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ABSTRACT A non-intrusive data collection framework is developed to analyze the desk-level occupancy
and energy use patterns of occupants in shared office spaces. The framework addresses the limitations of
previous studies in the literature, which either lacked the granularity to study individual occupants’ behaviors
or relied on data from complex BuildingManagement Systems (BMS). The framework is applied to a shared
office space of an academic institution in the United Arab Emirates (UAE), where occupancy, lighting, and
plug-load data were collected from individual desks for 6 months. The results highlight weak relationships
between the occupancy status and the total electric loads, with 35% of the total electric loads consumed when
the area is completely vacant, and 64% of the plug-load energy consumed when the desks were reported
as unoccupied. While specific to the studied building, the results highlight the role that a high-resolution
data monitoring framework plays in capturing inefficient consumption patterns. The findings also confirm
the contribution of occupant behavior (OB) to the energy performance gap commonly observed between
predicted and actual energy levels.

INDEX TERMS Buildings, energy conservation, monitoring, occupant behavior, performance analysis,
shared office.

I. INTRODUCTION
A. BACKGROUND
Building energy management is an increasingly used process
to control energy consumption and costs in buildings while
maintaining comfortable indoor environmental conditions for
occupants and fully meeting functional needs [1]. In com-
mercial buildings, facility managers are often tasked with
managing building energy demands and indoor conditions by
continually monitoring, evaluating, and optimizing the oper-
ation efficiency of different building systems [2]. A common
way to gather the needed data for analysis is through Building
Management Systems (BMS). A BMS is a system of sensors,
communication networks, and controls, which can be used
to monitor the performance of various building systems and
control their operation patterns. Benchmarking can then be
performed (with the help of additional utility data), which
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consists of comparing the energy performance of a building to
a baseline or ‘‘benchmark’’ [3]. The baseline can be obtained
from a group of similar buildings (i.e., cross-sectional bench-
marking), or from past performances of the building under
study (i.e., longitudinal benchmarking). This method allows
facility managers to identify higher than expected energy
consumption levels. Along the same lines, Fault Detection
and Diagnostics (FDD) is another method that helps iden-
tify abnormal operation patterns that can cause excessive
energy use levels [4]. Based on the faults detected in differ-
ent building systems, facility managers can perform corre-
sponding maintenance actions to reduce energy consumption
levels [5], [6]. Despite significant advancement in the design
of efficient building systems and energy management strate-
gies, important discrepancies are commonly found between
the energy levels estimated for buildings during the design
phase, and those observed during operation [3], [7]. This is
often referred to as the energy performance (or efficiency)
gap.
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B. OCCUPANT BEHAVIOR
Among various contributing factors to the energy per-
formance gap (e.g., faults in systems or weather varia-
tions), recent studies indicate that occupant behavior (OB)
is one of its major drivers since actions taken – or not
taken – by occupants can significantly impact building per-
formance [3], [7]–[10]. In [7], the authors demonstrated that
different OB patterns could vary the total energy used by
150% for commercial buildings. In [8], different occupant
profiles were created and used as inputs to building energy
models. The authors found that occupant behavior can save
up to 50% of current energy use levels or increase them
by 89%.

The growing body of knowledge on the impact of OB on
buildings’ energy performance has motivated further research
on OB data acquisition [11], analytics [12]–[15], and pre-
dictive modeling [12]. Previous studies analyzed occupancy
and energy consumption data using different data granularity.
For instance, zone-wise energy use data, in combination with
estimated occupancy levels, were used in [13]. The authors
in [16] fused measured binary zone-wise occupancy with
zone-wise energy consumption. In other studies, the energy
use per device type was investigated while no data regard-
ing the measured occupancy count was available [17]–[19],
or, in conjunction with binary occupancy states (e.g., [20]).
In parallel, a higher granularity of the energy consumption
data for single occupants has been explored. Here, the energy
consumption has commonly been analyzed as a sum of all
used devices [12], [21], [22]. Resultantly, the device-wise
data, in combination with the occupancy data for each in-situ
monitored occupant, has been rarely analyzed in the scope of
existing studies. It is also important to note that the majority
of studies typically gather their data through a centralized
BMS, which makes their analysis replicable only to buildings
with similar monitoring capabilities. Such systems are often
incompatible with other existing systems (especially for old
buildings) or might be too expensive to install.

