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ABSTRACT In this article, combinations of linear and nonlinear feedback terms are investigated for
3 degrees-of-freedom pose and velocity control of ships. Nonlinear control algorithms that are found in
the literature often have linear feedback terms, which result in nice globally exponential stability properties
when assuming no actuator constraints. However, considering that all actuators have saturation constraints,
such stability properties are not feasible in practice. Applying nonlinear feedback terms can be a step to
handle such constraints. As a result, this article explores nonlinear feedback terms for both the kinematic
and kinetic control loops. Specifically, three controllers based on a cascaded backstepping control design are
implemented and compared through simulations and model-scale experiments in an ocean basin. Stability
properties and tuning rules for all the controllers are also provided. Interestingly, the use of nonlinear
feedback terms gives the ability to constrain the feedback control inputs globally while simultaneously
being able to change the convergence rates locally. The price to be paid is the introduction of additional
tuning parameters. The three controller types are compared using performance metrics which consider both
control accuracy and energy use.

INDEX TERMS Ship motion control, dynamic positioning, cascaded backstepping control design, nonlinear
feedback terms, tuning rules, performance metrics, experimental results.

I. INTRODUCTION
Automatic motion control of ships has been an active research
topic since the early 20th century [1]. In recent years,
the research has expanded from control of manned ships
to also include unmanned ships. In this regard, many ship
motion control algorithms found in the literature do not
take into account saturation constraints for the actuators. For
example, the nonlinear control algorithms in [2]–[5] and [6]
are all designed with linear feedback terms.

This article therefore investigates the use of nonlinear
feedback terms, and in particular the use of combinations
of linear and nonlinear feedback terms for 3 degrees-of-
freedom (DOFs) pose and velocity control of ships. These
feedback terms are developed based on constant bearing (CB)
guidance principles, inspired by the guided dynamic posi-
tioning approach originally suggested in [7], and further
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developments on the concept of guided motion control as
explored in [8] and [9].

Specifically, this article is a further development of the
work in [10], concerning the development of three 3-DOFs
motion controllers based on a cascaded backstepping con-
trol design, where the feedback connection between pose
and velocity, traditionally found in backstepping designs as
in [2] and [5], has been removed. The considered controllers
respectively employ linear feedback for both the pose and
velocity control errors (LP-LV), nonlinear feedback for the
pose control error and linear feedback for the velocity con-
trol error (NP-LV), as well as nonlinear feedback for both
the pose and velocity control errors (NP-NV). Compared
to [10], this article presents stability properties associated
with all the controllers, suggests suitable tuning rules, and
evaluates the controller performance through new simulations
and model-scale experiments using a so-called 4-corner test.
For this, the LP-LV controller is used as a baseline controller.
Specifically, the controllers are compared using performance

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 193813

https://orcid.org/0000-0003-2749-5237
https://orcid.org/0000-0002-0457-1850
https://orcid.org/0000-0001-9289-1450
https://orcid.org/0000-0002-8095-399X


M. E. N. Sørensen et al.: Comparing Combinations of Linear and Nonlinear Feedback Terms for Ship Motion Control

metrics which consider both control accuracy and energy
use. Additional work considering the nonlinear feedback con-
trollers from [10] is presented in [11], where amagnitude-rate
saturation (MRS) model is added to the system and the
effects are explored through model-scale experiments. Other
recent work which consider the use of nonlinear feedback
terms include [12] and [11], where sine and arctan functions,
respectively, are employed for the purpose of 1-DOF ship
heading control. In [14], an adaptive fuzzy tracking algorithm
was proposed for vessel motion control to handle external
disturbances. However, such adaptive mechanisms make it
difficult to trace the resulting vessel performance back to
the detailed behavior of the feedbacks and is therefore not
directly comparable to the studied feedbacks of this article.

The structure of the rest of the paper is as follows: A math-
ematical ship model and relevant assumptions are presented
in Section II; Section III presents the design of three cas-
caded control laws based on backstepping and CB guidance;
Section IV proposes a set of tuning rules; Section V includes
simulation results, experimental results and a performance
comparison; while Section VI concludes the paper.

II. SHIP MODEL
The horizontal motion of a ship can be represented by the
pose vector η = [x, y, ψ]> ∈ R2

× S and the velocity vector
ν = [u, v, r]> ∈ R3, where S = [−π, π). Here, (x, y) repre-
sents the Cartesian position in the local earth-fixed reference
frame, ψ is the yaw angle, (u, v) represents the body-fixed
linear velocities, and r is the yaw rate. The 3 degrees-of-
freedom (DOFs) dynamics of a ship is then stated as [5]:

η̇ = R(ψ)ν (1)

Mν̇ + C(ν)ν + D(ν)ν = τ , (2)

where

R(ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (3)

is a rotation matrix R ∈ SO(3), while M, C(ν), D(ν), and τ
represent the inertia matrix, Coriolis and centripetal matrix,
damping matrix, and control input vector, respectively. The
system matrices are assumed to satisfy the properties M =
M> > 0, C(ν) = −C(ν)>, and D(ν) > 0.

