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Abstract: Similarity measurement is one of the key tasks in spatial data analysis. It has a great
impact on applications i.e., position prediction, mining and analysis of social behavior pattern.
Existing methods mainly focus on the exact matching of polylines which result in the trajectories.
However, for the applications like travel/drive behavior analysis, even for objects passing by the same
route the trajectories are not the same due to the accuracy of positioning and the fact that objects
may move on different lanes of the road. Further, in most cases of spatial data mining, locations and
sometimes sequences of locations on trajectories are most important, while how objects move from
location to location (the exact geometries of trajectories) is of less interest. For the abovementioned
situations, the existing approaches cannot work anymore. In this paper, we propose a grid aware
approach to convert trajectories into sequences of codes, so that shape details of trajectories are
neglected while emphasizing locations where trajectories pass through. Experiments with Shanghai
Float Car Data (FCD) show that the proposed method can calculate trajectories with high similarity if
these pass through the same locations. In addition, the proposed methods are very efficient since the
data volume is considerably reduced when trajectories are converted into grid-codes.
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1. Introduction

With the development of sensor technology for positioning, ubiquitous Global Navigation
Satellite Systems (GNSS) enabled mobile devices to generate huge amounts of trajectory data [1,2].
These trajectory data are sequences containing various information such as location, time, speed and
direction, which enables the rapid development of Location-Based Services (LBSs) and applications [3–6].
Similarity measurements, as one of the crucial tasks of data mining, have been widely used in the
location-based applications to find all similar trajectories from a large collection [7,8]. Through similarity
measurements of trajectory data, valuable information can be mined from large collections of trajectories,
such as traffic flows and hot routes [9,10]. It is very useful for many applications, such as urban
hotspot detection [11,12], behavior model analysis [13,14], traffic monitoring and prediction [15–17],
urban planning [18,19] and location optimization [20,21], etc. Advances in location-based applications
are increasingly creating new, sophisticated mechanisms that can foster the exchanges of information
among travels to provide better services and promote a sustainable economy.

The information concerned by the similarity calculation is inconsistent in different types of
applications. For example, in many sports such as table tennis and football, it is very useful for
sport researchers to analyze the movement patterns of top players. The trajectories are classified by
using attributes of the trajectory (e.g., direction, speed, curvature, and other descriptors) to find the
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similar trajectories of objects’ (e.g., players, balls) motions [22,23]. In applications dealing with animal
migration patterns and urban emergency, the calculation of similarity needs to focus not only on the
spatial location information of the trajectory, but also on the temporal attribute information [24,25].
Further, for location-based spatial trajectories, several applications mainly focus on the location of the
routes, while neglecting the time, direction and other information. This is illustrated by the following
three different types of application scenarios.

Firstly, in the location recommendation service, the trajectory similarity of moving objects
resembles the paths’ or locations’ similarity. Combing this information, the frequent locations and
travel habits can be mined from the large collection of trajectories, and subsequently utilized to serve
the ordinary traveler [26–28]. Secondly, in the process of public transportation planning, the similarity
measurement can be used by the public transportation company to analyze the aggregated trajectories
of residents and obtain typical travel routes (e.g., knowing which routes are accessed densely) [29].
The convenience of public transport can be improved by adjusting the public transport network or
adding new routes. The goal is to make the best use of the bus services and maximize the convenience
of commuters so as to better serve urban residents. Thirdly, in travel behavior analysis or groups
analysis, such as taxi driving behaviors, analyzing the paths’ similarity of high-income taxis can
provide guidance for ordinary taxi drivers [30,31]. The goal is to reduce the cruising time of taxis and
increase revenue. In these kinds of location-based applications, the calculation of trajectories’ similarity
mainly requires location information, while the speed, direction and time information are not critical.
It motivates us to find a suitable method to measure the spatial similarity, which is the important part
of the similarity analysis of the spatial dataset.

Methods to measure similarity between trajectories have been well studied on movement pattern
related to time sequences. For example, a native similarity measure is the Euclidean distance,
calculated as the sum of distances between ordered pairs of sampling points in two trajectories [32].
However, due to the different sampling rates or different speeds in trajectory data, some sampling
points may not be well aligned in space. Aiming to overcoming this kind of problem, several algorithms
have been proposed [33–35]. For example, the Closest-Pair Distance is used to find the trajectories
closest to a given trajectory in a spatial network [36]. The Hausdorff distance is a measure of the
similarity between two sets of points [37]. The Dynamic Time Warping (DTW) algorithm allows some
sample points to be repeated to achieve optimal alignment [38]. These types of methods struggle with
the different sampling rates, trajectory length and the outliers, and achieves good results in trajectory
clustering, map matching and other applications. However, such methods focus too much on the
details of the trajectory. Hence, small deviations can have a big impact on the results (i.e., causing a
large distance between trajectory sequences). Additionally, due to the accuracy of GNSS measurements
and the fact that cars may drive on different lanes on the same road, the shape and distance between
sequences of the same route may be different, leading to inaccuracy in the calculation results.

