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Lie group integrators for mechanical systems

Elena Celledoni, Ergys Çokaj, Andrea Leone, Davide Murari and Brynjulf Owren

Department of Mathematical Sciences, NTNU, Trondheim, Norway

ABSTRACT
Since they were introduced in the 1990s, Lie group integrators have
become a method of choice in many application areas. These include
multibody dynamics, shape analysis, data science, image registration and
biophysical simulations. Two important classes of intrinsic Lie group inte-
grators are the Runge–Kutta–Munthe–Kaas methods and the commutator
free Lie group integrators. We give a short introduction to these classes
of methods. The Hamiltonian framework is attractive for many mechani-
cal problems, and in particular we shall consider Lie group integrators for
problems on cotangent bundles of Lie groups where a number of differ-
ent formulations are possible. There is a natural symplectic structure on
such manifolds and through variational principles one may derive sym-
plectic Lie group integrators. We also consider the practical aspects of
the implementation of Lie group integrators, such as adaptive time step-
ping. The theory is illustrated by applying the methods to two nontrivial
applications in mechanics. One is the N-fold spherical pendulum where
we introduce the restriction of the adjoint action of the group SE(3) to
TS2, the tangent bundle of the two-dimensional sphere. Finally, we show
how Lie group integrators can be applied to model the controlled path
of a payload being transported by two rotors. This problem is modelled
on R6 × (SO(3)× so(3))2 × (TS2)2 and put in a format where Lie group
integrators can be applied.
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1. Introduction

In many physical problems, including multi-body dynamics, the configuration space is not a linear
space, but rather consists of a collection of rotations and translations. A simple example is the free
rigid body whose configuration space consists of rotations in 3D. A more advanced example is the
simplified model of the human body, where the skeleton at a given time is described as a system of
interacting rods and joints. Mathematically, the structure of such problems is usually best described
as a manifold. Since manifolds by definition can be equipped with local coordinates, one can always
describe and simulate such systems locally as if they were linear spaces. There are of course many
choices of local coordinates, for rotations some famous ones are: Euler angles, the Tait–Bryan angles
commonly used in aerospace applications, the unit length quaternions and the exponentiated skew-
symmetric 3 × 3-matrices. Lie group integrators represent a somewhat different strategy. Rather than
specifying a choice of local coordinates from the outset, in this approach themodel and the numerical
integrator are expressed entirely in terms of a Lie group and its action on the phase space. This often
leads to a more abstract and simpler formulation of the mechanical system and of the numerical
schemes, deferring further details to the implementation phase.
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In the literature, one can find many different types and formats of Lie group integrators. Some of
these are completely general and intrinsic, meaning that they only make use of inherent properties of
Lie groups andmanifolds as was suggested in [6,11,41]. But many numerical methods have been sug-
gested that add structure or utilize properties which are specific to a particular Lie group ormanifold.
Notable examples of this are themethods based on canonical coordinates of the second kind [45], and
the methods based on the Cayley transformation [13,32], applicable, e.g. to the rotation groups and
Euclidean groups. In some applications, e.g. in multi-body systems, it may be useful to formulate the
problem as a mix between Lie groups and kinematic constraints, introducing for instance Lagrange
multipliers. Sometimes this may lead to more practical implementations where a basic general setup
involving Lie groups can be further equipped with different choices of constraints depending on the
particular application. Such constrained formulations are outside the scope of the present paper. It
should also be noted that the Lie group integrators devised here do notmake any a-priori assumptions
about how the manifold is represented.

The applications of Lie group integrators for mechanical problems also have a long history, two
of the early important contributions were the Newmark methods of Simo and Vu–Quoc [50] and
the symplectic and energy-momentum methods by Lewis and Simo [32]. Mechanical systems are
often described as Euler–Lagrange equations or as Hamiltonian systems on manifolds, with or with-
out external forces [28]. Important ideas for the discretization of mechanical systems originated also
from the work of Moser and Veselov [39,51] on discrete integrable systems. This work served as
motivation for further developments in the field of geometric mechanics and for the theory of (Lie
group) discrete variational integrators [20,27,30]. The majority of Lie group methods found in the
literature are one-step type generalizations for classical methods, such as Runge–Kutta type formu-
las. In mechanical engineering, the classical BDF methods have played an important role and were
recently generalized [54] to Lie groups. Similarly, the celebrated α-method for linear spaces proposed
byHilber, Hughes and Taylor [22] has been popular for solving problems inmultibody dynamics, and
in [1,2,4] this method is generalized to a Lie group integrator.

The literature on Lie group integrators is rich and diverse, the interested reader may consult the
surveys [7,10,26,46] and Chapter 4 of the monograph [18] for further details.

In this paper, we discuss different ways of applying Lie group integrators to simulating the dynam-
ics of mechanical multi-body systems. Our point of departure is the formulation of the models as
differential equations on manifolds. Assuming to be given either a Lie group acting transitively on
the manifoldM or a set of frame vector fields onM, we use them to describe the mechanical system
and further to build the numerical integrator.We shall heremostly consider schemes of the types com-
monly known asCrouch–Grossmanmethods [11], Runge–Kutta–Munthe–Kaasmethods [40,41] and
Commutator-free Lie group methods [6].

The choice of Lie group action is often not unique and thus the same mechanical system can be
described in different equivalent ways. Under numerical discretization, different formulations can
lead to the conservation of different geometric properties of the mechanical system. In particular, we
explore the effect of these different formulations on a selection of examples in multi-body dynam-
ics. Lie group integrators have been successfully applied for the simulation of mechanical systems,
and in problems of control, bio-mechanics and other engineering applications, see, e.g. [9,25,27,47].
The present work is motivated by applications in modelling and simulation of slender structures like
Cosserat rods and beams [50], and one of the examples presented here is the application to a chain
of pendula. Another example considers an application for the controlled dynamics of a multibody
system.

In Section 2, we give a review of the methods using only the essential intrinsic tools of Lie group
integrators. The algorithms are simple and amenable for a coordinate-free description suited to
object oriented implementations. In Section 3, we discuss Hamiltonian systems on Lie groups, and
we present three different Lie group formulations of the heavy top equations. These systems (and
their Lagrangian counterpart) often arise in applications as building blocks of more realistic systems
which comprise also damping and control forces. In Section 4, we discuss some ways of adapting the
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integration step size in time. In Section 5, we consider the application to a chain of pendula. And in
Section 6, we consider the application of amulti-body system of interest in the simulation and control
of drone dynamics.

2. Lie group integrators

2.1. The formulation of differential equations onmanifolds

Lie group integrators solve differential equations whose solution evolve on a manifold M. For ease
of notation, we restrict the discussion to the case of autonomous vector fields, although allowing
for explicit t-dependence could easily have been included. This means that we seek a curve y(t) ∈ M
whose tangent at any point coincides with a vector field F ∈ X (M) and passing through a designated
initial value y0 at t = t0

ẏ(t) = F|y(t), y(t0) = y0. (1)

Before addressing numerical methods for solving (1) it is necessary to introduce a convenient way
of representing the vector field F. There are different ways of doing this. One is to furnishM with a
transitive action ψ : G × M → M by some Lie group G of dimension d ≥ dimM. We denote the
action of g onm as g · m, i.e. g · m = ψ(g,m). Let g be the Lie algebra ofG, and denote by exp : g → G
the exponential map. We define ψ∗ : g → X (M) to be the infinitesimal generator of the action, i.e.

Fξ
∣∣
m = ψ∗(ξ)|m = d

dt

∣∣∣∣
t=0

ψ(exp(tξ),m) (2)

The transitivity of the action now ensures that ψ∗(g)|m = TmM for anym ∈ M, such that any tan-
gent vector vm ∈ TmM can be represented as vm = ψ∗(ξv)|m for some ξv ∈ g (ξv may not be unique).
Consequently, for any vector field F ∈ X (M) there exists a map f : M → g1 such that

F|m = ψ∗(f (m))
∣∣
m , for allm ∈ M (3)

This is the original tool [41] for representing a vector field on amanifold with a group action. Another
approach was used in [11] where a set of frame vector fields E1, . . . ,Ed in X (M) was introduced
assuming that for everym ∈ M,

span{E1|m , . . . , Ed|m} = TmM.