III. CONTROL DESIGN
The control objective is to make η̃(t)

4
= η(t) − ηt (t)→ 0 as

t → ∞, where ηt (t) = [xt (t), yt (t), ψt (t)]> ∈ R2
× S is C2

and bounded, representing the pose associated with a target
point that is to be reached. Themotion of the target is typically
defined by a human or generated by a guidance system.

The control design is divided into two stages, including
definition of new state variables and deriving the control laws
through control Lyapunov functions (CLFs). The design is
similar to the backstepping method, which has been applied
in e.g. [2], [6] and [15], but omits the coupling between

the pose and velocity control loops, which results in a cas-
caded system. Hence, we call this approach for cascaded
backstepping control design. Such a decoupling is similar to
what is achieved by using an LgV backstepping design [16].
The resulting cascaded system corresponds to a classical
inner-outer loop guidance and control structure, where the
outer loop handles the kinematics and the inner loop handles
the kinetics. The total system is then analysed by cascade
theory [17]. In particular, it is of interest to investigate the
effect of using nonlinear feedback terms in the control loops.
Consequently, we investigate three combinations of linear
and nonlinear feedback terms. Fig. 1 shows a block diagram
of these combinations.

For notational simplicity, the time t is omitted in the rest of
this section.

A. LINEAR POSE AND VELOCITY FEEDBACKS (LP-LV)
We start by defining the error variables z1 and z2:

z1
4
= R>(ψ)(η − ηt ) (4)

z2
4
= ν − α, (5)

where α ∈ R3 is a vector of stabilising functions, which can
be interpreted as a desired velocity to be designed.

1) KINEMATIC CONTROL
Choosing the positive definite CLF

V1
4
=

1
2
z>1 z1, (6)

the derivative of V1 with respect to time along the z1-
dynamics gives

V̇1 = z>1 ż1
= z>1 (S(r)

>R>(ψ)(η − ηt )+ R>(ψ)(η̇ − η̇t ))

= z>1 (S(r)
>z1 + R>(ψ)(η̇ − η̇t )), (7)

where

S(r) =

0 −r 0
r 0 0
0 0 0

 = −S(r)> (8)

is a skew-symmetric matrix satisfying z>1 S(r)
>z1 = 0, ∀z1.

This gives

V̇1 = z>1 (ν − R>(ψ)η̇t ). (9)

Using (5), the CLF becomes

V̇1 = z>1 (z2 + α − R>(ψ)η̇t )

= z>1 z2 + z>1 (α − R>(ψ)η̇t ), (10)

where the stabilising function can be chosen as

α = R>(ψ)η̇t − 01z1 (11)

with 01 = 0
>

1 > 0, resulting in

V̇1 = −z>1 01z1 + z>1 z2. (12)
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FIGURE 1. The possible combinations of the feedforward and feedback control loops considered in this article.

It can be concluded that the origin of z1 is uniformly globally
exponentially stable (UGES) for z2 = 0. Consequently, it can
be concluded by Lemma 4.6 in [18] that the subsystem

ż1 = S(r)>z1 − 01z1 + z2 (13)

is input-to-state stable (ISS). Note that (12) shows that S(r)
in (13) does not affect the ISS property.

2) KINETIC CONTROL
The z2-dynamics can be written as

Mż2 = M(ν̇ − α̇)

= τ − C(ν)ν − D(ν)ν −Mα̇, (14)

where the time derivative of (11) becomes

α̇ = R>(ψ)η̈t + S(r)>R>(ψ)η̇t − 01ż1 (15)

where ηt is the pose of the target point and ż1 is given by (13).
The CLF for z2 is defined as

V2
4
=

1
2
z>2 Mz2. (16)

Simplifying C(ν) = C, D(ν) = D, R(ψ) = R and S(r) = S
for notational brevity, the derivative of (16) becomes

V̇2 = z>2 Mż2
= z>2 (τ − Cν − Dν −Mα̇). (17)

The control input can now be chosen as

τ = τFF + τFB (18)

= Mα̇ + Cν + Dν − 02z2, (19)

where τFF represents the feedforward terms and τFB repre-
sents the feedback terms

τFF = Mα̇ + Cν + Dν (20)

τFB = −02z2 (21)

with 02 > 0, which results in

V̇2 = −z>2 02z2 < 0, (22)

which makes the origin of the z2-dynamics

ż2 = −M−102z2 (23)

UGES.

Remark 1: It is also possible to choose τ in (19) as

τ =Mα̇ + Cα + Dα − 02z2, (24)

which changes (23) to

ż2 = −M−1(C+ D+ 02)z2, (25)

where the convergence rate of the z2-dynamics now becomes
influenced by the ship’s C and D matrices. However, since
V̇2 = −z2> (02 + D) z2 ≤ −z2>02z2, the convergence rate
is no worse than what is achieved by (19).
The total closed-loop dynamics based on (19) become

ż1 = S>z1 − 01z1 + z2 (26)

ż2 = −M−102z2. (27)

Theorem 1: The origin (z1, z2) = (0, 0) of the overall
system (26)-(27) is UGES.

