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Abstract: As a potential option for transportation applications in coastal areas, curved floating
bridges with a same small specified rise to span ratio of 0.134, supported by multiple pontoons, are
investigated in this paper. Two conceptual curved bridges are proposed following a circular arc
shape with different span lengths (500 and 1000 m). Both bridges are end-connected to the shoreline
without any underwater mooring system, while the end-connections can be either all six degrees of
freedom (D.O.F) fixed or two rotational D.O.F released. Eigen value analysis is carried out to identify
the modal parameters of the floating bridge system. Static and dynamic analysis under extreme
environmental conditions are performed to study the pontoon motions as well as structural responses
of the bridge deck. Deflections and internal forces (axial forces, shear forces, and bending moment)
are thoroughly studied with the variation of the span length and end support conditions in terms
of the same specified small rise-span ratio. The ratio of axial force to horizontal bending moment
are presented. From the study, it is found that the current parameters for the bridge are relatively
reasonable regarding responses. However, the small rise-span does not provide enough arch effects.
A higher rise-span ratio or stiffer bridge cross-sectional property is preferred, especially for the long
bridge. In addition, the flexible end connections are preferred considering the structural responses at
the end regions.

Keywords: floating bridge; integrated hydro-structural analysis; dynamic response; curved bridge;
bridge structural design

1. Introduction

Due to the large density of the population in coastal cities, sustaining and developing coastal
regions is getting preferable to exploit more space in offshore areas. To accommodate the expanding
industrial needs and transportation facilities, research has been carried out for coastal areas [1–6].

Bridges on rivers and offshore areas are important infrastructures for transportation connections.
However, when water is getting deep and/or seabed condition is extremely soft, conventional supporting
piers of bridges become too expensive or even unaffordable. On this occasion, a floating bridge is a
more economical and attractive alternative, as the self-weight of bridge and vehicle loads are supported
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by the buoyancy forces from pontoons or floaters. In addition, a floating bridge allows easy removal
by tugboats when relocation is needed.

There has been a long history of application of floating bridges. The first floating bridge can be
dated back to about 480 BC, when two rows of floating bridges were constructed, with each consisting
of about 300 boats laid side by side, for military crossing. In recent years, there has been many modern
floating bridges built, including Lacey V. Murrow Bridge (2020 m, 1940, USA), Evergreen Point Bridge
(2350 m, 1963, USA), Homer Hadley Bridge (1772 m, 1989, USA) built on Lake Washington, and Hood
Canal Bridge (2398 m, 1961, USA) also in the Seattle area, USA., Bergsøysund Bridge (931 m, 1992,
Norway), Nordhordland Bridge (1614 m, 1994, Norway) built in Norway on the fjords. Yumemai
Bridge (876 m, 2000, Japan) built in Japan, etc. [7,8]. In general, floating bridges are more suitable to be
deployed under the following conditions: Long span and deep-water conditions, such as Norwegian
Fjords, and very soft seabed conditions, and conditions where the seabed marine environment needs
to be protected.

There are mainly two types of pontoon-supported floating bridges: The continuous pontoon
type and discrete pontoon type. Various analysis methods have been developed for the analysis of
continuous and discrete pontoon type floating bridges. The modal expansion method and direct
calculation method [9,10] are two frequency domain analysis methods for continuous pontoon type
floating bridges, while the time domain method can also be used. Hydroelasticity should also be
considered [11,12] for bridges in a large scale and especially for cases when the eigen frequency of
the continuous pontoon is located in the environmental excitation frequency regions. For the discrete
type, single pontoon hydrodynamic properties should be considered, together with the finite element
method (FEM) applied for the bridge deck and other structural components. Hydrodynamic interaction
among the pontoons and shore should be taken into consideration [13] if the pontoons are close to each
other or close to the shore. A time domain method to simulate the dynamic behavior of a three-span
suspension bridge with two floating pylons was developed in [14]. A sensitivity-based FEM updating
method was proposed and applied in the analysis of Bergsøysund bridge in [15]. A model test on
Bergsøysund bridge was carried out in the ocean basin at MARINTEK (Now Sintef Ocean) in 1989 and
the results were compared with the numerical model, and it was shown that the calculation results
based on potential flow theory can have good agreements [16] with the model test.

