradiction to (∗). That concludes
D± (J±(p)) ⊆ D±(p).

J± (D±(p)) = D±(p):
J± (D±(p)) ⊇ D±(p) holds because p′ ∈ J±(p′) ∀p′ ∈ Ω. To show J± (D±(p)) ⊆ D±(p), let p0 ∈
D±(p) and p1 ∈ J±(p0). Need to show that p1 ∈ D±(p). We have that p ∈ D∓(p0) and p0 ∈ J∓(p1).
So p ∈ D∓ (J∓(p1)). Has already shown that D± (J±(p′)) ⊆ D±(p′) ∀p′ ∈ Ω. By time reversing it,
D∓ (J∓(p1)) ⊆ D∓(p1). So p ∈ D∓(p1). That means p1 ∈ D±(p).

D± (D±(p)) = D±(p):
Has already shown J± (D±(p)) ⊆ D±(p), so D± (D±(p)) ⊆ D±(p). To show D± (D±(p)) ⊇ D±(p),
let p1 ∈ D±(p). Set X ≡ exp−1

p (p1). Set p0 ≡ eX/2. Then p0 ∈ D±(p) and p1 ∈ D±(p0), so p1 ∈
D± (D±(p)).

J±(p) = J± (J±(p)):
Since p′ ∈ J±(p′) ∀p′ ∈ Ω, J±(p) ⊆ J± (J±(p)).

Proof of proposition 2.
By definition of D±(p), Ω =

⋃
p∈Ω D±(p) ⊆ Ω. To show inclusion the other way, let p ∈ Ω. Need to

show ∃p′ ∈ Ω so that p ∈ D±(p′). Since expp is defined on a neighbourhood of 0 ∈ TpΩ, ∃ ∓-directed
timelike X ∈ TpΩ so that eX ∈ Ω. Set p′ ≡ eX . Then p′ ∈ D∓(p) and hence p ∈ D±(p′).
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Proof of lemma 6.
Let K ⊆ Ω be compact. Since Ω =

⋃
q∈Ω D∓(q) (proposition 2), ∀k ∈ K ∃qk ∈ Ω so that

k ∈ D∓(qk). This means {D∓(qk) ∩K | k ∈ K} is an open cover of K. Since K is compact, ∃ finitely
many p1, . . . , pN ∈ Ω so that K ⊆

⋃k
i=1D∓(pi). Then

J∓(K) ⊆ J∓

(
N⋃
i=1

D∓(pi)

)
=

N⋃
i=1

J∓ (D∓(pi)) ⊆
N⋃
i=1

J∓(pi),

where the last inclusion is from proposition 1. B ∩ J∓(K) ⊆ B ∩
⋃N
i=1 J∓(pi) =

⋃N
i=1 B ∩ J∓(pi)

which is a finite union of compact sets and hence is compact. To show that B∩J∓(K) is compact, it
remains to show that both B and J∓(K) are closed in Ω. B is closed in Ω since it is ∓-compact. Now
we show that J∓(K) is closed. Since Ω is time orientable, ∃ timelike ±-directed continuous vector field
T ∈ Γ(TΩ). If K = Ø, J∓(K) = Ø is closed. Let K 6= Ø. Notice that p ∈ J∓(K) precisely when
σ(p, k) ≤ 0 and

〈
T (p), exp−1

p (k)
〉
≤ 0 for a k ∈ K. Define therefore the map

Ω
f
−! R

p 7! min
k∈K

max
{
〈σ(p, k),

〈
T, exp−1

p (k)
〉}
.

Since

Ω× Ω
exp−1

−! TΩ

(p, q) 7! exp−1
p (q)

is continuous wrt. the product topology on Ω× Ω, f is continuous (see prop. 3 in append C). Note
that the minima exist because exp−1 is continuous in second argument and K is compact. We have
that J∓(K) = f−1(〈−∞, 0]). Since f is continuous, J∓(K) is closed.

Proof of lemma 7.
Let p ∈ Ω. Need to show that J±(B) ∩ J∓(p) is compact. Because J± (J±(p′)) = J±(p′) ∀p′ ∈ Ω,
whenever p′ /∈ J∓(p), J±(p′) ∩ J∓(p) = Ø. This means

J±(B) ∩ J∓(p) =
⋃
p′∈B

J±(p′) ∩ J∓(p)

=
⋃

p′∈B∩J∓(p)

J±(p′) ∩ J∓(p)

=J∓(p) ∩ J± (B ∩ J∓(p)) .

