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Problem Description

The objective of this thesis is to develop a method which gives a robot the ability to detect
and avoid obstacles in a 3D environment. Before the start of this work, three new robots
based on the nRF52840 DK were completed, which are capable of exploring and mapping
an unknown environment. Currently, the robots are equipped with sensor towers consisting
of 4 IR range sensors each, which provide full 360° awareness in the horizontal plane.
However, the existing system is incapable of detecting hazards s.a. holes, low passageways,
and small items on the ground.
More specifically, the problem is divided into the following subtasks:

1. Familiarize with, test and calibrate the nRF52840 DK robot
2. Extend the hardware with suitable sensors
3. Based on the sensor data, develop a method s.t. the robot can detect items on the

ground, holes, and low passageways
4. Integrate the method into the existing system
5. Test and verify the method
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Summary and Conclusion

The objective of thismaster’s thesis was to develop amethod for detection and avoidance of
obstacles s.a. small items on the ground, holes, and low passageways. A newly constructed
embedded robot based on the nRF52840 DK was made available at the start of the project.
Early on, previous functionality for exploration and mapping of an unknown environment
was adapted onto the robot. Initial performance tests were conducted, which verified the
robot’s baseline functionality. The test revealed that while the robot mostly worked as
expected, the reconstructed map did have cases of noise and distortion.
To make detection of the obstacles possible, a technical sensor solution was developed.
Due to factors s.a. low power consumption, suitable measuring range, and small size, the
Sharp GP2Y0A41SK0F IR range sensors were selected. Furthermore, a sensor rig was 3D
printed s.t. six IR sensors could be mounted to robot. The sensor solution has experienced
several discrepancies throughout the work, s.a. the sensors disturbing one another, and
noise caused by items right outside the laser line of sight.
Based on available samples from the sensor solution, an obstacle detection method was
developed. The method is easy to use, as there are few configuration parameters. False
positive detections may sometimes occur, but this is due to discrepancies in the sensor
solution, not the method itself. An obstacle avoidance method, which is initiated once an
obstacle is detected, ensures that the robot does not collide. The obstacles are also added
to the map, s.t. they are considered in subsequent planning iterations.
As the nRF52840 DK lacked ADCs for interfacing with the sensor solution, an external
hardware module was developed. The module works as an external ADC by default, but
also offers functionality s.a. switching of the sensor power supply and basic obstacle de-
tection. An application of power supply switching, where an alternating switching pattern
is utilized, completely solved the issue with sensors disturbing one another.
In the final performance test, the robot demonstrated the capability to explore and map
an unknown environment containing all three types of obstacles mentioned in the thesis
objective. In conclusion, the objective of the thesis, as stated in the problem description,
is fulfilled. However, there are still some minor discrepancies present, s.a. poor mapping
and cases of false positive detections.
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Sammendrag og Konklusjon

Målet med denne masteroppgaven var å utvikle en metode for deteksjon og kollisjonsun-
ngåelse av hindringer som f.eks. lave åpninger, hull eller små gjenstander på gulvet. En
robot basert på nRF52840 DK ble nylig ferdigstilt, og ble tilgjengeliggjort for arbeidet
med oppgaven. I starten av arbeidet ble tidligere utviklet funksjonalitet for utforskning
og kartlegging av ukjente områder tilpasset og lastet opp på roboten. En innledende test
ble gjennomført for å verifisere robotens funksjonalitet. Testen viste at det forekommer
tilfeller av støy og forvrengninger i det rekonstruerte kartet, men at roboten hovedsakelig
oppfører seg som forventet.
For å muliggjøre deteksjon av hindringer ble en teknisk sensorløsning utviklet. En avs-
tandssensor som benytter infrarød stråling, Sharp GP2Y0A41SK0F, ble valgt på grunn
av lavt strømforbruk, passende måleområde og liten størrelse. I tillegg ble en sensor rigg
3D-printet, slik at seks sensorer kunne festes til roboten. Sensorløsningen har opplevd
flere avvik i løpet av oppgavearbeidet. Mer spesifikt inkluderer dette forstyrrelser mellom
sensorer, og forekomster av støy når det er gjenstander rett utenfor siktelinjen til sensoren.
Ved bruk av måledata fra sensorløsningen kunne en metode for deteksjon av hindringer
bli utviklet. Metoden er enkel å bruke, siden det er få konfigurasjonsparametere. I noen
tilfeller forekommer det falske positive deteksjoner, men dette er hovedsakelig på grunn
av avvik i sensorløsningen. Når en hindring blir oppdaget, igangsettes en metode for kol-
lisjonsunngåelse slik at roboten ikke kolliderer. Hindringer blir også lagt til kartet slik at
de tas hensyn til i fremtidige planleggingsiterasjoner.
Siden nRF52840 DK mangler ADC-er for å lese av målinger fra sensorløsningen, ble en
eksternmaskinvaremodul utviklet. Standardfunksjonaliteten til modulen er som en ekstern
ADC, men det tilbys også annen funksjonalitet slik som å skru av og på strømforsyningen
til sensorene og grunnleggende deteksjon av hindringer. En anvendelse som benyttes er
at strømforsyningen til sensorene blir slått av og på i et alternerende mønster. Dette løste
problemet med forstyrrelser mellom sensorene.
I den avsluttende testen demonstrerte roboten evnen til å utforske og kartlegge et ukjent
område hvor alle tre typer hindringer var til stede. Dermed kan det konkluderes med at
målet med oppgaven, slik som det ble presentert i problembeskrivelsen, er oppnådd. Det
er likevel noen mindre avvik som er uløste, noe som inkluderer støy og forvrengninger i
kartleggingen, samt tilfeller av falske positive deteksjoner.
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1 | Introduction

1.1 Problem Background and Motivation

In recent years, robotics has become more present in our daily lives, as the technology
solves increasingly challenging problems. A common category within this field are differ-
ential wheeled robots, which can be adapted to miscellaneous applications despite their
simple design. Some examples are vacuum cleaning, lawn mowing, and more specialized
missions in industrial facilities. In these cases, the robots are equipped with a sensor sys-
tem for gathering data about the surrounding environment, which is used to reconstruct
a map. A common assumption for differential wheeled robots is that the environment is
two-dimensional. However, while the robot may move in the horizontal plane, there may
exist hazards s.a. holes, low passageways, and small items on the ground, which require
additional consideration.
The objective of this thesis is to develop a method for detection and avoidance of obstacles
s.a. holes, low passageways, and small items on the ground, which a robot equipped with
a sensor system only providing horizontal perception would fail to handle.
The work in this thesis is part of the robot project at the Department of Engineering Cyber-
netics, which has been ongoing since 2004. The objective of the project is to use Simulta-
neous Localization and Mapping (SLAM) to reconstruct maps of unknown environments.
The robot project has hosted numerous specialization and master’s theses, and there have
been multiple generations of differential wheeled robots used throughout the years, one
of which was made available for this work. Figure 1.1 shows an example of a track the
robot should be able to explore at the end of this thesis. The track includes representative
obstacles s.a. a low passageway to the right, three small items to the left, and in the center,
there is an edge which the robot can fall off.

1
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Figure 1.1: Example track which the robot should be able to explore

1.2 Previous Work

A range of different topics has been considered throughout the robot project’s lifetime.
Several theses were dedicated to construct new robots from scratch [1–3], and to improve
or extend existing robot hardware [4, 5]. To construct a map, suitable perception sensors
are required. Such sensors have not been a major focus in recent years, as IR sensors have
proved reliable since the project’s inception. However, work has been conducted to test
other sensors s.a. LiDAR [6].
Almost all of the higher-level work relies on knowing a precise location of the robot, and
the ability to specify where a robot should move. As a result, a lot of work has been put
into developing and improving control and estimation methods [7–10].
A server based on Java is utilized for remote control of the robots. The development of
this server started in 2016, spanning multiple theses [11–13]. More recently, a new C++
server has been in the works, as this programming language is more familiar to the students
at the Department of Engineering Cybernetics. The core of the server was developed by
Grindvik [14], and several students have later worked on the communication between the
robots and the server [15–17], using protocols s.a. OpenThread and MQTT. Work has also
been conducted to achieve a functioning SLAM algorithm on this server [18].

1.3 Contributions

This thesis makes several contributions which together gives the robot the capability to
detect and avoid obstacles s.a. holes, items on the ground, and low passageways.
The first contribution is a sensor solutionwhich provides the necessary perception s.t. these
obstacles can be detected. IR sensors, similar to the ones that already exist on the robot,
were found to be a suitable selection. A large part of this contribution was identifying
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and reducing effects of sensor discrepancies, by designing a sensor rig addressing specific
issues with the sensors.
The second contribution are methods for obstacle detection and avoidance on the robot,
by utilizing data from the sensor solution. At the end of this thesis, obstacle detection can
be considered completed, while obstacle avoidance can be improved further.
The third and last contribution is an additional hardware module for interfacing with the
new sensor solution, as the current hardware proved insufficient. More specifically, the
module can be described as an external ADC, with additional obstacle detection capabil-
ities, reducing load on existing hardware.

1.4 Thesis Outline

Including the introduction, the thesis is divided into a total of eight chapters.
Chapter 2 – System Description reviews the theoretical baseline for the thesis, which
consists of the robot system as a whole. This includes both an in-depth presentation of the
robot, and descriptions of the central servers.
Chapter 3 – Making the Robot Operational goes through the customizations made for
the robot to work properly. This is particularly relevant, as the exact robot model was
brand new as of this semester. Additionally, testing was conducted to evaluate initial per-
formance.
Chapter 4 – Sensor Solution explains the process of finding a technical sensor solution
which makes the final objective achievable. More specifically, this includes identifying
requirements, investigating and selecting suitable sensors based on said requirements, and
designing a sensor rig.
Chapter 5 – Obstacle Detection and Avoidance first presents method for detection of
obstacles s.a. low passageways, holes and, small items on the ground, assuming the sensor
solution works as expected. Afterwards, the chapter presents a method for avoiding the
obstacles once detected.
Chapter 6 – External HardwareModule contains the presentation of a hardware module
which were developed in this thesis. The module works as an link between the existing
hardware and the selected sensor solution.
Chapter 7 – Testing and Evaluation presents tests of the functionality developed in this
thesis. This includes both testing of individual parts, and a test of the final performance
which answers to the thesis objective. A discussion of the test results and the work as a
whole is also conducted here.
Chapter 8 – Future Work summarizes work which was either incomplete at the end of
this thesis, or which is a natural continuation of this thesis.



2 | System Description

This chapter presents a baseline for the thesis, describing the existing components and
functionality of the system. All relevant parts are addressed, including the robot, the two
servers and in-between communication.
Firstly, an overview of the system as a whole is provided. Afterwards, the thesis reviews
both the robot hardware and the source code. Lastly, the both servers are presented, mainly
focusing on the Java server.

2.1 Overview

The system consists of two main components, a robot based on the nRF52840 DK, and
a server based on either Java or C++. The purpose of the system is for the robot to tra-
verse an environment which is unknown beforehand, and for the server to simultaneously
reconstruct a map of said environment.
More specifically, the server makes high level decisions, which results in generating way-
points for the robot. These waypoints are either generated manually, or through a path
planning algorithm. Additionally, the server reconstructs a 2D occupancy map through a
Simultaneous Localization andMapping (SLAM) algorithm, based on data from the robot.
As for the robot, the main responsibility is to navigate based on instructions from the
server, gather the necessary sensor data, and send the data back to the server. The robot
relies on a sensor tower with four Infrared (IR) range sensor for spatial information, and
sensors s.a. an Inertial Measurement Unit (IMU) and encoders for pose estimation.
Since the robot project’s inception in 2004, various robot models have beenworked on. The
current generation of robots was first developed by Jølsgard [3] during his specialization
project in Autumn 2020, where a series of three new robots was assembled. Before the
beginning of this thesis, another series of three almost identical robots was prepared. The
robots are referred to by their number as follows:

∙ NRF1, NRF2, NRF3: Developed by Jølsgard
∙ NRF4, NRF5, NRF6: New robots as of this semester

4
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The NRF4 robot was made available during this thesis work.

2.2 Robot Hardware

In this section, the NRF robot is presented in detail. At its core, the robot consists of a
metal chassis with top and bottom layers, a pair of wheels and two caster balls. Figure 2.1
shows the hardware layout of the NRF robot from above. In addition to what is shown in
the figure, an Inertial Measurement Unit (IMU) is located under the bottom layer, and an
OLED Display is located on the shield.

nRF52840 DK

Shield

Motor
Driver

Sensor Tower

Servo

(a) Top layer

Right
Motor

Left
Motor

Battery 1 Battery 2

Caster BallCaster Ball

(b) Bottom layer
Figure 2.1: Hardware layout of the NRF robot

As the figure shows, the robot consists of various electrical components. An overview of
these is given in Table 2.1. For the components which are the most relevant for this thesis
work, a more in-depth review is provided.

Table 2.1: Hardware overview for the NRF robot
Component Quantity Description
Microcontroller 1 nRF52840 Development Kit
DC motor 2 Machifit 25GA370 DC 12V 110 RPM
Motor driver 1 L298 H-Bridge Dual Bidirectional Motor Driver
Battery 2 Ansmann 10.8V, 2.6Ah
OLED Display 1 PEMENOL 128 x 64 LCD with SSD1306 driver
Inertial Measurement Unit (IMU) 1 ICM20948
Servo motor 1 S05NF STD
IR range sensors 4 Sharp GP2Y0A21YK
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nRF52840 Development Kit

The nRF52840 Development Kit [19] is single board development kit from Nordic Semi-
conductor based on the nRF52840 SoC, which has an Arm Cortex-M4 processor. The
board supports various peripherals, s.a. Bluetooth Low Energy (BLE), Bluetooth mesh,
Thread Zigbee, 802.15.4, ANT and 2.4 GHz. Furthermore, the board offers a range of
General-purpose Input/Output (GPIO) pins for interfacing with other hardware compo-
nents. Lastly, the board is equipped with an on-board SEGGER J-Link debugger, s.t. only
an USB cable is necessary for flashing and debugging.

nRF Shield

A hardware shield [20] is stacked on top of the the nRF52840 DK. The shield provides
peripheral connectors to other components s.a. the IR sensors, IMU, servo and OLED
display. Furthermore, the shield includes a voltage regulator, for converting the battery
voltage down to a 5V logic level. However, this regulator is not in use as of the beginning
of this thesis, and a regulator on the motor driver is used instead.

DC Motors with Rotary Encoders

Two 12V DC motors [21], which are mounted on the side of the robot, are used to control
robot movement. The motors are connected to a motor driver, which feeds each motor with
the desired voltage based on a Pulse Width Modulated (PWM) input signal. Additionally,
each motor is equipped a quadrature encoder, which yields both a velocity feedback and
direction of rotation.
The NRF4, NRF5 and NRF6 robots are equipped with a slightly different pair of motors
than the NRF1, NRF2 and NRF3 robots [22]. While interfacing with the motors works in
the same manner, the new motors have a higher amount of encoder ticks per revolution.

Inertial Measurement Unit

An IMU is a device that consists of an accelerometer, which measures specific force, and a
gyroscope, whichmeasures angular velocity. For 9DOF IMUs, s.a. the onboard ICM20946
[23], a magnetometer is also included. Mainly, data from the device is used as input for
pose estimation.