Generally, floating bridges are supported vertically by pontoons. In addition, there are also a
variety of mooring systems designed to retain pontoon motions of the floating bridges, e.g., anchor
chain, marine dolphin, and abutment, located beneath each pontoon and/or at the ends, depending on
the sit conditions and design requirements. There are also curved bridge designs with no mooring
system, which can reduce the cost. This kind of design makes use of the horizontal stiffness provided
by the curvature shape and the end connections, replacing the restoring forces by traditional mooring.
The Bergsøysund bridge [17] and Nord-Hordland bridge are of this kind and no mooring system
underwater is applied. The Bergsøysund Bridge, built in Norway in 1990s, is the first free floating
pontoon bridge with a cost-effective horizontally arch curved design. It is well known that an arch
is a much stronger member than a straight beam when subjected to in-plane loadings as it transfers
the loadings to axial rather than to bending as in the case of a straight beam. However, a drawback
of using a laterally curved configuration is the increased reaction at the supports. In Bergsøysund
Bridge, the transmission of internal forces was managed by the utilization of a flexible steel rod from
the bridge structure to the bridge abutment.

Many aspects need to be considered in the design of floating bridges. The structural eigen
properties of floating bridges are affected by several parameters, including the bridge’s cross-section
properties, end connections, pontoon types and number of pontoons, and the curvature of the curved
bridges, etc. The dynamic responses of the bridge are excited by the environmental loads, including the
wind, wave, current, and tidal forces, and various floating bridge eigen modes may be excited under the
different types of loads. An important issue is the inhomogeneous environmental conditions [18–20],
especially for floating bridges in Fjord of Norway, and the inhomogeneity induces different dynamic
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response properties compared with homogeneous conditions. In the case of a tsunami or extreme wave
impact loads from the environment, fluid–structure interaction is especially critical, and springing or
ringing effects may occur due to higher-order wave loads and large eigen frequencies of the bridge
structure. Tsunami loads on a bridge and the connections were found to be significantly affected by
structural flexibility [21]. A hybrid test was carried out regarding the tsunami loads on a prestressed
girder bridge and the connections, and damage was found in the specimen, indicating the importance
of the design and investigation of the bridge’s structural capability [22]. Ship collision is also one
important issue of consideration of the design. Ship collision on the pontoon wall and bridge deck
girder have been investigated [23,24]. Various limit states, i.e., the fatigue limit state (FLS), ultimate
limit state (ULS), serviceability limit state (SLS), and accidental limit state (ALS), should be investigated
for the floating bridge design. These limit states define various design criteria to ensure proper service
states under operational conditions and survivability under extreme or accidental conditions [25,26].

2. Research Significance

The development of curved floating bridges refers to traditional onshore arch bridges that are
defined as a vertically curved and axially compressed structural system. As a curved structure, the rise
is a critical parameter that is as important as the span length. Moreover, the rise-to-span ratio is a key
indicator of the structural properties of a curved bridge. A perfect arch structure theoretically induces
only compressive forces along the centroid line. Although it is practically impossible due to complex
load combinations, it is viable to explore a preferable rise-to-span ratio to achieve a desirable internal
force distribution. As for floating bridges, the rise-to-span ratio cannot be designed too large due to
site constraints. However, a shallow arch is considered to cause significant horizontal movement of
the abutments and has the disadvantages of large deformation and low rigidity. It remains unknown
whether such disadvantages also exist for horizontally curved floating bridges when subjected to wave
actions. In this paper, a relatively small rise-to-span ratio is selected for the curved floating bridge, and
the response and internal forces are investigated by varying the boundary conditions (B.Cs) and the
span length.

The deployment of the floating bridge is assumed to be in the coastal waters of Singapore. The
water depth is quite shallow; consequently, the wave force properties are also different with deep
water floating bridges. In addition, the bridge deck cross-section is developed to take high traffic
flow requirements (three lanes in each way), and the bridge span is relatively short. Under such
circumstances, the bridge’s horizontal rigidities are expected to be large. Therefore, a small rise-span
ratio is studied in the initial stage to investigate whether the arch effect can be achieved. These new
features of the floating bridges are relatively new compared with previous research and thus worthy
of investigation.