Another type of similarity method is calculated based on the road network. The real distance
on road network between POIs is used to measure the similarity between the trajectories [1,39,40].
Xia et al. [41] and Abraham et al. [42] mapped the trajectory data to the road network and proposed
a new trajectory clustering method, which calculated the similarity of the trajectory by calculating
the length of the matching road segment. In applications of spatial data mining based on trajectory
data, this type of method is an improvement over previous measurements and can be used for
vehicle navigation and route recommendation. However, this kind of method requires detailed road
information which are lacking in the vehicle trajectory data. Due to instability in the GNSS signals,
errors will inevitably occur during the road matching process (especially in areas with dense road).
Subsequently, this may reduce the accuracy of the similarity calculations.

Overall, neither the method of calculating the distance between sequences nor the indirect method
of expressing the trajectory in other forms can satisfy the spatial similarity measure of the location-based
application in our research. Our key observation is that trajectories are considered similar if they pass
through multiple identical locations/places. For example, suppose the triangle area in the Figure 1 is
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a square. T1 describes an object moving on road segment Road1 and then making a left turn to the
road segment Road2. T2 describes an object moving on road segment Road1, making a left turn to the
road segment Road3 and then moving on the Road2 (when the current road is congested, the temporary
diversion is selected). Trajectories T1 and T2 are similar in location-based studies because they passed
through the same locations/places. However, if we consider the distance between sequences, shape or
the road information of the trajectory, their similarity is rather small. In this case, it is unnecessary
to know the characteristics of the trajectory in detail, although there may be some interesting issues
in those trajectories. Hence, the spatial similarity measurement of trajectory data mainly focuses on
the common locations or places, and these locations should be the meaningful areas (e.g., a square,
commercial streets, office areas), not just points with latitude and longitude. We contend that the
location-based similarity analysis is very meaningful, especially if we have some particularly interesting
locations for analysis (e.g., travel preferences analysis).
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Due to the facts mentioned above, the existing approaches may be inappropriate in Location-based
applications. This paper proposes a grid-based approach called Spatial Grid Coding Distance (SGCD)
for measuring similarity of trajectories. Instead of directly using point-list, only grid-codes based on the
location of trajectories are selected for similarity measurement. The algorithm converts the trajectories
by setting the appropriate grid size, which not only neglects the shape details of the trajectories, but also
does not require the alignment between the sampling points. Additionally, the recent development
of location-based applications shows that the demand for spatial similarity calculations is becoming
more and more diverse. Instead of focusing on one particular model in the process of spatial similarity
calculation, we should consider multi-scale query processing [43,44]. The characteristics of common
locations and self-intersection of trajectories are considered, respectively. Consequently, two spatial
similarity calculation methods are proposed in this paper, including common location similarity and
structural similarity. Each kind of similarity measurement algorithm can be used separately during the
knowledge discovery process.

The remainder of the paper is organized as follows. Section 2 describes the framework containing
the workflow of data processing. The main principles of our approach are introduced in Sections 2.1–2.3.
Section 3 develops an experiment in order to test our proposed algorithm. Finally, Section 4 concludes
the paper and outline further works.

2. The Grid-Based Approach for Similarity Measurement

A trajectory is a sequence of time-stamped sampling points, and its location information can be
represented as a list of geographic coordinates. In order to emphasize the impact of locations while
eliminating the disturbance of geometric details of trajectories in the process of similarity measurement,
the trajectory was represented with grid-codes in our algorithm. The algorithm runs through two
main phases, followed by an algorithmic verification phase (Figure 2). Phase I consists of grid-based
trajectory conversion. First, a rule for determining the appropriate grid size is defined in order to
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convert the study area into grids (Section 2.1). Second, the original trajectory data (i.e., Traj-1, Traj-2,
. . . , Traj-n) is superimposed on a coded grid to achieve trajectory conversion (Section 2.2). After the
trajectory conversion, the original trajectory data is represented by grid-codes and converted into
R_Traj-1, R_Traj-2, . . . , R_Traj-n. In Phase II, through algorithm design, different types of trajectory
similarity measurements are realized in Section 2.3. The following sections explain the workflow
in detail.
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2.1. Grid Generation