C. NON-INTRUSIVE LOAD MONITORING
Non-intrusive load monitoring (NILM) is a mature technol-
ogy [23] that has been widely researched and can offer an
alternative to centralized data collection approaches, such
as through BMS. The concept of NILM is based on having
a monitoring system in the form of energy meters, smart
sensors, or other sensing technologies, that separates the
aggregated data regarding the electrical consumption in the
area of study into individual appliance consumption profiles.
The novelty of this method stems from the involvement
from the user-end since it requires little to no intervention
on behalf of the occupants [23], [24], and its negation of
the necessity to connect the monitoring devices or sensors
to existing infrastructure. It was acknowledged as a suit-
able data collection procedure, especially in cases where the
connection to a BMS is restricted. NILM was applied to
recognize the appliance types in commercial and residential
buildings [24]–[28]. For instance, the authors of [26] dis-

aggregated device types collected by NILM using Hidden
MarkovModel (HMM). Others proposed unsupervised learn-
ing for recognizing the device type and load segregation in
household energy consumption, based on load classification
and source separation [24].

However, the non-intrusive monitoring commonly applied
in the context of energy analysis often lacked explicit and
granular occupancy information [29]–[32]. As a conse-
quence, the potential of NILM in combination with high-
resolution occupancy data remains an open question. As an
example of non-intrusive monitoring efforts, the authors
of [30] investigated the relationship between the energy con-
sumption and occupancy that was implicitly detected based
on WiFi count. They concluded that the number of con-
nected WiFi devices correlated with the resulting energy
consumption. However, their scope was limited to zone-level
energy load values that were estimated from trends reported
by a BMS. In a more recent study, researchers proposed
a non-intrusive occupancy count in an effort to optimize
Heating, Ventilation, and Air Conditioning (HVAC) energy
consumption [31]. They argue that reheat energy use can be
reduced by 38% if the HVAC settings are adjusted to reflect
actual occupancy levels. While the authors did not explore
end-uses such as plug-loads or lighting levels, their findings
support the potential of non-intrusive monitoring of OB in
identifying energy-saving opportunities.

D. OBJECTIVES
The goal of this study is to develop a non-intrusive data
collection framework that can be used to capture the energy
use patterns of individual occupants in a shared office space
and quantify energy-saving opportunities. The framework is
unique in its ability to monitor – at the desk level – the
occupancy status and energy consumption levels by type of
device (e.g., monitor, laptop, task light), in addition to general
lighting loads. Such a level of granularity is rarely achieved
in the literature, especially for shared office spaces. Further-
more, the non-intrusive nature of the proposed data collection
approach makes the framework completely independent from
a BMS, and hence applicable to any building. In this context,
the framework is deemed as non-intrusive in terms of the non-
invasive nature of data collection to existing building systems
and its independence from any BMS infrastructure. The inde-
pendence from aBMSwas a crucial factor in this work, which
is whyHVACdata was excluded since any kind of HVACdata
is reliant on an existing BMS. The framework instead focused
on the energy consumption patterns generated directly by the
occupant at their desks, with emphasis on granularity and
device utilization.

The framework is demonstrated through a case study of a
shared office space in an educational facility where data is
collected for a duration of 6 months. The data is then used to:

1) Quantify the relationship between the presence of indi-
vidual occupants at their desks and the amount of
energy they consume for two end-uses: plug-loads and
lighting.
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TABLE 1. Related work.

2) Estimate the potential energy savings from reducing
consumption during unoccupied periods, both at the
office level and by device type (e.g., monitors or task
lights).

3) Compare the monitored energy consumption profiles
of the occupants to the standard profiles (obtained from
ASHRAE) that are commonly used by energymodelers
when designing and simulating the performance of a
similar building environment. Such an assessment can
help explain – or contribute to the discussion of – the
role of OB in the energy performance gap commonly
observed in commercial buildings.

In summary, the main contributions of this work stem from
the granularity and resolution of the data collection, cou-
pled with the multiple sensing modalities and data streams
effectively capturing the occupant presence status, the envi-
ronmental parameters, and the associated plug loads of each
device. This data was captured at the individual desk level,
in a shared office space in Abu Dhabi, UAE, thereby also
contributing a new regional perspective to a body of case stud-
ies (highlighted in the next section) that commonly originate
from western countries.

II. RELATED WORK
This section explores previous research works relevant to this
study, particularly OB and NILM applications. The summary
is presented in Table 1, organizing the studies according to
the type of buildings they covered, the region that they were
conducted in, the specific type of occupant data collected,
the sensing modalities used for data acquisition, and the
granularity of this data. The regional information column
is accompanied by the respective Köppen–Geiger climate
classification (KGCC), which is one of the most commonly
used classifications systems. The first letter of the classifica-
tion represents one of five broad climate types (A: tropical,

B: dry, C: temperate, D: continental, and E: polar). The sec-
ond and third letters represent subcategories corresponding
to seasonal precipitation and heat levels. For instance, ‘fb’,
represents a warm summer humid sub climate.

The following two main observations from Table 1 recon-
firm the gap in the literature and the need for the current work:
(i) while plug loads have been the primary focus of the listed
studies, very few of them consider occupancy parameters,
especially at desk level, to better explain the impact of OB
on the monitored energy data; (ii) along with the granularity
and resolution of the data collection, the lack of studies from
the Middle East region (e.g., KGCC of Bwh) is clear, which
is another viable gap to address given the complex and case-
specific nature of OB.