Servo Motor

A servo motor is a rotary actuator which allows for control of angular position. For the
S05NF STD servo [24], the position is specified by a PWM input signal, and can be con-
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trolled across a 180° interval. Contrary to the DC motors, the servo offers no feedback
signal.

IR Range Sensors

An IR range sensor is a sensor which uses rays in the infrared spectrum to measure dis-
tance to an object. The robot consists of four Sharp GP2Y0A21YK0F sensors [25], which
measure distances between 10 cm to 80 cm. The sensor outputs an analog voltage signal,
with a direct relation to the measured distance. Figure 2.2 shows the distance measure-
ment characteristic of a Sharp GP2Y0A21YK0F sensor. The graph is nonlinear due to the
manner of which distance is measured. The sensor uses the concept of triangulation, and
as a result, the sensor is more precise the closer a measured object is to the sensor.

Figure 2.2:Distance measurement characteristic of the IR range sensor GP2YA21YK0F by Sharp.
Adapted from Sharp GP2YA21YK0F datasheet [25].

On the robot, four Sharp IR range sensors are mounted on a rig with a 90° angle between
them, such that all sensors point out in the horizontal plane. The sensor rig is further
mounted on top of and rotated with the servo motor. This configuration gives the robot the
necessary spatial information for mapping, and is referred to as the sensor tower.
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2.3 Robot Source Code

The current version on the robot source code is fetched from Jølsgard [3], who adapted
Stenset’s [26] code to the NRF robot. Table 2.2 gives a overview over the folder layout of
the source code.

Table 2.2: Source code folder layout
Folder Description
ble_communication Functionality for communication with the server through the BLE protocol
config Configuration files
drivers Drivers for interfacing with the hardware components in Table 2.1
software Main source code which implements the robot functionality. The code is struc-

tured in a task-based fashion with FreeRTOS.
test_functions Small FreeRTOS tasks for interfacing with and testing individual hardware com-

ponents

The code in the software folder is based on FreeRTOS [27]. FreeRTOS implements a
Real-time Operating System (RTOS) for microcontrollers. Compared to other hardware
that runs software with real-time requirements, microcontrollers have limited memory and
processing speed. Hence, FreeRTOS only implements core functionality.
FreeRTOS structures the code in a task-based manner, and hence, the code in the software
folder consists of multiple tasks. A review of these tasks is provided in the next paragraphs.

User Task

The user task (user_task) is mainly responsible for initializing the hardware drivers. This
includes the DC motors, servo, encoders and IMU. Additionally, some miscellaneous op-
erations are conducted in this tasks as well, e.g. testing waypoint tracking when the robot
is disconnected from the server.

Position Estimator Task

The position estimator task is responsible for estimating position based on sensor input
from the encoders and the IMU. Two separate versions exist:

∙ vMainPoseEstimatorTask: Kalman filter with a constant acceleration model. De-
veloped by Leithe [28] during his master’s thesis in 2019.
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∙ vMainNewPoseEstimatorTask: Extended Kalman filter with a model of a differ-
ential drive robot. Developed by Berglund [9] during his specialization project in
2020.

Berglund’s version is the one currently in use.

Motor Speed Controller Task

The motor speed controller task (vMotorSpeedControllerTask) runs a PID loop to con-
trol the speed of the DC motors, using feedback from the encoders. The controller ensures
each motor rotates at an almost exact reference speed, and reduces the effects of outside
disturbances. Additionally, the controller also reduces any turning when the robot is tasked
with driving forward in a straight line.

Pose Controller Task

The pose controller task (vMotorSpeedControllerTask) is responsible for bringing the
robot from its current position to a specified target position, by both controlling the robot’s
heading and distance to the target. After a control iteration, the output signals, which con-
sist of speed references for the two motors, are fed to the speed controller. The task is
structured as a state machine, with different objectives based on the current pose, and the
states are:

∙ moveForward: The robot moves directly towards the target position, where the in-
put control signal is the remaining distance. A heading controller aids the robot in
maintaining a straight path.

∙ moveStop: The robot has reached the target position, and is not moving.
∙ moveClockwise/moveCounterClockwise: The robot is not currently directed to-
wards the target position, and the error in heading is above a certain threshold.
Therefore, the robot turns a suitable direction around its center of area.

Sensor Tower Task

The sensor tower task (vMainSensorTowerTask) handles operation of the sensor tower.
More specifically, this entails fetching measurements from the IR sensors and controlling
the movement of the servo. The sensor data is also reported to the server together with the
servo angle and changes in the robot position.

Communication Task

The communication task (vMainCommunicationTask) handles incoming messages from
the server after connection has been established. Depending on message type, the robot
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takes appropriate action. Most importantly, the task receives target waypoints which are
relayed to the pose controller.

Other Tasks

There are a few other minor tasks, which runs in the background.
∙ display_task: Interface with the OLED display
∙ microsd_task: Interface with the micro SD card
∙ vARQTask: Required for BLE communication to function. ARQ means Automatic
Repeat Request.

2.4 Java Server

The Java server is utilized for remote control of the NRF robots. The development started
in 2016, and the version available today is the result of several theses [11–13].

2.4.1 Server Functionality

The server is a remote interface to the robot. It receives pose estimation data and IR sen-
sor measurements, and by employing a SLAM algorithm, a 2D occupancy map is recon-
structed. The map consists of voxels, which essentially are square tiles representing space.
The voxels are divided into three types, either free, occupied or unknown. Furthermore,
the server highlights free voxels within a certain range of occupied areas. These voxels
are referred to as restricted, and are used for path planning purposes. While the robot is
mapping an environment, the robot pose is displayed within the map.
Upon a new robot connection to the server, the user specifies an initial position and orien-
tation. The user also selects which mode to use. There are two separate modes:

∙ Manual Waypoints: The user manually inputs a target waypoint by specifying a
(x, y) coordinate in cm. Immediately afterwards, the waypoint is sent to the robot.

∙ Automatic Waypoint Generation: Waypoints are generated through a path plan-
ning scheme, which functionality exists on the server. In this mode, the server reg-
ularly generates and sends waypoints until exploration is completed, at which point
planning stops automatically.

2.4.2 Communication between Server and Robot

The communication protocol which connects the server to the robot is Bluetooth Low
Energy (BLE). Figure 2.3 shows the devices involved. From the robot, the onboard BLE
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module on the nRF52840 DK communicates with a nRF51 Bluetooth Dongle. This dongle
is connected to a USB port on a computer running the Java server.

NRF Robot Bluetooth Dongle Java Server

BLE USB

Figure 2.3: Communication interface between the Java server and NRF robot

For communication, the robot and server uses a custom set of messages. Table 2.3 provides
an overview of the types of messages, and a short description of their content.

Table 2.3:Message overview for Java server communication
Sender Message Type Variant Description

Robot
Handshake Initial message with information about the robot
Update Robot position, orientation, sensor tower heading,

sensor values
Status Idle Notification after reaching a waypoint

Server
Order Target waypoint to the robot
Status Handshake Confirmed Confirmation of Handshake message

Pause Robot Pause robot while maintaining connection
Unpause Robot Unpause if previously paused
Robot Finished Disconnect from server

2.5 C++ Server

A new C++ has been in the works since 2019, which will eventually replace the Java
server. The core functionality of the server was developed by Grindvik [14] in 2019. Since
then, several master’s and specialization theses have extended the server, with functionality
s.a. SLAM [18] and communication with robot (OpenThread and MQTT) [15–17]. As of
now however, no reliable way of communication with the NRF robots exists, hence the
server is not adapted in this thesis.



3 | Making the Robot Operational

In this chapter, all the steps to make the NRF robot operational are explained. From pre-
vious work, the robot should be able to autonomously map an unknown environment in
cooperation with the server. Furthermore, mapping should be accurate, which means the
performance of the estimator and controllers need to be verified. Since the NRF4, NRF5
and NRF6 robots are new as of this semester, inspection of all hardware and software is
required. This process was conducted in cooperation with two other students, Skinstad and
Andersen, also working on the NRF robot.
The chapter is structured as follows. Firstly, the robot dimensions are updated, the sensors
are calibrated, and the hardware components are inspected. Afterwards, the PID controllers
are tuned, and lastly, three initial performance tests are conducted.

3.1 Robot Dimensions

The first step of making the robot operational was to measure its dimensions. This is im-
portant as they are used for pose estimation. The dimensions are shown in Table 3.1, and
are slightly different from the previous generation of robots.

Table 3.1: Dimensions of all NRF robots
Property NRF1-3 NRF4-6
WHEELBASE_MM 157 170
ROBOT_TOTAL_WIDTH_MM 186 196
ROBOT_TOTAL_LENGTH_MM 194 194
WHEEL_DIAMETER_MM 65 67

3.2 Hardware Components

The next step of making the robot operational was to calibrate the sensors and inspect the
other hardware components.

12
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3.2.1 IR Sensors

The IR sensors equipped on NRF4, NRF5 and NRF6were all calibrated. To calibrate an IR
sensor, a way of converting the output voltage from the sensor into a distance is required.
The most common approaches are lookup tables and regression analysis, and as for this
work, the latter approach is used.

Regression Model

To model the nonlinear relation between output voltage and measured distance (see Fig-
ure 2.2), the power law model in Equation (3.1) is considered.

d(U ) = �U � (3.1)
Here, d is the measured distance, U is the output voltage in mV , and � and � are param-
eters. A regression analysis can identify � and �. First, the power law model is converted
into the linear regression model in Equation (3.2),

y = ax + b + � (3.2)
where � is an error term. The relationship between power law model in Equation (3.1) and
the linear model in Equation (3.2) is given in Equation (3.3).

y = ln d(U ), x = lnU, a = �, b = ln � (3.3)

Data Acquisition Method

In Leithe [28], data for calibration was acquired through an automatic test setup, where
the sensors where calibrated while mounted on the robot. However, as encoders and other
components on the NRF robot were not yet ready, this method was not applied. Further-
more, a criticism of Leithe’s method is that errors in the position estimation and encoder
measurements will permeate into the IR calibration.
Instead, a manual test setup was prepared to acquire data for the regression analysis. On a
flat surface next to a wall, lines were drawn 5 cm apart, starting from 10 cm and ending at
80 cm from the wall. For each position, a dataset of 200 measurements was recorded.

Wa
ll

10cm 15cm 20cm 25cm 30cm 35cm 40cm 45cm 50cm 55cm 60cm 65cm 70cm 75cm 80cm

Figure 3.1:Manual IR sensor calibration setup
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Sensor Parameter Identification

Lastly, a regression analysis was conductedwith the acquired datasets to identify themodel
parameters. The average of each dataset was used as an input data point in the method.
The resulting parameters for NRF4, NRF5 and NRF6 robots are given in Table A.1 in Ap-
pendix A. The table also includes theR value from the regression. Note that the parameters
converts the voltage in mV to distance in mm.
Furthermore, to confirm that the model accurately represents the input data, the input
data points and the resulting model for Sensor 1 on NRF4 are displayed in Figure 3.2.
As the figure shows, the function accurately models the input data points with only minor
deviations.

10 20 30 40 50 60 70 80
0

500

1,000

1,500

2,000

2,500
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U[
mV

]

Regression Model
Sample Average

Figure 3.2: Result of function fitting for Sensor 1 on the NRF4 robot. The plot shows input data
points from the averages of 200 samples each, and a variant of the power-law model in Equa-
tion (3.1), with specific parameters � and �.

3.2.2 Rotary Encoders

The rotary encoders were calibrated to ensure the robot traverses the same distance as it
estimates. There are two relevant configuration parameters:

∙ ENCODER_TICKS_PER_ROT: Number of encoder ticks per one revolution of the wheel
∙ WHEEL_FACTOR_MM: The ratio between WHEEL_CIRCUMFERENCE_MM and
ENCODER_TICKS_PER_ROT
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For calibrating ENCODER_TICKS_PER_ROT, a line test was conducted. The exact procedure
is as follows. Firstly, prepare a reference distance, which in the conducted test was 3.5m.
Secondly, drive the robot in a straight line of equal length to the reference distance. After
the robot has stopped, record how far the robot traveled. Note both the estimated distance
Lest and measured distance Lm. Thirdly, update the parameter ENCODER_TICKS_PER_ROT
according to Equation (3.4). Lastly, verify the distance by running the test once more. Lestand Lm should now be equal.

ENCODER_TICKS_PER_ROT ∶=
Lest
Lm

× ENCODER_TICKS_PER_ROT (3.4)

The resulting values of ENCODER_TICKS_PER_ROT for the NRF robots are given in Ta-
ble 3.2. The NRF1-3 values are included to emphasize the difference between the two
types of DC motors.

Table 3.2: Encoder ticks per revolution value for each of the NRF robots
Property NRF1-3 NRF4 NRF5 NRF6
ENCODER_TICKS_PER_ROT 224 817 782 800

3.2.3 Servo Motor

In the robot source code accessed at the start of this work, the conversion from degrees to
PWM input signal to the servo was not accurate. The conversion is given by Equation (3.5),

ΔT = ΔT0 + k� (3.5)
whereΔT is the pulse width,ΔT0 is the pulse width at 0°, � is the angle, and k is a constant.
The servo can only rotate at an interval of 180°. When tasked with rotating from 0° to 90°,
as was the case in vMainSensorTowerTask, the servo reached a dead end. To solve this
issue, the zero servo angle was shifted with −90° by modifying ΔT0.

3.2.4 Inertial Measurement Unit (IMU)

No particular changes was done to the IMU. The robot employs an automatic calibration
scheme at startup, which minimizes the bias in both the accelerometer and gyroscope
measurements.

3.3 PID Controllers

In total, there are five PID-controllers that were tuned for smooth control of the NRF4,
NRF5 and NRF6 robots. These are:
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∙ Speed controller, left motor
∙ Speed controller, right motor
∙ Pose controller, distance controller
∙ Pose controller, heading controller (while idle)
∙ Pose controller, heading controller (while driving)

The tuning was conducted by Andersen. See his specialization project report [29] for more
information.

3.4 Testing of Initial Performance

After inspection of hardware components and tuning of PID controllers, several tests were
conducted to verify the system performance. All the tests were conducted with the assis-
tance of the Java server.

3.4.1 Test 1: Circular Track

The first performance test was conducted on a circular track. Figure 3.3a shows a sketch of
said track, which can be characterized by its simple topology. The robot was tasked with
navigation and mapping of the track, and no information about the track was provided
beforehand.
The test was set up with the following configuration:

∙ Server: Java server
∙ Mode: Automatic Waypoint Generation
∙ Voxel Size: 2 cm
∙ Robot: NRF4
∙ Starting Position: Arbitrary

Figure 3.3b shows the occupancy map of the circular track upon completion. All in all, the
robot performed well, experiencing no navigation problems. As for mapping, the shape
of the wall, i.e. black voxels, is similar to the original, round shape of the circular track.
However, there are some additional noise included.



Chapter 3: Making the Robot Operational 17

150 cm

(a) Sketch of the track (b) Mapping by the NRF4 robot
Figure 3.3: A sketch of the circular track with actual sizes, compared to the map constructed by
the NRF4 robot after traversal.

