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Abstract: There are three provinces in Northern Norway in which occurrences of graphite are
abundant; the Island of Senja, the Vesterålen archipelago, and the Holandsfjorden area. From these
provinces, we report graphite resources from 28 occurrences. We use a combination of airborne and
ground geophysics to estimate the dimensions of the mineralized areas, and, combined with sampling
and analysis of the graphite contents, this gives us inferred resources for almost all the occurrences.
The average TC (total carbon) content is 11.6%, and the average size is 9.3 Mt or 0.8 Mt of contained
graphite. We demonstrate that the Norwegian graphite occurrences have grades and tonnages of the
same order of magnitude as reported elsewhere. The graphite-bearing rocks occur in a sequence that
encompasses carbonates, meta-arenites, acid to intermediate pyroxene gneisses, and banded iron
formations metamorphosed into the granulite facies. Available radiometric dating shows that the
graphite-bearing rocks are predated by Archean gneisses and postdated by Proterozoic intrusions of
granitic to intermediate compositions.
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1. Introduction

Norway has been a producer of graphite for more than 100 years and is currently one of the
major suppliers of natural graphite to Europe from a European source. Following the European and
American methodology for assessment of criticality, graphite is a critical mineral [1,2]. Graphite is
also an essential mineral in “green” technology and is one of the most essential components of Li-ion
batteries, which will be vital in a sustainable green future. The worldwide demand for graphite is
expected to show considerable growth in the near future [3].

Graphite, when compared to most other industrial minerals, is an expensive mineral product:
the price strongly depends, however, on two factors, one being the flake size and the other being
product purity. The price difference between medium and large flake sizes is usually about 1.5×
(c. $/t 1000 to $/t 1500). The price difference between a 95% carbon medium flake and a 99.9% carbon
battery-grade flake can be up to about 20× ($/t 1000 to $/t 20,000) (see www.indmin.com).

Somewhat simplified, graphite mineralization is the result of release of volatiles such as CH4, CO2,
and H2O from carbonaceous material during metamorphism and subsequent reduction of the carbon
component and formation of graphite. If this process take place “in situ”, in the rock, the result is
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occurrences of flake graphite: if the volatiles migrate in hydrothermal solutions, the carbon component
can be deposited in, for example, vein-type deposits [4]. Most studies on graphite mineralization
describe the first or the second of these two deposit types [4–25] or investigate graphite’s influence
on crustal rheology and tectonics [26–34]. There are, essentially, four methods for characterizing
graphite and graphite-forming processes: in addition to standard chemical analysis, these are:
(1) vitrinite reflectance, e.g., [35–37], (2) X-ray diffraction, e.g., [23,38–40], (3) Raman spectroscopy,
e.g., [5,25,27,29,41–45], and (4) stable isotopes, e.g., [12,18–21,24,46–49]. These methods are commonly
used in combination. Following the recommendations of [50], we regard a rock as graphite-bearing if
its total carbon (TC) is >0.5%.

Graphite is a common mineral in metamorphic rocks in Norway. However, localities with
enrichments to levels that are regarded as economically interesting are limited to a few provinces.
There are, in Norway, four known provinces in which graphite mineralizations are found and
commercial mining of graphite has taken place (Figure 1) [51,52]. From north to south these provinces
are: (1) the island of Senja, (Figure 2a), (2) the Vesterålen islands, (Figure 2b), (3) the Holandsfjorden
area, (Figure 2c), and (4) the Bamble area in southern Norway. The graphite occurrences in the Bamble
area were described by [53,54] and will not be discussed here. All the graphite occurrences on the
Fennoscandian shield occur in Proterozoic rocks of high metamorphic grade. Graphite is abundant
within such areas at several localities in northern Norway. The most famous is the Skaland graphite
mine, where the world’s richest flake graphite schist is being mined [55].

Figure 1. Geology of Norway and the location of graphite provinces.
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Figure 2. Maps of airborne EM (7000 Hz) with graphite occurrences: (a) Senja, (b) Vesterålen,
and (c) Holandsfjorden. The names of occurrences are listed in Table 1, compiled from data reported
in [51,59,60]. See links in the text for access to map files in high resolution.

There are, with some exceptions [56–58], quite few published studies on the geology and geophysics
of graphite ore deposits from the Fennoscandian Shield and elsewhere, compared to those on other
commodities. We aim, in this paper, to present an overview of the geological setting, field relationships,
and similarities between the different graphite provinces in North Norway. Our descriptions will be
focused on localities where we believe that there is or can be an economical potential. To keep this
review paper as concise as possible, we limit our descriptions to key occurrences, where the field
relationships, approach, and methods can be easily illustrated. This will then be the basis for our
overview and discussions. In addition, we will review methods used and results from bench-scale ore
dressing experiments based on our materials and will also compare our resource estimates with results
reported from elsewhere. We will also limit our descriptions of mineral chemistry, isotopes, structural,
and tectono-metamorphic processes to what is necessary for our discussions. Detailed discussions on



Minerals 2020, 10, 626 4 of 24

these topics are in preparation and will be reported elsewhere. We also regard modeling of predictive
ore exploration as being beyond the scope of this study.