3. Floating Bridge Description

The deployment location of the floating bridge in this study is the coastal waters of Singapore,
which are characterized as relatively shallow water with a water depth of 20 m and mild environmental
conditions. Extreme sea conditions with a 100-year return period is taken as Hs = 2 m, Tp = 5.8 s. Long
crested waves are studied. The water depth is 30 m. Since the focus is to find out different structural
configuration effects and response properties. Other environmental load effects are not considered in
this study.

Single curved bridges with two bridge total spans of 500 and 1000 m are the focus, with the same
curve radius of 1000 m. The two bridges have the same rise-to-span ratio of 0.134. Discrete pontoons
are used to support the bridge, with each pontoon supporting approximately 100 m of the bridge deck.
The short bridge (500 m) includes four pontoons, while the long bridge (1000 m) has nine pontoons
in total. The bridge deck is designed to have two ways, with three lanes in each way. The bridge
cross-section is designed to be a truss configuration. The steel truss work forms the key structural
component of the bridge. Figure 1 shows the two bridge configurations. The global coordinate system,
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local coordinate system, and pontoon positions are also shown. The local Y axis represents the weak
axis of the bridge, while the local Z axis is the strong bridge axis. The two ends of the bridge are
connected to the shore. Two types of end connections are investigated, i.e., rigid BC with all the six
D.O.F fixed and flexible BC with rotational D.O.F regarding local Y and local Z free.
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Figure 1. Floating bridge configurations.

The pontoon supporting the bridges has an elliptic cylinder shape and 6 D.O.F rigid body motions
as shown in Figure 2. The pontoons have uniform dimensions with the major axis length of 60 m,
minor axis length of 22 m, and height of 9 m. The elliptic shape is expected to reduce the drag forces
applied on the pontoon. These pontoons are evenly distributed along the bridge length, and the
pontoon major axis is pointing to the global x direction. The center of gravity (C.O.G) of the pontoon
is −2 m from the still water line (SWL), and the C.O.G of the bridge deck is 5 m from the SWL. The
bridge deck weight distribution is estimated to be 3.99 Mkg/100 m. The stability of the pontoons was
studied previously [27]. The dimensions and weight parameters of the pontoons and bridge deck are
listed in Table 1.
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Table 1. Pontoon and bridge deck parameters.

Bridge Total Span L 500/1000 (m)

Pontoon Number 4/9
Pontoon Overall Dimension (Elliptic Cylinder) 60 × 22 × 9 (m)

Pontoon Draft 6 (m)
Pontoon C.O.G (0, 0, −2) (m)

GM (Horizontal and Longitudinal) 3 and 35.5 (m)
Pontoon mass 2.319 (Mkg)

Pontoon rotational Inertia Ixx, Iyy and Izz 145.39, 660.29 and 721.03 (Mkg m2)
Bridge Deck C.O.G (0, 0, 5) (m)
Bridge Deck Weight 3.990 (Mkg/100 m)

A truss configuration is used in the bridge cross-section, resembling the Bergsøysund Bridge in
Norway [28] but with different dimensions and bridge curvatures. To evaluate the bridge deck flexural
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rigidity EIy and EIz, and torsional rigidity GJ, which is about the local y, z and x axis, respectively, finite
element models of truss work segments with various configurations and structural member sizes were
developed using commercial software SAP2000 [29], as shown in Figure 3. Among these parameters,
E is the Young’s modulus, A is the bridge’s cross-sectional area, I is the moment of inertia of the
cross-sectional area, G is the shear modulus, and J is the torsional constant of the cross-section. Shear
modulus and Young’s modulus have the relationship of G = E/2/(1 + ν), with Poisson ratio ν = 0.3.
G = 76.92 GPa, E = 200 GPa. In the end, steel circular hollow sections with a diameter of 1200 mm for
the main chord members and 800 mm for diagonal members are considered in this study, with EIy, EIz,
and GJ values of 1.0 × 107 MNm2, 2.0 × 107 MNm2, and 1.0 × 107 MNm2/rad, respectively. EA is taken
as 1 × 106 MN. Structural damping is also considered and is calculated by Rayleigh damping with the
mass and stiffness proportional coefficients, then the damping ratio is calculated as ξ = 0.5(µ/ω + λ ω).
With the variation of the coefficients µ and λ from 0.01 to 0.1, the damping ratio is plotted in Figure 4.
It is seen that the damping ratio varies significantly. Focusing on the critical wave periods, which is
around 2 s–10 s (0.628–3.14 rad/s) in this study, the parameters µ = 0.02 and λ = 0.02 induce damping
ratios generally below 3% based on the estimation. This may be regarded as a reasonable assumption
considering that other viscous effects, for example, from the wind and current, are not considered in
the numerical model.
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4. Numerical Model