3.4.2 Test 2: Maze

The second performance test was conducted on a larger and more topologically advanced
track, referred to as the maze. Figure 3.4a shows a sketch of the maze. Once more, the
robot was not provided any information about the track prior to the test.
The test was set up with the following configuration:

∙ Server: Java server
∙ Mode: Automatic Waypoint Generation
∙ Voxel Size: 2 cm
∙ Robot: NRF4
∙ Starting Position: Lower left corner, orientation towards the right

Figure 3.4b shows the resulting map after the robot has completely navigated and mapped
the maze. While the maze is more topologically advanced than the circular track, the robot
had few problems with navigation. However, the robot did require more time for explo-
ration.
Once again, the robot experienced some of the same issues with a noisy representation of
the walls. However, the representation of straight walls seems to be more consistent than
curved ones. Furthermore, a second observation is that the upper part seems distorted
when compared to the lower part.
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132 cm

206cm

53 cm

74 cm

(a) Sketch of the track (b) Mapping by the NRF4 robot
Figure 3.4: A sketch of the maze with actual sizes, compared to the map constructed by the NRF4
robot after traversal.

3.4.3 Test 3: Square

The last performance test was a square test to to verify the robot movement by utilizing
an external tracking system. As the previous test revealed, the pose estimation may not be
entirely accurate, and as a result, external tracking data should provide a better tool for
evaluation.
The test was conducted in the 3D Movement Lab (B333) at NTNU, which has installed a
movement tracking system from OptiTrack [30]. The robot was tasked with driving a path
shaped as a square with 1m side lengths. In total, one clockwise and one counterclockwise
square test were conducted.
The test was set up with the following configuration:

∙ Server: Java server
∙ Mode: Manual Waypoints
∙ Robot: NRF4
∙ Starting Position:Arbitrary, as the coordinate system is shifted and rotated later, s.t.
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the first line segment is parallel to the intended path. However, while the CCW-test
starts by the robot moving forward, the CW-test starts by the robot turning 90°.

∙ Tracking System:Motive (software) with OptiTrack cameras
The results of the CW and CCW tests are shown in Figure 3.5. To evaluate the perfor-
mance, the primary properties in consideration are the lengths of the line segments and
the degree of turning.
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Figure 3.5:The result of the 1m square test, including both the clockwise and the counterclockwise
paths. The real paths are found by utilizing a camera tracking solution from OptiTrack [30].

In the CW-test, each turn is consistently close to 90°. However, there are discrepancies in
the lengths of line segments, which lead to a deviation of more than 5 cm from the intended
path. Eventually, the robot stops at a distance of 4.9 cm from the starting position.
In the CCW-test, the line segments are closer to 1m. As a result, the real path tracks the
intended path closely. However, after the last turn, the orientation is slightly inaccurate.
Eventually, the robot stops at a distance of 6.9 cm from the starting position.

3.4.4 Discussion

The three initial performance tests have revealed a few discrepancies. Test 1 (see Fig-
ure 3.3b) showed that the constructed map consists of noisy representations of the walls.
Test 2 (see Figure 3.4b) revealed distortion in the constructed occupancy map. Test 3 (see
Figure 3.5) confirmed that the robot does not move exactly as intended.
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A likely source of error is inaccurate pose estimation. Firstly, the distortion in Test 2 and the
exaggerated turning in Test 3 may indicate bias in the estimated attitude. As the gyroscope,
which is the main sensor for attitude estimation, only measures angular velocity, attitude
bias may occur eventually. Secondly, another source of error may be wheel slip, which
has been observed during testing. Wheel slip will result in the robot overestimating the
traveled distance.
A less likely source of error is the IR sensor measurements. During calibration, the sensors
were non-moving, and the ray and the measured wall were perpendicular. Hence, when
deployed on the sensor tower, the IR sensors may experience other discrepancies affecting
the measurements.
In summary, the tests verify that the robot performs reasonably well, i.e. the robot is now
operational. However, there are clear deviations from an ideal behavior. While these devi-
ations may jeopardize the final performance of the system, further optimization of current
performance is not prioritized.
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This chapter presents a technical sensor solution which makes detection of obstacles pos-
sible. As of the start of this work, the robot collects spatial data about the surrounding
environment through four IR range sensors, which provides perception in the horizontal
plane. However, to achieve awareness of obstacles at varying heights, the hardware will
be extended with new sensors.
The chapter is structured in the following manner. Firstly, a requirement analysis is con-
ducted. Secondly, different sensor technologies are reviewed, products realizing these tech-
nologies are evaluated, and a specific sensor is selected. Thirdly, a sensor rig is designed
based on the selected sensor. Lastly, the sensor solution is evaluated through proof of con-
cept testing, as later work depends on a working solution.

4.1 Requirement Analysis

In this section, requirements of the sensor solution are identified. The analysis is divided
into two parts. Firstly, the thesis presents a functional specification of how the obstacle
detection system as a whole is expected to work. Afterwards, the thesis identifies all factors
which should contribute to the final design of the sensor solution.

4.1.1 Functional Specification

The functional specification describes how the system is expected to work. Here, the ob-
stacle detection and avoidance system as a whole is considered. However, some design
factors of the sensor solution derive from the specification. The functional specification is
as follows:

1. The system should detect non-moving obstacles in the robot’s path which would
prevent the robot from continued traversal. This includes all of the following:
∙ Obstacles on the ground
∙ Overhead obstacles
∙ Negative obstacles i.e. holes

21
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2. The system should not impose new speed constraints on the robot, and obstacle
detection should work well when traversing at maximum speed.

3. The system should change exisiting functionality in two ways:
∙ Upon detection of an obstacle, control towards the current waypoint is aborted.
∙ Previously detected obstacles should be considered when planning paths.

4. When an obstacle is detected, the robot should not collide.

4.1.2 Product Design Factors

After presenting the functional specification, design factors of the sensor solution can be
identified. While most of the factors stems from a practical point of view, some are de-
rived from the functional specification. Table 4.1 provides all the design factors that where
found.

Table 4.1: Design factors for the sensor solution
Factor Explanation
Power Consumption The robot has limited battery capacity (2 × 2600mA), Therefore, the power

consumption should be low.
Weight The solution should be lightweight. High weight leads to several issues s.a

increased DC motor power consumption and friction on the caster balls.
Size The added hardware must correspond to the current robot size (194mm ×

196mm × 178mm).
Cost The total of cost of the solution should not be too high. Existing robot hard-

ware can be used as a reference.
Obstacle Detection The sensor must be able to detect all three types of obstacles described in the

first functional requirement.
Precision Sensor data with a large variance can lead to false positives in the collision

detection, and will generally result in a less accurate detection system. Hence,
it is essential that the variance is low.

Data Acquisition Speed To fulfill the first and second functional requirements, the solution must pro-
vide enough data.

Measuring Range To fulfill the fourth functional requirement, the selected sensors must have a
suitable measuring range, s.t obstacles can be detected in time.

Hardware Constraints The nRF52840 DK should be able to interface with all the hardware com-
ponents in the solution, without experiencing any issues which causes the
onboard program to fail.
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4.2 Review of Range Sensors

To select suitable sensors, a review of existing technologies was conducted. More specifi-
cally, the category of interest is range sensors, which measure the distance to the surround-
ing environment from the sensor origin. The sensors are non-intrusive, as there are no
contact with the objects which are perceived. Instead, various types of waves are utilized,
the most common being mechanical waves s.a ultrasound, or electromagnetic radiation
(EMR). In this section, information was gathered from Springer Handbook of Robotics
[31].

4.2.1 EMR-based Sensors

Range sensors based on EMR normally utilize light in either the infrared or the visible
spectrum, and sometimes low-frequency radiation s.a. radio waves. Generally, higher fre-
quency allows for higher precision, at the cost of measuring range. Some of the common
types of sensors within this category are IR-sensors, LiDAR, RADAR and depth cameras.
In broader terms, there are two fundamental techniques for range detection, i.e. triangula-
tion and Time of Flight (TOF).

Triangulation

Triangulation is a way of range sensing where the angle of a signal determines the range.
Stereo cameras use this technique, by matching features from slightly different viewpoints.
However, as these devices require the capacity for image processing, the more lightweight
IR sensor will be used to explain triangulation. This sensor consists of a emitter that emits
bursts of IR waves, and a detector that detects waves reflected off objects. The method for
calculating range is given in Equation (4.1),

tan � = d
b

(4.1)

where b is the baseline distance between the emitter and detector, d is the distance to
the object which waves are reflected off, and � is the angle between the two segments.
Figure 4.1 shows a illustration of how this technique works. Essentially, � is indirectly
measured, b is known, and hence, d can be calculated.
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Figure 4.1: Sketch of triangulation with an IR sensor

Triangulation-based sensors have a rapidly decreasing sensitivity when increasing the dis-
tance to a perceived object. Hence, the sensors are unsuitable for measuring far-away ob-
jects. Conversely, triangulation-based sensors are often very precise at close range.

Time of Flight

Time of Flight (TOF) is a sensing method that determines range by measuring the time
it takes for a signal to travel from a sensor to an object and return. Hence, similar to the
triangulation method, the sensors consist of a emitter and detector. For direct TOF sensors,
the travel time is measured by a precise chronometer. Afterwards, the distance is calculated
according to Equation (4.2),

d = ct
2

(4.2)
where d is the one way distance, c is the speed of the signal, and t is the measured time
of travel. For EMR-based sensors, c is the speed of light, and hence, the measured time
interval is particularly short. Therefore, the measured distance is usually less precise than
for triangulation based sensors. However, the technique allows for a longer measuring
range.

4.2.2 Ultrasonic Sensors

Ultrasonic sensors are another type of range sensors. For this category of sensors, the most
common technique is TOF. For usage in obstacle detection, the time until the first detected
echo is always considered. In some ways, ultrasonic sensors function in a similar fashion
to EMR-based TOF sensors. However, there are notable differences due to the properties
of sound waves.
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Firstly, the speed of sound, which is 343m s−1 at 25°C, is significantly slower than speed
of light. Hence, there are less strict timing requirements, which allow for more precise
range measurements. Secondly, as sound waves cannot be concentrated in the same way
as EMR, ultrasonic has a wider measuring angle. As a result, the signal weakens further
away from the source, which limits the measuring range.
Lastly, sound waves are reflected cleanly off smooth surfaces. Consequently, when the
waves reflect of a surface from a wide angle, no echo returns to the sensor. To consider
an example, Figure 30.5a in Springer Handbook of Robotics [31] shows that most of the
signal is reflected when the angle between the waves and the surface norm is less than 15°.

4.2.3 Product Investigation

An investigation was conducted into identifying specific products that realize the sensing
technologies described above. Table 4.2 gives a summary of the sensors that were se-
lected, and includes properties s.a. measuring range and sample frequency. The products
are described in more detail below.

Table 4.2: Overview of range sensors
Sensor Type Technique Measuring Range Frequency Consumption
GP2Y0A51SK0F 2 cm - 15 cm 60Hz 12mA
GP2Y0A41SK0F 4 cm - 30 cm 60Hz 12mA
GP2Y0A21YK0F IR Triangulation 10 cm - 80 cm 26Hz 30mA
GP2Y0A02YK0F 20 cm - 150 cm 26Hz 33mA
GP2Y0A710K0F 100 cm - 550 cm 60Hz 30mA

LiDAR Lite v3 LiDAR TOF n/a - 40m 650Hz 135mA
RPLIDAR A1M8 2D LiDAR Triangulation 15 cm - 12m 8000Hz 400mA∗
HC - SR04 Ultrasonic TOF 2 cm - 4m 40Hz 15mA
∗Motor: 100mA, Scanner: 300mA

Sharp IR Range Sensors

Sharp has a product lineup of triangulation-based IR range sensors. The sensors differ
slightly by measuring range, sample frequency and power consumption (see Table 4.2).
These sensors are familiar to the robot project, as theGP2Y0A21YK0F is currently utilized
on the NRF robots. See more at the product page [32].
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Figure 4.2: Sharp GP2Y0A21YK0F

LiDAR Lite v3

LiDAR Lite v3 is a range sensor from Garmin. LiDAR is an abbreviated form of Light
Detection and Ranging. The device works by emitting a concentrated laser signal, and
measuring the TOF of the signal. The sensor has a higher frequency than the Sharp sen-
sors, with 650Hz in fast mode, and the power consumption is 135mA during continuous
operation. For communication, the sensor offers two alternatives, which are I2C and PWM.
See more in datasheet [33].
In a master’s thesis from 2018, Jensen [6] employed the LiDAR Lite v3 on a robot, and
compared the sensor to the GP2Y0A21YK0F IR sensors. The study found that the IR
sensors produced a more precise map.

Figure 4.3: LiDAR Lite v3

RPLIDAR A1M8

The RPLIDAR A1M8 is a laser scanner from Slamtec which rotates on a motor, and con-
ducts a full 360° scan.While the device is advertised as a LiDAR, the rangefinding technol-
ogy is triangulation. The device is quite large, with dimensions 98.5mm×70mm×60mm,
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and weights 170 g. While the power consumption is high, the device offers a high sample
frequency. The communication interface is UART. See more in datasheet [34].

Figure 4.4: RPLIDAR A1M8

HC - SR04 Ultrasonic Sensor

The HC - SR04 is an ultrasonic sensor based on the TOF principle. The device is of a
comparable size to the Sharp sensors, and consumes a similar amount of power. The sensor
has two GPIO-pins of relevance, one input pin that triggers a burst of sound waves, and an
output pin that signals when the sensor detects echo. See more in datasheet [35].

Figure 4.5: HC-SR04

4.3 Range Sensor Selection

After both the requirement analysis and an investigation into range sensing are conducted,
a specific range sensor can be selected. The evaluation of the sensors is purely based on
the design factors presented in Section 4.1.2.
The LiDAR Lite v3 main advantages is the power consumption, which is quite low when
also considering the high sample rate. However, the main drawback is due to the TOF
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ranging technique, which leads to less precise measurements than for other sensors con-
sidered. Furthermore, this sensor is more suited for long range detection, than the shorter
range which is required here.
The RPLIDAR A1M8 is based on triangulation, and therefore, the sensor is more precise.
Furthermore, as a motor is included, the sensor should provide most of the required data
by simply mounting the device to the robot in a non-horizontal configuration. However,
while the sensor will work, the drawbacks are a high weight and power consumption, in
addition to its large size. Consequently, the sensor was not selected.
The HS-SR04 ultrasonic sensor has several desirable attributes. The precision is good
enough, and the cost, power consumption and weight are low. An issue however, occurs
when detecting negative obstacles. From an engineering perspective, a negative obstacle
is the absence of ground. Since ultrasonic sensors require an almost perpendicular angle
between the sound wave and the surface, the HS-SR04 would have to be mounted directly
downwards. Additionally, the sensor may be noisy when used for indoor applications.
Ultimately, the Sharp IR range sensors were selected. These sensors are lightweight, small
and low-cost. They are also more precise compared to the other sensors except the RPLI-
DAR. As for the specific model, the GP2Y0A21YK0F was initially pursued, since multi-
ple devices of this type were available from previous projects. However, GP2Y0A41SK0F
[36] was eventually utilized, due to a more suitable range and lower power consumption.
A point to consider is that the nRF52840 DK lacks the required ADCs for interfacing with
any more of these sensors. Hence, additional hardware will have to be developed before
the sensors can be fully utilized.