Proof: As shown earlier, the two subsystems (26)
and (27) are separately UGES. Additionally, since the inter-
connection term z2 enters linearly in (26), all the necessary
conditions for UGES of the cascaded system are met accord-
ing to Proposition 2.3 in [17].
Note that the above UGES result is based on the assump-

tion that unbounded control input is available, due to the
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choice of (11) and (21). However, this is not physically possi-
ble to achieve since the saturation constraints of the actuators
limit the achievable control input. In the following sections,
we introduce nonlinear feedback terms which are bounded.

B. NONLINEAR POSE FEEDBACK AND LINEAR VELOCITY
FEEDBACK (NP-LV)
We now introduce nonlinear pose feedback, inspired by the
constant bearing (CB) guidance concept, which was origi-
nally used for ship control in [7]. CB guidance is a so-called
two-point guidance scheme developed for interceptor mis-
siles, where the interceptor is supposed to align the relative
interceptor-target velocity along the line-of-sight (LOS) vec-
tor between the interceptor and the target. The most common
method of implementing CB guidance is to make the rotation
rate of the interceptor velocity directly proportional to the
rotation rate of the interceptor-target LOS, which is widely
known as proportional navigation. However, CB guidance
can also be implemented through the direct velocity assign-
ment

vd = vt − Ua,max
p̃√

p̃>p̃+12
p

, (28)

where vt ∈ R2 is a target velocity, and

p̃
4
= p− pt (29)

is the LOS vector from the target position pt = [xt , yt ]> ∈ R2

to the interceptor position p = [x, y]> ∈ R2. Additionally,
Ua,max > 0 represents the maximum approach speed toward
the target, and 1p̃ > 0 is a tuning parameter that affects the
transient convergence behavior between the interceptor and
the target. The direct velocity assignment (28) can be seen
as a CB guidance approach since in addition to assigning
the target speed, a relative approach velocity is assigned
along the interceptor-target LOS vector p̃ to ensure a smooth
rendezvous. This relative approach velocity is bounded by
Ua,max for large p̃ relative to 1p. The result of using such
nonlinear feedback is shown for a scalar error e ∈ R in Fig. 2,
where the effect of varying1 gains are shown. The linear and
nonlinear functions displayed in Fig. 2 are respectively given
as σ (e) = κe (LF) and σ (e) = κ e√

e2+12
(NF), where κ = 6.

By introducing nonlinear feedback to the pose control part,
the stabilising function is now chosen as

α = R>η̇t −K1(z1)z1, (30)

where

K1(z1)
4
= 01�(z1), (31)

and

�(z1)
4
=


1√

z>1,p̃z1,p̃ +1
2
p

I2×2 02×1

01×2
1√

z2
1,ψ̃
+12

ψ

 (32)

FIGURE 2. The abbreviation LF represents a linear feedback term as a
function of the control error e, while NF represents a nonlinear feedback
term based on a sigmoid function of e with a tuning parameter 1, such as
in (28).

with 01 > 0 as before, z1,p̃
4
= [z1,1, z1,2]>, z1,ψ̃

4
= z1,3,

1p > 0 and 1ψ > 0. It is also possible to choose

�(z1) =
1√

z>1 z1 +1
2
I3×3, (33)

if 1p = 1ψ = 1 > 0, but then it is not possible to define a
different transient behavior for the position and heading.

Choosing (32) leads to

V̇1 = −z>1 K1(z1)z1 + z>1 z2, (34)

and

α̇ = R>η̈t + S>R>η̇t − K̇1(z1)z1 −K1(z1)ż1, (35)

where

K̇1(z1)=−01


z>1,p̃ż1,p̃I2×2

(z>1,p̃z1,p̃ +1
2
p)

3
2

02×1

01×2
z1,ψ̃ ż1,ψ̃

(z2
1,ψ̃
+12

ψ )
3
2

 . (36)

The total closed-loop dynamics now changes from (26)-(27)
to

ż1 = S>z1 −K1(z1)z1 + z2 (37)

ż2 = −M−102z2. (38)

Here, we notice that when the control error is large, i.e., when

|z1| � 1⇒ ż1 ≈ S>z1 − 01ρ(z1)+ z2, (39)

where ρ(z1) = col(z1,p̃/|z1,p̃|, z1,ψ̃/|z1,ψ̃ |) is a vectorial
sign-like function that saturates the error z1. Additionally,
when the control error is small, i.e., when

|z1| ≈ 0⇒ ż1 = S>z1 − 01

 1
1p

I2×2 02×1

01×2
1
1ψ

 z1 + z2,

(40)
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where the linear dynamics is recovered, scaled by1p and1ψ ,
around the origin. It should be noted that ρ(z1) only saturates
the z1 error dynamics and does not have a direct relationship
with the actuator saturation level.
Theorem 2: The origin (z1, z2) = (0, 0) is uniformly glob-

ally asymptotically stable (UGAS), and on each compact set
B ⊂ R6 containing the origin, it is uniformly exponentially
stable (UES).