This review is based on material that has been collected over a period of 70 years, some of which
is unpublished and accessible only in Norwegian. The bulk of work has been carried out after 1990,
especially after 2013. The different investigations, within such a long period, differ in approach,
aim, and methods, and the available data differ therefore considerably between the described areas.
We have, however, deliberately included an account of previous investigations and referred to older
work that we consider to be relevant and thus make these known to others who want to pursue graphite
investigations in Norway. Our main goal for the graphite projects has been to find economically viable
occurrences, using all the available methods used in mineral exploration, field geology, geophysics,
geochemistry, and ore-dressing tests.

Table 1. Investigated graphite occurrences, their average total carbon (TC) content (Wt. %), estimated
tonnage, and calculated contained graphite. See the text for the approach used for calculating tonnages
and contained graphite contents.

Occurrence
No.

Occurrence
Name % TC (Mean) Tonnage (Mt) Contained

Graphite (Mt) References

1 Trælen 31.0 1.80 0.56 *
2 Vardfjellet 9.2 12.84 1.18 [51,61]
3 Hesten 5.8 2.07 0.12 [51,61]
4 Bukken 6.5 51.03 3.34 [51,61,62]
5 Litljkollen 5.3 34.54 1.83 [51,61]
6 Grunnvåg 5.2 22.77 1.19 [51,61]
7 Skardsvåg 2.1 n. a. n. a. [51]
8 Haugsnes 16.2 8.40 1.36 [52,60,63]
9 Kjerkhaugen 6.5 2.42 0.16 [60]
10 Møkland 13.2 3.40 0.45 [52,60,63]
11 Rise 7.9 0.19 0.01 [60]
12 Sommarland 12.5 0.85 0.11 [52,60,63]
13 Brenna 10.1 7.94 0.80 [60]
14 Evassåsen 7.6 2.12 0.16 [60]
15 Vikeid Central 13.8 8.89 1.23 [60]
16 Vikeid West 11.3 29.63 3.35 [60]
17 Ånstad 36.8 0.21 0.08 [60]
18 Alsvåg 8.9 0.25 0.02 [60]
19 Instøya 9.3 14.82 1.42 [60]
20 Rødhamran 14.8 1.38 0.20 [52,60,63]
21 Romset 14.7 9.63 1.42 [60]
22 Skogsøya 20.0 1.42 0.30 [52,60,63]
23 Smines 7.1 18.89 1.34 [52,60,63]
24 Svinøya 11.7 0.02 0.02 [52,60,63]
25 Jennestad 9.6 3.66 0.35 [56,58,64]
26 Myre na na na [52,60,63]
27 Nord-Værnes 4.1 0.60 0.02 [59]
28 Rendalsvik 11.1 1.90 0.21 [65,66]

Average 11.6 9.3 0.81
Sum 241.6 21.51

* Pers. comm., T. Abelsen, Skaland graphite.

2. Geological Setting

Graphite is a common mineral in meta-supracrustal rocks of mid- to late-Proterozoic age on the
Fennoscandian shield. There are more than 50 occurrences in Finland, Sweden, and Norway [55,57,67].
The graphite occurrences from Senja, Vesterålen, and Holandsfjord areas are all located within Archaean
to Proterozoic basement provinces that occur as basement windows within younger Caledonian rocks.
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2.1. Senja

The island of Senja is located in the southern part of the West Troms Basement Complex
(WTBC), which is an Archean to Paleoproterozoic basement horst west of the Caledonian orogenic
rocks. The WTBC comprises a unit of 2.89–2.70 Ga tonalitic and granitoid gneisses that is intruded
by a mafic dyke swarm. The basement gneisses are overlain by numerous supracrustal units
that comprise metapsammites, conglomerates, metavolcanites, dolomitic carbonates, banded iron
formations, graphite schists, and massive sulphide deposits [68,69] of varying ages [70]. These basement
gneisses and supracrustal cover rocks were deformed during the Svecofennian orogeny at 1.8–1.75 Ga,
and peak metamorphism varies within the complex from low grade in the north to amphibolite to
granulite facies in the southern area (Senja). A suite of bimodal plutonism occurred at 1.8–1.79 Ga,
synchronous with a major suite of plutonic rocks in Vesterålen and Lofoten.

2.2. Vesterålen Area

The rocks of the Lofoten–Vesterålen archipelago are regarded as the southern continuation of
the WTBC [71,72]. They form of an Archean to Proterozoic basement consisting of both granitic
gneisses and migmatites and gneisses of supracrustal origin, in which zircon dates range from 2.7 Ga to
2.6 Ga. A sequence of supracrustal rocks, comprising of gneisses and amphibolites of intermediate to
mafic composition is believed to represent metavolcanics, metapsammites, dolomite marbles, graphite
schist, and banded iron formation [73]. These supracrustal rocks are very heterogeneous and at most
places they are orthopyroxene gneisses of variable compositions. Granulite-facies peak metamorphic
conditions have been estimated to be 810–835 ◦C at 0.73–0.77 GPa [74]. These units were intruded at
about 1800–1790 Ma [71] by an anorthosite–mangerite charnockite–granite (AMCG) suite of rocks that
intruded at 0.4 GPa and 800–925 ◦C [75].