III. METHODOLOGY
The area of study is an open-office space in an educational
building in Abu Dhabi, UAE, as shown in the bottom part
of Fig. 1 (View A). It is occupied by graduate students and
research employees where an individual desk is assigned to
each student. The working hours vary due to the absence of
official working hours, and the building operating 24/7. The
shared office space consists of 6 individual desks, 2 main
computer workstations (designated as shared), and a common
table, as shown in Fig. 1. A total of 8 students occupied the
space over the evaluation period of six months. A maximum
of 6 students were present at the same time since 2 stu-
dents graduated during the study period and were replaced
by 2 new ones. The area is illuminated by motion-controlled
area lights, while each desk is equippedwith its ownmanually
operated desk light. The area is accessible throughout the
week by the employees of the educational facility. It may
be noted that this is not a completely controlled environ-
ment, since the working hours are flexible, and though there
are 6 primary occupants, there are no restrictions for visitors,
who often do occupy the common table. This suited the
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FIGURE 1. Area of study and sensor placement.

objectives of the work since the non-intrusive nature of the
proposed monitoring and analysis approach signified that
the occupants should not be imposed upon by the nature of
the study, such as adding rigid working hours or restricting
access.

Fig.1 presents a schematic view of the area showing the
number and placement of different sensors around eachwork-
station along with four closer looks at representative setups
(views A-D). Fig.1 also shows the back-end wall of the office,
which is the only façade exposed to the outdoor environment.
The window-to-wall ratio (WWR) of the studied area is 26%.

Overall, access to daylight was limited in the building due
to the low WWR stated above in addition to external shading
devices installed on thewindows. These shading devices were
part of passive cooling strategies meant to reduce the heat
gains in the building considering the extremly hot climate of
the region. This resulted in low daylight availability, which
is further examined in [36], leading to a high reliance on
the artificial lighting system. Moreover, the artificial lighting
system was motion-based, eliminating the potential for the
occupant to control its status, regardless of the amount of
daylight available.
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A. SENSOR INSTALLATION AND CALIBRATION
In the scope of this study, occupancy, plug-load, and lighting
(illuminance) sensors were installed. The latter is used to
determine the on-off status of lighting fixtures and calcu-
late their electric energy use accordingly. The sensors were
commercially available and required no connection to BMS,
which allows the replicability of the study to other built
environments.

1) OCCUPANCY SENSORS
A total of 9 PIR-based (passive infrared) occupancy sensors
are placed in the study area, including 6 at the individual
desks, 2 at the shared computer workstation, and 1 at the
shared table (Refer to Fig. 1, Schematic view). Each sensor
is installed under the desk it monitors, has a unique ID, and
reports the occupancy status of the desk (i.e., occupied or
unoccupied) in real-time to a host receiver over WiFi. More
specifically, the sensor only communicates with the server
(without noticeable delays) whenever there is a change in the
occupancy status, such as from ‘occupied’ to ‘unoccupied’,
and vice-versa. The detection range of the sensor was up
to 80 meters, provided there was no obstruction. In order to
calibrate the sensors, three factors were taken into account:
detection of the occupant at all positions at their desk, avoid-
ance of false triggers from passersby, and no occlusions.

The exact placement of the sensors is an essential factor in
the installation/calibration process. At each desk, the sensor
needs to register the presence of the occupant in all extents
of their position in front of the desk. At the same time,
it should avoid false triggers from people passing in the
area or sitting at nearby desks. To understand the sensors’
radius of influence, sensitivity, and trigger points, a sensor
was first placed in a fixed position on the desk while an
occupant was seated. The authors then asked the occupant to
move between the ends of the desk as well as away from it
while recording the occupancy status reported by the sensor.
An optimal position was found and shown in Fig. 1 (View
B), reporting an ‘occupied’ status only when the occupant
was within the boundaries of the desk and up to half a meter
away from it. The process was repeated for all 9 occupancy
sensors, which were then connected to the host WiFi receiver.
The sensors were evaluated for a period of one week by com-
paring their measurements to manually recorded occupancy
at different times of the day. This process confirmed that
the occupancy sensors were calibrated and properly placed.
Additional information on the specifications of the occupancy
sensors can be found on the manufacturer’s website [37].

2) PLUG-LOAD SENSORS
The office space has a total of 48 different power outlets,
6 per desk, which are used by the occupants to connect
their plug-loads devices (refer to Fig. 1, Schematic view).
A plug-load monitoring device is installed for each power
outlet (48 in total), allowing the authors to monitor the energy
consumed at each outlet at a 15-min interval. Each sensor

has a unique ID and connects to a host receiver over WiFi.
Fig. 1 (Views C and D) show sample pictures of the sensors
and their placements in the electric sockets.