4.4 Sensor Rig Design Process

Based on the selected range sensor, several sensor rig prototypes were proposed. Essen-
tially, the objective of this process was to find a configuration of N sensors which could
detect the three obstacles types in the functional description (see Section 4.1.1).
The design procedure kept to a few common principles. Firstly, the sensors only keep track
of areas in front of the robot, as the robot moves forward in straight lines. Secondly, the
added components should not block the view of the existing sensor tower. Lastly, detection
of overhead obstacles was kept separate from other types of obstacles, from Prototype 2
onwards. As the thin sensor tower is the only part of the robot at significant risk of collision
from such obstacles, only a single upwards oriented sensor is needed.
In total, six prototypes were developed. In summary, Prototypes 1 and 2 generated a 2D
sample array by rotating IR sensors on a servo, while Prototypes 3 and 4 used a sensor
array to generate the data. Prototype 5, which was the pursued solution, considered a de-
coupling approach, where detection of each obstacle is considered separately. However,
this prototype was later modified, resulting in Prototype 6, as the lack of ADC restricted
proper testing at this stage. The thesis will not considered specifics about the discarded
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prototypes, but will instead discuss in broader terms. SolidWorks [37] was used to design
the prototypes, and the resulting CAD models are given in Appendix B. To manufacture
the models, Ultimaker 2+ 3D printers [38] at Make NTNU [39] were used.

4.4.1 Servo-based Approach

Firstly, a servo-based approach was pursued. Figure 4.6 shows how this was intended to
work, where an IR sensor is mounted on a servo rotating back and forth. When the robot
moves forward, the ground in front of the robot is sampled. As the servo movement intro-
duces an additional variable, MATLAB simulations in Appendix C aided the design.

Figure 4.6: Conceptual visualization of the servo-based approach

Two prototypes were made using this approach. Prototype 1 consisted of a downwards and
an upwards oriented sensor, both mounted at 22.5°. This solution proved to be insufficient,
as the sensor could not sample a sufficient amount of data. Hence an improved version, with
three downwards oriented sensors, was developed. Several issues were revealed during this
process, which ultimately lead to the servo being scratched. The issues were:

∙ Voltage drop: When the servo is accelerated, a large amount of current is drawn.
This resulted in a voltage drop, as the 5V-regulator on the motor driver could not
deliver enough current. The regulator at the NRF shield was then utilized, as it was
rated for a higher current. However, while this solved the issue, the second 5V-
regulator struggled with heat dissipation.

∙ Sample gaps and rotation speed: While the sensor configuration in Prototype 2
samples most of the ground in front of the robot, MATLAB simulations revealed
that there were still minor gaps at the sides. Figure C.2 in Appendix C shows this
phenomenon. Additionally, the servo rotated slightly slower than intended at design
stage, further increasing these gaps in practice.

∙ Tilt angle: A small 22.5° tilt angle was necessary to reduce the servo movement
interval. To elaborate, a large angle would mean the servo would have to rotate even
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faster in the same amount of time. As a result, some additional noise was induced in
the measurements, due to the small angle between the ground and the infrared ray.

4.4.2 Sensor Array-based Approach

Secondly, a sensor array-based approach was pursued. Figure 4.7 shows how this is in-
tended to work, where multiple IR sensors are mounted in a downwards angle towards the
ground. An disadvantage with this method is that more sensors are required, compared to
the servo-based approach, to minimize the gaps between the infrared rays.

Figure 4.7: Conceptual visualization of the sensor array-based approach

Using this approach, two prototypes wheremade. In Prototype 3, the sensors weremounted
in a vertical manner, with the emitter above the detector. In Prototype 4, the sensors were
mounted in a horizontal manner, with the emitter and detector located at the same height.

(a) Reflection (b) Disturbance from other sensors
Figure 4.8: Discrepancies experienced with the Sharp IR sensors
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Two types of discrepancies were found during this process, and these are visualized in
Figure 4.8. When mounted in a vertical manner, the IR-sensors experienced reflections of
objects outside the line of sight. As a result, objects triggered change in the sensor out-
put long before intended. When mounted in a horizontal manner, the sensors experienced
disturbances from other sensors. Upon further investigation, it was discovered that the dis-
turbances were reduced when the sensors were mounted at different angles. However, due
to these discrepancies, the sensor array-based approach was discarded.

4.4.3 Decoupled Obstacle Detection Approach

Lastly, a solution was pursued, by decoupling the detection of each type of obstacle. The
identified sensors were as follows:

∙ Negative obstacles: 3 downwards oriented sensors. One for each of the wheels, and
one for the caster ball.

∙ Overhead obstacles: 1 upwards oriented sensor, to cover for the sensor tower.
∙ Ground obstacles: 2 horizontally oriented sensors, positioned close to the ground.

To reduce the effect of reflection, all sensors were mounted in a horizontal manner. Fur-
thermore, the design heavily focused on reducing disturbances between sensors. Therefore,
the sensors were mounted in different orientations, as opposed to the sensor array-based
prototypes. The rig consists of two 3D printed parts, and Figure 4.9 shows a conceptual
illustration of the prototype as a whole. The downwards and upwards oriented sensors are
located around the height of the upper metal plate, and are mounted to the first 3D printed
part. The horizontally oriented sensors are mounted to the second 3D printed part, which
is located close to the ground. Additionally, each sensor is assigned a number, counting
from the four already existing sensors.

8

9

10

5

6

7

Figure 4.9: Conceptual visualization of the decoupled obstacle detection approach, i.e. Prototype
5 with enumerated sensors. The red rays point downwards, the orange ray points upwards, and the
blue rays point horizontally.
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Prototype 5 solves one issue which has not been mentioned thus far. During testing, Sen-
sors 9 and 10 experienced false measurements, due to being mounted close to the ground.
To elaborate, the sensors functioned as expected when an object was inside their measur-
ing range. However, when the object was removed, the sensors measured a shorter distance
than expected. While the exact cause of this phenomenon is still unknown, it is assumed
that some kind of IR radiation reflects of the ground. The solution to this issue was to limit
the view of the ground, by adding FOV limiters around the detector. The CAD model in
Figure B.5b shows how this was done.

4.5 Proof of Concept

As an additional hardware module is necessary to utilize the sensors, due a lack of ADCs
on the nRF52840 DK, proof of concept testing was necessary at this stage. The objective
of this testing procedure is to verify that the sensor solution will work. Furthermore, a
secondary objective is to discover any immediate discrepancies, s.t. any additional hard-
ware requirements can be identified. The testing will be limited, as only four out of the six
sensors can be tested simultaneously. However, this should be sufficient when testing each
obstacle type separately, and for investigating whether any sensors disturb each others.
Before the test, Sensors 5-10 were calibrated, with a similar method to Section 3.2.1. How-
ever, as the GP2Y0A41SK0F has a shorter range, the step size was changed to 2 cm. Note
that the sensors need to be recalibrated again once an additional hardware module is in-
troduced.

4.5.1 Obstacle Test

Firstly, a simple obstacle test was conducted. The main idea was to study sensor data
upon the robot coming across each of the three categories of obstacles. In this test, the
discrepancies were not in focus. Therefore, sensors responsible for another obstacle type
were disconnected from power. Each test iteration was conducted in the following manner:

1. Connect a selection of sensors to power
2. Disconnect any other sensors
3. Prepare an obstacle of the correct type
4. Position the obstacle in front of the robot
5. Manually drive the robot 50 cm while recording sensor data
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Figure 4.10: Time series of sensor data for three different obstacles types. The data was generated
by the robot moving towards the obstacles at 0.25m s−1.

Figure 4.10 shows the output sensor data from the three test iterations. When studying
the time series, it important to note that the robot essentially collided with the obstacle, as
there exists no obstacle avoidance functionality as of yet. Therefore, phenomena occurring
after an obstacle is first observed can be neglected, e.g. noise in Figure 4.10c.
There is a clear change in sensor data when obstacles are perceived by the sensors. This is
especially apparent for Sensors 8, 9 and 10. Additionally, the amount of noise is low, which
means small changes in the sensor data can be detected. This is important when detecting
negative obstacles with Sensors 5, 6 and 7, where the distance to ground is constantly
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monitored.
Another observation is that the distance to ground in Figure 4.10a is different for the three
sensors, although it should be the same. While this is likely from inaccuracies in calibra-
tion, a ground detection scheme upon startup could be considered.

4.5.2 Sensor Disturbance Test

Secondly, tests to reveal disturbances between sensors were conducted. The procedure
went as follows. Initially, let the robot be idle and remove any obstacles. For each group of
sensors, power on one additional sensor outside the group, and check if any disturbances
occur. Afterwards, repeat the test, but move an obstacle around and try to provoke a dis-
turbance. The results found where as follows:

∙ When no obstacles are present, there are no disturbances
∙ Sensors 9 and 10 can be disturbed by Sensor 6 when there are obstacles present
∙ In all other cases, no disturbances were observed

To comment on the magnitude of the noise, an example is included. Figure 4.11 shows
noise in the measurements from Sensor 9, induced by Sensor 6. The example shows that
the magnitude can be relatively large, and the signal is practically unusable when the dis-
turbance occurs. was
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Figure 4.11: Time series showing a case of Sensor 6 disturbing Sensor 9 when an obstacle is
present

In conclusion, the disturbances between sensors are still present, even in Prototype 5,
which specifically addresses these issues. However, as they only appear when obstacles are
present, the sensors should still give sufficient data for simple obstacle detection.When us-
ing the data in other ways, e.g. if adding obstacles in the map on the server, the data may be
insufficient still. Hence, filtering or other noise-reducing measures should be considered.
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4.6 Final Solution

After completing the additional hardware module (see Chapter 6) proposed when selecting
the Sharp IR sensors, testing revealed that the horizontally oriented sensors in Prototype 5
are less robust thanwhat was believed initially. Essentially, the sensors yieldmeasurements
leading to frequent false positive detections. A more elaborate discussion of this topic is
provided in Chapter 7.
Therefore, Prototype 6 is proposed, where two more downwards oriented sensors replace
the horizontally oriented sensors. This solution is more similar to the sensor array-based
approach, as there are now five downwards oriented sensors, and one upwards oriented
sensor. However, due to the different orientations of the sensors, and noise-reducing fea-
tures developed in Chapter 6, disturbances between sensors do no longer jeopardize the
system.
Figure 4.12 shows the prototype mounted onto the robot. The prototype consists of two
parts. Part 1 is the same as in prototype 5, with three downwards oriented sensors and one
upwards sensors. Part 2 is fixed two Part 1, and provides an additional two downwards
oriented sensors. The sensors are enumerated according to the numbers in the figure.
A consequence of switching from Prototype 5 to Prototype 6 is that the solution may be in-
capable of detecting particularly small or thin items, e.g. dices or thin posts. To elaborate,
there are gaps between the points which the sensors perceive, where items can slip be-
tween. Detection of negative obstacles, which has the most damage potential upon failure,
is unaffected.

5 6 7

8
9 10

Figure 4.12: Final sensor solution with enumerated sensors
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In this chapter, the obstacle detection and avoidance functionality is explained. The content
is based on the available data from the sensor solution found in Chapter 4. The chapter is
structured as follows. Firstly, the coordinate systems are defined. Afterwards, the obstacle
detection method is presented. Lastly, the obstacle avoidance measures are explained.

5.1 Coordinate Systems

Previously, navigation of the NRF robots has been conducted in the 2D plane, as the robots
move on a flat surface. However, as this thesis seeks to detect obstacles at different heights,
the coordinate systems need to be extended with a third dimension.

5.1.1 World frame

The world frame is a fixed reference frame defining the map axes. The frame is defined by
the three directions xw, yw and zw, where the z-axis is oriented upwards. Two vectors aredefined in world frame:

∙ Let rw = [xw yw zw]T be an arbitrary position in world frame
∙ Let r = [x y 0]T be the position of the NRF robot. The position is defined at the
center of the robot, but at the ground plane (zw = 0).

The origin of the frame is specified on the Java server, by setting r upon connection with a
robot. The orientation is set s.t. the robot axes are parallel with the axes of the body frame,
which is presented in the next paragraph.

5.1.2 Body Frame

The body frame is a reference frame which is fixed to the body of the NRF robot. The
origin position of this frame is located on the ground, right below the center of the robot
(i.e. sensor tower). Furthermore, the axes are defined as follows

36
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∙ xb - Direction toward the front of the robot
∙ yb - Direction towards the left wheel
∙ zb - Direction straight upwards

A position in body frame can be described by the vector rb = [xb yb zb]T . To transform a
point from body to world frame, the following equation can be used

rw = r +
⎡

⎢

⎢

⎣

cos � − sin � 0
sin � cos � 0
0 0 1

⎤

⎥

⎥

⎦

rb (5.1)

where � is the orientation of the robot.

5.1.3 Sensor Frame

The sensor frame is a reference frame which is fixed to an IR range sensor. Each of the new
sensors on the robot, enumerated from 5 to 10, is defined in its own sensor frame. Let xskbe the x-axis of the kth sensor. The y- and z-axes are left undefined, as the x-axis is defined
along the laser line of sight. Hence, ysk and zsk is equal to 0 for all sensor measurements.
A sensor frame is defined by the following:

∙ A position Sk = (sxk, syk, szk) in body frame
∙ A CCW rotation �k around the z-axis.
∙ A downwards rotation �k around the new y-axis. Defined � = 0 when the sensor is
pointing in a horizontal direction.

Consequently, a transformation from the frame of sensor k to body can be described by

rb = Sk +
⎡

⎢

⎢

⎣

cos �k cos �k
cos �k sin �k

− sin �k

⎤

⎥

⎥

⎦

xsk (5.2)

5.2 Obstacle Detection

This section presents a method for IR sensor-based obstacle detection. In this thesis, an
obstacle is considered detected when the robot collects a sample which would indicate a
forthcoming collision or near-collision, given the assumption of a straight path. To de-
scribe this mathematically, let l, w and ℎ be the dimensions of the NRF robot. Further-
more, let �x, �z− and �z+ be margins, s.t near-collision can be defined clearly. Then, the
region in body frame where ground and overhead obstacles can be detected is given in
Equation (5.3).

− w
2
− �x < yb <

w
2
+ �x ∩ �z− < zb < ℎ + �z+ (5.3)
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For negative obstacles, the region of detection is given in Equation (5.4).
zb < −�z− (5.4)

However, it is assumed that the sensor is mounted s.t. perceives the ground in front of the
robot, and not on the sides or behind. This is the case for the downwards oriented sensors
in Prototypes 5 and 6, which are capable of detecting negative obstacles.
To evaluate the samples, two approaches were considered:

1. Transform a sample into body frame, and evaluate the sample in this frame.
2. Treat the problem in sensor frame, in one dimension. More specifically, for each

sensor, divide the measuring range into intervals, where the interval decides whether
or not a sample indicates detection.

While either approach would be equally effective, the latter was selected, as analysis and
signal processing would be slightly simpler. Additionally, some obstacle detection is of-
fered on an additional hardware module (see Chapter 6). Hence, the second approach
would reduce the communication load between the module and the nRF52840 DK.