Then, for any vector field F ∈ X (M) there are, in general non-unique, functions fi : M → R, which
can be chosen with the same regularity as F, such that

F|m =
d∑

i=1
fi(m) Ei|m .

A fixed vector ξ ∈ Rd will define a vector field Fξ onM similar to (2)

Fξ
∣∣
m =

d∑
i=1

ξiEi|m (4)

If ξi = fi(p) for some p ∈ M, the corresponding Fξ will be a vector field in the linear span of the frame
which coincides with F at the point p. Such a vector field was named by Crouch and Grossman [11]
as a the vector field frozen at p.
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The two formulations just presented are in many cases connected and can then be used in an
equivalent manner. Suppose that e1, . . . , ed is a basis of the Lie algebra g, then we can simply define
frame vector fields as Ei = ψ∗(ei) and the vector field we aim to describe is

F|m = ψ∗(f (m))
∣∣
m = ψ∗

(∑
i
fi(m)ei

)∣∣∣∣∣
m

=
∑
i
fi Ei|m .

As mentioned above, there is a non-uniqueness issue when defining a vector field by means of a
group action or a frame. A more fundamental description can be obtained using the machinery of
connections. The assumption is that the simply connectedmanifoldM is equippedwith a connection
which is flat and has constant torsion. Then Fp, the frozen vector field of F at p defined above, can be
defined as the unique element Fp ∈ X (M) satisfying

(1) Fp|p = F|p
(2) ∇XFp = 0 for any X ∈ X (M).

So Fp is the vector field that coincides with F at p and is parallel transported to any other point onM
by the connection ∇ . Since the connection is flat, the parallel transport from the point p to another
point m ∈ M does not depend on the chosen path between the two points. For further details, see,
e.g. Lundervold and Munthe-Kaas [33].

Example 2.1: For mechanical systems on Lie groups, two important constructions are the adjoint
and coadjoint representations. For every g ∈ G, there is an automorphism Adg : g → g defined as

Adg(ξ) = TLg ◦ TRg−1(ξ)

where Lg and Rg are the left and right multiplications respectively, Lg(h) = gh and Rg(h) = hg. Since
Ad is a representation, i.e. Adgh = Adg ◦ Adh it also defines a left Lie group action by G on g. From
this definition and a duality pairing 〈·, ·〉 between g and g∗, we can also derive a representation on g∗
denoted Ad∗

g , simply by

〈Ad∗
g (μ), ξ〉 = 〈μ, Adg(ξ)〉, ξ ∈ g, μ ∈ g∗.

The action g · μ = Ad∗
g−1(μ) has infinitesimal generator given as

ψ∗(ξ)|μ = −ad∗
ξμ

Following [35], for a Hamiltonian H : T∗G → R, define H− to be its restriction to g∗. Then the
Lie–Poisson reduction of the dynamical system is defined on g∗ as

μ̇ = −ad∗
∂H−
∂μ

μ

and this vector field is precisely of the form (3) with f (μ) = ∂H−
∂μ
(μ). A side effect of this is that the

integral curves of these Lie–Poisson systems preserve coadjoint orbits, making the coadjoint action
an attractive choice for Lie group integrators.

Let us now detail the situation for the very simple case where G = SO(3). The Lie algebra so(3)
can be modelled as 3 × 3 skew-symmetric matrices, and via the standard basis we identify each such



INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 5

matrix ξ̂ by a vector ξ ∈ R3, this identification is known as the hat map

ξ̂ =
⎡
⎣ 0 −ξ3 ξ2
ξ3 0 −ξ1

−ξ2 ξ1 0

⎤
⎦ (5)

Now, we also write the elements of so(3)∗ as vectors in R3 with duality pairing 〈μ, ξ〉 = μTξ . With
these representations, we find that the coadjoint action can be expressed as

g · μ = ψ(g,μ) = Ad∗
g−1μ = gμ

the rightmost expression being a simplematrix-vectormultiplication. Since g is orthogonal, it follows
that the coadjoint orbits foliate 3-space into spherical shells, and the coadjoint action is transitive on
each of these orbits. The free rigid body can be cast as a problem on TSO(3)∗ with a left invariant
Hamiltonian which reduces to the function

H−(μ) = 1
2
〈μ, I−1μ〉

on so(3)∗ where I : so(3) → so(3)∗ is the inertia tensor. From this, we can now set f (μ) =
∂H−/∂μ = I−1μ. We then recover the Euler free rigid body equation as

μ̇ = ψ∗(f (μ)
∣∣
μ

= −ad∗
I−1μμ = −I−1μ× μ

where the last expression involves the cross product of vectors in R3.

2.2. Two classes of Lie group integrators

The simplest numerical integrator for linear spaces is the explicit Euler method. Given an initial value
problem ẏ = F(y), y(0) = y0 the method is defined as yn+1 = yn + hF(yn) for some stepsize h. In the
spirit of the previous section, one could think of the Euler method as the h-flow of the constant vector
field Fyn(y) = F(yn), that is

yn+1 = exp(hFyn) yn

This definition of the Euler method makes sense also when F is replaced by a vector field on some
manifold. In this general situation, it is known as the Lie–Euler method.

We shall here consider the two classes ofmethods known as Runge–Kutta–Munthe–Kaas (RKMK)
methods and Commutator-free Lie group methods.

For RKMKmethods, the underlying idea is to transform the problem from themanifoldM to the
Lie algebra g, take a time step, and map the result back toM. The transformation we use is

y(t) = exp(σ (t)) · y0, σ(0) = 0.

The transformed differential equation for σ(t) makes use of the derivative of the exponential
mapping, the reader should consult [41] for details about the derivation, we give the final result

σ̇ (t) = dexp−1
σ(t)(f (exp(σ (t)) · y0)) (6)

The map v 
→ dexpu(v) is linear and invertible when u belongs to some sufficiently small neighbour-
hood of 0 ∈ g. It has an expansion in nested Lie brackets [21]. Using the operator adu(v) = [u, v] and
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its powers ad2uv = [u, [u, v]] , etc., one can write

dexpu(v) = ez − 1
z

∣∣∣∣
z=adu

(v) = v + 1
2
[u, v] + 1

6
[u, [u, v]] + · · · (7)

and the inverse is

dexp−1
u (v) = z

ez − 1

∣∣∣∣
z=adu

(v) = v − 1
2
[u, v] + 1

12
[u, [u, v]] + · · · (8)

The RKMK methods are now obtained simply by applying some standard Runge–Kutta method to
the transformed Equation (6) with a time step h, using initial value σ(0) = 0. This leads to an output
σ1 ∈ g and one simply sets y1 = exp(σ1) · y0. Then one repeats the procedure replacing y0 by y1 in
the next step, etc. While solving (6), one needs to evaluate dexp−1

u (v) as a part of the process. This
can be done by truncating the series (8) since σ(0) = 0 implies that we always evaluate dexp−1

u with
u = O(h), and thus, the kth iterated commutator adku = O(hk). For a given Runge–Kutta method,
there are some clever tricks that can be done to minimize the total number of commutators to be
included from the expansion of dexp−1

u v [5,42]. We give here one concrete example of an RKMK
method proposed in [5]

fn,1 = hf (yn),

fn,2 = hf (exp( 12 fn,1) · yn),
fn,3 = hf (exp( 12 fn,2 − 1

8 [fn,1, fn,2]) · yn),
fn,4 = hf (exp(fn,3) · yn),

yn+1 = exp( 16 (fn,1 + 2fn,2 + 2fn,3 + fn,4 − 1
2 [fn,1, fn,4])) · yn.