2.1.1. The Determination of Grid Cell Size

One of the issues of converting the study area from vector feature to regular grid is the determination
of the size of the grid cells. If the size is too large, the integrality of trajectory information can be
ignored. This will lead to the lack of some basic feature information of trajectories, making the result
of the similarity calculation unreliable. If the size is too small, too much attention will be paid to the
details of the trajectories. This does not eliminate the effect of the details on the trajectory, leading to
small deviations that can have a significant impact on the results. What is more, the computational
cost will be very high. Therefore, choosing an appropriate size for the grid cell ensures that the model
achieves better performance and acceptable accuracy, considering that the road network in a city is an
important indicator of urban development level [45]. Developed areas normally have denser roads and
more points of interest (e.g., hospitals, schools), while less developed areas have a sparse road network
and fewer meaningful places. Since our research focuses on the spatial similarity calculation based on
common locations/places, road network spacing in the city is used as the basis for sizing the grid cells.

However, there are two problems that should be solved in this process. Firstly, the road network in
the city can be divided into several levels (e.g., main road, trunk road, secondary trunk road and branch
road). Hence, the selection of the level of the road network is the first problem. In general, lower level
road networks represent smaller road networks spacing. The lowest level road (i.e., branch road)
network will fragment a meaningful place. The blue area in Figure 3 is Square A: the branch road
network contains many small paths, which can divide Square A into many fragmented patches (A1, A2,
A3, A4, A5). Further, in similarity analysis, trajectories are normally considered to be similar because
they pass by a few identical locations/places. Consequently, the lower-level road network should be
selected based on the fact that meaningful places are not fragmented. In this way, the sampling points
at the same place can be prevented from being divided into different areas, thereby improving the
accuracy of the calculation results.
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The second problem is to solve the imbalanced spatial distribution of the road network.
Many studies have shown that urban road network density is strongly related to spatial structure [46,47].
Cai et al. used the kernel density estimation to assess the spatial pattern of road density and clearly
reflected that the kernel densities of roads decreased with greater distance from urban core areas
or central business districts [48]. In fact, many cities have more than one central business district.
There are three main theories of urban spatial structure, namely the concentric circle model [49],
sector theory [50] and multi-core theory [51]. In terms of the number of urban centers, the urban
spatial structure has two types: monocentric and polycentric structure. The density of road networks
in downtown areas are higher than in suburban areas in a mono-centered city. In poly-centered cities,
densities of the road network in city centers are higher than those in other areas. The road network
density is strongly related to the level of urban development, and areas with high road network density
have more meaningful locations. Since our research is based on spatial similarity calculation for
meaningful locations, the number of locations in each grid cell should be balanced. For this reason,
in the process of determining the grid size, the areas with high road network density and the areas
with low road network density should be treated separately.
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According to the road network density, the study area can be divided into several sub-areas
(such as R1, R2, . . . , Ri). Generally, a city can be divided into suburban and downtown areas. The kernel
density estimation is used to calculate the road network density in the sub-region Ri. In the kernel
density analysis, the bandwidth is an important factor which directly affects the results of the density
analysis. This study used the calculation formula proposed by Silverman [52] (Equation (1)). A raster
data of road network density is generated by kernel density calculation, and its attribute value is the
road network density within the range of cells. The cell can be called a density unit in our research.

bandwidth = 0.9 ∗min

SD,

√
1

ln(2)
∗Dm

 ∗ n−0.2. (1)

where SD is the standard deviation, Dm is the median distance. This formula weighs the two parameters
of standard deviation and median distance and takes the minimum of the two to contribute to the
final calculation.
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According to the relationship between the road network density and the road network spacing,
the average value of the road network spacing in the sub-region Ri is calculated as the grid size of this
area. So, the grid size G (roadlevel, Ri) can be calculated according to the following equation:

G(roadlevel, Ri) =

mi∑
j=0

f (roadlevel, Ri, j)

mi
, (2)

where the f (roadlevel, Ri, j) is the road network spacing in the j-th density unit of raster data (kernel density
analysis result) in sub-area Ri; the roadlevel is the selected level of road network; mi is the number of
density unit in subarea Ri. According to Miyagawa [53], f (roadlevel, Ri, j) can be calculated according to
the following equation:

f (roadlevel, Ri, j) =
2

density_road(roadlevel, Ri, j)
. (3)

where the density_road (roadlevel, Ri, j) is the density of the selected road network in the j-th density unit
of sub-area Ri.