5.2.1 Detection in Sensor Frame

The main idea behind obstacle detection in sensor frame is to identify which samples
would indicate either collision or near-collision, by defining a set of intervals. If an interval
indicates that an obstacle is detected, it is referred to as a detection interval.
The intervals are parameterized by a reference distance dr and a threshold d�. The main
idea is that dr is the exact distance to the boundary between where a collision would occur,and where the robot would barely avoid the obstacle. As the sensor measurements are not
exact, d� adds extra leeway. Assuming dr and d� are identified, a detectionmode is selected.
The modes define which of the intervals are detection intervals, and which are not. The
available detection modes are defined in Figure 5.1.
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Obstacle Detected No Obstacle Detected
Figure 5.1: The four obstacle detection modes, defining the intervals which determine whether an
obstacle is considered detected

Mode 1 is a default mode, where no obstacle is detected. For detection of overhead obsta-
cles with upwards oriented sensors, or for detection of ground obstacles with horizontally
oriented sensors, obstacles inside a certain range are considered detected. Therefore,Mode
2 is applicable. For detection of negative obstacles with downwards oriented sensors, it is
necessary to detect the absence of the ground. If Mode 4 is used, only negative obstacles
are detected. Mode 3 allows for additional detection of ground obstacles for these sensors.

5.2.2 Offset Adjustment Calibration

In the proof of concept testing of the IR sensors in Section 4.5, it was found that despite
calibration, the measured distances were slightly inaccurate. For the downwards oriented
sensors (5, 6 and 7), where the distance to ground is normally measured, accurate samples
are particularly important. Therefore, an offset adjustment calibration scheme is proposed.
Initially, for each of the downwards oriented sensors, an offset Δdk is calculated, where k
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denotes the sensor. Equation (5.5) shows how this is done,

Δdk =
1
N

N
∑

i=1
(dk[i] − drk) (5.5)

where dk[i] is a sample, drk is the reference distance, andN is the total number of samples
during calibration. The samples are collected under the assumption of there being no ob-
stacles in front of the robot. After completion, the offset is subtracted from all subsequent
samples, as in Equation (5.6).

d′k[i] = dk[i] − Δdk (5.6)
Lastly, adjusted samples d′k[i] are evaluated during obstacle detection.

5.2.3 Parameter Identification

For each sensor, the reference distance dr can be identified by projecting the regions in
Equations (5.3) and (5.4) onto the individual sensor frames. To reiterate, dr is a distance toa boundary between where collision would occur, and where the robot would barely avoid
it. There are four potential boundaries in body frame, depending on the sensor orientation.
These are yb = −w∕2, yb = w∕2, zb = 0 and zb = ℎ. Then, given that the sensor position
is known, the reference distance drk for the kth sensor can be calculated according to

drk =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

syk − bk
sin �k

for horizontally oriented sensors
szk − bk
sin �k

otherwise
(5.7)

where bk is the value of the boundary for sensor k. Similarly, the detection threshold d�kcan be calculated according to

d�k =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�z−
sin ‖

‖

�k‖‖
for downwards oriented sensors

�z+
sin ‖

‖

�k‖‖
for upwards oriented sensors

�y
sin ‖

‖

�k‖‖
for horizontally oriented sensors

(5.8)

This simplifies the number of configuration parameters down to only �z− , �z+ and �y. Scal-ing by the sensor angle also makes setting the threshold values more intuitive, as one can
consider the margins along the y- and z-axes in body frame. Sensor noise and desired
leeway should be taken into consideration when selecting appropriate values.
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5.3 Obstacle Avoidance

Based on the obstacle detection method presented in the previous section, an obstacle
avoidance method can be proposed. Most importantly, the responsibility of this method is
to take appropriate action once an obstacle is detected. This includes aborting the current
waypoint, and stopping the robot before colliding. In missions where no obstacles are
detected, the robot should act the same as before, and the method should never be engaged.
A point to consider is that the method presented here is not a complete Traffic Collision
Avoidance System (TCAS), as it only handles non-moving obstacles. Other situations, s.a.
avoidance of other robots, are outside the scope of this thesis.

5.3.1 Core Functionality

The main principle behind the proposed method is utilizing the allowable moves in the
pose controller, by forcible interjection from the time an obstacle is detected, until it is
avoided. As a reminder, the pose controller consists of four states, which are moveForward,
moveStop, moveClockwise and moveCounterclockwise.
Figure 5.2 shows how obstacle avoidance is intended to work. More specifically, it shows
a scenario where the robot moves forward, before it detects an obstacle and applies the
appropriate action, which is to stop. In an attempt to return back to normal, the robot turns
around its center of area. The desired outcome of this move is the robot ending up in a
direction where it detects no obstacle, s.t. it can start moving forward again. Alternatively,
the robot can end up in another direction where an obstacle is still being detected.

1. The robot
moves forward

2. The robot
detects an
obstacle and stops

3a. The robot turns,
but still detects
the obstacle

3b. The robot
turns, and detects
no obstacle

4. The robot
moves forward
again

Figure 5.2: Illustration of how the core part obstacle avoidance works. There are two scenarios,
one where the robot fails to immediately return to normal operation, and another where it succeeds.
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To relate the above explanation to the pose controller, moveForward is the only state in
which obstacle avoidance is necessary, while moveStop, moveClockwise and moveCoun-
terclockwise are legal states after obstacle avoidance is already initiated. An assumption
is made here, which is that turning is always collision-free. In reality, there exist situations
where turning can result in the NRF robot colliding. However, a completely collision-
safe avoidance system would require a more advanced sensor solution, or a different robot
shape. Similar robots s.a. robotic vacuum cleaners avoid this problem as they are com-
pletely circular.

5.3.2 Adding Obstacles to the Java Server

Amissing part in the core obstacle avoidance functionality is how the robot is supposed to
turn s.t. it ends up in a directionwhere it canmove freely forward oncemore. This challenge
is more difficult than simply turning until no obstacle is detected, as there is nothing that
prevents the path planner from guiding the robot back to a similar state. Consequently, the
planner needs to be aware of the obstacle, s.t it can attempt turning in directions which are
not yet observed by the sensor solution. This is achieved by adding the obstacle to the map
on the Java server.
To add obstacles in the map, several modifications were made. Firstly, a new message was
defined, as the existing update message for the IR sensors was insufficient. Table 5.1 shows
the content of the message. Note that the sensor data parameter is assumed to be in the
horizontal plane, hence a projection is required before sending the data. Additionally, for
negative obstacles, the distance is always equal to the reference distance before projection,
as the obstacle is the absence of ground.

Table 5.1: Obstacle update message
Message Parameters Unit
Obstacle Update Position (x,y) cm

Orientation deg
Sensor Angle deg
Sensor Offset (x,y) cm
Sensor Data cm

Furthermore, some minor modifications were made to the Java server. Without going into
details, this included transforming the samples according to the rotations described in Sec-
tion 5.1. Additionally, when an obstacle is added to the map, only the specific location
of the obstacle is marked as occupied. Originally, an issue occurred after adding sample
data, where the samples from the sensor tower overwrote the obstacles. This was solved by
adding obstacles permanently to the map. As a result, estimation bias and faulty detections
will have a permanent impact, which will jeopardize long-running exploration missions.
However, a more sophisticated solution to this problem could not be found within the time
frame of this thesis.
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5.3.3 State Machine

The obstacle avoidance functionality was implemented as a state machine, consisting of
three states. Figure 5.3 shows a diagram of the state machine. Monitoring is the default
state, where the robot conducts normal operation. When an obstacle is detected while
moving forward, the state machine switches to the stopping state. After a stop is confirmed,
the waiting state is entered, where the state machine waits for an orientation where no
obstacle is detected. In this state, all moves except forward movement are allowed.

Monitoring
entry:
allowForwardMovement()

Stopping
entry:
stopRobot()
blockForwardMovement()
sendObstacleUpdate()

exit:
requestWaypoint()

Waiting
entry:
timerStart()

!obstacleDetected() &&
robotMovement == moveForward

obstacleDetected() &&
robotMovement == moveForward

robotMovement == moveStop

obstacleDetected() &&
robotMovement == moveForward

timerEvent() &&
robotMovement == moveStop

Figure 5.3: Obstacle avoidance state machine diagram

In addition to what is previously presented, the state machine requires the ability to block
forward movement. After receiving a new waypoint, stopping and completing the turn
towards this waypoint, the state machine must confirm that forward movement is safe.
Otherwise, small bursts of forward movement occur, which can lead to collision. Another
necessary addition to the state machine was a timeout option for the waiting state. The
reason for this is that occasionally the server aborts a waypoints, which leads to the robot
being stuck in this state. In this case, a new waypoint needs to be requested.
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This chapter presents an external hardware module for interfacing with the sensor solution.
As was discovered during the sensor selection in Chapter 4, the nRF52840 DK lacks the
necessaryADCs for connectingwithmore IR sensors. Therefore, the need for an additional
MCU with extra ADCs was identified.
The chapter is structured as follows. Firstly, a plan for the module is made, describing
what the hardware must offer, and some initial considerations. Secondly, the hardware and
interfaces on the external hardware module are presented, before the process of designing
the PCB is explained. Lastly, onboard software and drivers are presented.

6.1 Planning the Module

Before selecting components and designing a PCB, it is necessary to identify the require-
ments of the module. The following were found:

∙ ADC: The module have to read analog values from six Sharp GP2Y0A41SK0F
sensors in total. Therefore, the selected MCU needs at least six GPIO-pins with
ADC functionality. Both 10-bit and 12-bit ADCs are acceptable.

∙ Communication interface: A common interface like I2C or SPI should be consid-
ered when communicating with the nRF52840 DK.

∙ Logic level: The nRF52840 DK runs on 3.3V, while the Sharp sensors require 5V.
Therefore, appropriate measures are required for safe communication with existing
hardware while reading sensor values at the same time.

∙ Sensor switch: In the proof of concept testing in Chapter 4, noise was experienced
when utilizing multiple IR sensors simultaneously. A way of removing this issue is
by using a switching circuit, where the power supply is turned on and of s.t. sources
of noise are temporarily removed. Hence, hardware for such functionality should be
offered.

∙ Onboard functionality: The module should offer some obstacle avoidance func-
tionality, to lessen the load on the nRF52840 DK and the I2C/SPI bus.

44
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6.2 Hardware and Interfaces

In this section, the components on the PCB are selected and the interfaces between them
are established. A general philosophy throughout this stage is convenience, i.e. choosing
the easier option to save time if the decision is inconsequential to the module requirements.
An overview of the hardware components and the interfaces between them, which were
found during this stage, are given in Figure 6.1.

MCU Crystal
Oscillator

Hardware Module

Logic Level
Converter

Reset ButtonICSP header

IR sensor
connector

Power Switch LED

nRF52840 DKIR sensor

Power Source

Analog

Analog I2C

I2CDigital

5V

5V

0V / 5V DigitalDigitalISP

CK

Figure 6.1: Overview of components and interfaces

6.2.1 Logic Level

A decision early on was whether the module should be powered by 3.3V or 5V. There are
advantages and drawbacks with either solution. If a 3.3V logic level is utilized, the MCU
can be directly connected to the nRF52840 DK. Conversely, one voltage divider would
be required for each sensor to protect the MCU, resulting in 12 additional resistors on the
PCB. If a 5V logic level is used, voltage dividers can be scratched. Instead, a logic level
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converter is needed when interfacing with the nRF52840 DK. Ultimately, a 5V logic level
was selected, as it seemed the more convenient option.

6.2.2 Communication Protocol

Another decision was whether to use the I2C or SPI protocol for communication with
existing hardware. The I2C protocol was eventually selected, due to the following reasons.
Firstly, the protocol has been more regularly used throughout the robot project, and hence,
a I2C master driver already exists on the nRF52840 DK. Secondly, I2C pins are available
several places on the nRF shield, as opposed to a single header, which gives more freedom
when designing peripheral connectors.

6.2.3 Selection of Components

When selecting components, the main philosophy in this project is availability. There-
fore, components from previous students in the robot project, and institutions s.a. Omega
Verksted (https://www.omegav.ntnu.no/) and Elektronikkvekstedet at the Department
of Engineering Cybernetics, were checked before ordering online.

Microcontroller

The selected MCU is the ATmega168-20AI [40], which is an MCU in the AVR series
from Atmel. This circuit has eight ADC-pins, but two of these are assigned to the SCL
and SDA lines in the I2C protocol. Furthermore, the ATmega168-20AI is a 5VMCU. As
for the exact model selection, the near-identical ATmega328PBwas originally considered.
However, this MCU was not available at Omega Verksted. One of the advantages of an
AVR-based microcontroller, is that software and drivers can be developed while the PCB
is in production, by using an Arduino board.

Logic Level Converter

To connect the ATmega168 to the nRF52840 DK through I2C, a logic level converter is
required. The role of this component is to shift a digital 3.3V signal to a 5V signal, and vice
versa. Since I2C consists of two bidirectional lines (SDA and SCL), a bidirectional logic
level converter with two channel is required. Figure 6.2 shows the circuit for one channel
of a logic level converter. The circuit consists of one N-Channel MOSFET (NMOS) and
two pull-up resistors.

https://www.omegav.ntnu.no/
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Figure 6.2: Bidirectional logic level converter

Since only two channels are needed, the logic level converter was built from scratch. Due
to availability at Omega Verksted, the selected transistor is the MMBF170 [41]. I2C com-
munication was tested with the circuit, and was confirmed to work. However, the BS170
was used during testing, which is the TH version of the same transistor.

Sensor Switch

The main idea behind a sensor switch was to reduce noise between the IR sensors, which
proved an issue during the development of the sensor solution (see Chapter 4). The first
idea was to directly use the output from a GPIO-pin. However, while the power consump-
tion was inside the datasheet’s specification, there were doubts whether this would provide
a steady, low-noise power supply. Therefore, a transistor circuit was selected instead.
Figure 6.3 shows the switching circuit, which consists of an NMOS transistor, a pull-down
resistor and a gate resistor. The load RL represents the sensor. Once again, the MMBF170
[41] transistor was selected, and the circuit was tested with the complementary BS170
before PCB design. As for the gate resistor, the size was selected s.t. the current can never
surpass 40mA, which is the absolute maximum supply current according to the datasheet
[40]. Equation (6.1) shows the calculation.

R ≥ 5V∕40mA = 125Ω (6.1)
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Figure 6.3: NMOS switch circuit

Other Components

Two LEDs are provided on the module, where one indicates power supply, and the other
can be programmed by the user. Furthermore, several decoupling capacitors are added
close to the ATmega168 VCC pins.
For common components s.a. resistors, capacitors and LEDs, SMD components were se-
lected. The main reason for this was space considerations, as the number of resistors be-
came significant due to the logic level converter and the switching circuits. The 0603 ver-
sion (0.6" × 0.3") was selected, as it was the commonly available size at Omega Verksted.
Lastly, a 16Hz-oscillator was included for precise timing in the ATmega168, and a reset
button was also added for convenience.

6.2.4 Peripheral Connectors and Power Supply

After the hardware components were selected, connectors for peripherals and power sup-
ply were chosen. In compliance with existing IR sensors, 3-pin JST sockets were selected.
Additionally, an In Circuit Serial Programming (ICSP) header was required to program
the ATmega168.
For the I2C connectors, there exist two dedicated 4-pin headers on the nRF shield, where
one is male and one is female. However, the female header is dedicated to the OLED dis-
play. As for the power supply, 5V and GND signals are available through the headers on
the nRF shield. During the PCB design stage, the module was connected to exisiting hard-
ware as a shield, making both power supply and I2C available through stackable headers.



Chapter 6: External Hardware Module 49

6.3 PCB Design

This section goes through the PCB design process step by step, including schematics,
PCB layout, and production of the board. A PCB design program called KiCAD [42] was
utilized, as the nRF shield was developed using this software previously.