2.3. Holandsfjord Area

The Holandsfjorden area comprises rocks similar to those in the Senja and Lofoten–Vesterålen
areas. A unit of paragneisses with different garnet-mica gneisses includes, locally, bands of graphite
schist, and is intruded by different types of porphyritic or equigranular granites [76]. U/Pb dates of
the granitic rocks range in age from about 1.88 Ga [77], thus about similar ages as the AMCG of the
Lofoten–Vesterålen area.

There are, in the Holandsfjorden area, two localities where graphite has been mined—the
Rendalsvik and the Nord-Værnes deposits. Both were in production from 1933 to 1945 [78,79].
The geology adjacent to the older mines was described by [65,80] for the Rendalsvik area and by [59]
for Nord-Værnes.

3. Previous and Recent Work

Graphite occurrences in Norway were first described by [81,82]. The history of mining and
development of the graphite industry has been described by [83,84]. In the 1950s, most graphite
occurrences in Northern Norway were investigated for their possible co-occurrence of uranium,
which turned out to be negative for all the occurrences [85].

The Skaland graphite deposit was put into periodic production in 1922 and, from 1932 to the
present, the mine has been in continuous production. From 2006, the mine location has been at
Trælen [86]. The Trælen graphite mine (1 on Figure 2a) is the world’s richest flake graphite mine
in operation, with a TC (total carbon) content of about 30% [55]. The geology of the Skaland mine
is described by [87]. The geophysical features of the Skaland/Trælen and some other occurrences is
described by [62,88–90]. The structural geology of most of the graphite occurrences on Senja was
described by [91]. New airborne geophysical data were reported by [92]. Raman spectroscopy of
graphite from Skaland is reported by [25], who show that the graphite is a fully ordered flake graphite.
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Graphite was mined at several localities in Vesterålen from about 1890 to 1918, and again from
1949 to 1960. During the latter period, the geology and geophysics of the graphite deposits was
described in several unpublished reports [93–96]. About 770 m of underground adits and drifts as
well as several surface trenches were made during the 1950s. The general geology was described
by [97]. Detailed airborne geophysical data, including magnetic, radiometric, and electromagnetic
(EM) data, were collected in two periods (1988 and 2012) and are reported in [98–100]. Follow-up
work on the ground, including geophysics, trenching, and drilling has been described in reports in
Norwegian [101–108] and this work was reviewed by [58]. The junior mining company Norwegian
graphite reinvestigated the graphite deposits in the Jennestad area in 2013 (25 on Figure 2b). Their work
involved drilling of 13 drill holes with an aggregate length of 1360 m. Indicated resources were
estimated to be 3.66 Mt with 9.6% total graphite [64]. Norwegian graphite was liquidated in 2015 and
their data have been released to the Geological Survey of Norway (NGU), (see supplementary data).
Raman spectroscopy of Jennestad graphite was reported by [56] and showed that the graphite is fully
ordered and almost free of internal defects.

The Holandsfjorden with the Nord-Værnes (27 on Figure 2c) and the Rendalsvik (28 on Figure 2c)
abandoned graphite mines were mapped by [65,80]. Ground geophysics (turam) was reported by
NGU [109]. The occurrence was investigated with respect to the co-occurrences of uranium [110].
The historical mine production (1933–1945) was 8170 tons [78]. The endowment was measured by [66],
who indicated resources of 2.3 Mt with a mean TC of 11.1%. New airborne and ground geophysics
together with geology of the graphite occurrences was reported by [59,111].

4. Materials and Methods

4.1. Geophysical Methods

Graphite schists are, on the Fennoscandian shield, usually the least exposed rocks in a given
area. Even if the overburden is thin, geophysical methods are essential for locating and estimating
the size of individual occurrences. Graphite has a clear geophysical signature due to its good electric
conductivity, and electromagnetic and electric methods are well suited and essential for the location
and characterization of the graphite mineralization that are covered.

Airborne geophysical surveys have been carried out in all the three graphite provinces in 2012,
2013, and 2014 including measurements using magnetic (MAG), five-frequency electromagnetic (EM),
and radiometric (Gamma spectrometry, RAD) instrumentation. Details regarding the instrumentation
and resulting datasets are described in [90,92,99,111]. The apparent electric conductivity of the
ground, calculated for each frequency using a half space model (Oasis montaj v.9.7, Geosoft Inc.,
Toronto, ON, Canada), is particularly used for finding graphite mineralization. Airborne geophysical
maps with all the occurrences reported in this paper are shown in Figure 2a–c and listed in Table 1.
Some of the different anomalies found on the airborne geophysical data were known to be associated
with graphite from previous investigations, but their areal extent became better defined in the later
studies. In addition, numerous new anomalies were located, and almost all the anomalies were then
targets for ground geophysical and geological follow up work. Helicopter-borne geophysical data are
downloadable from https://www.ngu.no/en/page/other-maps-and-data.