The other option is to compute the exact expression for dexp−1
u (v) for the particular Lie algebra we

use. For instance, it was shown in [8] that for the Lie algebra so(3) one has

dexp−1
u (v) = v − 1

2
u × v + α−2

(
1 − α

2
cot

α

2

)
u × (u × v)

We will present the corresponding formula for se(3) in Section 2.3.
The second class of Lie group integrators to be considered here are the commutator-free methods,

named this way in [6] to emphasize the contrast to RKMK schemes which usually include commu-
tators in the method format. These schemes include the Crouch–Grossman methods [11] and they
have the format

Yn,r = exp

(
h
∑
k

αkr,J fn,k

)
· · · exp

(
h
∑
k

αkr,1fn,k

)
· yn

fn,r = f (Yn,r)

yn+1 = exp

(
h
∑
k

βkJ fn,k

)
· · · exp

(
h
∑
k

βk1 fn,k

)
· yn

Here the Runge–Kutta coefficients αkr,j, β
r
j are related to a classical Runge–Kutta scheme with

coefficients akr , br in that akr = ∑
j α

k
r,j and br = ∑

j β
r
j . The α

k
r,j, β

r
j are usually chosen to obtain com-

putationally inexpensive schemes with the highest possible order of convergence. The computational
complexity of the above schemes depends on the cost of computing an exponential as well as of eval-
uating the vector field. Therefore it makes sense to keep the number of exponentials J in each stage
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as low as possible, and possibly also the number of stages s. A trick proposed in [6] was to select
coefficients that make it possible to reuse exponentials from one stage to another. This is perhaps
best illustrated through the following example from [6], a generalization of the classical fourth-order
Runge–Kutta method.

Yn,1 = yn

Yn,2 = exp( 12hfn,1) · yn
Yn,3 = exp( 12hfn,2) · yn
Yn,4 = exp(hfn,3 − 1

2hfn,1) · Yn,2

yn+ 1
2

= exp( 1
12h(3fn,1 + 2fn,2 + 2fn,3 − fn,4)) · yn

yn+1 = exp( 1
12h(−fn,1 + 2fn,2 + 2fn,3 + 3fn,4)) · yn+ 1

2

(9)

where fn,i = f (Yn,i). Here, we see that one exponential is saved in computing Yn,4 by making use of
Yn,2.

2.3. An exact expression for dexp−1
u (v) in se(3)

As an alternative to using a truncated version of the infinite series for dexp−1
u (8), one can consider

exact expressions obtained for certain Lie algebras. Since se(3) is particularly important in applica-
tions to mechanics, we give here its exact expression. For this, we represent elements of se(3) as a pair
(A, a) ∈ R3 × R3 ∼= R6, the first component corresponding to a skew-symmetric matrix Â via (5)
and a is the translational part. Now, let ϕ(z) be a real analytic function at z = 0. We define

ϕ+(z) = ϕ(iz)+ ϕ(−iz)
2

, ϕ−(z) = ϕ(iz)− ϕ(−iz)
2i

We next define the four functions

g1(z) = ϕ−(z)
z

, g̃1(z) = g′
1(z)
z

, g2(z) = ϕ(0)− ϕ+(z)
z2

, g̃2(z) = g′
2(z)
z

and the two scalars ρ = ATa, α = ‖A‖2. One can show that for any (A, a) and (B, b) in se(3), it holds
that

ϕ(ad(A,a))(B, b) = (C, c)

where

C = ϕ(0)B + g1(α)A × B + g2(α)A × (A × B)

c = ϕ(0)b + g1(α) (a × B + A × b)+ ρg̃1(α)A × B + ρg̃2(α)A × (A × B)

+ g2(α) (a × (A × B)+ A × (a × B)+ A × (A × b))

Considering for instance (8), we may now use ϕ(z) = z
ez−1 to calculate

g1(z) = −1
2
, g̃1(z) = 0, g2(z) = 1 − z

2 cot
z
2

z2
, g̃2(z) = 1

z
d
dz

g2(z), ϕ(0) = 1.

and thereby obtain an expression for dexp−1
(A,a)(B, b) with the formula above.

Similar types of formulas are known for computing the matrix exponential as well as functions of
the ad-operator for several other Lie groups of small and medium dimension. For instance in [34], a
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variety of coordinatemappings for rigid bodymotions are discussed. For Lie algebras of larger dimen-
sion, both the exponential mapping and dexp−1

u may become computationally infeasible. For these
cases, onemay benefit from replacing the exponential by some other coordinatemap for the Lie group
φ : g → G. One option is to use canonical coordinates of the second kind [45]. Then for some Lie
groups such as the orthogonal, unitary and symplectic groups, there exist othermaps that can be used
and which are computationally less expensive. A popular choice is the Cayley transformation [13].

3. Hamiltonian systems on Lie groups

In this section, we consider Hamiltonian systems on Lie groups. These systems (and their Lagrangian
counterpart) often appear inmechanics applications as building blocks formore realistic systemswith
additional damping and control forces. We consider canonical systems on the cotangent bundle of a
Lie group and Lie–Poisson systemswhich can arise by symmetry reduction or otherwise.We illustrate
various cases with different formulations of the heavy top system.

3.1. Semi-direct products

The coadjoint action by G on g∗ is denoted Ad∗
g defined for any g ∈ G as

〈Ad∗
gμ, ξ〉 = 〈μ, Adgξ〉, ∀ ξ ∈ g, (10)

where Ad : g → g is the adjoint representation and for a duality pairing 〈·, ·〉 between g∗ and g.
We consider the cotangent bundle of a Lie groupG,T∗G and identify it withG × g∗ using the right

multiplication Rg : G → G and its tangent mapping Rg∗ := TRg . The cartesian product G × g∗ can
be given a semi-direct product structure that turns it into a Lie group G := G � g∗ where the group
multiplication is

(g1,μ1) · (g2,μ2) = (g1 · g2,μ1 + Ad∗
g−1
1
μ2). (11)

Acting by left multiplication any vector field F ∈ X (G) is expressed by means of a map f : G → TeG,

F(g,μ) = TeR(g,μ)f (g,μ) = (Rg∗f1, f2 − ad∗
f1μ), (12)

where f1 = f1(g,μ) ∈ g, f2 = f2(g,μ) ∈ g∗ are the two components of f.

3.2. Symplectic form andHamiltonian vector fields

The right trivialized2 symplectic form pulled back to G reads

ω(g,μ)((Rg∗ξ1, δν1), (Rg∗ξ2, δν2)) = 〈δν2, ξ1〉+
− 〈δν1, ξ2〉 − 〈μ, [ξ1, ξ2]〉, ξ1, ξ2 ∈ g. (13)

See [32] for more details, proofs and for a the left trivialized symplectic form. The vector field F is a
Hamiltonian vector field if it satisfies

iFω = dH,

for someHamiltonian functionH : T∗G → R, where iF is defined as iF(X) := ω(F,X) for any vector
field X. This implies that the map f for such a Hamiltonian vector field gets the form

f (g,μ) =
(
∂H
∂μ
(g,μ),−R∗

g
∂H
∂g
(g,μ)

)
. (14)

The following is a one-parameter family of symplectic Lie group integrators on T∗G:

Mθ = dexp∗
−ξ (μ0 + Ad∗

exp(θξ)(n̄))− θdexp∗
−θξAd

∗
exp(θξ)(n̄), (15)
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(ξ , n̄) = hf
(
exp(θξ) · g0,Mθ

)
, (16)

(g1,μ1) = (exp(ξ), Ad∗
exp((θ−1)ξ)n̄) · (g0,μ0). (17)

For higher order integrators of this type and a complete treatment, see [3].

3.3. Reduced equations Lie Poisson systems

A mechanical system formulated on the cotangent bundle T∗G with a left or right invariant Hamil-
tonian can be reduced to a system on g∗ [36]. In fact for a Hamiltonian H right invariant under the
left action of G, ∂H

∂g = 0, and from (12) and (14) we get for the second equation

μ̇ = ∓ad∗
∂H
∂μ

μ, (18)

where the positive sign is used in case of left invariance (see, e.g. Section 13.4 in [37]). The solution
to this system preserves coadjoint orbits, thus using the Lie group action

g · μ = Ad∗
g−1μ,

to build a Lie group integrator results in preservation of such coadjoint orbits. Lie group integrators
for this interesting case were studied in [15].

The Lagrangian counterpart to these Hamiltonian equations are the Euler–Poincaré
equations3 [24].

3.4. Three different formulations of the heavy top equations

The heavy top is a simple test example for illustrating the behaviour of Lie group methods. We
will consider three different formulations for this mechanical system. The first formulation is on
T∗SO(3) where the equations are canonical Hamiltonian, a second point of view is that the system
is a Lie–Poisson system on se(3)∗, and finally it is canonical Hamiltonian on a larger group with
a quadratic Hamiltonian function. The three different formulations suggest the use of different Lie
group integrators.