6.3.1 Schematics and Layout

The first step of the process is to create a schematic of the electronic circuit, which is done
in KiCAD’s Schematics software EESchema. Most of the used component symbols were
found natively in Eeschema. However, more advanced components s.a. the ATmega168
and 3-pin JST connectors were fetched from the Mouser Components Library [43]. The
next step was to associate symbols with PCB footprints, which are an arrangement of
pads or through-holes for attaching components to the circuit board. For the symbols from
Mouser Components Library, this was done automatically.
Subsequently, a layout for the circuit board was created in PCBnew, which is KiCAD’s
PCB layout program. The standard of 2 layers was selected. This step consists of 3 stages.
First, a board outline is defined, which determines the shape of the PCB. Secondly, foot-
prints are placed on the board, in a way s.t. components are easily connected later. Lastly,
connections called traces are drawn between the components, and holes called vias are
used to connect the bottom and front layers. It is important that traces are sufficiently wide,
especially for the power supply. Additionally, there were multiple requirements originating
from the manufacturer. Without going into details, this regarded matters s.a. trace width
and size of vias.
Both the front and bottom layers of the PCB, and the circuit schematics, are provided in
Appendix D.

6.3.2 Production and Assembly

A total of six PCBs were ordered from Elektronikk og prototypelaboratoriet at the Depart-
ment of Electronic Systems. The manufacturer did not offer silk screen, and hence, there
is no print on the PCBs. In total, the time between the order inquiry and completion was
approximately two weeks. However, there is a large variety in delivery time depending on
the demand.
After receival, one board was soldered at Elektronikkverkstedet, Department of Engineer-
ing Cybernetics. The SMD components were soldered by a person at the lab, while TH-
components were soldered by the author of this thesis. Figure 6.4 shows the completed
PCB stacked on top of the nRF shield.
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Figure 6.4: Assembled PCB stacked on top of the nRF shield

6.4 Source Code

This section presents the source code on the external hardware module, including both
drivers and software. Figure 6.5 shows a simplified class diagram, which includes the
main components of the source code. Note that the programmable LED is excluded, as
interfacing with this component is done through macros, which are available across all c
files.
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obstacle_
detector

util

timer reg_mngr

ext_sensor

i2c

adc
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Figure 6.5: Class diagram of source code

6.4.1 Drivers

i2c

The I2C slave driver handles communication with the master driver on the nRF52840 DK
board, using the Two-Wire Interface (TWI) protocol. The driver is interrupt-based, s.t. an
event is handled as fast as possible when it occurs. The data is fetched from and relayed to
the other parts of the system through callback functions, and is not directly handled in the
driver. Three callback functions are required:

∙ A function for handling a received byte
∙ A function for fetching a requested byte
∙ A function to signal end of transmission

adc

An ADC driver was implemented to read the output voltage from the IR sensors. On the
ATmega168, there is a single 10-bit ADC, which can read the input from eight different
channels. A multiplexer selects which channel to read from. Hence, the driver provides
functionality for ADC setup, channel selection, and reading the ADC registers.

ext_sensor

The external sensor driver unifies all functionality for interfacing with the IR sensors.
Firstly, the driver offers functionality for turning the sensors on or off, i.e. the driver in-
terfaces with the NMOS switches. Secondly, the driver works as layer between the ADC



Chapter 6: External Hardware Module 52

driver and software, where the main addition is a simple filter. The main reason for in-
cluding such filter was that the ADC experiences noise. This noise is especially prevalent
in the first few measurements after switching the ADC multiplexer. Consequently, a fixed
number of ADC-readings is initially discarded when measuring the sensor signal. After-
wards, the final measurement is found by calculating the median of another fixed number
of readings. Lastly, the driver can access a sensor in the aforementionedmanners by simply
specifying the number (1-6) of the sensor.

timer

The timer driver implements timing functionality. The driver offers start and wait func-
tionality, where the waiting time is set when the timer is started. Timer1, which is a 16-bit
timer on the ATmega168, is utilized.

6.4.2 Software

registers

The register module implements simple storage on the external hardware module, includ-
ing read and write operations for the uint8_t, uint16_t and float data types. The reg-
isters are divided into user banks 0-6, to streamline access to individual sensor settings.
The registers themselves are documented in further detail in Appendix E. However, the
functionality which these registers enable is described more concisely in this subsection.

reg_mngr

The register manager’s main responsibility is providing synchronized access to the reg-
isters. The main reason for this is to avoid race conditions, as both the obstacle detector
routine and the I2C interrupt routine require access to the registers. The register manager
provides the following functions:

∙ I2C callback functions: The register manager implements the three callback func-
tions for handling a received byte, fetching a requested byte, and ending a transmis-
sion. When a byte is received or requested, a busy flag is set, which is in turn reset
when the transmission is ended.

∙ Load settings function: An interrupt-safe function is provided for loading copies
of a selection of registers. As a copy is loaded, the settings will only change when
this function is called, and not when new data arrives from the I2C driver.

∙ Store data function: An interrupt-safe function is provided for storing samples and
obstacle detection status in the registers.
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To ensure the load and store functions are interrupt-safe, two synchronization functions
were implemented. Figure 6.6 shows the implementation. Essentially, these function en-
sures that interrupts are disabled only after the busy flag is cleared.

void reg_mngr_semaphore_take(uint16_t timeout_10_us) {

while (1) {
cli();

if (!reg_busy_flag || timeout_10_us <= 0) {
reg_busy_flag = 0;
break;

} else {
sei();
_delay_us(10);
timeout_10_us--;

}
}

}

void reg_mngr_semaphore_give() {
sei();

}

Figure 6.6: Synchronization functions in the register manager

obstacle_detector

The obstacle detector routine implements most of the functionality the external hardware
module has to offer, by utilizing the drivers and other software modules. By default, the
module functions as an external ADC, where the input values on the six ADC channels
are read. To utilize more advanced features, the register settings must be changed. See
Appendix E for more information.
The first available feature is the ability to turn the power supply for each of the sensors
on and off, as specified by the user. For example, this feature may be utilized to turn of
all sensors when there are multiple robots in close proximity, s.t. the robots do not disturb
each others.
A second feature is continuous switching of the power supply, where the sensors can be
turned on and off repeatedly in specified patterns. The main application of this is alter-
nating switching, which prevents the IR sensors from disturbing each others. Figure 6.7
shows a timing diagram of how alternating switching between two sensors may work. The
key part of the example is that the sensors are never turned on simultaneously. To deter-
mine a switching period, timing requirements from the sensors are considered. According
to the GP2Y0A41SK0F datasheet [36], there is a delay of 5ms between when a sample is
recorded and the corresponding change in output voltage. Therefore, as the sample period
of the sensor is (16.5 ± 3.7)ms, a switching period of at least 25.2ms should be consid-
ered.
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Input voltage 1
Sampling Procedure 1 Sample 1.1 Sample 1.2

Output voltage 1 Unstable V1.1 Unstable V1.2

Input voltage 2
Sampling Procedure 2 Sample 2.1 Sample 2.2

Output voltage 2 Unstable V2.1 Unstable V2.2

Figure 6.7: Example of how alternating switching removes disturbances between two sensors

The last and most important feature is obstacle detection, which functionality is already
described in Sections 5.2.1 and 5.2.2. To enable obstacle detection for a single sensor, the
detection mode must be set to any legal mode (1-4). Detection mode 0 is the default, which
means detection is disabled, and the output data format is raw ADC readings.
For the other detection modes, the output data is converted intomm. If desirable, an offset
can be calibrated, as described in Section 5.2.2. Lastly, the output data is evaluated based
on the reference distance and the threshold. A detection status, which indicates whether or
not an obstacle is detected, is determined according to the detection mode. See Appendix E
for further detail on how to set up obstacle detection on the external hardware module.



7 | Testing and Evaluation

In this chapter, tests are conducted to evaluate the parts and functionality developed in the
thesis. Firstly, the external hardware module is tested and verified. Secondly, the sensor
solution and the obstacle detection method is tested. Thirdly, a final performance test of
the system as a whole is conducted, to evaluate whether all individual parts work together.
Lastly, the test results are discussed.

7.1 Testing of External Hardware Module

In this section, the external hardware module, which is presented in Chapter 6, is tested
and verified. As most of the obstacle detection and avoidance functionality depends on
data from this module, it is essential that this part works close to what was intended.

7.1.1 Continuity on the PCB

The first test stage was conducted to discover any errors in manufacturing, by utilizing
the continuity function on a multimeter. The objective of this test is confirming that traces
properly connects components in accordance with the PCB layout, and to discover any
faulty short-circuitry. No problems were found during this operation. However, if more
PCBs are assembled, the test should be repeated.

7.1.2 Hardware Components and Drivers

The second test stage was to examine whether the hardware components and the drivers
works as expected. At this stage, the test method was mainly using onboard software for
testing hardware, as most of the software was already developed on an Arduino Uno while
waiting for the PCB being manufactured. As a result, prototypes of the hardware compo-
nents had already been tested, as briefly mentioned in Chapter 6. Regardless, a final set of
tests, confirming whether all components and corresponding drivers works, was necessary.
Table 7.1 provides a short description of the individual tests, and the resulting outcome.

55
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Table 7.1: Tests of individual hardware components and drivers on the external hardware module
Component Test Description Verdict
ICSP Programming Flash a simple program to ATmega168 in Microchip Studio, using

the ICSP protocol. Additionally, confirm whether debugging works
with debugWIRE.

Passed

Power Supply Check that the power supply works as expected. Failed
LED Apply power supply to the circuit, and check if the power indicator

is lit. Afterwards, blink the programmable LED at a specific fre-
quency.

Passed∗

Reset Button Reset program with button, and check the reaction of the pro-
grammable LED

Passed

Logic Level Converter In turn, apply high and low voltage on both sides of the LLC, and
read the other side. Repeat for both LLC channels.

Passed

I2C Send and receive data from the nRF52840 DK. Passed
IR Sensor Read data from all 6 ADCs in turn while the corresponding IR sen-

sor is connected. Continuously fetch the data from the nRF52840
DK, and print to terminal. Move an item in front of the sensor, and
check if the output data changes.

Passed∗

NMOS Power Switch Power on and off each of the NMOS transistors and read voltage
over the corresponding IR sensor. The resulting voltage should be
5V when the power is on, and 0V when the power is off. Further-
more, study the response with an oscilloscope.

Passed∗∗

∗Software-related failures, which were fixed
∗∗Slow transient response when the switch is turned off, which needs further consideration

In the power supply test, a major error was discovered. In the design, the hardware module
is connected to the 5V pin of the nRF52840DK. This pin however, is not connected directly
to the same 5V voltage regulator as the rest of the system. As a result, the nRF52840 DK
stopped working properly when the USB was disconnected, likely due to an excessive
current draw. The ultimate solution was to connect the hardware module to the voltage
regulator on the nRF shield, by utilizing a breadboard wire. This is a separate power supply
than for the servo, as the servo was found to generate significant noise in the IR sensor
measurements.
Two software-related errors were also found during these tests. Firstly, when blinking the
programmable LED, the frequency was much lower than expected. The cause of this error
was that the internal oscillator was set as default. Hence, the solution was to change the
fuses governing this setting, s.t. the external oscillator could be utilized. The second error
was a simple bug in the LED macros, which also toggled two of the NMOS switches.
Lastly, when studying the response of the NMOS switch in the oscilloscope, which is
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shown in Figure 7.1, the turn-off response is quite slow compared to the turn-on response.
When the sensor is connected, the voltage goes below 1V in less than 0.5ms, but after
5ms the voltage still has not reached zero. This may cause a problem for the continuous
switching feature on the external hardware module, as a requirements for this to work is
that two sensors are never turned on simultaneously. In case the switching feature fails, or
requires a significant delay to properly remove sensor disturbances, the switching circuit
should be reconsidered.

Figure 7.1: Transient response of the voltage over an IR sensor when the corresponding NMOS
switch is toggled, measured with an oscilloscope. Here, the sensor is first turned off, before it is
turned on again 5ms later.

7.1.3 Noise-reducing Features

The main objective of the third stage of tests was to show the quality of the processed IR
measurements which the external hardware module provides to the nRF52840 DK. One
of the reasons for such tests is that the higher-level functionality s.a obstacle detection
requires reliable, low-noise signals to function properly. Furthermore, a 10-bit ADC is now
utilized, as compared to a 12-bit ADC when testing with the nRF52840 DK previously.
As described in Chapter 6, there are two features that specifically target IR sensor noise.
The first is a simple filter to remove noise from the ADC. A test was conducted to show
that this filter do indeed remove noise from the measurement. Figure 7.2a shows a time
series where the filter is enabled, as compared to a time series where only a single ADC-
reading is recorded. The plot shows that the filter gives a stable output signal, and that it
removes what can be described as initial bias in the ADC readings.
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(a) ADC noise filtering
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(b) Alternating switching
Figure 7.2: Demonstration of the two noise-reducing features implemented on the external hard-
ware module. The first plot (a) shows filtering of the ADC readings, while the second plot (b)
demonstrates that alternating switching removes disturbances between sensors.

A second test was conducted to demonstrate that alternating switching can remove dis-
turbances between sensors. These types of disturbances was previously shown to be an
issue in the proof of concept testing of the sensor solution (see Section 4.5.2). Similar to
that test, an obstacle was positioned s.t. one sensor is disturbing another. With this config-
uration, two time series were recorded, one with alternating switching enabled, and one
with normal sensor data. Figure 7.2b shows the two time series, and the plot confirms that
alternating switching works as intended.
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7.2 Testing of Sensor Solution and Obstacle Detection

In this section, test results demonstrating the performance of the sensor solution and the
obstacle detection system are presented. Results for these two categories are closely asso-
ciated, as false detections mostly originate from discrepancies in the sensor solution, and
not from the obstacle detection method itself. Furthermore, the contents of this test stage
can be viewed as results the thesis wants to highlight, either to verify that some core parts
of the system works as expected, or to show discrepancies which does not directly present
themselves in the final performance test.

7.2.1 Setup and Configuration

At this stage, all six sensors were tuned based onADC readings from the external hardware
module. The method was similar to tuning procedure in Section 3.2.1, with a spacing of
2 cm instead due to the shorter measuring range of the GP2Y0A41SK0F.
The detection system is set up according to the parameters in Table 7.2. As both Prototypes
5 and 6 are tested, both parameter configurations are included. To give further explanation,
the detection threshold and reference distance are determined according to the guide in
Section 5.2.3, and offset calibration is enabled for all downwards oriented sensors. The
threshold values are calculated based on �z− = 5, �z+ = 10 and �y = 5, where �z+ is
slightly larger to for extra leeway in low passageways. Note that all distance units are in
mm.
As for the power switching, there are a total of two cycles. Sensors 5-7 and Sensors 9-10
are switched on and off in an alternating pattern, while Sensor 8 is always turned on. This
is the case for both prototypes.

Table 7.2: Obstacle detection setup for Prototypes 5 and 6
Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Pro
tot

yp
e5

Sensor Type Down Down Down Up Horizontal Horizontal
Offset Calibration On On On Off Off Off
Switching Cycle 1 1 1 1 & 2 2 2
Reference Distance 86 86 86 110 215 206
Detection Threshold 7 7 7 14 9 7

Pro
tot

yp
e6

Sensor Type Down Down Down Up Down Down
Offset Calibration On On On Off On On
Switching Cycle 1 1 1 1 & 2 2 2
Reference Distance 86 86 86 110 102 102
Detection Threshold 7 7 7 14 6 6
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7.2.2 Sensor Rig Prototypes

One of the most important aspects of the obstacle detection system as a whole is that when
no additional obstacles are present, the robot should explore the environment as it normally
does. As an initial test of sensor rig Prototypes 5 and 6, the NRF4 robot was tasked with
exploring the circular track once for each prototype. In this case, a performance similar to
the mapping and exploration of the circular track in Section 3.4 would be ideal.