The follow-up on the ground, at almost every target, included the following geophysical methods,
(see [51,60] for details):

• Ground EM measurements with the use of EM31 [112].
• Charged- and self-potential (CP/SP), using in-house-developed equipment.
• 2D electric resistivity traversing (ERT) and induced polarization (IP), using the Lund system [113]

and multigradient electrode configuration. The measurement was done with an ABEM Terrameter
LS [114], and data inversion was carried out using the software RES2DInv [115].

https://www.ngu.no/en/page/other-maps-and-data
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4.2. Petrophysical Measurements

Petrophysical parameters including volume, density, pore-volume, porosity, susceptibility,
remanence, heat-conductivity, specific heat capacity, together with data on total sulphur and total
carbon on 125 samples are included in the supplementary data. The average density is 2437 kg/t.:
this value is used in the resource estimates. Because many of the samples have a high graphite content
and are thus electrically conducting, the measurements of susceptibility must be used with care.

4.3. Geological Methods

The graphite-bearing units were sampled at exposures, in trenches, or from drill cores.
Basic geological and structural data were collected concurrently. Detailed petrographic studies
were performed by optical microscopy and scanning electron microscopy (SEM) using a LEO1450
VP instrument at the Geological Survey of Norway (NGU, Trondheim, Norway). Modal contents
of graphite as well as flake grain sizes were measured by image processing using the ZEN blueTM

software (version 2.5) from Zeiss (Köln, Germany).

4.4. Geochemical Methods

The graphite content of the samples was analyzed using a LECO SC 632 carbon and sulphur
analyzer (LECO, St. Joseph, MI, USA). Three variants of LECO type procedures are normally used
for graphite analysis. After crushing and milling the graphite, the content can be determined by:
(A) removing any inorganic carbonates by acid, roasting the sample to remove organic plant material,
and finally analysis using a LECO type of instrument; (B) analysis of total organic carbon (TOC) similar
to A, without the roasting step; and (C) measurement only by Leco analyzer (, without removing
carbonates or organic matter: the latter method gives the total carbon (TC). Rønning et al. [60] reports
both TOC and TC for a number of samples and compared these methods and showed that for the
majority of our samples, TOC and TC only deviated within the analytical uncertainty. Therefore,
on >90% of our samples only method C was used, which is the fastest and least costly. Table 1
shows the average % TC for our occurrences, and the complete dataset of 679 analysis of TC, TOC,
and total sulphur (TS) analyses are reported in [51,60], data used in this paper is available in the
supplementary data.

4.5. Bench Scale Beneficiation

Two sample sets of graphite schists were tested in bench-scale graphite beneficiation [52,116].
The sample tested by [116] was from the Jennestad (deposit no 25 Table 1, Figure 2b). The samples tested
by [52] were from the Møkland deposit (no 10 Table 1, Figure 2b). Both trials follow approximately
the same flow sheet. Following crushing and primary grinding, a series of stepwise flotation and
regrinding steps were done. The trials were run using a rod mill and a Denver laboratory flotation
cell. Øzmerih [116] used MICB (methyl isobutyl carbinol) and FlotolBTM as frother, and kerosene as
activator. In [52] Dowfroth, 400ETM was used as frother. See [52,116] for additional technical details.

5. Results

5.1. Geology of the Graphite-Bearing Units

The graphite schist represents the most weathered and poorly exposed rock in all three areas.
Field exposures are only available on a few coastal exposures, road cuttings, and exposed flat-lying
areas in the mountains. The graphite schist is typically rusty brown, strongly schistose, and commonly
tightly folded (Figure 3b,c, deposits No. 4 and 6 on Figure 2a). The graphite bands can vary in
thickness from cm scale to several tens of meters (Figure 3a, No. 24 on Figure 2b), and exposures can
be followed for up to about 100 m (Figure 3d, No. 4 on Figure 2a). The graphite schist is usually,
at well-exposed localities, part of a rock unit that includes amphibolite-bearing schists, and which
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is typically also intruded by different types of younger intrusion (Figure 3e). In all the described
graphite provinces, graphite schist seems to be part of a succession that comprises pyroxene gneisses,
quartz-feldspar-rich rocks (metapelites to meta-arenites), carbonates (mostly dolomites), and less
common iron formations [52,59,64]. At localities where drill core data are available (sections over
lengths up to 140 m), the graphite bearing sections appear randomly distributed with thicknesses
varying from a few centimeters to ca. 10 m. The proportions of the host rock; pyroxene gneisses or
quartz-feldspar rocks vary widely. In some localities, graphite schist shows a gradual transition into
carbonates (Figure 4) (See supplement data for details). We believe that the relationship between
graphite-rich units in succession is that they, in all probability, show that the graphite was part of a
sedimentary sequence that underwent metamorphism that resulted in formation of graphite.