2.1.2. The Generation of Grid

For an irregular convex polygonal study area, in order to divide it into a regular grid, a Minimum
Bounding Rectangle (MBR) needs to be established. The MBR is a rectangle oriented to the x and y axes
and it is one of the most frequently used methods to express the geographic feature or a geographic
dataset. The MBR is determined by two coordinates: Xmin, Ymin and Xmax, Ymax, which are obtained
based on the geographic coordinate range of the study area. Assuming there exists a study area,
the length of the MBR is x and the width is y. According to the method proposed in the previous
section, the size of the grid cell of the study area is determined as δ. The conversion of the grid is
as follows:

µx = µy = δ, (4)

M =
x
µx

, (5)

N =
y
µy

. (6)

where the µx, µy are the length and width of each grid cell respectively; M and N are the numbers of
the rows and columns, respectively.

According to the previous section, the study area should be divided into several sub-areas to
solve the problem of spatial heterogeneity. Subsequently, separate grids are generated for each sub
area before they are all merged into one grid.

2.2. Converting Trajectory with Grid Code

Let T be a trajectory in space, represented as T = (p1, p2, . . . , pn), where n is the number of sample
points in T and pi (1 < i < n) is a sample point with geographic coordinates. These sample points are
arranged in the order of sample time.

Since this study focuses on the spatial similarity of trajectory data, we only need to pay attention
to the location information of the trajectory during the trajectory conversion process. As shown in
the Figure 4, the trajectory data is superimposed on the coded grid of the study area. If the sample
point is within the grid cell, the location information of the sample point is replaced with the grid code.
By converting each sample point, the trajectory is finally converted into grid-codes.

It is worth mentioning that, for the vehicle trajectory data, the sampling frequency is 10–60 s,
which may result in multiple consecutive sampling points falling in the same grid cell. To reduce



Sensors 2020, 20, 3118 7 of 20

data redundancy, duplicate data needs to be filtered (i.e., numi+1 , numi). Through the filtering of the
trajectory it is possible to both reduce the redundancy and maintain the integrity of the data. This is
beneficial for the data storage. The converted trajectory is shown in Figure 4. The attribute value of grid
cell is the number of times that the trajectory passes through the grid cell. For grid (3,4), the attribute
of the grid is five, which means that the trajectory passes through this grid cell five times. After the
trajectory conversion, the location information of trajectory is expressed by the grid-codes and the
spatial distribution of the trajectory is represented by the trajectory matrix.Sensors 2020, 20, 3118 7 of 20 
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2.3. The Grid-Based Similarity Measurement

Through the conversion of trajectories, a matrix with grid-codes is generated to represent a
trajectory. The trajectory similarity calculation can be done by comparing and analyzing codes in the
two matrices. In this study, there are mainly two types of spatial similarity measures. These are the
common-locations similarity, which consider the common locations visited by the two trajectories,
and the structural similarity, which considers the self-intersection of a trajectory.

For the first category, the similarity of the common location of the trajectory mainly focuses on
the common locations a moving object has visited. This may be useful for location recommendation
services, or for finding objects which move through certain points of common interest (e.g., emergency
locations, terrorist locations, etc.).

However, in many location-based applications it is not enough to consider only the common
locations of two trajectories. Figure 5 shows an example with two taxi trajectories in Shanghai. The taxi
activities are considerably restricted by geographical space, and the range of the two trajectories varies
a lot. Since both trajectories in Figure 5 include the route to the airport, if only the common locations are
considered the similarity between the two trajectories will be high. This result is obviously unreliable
in the analysis of behavior pattern. Consequently, it is very important to consider repetitive and
self-intersecting features of trajectories in the applications of movement patterns (e.g., analysis of
travel behavior preference, hotspot extraction). As for the second category, the structural similarity
algorithm has been designed. It not only focuses on the common points of interest that trajectories
pass by, but also on the information of repetitive active regions and self-intersections of trajectories.

The following sections explain the measurements in detail.
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2.3.1. Similarity of Common Locations

A spatial similarity measurement (Simloc (Ti,Tj)), focusing on common locations in trajectories,
is introduced in this subsection. It counts the number of the common locations and calculates its
percentage of all location points in trajectories as the similarity of the two trajectories. Note that in the
process of calculating the similarity of common location points, we focus on whether a location point is
passed or not, regardless of how many times it passes. Therefore, before calculating the similarity of
common locations, we need to do unique value processing for each track.

Let Ti and Tj be two trajectories. After trajectory conversion, Ti and Tj are converted into two
trajectory matrices (T_ matrixi, T_matrixj). The spatial similarity measure between these two trajectories
is defined based on the common elements in these trajectory matrices.