(a) Prototype 5 (b) Prototype 6

Free Space Unknown Space Restricted Space
Occupied Space Detected Obstacle

Figure 7.3: Two reconstructed maps of the circular track, with Prototypes 5 and 6 used for obsta-
cle detection respectively. In this case, there are no additional obstacles present, and any detected
obstacles are represented by red voxels.

Figure 7.3 shows the two resulting maps after the robot has attempted to navigate and map
the circular track. For mapping with Prototype 5, the robot experiences frequent false pos-
itive detections, which results in the robot failing to fully explore the map. The sensors in
question that causes these false detections are Sensors 9 and 10, which are the horizontally
oriented sensors close to the ground.
When mapping with Prototype 6, the horizontally oriented sensors are no longer utilized,
and consequently, the robot manages to completely navigate and map the track. Addition-
ally, the results are similar to the test results in Section 3.4. On some occasions however,
the sensor solution does detect the wall, as there are groups of red voxels two places in the
map.
As Prototype 5 experiences a high amount of false positive detections, this prototype was
discontinued. In the remaining tests, Prototype 6, also referred to as the final solution, was
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utilized.

7.2.3 Detection of Individual Obstacle Types

The next step is to confirm that the system is capable of detecting each of the three obstacle
types. To reiterate, these are overhead obstacles s.a. low passageways, ground obstacles
s.a. small items, and negative obstacles s.a. holes in the ground.
The test was set up as follows. In turn, obstacles of each type is positioned right in front
of the robot. The robot is manually tasked with tracking a waypoint, s.t. the robot would
collide with the obstacle if detection and the subsequent emergency stop fails.
Figure 7.4 shows the resulting measurement time series for a representative sensor in each
of the three cases. For negative and ground obstacles, this is a downwards oriented sensor,
while for overhead obstacles, this is an upwards oriented sensor. The plots also include the
detection bounds determined by the reference distance and detection threshold according
to Table 7.2. To confirm that detection works as expected, the first time of detection is
marked in each of the plots.
The results confirm that the system indeed manages to detect the three types of obsta-
cles. Furthermore, the detection occurs right after a new measurement crosses one of the
detection bounds.
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(a) Ground obstacle
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(b) Negative obstacle
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(c) Overhead obstacle
Figure 7.4: Time series of measurements from a representative sensor, when detecting each of the
three obstacle types.
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7.2.4 Overview of Discrepancies

Several discrepancies with the obstacle detection system has been discovered throughout
the work, which a user of the system should be aware of. As discrepancies do not always
reveal themselves in larger tests, an overview is given in this subsection.
Firstly, the upwards oriented sensor experiences erroneous measurements when the robot
is applied certain poses. These are measurements which affect the detection system, as the
sensor measures a much shorter distance than what is the actual case.
Figure 7.5 shows an example of a pose where false detections occur. In this case, the
wooden wall is slightly outside the laser line of sight. The resulting sensor measurements
become very noisy, which results in the detection system yielding several false positives.
This occurs despite the woodenwall being far outside the reference distance of the upwards
oriented sensor. When the wooden wall is removed, or an item is placed inside the laser
line of sight given the same pose, the noise disappears completely.

Figure 7.5: Robot pose where the detection system experiences a false positive

Secondly, another discrepancy was discovered when testing mapping with an overhead
obstacle present. Similar to erroneous measurements of the upwards oriented sensor, the
IR sensors of the sensor tower perceived the overhead obstacle, despite it being outside the
laser line of sight. To demonstrate this, a test was conducted where the robot is manually
tasked with moving towards an overhead obstacle, and stops upon detecting the obstacle.
Figure 7.6a shows a sketch of the setup, and Figure 7.6b shows the resulting map on the
Java server. As the map shows, the IR sensors on the sensor tower perceived the obstacle,
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albeit rather noisily, and consequently, added occupied voxels to the map.
A second test was also conducted where there is a wall behind the obstacle, as shown
Figure 7.6c. The resulting map is given in Figure 7.6d. In this test, the IR sensors on the
tower perceived the added wall instead, and only the upwards oriented sensor detects the
obstacle.

(a) Setup 1 (b) Resulting map of Setup 1

(c) Setup 2 (d) Resulting map of Setup 2
Figure 7.6:Mapping and obstacle detection in two simple environments with an overhead obstacle
present. Setup 1 (a) consists of two regular walls and an overhead obstacle, while Setup 2 (b)
includes an additional wall. (b) and (d) show the resulting maps of the respective setups.

Lastly, the IR sensors will give erroneous measurements when perceiving low-reflective
surfaces. A test was conducted to demonstrate this, where an area of the ground in front
of the robot was covered with black insulation tape. The robot was then manually tasked
with moving past this area, while recording the measurements of a representative sensor.
Note that obstacle detection was disabled during this test.
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Figure 7.7 shows the recorded measurements, compared to a recording of the similar test
with a normal, flat surface. When the sensor perceives the black insulation tape at around
1.7 s, the measurements change substantially, and would certainly cause a false positive
detection.
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Figure 7.7:Time series showing how the sensormeasurements changewhen an IR sensor perceives
a low-reflective surface, i.e. black insulation tape.

7.3 Testing of Final Performance

Finally, the obstacle detection and avoidance system developed throughout this thesis was
tested while simultaneously mapping an environment. A track containing each of the three
classified obstacle types, referred to as the obstacle track, was prepared. Figure 7.8 shows
a sketch of the track. Note that the overhead obstacle was placed closed to a wall, s.t. the
sensor tower would not detect this obstacle (see more in Section 7.2.4).
The test was set up with the following configuration:

∙ Server: Java server
∙ Mode: Automatic Waypoint Generation
∙ Voxel Size: 2 cm
∙ Robot: NRF4
∙ Starting Position: Lower left corner, orientation towards the right
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Figure 7.8: Sketch of the obstacle track

In total, four exploration missions were conducted, and the resulting maps on the Java
Server are given in Figure 7.9. The obstacles detected through the obstacle detection
method are marked as red voxels in the map, and these are treated equally to occupied
voxels during subsequent planning iterations.
With a few exceptions, the robot performed as intended. Most importantly, collision was
avoided throughout all the exploration missions. In all four samples, both negative and
ground obstacles were always detected, and obstacle avoidance was then conducted. As
for the overhead obstacle, detection did not occur in Samples 3 and 4.
In addition to the detection of the three obstacle types, the samples shows several examples
of detected obstacles at other locations in the maps. In some cases, the corresponding red
voxels are part of the surrounding wall. In Samples 2 and 4, there are red voxels which are
close to the wall, but a certain distance apart from it.
Lastly, the issues which where present in the initial performance tests (see Section 3.4) are
also present in the final performance test. This includes noisy representation of the walls,
which is the case in all four samples. Additionally, there are some distortion in the maps,
e.g. a wall in Sample 3 which is added to the map twice at slightly different locations.
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(a) Sample 1 (b) Sample 2

(c) Sample 3 (d) Sample 4

Free Space Unknown Space Restricted Space
Occupied Space Detected Obstacle

Figure 7.9: Four map samples of the obstacle track, after exploration with the NRF4 robot

7.4 Discussion

As a reminder, the objective of this thesis was to to develop a method for detection and
avoidance of obstacles s.a. holes, low passageways, and small items on the ground, s.t
the NRF robot could explore environments with such obstacles present. The discussion
will consider whether the objective is fulfilled, but also discuss specifics regarding the
individual parts of the work.

7.4.1 External Hardware Module

For the most part, the external hardware module works the way it was intended in Chap-
ter 6. From a functional perspective, the module offers all the functionality it was meant
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to, but minor workarounds had to be considered due to hardware issues.
Power supply switching of the IR sensors addresses the issue that the sensors often disturb
each others. Alternating switching, which is the main application of this feature, is shown
to completely remove this disturbance in Figure 7.2b, despite the non-optimal response
of the NMOS switch in Figure 7.1. As a result, disturbances between between sensors,
which posed a significant adversity in the sensor rig design process, no longer affect the
system. While alternating switching has proven to be a useful tool, it is still recommended
to minimize the number of switching cycles. To elaborate, the sample period scales with
the number switching cycles, and needs to be low enough s.t. an obstacle can be detected
in time. Based on the test results, the total of two cycles utilized in this thesis, seems to be
a suitable number. A second application of power supply switching is turning off sensors
for extended periods of time. While the usage of this application was not thoroughly con-
sidered in this thesis, it may prove helpful in a multi-robot system, i.e. to avoid disturbing
sensors on other robots.
When sampling with the ADC, the sampled signals initially experienced significant noise.
The origin of this noise is unknown, but a missing capacitor on the ATmega168 AREF
pin, which is usually good practice to include, may have contributed to the issue. Software
filtering measures were attempted to remove the noise, which included discarding ADC
readings and using the median to remove outliers. The test result in Figure 7.2a confirms
that the filtering method works. Aside from this issue, the ADC seems to yield sensor
measurements of sufficient quality.
The only major issue in the design was the power supply, as the 5V signal was fetched
from the 5V pin of the nRF52840 DK, instead of the voltage regulators. As this pin could
not deliver sufficient current, a temporary workaround is utilized. Instead, the hardware
module is connected to the voltage regulator on the nRF shield via a breadboard wire.
For high-quality sensor measurements, a stable power supply is required. Therefore, it
is recommended that the servo, which is a significant source of noise, is connected to a
separate power supply from the IR sensors.

7.4.2 Sensor Solution

A lot of thought was put into finding a sensor sensor solution capable of detecting ground,
overhead and negative obstacles. The Sharp GP2Y0A41SK0F range sensor is arguably a
good selection out of the ones considered. The main reasons are its high precision com-
pared to the other sensors, and sufficiently high sample frequency, which was particularly
important for alternating switching to work. Additionally, a total power consumption of
approximately 6×12mA = 72mA is a quite low compared to that of other alternatives. In
retrospect, the selected sensor can also be concluded as a good choice as it actually ended
up working for detection purposes. See Section 4.3 for a more in-depth discussion, which
also includes more information about the other sensors considered.
However, the sensor has several undesirable attributes which made usage more tedious
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than expected initially. As already discussed, units of this sensor tend to disturb one an-
other when perceiving a similar area. In the sensor rig design process, configurations re-
ducing this issue were therefore heavily sought after. With the development of alternating
switching of the power supply however, this issue is now considered solved. A second is-
sue for the sensor rig design was a reflection issue, which Figure 4.8a shows an illustration
of. The solution to this problem was simpler, as it mostly disappeared when mounting the
sensors in a horizontal manner, i.e. the emitter and detector are at the same height.
A third issue, which a user of the sensor solution should be aware of, is that the sensors
cannot properly measure distance to low-reflective surfaces, as the test result in Figure 7.7
demonstrates. While the datasheet does not specifically address this issue, the sensors are
only tested for 18% and 90% reflectance ratios, and give similar results in both cases [36].
Therefore, the sensors should only be assumed to work in the interval between these ratios.
The last issue, which is considered unsolved at the end of this thesis, occurs when an
item is positioned right outside the laser line of sight. In this case, the resulting sensor
output contains significant noise, which can cause issues for the obstacle detection system
as a whole. Most of the sensor issues outside the ones that are already mentioned, can
likely be accredited to this discrepancy. This includes the noise issues experienced with
the horizontally oriented sensors which were part of sensor rig Prototype 5. In this case,
the ground is the item that caused the issue. As an attempt to solve the issue, FOV limiters
were added around the sensors. However, while this seemed to solve the issue in the proof
of concept tests (see Section 4.5), later test results in Section 7.2.2 revealed that the solution
was less robust than what was initially believed. While more time could have been used
to specifically address this issue, the sensors were replaced with two downwards oriented
sensors, as these had been proven to provide more stable sensor signals.
At the end of the thesis, the upwards oriented sensor still struggle with issues caused by
the last sensor issue. More specifically, the upwards oriented sensor experiences this when
applied certain poses, e.g. as Figure 7.5 shows. Changing the orientation of the sensor may
help alleviate the issue. Otherwise, another sensing technology should be considered as
replacement. Regardless, the consequences of the issue are not detrimental, as it occurs
quite rarely, and only close to walls. On the few occasions the issue does occur, obstacle
avoidance is initiated, and the robot continues operation.

7.4.3 Obstacle Detection

The obstacle detection functionality presented in Chapter 5 can be said to work as ex-
pected. As the test results in Section 7.2.3 shows, the robot now has the capability to
detect all the obstacles mentioned in the thesis objective. The method is also easy to use,
as most configuration parameters can be determined according to the sensor position and
orientation (see Section 5.2.3). The only tunable variables are the three margin param-
eters �z− , �z+ and �y, which can be found by studying measurement noise, or by simple
experimentation.
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The additional offset calibration feature ended up being quite important, as all downwards
oriented sensors utilizes the feature. In the final sensor solution, this accounts for five out
of six sensors. The reason why offset calibration is important, is that it removes bias in
the sensor measurement around the reference distance. Therefore, slight differences in IR
calibration, which was shown to be present in the proof of concept testing of the sensor
solution (see Section 4.5), does not affect the detection system. Offset calibration may also
remove other constant disturbances which have not been discovered.
A general theme during testing was that when false positive detections occur, the sensor
solution was liable, not the obstacle detection method itself. Sensor solution discrepancies
are already discussed in Section 7.4.2. The obstacle detection method may also fail to
detect particularly thin items s.a. posts, as there are gaps between the downwards oriented
sensors which the items can slip in between.

7.4.4 Obstacle Avoidance

The obstacle avoidance method presented within Chapter 5 also functions as expected.
Most importantly, the method ensures the robot does not collide once an obstacle is de-
tected, i.e. as the final performance test in Section 7.3 shows.
While themethod has experienced nomajor issues during testing, several theoretical issues
does exists. Firstly, the robot can collide during turning, despite the fact that turning is
assumed to be a safe move within this thesis. For turning to be completely collision safe
however, the robot would have to be completely circular.
The second issue is that when an obstacle is added to the Java server, s.t. the path plan-
ner can take the obstacle into account, the obstacle is added permanently. Therefore, for
large-scale environments, where the estimated robot pose may drift over time, the added
obstacles may cause problems for navigation.
Lastly, this method only considers non-moving obstacles, and may have to be extended
to avoid moving obstacles s.a. other robots. Hence, the method cannot be considered a
complete Traffic Collision Avoidance System (TCAS).