3.4.1. Heavy top equations on T∗SO(3)

The heavy top is a rigid body with a fixed point in a gravitational field. The phase space of this
mechanical system is T∗SO(3) where the equations of the heavy top are in canonical Hamiltonian
form. Assuming (Q, p) are coordinates for T∗SO(3), � = (TeLQ)∗(p) is the left trivialized or body
momentum. The Hamiltonian of the heavy top is given in terms of (Q,�) as

H : SO(3)� so(3)∗ → R, H(Q,�) = 1
2
〈�, I−1�〉 + Mg�� · X , � = Q−1�0,

where I : so(3) → so(3)∗ is the inertia tensor, here represented as a diagonal3 × 3 matrix, � =
Q−1�0, where �0 ∈ R3 is the axis of the spatial coordinate system parallel to the direction of gravity
but pointing upwards, M is the mass of the body, g is the gravitational acceleration, X is the body
fixed unit vector of the oriented line segment pointing from the fixed point to the centre of mass of
the body, � is the length of this segment. The equations of motion on SO(3)� so(3)∗ are

�̇ = �× I−1�+ Mg�� × X , (19)

Q̇ = Q Î−1�. (20)
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The identification ofT∗SO(3)with SO(3)� so(3)∗ via right trivialization leads to the spatialmomen-
tum variable π = (TeRQ)∗(p) = Q�. The equations written in the space variables (Q,π) get the
form

π̇ = Mg� �0 × QX , (21)

Q̇ = ω̂Q ω = QI−1QTπ . (22)

where the first equation states that the component of π parallel to �0 is constant in time. These equa-
tions can be obtained from (12) and (14) on the right trivialized T∗SO(3), SO(3)� so(3)∗, with the
heavy topHamiltonian and the symplectic Lie group integrators (16)–(17) can be applied in this case.
Similar methods were proposed in [32] and [49].

3.4.2. Heavy top equations on se∗(3)

The Hamiltonian of the heavy top is not invariant under the action of SO(3), so Equations (19)–(20)
given in Section 3.4.1 cannot be reduced to so∗(3), nevertheless the heavy top equations are
Lie–Poisson on se∗(3), [17,48,52].

Observe that the equations of the heavy top on T∗SO(3) (19)–(20) can be easily modified
eliminating the variable Q ∈ SO(3) and replacing it with � ∈ R3 � = Q−1�0 to obtain

�̇ = �× I−1�+ Mg�� × X , (23)

�̇ = � × (I−1�). (24)

We will see that the solutions of these equations evolve on se∗(3). In what follows, we consider ele-
ments of se∗(3) to be pairs of vectors in R3, e.g. (�,�). Correspondingly the elements of SE(3) are
represented as pairs (g,u) with g ∈ SO(3) and u ∈ R3. The group multiplication in SE(3) is then

(g1,u1) · (g2,u2) = (g1g2, g1u2 + u1),

where g1g2 is the product in SO(3) and g1u is the product of a 3 × 3 orthogonal matrix with a vector
in R3. The coadjoint representation and its infinitesimal generator on se∗(3) take the form

Ad∗
(g,u)(�,�) = (g−1(�− u × �), g−1�), ad∗

(ξ ,u)(�,�) = (−ξ ×�− u × �,−ξ × �).

Using this expression for ad∗
(ξ ,u) with (ξ = ∂H

∂�
,u = ∂H

∂�
), it can be easily seen that Equation (18) in

this setting reproduce the heavy top Equations (23)–(24). Therefore the equations are Lie–Poisson
equations on se∗(3). However, since the heavy top is a rigid body with a fixed point and there are no
translations, these equations do not arise from a reduction ofT∗SE(3). Moreover, the Hamiltonian on
se(3)∗ is not quadratic and the equations are not geodesic equations. Implicit and explicit Lie group
integrators applicable to this formulation of the heavy top equations and preserving coadjoint orbits
were discussed in [15], for a variable stepsize integrator applied to this formulation of the heavy top,
see [12].

3.4.3. Heavy top equations with quadratic Hamiltonian
We rewrite the heavy top equations one more time considering the constant vector p = −Mg�X
as a momentum variable conjugate to the position q ∈ R3 and where p = Q−1�0 + q̇, and the
Hamiltonian is a quadratic function of�, Q, p and q:

H : T∗SO(3)× R3∗ × R3 → R,

H((�,Q), (p, q)) = 1
2
〈�, I−1�〉 + 1

2
‖p − Q−1�0‖2 − 1

2
‖Q−1�0‖2,
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see [23, section 8.5]. This Hamiltonian is invariant under the left action of SO(3). The corresponding
equations are canonical on T∗S ≡ S � s∗ where S = SO(3)× R3 with Lie algebra s := so(3)× R3

and T∗S can be identified with T∗SO(3)× R3∗ × R3. The equations are

�̇ = �× I−1�− (Q−1�0)× p, (25)

Q̇ = Q Î−1�, (26)

ṗ = 0, (27)

q̇ = p − Q−1�0. (28)

and in the spatial momentum variables

π̇ = −�0 × Qp, (29)

Q̇ = ω̂Q, ω = QI−1QTπ , (30)

ṗ = 0, (31)

q̇ = p − Q−1�0. (32)

Similar formulations were considered in [31] for the stability analysis of an underwater vehicle. A
similar but different formulation of the heavy top was considered in [4].

3.4.4. Numerical experiments
We apply various implicit Lie group integrators to the heavy top system. The test problemwe consider
is the same as in [4], whereQ(0) = I, � = 2,M = 15 I = diag(0.234375, 0.46875, 0.234375), π(0) =
I(0, 150,−4.61538), X = (0, 1, 0) �0 = (0, 0,−9.81).

In Figure 2, we report the performance of the symplectic Lie group integrators (15)–(17) applied
both on Equations (21)–(22) with θ = 0, θ = 1

2 and θ = 1 (SLGI), and to Equations (29)–(32) with
θ = 1

2 (SLGIKK). The methods with θ = 1
2 attain order 2. In Figure 3, we show the energy error

for the symplectic Lie group integrators with θ = 1
2 and θ = 0 integrating with stepsize h = 0.01 for

6000 steps.

4. Variable step size

One approach for varying the step size is based on the use of an embedded Runge–Kutta pair. This
principle can be carried from standard Runge–Kuttamethods in vector spaces to the present situation
with RKMK and commutator-free schemes via minor modifications. We briefly summarize the main
principle of embedded pairs before giving more specific details for the case of Lie group integrators.
This approach is very well documented in the literature and goes back to Merson [38] and a detailed
treatment can be found in [19, pp. 165–168].

An embedded pair consists of a main method used to propagate the numerical solution, together
with some auxiliary method that is only used to obtain an estimate of the local error. This local error
estimate is in turn used to derive a step size adjustment formula that attempts to keep the local error
estimate approximately equal to some user defined tolerance tol in every step. Suppose the main
method is of order p and the auxiliary method is of order p̃ �= p.4 Both methods are applied to the
input value yn and yields approximations yn+1 and ỹn+1 respectively, using the same step size hn+1.
Now, some distance measure5 between yn+1 and ỹn+1 provides an estimate en+1 for the size of the
local truncation error. Thus en+1 = Chp̃+1

n+1 + O(hp̃+2). Aiming at en+1 ≈ tol in every step, one may
use a formula of the type

hn+1 = θ

(
tol
en+1

) 1
p̃+1

hn (33)
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Figure 1. Illustration of the heavy top, where CM is the centre of mass of the body, O is the fixed point, �g is the gravitational
acceleration vector, and �,Q, �χ follow the notation introduced in Section 3.4.1.

Figure 2. Symplectic Lie group integrators integration on the time interval [0, 1]. Left: 3D plot of M�Q−1�0. Centre: components
of QX . The left and centre plots are computed with the same step-size. Right: verification of the order of the methods.

where θ is a ‘safety factor’, typically chosen between 0.8 and 0.9. In case the step is rejected because
en > tol we can redo the step with a step size obtained by the same formula. We summarize the
approach in the following algorithm

Given yn, hn, tol
Let h := hn
repeat

Compute yn+1, ỹn+1, en+1 from yn, h
Update stepsize h := θ( tol

en+1
)αh

accepted := en+1 < tol
if accepted

update step index: n := n + 1
hn := h

until accepted

Herewe have used again the safety factor θ , and the parameterα is generally chosen asα = 1
1+min(p,p̃) .
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Figure 3. Symplectic Lie group integrators, long time integration, h = 0.01, 6000 steps.. Top: energy error, bottom 3D plot of
M�Q−1�0.