Matrixi = f (T_matrixi), (7)

Matrixcommon = Matrixi ∩Matrix j, (8)

Matrixtotal = Matrixi ∪Matrix j, (9)

Simloc
(
Ti, T j

)
=

sum(Matrixcommon)

sum(Matrixtotal)
. (10)

where f (*) represents a function of the unique value calculation; Matrixi is the grid-coded trajectory
matrix after the unique value calculation; Matrixcommon is the matrix of the common locations;
Matrixtotal is the matrix of the total locations of the trajectory i, and j. Simloc (Ti,Tj) is the ratio
of the sum of the two matrix values.

Please note that the above similarity measure satisfies the following properties:

1. Simloc (Ti,Tj) >= 0.
2. Simloc (Ti,Tj) = Simloc (Tj,Ti).
3. Simloc (Ti,Tj) belongs to [0,1].

In Figure 6, the similarity calculation of the taxi trajectories T1 and T2 is visualized. After the
trajectory conversion and the unique value processing, trajectory matrices are obtained and displayed
in the grid, where 1 indicates that the trajectory passed the grid and 0 indicates that it did not pass.
After calculation, T1 passes through 27 grid cells, T2 passes through 24 grid cells. The intersection of
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trajectory matrices (see the common part) is 18, and the union is 27 + 24 − 18 = 33. So, the result of the
similarity is 18/33 = 0.55.
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2.3.2. Structural Similarity Measurement in Trajectories

The structural similarity measurement (Simstr (Ti,Tj)) focuses on the information of repetitive
active regions and self-intersections in trajectories. It mainly focuses on the number of visits in the
common locations of the trajectories and can help to extract the behavior preferences of moving objects
in the analysis of movement patterns. The structural similarity of the two trajectories is defined as:

Matrixcommon = minimum(Matrixi, Matrix j), (11)

Matrixtotal = Matrixi + Matrix j −Matrixcommon, (12)

Simstr
(
Ti, T j

)
=

sum(Matrixcommon)

sum(Matrixtotal)
, (13)

where Matrixi is a trajectory matrix whose values are the number of times the grid cell has been visited.
Matrixcommon is a matrix whose values represent the common times of the trajectory i and j to visit this
grid cell. Matrixtotal is the union matrix of two matrix, and its values are obtained by subtracting the
minimum visited times from the total visited times of the trajectory i, and i. Simstr (Ti,Tj) is the ratio of
the sum of the two matrix values.

Please note that the above similarity measure satisfies the following properties:

1. Simstr (Ti,Tj) >= 0.
2. Simstr (Ti,Tj) = Simstr (Tj,Ti).
3. Simstr (Ti,Tj) belongs to [0,1].

Using this algorithm, the process of calculating the structural similarity of trajectories T1 and
T2 is shown in Figure 7. The attribute value represents the number of times the trajectory passes
through the grid cell. For T1 and T2, the sum of the grid attributes of the common part is 21, and the
sum of these two trajectory matrices are 34 and 32, respectively. So, the result of the similarity is
21/(34 + 32 − 21) = 0.47.
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2.3.3. The Combined Spatial Similarity

There are some applications that need to consider these two similarities comprehensively.
For example, taxi trajectories data, as a spatial trajectory data for profit, are mainly distributed in
the down areas with a lot of pick-up/drop-off points. By calculating the structural similarity of the
trajectories, a similarity set with a large number of trajectories can be extracted, which is mainly
distributed in the city center. In order to explore the travel patterns within the similar set, it is necessary
to refine the trajectory using the similarity of the common locations. For spatial similarity analysis of
this type of application, a comprehensive metric is needed. It can be used as the distance measure to
subdivide similar sets and further mine their spatial characteristics.

Xia et al. [41] considered that spatial and temporal characteristics have the same weight in the
spatiotemporal similarity calculation of trajectories. Abraham et al. [42] transformed the trajectory into
binary code and believe that location, sequence and other factors have the same effect on the combined
similarity. Consequently, in the process of calculating the combined spatial similarity, our research
considers that the common location similarity and the structural similarity have the same weight.
The combined spatial similarity measure is obtained by:

Sim
(
Ti, T j

)
= (Simloc + Simstr)/2, (14)

The result also satisfies the following properties:

1. Sim (Ti,Tj) >= 0.
2. Sim (Ti,Tj) = Sim (Tj,Ti).
3. Sim (Ti,Tj) belongs to [0,1].

In the end, the similarity of T1 and T2 is (0.55 + 0.47)/2 = 0.51.
Note that each kind of similarity measurement algorithm can be used separately according

to different application scenarios and needs. The applicable scenarios have been illustrated in the
corresponding subsections.