Proof: We have that the z2-dynamics is UGES, the
unperturbed z1-dynamics is UGAS, since (6) is C1 and pos-
itive definite, V̇1 is negative definite ∀z1 6= 0 and (6) is
radially unbounded ∀z1 6= 0.

Next, it can be shown that the z1-subsystem is growth
restricted by satisfying Assumption 7 in [17], where α4(s) =
s, α5(s) = 1, α1(s) = 1

2 s
2 and α6(s) =

√
2s. Additionally,

Assumption 8 in [17] is satisfied by having λ = 2, V =
1
2z
>

1 z1 and W1(z1) = z>1 K1(z1)z1. With these conditions
satisfied, Theorem 2.3 in [17] states that the origin (z1, z2) =
(0, 0) is UGAS.
For |z(t0)| ∈ B and the definition of UGAS, there exists

L > 0 so that |z(t)| ≤ L, ∀t ≥ t0 ≥ 0. This also means
that

∣∣z1,p̃∣∣ ≤ L and
∣∣∣z1,ψ̃ ∣∣∣ ≤ L, which further implies ∃γ >

0 such that 01�(z1) + �(z1)01 > γ I. Using the quadratic
Lyapunov function

V (z1, z2) = z>1 z1 +
1
2
b2z>2 Mz2, (41)

where b2 > 0, we get

V̇ = 2z>1 [−Sz1 − 01�(z1)z1 + z2]

+b2z>2 M
[
−M−102z2

]
(42)

= −z>1 [01�(z1)+�(z1)01] z1 + 2z>1 z2
−b2z>2 02z2 (43)

≤ −γ |z1|2 + 2 |z1| |z2| − b2λmin (02) |z2|2 (44)

= −
γ

2
|z1|2 −

γ

2
|z1|2 + κ |z1|2 +

1
κ
|z2|2

−b2λmin (02) |z2|2 (45)

= −
γ

2
|z1|2 −

(
b2λmin (02)−

2
γ

)
|z2|2 , (46)

where we used Young’s inequality xy ≤ κx2 + 1
4κ y

2, κ =
γ
2 > 0. Choosing for instance

b2 =
1

λmin (02)

(
γ

2
+

2
γ

)
, (47)

gives

V̇ ≤ −
γ

2
|z|2 , (48)

which proves UES on the compact set B.
Remark 2: UGAS shows that stability of this system is

global. The second part of the theorem shows that for any
practical set B of initial conditions, the convergence is in fact
exponential.

C. NONLINEAR POSE AND VELOCITY FEEDBACKS (NP-NV)
We now also introduce nonlinear velocity feedback, which
changes the control law (19) to

τ =Mα̇ + Cν + Dν −K2(z2)z2, (49)

where

K2(z2) = 02


1√

z>2,ṽz2,ṽ +1
2
v

I2×2 02×1

01×2
1√

z22,r̃+1
2
r

 (50)

with 02 > 0 as before, z2,ṽ
4
= [z2,1, z2,2]>, z2,r̃

4
= z2,3,1v >

0 and 1r > 0. In this case, the derivative of V2 becomes

V̇2 = −z>2 K2(z2)z2, (51)

and the total closed-loop dynamics become

ż1 = S>z1 −K1(z1)z1 + z2 (52)

ż2 = −M−1K2(z2)z2. (53)

Theorem 3: The origin (z1, z2) = (0, 0) is UGAS, and on
each compact set B ⊂ R6 containing the origin, it is UES.

Proof: The z2-dynamics can be proven to be UGAS
using Theorem 4.9 in [18], since (16) is C1 and positive
definite, V̇2 is negative definite ∀z2 6= 0 and (16) is radially
unbounded ∀z2 6= 0. A similar conclusion can be made for
the unperturbed z1-dynamics, as shown in Theorem 3.

Next, it can be shown that the z1-subsystem is growth
restricted by satisfying Assumption 7 in [17], where α4(s) =
s, α5(s) = 1, α1(s) = 1

2 s
2 and α6(s) =

√
2s. Additionally,

Assumption 8 in [17], is satisfied by having λ = 2, V =
1
2z
>

1 z1 and W1(z1) = z>1 K1(z1)z1. With these conditions
satisfied, Theorem 2.3 in [17] states that the origin (z1, z2) =
(0, 0) is UGAS.