Numerical modelling of the floating bridge involves both hydrodynamic and structural dynamic
models, and these two models are coupled in one integrated model. Hydrodynamic properties of the
pontoons as well as the structural properties of the bridge deck and the end connections are taken
into consideration. Considering nonlinear features, such as viscous effects and structural geometrical
nonlinearity, time domain analysis is needed.
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Frequency domain hydrodynamic properties are calculated using the boundary element
method [30] based on potential flow theory, followed by the transferring of these properties into the time
domain. This method is called the hybrid time and frequency domain method [31,32], and is widely
used in different offshore application studies [4,33–40]. In the case of strongly nonlinear hydrodynamic
phenomenon, such as the slamming or green water problem [41], the linear hydrodynamic model is not
suitable anymore. However, in this study, the linear hydrodynamic model is good enough, since there
is no water entry and exit phenomena of the pontoons expected to occur. In the time domain, if rPT,

.
rPT,

and
..
rPT are the displacement, velocity, and acceleration vectors of a pontoon, then the hydrodynamic

forces applied on the pontoon can be expressed as:

Fhyd = Fext(t) −A(∞)
..
rPT(t) − B(∞)

.
rPT(t) −

∫ t

0
k(t− τ)

.
rPT(τ)dτ−C

.
rPT(t)

∣∣∣ .
rPT(t)

∣∣∣−KrPT(t) (1)

where on the right hand side of the equation, the first term is the excitation force including
Froude–Kryloff force due to the wave pressure distribution and diffraction force of the pontoon;
the second to the fourth terms are forces due to radiation, in which the third term is the force due to the
wave memory effect (retardation function force); the fifth term is due to the wave viscous effect, which
is not considered in potential flow theory but is supposed to be considered in the time domain model;
and the last term is the restoring force due to the pontoons’ vertical positions. More explanation is
provided in the following.

The finite element method is used for the structural modelling of the bridge deck. The global
dynamic equilibrium of the structural finite element formulation in time domain is expressed as [42]:

RI(r,
..
r, t) + RD(r,

.
r, t) + RS(r, t) = RE(r,

.
r, t), (2)

where r,
.
r, and

..
r are the displacement, velocity, and acceleration vectors for all the nodes in the

FEM model; RI(r,
..
r, t) is the inertia force vector of the nodes. It includes the bridge structural mass

and pontoon mass. In addition, the added mass of the pontoons at infinite frequency as shown in
Equation (1) can be considered. Therefore, the pontoon inertia term is expressed as (M + A(∞))

..
rPT(t),

where M is the pontoon structural mass matrix; A(∞) is the added mass matrix at infinite frequency;
and

..
rPT(t) is the pontoon acceleration, which is also the acceleration of the node, through which bridge

element and pontoons are connected. The pontoon inertia forces are added in the inertia terms of the
connecting node.

RS(r, t) is the stiffness force vector, including the structural internal stiffness of the bridge deck.
In addition, the hydrostatic stiffness forces of the pontoons, like the inertia terms, are added to the
stiffness terms of the connecting node. The hydrostatic stiffness of the pontoon is expressed as KrPT(t),
where K is the hydrostatic stiffness matrix, and rPT(t) is the pontoon displacement, which is also the
displacement of the connecting node. The end connections of the bridge are also specified in the
stiffness force vector.

RD(r,
.
r, t) is the damping force vector, including the structural internal damping and infinite

frequency wave radiation damping of the pontoons B(∞)
.
rPT(t); and

.
rPT(t) is the velocity of the

pontoon, which also represents the velocity of the connecting node. It is noted that for floating
structures with zero forward speed, B(∞) = 0.