4.1. RKMKmethods with variable stepsize

We need to specify how to calculate the quantity en+1 in each step. For RKMKmethods, the situation
is simplified by the fact that we are solving the local problem (6) in the linear space g, where the known
theory can be applied directly. So any standard embedded pair of Runge–Kutta methods described
by coefficients (aij, bi, ãij, b̃i) of orders (p, p̃) can be applied to the full dexpinv-equation (6) to obtain
local Lie algebra approximations σ1, σ̃1 and one uses, e.g. en+1 = ‖σ1 − σ̃1‖ (note that the equation
itself depends on yn). For methods which use a truncated version of the series for dexp−1

u one may
also try to optimize performance by including commutators that are shared between themainmethod
and the auxiliary scheme.

4.2. Commutator-freemethods with variable stepsize

For the commutator-free methods of Section 2.2, the situation is different since such methods do not
have a natural local representation in a linear space. One can still derive embedded pairs, and this can
be achieved by studying order conditions [44] as was done in [12]. Now one obtains after each step
two approximations yn+1 and ỹn+1 onM both by using the same initial value yn and step size hn. One
must also have access to some metric d to calculate en+1 = d(yn+1, ỹn+1)We give a few examples of
embedded pairs.

4.2.1. Pairs of order (p, p̃) = (3, 2)

It is possible to obtain embedded pairs of order 3(2) which satisfy the requirements above.We present
two examples from [12]. The first one reuses the second stage exponential in the update

Yn,1 = yn
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Yn,2 = exp( 13hfn,1) · yn
Yn,3 = exp( 23hfn,2) · yn
yn+1 = exp(h(− 1

12 fn,1 + 3
4 fn,3)) · Yn,2

ỹn+1 = exp( 12h(fn,2 + fn,3)) · yn
One could also have reused the third stage Yn,3 in the update, rather than Yn,2.

Yn,1 = yn

Yn,2 = exp( 23hfn,1) · yn
Yn,3 = exp(h( 5

12 fn,1 + 1
4 fn,2) · yn

yn+1 = exp(h(− 1
6 fn,1 − 1

2 fn,2 + fn,3)) · Yn,3

ỹn+1 = exp( 14h(fn,1 + 3fn,3)) · yn
It is always understood that the frozen vector fields are fn,i := fYn,i .

4.2.2. Order (4, 3)

The procedure of deriving efficient pairs becomes more complicated as the order increases. In [12],
a low cost pair of order (4, 3) was derived, in the sense that one attempted to minimize the num-
ber of stages and exponentials in the embedded pair as a whole. This came, however, at the expense
of a relatively large error constant. So rather than presenting the method from that paper, we sug-
gest a simpler procedure at the cost of some more computational work per step, we simply furnish
the commutator-free method of Section 2 by a third-order auxiliary scheme. It can be described as
follows:

(1) Compute Yn,i, i = 1 . . . , 4 and yn+1 from (9)
(2) Compute an additional stage Ȳn,3 and then ỹn+1 as

Ȳn,3 = exp( 34hfn,2) · yn
ỹn+1 = exp( h9 (−fn,1 + 3fn,2 + 4f̄n,3)) · exp( h3 fn,1) · yn

(34)

5. The N-fold 3D pendulum

In this section, we present a model for a system of N connected three-dimensional pendulums. The
modelling part comes from [28], and here we study the vector field describing the dynamics, in order
to re-frame it into the Lie group integrators setting described in the previous sections. The model we
use is not completely realistic since, for example, it neglects possible interactions between pendulums,
and it assumes ideal spherical joints between them. However, this is still a relevant example from the
point of view of geometric numerical integration.More precisely, we show a possible way toworkwith
a configuration manifold which is not a Lie group, applying the theoretical instruments introduced
before.

The Lagrangian we consider is a function from (TS2)N to R. Instead of the coordinates
(q1, . . . , qN , q̇1, . . . , q̇N), where q̇i ∈ TqiS2, we choose to work with the angular velocities. Precisely,

TqiS
2 = {v ∈ R3 : vTqi = 0} = 〈qi〉⊥ ⊂ R3,

and hence for any q̇i ∈ TqiS2 there exist ωi ∈ R3 such that q̇i = ωi × qi, which can be interpreted as
the angular velocity of qi. So we can assume without loss of generality that ωT

i qi = 0 (i.e. ωi ∈ TqiS2)
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Figure 4. Threefold pendulum at a fixed time instant, with fixed point placed at the origin.

and pass to the coordinates (q1,ω1, q2,ω2, . . . , qN ,ωN) ∈ (TS2)N to describe the dynamics. In this
section, we denote withm1, . . . ,mN the masses of the pendulums and with L1, . . . , LN their lengths.
Figure 4 shows the case N = 3. We organize the section into three parts:

(1) We define the transitive Lie group action used to integrate this model numerically,
(2) We show a possible way to express the dynamics in terms of the infinitesimal generator of this

action, for the general case of N joint pendulums,
(3) We focus on the caseN = 2, as a particular example. For this setting, we present some numerical

experiment comparing various Lie group integrators and some classical numerical integrator.
Then we conclude with numerical experiments on variable step size.

5.1. Transitive group action on (TS2)N

We characterize a transitive action for (TS2)N , starting with the case N = 1 and generalizing it to
N> 1. The action we consider is based on the identification between se(3), the Lie algebra of SE(3)
and R6. We start from the Ad-action of SE(3) on se(3) (see [23]), which writes

Ad : SE(3)× se(3) → se(3),

Ad((R, r), (u, v)) = (Ru,Rv + r̂Ru).

Since se(3) � R6, the Ad-action allows us to define the following Lie group action on R6

ψ : SE(3)× R6 → R6, ψ((R, r), (u, v)) = (Ru,Rv + r̂Ru).

We can think of ψ as a Lie group action on TS2 since, for any q ∈ R3, it maps points of

TS2|q| := {(q̃, ω̃) ∈ R3 × R3 : ω̃Tq̃ = 0, |q̃| = |q|} ⊂ R6
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into other points of TS2|q|. Moreover, with standard arguments (see [43]), it is possible to prove that
the orbit of a generic pointm = (q,ω) ∈ R6 with ωTq = 0 coincides with

Orb(m) = TS2|q|.

In particular, when q ∈ R3 is a unit vector (i.e. q ∈ S2), ψ allows us to define a transitive Lie group
action on TS2 = TS2|q|=1 which writes

ψ : SE(3)× TS2 → TS2

ψ((A, a), (q,ω)) := ψ(A,a)(q,ω) = (Aq,Aω + âAq) = (q̄, ω̄).

To conclude the description of the action, we report here its infinitesimal generator which is
fundamental in the Lie group integrators setting

ψ∗((u, v))|(q,ω) = (ûq, ûω + v̂q).

We can extend this construction to the case N> 1 in a natural way, i.e. through the action of a Lie
group obtained from cartesian products of SE(3) and equipped with the direct product structure.
More precisely, we consider the group G = (SE(3))N and by direct product structure we mean that
for any pair of elements

δ(1) = (δ
(1)
1 , . . . , δ(1)N ), δ(2) = (δ

(2)
1 , . . . , δ(2)N ) ∈ G,

denoted with ∗ the semidirect product of SE(3), we define the product ° on G as

δ(1) ◦ δ(2) := (δ
(1)
1 ∗ δ(2)1 , . . . , δ(1)N ∗ δ(2)N ) ∈ G.