For |z(t0)| ∈ B and the definition of UGAS, there exists
L > 0 so that |z(t)| ≤ L, ∀t ≥ t0 ≥ 0. This also means
that

∣∣z1,p∣∣ ≤ L,
∣∣z1,ψ ∣∣ ≤ L,

∣∣z2,v∣∣ ≤ L and
∣∣z2,r ∣∣ ≤ L,

which further implies ∃γi > 0 such that 0i�(zi)+�(zi)0i >
γiI, i = 1, 2. Using the quadratic Lyapunov function

V (z1, z2) = z>1 z1 + b2z
>

2 Mz2 (54)

where b2 > 0, we get

V̇ = 2z>1 [−Sz1 − 01�(z1)z1 + z2]

+2b2z>2 M
[
−M−102�(z2)z2

]
(55)

= −z>1 [01�(z1)+�(z1)01] z1 + 2z>1 z2
−b2z>2 [02�(z2)+�(z2)02] z2 (56)

≤ −γ1 |z1|2 + 2 |z1| |z2| − b2γ2 |z2|2 (57)

= −
γ1

2
|z1|2 −

γ1

2
|z1|2 + κ |z1|2 +

1
κ
|z2|2

−b2γ2 |z2|2 (58)

= −
γ1

2
|z1|2 −

(
b2γ2 −

2
γ1

)
|z2|2 , (59)
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where we used Young’s inequality. Choosing for instance

b2 =
1
γ2

(
γ1

2
+

2
γ1

)
(60)

gives

V̇ ≤ −
γ1

2
|z|2 , (61)

which proves UES on the compact set B.

IV. SUGGESTED TUNING RULES
Considering the z1-dynamics in (26), (37), and (52), it can
be seen that the choice of the 01 gain matrix determines the
time constants of the z1-dynamics with linear feedback only.
Hence, a time-constant matrix for the kinematic subsystem
can be used to define the linear gain matrix as

01
4
= T−11 (62)

where

T1 =

Tp 0 0
0 Tp 0
0 0 Tψ

 , (63)

with Tp > 0 and Tψ > 0 being the time constants for position
control and heading control, respectively.

A similar observation can be made for the z2-dynamics
in (27), (38), and (53), where the choice of the 02 gain
matrix determines the time constants of the z2-dynamics with
linear feedback only. Similarly, we can define the choice
of linear gain matrix for the kinetic subsystem based on a
time-constant matrix as

02
4
=MT−12 , (64)

where

T2 =

Tv 0 0
0 Tv 0
0 0 Tr

 ,
with Tv > 0 and Tr > 0 are the time constants for linear
velocity control and yaw rate control, respectively.

It is favorable for the kinetic subsystem to have
faster dynamics than the kinematic subsystem. Hence,
the kinetic dynamics must have smaller time constants, that
is

Tv < Tp (65)

Tr < Tψ . (66)

Also, 1p, 1ψ , 1v and 1r must be chosen. The control
parameter 1 is usually known as the lookahead distance in
line of sight guidance [9]. In [19], it is shown that a small
1-value corresponds to fast convergence to the path, but
with a large overshoot, while a large 1-value reduces over-
shoot and results in smooth but slow convergence. Here,
the1-values scale the linear feedback gains and therefore the
time constants of the linear region around the origin. If the
1-values are equal to 1, they will result in the same response

FIGURE 3. C/S inocean cat I arctic drillship in the marine cybernetics
laboratory at NTNU.

as the linear controllers in the linear region. But if they are
larger than 1, they will give a slower response in this region.
If they are chosen to be smaller than 1, they will give a faster
response. Hence, the 1-values for the NP and NV feedback
terms must be chosen such that the conditions in (65)-(66) are
still satisfied in the linear region, where the time constants
will be related to 01(1, 1)/1p, 01(3, 3)/1ψ , 02(1, 1)/1v,
and 02(3, 3)/1r .

V. SIMULATION AND EXPERIMENTAL RESULTS
A. SHIP MODEL
The model-scale cybership C/S Inocean Cat I Arctic Drill-
ship (CSAD), with parameters from [20], is used to test the
performance of the proposed motion controllers through both
simulations and experiments. CSAD is a 1:90 scale replica
of the full-scale Equinor Cat I Drillship, with a length of
L = 2.578 (m), shown in Fig 3. The ship is fully actuated
with six azimuth thrusters.

B. PERFORMANCE METRICS
To evaluate and compare the performance of the different
controllers, some suitable performance metrics must be used.
We define

e(t)
4
=

√
η̃(t)>η̃(t), (67)

as the error input to be used in the performance metrics,
with η̃ = [x̃, ỹ, ψ̃]>

4
= η − ηt . Here, since the position

and yaw angle have different units, we define the normal-
ized signals x̃, ỹ, and ψ̃ in the intervals [−0.5, 0.5] in the
expected operational space of the ship [21]. To obtain this
normalization, the position errors are divided by 4 (m) and
the yaw error is divided by π

2 (rad), since the position errors
will be in the intervals [−2, 2] (m) and the yaw error will
be in the interval [−π4 ,

π
4 ] (rad). In addition, these signals

represent the instantaneous control errors, while we would
like to consider the accumulated errors over time. Hence,
we use the performance metric IAE (integral of the absolute
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error)

IAE(t)
4
=

∫ t

0
|e(τ )|dτ, (68)

which integrates the temporal evolution of the absolute value
of the error without adding any weight to the error. We will
also use the so-called IAEW metric, which scales the IAE
metric by the energy consumption, and which was proposed
in [15]. Specifically, the IAEW can be computed as

IAEW (t)
4
=

∫ t

0
|e(τ )|dτ

∫ t

0
P(τ )dτ, (69)

where

P(t) = |ν(t)>τ (t)| (70)

represents the mechanical power of the ship. IAEW thus indi-
cates which controller has the best combined control accuracy
and energy use in one single metric. Normally, the sum of the
weighted square of the state and control input is integrated as
a cost function to find optimal control values. We have, on the
other hand, chosen performance metrics as multiplication of
sub-objectives in order to avoid mixed units in a sum of
physical quantities.