RE(r,
.
r, t) is the external force vector. This term also includes forces that are not specified in the

previous terms. In this study, those forces include the wave excitation forces, quadratic viscous forces,
current forces, tidal variation-induced forces, and retardation forces. All these external applied forces
are exerted on the pontoons. Note that the quadratic viscous forces are expressed as C

.
rPT(t)

∣∣∣ .
rPT(t)

∣∣∣,
where C is the quadratic viscous damping coefficient matrix, in which the coefficients are set to 0.9 for
surge and sway D.O.Fs of the pontoons, and 1.2 for the heave D.O.F [43]. The retardation force, as
shown in Equation (1), is expressed by the convolution integral

∫ t
0 k(t− τ)

.
rPT(τ)dτ, where k(τ) is the

retardation function matrix, and is expressed as:
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k(t) =
2
π

∫
∞

0
[B(ω) − B(∞)] cos(ωt)dω =

2
π

∫
∞

0
−ω[A(ω) −A(∞)] sin(ωt)dω, (3)

which tends to vanish with time.
In this study, the JONSWAP spectrum is used to describe the irregular wave condition or sea state.

The JONSWAP spectrum is expressed as:

S(ω) =
αg2

ω5 exp
{
−

5
4

(ωp

ω

)4
+ lnγ exp

[
−

1
2σ2

(
ω
ω
− 1

)2
]}

, (4)

where g = 9.81 ms−2; ωp is the peak frequency of the sea state; γ and σ are the spectral shape parameters,
in which γ = 3.3 is used and σ = 0.07 when ω ≤ ωp, σ = 0.09 when ω > ωp; and α is determined
from the following equation:

α = 5.06
(

Hs

Tp

)2

(1− 0.287 lnγ), (5)

where Hs is the significant wave height, and Tp is the spectral peak period. Once the sea state is
determined, the JONSWAP spectrum can be used to generate the wave force spectrum from the
wave force response amplitude operator; then, wave force time series are generated based on the
superposition principle.

Several cases are specified and used in this investigation. The simulation cases are summarized in
Table 2, where RS (Rigid B.Cs with Short bridge) and FS (Flexible B.Cs with Short bridge) represent the
short 500-m bridge with rigid and flexible end connections, respectively, and RL (Rigid B.Cs with Long
bridge) and FL (Flexible B.Cs with Long bridge) represent the 1000-m-long bridge. Rigid connection
is fully rigid on the end connection, which represents the strong connections in the real structures.
Flexible connection means the rotation D.O.F along the y and z directions (Ry and Rz) in the local
coordinate system are set free.

Table 2. Cases for the bridge deck’s cross-sectional rigidity and boundary conditions.

Cases
Total
Span
(m)

EIy
(× 106

MNm2)

EIzv
(× 106

MNm2)

EA
(× 106

MN)

GJ
(× 106

MNm2/rad)
Boundary Conditions (B.Cs)

RS 500 10 20 1 10
Fixed at 6 D.O.Fs

RL 1000 10 20 1 10

FS 500 10 20 1 10 Fixed at Translational D.O.F
Free at Ry and Rz, fixed at RxFL 1000 10 20 1 10

The time domain calculation is carried out in SIMO-RIFLEX code, which was developed by Sintef
Ocean (previously MARINTEK). SIMO [44] is a code to simulate marine operations involving various
bodies in the time domain. RIFLEX [42] is a code for analysis of slender marine structures. It is a
nonlinear time domain program with a finite element formulation that can handle large displacement
and rotations.

The frequency domain hydrodynamic properties are calculated for the pontoon through the penal
method in WADAM [45], generating the hydrodynamic excitation forces and added mass, potential
damping, etc. Then, these data are transferred to the time domain through SIMO. The bridge deck
girders are modelled in RIFLEX using beam elements. The pontoons are connected to the FEM
model in RIFLEX through the connecting nodes [42]. Then, the wave loads are transferred to the
FEM model. The FEM calculation is carried out in RIFLEX in the time domain, providing pontoon
motion parameters, then these parameters are transferred to SIMO to update the wave loads applied
on pontoons. Therefore, the model is the coupled hydro-structural dynamic model, in which the
pontoon motion and bridge deck responses are calculated and updated at each time step. However, the
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pontoons are assumed to be rigid, and no hydroelasticity on the pontoons is considered, which means
the hydrodynamic properties in the frequency domain are kept linear and unchanged in the coupled
model. The calculation time step of 0.1 s is applied, and the Newmark method is used for numerical
integration to solve the differential equation. Under irregular wave conditions, a time length of 4000 s
of calculation is performed, and 3600 s (1 h) of steady-state simulation results are used for the analysis.