The authors configured and installed each sensor, con-
nected it to the receiver’s network, and labeled it to clarify
what type of plug-load it is measuring. This was done in
collaboration with the occupants who agreed to connect their
devices (e.g., laptops, monitors) in the specific plugs that are
labeled for that use. Each occupant had 6 power outlets at
their desks, which were used for different devices as follows:
1 desk lamp, 1 docking station, 2 computer monitors, 1
laptop, and 1 miscellaneous. Apart from the necessity of con-
necting each device to its associated power source, the occu-
pants were free to leave any device switched on during their
absence, or take it with them. The overall list of plug-loads
that are measured in the shared office are listed next along
with their instances: 6 docking stations, 6 laptops/notebooks,
2 desktop computers (shared), 14 computer monitors, 6 desk
lamps (task lights), and 14 miscellaneous loads. Following
the installation, the authors confirmed the accuracy of the
sensors during a one-week evaluation period by comparing
their reported energy use to the power specifications of the
devices they are monitoring. This concluded the verification
process for the plug-load sensors. Additional information on
the specifications of the plug-load sensors can be found on
the manufacturer’s website [38].

3) LIGHTING SENSORS
The area of study is illuminated by 6 ceiling fixtures, which
were positioned as shown in Fig. 1 (Schematic view and
View A). Each of the fixtures is equippedwith and is activated
by motion sensors, without any option for manual control
and/or dimming. In addition, natural daylight was also avail-
able, which led to a low need for using desk lamps. Given
the non- intrusive nature of the proposed research approach,
it was important to monitor the energy consumption of the
lighting system without having to connect to the existing
building’s infrastructure (e.g., BMS or electric supply lines).
This is achieved by installing light illuminance sensors that
measure the intensity of the light (in lux) near each lighting
fixture at 15-min intervals. Then, based on the monitored
levels of illuminance, the on/off status of each lighting fixture
can be inferred and used to determine the energy consumed by
simply multiplying the duration of use by the power wattage
of the fixtures.

The placement of the lighting sensors was carefully done
to first, have each lighting fixture monitored by one lighting
sensor, and second, minimize the noise in the measurement
from neighboring lighting fixtures, or daylight. The final
placement of the sensors is shown in Fig. 1 (Schematic view).
It should be noted that Fixtures 5 and 6 are triggered by the
same motion sensor; hence, one lighting sensor was placed
between these fixtures. Following the installation of the sen-
sors, the illuminance output of the sensors was monitored for
one week, and thresholds were set to distinguish between the
on/off statuses of the fixtures. Put differently, it was important
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to identify a reference illuminance value (for each light illu-
minance sensor) above which the neighboring lighting fixture
is ‘‘on’’, and below which it is ‘‘off’’. After analyzing the
data that was collected, it was noticed that the average value
between the lowest and highest illuminance value monitored
by each sensor is a good and reliable threshold. In addition,
since the sensors were positioned very close to the light
sources, the availability of daylighting did not create a signifi-
cant difference in these illuminance thresholds. Observations
at different times of the day confirmed the adequacy of this
approach in implying the actual on/off status of each fixture.

Finally, unlike the previous occupancy and plug-load sen-
sors, lighting sensors stored the data locally. Manual data
transfers were performed bi-weekly through the USB ports
of the sensors and stored on a local computer. Additional
information on the specifications of the lighting sensors can
be found on the manufacturer’s website [39].

B. DATA COLLECTION AND PROCESSING
Following the verification process for the three types of
sensors described above, data was collected for a period
of 6 months, covering the months of April-May, July-August,
and October-November 2017. A routine check (weekly or bi-
weekly) was carried out to ensure that the sensors are working
properly, restarting, or reconfiguring malfunctioning sensors
when needed. All the collected data (over WiFi or manually)
were gathered in one CSV Excel spreadsheet file for data
processing and analysis.

In this study, the plug-load and lighting sensors reported
data in a 15-min interval, while the occupancy sensors only
reported data when the occupancy status changes (i.e., a space
became ‘occupied’ or ‘unoccupied’). To ensure consistency
between the different datasets, the occupancy sensor data was
converted to a 15-min format by setting the last recorded
trigger type (i.e., occupied/unoccupied) within each 15-min
time as the new occupancy status for that period. If no triggers
are observed within a period, the state of the preceding period
is taken by default. Lighting energy consumption was calcu-
lated for each fixture in 15-min intervals. If the fixture was
estimated to be ‘‘on’’, then its energy consumption is calcu-
lated by multiplying the power wattage of each fixture, which
consists of two lamps consuming 28W each, by 15 minutes.