C. TEST SETUP AND CONTROLLER TUNING
Since this article concerns the comparison of combinations of
feedback terms, we have chosen to use a so-called 4-corner
test to be able to effectively demonstrate the closed-loop con-
trol performance differences. This test is illustrated in Fig. 4,
and has e.g. been used in [22] and [11] to evaluate the per-
formance of dynamic positioning control algorithms. Since
the test consists of a set of setpoint-change maneuvers, both
moving forwards and backwards, the feedforward terms asso-
ciated with the C(ν) and D(ν) matrices are removed from
the control laws. This removal also serves to better illustrate
themain differences between the considered feedback control
combinations.

In particular, the 4-corner test is performed as follows:
The ship is first initialized to point straight North, at heading
0 (deg). Then the following setpoint changes are executed:

1) Position change 2 (m) straight North: Tests a pure surge
movement ahead.

2) Position change 2 (m) straight East: Tests a pure sway
movement in the starboard direction.

3) Heading change 45 (deg) clockwise: Tests a pure yaw
motion while keeping position steady.

4) Position change 2 (m) straight South: Tests a com-
bined surge-swaymovement while keeping the heading
steady.

5) Position change 2 (m) straightWest and heading change
45 (deg) counterclockwise: Tests a combined surge-
sway-yaw movement.

Through these setpoint changes, this test simplifies the con-
trol problem down to three 1-DOF motions in surge, sway,
and yaw, respectively. The final two setpoint changes rep-
resent 2-DOFs and 3-DOFs coupled motions. The system is

FIGURE 4. The 4-corner test. Modified from [22].

implemented such that the target will automatically change
setpoint when the ship is within 0.003 (m) from the target in
both x and y direction and 0.2 (deg) from the target heading.
When the 4-corner test is completed, the ship will have
returned to its initial position and heading, ready for a new
test run from the same pose and along the same track.

Hence, the control laws used in the test are simplified to
their feedback essence as follows.

LP-LV:

α = −01z1 (71a)

α̇ = −01ż1 (71b)

τ = Mα̇ − 02z2, (71c)

The control gains have been chosen such that the
LP-LV control input stays within the magnitude sat-
urations of the actuators. This has lead us to the
gains 01 = diag([0.08, 0.08, 0.0698]) and 02 =

diag([0.2, 0.2, 0.1745])M. Using (62) and (64), we get the
following corresponding time-constant matrices:

T1 =

Tp 0 0
0 Tp 0
0 0 Tψ

 = 0−11

=

12.5 0 0
0 12.5 0
0 0 14.32

 (72)

and

T2 =

Tv 0 0
0 Tv 0
0 0 Tr

 =M−10−12
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=

5 0 0
0 5 0
0 0 5.73

 . (73)

The corresponding LP-LV time constants for the kinematic
and kinetic controllers are thus Tp = 12.5 > Tv = 5 and
Tψ = 14.32 > Tr = 5.73, which satisfy the tuning rules.

NP-LV:

α = −K1(z1)z1 (74a)

α̇ = −K̇1(z1)z1 −K1(z1)ż1 (74b)

τ = Mα̇ − 02z2, (74c)

Here, we reuse the gains found for the LP-LV controller
in order to be able to clearly see the effects of introducing
the delta-parameters on the performance. Also, 1p and 1ψ
are chosen so that the time constants associated with the
kinematic control loop do not become smaller than that of
the kinetic control loop. We have therefore chosen 1p = 0.5
and 1ψ = 0.5. This gives us the following corresponding
time-constant matrices:

T1 =

Tp 0 0
0 Tp 0
0 0 Tψ

 =
01



1
1p

0 0

0
1
1p

0

0 0
1
1ψ





−1

=

12.5 ∗ 0.5 0 0
0 12.5 ∗ 0.5 0
0 0 14.32 ∗ 0.5


=

6.25 0 0
0 6.25 0
0 0 7.16

 (75)

and

T2 =

5 0 0
0 5 0
0 0 5.73

 . (76)

With the chosen 1-values, the time constants in the linear
region associated with the NP-LV controller are Tp = 6.25 >
Tv = 5 and Tψ = 7.16 > Tr = 5.73
NP-NV:

α = −K1(z1)z1 (77a)

α̇ = −K̇1(z1)z1 −K1(z1)ż1 (77b)

τ = Mα̇ −K2(z2)z2. (77c)