Since Ω is a causal domain, J∓(p) is ±-compact. Since B is ∓-compact, K ≡ B ∩ J∓(p) is compact.
By lemma 6, J±(B) ∩ J∓(p) = J∓(p) ∩ J± (K) is compact.
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Proof of theorem 4.56.
To prove the theorem, it suffices show the following:

1. D′±,(1,0)(Ω)
G±
−! D′±,(1,0)(Ω) is well-defined on its domain.

2. T±,(1,0)(Ω)
G±
−! T±,(1,0)(Ω) and D′±,(1,0)(Ω)

G±
−! D′±,(1,0)(Ω) hit within their codomain, and equa-

tion (4.56) holds.

3. D′±,(1,0)(Ω) D′±,(1,0)(Ω) D′±,(1,0)(Ω)
G±

id

L commutes.

4. D′±,(1,0)(Ω)
L
−! D′±,(1,0)(Ω) is injective.

1.
Let u ∈ D′±,(1,0)(Ω). To show that G±u is well-defined, we need to show that 〈G±u, φ〉 =

〈
u,G′±φ

〉
is a well-defined number ∀φ ∈ D(1,0)(Ω) and that G±u is linear in φ. A priori, u is not defined on
G′±φ because it is not a test function. But following definition 4,

〈
u,G′±φ

〉
is a well-defined number if

G′∓φ is smooth and suppu∩ suppG′±φ is compact ∀φ ∈ D(1,0)(Ω). To see that G′∓φ is smooth, pick a
local orthonormal frame to write the integrals in equation (4.55) in normal coordinates wrt. the frame.
Then one can see that smoothness follows from that the bitensors fields U , W and the exponential
map are smooth. Will now show that suppG′±φ ⊆ J∓(suppφ). Since suppφ is compact, J∓(suppφ)
is closed by lemma 7. It therefore suffices to show

(
suppG′±φ

)◦ ⊆ J∓(suppφ). Let q ∈ (suppG′±φ)◦.
Then G′±φ(q) 6= 0. If q /∈ J∓(suppφ), suppφ∩ J±(q) = Ø. But G′±φ(q) is an integral with integrand
linear in φ only over the region J±(q). Therefore q ∈ J∓(suppφ). We then have suppu∩ suppG′±φ ⊆
suppu∩J∓(suppφ). Since suppu is∓-compact and suppφ is compact, by lemma 6 suppu∩J∓(suppφ)
is compact, and hence suppu ∩ suppG′±φ is compact. It remains to check if G±u is linear in φ. We
have

〈G±u, φ〉 = 〈u, ψ〉 ,

where ψ ∈ D(1,0)(Ω) is any test function that equals G′±φ on a neighbourhood of suppu∩ suppG′±φ.

That confirms linearity, and D′±,(1,0)(Ω)
G±
−! D′±,(1,0)(Ω) is well-defined.

2.

Will first show that D′±,(1,0)(Ω)
G±
−! D′±,(1,0)(Ω) hits within its codomain. Let u ∈ D′±,(1,0)(Ω). Need

to show that suppG±u is ∓-compact, that is, suppG±u ∩ J∓(q) is compact ∀q ∈ Ω. Will first show
that suppG±u ⊆ J±(suppu). Let p ∈ Ω \ J±(suppu). Need to show p /∈ suppG±u. Since suppu is
∓-compact, by lemma 7 J±(suppu) is also ∓-compact and hence closed. That means ∃U ∈ τΩ so that
p ∈ U * J±(suppu). Let φ ∈ D(1,0)(Ω) with suppφ ⊆ U . Since U * J±(suppu), suppu∩J∓(U) = Ø.
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We have already shown in part 1. that suppG′±φ ⊆ J∓(suppφ). So suppu ∩ suppG′±φ = Ø. That
means 0 = 〈u,G′±φ〉 = 〈G±u, φ〉. From definition 3 of support of distributions,

suppG±u = Ω \
{
p′ ∈ Ω

∣∣ ∃U ∈ τΩ so that p′ ∈ U and G±u
∣∣
U

= 0
}
.

That means p /∈ suppG±u. We have shown suppG±u ⊆ J±(suppu), and since J±(suppu) is ∓-

compact and suppG±u is closed, suppG±u is ∓-compact, which finally means that D′±,(1,0)(Ω)
G±
−!

D′±,(1,0)(Ω) hits within its codomain. Next, we show that T±,(1,0)(Ω)
G±
−! T±,(1,0)(Ω) hits within its

codomain. We have already shown that G± preserves ∓-compact support. It remains to show that
G±j is smooth ∀j ∈ T±,(1,0)(Ω). Let j ∈ T±,(1,0)(Ω) and φ ∈ D±,(1,0)(Ω).