C. VALIDATION PROCESS
As mentioned in the previous section, routine checks were
carried out every week to ensure the proper functioning of
sensors. This would comprise of manual notation of occu-
pancy triggers and checking them with the reported data,
along with checking the functionality of plug-load sensors to
ensure that they are representational of the occupant activi-
ties. The illuminance sensors were battery-operated and had
to be accessed through their respective dashboards to ensure
that they had enough power to function for the next few
weeks. Written consent was obtained from all the occupants
included in the study. Theweeks that had a significant amount
of missing data, or malfunctioning sensors, were removed

before the final data analysis. However, it should be noted
that those weeks were mostly at the beginning of the course
of study, and after conducting the required adjustments, the
study was able to operate smoothly.

D. DATA ANALYSIS
The data analysis consists of three main stages. The first
stage is to quantify the relationships between the presence
of occupants in the office space and the levels of energy
that are consumed. A distinction is made between the energy
consumption of plug-loads and that of general lighting loads.
Plug-loads are directly controlled by the occupants, which
makes it their responsibility to operate these loads efficiently
(i.e., turning them off when leaving a space). Lighting loads
are triggered by dedicated motion sensors that are installed
and maintained by facility managers (FMs). Therefore, it is
the responsibility of FMs to ensure the proper calibration
and operation of these systems to avoid over-lighting (e.g.,
passing occupants triggering the lighting system) or under-
lighting (e.g., motion sensors failing to capture occupancy
presence). The link between occupancy presence and differ-
ent end-use consumption is studied using box-whisker-plots
of the monitored power levels for varying levels of occu-
pancy; the minimum occupancy level being zero occupancy
sensors indicating an ‘‘occupied’’ status while the maximum
occupancy level being all 9 sensors indicating an ‘‘occupied’’
status. Such a representation helps visualize how dependent
energy demand is given a certain level of occupancy in the
space.

The second stage consists of quantifying the amount of
energy that is consumed while the occupants are away from
their desks. In theory, this portion of energy can be considered
as unnecessary or as a potential for energy conservation.
In practice, some plug-loads such as the shared desktop com-
puters may be used to run experiments or simulations without
the presence of occupants at the desk, which may explain
a portion of any energy consumed during vacant periods.
Therefore, it is essential to make such a distinction before
labeling some of its energy consumed as unnecessary. Two
particular analyses are presented. The first is an office level
analysis comparing the energy consumption of the office
during ‘‘vacant’’ periods (i.e., zero occupancy sensors trig-
gered) and ‘‘occupied’’ periods (i.e., at least one occupancy
sensor triggered). This approach is commonly used in the
literature when occupancy is monitored at the office level
rather than the desk and corresponding device (i.e., plug-load
level). The second analysis covers the performance of specific
device- types (e.g., laptops, monitors, and docking stations)
while distinguishing between their energy consumptionwhile
occupants were present at or away from their desks. In this
stage of the analysis, the ‘‘vacant’’ and ‘‘occupied’’ occu-
pancy statuses refer to the presence and absence of occupants
from their desks (respectively), while a specific plug-loadwas
consuming energy.

The last stage of analysis consists of developing diver-
sity profiles (i.e., schedules) of the occupancy, lighting, and
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FIGURE 2. Box-and-whisker plots of electric load function of the number of occupants’ sensors that are indicating occupied status.

plug- load patterns observed in the studied area. Diversity
profiles show the intensity of a variable (i.e., occupancy,
lighting, and plug-load) over the 24 hours of a typical day.
The intensity is expressed in numerical values from 0 to 1,
where 0 represents the minimum possible value (e.g.,
no occupancy or no energy consumption), and 1 represents
the maximum possible value (e.g., maximum occupancy or
maximum energy consumption). Diversity profiles are com-
monly used by energy modelers when simulating/predicting
the performance of actual buildings.

The American Society of Heating and Refrigeration Engi-
neers (ASHRAE) has developed profiles for common build-
ing types (e.g., office), which are extensively used in the
literature (e.g., [40]). However, recent research (e.g., [41])
shows significant discrepancies between ASHRAE profiles
and those observed in actual buildings. Moreover, since the
developed profiles are for common building types, academic
buildings are not explicitly covered; there is often a need to
build new schedules for these buildings to achieve an efficient
energy management system [42]. This has motivated the cur-
rent stage of the analysis, where a comparison is conducted
between the ASHRAE profiles and those of the studied area.
In total, diversity profiles are developed for occupancy levels,
lighting, and plug-loads energy consumption. A distinction is
also made between weekdays and weekends, which typically
witness different occupancy and energy use patterns.