Figure 3. (a) Well-exposed massive graphite schist (Svinøya, occurrence 24). (b) Typical rusty, weathered,
and strongly schistose graphite schist (Grunnvåg, occurrence 6). (c) Close-up of typically foliated and
tightly folded graphite schist, foliation indicated (Vardfjellet, occurrence 2). (d) Outcropping graphite
schist continuing about 100 m along strike (Bukken, occurrence 4). (e) Outcrop showing from left
to right a gradual transition from amphibolitic schist into rusty graphite schist that are intruded by
younger granites to the right (Nord-Værnes, occurrence 27).
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Figure 4. Selected drill logs based on data from Norwegian graphite (near Jennestad, occurrence 25),
which show the variation and distribution of pyroxene gneisses, meta-arenite, carbonates, and graphite
schist in about 100 m continuous sections together with variation in TC (compiled and simplified from
Norwegian graphite, see Supplement data for details).

5.2. Petrography of Graphite Schist

The graphite schist has a variable grain-size, up to coarse-grained (Figure 5a). Major quantities of
graphite occur together with major quantities of quartz, plagioclase, K-feldspar, and locally, of biotite,
clino-, and orthopyroxenes. Ti-phases are commonly present as titanite and rutile. The graphite schist
is often sulphide-rich, with pyrite, pyrrhotite, and locally chalcopyrite. Apatite is also common.

The graphite content typically ranges between 10–25 vol %, but a modal content up to 90% is found
locally. Graphite crystals in hand samples usually occur as silvery shining minerals. Graphite occurs as
single, well-developed flakes or as subhedral interstitial grains between silicate minerals, in aggregates
1–5 mm in size. Together with biotite, oriented graphite crystal forms a well-developed foliation
and contributes to the rock schistosity. Pyroxenes, quartz, and feldspars constitute anhedral matrix
minerals with metamorphic, triple-point grain boundaries and are normally fine- to medium-grained
in size (Figure 5b,c).

Flake grain-size is an important parameter for the quality of a finished graphite product. In situ
measurements of graphite flake grain size were reported by [58,60]. Typically, in thin section,
the graphite flakes are dominated by some very few, up to ca. 3.5 mm large grains, which make up
the bulk of the modal content of graphite. The mode grain size is usually much smaller, often around
300 µm. However, the in situ grain size of the rocks is of less significance. It is the grain size distribution
of a finished product (after beneficiation) that matters, as discussed below.
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Figure 5. Micrographs of graphite schist: (a) mosaic micrograph covering a whole thin section c.
2.5 × 3.5 cm, showing the distribution crystal shape and size of the of the graphite (black flake crystals).
Note the inhomogeneous nature of the aggregates of graphite crystals. Modal content is 29%. (Sample
HG11-15). B–C typical graphite schist assemblage of graphite (Gr), biotite (Bt), clinopyroxene (Cpx),
and plagioclase (Pl), where with foliation defined by oriented graphite crystal flakes and biotite.
(b) Plane light and (c) polarized light. Sample AE171.

5.3. Structural Geology of the Graphite-Bearing Units

It is only on the island of Senja that there are outcrops of the graphite schist that make structural
studies possible. The age relationships and the general tectonic process are described by [117]. Given the
complex tectono-metamorphic history shown in the Norwegian graphite deposits, an understanding
of the structural deformation is essential for any resource evaluation. We use one example to illustrate
the structural complexity of the occurrences.

Reference [118] first studied in detail the various graphite deposits on the island of Senja. Ref. [91]
also characterised the complex structural episodes as having both created and modified the graphite
deposits and found that the graphite is intimately associated with the development of F2 folds,
as graphite is best developed geographically in association with N-S-striking F2 fold hinges. However,
the F2 fold hinges are deformed by D3 deformation on approximately E-W axes. This created complex
interference geometries. The graphite is most extensive geographically where F3 structures intersect
graphite-bearing F2 structures. The extent of graphite outcrop is also strongly affected by the presence
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of both F2 and F3 shear-zone structures, which locally (F2) or regionally (F3) ‘shear-out’ the graphite
outcrops, thereby limiting the extent of the graphite deposits.

Both the F2 and F3 folds are highly noncylindrical in many of the deposits, demonstrating that
using small-fold geometries to determine the large-scale deposit geometry is highly problematic.
The complex folding and sheared nature of the graphite deposits is reflected in complex outcrop
patterns. For example, Figure 6 shows the Bukken deposit (No. 4 on Figure 2a) in eastern Senja,
which shows graphite tectonically thickened around F2 folds and subsequently refolded by F3 folds.

Figure 6. Detailed structural mapping of the Bukkemoen and Litlekollen deposits. The graphite is
enveloped within amphibolitic gneiss, which forms thin lenses in the host acidic gneisses. The graphite
forms thin layers up to several meters wide and is folded isoclinally around F2 folds along NW-SE
axes. The plunge is moderate towards the NW. The graphite is further deformed along spaced open F3

fold axes with E-W trending axes, with a subhorizontal plunge. This leads to a complicated graphite
outcrop pattern.

5.4. Ground Geophysical Measurements

The ground geophysical measurements collected at the 28 occurrences shown in Figure 2a–c had
their main aim in estimating the dimensions of the mineralized bodies with respect to graphite and to
measure, if possible, the number and width of the (individual) mineralized lenses. We will use two
examples to illustrate our approach. In covered areas, ERT/IP were used to see if conductive structures
shown in the helicopter-borne EM measurements, were caused by graphite/sulphide mineralization or
by fractured/weathered rock.