With this group structure defined, we can generalize the action introduced for N = 1 to larger Ns as
follows:

ψ : (SE(3))N × (TS2)N → (TS2)N ,

ψ((A1, a1, . . . ,AN , an), (q1,ω1, . . . , qN ,ωN))

= (A1q1,A1ω1 + â1A1q1, . . . ,ANqN ,ANωN + âNANqN),

whose infinitesimal generator writes

ψ∗(ξ)|m = (û1q1, û1ω1 + v̂1q1, . . . , ûNqN , ûNωN + v̂NqN),

where ξ = [u1, v1, . . . , uN , vN] ∈ se(3)N and m = (q1,ω1, . . . , qN ,ωN) ∈ (TS2)N . We have now the
only group action we need to deal with the N-fold spherical pendulum. In the following part of this
section, we work on the vector field describing the dynamics and adapt it to the Lie group integrators
setting.

5.2. Full chain

We consider the vector field F ∈ X((TS2)N), describing the dynamics of the N-fold 3D pendulum,
and we express it in terms of the infinitesimal generator of the action defined above. More precisely,
we find a function F : (TS2)N → se(3)N such that

ψ∗(f (m))|m = F|m, ∀ m ∈ (TS2)N .
We omit the derivation of F starting from the Lagrangian of the system, which can be found in the
section devoted to mechanical systems on (S2)N of [28]. The configuration manifold of the system is
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(S2)N , while the Lagrangian, expressed in terms of the variables (q1,ω1, . . . , qN ,ωN) ∈ (TS2)N , writes

L(q,ω) = T(q,ω)− U(q) = 1
2

N∑
i,j=1

(
Mijω

T
i q̂

T
i q̂jωj

)
−

N∑
i=1

⎛
⎝ N∑

j=i
mj

⎞
⎠ gLieT3 qi,

where

Mij =
⎛
⎝ N∑

k=max{i,j}
mk

⎞
⎠ LiLjI3 ∈ R3×3

is the inertia matrix of the system, I3 is the 3 × 3 identity matrix, and e3 = [0, 0, 1]T . Noticing that
when i = j we get

ωT
i q̂

T
i q̂iωi = ωT

i (I3 − qiqTi )ωi = ωT
i ωi,

we simplify the notation writing

T(q,ω) = 1
2

N∑
i,j=1

(
ωT
i R(q)ijωj

)

where R(q) ∈ R3N×3N is a symmetric block matrix defined as

R(q)ii =
⎛
⎝ N∑

j=i
mj

⎞
⎠ L2i I3 ∈ R3×3,

R(q)ij =
⎛
⎝ N∑

k=j

mk

⎞
⎠ LiLjq̂Ti q̂j ∈ R3×3 = R(q)Tji , i < j.

The vector field on which we need to work defines the following first-order ODE:

q̇i = ωi × qi, i = 1, . . . ,N,

R(q)ω̇ =

⎡
⎢⎢⎣

N∑
j=1
j�=i

Mij|ωj|2q̂iqj −
⎛
⎝ N∑

j=i
mj

⎞
⎠ gLiq̂ie3

⎤
⎥⎥⎦
i=1,...,N

∈ R3N

By direct computation, it is possible to see that, for any q = (q1, . . . , qN) ∈ (S2)N and ω ∈ Tq1S2 ×
· · · × TqNS2, we have

(R(q)ω)i ∈ TqiS
2.

Therefore, there is a well-defined linear map

Aq : Tq1S
2 × · · · × TqNS

2 → Tq1S
2 × · · · × TqNS

2,Aq(ω) := R(q)ω.

We can even notice that R(q) defines a positive-definite bilinear form on this linear space, since

ωTR(q)ω =
N∑

i,j=1
ωT
i q̂

T
i Mijq̂jωj =

N∑
i,j=1

(q̂iωi)
TMij(q̂jωj) = vTMv > 0.

The last inequality holds becauseM is the inertia matrix of the system and hence it defines a symmet-
ric positive-definite bilinear form on Tq1S2 × · · · × TqNS2, see, e.g. [16].6 This implies the map Aq is
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invertible and hence we are ready to express the vector field in terms of the infinitesimal generator.
We can rewrite the ODEs for the angular velocities as follows:

ω̇ = A−1
q

(
[g1, . . . , gN]T

)
=
⎡
⎣h1(q,ω)

· · ·
hN(q,ω)

⎤
⎦ =

⎡
⎣ a1(q,ω)× q1

· · ·
aN(q,ω)× qN

⎤
⎦

where

gi = gi(q,ω) =
N∑
j=1
j�=i

M(q)ij|ωj|2q̂iqj −
⎛
⎝ N∑

j=i
mj

⎞
⎠ gLiq̂ie3, i = 1, . . . ,N

and a1, . . . , aN : (TS2)N → R3 are N functions whose existence is guaranteed by the analysis done
above. Indeed, we can set ai(q,ω) := qi × hi(q,ω) and conclude that a mapping f from (TS2)N to
(se(3))N such that

ψ∗(f (q,ω))|(q,ω) = F|(q,ω)
is the following one:

f (q,ω) =

⎡
⎢⎢⎢⎢⎢⎢⎣

ω1
q1 × h1

· · ·
· · ·
ωN

qN × hN

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ se(3)N � R6N .

We will not go into the Hamiltonian formulation of this problem; however, we remark that a similar
approach works even in that situation. Indeed, following the derivation presented in [28], we see that
for a mechanical system on (S2)N the conjugate momentum writes

T∗
q1S

2 × · · ·T∗
qN S

2 � π = (π1, . . . ,πN), where πi = −q̂2i
∂L
∂ωi

and its components are still orthogonal to the respective base points qi ∈ S2. Moreover, Hamilton’s
equations take the form

q̇i = ∂H(q,π)
∂πi

× qi,

π̇i = ∂H(q,π)
∂qi

× qi + ∂H(q,π)
∂πi

× πi,

which implies that setting

f (q,π) = [
∂q1H(q,π), ∂π1H(q,π), . . . , ∂qNH(q,π), ∂πNH(q,π)

]
we can represent even the Hamiltonian vector field of theN-fold 3D pendulum in terms of this group
action.

5.2.1. Case N = 2
We have seen how it is possible to turn the equations of motion of a N-chain of pendulums into the
Lie group integrators setting. Now we focus on the example with N = 2 pendulums. The equations
of motion write

q̇1 = ω̂1q1, q̇2 = ω̂2q2,
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R(q)
[
ω̇1
ω̇2

]
=
[
(−m2L1L2|ω2|2q̂2 + (m1 + m2)gL1ê3)q1

(−m2L1L2|ω1|2q̂1 + m2gL2ê3)q2

]
, (35)

where

R(q) =
[
(m1 + m2)L21I3 m2L1L2q̂T1 q̂2
m2L1L2q̂T2 q̂1 m2L22I3

]
.

As presented above, the matrix R(q) defines a linear invertible map of the space Tq1S2 × Tq2S2 onto
itself:

A(q1,q2) : Tq1S
2 × Tq2S

2 → Tq1S
2 × Tq2S

2, [ω1,ω2]T → R(q)[ω1,ω2]T .

We can easily see that it is well defined since

R(q)
[
ω1
ω2

]
=
[
(m1 + m2)L21I3 m2L1L2q̂T1 q̂2
m2L1L2q̂T2 q̂1 m2L22I3

] [
v̂1q1
v̂2q2

]
=
[
r̂1q1
r̂2q2

]
∈ (TS2)2

with

r1(q,ω) := (m1 + m2)L21v1 + m2L1L2q̂2v̂2q2,

r2(q,ω) := m2L1L2q̂1v̂1q1 + m2L22v2.

This map guarantees that if we rewrite the pair of equations for the angular velocities in (35) as

ω̇ = R−1(q)
[
(−m2L1L2|ω2|2q̂2 + (m1 + m2)gL1ê3)q1

(−m2L1L2|ω1|2q̂1 + m2gL2ê3)q2

]
= R−1(q)b =

= A−1
(q1,q2)(b) =

[
h1
h2

]
∈ Tq1S

2 × Tq2S
2,

then we are assured that there exists a pair of functions a1, a2 : TS2 × TS2 → R3 such that

ω̇ =
[
a1(q,ω)× q1
a2(q,ω)× q2

]
=
[
h1(q)
h2(q)

]
.