The occupancy diversity value for a typical hour h of the
day (e.g., 00:00-01:00 am) is computed using (1), which
averages the ratio of sensors with ‘‘occupied’’ status over
the total number of sensors over the study period from the
first day ‘‘d’’ of the study to day N. Equation (2) is used
to compute the diversity factors for plug-loads and lighting

energy use. The diversity for the end-uses is defined as the
ratio of the observed energy (i.e., monitored) to the maximum
energy observed throughout the study. Here again, to obtain
the diversity value for an hour h, the values observed for that
hour over the N days of the study are averaged.

Occupancy Diversity =

∑
d=1 N

#Sensors Occupied
#Sensors Total

N
(1)

Energy Diversity =

∑
d=1 N

Energy Consumed
Max Energy Observedl

N
(2)

IV. RESULTS
A. RELATIONSHIPS BETWEEN OCCUPANCY LEVEL AND
ELECTRIC LOAD
The relationship between the occupants’ count and electric-
ity consumption in the space is analyzed using box (and
whisker) plots (Fig. 2). Here, the median consumption (cen-
tral red-colored line), 25th and 75th quartiles (blue-colored
box limits), and the outliers (red-colored crosses outside of
the boxes) are used to present the distribution of the measured
power loads. The resulting boxplots show that the total light-
ing and plug-loads power could be correlated to the number
of present occupants. However, the baseline energy values
corresponding to the null occupancy are higher than expected,
as detailed next.

Starting with the lighting system (central box plot
in Fig. 2), during vacant periods (i.e., 0 occupants present in
the space), the mean power values for the lighting system
exceeds 200W,with 25% and 75%quantiles between approx-
imately 0 W and 300 W, respectively. The lighting system,
which is controlled by motion sensors, seems to be triggered
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FIGURE 3. Office-level comparison of the energy consumed during vacant
and occupied periods. ‘‘Vacant’’ refers to periods where there are no
people in the office space. ‘‘Occupied’’ refers to periods with at least one
occupant in the office.

by occupants passing by the monitored workspace. Such a
scenario was tested by the researchers who confirmed that
walking in the hallway near the office space was triggering
the lighting system. Additionally, for the three higher ranges
of occupancy (i.e., 1-2, 3-4, and 5+ occupants), the aver-
age power level is almost the same (∼350W). The results
indicate that the presence of 1-2 occupants was sufficient
to activate the lighting for the whole workspace, despite
having 5 lighting zones that are controlled by independent
occupancy motion sensors. These results pointed out the
importance of the choice of suitable light control systems
and the crucial role of the building operation management to
ensure the proper calibration and maintenance of the systems.

The box-plots of the plug-loads, shown on the right side
of Fig. 2, reveal similar inefficient patterns as with the light-
ing system. High power levels are observed during vacant
periods, here again exceeding 200 W in average value. The
results imply that occupants are constantly leaving plug-load
equipment running when leaving their desks, which is fur-
ther explored in the upcoming sections. However, unlike the
lighting systems, there is a positive relationship between
the average power levels and the occupancy count bins
of 1- 2, 3-4, and 5+ occupants. Such a trend was expected as
an office space with a higher number of occupants is expected
to consume more, and vice-versa.

Finally, the patterns of total electric loads shown on the left
side of Fig. 2 are simply an addition of the lighting and plug-
load power values. The box plots are characterized by high
consumption values during vacant periods (average power
levels exceeding 400W) and a moderate positive relationship
between occupancy count and total electric loads.

B. ENERGY CONSUMPTION DURING ‘‘OCCUPIED’’ AND
‘‘VACANT’’ PERIODS
1) OFFICE-LEVEL ANALYSIS
The energy consumption of the lab was analyzed for the peri-
ods of occupancy (i.e., with 1 occupant or more) and vacancy
(i.e., 0 occupants). The results are presented in Fig. 3. The bar

FIGURE 4. Device-level comparison of the energy consumed during
vacant and occupied periods. ‘‘Vacant’’ refers to periods where a specific
device was running without the presence of an occupant at the desk.
‘‘Occupied’’ refers to periods where an occupant was present at the desk
during the operation of the device.

chart on the left side shows that 35% of the lab’s electric
consumption occurs during the vacant hours. A similar trend
could be observed when energy consumption was separately
analyzed by end-use. Here, 38% and 26% of the consumption
occurred during vacant hours for the lighting system and
plug-loads, respectively. These results confirmed the findings
of previous studies (e.g. [12], [43], [44]) that have observed
a significant proportion of building energy systems running
after hours.

It is important to note that the observed values for the plug-
loads are conservative due to the definition of the office-level
‘‘occupied’’ period that was used; the space is considered
occupied if there is at least one occupant present. Such an
assumption might lead to an overestimation of the plug-load
energy consumed during operation and an underestimation of
the portion consumed during ‘‘vacant’’ periods. For instance,
in a scenario where occupant A is the only occupant present
in the shared office while the computers and monitors of all
occupants are running during that period, the energy con-
sumed by all occupants would be labeled as energy during
an ‘‘occupied’’ period. Hence, the results presented in Fig. 3
(right side) can be considered conservative, and in reality,
more plug-load energy is consumed when individuals are
away from their desks, as shown in the next subsection.