5. Numerical Results

5.1. Static Responses

Figures 5 and 6 present the static structural responses of the curved floating bridges with different
B.Cs and span lengths. As for the vertical bending moment (Figure 5a), negative moment values were
observed at both ends for bridges with rigid supports, and the magnitude is much larger than that of
the positive moment at the mid-span. Compared to the short-span bridge cases, the long-span floating
bridges own the same end negative moments but smaller positive moments in the middle, which are
beneficial for future structural designs. In terms of the horizontal bending moment (Figure 5b), its
magnitude is much smaller than that of the vertical moment, and the long-span bridge generally took
less moment than the short-span bridge. Axial forces (Figure 6a) show some differences for the four
cases. The reasons are due to different B.Cs and the uneven load distribution along the bridge length
(differences between the bridge deck weight distribution and pontoon buoyancy force distribution).
The torsional moment values are larger for bridge cases with flexible ends (Figure 6b).
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5.2. Eigen Value Analysis

Eigen value analysis was carried out to identify the eigen properties of the bridge with different
B.Cs and total lengths. It is noted that only the added mass at infinite frequency (constant value) rather
than its variation with frequency was considered. This may have introduced limited uncertainties. The
uncertainties due to this simplification were addressed as follows: For the 4600-m-long floating bridge
with discrete pontoons [38], the largest error with and without considering the frequency-dependent
added mass is 10% for the first eigen period of around 57 s, while for the subsequent eigen period, the
error varies from around 0.1% to 7%. In this study, the largest first eigen period is around 10s (shown
later), which means the bridge is much stiffer than the 4600-m bridge. In this case, the mass effect on
the eigen period is significantly less, indicating the uncertainties due to neglecting the added mass
variation with frequency are quite limited.

The first 15 eigen periods are listed in Table 3. It is obvious that the largest eigen period corresponds
to the softest bridge configuration, which is case FL. The value for the first eigen mode is 9.63 s for case
FL, followed by 7.77 s for case RL, 7.36 s for case FS, and 6.03 s for case RS. The following eigen modes
generally have the same trends. This trend shows that the softness of the bridge is most significantly
influenced by the length for these two bridges. The data also show that for the long bridge, the eigen
values decrease much slower than that for the short bridge, which means more eigen modes will be
excited for the long bridge under the same excitation spectrum. It is noted that the Rayleigh damping is
used in this study, so the damping ratios vary with the eigen periods. Considering that the first several
eigen modes contribute significantly to the dynamic responses, damping ratios based on the first five
eigen periods were calculated to be in the range of 2.2%–4.3%, with mass and stiffness proportional
coefficients of 0.02, which is in a reasonable range. This damping level will not affect the dynamic
responses significantly, which indicate negligible uncertainties due to damping coefficients.

Table 3. The first 15 eigen periods (unit: s) for the floating bridge under different B.Cs and total lengths.

Length Cases 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1000(m) RL 7.77 6.84 6.13 5.18 4.28 3.67 2.82 2.63 2.61 1.96 1.90 1.54 1.44 1.28 1.27
FL 9.63 7.92 7.44 6.05 4.75 4.37 3.25 3.09 2.63 2.39 2.24 1.71 1.53 1.44 1.36

500 (m) RS 6.03 3.10 1.82 1.74 1.55 1.42 1.22 0.79 0.78 0.57 0.54 0.48 0.40 0.31 0.31
FS 7.46 4.38 2.42 2.25 1.85 1.42 1.36 1.05 0.78 0.62 0.57 0.49 0.44 0.38 0.35

The first five eigen mode shapes are plotted in Figures 7 and 8. The first mode shapes are like
simply supported and fixed beams, and except for case FL, the first mode shape is in the horizontal
plane (X-Y plane). The other mode shapes are also like that of simple beams, as expected. The dynamic
responses will be the superposition of the first dominant mode shapes with different weighting factors.
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5.3. Irregular Wave Analysis

Bridge responses under irregular wave actions can to some extent reflect the real performance. In
this study, the current and wind effects were considered marginally important, so were not included.
Homogeneous wave conditions were assumed, which means the irregular wave forces applied on all
the pontoons are the same.