The first example on Figure 7 is from Vardfjellet at Senja, (occurrence No. 2 in Figure 2a). Figure 7a
shows the location of the airborne geophysical anomaly relative to neighboring anomalies. Figure 7b
shows the results from EM31 apparent conductivity traversing superimposed on the airborne 7 kHz
apparent resistivity data. Numerous conducting structures are seen, and, in various places, graphite
schist is exposed. Sample points with TC analyses are also shown. Figure 7c shows the EM31 apparent
conductivity separately and along three selected traverses where the variation in conductivity is shown
to the right. Peak conductivity values are indicated with a blue arrow, which represents individual
graphite schists lenses, that for the most part is overburden with a thin soil cover. The apparent width
of these lenses can then be estimated, and some peaks can be followed laterally from profile to profile.
It is important to note that what apparently is a homogenous anomaly based on the helicopter data,
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actually comprises several subparallel, individual, highly-conductive lenses. Airborne geophysics
alone would not have been able to resolve this complexity. Our combined geological and geophysical
observations for Vardfjellet can be summarized as follows: The Vardfjellet case is a graphite occurrence
about 2.0 km × 0.5 km in size: it comprises at least eight individual subparallel and subvertical thick
graphite rich lenses, which can be followed for at least 600 m along strike.

Figure 7. (a) Part of the airborne geophysical map showing the location of Figure (b). Airborne
geophysical map with superimposed sampling points analysed for TC and measurements done with
EM 31. (c) Sampling traverses of EM31 and, to the right, variation in apparent conductivity in three
traverses, where peaks (blue arrows) show the location and apparent width of near-surface graphite
lenses. This shows that airborne geophysics comprises several individual subparallel graphite lenses.
A complexity that would not been resolved with airborne geophysics only. Data from occurrence two
(Vardfjellet). Based on data from [51].
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Our second example (Figure 8) is the occurrence Vikeid West (occurrence 16), which is almost
completely covered with 1–2 m. thick peat. The presence of good conductors indicating graphite was
first discovered by [98] and sampling from a selection of trenches was described by [108]. Figure 8a
shows EM31 traversing superimposed on the airborne geophysics. High apparent conductivity
from EM31 ground measurements coincides with low apparent resistivity from helicopter-borne
measurements. Figure 8b shows the location of a short drill-hole, which penetrated several graphite
lenses (see [60] for details). One of these lenses was used as a grounding point for charged potential
(CP) measurements. The CP potential anomaly is shown with superimposed SP measurements
points. The CP anomaly gives us quite accurate dimensions for this graphite lens and indicates a
size of about 1200 m × 200 m. The electrical potential difference of <54 mV indicates a substantial
downward extent. The thickness is interpreted to be the result of tightly isoclinally folded graphite
lenses that have electric contact, and which are physically impossible to resolve by CP measurements.
However, the continuous good conductivity measured by EM31 shows that we have a massive graphite
mineralization with a considerable thickness. The SP data show, in addition, several graphite bodies
adjacent to the CP anomaly, showing an SP anomaly exceeding 400 mV in several places. Based on EM31
data, eight exposures of graphite were discovered and sampled. Figure 8c shows the ERT/IP profile:
its location is shown in Figure 8a,b. The data from the Vikeid west occurrences can be summarized as
follows: From the airborne and ground geophysics, the occurrences have an extent to a depth of at
least 100 m, they comprise at least 5 mineralized structures with an aggregate length of about 3500 m.
The width of individual lenses varies from 10 to 100 m, the average being estimated to be ca. 40 m.
Chemical analyses of 12 graphite schist samples from the area show an average % TC of 10.4%.

A similar approach was used for almost every occurrence on Figure 2a–c. This information gives
us the number and apparent thickness of subparallel graphite lenses in the area and their indicated
length along strike. The details for every occurrence can be found in [51,59,60,63].

5.5. Resource Estimates

Using the estimates of the length, the width, and the number of graphite lenses within the different
occurrences, we need a common method to compare the inferred graphite resources. Despite the lack
of drilling data from almost all of the occurrences, we still believe that a rough order of magnitude
approach, in line with [119] could be used for the estimation of the volume of the respective occurrences.
We have four main variables: L = length of mineralized zones in meters (from airborne and ground
geophysics), W = average apparent width (m) of graphite zones (from EM31, drilling and observations),
α = average dip in degrees from field observations (used to calculate real width), and n is the occurrence
number in Table 1. If we also consider that the mineralizations are continuous 100 m down dip, the
volume (Vn) of each occurrence would be:

Vn = Ln Wn (sin(αn)) 100 (1)

Earlier reports used a density (ρ) of 2600 kg/m3 [60,64]. In our calculation, we use ρ equal to 2437
kg/m3, which is the average from petrophysical measurements (see supplementary data). The tonnage
will then be given, and if we regard the average % TC from Table 1 as valid. The amount of contained
(Cg) graphite is calculated as follows:

Cgn = Vn ρ (%TCn) (2)

In each of the three provinces, we have the following averages: Senja (n = 6) average % TC and
tonnage is 10.5% and 20.8 Mt, in Vesterålen (n = 18) 13% and 6.3 Mt, and in Holandsfjorden (n = 2)
7.6% and 1.25 Mt, respectively.)