Similar to the NP-LV controller, we reuse the gains for the
LP-LV controller, and the 1-values 1p, 1ψ , 1v and 1r for
the NP-NV controller are chosen such that the time constants
associated with the kinematic control loop do not become
smaller than that of the kinetic control loop. We have there-
fore chosen 1p = 0.5, 1ψ = 0.5, 1v = 0.7 and 1r =

1. This gives us the following corresponding time-constant

TABLE 1. Control gains for the 4-corner test.

matrices:

T1 =

Tp 0 0
0 Tp 0
0 0 Tψ


=

12.5 ∗ 0.5 0 0
0 12.5 ∗ 0.5 0
0 0 14.32 ∗ 0.5


=

6.25 0 0
0 6.25 0
0 0 7.16

 (78)

and

T2 =

Tv 0 0
0 Tv 0
0 0 Tr

 =
5 ∗ 0.7 0 0

0 5 ∗ 0.7 0
0 0 5.73 ∗ 1


=

3.5 0 0
0 3.5 0
0 0 5.73

 . (79)

With the chosen 1-values, the time constants in the linear
region associated with the NP-NV controller are Tp = 6.25 >
Tv = 3.5 and Tψ = 7.16 > Tr = 5.73. Finally, the chosen
control gains are summarised in Table 1.

D. SIMULATION RESULTS
Since this article focuses on fundamental motion control
aspects, it is assumed for simulation purposes that no dis-
turbances and uncertainties are affecting the system. Such
disturbances and uncertainties need to be handled with other
additional algorithms tailored for the purpose. Also, it is
assumed that both the pose vector η and velocity vector ν can
be measured.

In Fig. 5-7, the outline of the ship pose is plotted to show
the pose motion patterns. Here, the blue outline represents
the LP-LV-controlled ship, the dash-dotted black outline rep-
resents the NP-LV-controlled ship, the dashed green outline
represents the NP-NV-controlled ship, while the red outline
represents the 4-corner test box outline. Notice that the vessel
has a larger position error when moving from point 5 to
point 1, which is natural given that this is themost challenging
maneuver to perform, with coupled motion change in all
3-DOFs.

Fig. 8 shows the commanded control inputs for the three
controllers. Note that the amount of time each of the con-
trollers use to complete the 4-corner test is different, since
the nonlinear feedback controllers modify the convergence
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FIGURE 5. The 4-corner simulation: Using LP-LV feedback terms.

FIGURE 6. The 4-corner simulation: Using NP-LV feedback terms.

rate to be faster than the linear feedback controller in the
linear regions. Twomain results can be seen from Fig. 8. First,
the NP-LV controller is the fastest of the three controllers
to complete the 4-corner test, followed by the NP-NV and
lastly the LP-LV controller. Second, the magnitude of τ1 and
τ2 are lowest for the NP-LV controller, closely followed by
the NP-NV controller. However, τ3 has the same magnitude
for all the considered controllers. Based on this, it can be
concluded that the nonlinear position feedback terms of (32)
limit the control signal while the nonlinear heading feedback
term of (32) does not.

Fig. 9 illustrates how the contribution of the kinematic
feedback terms in α are dependent on the error z1 for the three

FIGURE 7. The 4-corner simulation: Using NP-NV feedback terms.

FIGURE 8. The 4-corner simulation: The commanded control inputs.

controllers. In [23], it is shown that the maximum velocities
of CSAD are 0.4142 [m/s], 0.109 [m/s] and 6.327 [deg/s] in
surge, sway and yaw, respectively. These velocity boundaries
are illustrated in Fig. 9, for the plots where the feedback terms
get close to or exceed these boundaries. Keep in mind that the
velocity terms α1, α2, and α3 are components of the so-called
stabilizing function α = [α1, α2, α2]>. Specifically, it can
be seen that α1 and α2 are limited for the controllers with
a nonlinear feedback term, while the one which has a linear
feedback term evolves linearly without any bounds. It is also
noticed that there are two different curves for both the NP-LP
and NP-NV controllers, which is due to the construction of
the denominator in (32) for the position feedback terms. Since
the denominator of these feedback terms is both dependent
on the error in z1,1 and z1,2, it is natural that the curves
are lower for the setpoint changes associated with 4) and
5) than 1) and 2) from Fig. 4. It should also be noted that
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FIGURE 9. The 4-corner simulation: The pose feedback terms as functions
of the pose errors.

the LP-LV controller’s α2 goes outside the achievable range
of the CSAD, while the two nonlinear controllers do not.

Similar to Fig. 9, Fig. 10 shows the feedback contribution
for the kinetic part of the three considered controllers. Here,
it can been seen that the NP-NV controller has a steeper curve
than the two other controllers, which means that it is a bit
more aggressive. The plots in figures 9 and 10 correlate with
the behavior of the control signals in Fig. 8.

FIGURE 10. The 4-corner simulation: The velocity feedback terms as
functions of the velocity errors.