Since we want ai × qi = hi, we just impose ai = qi × hi and hence the whole vector field can be
rewritten as ⎡

⎢⎢⎣
q̇1
ω̇1
q̇2
ω̇2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

ω1 × q1
(q1 × h1)× q1
ω2 × q2

(q2 × h2)× q2

⎤
⎥⎥⎦ = F|(q,ω),

with hi = hi(q,ω) and[
h1(q,ω)
h2(q,ω)

]
= R−1(q)

[
(−m2L1L2|ω2|2q̂2 + (m1 + m2)gL1ê3)q1

(−m2L1L2|ω1|2q̂1 + m2gL2ê3)q2

]
.

Therefore, we can express the whole vector field in terms of the infinitesimal generator of the action
of SE(3)× SE(3) as

ψ∗(f (q,ω))|(q,ω) = F|(q,ω)
through the function

f : TS2 × TS2 → se(3)× se(3) � R12, (q,ω) → (ω1, q1 × h1,ω2, q2 × h2).
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5.3. Numerical experiments

In this section, we present some numerical experiment for the N-chain of pendulums. We start by
comparing the various Lie group integrators that we have tested (with the choice N = 2), and con-
clude by analysing an implementation of variable step size. Lie group integrators allow to keep the
evolution of the solution in the correct manifold, which is TS2 × TS2 whenN = 2. Hence, we briefly
report two sets of numerical experiments. In the first one, we show the convergence rate of all the
Lie group integrators tested on this model. In the second one, we check how they behave in terms of
preserving the two following relations:

• qi(t)Tqi(t) = 1, i.e.qi(t) ∈ S2, i = 1, 2,
• qi(t)Tωi(t) = 0, i.e.ωi(t) ∈ Tqi(t)S2, i = 1, 2,

completing the analysis with a comparisonwith the classical Runge–Kutta 4 andwithODE45 ofMAT-
LAB. The Lie group integrators used to obtain the following experiments are Lie Euler, Lie Euler
Heun, three versions of Runge–Kutta–Munthe–Kaas methods of order 4 and one of order 3. The
RKMK4 with two commutators mentioned in the plots is the one presented in Section 2, while the
other schemes can be found for example in [7].

Figure 5 presents the plots of the errors, in logarithmic scale, obtained considering as a reference
solution the one given by the ODE45method, with strict tolerance. Here, we used an exact expression
for the dexp−1

σ function. However, we could obtain the same results with a truncated version of this
function, keeping a sufficiently high number of commutators, or after some clever manipulations of
the commutators (as with RKMK4 with 2 commutators, see Section 2.2). The schemes show the right
convergence rates, so we can move to the analysis of the time evolution on TS2 × TS2.

In Figure 6, we can see the comparison of the time evolution of the 2-norms of q1(t) and q2(t), for
0 ≤ t ≤ T = 5. As highlighted above, unlike classical numerical integrators like the one implemented
inODE45 or the Runge–Kutta 4, the Lie groupmethods preserve the norm of the base components of

Figure 5. Convergence rate of the implemented Lie group integrators, based on global error considering as a reference solution
the one of ODE45, with strict tolerance.
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Figure 6. Visualization of the quantity 1 − qi(t)Tqi(t), i = 1, 2, for time t ∈ [0, 5]. These plots focus on the preservation of the
geometry of S2.

Figure 7. Visualization of the inner product qi(t)Tωi(t), i = 1, 2, for t ∈ [0, 5]. These plots focus on the preservation of the
geometry of Tqi(t)S

2.

the solutions, i.e. |q1(t)| = |q2(t)| = 1 ∀t ∈ [0,T]. Therefore, as expected, these integrators preserve
the configuration manifold. However, to complete this analysis, we show the plots making a similar
comparison but with the tangentiality conditions. Indeed, in Figure 7 we compare the time evolutions
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Figure 8. Comparison of accuracy at final time (on the left) and step adaptation for the case N = 20 (on the right), with all
pendulums of length Li = 1.

of the inner products q1(t)Tω1(t) and q2(t)Tω2(t) for t ∈ [0, 5], i.e. we see if these integrators preserve
the geometry of the whole phase space TS2 × TS2. As we can see, while for Lie group methods these
inner products are of the order of 10−14 and 10−15, the ones obtained with classical integrators show
that the tangentiality conditions are not preserved with the same accuracy.

We now move to some experiments on variable stepsize. In this last part, we focus on the RKMK
pair coming from Dormand–Prince method (DOPRI 5(4) [14]), which we denote with RKMK(5,4).
The aim of the plots we show is to compare the same schemes, both with constant and variable step-
size. We start by setting a tolerance and solving the system with the RKMK(5,4) scheme. Using the
same number of time steps, we solve it again with RKMK of order 5. These experiments show that,
for some tolerance and some initial conditions, the step size’s adaptivity improves the numerical
approximation accuracy. Since we do not have an available analytical solution to quantify these two
schemes’ accuracy, we compare them with the solution obtained with a strict tolerance and ODE45.
We compute such accuracy, at time T = 3, by means of the Euclidean norm of the ambient space
R6N .

In Figure 8, we compare the performance of the constant and variable stepsize methods, where the
structure of the initial condition is always the same, but what changes is the number of connected pen-
dulums. The considered initial condition is (qi,ωi) = (

√
2/2, 0,

√
2/2, 0, 1, 0), ∀ i = 1, . . . ,N, and all

the masses and lengths are set to 1. From these experiments, we can notice situations where the vari-
able step size beats the constant one in terms of accuracy at the final time, like the case N = 2 which
we discuss in more detail afterwards.

The results presented in Figure 10 (left) do not aim to highlight any particular relation between
how the number of pendulums increases or the regularity of the solution. Indeed, as we add more
pendulums, we keep incrementing the total length of the chain since

∑N
i=1 Li = N. Thus here we do

not have any appropriate limiting behaviour in the solution as N → +∞. The behaviour presented
in that figure seems to highlight an improvement in accuracy for the RKMK5method asN increases.
However, this is biased by the fact that when we increase N, to achieve the fixed tolerance of 10−6

with RKMKK(5,4), we need more time steps in the discretization. Thus, this plot does not say that as
N increases, the dynamics becomes more regular; it suggests that the number of required timesteps
increases faster than the ‘degree of complexity’ of the dynamics.

For the case N = 2, we notice a relevant improvement passing to variable stepsize. In Figures 9
and 11 we can see that, for this choice of the parameters, the solution behaves smoothly in most of
the time interval, but then there is a peak in the second component of the angular velocities of both
the masses, at t ≈ 2.2. We can observe this behaviour both in the plots of Figure 9, where we project
the solution on the 12 components and even in Figure 11(c). In the latter, we plot two of the vector
field components, i.e. the second components of the angular accelerations ω̇i(t), i = 1, 2. They show
an abrupt change in the vector field in correspondence to t ≈ 2.2, where the step is considerably
restricted. Thus, to summarize, the gain we see with variable stepsize when N = 2 is motivated by
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Figure 9. In these plots, we represent the six components of the solution describing the dynamics of the first mass (on the left) and
of the second mass (on the right), for the case N = 2. We compare the behaviour of the solution obtained with constant stepsize
RKMK5, the variable stepsize RKMK(5,4) and ODE45. (a) (q1(t),ω1(t)) (b) (q2(t),ω2(t)).

Figure 10. Comparison of accuracy at final time (on the left) and step adaptation for the case N = 20 (on the right), with all
pendulums of length Li = 5/N.

Figure 11. On the left, we compare the adaptation of the stepsize of RKMK(5,4) with the one of ODE45 and with the constant
stepsize of RKMK5. In the centre, we plot the second component of the angular velocities ω(2)i , i = 1, 2, and we zoom in the last
time interval t ∈ [2.1, 3] to see that the variable stepsize version of the method better reproduces the reference solution. On the
right, we visualize the speed of variation of second component of the angular velocities. (a) Step adaptation, (b) Zoom at final times,
(c) Values of ω̇(2)i (t).

the unbalance in the length of the time intervals with no abrupt changes in the dynamics and those
where they appear. Indeed, we see that apart from a neighbourhood of t ≈ 2.2, the vector field does
not change quickly. On the other hand, for the case N = 20, this is the case. Thus the adaptivity of
the stepsize does not bring relevant improvements in the latter situation.
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Figure 12. Two quadrotors connected to the mass pointmy via massless links of lengths Li .