3. Experiments

We have implemented our method and conducted an extensive set of experimental studies in
order to (1) test the proposed techniques; and (2) compare our method with another model. In this
section, a case study is conducted using taxi trajectory data from Shanghai, China (all administrative
districts except Chongming district). Chongming District is a suburban county in Shanghai far away
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from the city area. The taxis in this area are restricted by the natural environment, resulting in rare
contact with the mainland of Shanghai. According to the statistics of our floating car data, less than 1%
of the data is related to Chongming District. Since this section is to verify and evaluate our algorithm,
Shanghai city area with more trajectories was selected as the research area. The method used is the
combined spatial similarity algorithm proposed in our research. The experiments were conducted
on an Intel Core i5-7500 Quad-core machine running Windows 10 with 16 GB of RAM and a 250 GB
SATA2 512-MB hard drive.

3.1. Data Preprocessing and Experimental Setup

3.1.1. The Trajectory Data Description

The taxi trajectory data used in this paper were provided by a commercial company in Shanghai.
They are temporally ordered position records collected from about 6000 Global Positioning System
(GPS) enabled taxis. The data was collected over a period of 7 days from 4 June to 10 June 2018.
The average sampling interval of the data was 10 s. In the database, the trajectory data of each vehicle
is a series of position records arranged in chronological order. Each record has many attributes,
i.e., Taxi identifier Time, Speed, Direction, Current location (longitude, latitude) and Passenger state.
The “Taxi identifier” is a unique identifier of a taxi, while “Time” contains an accurate date and time for
each record. “Speed” represents the speed of a taxi at a given time. “Direction” is the horizontal angle
measured clockwise from the north direction. “Passenger state” is a Boolean variable that denotes
whether the taxi is carrying passengers or not. In space, the raw GPS trajectory data is represented
by a series of discrete points. Figure 8 illustrates the sample points of one taxi with the identification
number of 10,383 on the 4 June 2018. The sample points are red, while the trajectory route is green.
The trajectory route is generated by sample points in chronological order.
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3.1.2. Grid Generation

In our example, the road network of Shanghai was used to determine the size of the grid
cell, and subsequently utilized to generate the grid for Shanghai. The roads were obtained from
OpenStreetMap (OSM) (http://www.openstreetmap.org) because it is freely available [54] and has
comparable quality to the authority data based on our local knowledge and the existing study [55].

http://www.openstreetmap.org


Sensors 2020, 20, 3118 12 of 20

The roads in Shanghai can be divided into five levels. These are expressways, main roads,
trunk roads, secondary trunk roads and branch roads. In this study, the method of visual interpretation
was adopted to select the suitable road network. For example, in the blue frame (Figure 9), the branch
road network contains too many small paths, which can divide the “Town God’s Temple” area into
many fragmented patches. Consequently, the second trunk and above road (i.e., expect branch roads)
should be selected as input data.

1 

 

figure5 

 

figue9 

 

Figure 9. Visualization of different grade road network.

The spatial distribution of the road network in Shanghai is unbalanced (as shown in Figure 10a,b).
The density distribution of the road network coincides with the ring road (Figure 10b), which are the two
ring expressways. The road network density in the inner ring area is the highest, successively, in the
area between the inner and outer rings and in the outer ring area. Therefore, the study area was divided
into three sub regions. These are the inner ring area, the area between the inner and outer rings, and the
outer ring area. The road network spacing per unit area of the three regions was calculated, respectively.
As shown in the histogram (Figure 10c), the average distance of the road spacing in different zones
varied a lot. The average distance in the inner ring area is 350 m (mainly ranging from 200 to 450 m),
followed by the 700 m in the area between the inner and outer rings (mainly ranging from 400 to
1000 m) and 1500 m in the outer ring area (mainly ranging from 800 to 2000 m). Consequently, the grid
size of the three sub areas is 350, 700 and 1500, respectively (Figure 10d).
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3.2. Effectiveness of the Method

In order to evaluate the effectiveness of our approaches, we randomly selected 2000 taxi trajectories
(i.e., 1000 pairs) from our dataset. Each trajectory contained at least 200 sampling points. By visualizing
the trajectories on the digital map, similar trajectory pairs were manually labeled as the ground truth.
A total of 72 trajectories were labeled in this experiment. The precision and recall of the similar pairs
in different similarity threshold were used in this section. The precision is the portion of real similar
pairs (as indicated by the ground truth) in all similar trajectory pairs found by the method in our study
(i.e., Precision = Real similar trajectories/Similar trajectories). The recall is the ratio of the number of
the real similar trajectory pairs in the results calculated in this case to the number of real similar
trajectory pairs in the ground truth (i.e., Recall = Real similar trajectories/ground truth).