Fig. 11 shows the time evolution of the performance met-
rics IAE and IAEW of the three controllers. In particular,
the IAE plot shows that the LP-LV controller has the poorest
performance of three controllers with respect to control accu-
racy, while the NP-NV controller has the best performance.
However, by including the energy use into the performance
metric as in IAEW, this result changes such that the NP-LV
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FIGURE 11. The 4-corner simulation: IAE and IAEW performance metrics.

TABLE 2. Final values of the performance metrics for the simulations.

FIGURE 12. The 4-corner experiment: Using LP-LV feedback terms.

controller has the best performance, while the LP-LV con-
troller has the poorest performance. Table 2 shows the final
values of the performance metrics for the simulations.

E. EXPERIMENTAL RESULTS
The three controllers have been implemented and experimen-
tally tested on the model-scale ship CSAD [20] in the Marine
Cybernetics Laboratory (MC-Lab) at NTNU, for the same
4-corner scenario as in the simulations, see Fig 4. The
MC-Lab is equipped with a Qualisys motion capture system

FIGURE 13. The 4-corner experiment: Using NP-LV feedback terms.

FIGURE 14. The 4-corner experiment: Using NP-NV feedback terms.

in order to measure the pose η of the ship. An estimator
of the velocity ν has also been implemented. The control
parameters are the same as for the simulations, see Table 1.
The controllers are simple to implement and none of them
have any significant computational complexity.

Figs. 12-14 show the ship pose and box outlines for the
4-corner test for the LP-LV, NP-LV and NP-NV controllers,
respectively. Considering the commanded control inputs of
the three controllers, which is shown in Fig. 15, the intensity
of the peak values of the control signal is similar to the ones
from the simulation shown in Fig. 8. Here, we also see that
the three controllers finish the 4-corner test at different times,
which is similar to the simulations.
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FIGURE 15. The 4-corner experiment: The commanded control inputs.

TABLE 3. Final values of the performance metrics for the experiments.

Comparing Fig. 16 with Fig. 9 and Fig. 17 with Fig. 10,
similar observations can be made for the experiments as for
the simulations.

Fig. 18 shows the performance metrics IAE and IAEW
for the three controllers, which also shows a similar result
as in the simulations. Table 3 shows the final values of the
performance metrics for the experiments.

F. DISCUSSION
This article has shown some additional findings compared to
the original findings in [10], using the suggested tuning rules
and a different test scenario.

Comparing the results between the simulated and exper-
imental 4-corner tests, similar performance is obtained
with respect to the amount of time that the different
controllers need to complete the test. Additionally, the
NP-NV controller gives the best IAE performance for the
considered controllers for both the simulated and exper-
imental tests, while the NP-LV controller consistently
uses the least amount of energy among the considered
controllers.

Based on the simulation and experimental results, the NP-
LV controller comes out on top since it uses the shortest
amount of time to complete the 4-corner test. In addition,
it has the best energy efficiency as shown by the IAEW met-
ric, and it has a similar tracking performance as the NP-NV
controller as shown by the IAE metric. In contrast, the purely
linear feedback controller LP-LV uses significantly more
time to complete the test, with higher IAE and IAEWas a con-
sequence. Thus, the combined ability to constrain the feed-
back control input globally while changing the convergence

FIGURE 16. The 4-corner experiment: The pose feedback terms as
functions of the pose errors.

rate locally, for the nonlinear feedback controllers, seems to
be advantageous. The price to be paid is the introduction of
more tuning parameters, represented by the 1-parameters,
which must be chosen carefully. If they are chosen too small,
the control signal will get a discontinuous behavior and can
make the control signal exceed the saturation constraints in
the linear region.
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FIGURE 17. The 4-corner experiment: The velocity feedback terms as
functions of the velocity errors.

The nonlinear feedback control concept suggested in this
article is an initial step toward handling actuator saturation
constraints, as well as resulting in improved transient behav-
ior. Also, the cascaded control approach makes it possible
to combine the controller with explicit constraint-handling
algorithms such as e.g. the dynamic window algorithm [24],
as preliminary suggested by the results in [25].

FIGURE 18. The 4-corner experiment: IAE and IAEW performance metrics.

VI. CONCLUSION
This article has further investigated combinations of linear
and nonlinear feedback terms for pose and velocity control of
ships. Through numerical simulations andmodel-scale exper-
iments in a ocean basin, three cascaded controllers are com-
pared using performance metrics that consider both control
accuracy and energy use. The performance metrics show that
the nonlinear feedback controllers outperform the linear base-
line controller for the considered step-change maneuvers of
the 4-corner test. The combined ability to constrain the feed-
back control inputs globally and to change the convergence
rates locally, for the nonlinear feedback controllers, seems
to be advantageous. The price to be paid is the introduction
of additional tuning parameters, namely the 1-parameters.
The paper also suggests appropriate tuning rules for the
considered controllers. Moreover, stability proofs for the
considered closed-loop control systems are provided. Future
work includes introducing model uncertainties and unknown
disturbances to the ship system. In addition to the mitigation
of magnitude saturation constraints considered in this article,
it is also relevant to consider how actuator rate saturation
constrains can be handled.
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