7.4.5 Final Performance

The final performance test in Section 7.3 demonstrates that the robot now can detect and
avoid obstacles s.a. holes, low passageways, and small items on the ground. The test was
conducted while the robot simultaneously explored an unknown environment, as it was
previously capable of. As no collision occurred during exploration, the test is considered
a success.
Several discrepancies did reveal themselves in this test. As discussed in Section 7.4.2,
sensor noise affected the upwards oriented sensor in certain robot poses. In the final per-
formance test, this occurred in two of the four samples. However, as this only happened in
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proximity to the walls, the issue did not have a great impact on the overall performance.
Another discrepancy, which did not really affect the system in any negative way, was that
the robot detected the wall when moving too close. Furthermore, the test results also re-
vealed that the robot is lacking in terms of mapping, as noise and distortions in the map
were still present. As these issues have not been a priority throughout this work, no efforts
of improvement have been made. Therefore, the initial performance tests in Section 3.4 are
referred to for more discussion on these issues. Lastly, the robot only detected the overhead
obstacle in two out of the four samples. This is not a discrepancy, as the developed func-
tionality is an obstacle detection and avoidance system, not a full 3D mapping solution. In
this work, obstacles are avoided upon detection, but the robot does not actively seek areas
which has not yet been perceived by the sensor solution.
In conclusion, the final performance test confirms that the thesis objective has been ful-
filled. The robot is now capable of exploring more advanced environments, with obstacles
located in all three dimensions.
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This chapter suggests topics for future work. More specifically, future work is natural con-
tinuations of this thesis, areas which were not prioritized, or discrepancies which can be
fixed and improved upon.

8.1 Improvements to Existing System

Both the initial and the final performance tests revealed that the maps which the NRF4
robot constructed were prone to issues s.a noise and distortion. As the NRF5 and NRF6
robots are constructed in the same manner, it is assumed these robots experience similar
issues. Therefore, future work should aim to improve the robot’s mapping capabilities.
While the robot hardware can generally be considered to be of high quality, IR sensors
will often experience noise when connected to the same power supply as the servo. While
the sensor solution is connected to a separate power supply, the IR sensors on the tower
are not. Hence, if hardware improvements are planned at some point, the servo should be
connected to a power supply separate from other hardware components.
As for the software on the nRF52840 DK, there exist several global variables in the source
code, s.a. gHandshook and gPaused. This is bad practice, and can be confusing for students
working on the robot project, and consequently, future work should aim to remove these
variables.
Lastly, communicationwith the Java server can be quite complicated, as the robot can often
suddenly lose connection. As a result, time and resources are wasted, even for projects only
indirectly related to the server communication. Improvements to the ble_comminication
source code, or the adaption of new protocols s.a. Thread should be one of the main pri-
orities in the coming years.

8.2 Improvements to Obstacle Detection and Avoidance

While the work conducted in this thesis can be mostly considered completed, there exist
parts which can be improved upon. Most importantly, development of a second version
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of the external hardware module can be considered, which includes proper power supply
connectors. Furthermore, despite sensor measurements being quite stable after filtering, a
capacitor should be connected to the AREF pin for good practice.
Another improvement is to find a better way of adding obstacles to the Java server. As
of now, the obstacles are added permanently, which means than noise from the sensors,
or bias in pose estimation, will cause great problems for robot navigation over time. Test
results have also shown that sensor noise does appear in certain robot poses, i.e. from
the upwards oriented sensor. Minor changes to the sensor solution or software filtering
may be considered to remove the noise from the map. Lastly, in-depth verification with
the OptiTrack positioning system on B333 should be conducted, to further evaluate the
system performance.

8.3 Continuations of this Thesis

Utilizing the obstacle detection and avoidance system developed throughout this thesis, fu-
ture work should exploremore applications of the system. One such application, is obstacle
detection and avoidance in a multi-robot system. A complete Traffic Collision Avoidance
System (TCAS) would be able to handle both the non-moving obstacles considered in this
thesis, while simultaneously avoid collision with other robots.
A second continuation is to develop functionality s.t. the obstacle detection and avoidance
system can work with the C++ server. Before this however, basic mapping and exploration
using the C++ server, as was demonstrated with the Java server in the initial performance
tests in Section 3.4, must be working.
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A | IR Sensor Calibration Parameters

Table A.1: IR sensor parameters for the NRF4, NRF5 and NRF6 robots
Sensor � � R

NR
F4

Sensor 1 778908 -1.168136 0.9995
Sensor 2 1013082 -1.203120 0.9997
Sensor 3 1043658 -1.206453 0.9989
Sensor 4 875430 -1.180489 0.9996

NR
F5

Sensor 1 1050635 -1.207230 0.9991
Sensor 2 758062 -1.162092 0.9997
Sensor 3 1068250 -1.206257 0.9995
Sensor 4 1120601 -1.210874 0.9997

NR
F6

Sensor 1 1026143 -1.206862 0.9987
Sensor 2 874521 -1.186358 0.9988
Sensor 3 1393666 -1.247142 0.9990
Sensor 4 1051848 -1.209854 0.9997
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B | Sensor Rig CAD Models

B.1 Prototype 1
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Figure B.1: CAD model of Prototype 1 with dimensions [mm]

B.2 Prototype 2
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Figure B.2: CAD model of Prototype 2 with dimensions [mm]
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B.3 Prototype 3
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Figure B.3: CAD model of Prototype 3 with dimensions [mm]

B.4 Prototype 4
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Figure B.4: CAD model of Prototype 4 with dimensions [mm]
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B.5 Prototype 5
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(b) Part 2
Figure B.5: CAD model of Prototype 5 with dimensions [mm]
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B.6 Prototype 6
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Figure B.6: CAD model of Prototype 6 with dimensions [mm]



C | Sensor Rig Simulations

C.1 Prototype 1
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Figure C.1: Simulation of how samples are scattered on the ground plane with the sensors in
Prototype 1. The robot moves at a maximum velocity of 0.32m s−1 along the x-axis, and the servo
moves 5° per measurement every 0.04 s, across a 45° interval. The vertical position of the IR sensor
is 10.5 cm above the ground, and the downwards angle is 22.5°. The simulation time is 2 s.
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C.2 Prototype 2
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Figure C.2: Simulation of how samples are scattered on the ground plane with the sensors in
Prototype 2. The robot moves at a maximum velocity of 0.32m s−1 along the x-axis, and the servo
moves 5° permeasurement every 0.04 s, across a 30° interval. The vertical position of the IR sensors
is 10.5 cm above the ground, and the downwards angle is 22.5°. The sensors are mounted with 15°
between them. The simulation time is 2 s.



D | Schematics and PCB Layout

Figure D.1: Front layer of PCB
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Figure D.2: Bottom layer of PCB
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Figure D.3: Schematics for external hardware module



E | External Hardware Module Regis-
ters

E.1 Register Map

Table E.1: User Bank 0
ADDR (Hex) ADDR (Dec) Register Name Serial I/F
00 0 BANK_SEL R/W
01 1 WHO_AM_I R
02 2 SENSOR_TYPE R/W
03 3 POWER_TRIG R/W
04 4 TOTAL_SWITCHING_CYCLES R/W
05 5 CAL_TRIG R/W
06 6 TOTAL_CAL_SAMPLES R/W
07 7 DETECTION_STATUS R
08 8 EXT_SENSOR_1_DATA_H R
09 9 EXT_SENSOR_1_DATA_L R
0A 10 EXT_SENSOR_2_DATA_H R
0B 11 EXT_SENSOR_2_DATA_L R
0C 12 EXT_SENSOR_3_DATA_H R
0D 13 EXT_SENSOR_3_DATA_L R
0E 14 EXT_SENSOR_4_DATA_H R
0F 15 EXT_SENSOR_4_DATA_L R
10 16 EXT_SENSOR_5_DATA_H R
11 17 EXT_SENSOR_5_DATA_L R
12 18 EXT_SENSOR_6_DATA_H R
13 19 EXT_SENSOR_6_DATA_L R
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Table E.2: User Bank 1-6
ADDR (Hex) ADDR (Dec) Register Name Serial I/F
01 1 EXT_SENSOR_X_POWER_MODE R/W
02 2 EXT_SENSOR_X_SWITCHING_CYCLE R/W
03 3 EXT_SENSOR_X_DETECTION_MODE R/W
04 4 EXT_SENSOR_X_CAL_ENABLE R/W
05 5 EXT_SENSOR_X_DIST_REF_H R/W
06 6 EXT_SENSOR_X_DIST_REF_L R/W
07 7 EXT_SENSOR_X_THRESH_H R/W
08 8 EXT_SENSOR_X_THRESH_L R/W
09 9 EXT_SENSOR_X_DIVIDER_1 R/W
0A 10 EXT_SENSOR_X_DIVIDER_2 R/W
0B 11 EXT_SENSOR_X_DIVIDER_3 R/W
0C 12 EXT_SENSOR_X_DIVIDER_4 R/W
0D 13 EXT_SENSOR_X_EXPONENT_1 R/W
0E 14 EXT_SENSOR_X_EXPONENT_2 R/W
0F 15 EXT_SENSOR_X_EXPONENT_3 R/W
10 16 EXT_SENSOR_X_EXPONENT_4 R/W

E.2 Bank 0 Register Descriptions

Register 0 - BANK_SEL

This register specifieswhich bank to address. There are seven available banks in total. Bank
0 holds common settings and all output data. Banks 1-6 hold individual configurations for
the IR sensors.

Register 1 - WHO_AM_I

This register holds the I2C address, which is 0xA2. To check whether there is a connection
to the external hardware module, it is recommended that this register is read.

Register 2 - SENSOR_TYPE

This register specifies the sensor type, which is used to set the sample period of themodule.
The external hardware module offers support for two sensors. The values that can be set
in this register are:

0. SENSOR_UNKNOWN - Sample period: 52.9ms. Default option.
1. GP2Y0A21YK0F - Sample period: 52.9ms
2. GP2Y0A41SK0F - Sample period: 25.2ms
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Register 3 - POWER_TRIG

This register is used to turn on or off all sensors. There are three values associated with
this register

0. POWER_TRIG_OFF - Trigger is off. The register is always reset to this value after the
register is written to. Default option.

1. POWER_OFF - All sensors are powered off.
2. POWER_ON - All sensors are powered on.

Register 4 - TOTAL_SWITCHING_CYCLES

This register specifies the total number of switching cycles, where each cycle lasts one
sample period. Switching can be used to power on and off sensors in succession to reduce
interference between them. If 0 (SWITCHING_OFF) or 1 is written, switching is turned off.
Note that switching has lower precedence than the EXT_SENSOR_X_POWER_MODE registers.

Register 5 - CAL_TRIG

This register triggers offset calibration, which can used for sensors where accuracy is es-
pecially important (see Section 5.2.2). When 1 is written to this register, calibration is
triggered. Then, for all sensors where EXT_SENSOR_X_CAL_ENABLE is set to 1, offset is
calibrated. The following values are associated with this register.

0. CAL_TRIG_OFF - Trigger is off. Default option.
1. CAL_TRIG_ON - Trigger is on. While the calibration is in process, this option is set.

Register 6 - TOTAL_CAL_SAMPLES

This register specifies the total number of samples which are averaged to find the adjusted
offset. The default option is 200 samples.

Register 7 - DETECTION_STATUS

This register holds the detection status for all six sensors. If a bit i is set high, then sensor
i+1 has detected an obstacle. Bit 6 and 7 are not used. By default obstacle detection is not
enabled. To enable obstacle detection for a single sensor, the following registers has to be
modified for each sensor:

∙ EXT_SENSOR_X_DETECTION_MODE
∙ EXT_SENSOR_X_DIST_REF
∙ EXT_SENSOR_X_THRESH



Chapter E: External Hardware Module Registers 90

∙ EXT_SENSOR_X_DIVIDER
∙ EXT_SENSOR_X_EXPONENT

Register 8-19 - EXT_SENSOR_X_DATA

These registers hold 16-bit output data from the sensors. The format of the output data
is determined by the content of the EXT_SENSOR_X_DETECTION_MODE registers. For DE-
TECTION_MODE_0, the raw 10-bit ADC reading is written to the corresponding register.
Otherwise, the data in mm is written.

E.3 Bank 1-6 Register Descriptions

Register 0 - EXT_SENSOR_X_POWER_MODE

This register specifies whether the sensor is powered on or off. The content of the register
can be changed by writing directly, or using the POWER_TRIG register in bank 0. The valid
options for the EXT_SENSOR_X_POWER_MODE are

1. POWER_OFF - The sensor is powered off.
2. POWER_ON - The sensor is powered on. Default option.

Register 1 - EXT_SENSOR_X_SWITCHING_CYCLE

This register specifies which cycle the sensor is turned on when switching is enabled. The
cycle must be less or equal to the value in the TOTAL_SWITCHING_CYCLES register. If the
value is 0 (SWITCHING_OFF), the sensor is always turned on.

Register 2 - EXT_SENSOR_X_DETECTION_MODE

This register configures the detection mode of the sensor, which determines if and how
an obstacle is detected. Additionally, the register also determines the format of the output
data written to the EXT_SENSOR_X_DATA registers. The available detection modes are:

0. DETECTION_MODE_0 - Raw ADC data. Obstacle detection disabled. Default option.
1. DETECTION_MODE_1 - Data in mm. Obstacle detection disabled.
2. DETECTION_MODE_2 - Data in mm. Obstacle detection enabled.
3. DETECTION_MODE_3 - Data in mm. Obstacle detection enabled.
4. DETECTION_MODE_4 - Data in mm. Obstacle detection enabled.

For exactly how detection works in detection modes 2-4, see Figure 5.1.
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Register 3 - EXT_SENSOR_X_CAL_ENABLE

This register specifies whether offset adjustment calibration is enabled for the sensor. Cal-
ibration occurs when CAL_TRIG register is set, and the number of samples are determined
by the TOTAL_CAL_SAMPLES register. Calibration is performed with the specified switching
settings, which may prolong the operation. Furthermore, ensure that the sensors are turned
on during calibration, i.e. the EXT_SENSOR_X_POWER_MODE registers holds POWER_ON. The
available options for this register are:

0. CAL_OFF - Calibration disabled. Default option.
1. CAL_ON - Calibration enabled

Register 5-6 - EXT_SENSOR_X_DIST_REF

These registers specify the reference distance in mm which is used for obstacle detection.
The value is unsigned. For how the reference distance ties into obstacle detection, see
Figure 5.1.

Register 7-8 - EXT_SENSOR_X_THRESH

These registers specify the threshold inmmwhich is used for obstacle detection. The value
is unsigned. For how the threshold ties into obstacle detection, see Figure 5.1.

Register 9-12 - EXT_SENSOR_X_DIVIDER

These registers specify the divider for converting ADC readings tomm. See Section 3.2.1
for how this conversion works. The value of the divider is a float, and is stored in the
registers as four bytes. Appendix E.4 shows and example of how a float is converted into
four bytes and vice versa.

Register 13-16 - EXT_SENSOR_X_EXPONENT

These registers specify the exponent for converting ADC data tomm. See Section 3.2.1 for
how this conversion works. The value of the divider is a float, and is stored in the registers
as four bytes. Appendix E.4 shows and example of how a float is converted into four bytes
and vice versa.
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E.4 Float to Bytes Conversion Example

void registers_write_float(float data, uint8_t addr, uint8_t bank) {

uint8_t bytes[sizeof(data)];
memcpy(&bytes, &data, sizeof(data));

for (uint8_t i = 0; i < sizeof(data); i++)
registers_write_uint8(bytes[i], addr + i, bank);

}

float registers_read_float(uint8_t addr, uint8_t bank) {

float data;
uint8_t bytes[sizeof(data)];

for (uint8_t i = 0; i < sizeof(data); i++)
bytes[i] = registers_read_uint8(addr + i, bank);

memcpy(&data, &bytes, sizeof(data));

return data;
}

Figure E.1: Example of conversion from float to four bytes and vice versa
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