2) DEVICE-LEVEL ANALYSIS
Eventually, the energy consumption for occupied and absent
periods was analyzed at the device-level granularity. In this
section, the occupancy status of each desk was evaluated
separately and was used to classify the energy consumption
of associated plug-loads between ‘‘vacant’’ and ‘‘occupied’’.
As presented in Fig. 4, between 31% and 93% of the energy
consumed by each type of the plugged-in device was con-
sumed while no occupancy was detected at the respective
desk. Hence, by recalculating the total plug-load energy con-
sumed during ‘‘vacant’’ and ‘‘occupied’’ periods at the desk-
level, it is seen that 64% of the plug-load energy is actually
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FIGURE 5. Comparison between the ASHRAE 90.1 profiles with the measured occupancy, plug loads, and lighting energy consumption.

consumed when the occupancy status of the desks is reported
as ‘vacant’. As such, even though all the 8 desks cannot be
occupied at the same time, the occupants are responsible for
switching off relevant equipment when leaving the worksta-
tion, which is why any consumption at a desk when it is
unoccupied is classified as ‘unnecessary consumption’.

A major contributor to this misbalance is the use of the
shared personal computer, with 93% of its energy consump-
tion occurring without the presence of an occupant. This can
be caused by the use of computers to run experiments sched-
uled by occupants for unoccupied periods, and, resultantly,
could not be identified as a clear saving potential. While such
kind of shared computer is specific to this particular academic
setting, shared equipment (e.g., printers and appliances) is
an integral part of office spaces and commercial buildings.
Therefore, the need to identify instances of unoccupied con-
sumption can be beneficial in cases wherein they do represent
a clear saving potential.

In parallel, end-uses, such as monitors and lamps, also
show important energy consumption during vacant peri-
ods and can be easy targets of energy curtailment efforts.
In summary, the adopted device-wise monitoring granularity
revealed important energy-saving potentials that were not
observed when considering occupancy in the office as a
binary variable, as in the previous section.

C. DIVERSITY PROFILES AND COMPARISON TO ASHRAE
Eventually, the mean daily occupancy and energy consump-
tion patterns were analyzed and compared to the schedules
recommended by ASHRAE 90.1 [40] for office buildings
(Fig. 5). The figure illustrates the difference between the
measured loads and the ASHRAE-proposed profiles for each
operating schedule, including workdays and the two pro-

files defined for weekends. The workdays, as defined by
ASHRAE, were the typical working days (i.e., Sunday to
Thursday in Abu Dhabi). Consequently, the ASHRAE 90.1
schedules proposed for Saturday and Sunday were compared
to the data collected on Fridays and Saturdays, respectively.

The results showed that the schedules proposed by the
guidelines could not realistically depict the magnitude nor the
course of the occupancy and energy consumption in the build-
ing in question. Significant deviations are observed between
the standard schedules and the measured occupancy and
energy consumption. To shedmore light on the discrepancies,
Fig. 6 presents the absolute hourly error between the theoret-
ical and observed occupancy, lighting, and plug-loads. The
error values show that occupancy and plug-loads were (for
the most part) overestimated over the typical working hours
of workdays while being underestimated outside of working
hours. In contrast, lighting loads were consistently under-
estimated throughout the week. The following are potential
contributing factors to the observed discrepancies.

Firstly, the studied area is a shared office space in an
educational facility, where the occupants are graduate stu-
dents. Unlike a traditional office space with clear working
hours, the studied environment provides the researchers with
a flexible working schedule that allows them to attend classes,
events, or work remotely. The students often choose to work
over the weekends, which is less common in traditional
office environments. Secondly, the number of occupants stud-
ied is relatively low, which makes the impact of individual
behavior significant on the general patterns shown in Fig. 5.
Such an effect will be less significant if the office has a
higher number of occupants. Thirdly, schedules, such as
ASHRAE’s, assume a good correlation between occupancy
patterns and the energy use levels of systems, such as lighting
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FIGURE 6. Error bars of the measured and standard diversity factors for occupancy, plug loads, and lighting energy consumption. The colors overlap
in cases where the direction of over/underestimation of the variables is the same at a particular hour of the day.

and plug-loads. The results from Fig. 5 show that the lighting
and plug-load patterns seem to follow the occupancy patterns
to a good degree. However, there is an important difference
in the scale or magnitude of the profiles. From an operation
perspective, the observed gap reconfirms the inefficient use
of the lighting and equipment, where a low occupancy level
can lead to electric consumption levels near their maximum
possible values. From a design perspective, the observed
discrepancies are difficult to account for during the design
stage and could contribute to misestimations of the actual
energy use levels (i.e., energy performance gap).