The resource estimates calculated above (Table 1) are based on this approach and the results are
sufficient for each occurrence to be defined as having an inferred resource with a low level of confidence.
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Figure 8. (a) Shows the airborne EM map with superimposed EM31 traverse, several highly conductive
zones are apparent. (b) Grid map of CP measurements showing the dimensions of one individual
graphite lens and superimposed measurements of SP, where several conductors are apparent. (c) ERT
profile location shown on A and B. The upper part shows the variation in resistivity and soil cover
is indicated. The lower part shows the variation in IP (induced polarization). Elevated IP shows the
presence of electrically conducting material (graphite or sulphides). Based on data from [60].
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5.6. Beneficiation Results

The beneficiations test done by [116] was recapped in [58] and can be summarized as follows:
The head sample (300 kg) had a total carbon content of 17.4%. The head sample was crushed then
ground in a ball mill with a pulp density of 67%. Grinding was optimized so that 90% is < 0.3 mm
and 80% passing point was 0.15 mm. Starting with the head sample with 17.4% TC, after the different
flotation and regrinding steps, the different concentrates had the following TC contents: rougher
concentrate, 59.06% TC; cleaner concentrate 1, 79.48% TC; cleaner concentrate 2, 88.20% TC; and cleaner
concentrate 3, 88.38% TC. The highest TC content, of 97%, was found in the >200 µm fraction of the
cleaner concentrate 3 using Flotol BTM as a frother.

The trials reported in [52] were slightly different: the head sample (70 kg) had a TC of 19%.
Following crushing, primary grinding was done in a rod mill with 45% pulp density and 12 min
grinding time. Sieving with 100% < 600 µm and de-sliming of the fraction <20 µm. Two different
frothers were tested, Dowfroth 400ETM and Nashfroth 620TM. Dowfroth 400ETM was found to be
the best. Rougher flotation gave a rougher concentrate, with 75.9% TC. Two different regrinding
runs, followed by two cleaning steps, gave a cleaner concentrate, with 98.13% TC and 97.13% TC,
respectively [52]. Sieving of the cleaner concentrate gave for the three coarsest fractions a recovery of
72% and the following % TC in the size fractions: >300 µm 98.2%, <150> µm 98.1%, and <75> µm
90.4% (Table 2). In summary, the various cleaning steps gave a bulk concentrate with 90.1% TC and a
recovery of 98.1%.

Table 2. Weight fraction (in % and cumulative), % TC recovered, % TC, and cumulative recovered,
in cleaner concentrate (bottom row), from bench-scale beneficiation trials in [52]. In the size fractions
>150 µm the highest purity flakes (highest TC) are found.

µm Wt. % Wt. % Cumulative % TC % TC Recovery % TC
Cumulative Recovery

300 7.1 7.1 98.2 7.7 7.7
150 31.7 38.8 98.1 34.5 42.2
75 29.8 68.6 90.4 29.9 72.1
63 7.4 76.0 80.7 6.6 78.7
45 8.4 84.4 78.0 7.3 86.0

<45 15.6 100.0 80.7 14.0 100.0

Cleaner
concentrate 100.0 90.1 98.1

The results show that it is possible, with bench-scale beneficiation, to replicate results similar to
what is achieved by the industry today using conventional methods. The coarser and more valuable
flake fractions, in particular, have the highest purity. Given that the graphite schists seem to be of
comparable mineralogy and metamorphic facies everywhere in the three graphite provinces, we believe
that this shows, in all probability, that the graphite occurrences in Norway have a favorable mineralogy,
suitable for beneficiation with no technical difficulties and using available technologies.

6. Discussion

6.1. Geology

The graphite-bearing rocks, in all the three graphite provinces, occur in what appear to be similar
settings as can be summarized as follows: (1) the sedimentary protoliths to the graphite schists have
an age in the range 2.2–1.7 Ga: this is based on their relative position to the country rock, since direct
dating is difficult. (2) Petrography show similar mineralogy and metamorphic mineral assemblages
both for graphite schists and for the different host rocks. Metamorphic conditions are generally upper
amphibolite to granulite facies, in Vesterålen in the range 810–835 ◦C and 0.73–0.77 GPa [74].
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The average deposit size (in Mt) clearly differs from Senja, with 20.8 Mt compared to Vesterålen
where it is 6.3 Mt. A possible geological explanation for the differences could be related to the
1.8–1.79 Ga magmatic event [71]. In Vesterålen, where the AMCG rocks intruded and dismembered
the older rocks, including the graphite units, to a much larger extent than on Senja. Younger intrusions
are much less apparent on Senja. The degree of exposure of the graphite-bearing units is, however,
small and the relationship and proportion between size of graphite occurrences and younger intrusions
cannot be exactly quantified.