〈G±j, φ〉 =
〈
j,G′±φ

〉
=

1

4π

∫
Ω

jµ(q)

(∫
C±(q)

Uν |µ(p, q)φν(p)ωσq ,0(p)

)
ω(q)

+
1

4π

∫
Ω

jµ(q)

(∫
D±(q)

W ν |µ(p, q)φν(p)ω(p)

)
ω(q).

We have∫
Ω

jµ(q)

(∫
C±(q)

Uν |µ(p, q)φν(p)ωσq ,0(p)

)
ω(q) =

∫
Ω

(∫
C∓(p)

jµ(q)Uν |µ(p, q)ωσp,0(q)

)
φν(p)ω(p)∫

Ω

jµ(q)

(∫
D±(q)

W ν |µ(p, q)φν(p)ω(p)

)
ω(q) =

∫
Ω

(∫
D∓(p)

jµ(q)W ν |µ(p, q)ω(q)

)
φν(p)ω(p)

because integration regions are

{(p, q) ∈ Ω× Ω | p ∈ C±(q)} = {(p, q) ∈ Ω× Ω | q ∈ C∓(p)}
{(p, q) ∈ Ω× Ω | p ∈ D±(q)} = {(p, q) ∈ Ω× Ω | q ∈ D∓(p)}

and from the defining property of Leray forms we have

dσq(p) ∧ ωσq ,0(p) ∧ ω(q) =ω(p) ∧ ω(q)

=ω(p) ∧ dσp(q) ∧ ωσp,0(q)

=dσp(q) ∧ ωσp,0(q) ∧ ω(p).

That means

G±j(p) =
1

4π

∫
C∓(p)

jµ(q)Uν |µ(p, q)ωσp,0(q) +
1

4π

∫
D∓(p)

jµ(q)W ν |µ(p, q)ω(q).

Equation (4.55) is proved. Smoothness of G±j follows then from the same reason the operator G′±
produces smooth vector fields.
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3.
Let u ∈ D′±,(1,0)(Ω). Need to show that LG±u = u. This holds true because G±,j is a Green’s function

∀j ∈ TΩ. To prove it, let φ ∈ D(1,0)(Ω).

〈LG±u, φ〉 = 〈G±u,Lφ〉
=
〈
u,G′∓Lφ

〉
=
〈
uµ(q),

〈
LG∓,q,µ, φ

〉〉
= 〈uµ(q), φµ(q)〉 .

4.
Let u ∈ D′±,(1,0)(Ω) and Lu = 0. Need to show u = 0. We have shown that

D′±,(1,0)(Ω) D′±,(1,0)(Ω) D′±,(1,0)(Ω)
G±

id

L ,

and since T±,(1,0)(Ω)
G±
−! T±,(1,0)(Ω) hits within its image,

T±,(1,0)(Ω) T±,(1,0)(Ω) T±,(1,0)(Ω)
G±

id

L .

That means LG±φ = φ ∀φ ∈ D(1,0)(Ω), since D(1,0)(Ω) ⊆ T±,(1,0)(Ω). We get

〈u, φ〉 =〈u,LG±φ〉
=〈Lu,G±φ〉
=0.

Proof of lemma 8.
Both d

(
expp

)
X(0)

and dH expX(0) can be described by the Jacobi equation. Set Y (τ) ≡
d
(
expp

)
τX(0)

(
τ DX
dτ

(0)
)

and Z(τ) ≡ dH expτX(0) γ̇(0). Then d
(
expp

)
X(0)

DX
dτ

(0) = Y (1) and
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dH expX(0) γ̇(0) = Z(1) and
D2Y

dτ 2
= −R

(
Y,

d

dτ
eτX(0)

)
d

dτ
eτX(0)

Y (0) = 0

DY

dτ
(0) =

DX

dτ
(0)

 and


D2Z

dτ 2
= −R

(
Z,

d

dτ
eτX(0)

)
d

dτ
eτX(0)

Z(0) = γ̇(0)

DZ

dτ
(0) = 0

 .

Set Æ(τ) ≡ d
dτ ′

∣∣
0

exp(τX(τ ′)). Then
D2Æ

dτ 2
= −R

(
Æ,

d

dτ
eτX(0)

)
d

dτ
eτX(0)

Æ(0) = γ̇(0)

DÆ

dτ
(0) =

DX

dτ
(0)

 .

By uniqueness of solution, Æ(τ) = Y (τ) + Z(τ). So

d

dτ

∣∣∣∣
0

exp(X(τ)) = Æ(1) = Y (1) + Z(1) = d
(
expp

)
X(0)

DX

dτ
(0) + dH expX(0) γ̇(0).
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