V. DISCUSSION, LIMITATIONS, AND FUTURE WORK
The framework presented in this paper evaluated and quanti-
fied the weak relationships between occupancy patterns and
electric loads in the studied space. More importantly, the
granularity of analysis ensured the identification of the causes
of those discrepancies. As discussed earlier, one primary
source of unnecessary lighting consumption at the office
level was attributed to the improper calibration and mainte-
nance of the motion sensors activating the lights. This can
be an indication of mismanagement by facility managers,
as well as miscommunication from the occupants who failed
to report inefficiencies in building systems. A non-intrusive
framework with high levels of granularity has the potential
to identify such discrepancies and bring it to the notice of
the facilities management, so that appropriate action can be
taken to avoid more unnecessary consumption. As such, this
framework can be vital to the FDD process as well. It can also
motivate the need for more effective communication channels
between FM and occupants.

It is important to highlight some assumptions that were
made in the study, alongwith its limitations. The first assump-
tion was regarding lighting consumption. In order to maintain

the framework’s non-reliance on a functioning BMS, the
lighting consumption was calculated based on the nominal
wattage and the light status (i.e., on or off), which works on
the assumption that the nominal wattage is a good approxi-
mation of the actual consumption. While such an approach
has been used in the literature [45], [46], deviations from the
actual levels can be observed due, for instance, to inefficien-
cies in electronic components.

Another limitation of the framework is that it does not
currently measure or estimate HVAC loads. Such an addition
is essential to make the proposed framework comprehen-
sive and provide a holistic evaluation of building energy
performance. Another potential expansion of the work can
include indoor environmental factors and various metrics of
occupants’ comfort (e.g., thermal, visual, acoustic, etc.). This
will allow understanding and capturing adaptive actions that
occupants may take to maximize their comfort, which in turn
affect building performance (e.g., window opening).

When it comes to the ‘‘non-intrusive’’ description of the
framework, the term in this paper referred to the concept
of minimal deployment of sensors on the property [23],
[25], with a special emphasis put on the independence from
existing BMS infrastructure. This was rarely achieved in
similar studies in the literature. However, ‘‘non-intrusive’’
can also refer to data collection methods that protect and
anonymize information collected from individuals. While
important steps were taken in this study to protect the occu-
pants’ information, this process can be further developed
and standardized as part of future research and before any
deployment of the framework at larger scales.

Finally, an important limitation pertaining to the case study
is the small sample size used. However, it is important to note
that the aim of the case study was to illustrate and validate the
capabilities of the proposed framework, which, in the opinion
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of the authors, was well achieved. Nonetheless, applications
of the framework on a large number of occupants can further
confirm the observed findings and draw general conclusions
on the role of occupants in achieving low-energy building
performance.

VI. CONCLUSION
This paper proposed a non-intrusive data collection and
framework that was used to capture the energy use patterns
of individual occupants in a shared office space and identify
areas for energy savings. The framework is characterized
by its ability to capture occupancy presence and plug-
load usage at the desk level. This helped identify energy-
saving opportunities that could not be captured with a more
general office-level analysis of energy use. Moreover, the
non-intrusive characteristics of the framework make it inde-
pendent of a BMS infrastructure and easily applicable to other
building environments.

The application of the framework to a shared office space
of an educational facility confirmed the capabilities of the
framework by observing: (1) large amounts of energy being
observed when no occupants are in the office; (2) 64% of the
energy consumed by plug-load devices occurring when the
desks are unoccupied; and (3), large discrepancies between
the observed occupancy and energy consumption profiles on
the one hand, and those provided by ASHRAE, on the other.

It is important to note that the specific results that were
obtained are not meant to be generalized nor extrapolated to
typical academic buildings. Rather, they serve to showcase
the capabilities of the proposed high-resolution data mon-
itoring infrastructure in identifying unexpected (and poten-
tially wasteful) energy consumption patterns in office spaces.
More specifically, the findings highlight the important impact
of people on building energy performance. These include
facility managers, in their role of maintaining and calibrating
centralizing systems (e.g., lighting), and occupants, in their
role of operating end-uses that they control (e.g., plug-loads).

Moreover, the difference observed in the diversity profiles
(Fig. 5 and Fig. 6) from ASHRAE contributes to the growing
body of literature on the drivers of the energy performance
gap commonly observed between predicted and actual energy
use levels. While predicting occupancy patterns and behav-
iors during the design phase is a highly complex – if not
impossible – task, designers can apply methods, such as
uncertainty analysis and parametric variation, to quantify the
performance risk and then apply robust design practices to
mitigate it. In parallel, large-scale data collection efforts can
help refine the diversity profiles used in building standards,
adjusting for different building types, levels of automation,
and geographical locations.
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