Most of the graphite deposits elsewhere on the Fennoscandian Shield occur in rocks of
Paleoproterozoic age. The Nunasvarra graphite deposit, which is the largest graphite deposit
in Sweden with its 12.3 Mt, 25.6% TC, occurs in carbonaceous sediments intermittent with tholeiitic
volcanic rocks dated to 2144 ± 5 Ma. The graphite is assumed to be formed in the subsequent
Svecokarelian tectonometamorphic event [67]. Finland’s largest graphite deposit, the Piipumäki
deposit in eastern Finland, occurs in Svecokarelian graphite-bearing quartz-feldspar gneisses and
amphibolites. Peak metamorphism is estimated to be 0.5 Gpa at 740 ◦C and dated at 1.8–1.79
Ga [57]. Graphite deposits across the Fennoscandian Shield have similar geological settings regarding
lithology, age of host rocks, and peak metamorphic conditions. A possible hypothesis is that the high
metamorphic-grade flake graphite occurrences in Norway, Sweden, and Finland originally represented
rocks that were formed in the same type of setting as, and contemporaneous with the low-metamorphic
grade shungite rocks of Russian Karelia on the easternmost perimeter of the Fennoscandian shield.
The 2.0 Ga old upper part of the Zaonezhskaya Formation near lake Onega comprises a 600 m
thick succession of bitumen-rich siltstones and tuffs. In these low greenschist facies rocks TOC
are, on average, 25% but can reach levels up to 98%. The shungite rocks comprises black, dense
amorphous and nanocrystalline organic matter. Shungite rocks also represent the world’s biggest
accumulation of organic matter in the Paleoproterozoic, believed to have been formed in a brackish
water environment [120,121]. In Norway, the multistage high-grade metamorphism combined with
polyphase deformation have removed almost all signs of primary features in the rocks associated
with the graphite occurrences. The ages of the Norwegian graphite occurrences and the shungite
rocks seems to coincide. Isotope data could give some circumstantial evidence for a similar origin.
However, it would also be difficult to find conclusive evidence due to the large difference in the
tectono-metamorphic history of these deposits.

6.2. Comparison of Resource Estimates

For evaluating graphite deposits from an economical point of view [122], six key factors can be
used to rank the economic potential among deposits:

(1) % TC (grade), deposit size, and contained graphite, were % TC rank before deposit size.
(2) Location (country risk).
(3) Flake size distribution.
(4) Product purity.
(5) Off-take agreements.
(6) Time frame of production.

The two latter are not relevant for the stage of development of our occurrences. In Table 1,
a number of the occurrences would have tonnages that many would regard as (too) small. To test this,
we compiled resource data from graphite deposits and junior companies that are noted on the Sydney
(ASX), Toronto (TSX), and London (LSE) stock exchanges (see supplement data for details). In Figure 9,
grade, tonnage, and contained graphite are compared. Except for some very large international
deposits, the levels and variation for the north Norwegian graphite occurrences are in the same of
order of magnitude as those found elsewhere. We believe that this shows that our rough resource
estimates are realistic and that the graphite provinces in Norway have the same prospectivity as those
in other parts of the world. For factor two, the Norwegian occurrences would rank among the top in
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the world with respect to their geographical location near to harbors and from a political governance
point of view, as measured by Worldwide Governance Indicators [123]. For factor three, flake size
distribution, both in thin section, and most importantly in a crushed product, are also favorable. Lastly,
the product purity, factor four, is comparable to what is achieved from the graphite industry, with the
use of flotation alone.

Figure 9. Comparison of graphite content (% TC), tonnage (A) (Mt), and contained graphite between
(B) North Norwegian graphite occurrences and deposit data from companies listed on ASX, TSX,
and LSE stock exchanges (see supplementary data).

7. Summary and Conclusions

Graphite is abundant at a number of localities in three graphite provinces in Northern Norway.
The provinces show similarities in geological setting with regards to: (a) host rocks for the graphite
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mineralization; (b) metamorphic history of the graphite host rock; and (c) age of the associated country
rocks, which pre and postdate the graphite-bearing succession. The graphite-bearing rocks in all
the provinces appear to be younger than 2.7–2.6 Ga Archean gneisses and older than granitic to
charnockitic intrusions of 1.8 to 1.7 Ga. We speculate that the Norwegian graphite occurrences may
represent equivalents to the shungite rocks of Russian Karelia.

Ground geophysical measurements show that the many of the occurrences have a complex
internal structure, commonly comprising several individual graphite lenses that have undergone
polyphase deformation, which will require detailed structural mapping. The graphite schist has a
composition similar to what would be classified as meta-pelites to meta-arenites: traces of primary
sedimentary structures are rarely observed. Our resource estimations of the graphite resources give an
average of 9.3 Mt with 11.6% TC and 0.81 Mt of contained graphite for all the 28 reported occurrences.
The aggregated graphite resources are 241 Mt of graphite ore with 21.5 Mt of contained graphite.
The size and graphite content are in the same range as what is reported by a number of graphite
companies elsewhere in the world.

Bench-scale beneficiation trials show that is possible to achieve purity of graphite concentrate
of above 98% TC in size fractions >300 µm. It is concluded that there are no technical difficulties in
producing products of good quality. In summary, the north Norwegian graphite provinces are highly
prospective from an economic point of view. They also include several occurrences where graphite
that has been formed deep in the crust can be studied in detail.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/10/7/626/s1.
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