The 100-year return period storm with Hs = 2m and Tp = 5.8 s was used in the irregular wave
analysis. There was no repetition of the simulation, as only one seed number was used, and the wave
was coming in one direction as shown in Figure 2. By irregular wave analysis, the pontoon motion,
bridge deck structural response distribution along the bridge length, and response properties could be
investigated. The results show the real performance of the bridge under extreme conditions. Based on
1-h of steady-state simulation, the statistical values and spectral results are presented.

Pontoon motions and accelerations directly affect the driving comfort and serviceability of the
floating bridges. Under operational conditions, the wave-induced deflection should not exceed ±0.3 m
in both the surge and heave, and ±0.5 degree in pitch, while the acceleration induced by the wave
should not exceed ±0.5 m/s2, ±0.5 m/s2, and ±0.05 rad/s2 (±2.87 degree/s2) in the surge, heave, and
pitch, respectively [25]. Under survival conditions, the structural responses should not exceed the
capacity of the structure.

The pontoon motion Maximum (MAX) and Standard Deviation (STD) values along the bridge
length are shown in Figures 9 and 10. The pontoon acceleration MAX values along the bridge are
shown in Figure 11. The spectral results of the surge, heave, and pitch motions of pontoon number
4 (PT4) for the long bridge and pontoon number 2 (PT2) for the short bridge (both located at 0.4 L
position) are shown in Figure 12.

From Figures 9 and 10, both surge and pitch responses for cases FL and RL are significantly
larger than that for cases FS and RS. It is noted that the maximum values are also affected by the static
deflection under bridge deck weight, so STD values can more properly reflect the dynamic effects. It
can also be observed that for the RL case, the surge motion is significantly reduced compared with
the FL case, while for the FS and RS cases, the surge STDs are similar, which means the BC strongly
affects the surge motions for the 1000-m bridge. The reason could be due to the modes that are excited,
because the fifth eigen mode of FL is 4.75 s (1.32 rad/s), which is close to the excitation periods and is in
the X-Y plane, while eigen periods of 1.82 s (3.47 rad/s, RS) and 2.42 s (2.60 rad/s, FS) correspond to the
horizontal eigen modes of the short bridges far away from excitation. This can also be observed in the
surge spectra in Figure 12.

The heave motion responses are similar for the four simulation cases. By looking at the eigen
periods, they all have vertical modes (global Y-Z plane) located in the wave region, which is also
reflected in Figure 12. For the pitch motion, the effects from BC are not so significant for long bridges
but are important for short bridges, inducing a larger pitch for FS. There are also significant influences
from the bridge length to pitch motion. From the pitch spectra, it is seen that several eigen modes are
involved, especially the modes close to 0.9 rad/s. The acceleration plots in Figure 11 also show similar
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trends with Figure 10, and the acceleration MAX values reflect the driving comfort. Even under the
extreme sea state, the acceleration MAX values mostly do not exceed the guideline values.
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Figures 13–15 show the STD, MAX, and Minimum(MIN) values of the internal forces along the
bridge length, including the axial force, vertical bending moment, and horizontal bending moment.
Compared with the static results, the axial forces under wave actions are significantly larger. While
being similar to the static results, the negative vertical bending moments under wave actions occur at
ends of RL and RS, and the magnitudes of the negative moments are larger than the positive moment
values in the mid-span location, which should be handled with caution in the structural design. In
addition, a shorter span length (RS and FS) usually results in relatively larger positive vertical moments
(middle of Figure 14 and middle of Figure 15), and rigid-end connections (RL and RS) also introduce
large end values. On the contrary, much more significant horizontal bending moment values are
obtained for long-span bridges (FL and RL) as compared to short spans (right of Figure 14 and right of
Figure 15), in terms of STD, MAX, and MIN. This indicates that the arch effect (external loads transfer
to the axial force rather than bending moment) is not so obvious, especially for the long bridge. In
further structural design and optimization, it is suggested to increase the rise-span ratio or increase the
horizontal stiffness of long-span bridge cases while the vertical stiffness can be slightly reduced.
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Figures 16 and 17 present the correlation between the axial force and horizontal bending moments
(represented by the 1-h time series of various positions along the bridge length, e.g., 0.1 L, 0.2 L, etc.) for
curved bridges with different span lengths and B.Cs. It is noted that only the half-length of the bridge
was analyzed due to the symmetrical properties. Different trends of the axial force (N)-horizontal
bending moment (Mz) couple effects were observed at different sections of the bridges with the varying
span length and B.Cs. For instance, the distribution of the N-Mz points of the FL bridge changes from
a horizontal line to inclined lines as the distance from the end support to the section increases (left
of Figure 16 and left of Figure 17), while an opposite trend is observed for the RL bridge (right of
Figure 16 and right of Figure 17).
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The N-Mz coupling trends indicate the arch effect in the horizontal curved bridge when subjected
to wave loads. It is observed that the ratio of the maximum bending moment to the maximum axial
force is larger for the long bridge than the short bridge, indicating the arch effect is less significant for
the long bridge compared with the short one. The maximum horizontal moment changes at different
locations while the maximum axial force almost remains constant. Although N-Mz points scatter in
different quadrants, fairly clear boundaries are seen in Figures 16 and 17 as left and right vertical lines,
and the critical N-Mz point can be utilized for further section designs.
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The spectral results for the axial force, and horizontal and vertical bending moments at the bridge
deck position of 0.4 L are shown in Figure 18. The axial forces and horizontal bending moments for
the short bridge are much smaller than the long bridge, which is confirmed in Figures 13–15, and
differences between FL and RL are mainly due to various eigen modes. It is also seen that most
response peaks are located at the wave region, which is due to the first several eigen periods that are
close to the spectral period.
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6. Conclusions and Discussion