The Table 1 shows the results of detecting similar pairs of trajectories with different similarity
thresholds, where the term of Real Similar Trajectories denotes the similar pairs correctly identified
in our method. With the increase of the Similarity Threshold (from 0.6 to 0.8), the precision was
significantly improved, while the recall decreased slightly. This is because the higher the similarity
threshold, the fewer similar trajectories can be found, which reduces the denominator of precision
and the numerator of recall. As shown in Table 1, when the similarity threshold is greater than 0.8,
the precision and recall are 0.969 and 0.861, respectively. This performance of our approach can meet
the needs of data mining, especially for trajectories with different geographic coordinates and shapes.
As shown in Figure 11, the similarity of the two trajectories (i.e., T1 and T2) is 0.85. The exact geographic
coordinates and the shape of the two trajectories (T1 and T2) are different, but the main places that the
two trajectories passed through are consistent (e.g., the area of Shanghai General Hospital, Yu Garden).
Therefore, the two trajectories are considered to be similar.
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Table 1. The results of similar pairs detecting.

Similarity Threshold Similar Trajectories Real Similar Trajectories Precision Recall

0.6 214 72 0.336 1
0.7 130 70 0.538 0.972
0.8 64 62 0.969 0.861 

2 

figure11 

figiure 12 

Figure 11. Example of two similar trajectories.

As shown in Figure 11a, these sampling points of the two trajectories belong to the same area,
Shanghai General Hospital. However, due to the different locations of the pick-up points, the geographic
coordinates and shapes of the two trajectories in this area are different. The area in Figure 11c is a
very famous scenic spot named Yu Garden, where the density of vehicles and population is high.
Vehicles are likely to choose other routes to reach this area due to the road congestion. In our approach,
we focus on the place where the trajectory passes rather than the geographic coordinates. Therefore,
the trajectories to reach this area are considered similar. Additionally, due to the unstable GPS signal,
the geographic coordinates of the sampling points will have an error of 10−20 m. The shape and
distance between sequences of the same route may be different (Figure 11b), which may cause the
calculation results to be inaccurate.
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In all, unstable GPS signal, vehicle lane change, traffic congestion and the past travel experience
can lead to different trajectory shapes and road information. However, the main locations/places they
pass through are consistent, so the two trajectories should be considered very similar. In our method,
shape details and the road information of trajectories are neglected while emphasizing the integrity of
the trajectory. Consequently, the algorithm proposed in this paper has good robustness.

According to this feature, the trajectory similarity measurement proposed in this paper can be
well applied in location recommendation systems or the group analysis mentioned in the introduction.
This is because the calculation of trajectories’ similarity in these methods mainly pay attention to
whether the trajectory reaches a specific area. In addition, based on the similarity results calculated in
this paper, typical routes can be extracted from the mass trajectories to provide guidance for travel
route recommendations and route planning of urban public transportation systems. For verification,
we extracted the trajectories of Pudong International Airport and calculated their similarities. Then, as a
traditional density-based clustering algorithm, the Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) algorithm was used to visualize our similarity calculation results. The DBSCAN
algorithm requires two parameters: ε (eps), and the minimum number of points required to form
a high-density area (minPts) [56]. It starts with an arbitrary unvisited point and then explores the
ε-neighborhood of this point. If there are enough points in the ε-neighborhood, a new cluster is
established, otherwise the point is labeled as noise.

Figure 12a illustrates the 947 visit trips on 4 June 2018 (excluding the departure trajectories
from the airport). After calculating the similarity of trajectories, the DBSCAN algorithm was used
to cluster the airport trips, but the distance parameter in the DBSCAN algorithm was replaced by
trajectory similarity. In the DBSCAN algorithm, the parameters were set as esp = 0.8, minpts = 10,
i.e., the similarity of trajectories is more than 0.8, and the number of trajectories in the ε-neighborhood
is more than 10. The DBSCAN algorithm can remove some noise trajectories with low similarity and
divide airport trajectories into nine categories based on parameter settings. The visualization results
are shown in the Figure 12b. By utilizing the similarity results calculated in our study, meaningful
trajectory clusters and typical routes can be generated.

 

2 

figure11 

figiure 12 Figure 12. (a) Airport visit trips of Pudong international airport on 4 June 2018. (b) Clustering results
of Pudong airport travel based on similarity. The nine colored lines indicate the categories divided by
DBSCSN based on trajectories similarity.