This paper investigated curved floating bridges with a same small rise-span ratio. Different bridge
lengths of 500 and 1000 m were studied. Varied B.Cs were also investigated. Static, eigen value, and
dynamic analysis were carried out for the four different cases. Pontoon motions and structural reaction
forces and moments were presented and analyzed. The motion responses indicated the satisfaction of
the survivability criteria for the bridge configuration under the operational and extreme sea states.
In this study, only the extreme sea state was studied to focus on the structural response properties
under different bridge configurations. The structural reaction results showed that although the same
rise-span ratio was applied, bridges with different lengths have various response properties, and the
short bridge provides a prominent arch effect compared to the long bridge. In addition, the response
properties provide insights into further structural design. Based on the investigation, the following
conclusions can be drawn.

Eigen value analysis considers the infinite frequency added mass rather than the
frequency-dependent added mass, which involves uncertainties, but these uncertainties are quite
limited. The eigen periods showed that the softest bridge configuration is FL, followed by RL, FS, and
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RS. The eigen values were varied from 0.3 s to around 10 s. For the long bridge, eigen values decreased
much slower than that for the short bridge, which means more eigen modes will be excited for the long
bridge under the same excitation spectrum. Negative end moments were induced for the RL and RS
bridge cases in static conditions, and the negative vertical moment value was much larger than the
horizontal one. When compared to short-span bridge cases (FS and RS), a smaller positive moment
was observed in the middle span of FL and RL, which is beneficial for structural design.

Irregular wave analysis was performed under the extreme sea state. The pontoon motions showed
that BC strongly affected the surge motions for the 1000-m bridge, because it varied the eigen periods,
i.e., the resonant region; another reason may be due to the relatively flexible properties of the long
bridge, which highlights the importance of the BC. The heave motion responses were similar for
the four simulation cases and frequencies were in the wave region. For pitch motions, there were
significant influences from the bridge length. The acceleration MAX values mostly did not exceed the
guideline values of the operational condition even under the extreme sea state, which indicates that
the motion of the bridges under wave action is acceptable.

From the structural responses, it can be concluded that flexible end connections are better,
considering the vertical and horizontal end bending moment. Short bridges are better in terms of the
axial forces and horizontal bending moment, while long bridges have relatively lower vertical bending
moments. In further structural design and optimization, it is suggested to increase the horizontal
stiffness of long-span bridge cases while the vertical stiffness can be slightly reduced.

The bending effect was apparently observed in the current research study on the shallow curved
floating bridge with a small rise-to-span ratio (0.134). It is not a preferable force state for an arch bridge
geometry, where the axial compression effect is still prominent. However, the short bridge showed
a greater arch effect than the long bridge. Therefore, larger rise-to-span ratios are to be considered
in a companion paper to explore the optimal rise-to-span ratios for curved floating bridges and the
coupling N-M effect will be further studied.
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