3.3. Comparison with State-of-the-Art Model

The performance of our model is evaluated by comparing it with Fast Dynamic Time Warping
(FastDTW), which is an approximate Dynamic Time Warping (DTW) algorithm that provides optimal or
near-optimal alignments with an O(N) time and memory complexity [57]. The DTW algorithm is widely
used in similarity calculations and its performance has been verified by several authors [38,58,59].
However, the quadratic time and space complexity of DTW is limited to small time series datasets.
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FastDTW can, on the one hand, be run on much larger data sets. It is also an order of magnitude faster
than DTW. Consequently, the FastDTW algorithm is used for model efficiency comparison experiments,
including data storage and the elapsed time of the similarity calculation. The experiments were
conducted by using the same data set with opensource codes FastDTW https://pypi.org/project/fastdtw/

and DTW https://pypi.org/project/dtw/.
We selected 10 sets of data for the experiment, and the number of trajectories was 50, 100, . . . , 500,

respectively. For the data storage, not only the sizes of data space but also the number of trajectory
records were compared between the original trajectory and the converted trajectory. As shown in
the Figure 13, the data space for original and converted data changed linearly with the increased
number of trajectories. The comparison shows a significant difference between the original trajectory
and the converted trajectory. The original trajectory occupies 34-times more storage space than the
converted. By transforming and converting the trajectory data, the record of the data is only 1/10 of the
original data.Sensors 2020, 20, 3118 16 of 20 
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Subsequently, the performance of the similarity search technique between our algorithm and
FastDTW algorithm is measured by comparing the average elapsed time. As shown in Figure 14,
the experimental results confirm that the elapsed time of the two models increases linearly as the
number of trajectories increase. However, the time consumption for the FastDTW algorithm is higher
than our method (about 2.4 times). There are two main reasons. First, although our model needs a
part of time for trajectory conversion, trajectory conversion can greatly reduce the amount of data to
reduce the elapsed time. Second, our model does not need to calculate the distance between each
pair of sampling points. Therefore, our proposed similarity algorithm (SGCD) has great advantage in
processing large-scale trajectory data.
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In addition, we use the FastDTW model to calculate the similarity of 1000 pairs of trajectories
used in Section 3.2. The result of the FastDTW model is the sum of the shortest distance between
aligned sampling points. The smaller the distance between the trajectories, the more similar they are.
For each distance function d, we can define its associated similarity function as s(x, y) = 1/(1 + d (x, y)),
which ranges from 0–1. Note that property should be dropped to avoid dimensional problems [60,61].

The calculation results are shown in Table 2. With the increase of the similarity threshold,
the precision of the FastDTW model is acceptable, but the data recall rate and the number of correct
trajectories identified are very low. There are two main reasons. First, it is related to the transformation
of distance function and similarity function in the calculation process, and the outliers have a greater
impact on the calculation results. Secondly, the structural similarity of trajectories is considered in
our model, and the principle of the two models and the definition of similar trajectories are different.
Therefore, the FastDTW model is not suitable for the location-based trajectory similarity research
mentioned in this study.

Table 2. The results of similar pairs detecting by Fast Dynamic Time Warping (FastDTW).

Similarity Threshold Similar Trajectories Real Similar Trajectories Precision Recall

0.6 26 20 0.769 0.278
0.7 20 16 0.80 0.222
0.8 14 10 0.714 0.139

4. Conclusions and Future Work

In this paper, an algorithm of Spatial Grid Coding Distance (SGCD) was designed to calculate
the trajectories’ similarity. Instead of relying on aligned sample points as in traditional approaches,
it can use the grid to convert the trajectory data and identify the similar trajectories passing through
the same places. In order to obtain better performance and acceptable accuracy, a rule for determining
the appropriate grid size is developed by calculating the network spacing. By considering the
self-intersection characteristics of trajectories, two similarity calculation algorithms are designed:
namely, the common-locations similarity and structural similarity. Experimental study on real datasets
verified the advantages and efficiency of our algorithm.

The similarity calculation of vehicle trajectory can be used in many traffic-related applications.
For example, in traffic congestion recognition applications, our algorithm can be adjusted by considering
the number of consecutive sampling points in each grid and subsequently utilizing them to identify
the congestion area. In addition, in the field of human sociology, its application prospect is also widely
concerned (e.g., behavior pattern analysis, service sharing). Note that taxis are one of the important
ways to travel. If data for all types of travel could be obtained (e.g., private cars), more valuable
information will be mined. For example, the movement of private cars is more regular than that of
taxis. In general, the main activity on weekdays is commuting (especially at specific times of the day).
By calculating the common location similarity and structural similarity of the trajectory, information
such as the main active area and routes of the trajectory can be extracted more quickly and accurately.
This would be helpful for the development of behavior pattern analysis and carsharing services. As a
continuation, we plan to use the algorithm of similarity measurement to extract semantic information
from different types of trajectories and further explore human behavior patterns. Some other data,
such as weather factors, regional terrain factors and social media data, may be added to improve the
accuracy of the results.
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