The motivating application behind our choice of this mechanical system has been some intuitive
relation with a beammodel, as highlighted in the introduction of this work. However, for this limiting
behaviour to make sense, we should fix the length of the entire chain of pendulums to some L (the
length of the beam at rest) and then set the size of each pendulum to Li = L/N. In this case, keeping
the same tolerance of 10−6 for RKMK(5,4), we get the results presented in the following plot. We do
not investigate more in detail this approach, which might be relevant for further work, however, we
highlight that here the step adaptivity improves the results as we expected.

6. Dynamics of two quadrotors transporting amass point

In this section, we consider amultibody systemmade of two cooperating quadrotor unmanned aerial
vehicles (UAV) connected to a point mass (suspended load) via rigid links. This model is described
in [28,29].

We consider an inertial frame whose third axis goes in the direction of gravity, but opposite orien-
tation, andwe denotewith y ∈ R3 themass point andwith y1, y2 ∈ R3 the two quadrotors.We assume
that the links between the two quadrotors and the mass point are of a fixed length L1, L2 ∈ R+. The
configuration variables of the system are: the position of the mass point in the inertial frame, y ∈ R3,
the attitude matrices of the two quadrotors, (R1,R2) ∈ (SO(3))2 and the directions of the links which
connect the centre of mass of each quadrotor respectively with the mass point, (q1, q2) ∈ (S2)2. The
configuration manifold of the system is Q = R3 × (SO(3))2 × (S2)2.

In order to present the equations of motion of the system, we start by identifying TSO(3) �
SO(3)× so(3) via left trivialization. This choice allows us to write the kinematic equations of the
system as

Ṙi = Ri�̂i, q̇i = ω̂iqi i = 1, 2, (36)

where �1,�2 ∈ R3 represent the angular velocities of each quadrotor, respectively, and ω1,ω2
express the time derivatives of the orientations q1, q2 ∈ S2, respectively, in terms of angular veloc-
ities, expressed with respect to the body-fixed frames. From these equations, we define the trivialized
Lagrangian

L(y, ẏ,R1,�1,R2,�2, q1,ω1, q2,ω2) : R6 × (SO(3)× so(3))2 × (TS2)2 → R,
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as the difference of the total kinetic energy of the system and the total potential (gravitational) energy,
L = T−U, with:

T = 1
2
my‖ẏ‖2 + 1

2

2∑
i=1
(mi‖ẏ − Liω̂iqi‖2 +�T

i Ji�i),

and

U = −mygeT3 y −
2∑

i=1
migeT3 (y − Liqi),

where J1, J2 ∈ R3×3 are the inertia matrices of the two quadrotors andm1,m2 ∈ R+ are their respec-
tive total masses. In this system, each of the two quadrotors generates a thrust force, which we denote
with ui = −TiRie3 ∈ R3, where Ti is the magnitude, while e3 is the direction of this vector in the i th
body-fixed frame, i = 1, 2. The presence of these forces make it a nonconservative system.Moreover,
the rotors of the two quadrotors generate a moment vector, and we denote with M1,M2 ∈ R3 the
cumulative moment vector of each of the two quadrotors. To derive the Euler–Lagrange equations, a
possible approach is through Lagrange–d’Alambert’s principle, as presented in [28]. We write them
in matrix form as

A(z)ż = h(z) (37)

where

z = [y, v,�1,�2,ω1,ω2]T ∈ R18,

A(z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I3 03 03 03 03 03
03 Mq 03 03 03 03
03 03 J1 03 03 03
03 03 03 J2 03 03
03 − 1

L1
q̂1 03 03 I3 03

03 − 1
L2

q̂2 03 03 03 I3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

h(z) =

⎡
⎢⎢⎢⎢⎢⎢⎣

h1(z)
h2(z)
h3(z)
h4(z)
h5(z)
h6(z)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v

−
2∑

i=1
miLi‖ωi‖2qi + Mqge3 +

2∑
i=1

u‖
i

−�1 × J1�1 + M1
−�2 × J2�2 + M2

− 1
L1

gq̂1e3 − 1
m1L1

q1 × u⊥
1

− 1
L2

gq̂2e3 − 1
m2L2

q2 × u⊥
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

whereMq = myI3 +∑2
i=1miqiqTi , and u‖

i , u
⊥
i are respectively the orthogonal projection of ui along

qi and to the planeTqiS2, i = 1, 2, i.e. u‖
i = qiqTi ui, u

⊥
i = (I − qiqTi )ui. These equations, coupled with

the kinematic equations in (36), describe the dynamics of a point

P = [
y, v, R1, �1, R2, �2, q1, ω1, q2, ω2

] ∈ M = TQ.

Since the matrix A(z) is invertible, we pass to the following set of equations:

ż = A−1(z)h(z) := h̃(z) := h̄(P) = [h̄1(P), . . . , h̄7(P)]T . (38)
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6.1. Analysis via transitive group actions

We identify the phase spaceM withM � TR3 × (TSO(3))2 × (TS2)2. The group we consider is

Ḡ = R6 × (TSO(3))2 × (SE(3))2,

where the groups are combined with a direct-product structure and R6 is the additive group. For a
group element

g = ((a1, a2), ((B1, b1), (B2, b2)), ((C1, c1), (C2, c2))) ∈ Ḡ

and a point P ∈ M in the manifold, we consider the following left action:

ψg(P) = [y + a1, v + a2, B1R1, �1 + b1, B2R2, �2 + b2,

C1q1, C1ω1 + c1 × C1q1, C2q2, C2ω2 + c2 × C2q2].

The well-definiteness and transitivity of this action come from standard arguments, see, e.g. [43]. The
infinitesimal generator associated to

ξ = [ξ1, ξ2, η1, η2, η3, η4, μ1, μ2, μ3, μ4] ∈ ḡ,

where ḡ = TeḠ, writes

ψ∗(ξ)|P = [ξ1, ξ2, η̂1R1, η2, η̂3R2, η4,

μ̂1q1, μ̂1ω1 + μ̂2q1, μ̂3q2, μ̂3ω2 + μ̂4q2].

We can now focus on the construction of the function f : M → ḡ such thatψ∗(f (P))|P = F|P, where

F|P = [h̄1(P), h̄2(P), R1�̂1, h̄3(P), R2�̂2,

h̄4(P), ω̂1q1, h̄5(P), ω̂2q2, h̄6(P)] ∈ TPM

is the vector field obtained combining Equations (36) and (38). We have

f (P) = [h̄1(P), h̄2(P), R1�1, h̄3(P), R2�2, h̄4(P),

ω1, q1 × h̄5(P), ω2, q2 × h̄6(P)] ∈ ḡ.

We have obtained the local representation of the vector field F ∈ X(M) in terms of the infinitesimal
generator of the transitive group action ψ , hence we can solve for one time step�t the IVP{

σ̇ (t) = dexp−1
σ(t)

(
f
(
ψ(exp(σ (t)),P(t))

))
σ(0) = 0 ∈ ḡ

and then update the solution P(t +�t) = ψ(exp(σ (�t)),P(t)).
The above construction is completely independent of the control functions {u‖

i , u
⊥
i ,Mi}i=1,2 and

hence it is compatible with any choice of these parameters.

6.2. Numerical experiments

We tested Lie group numerical integrators for a load transportation problem presented in [29]. The
control inputs {u‖

i , u
⊥
i ,Mi}i=1,2 are constructed such that the point mass asymptotically follows a

given desired trajectory yd ∈ R3, given by a smooth function of time, and the quadrotors main-
tain a prescribed formation relative to the point mass. In particular, the parallel components u‖

i are
designed such that the payload follows the desired trajectory yd (load transportation problem), while
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Figure 13. Convergence rate of the numerical schemes compared with ODE45.

Figure 14. Snapshots at 0 ≤ t ≤ 5.

the normal components u⊥
i are designed such that qi converge to desired directions qid (tracking

problem in S2). Finally,Mi are designed to control the attitude of the quadrotors.
In this experiment, we focus on a simplified dynamics model, i.e. we neglect the construction of

the controllersMi for the attitude dynamics of the quadrotors. However, the full dynamics model can
also be easily integrated, once the expressions for the attitude controllers are available.

In Figure 13, we show the convergence rate of four different RKMK methods compared with the
reference solution obtained with ODE45 in MATLAB.

In Figures 14–18, we show results in the tracking of a parabolic trajectory, obtained by integrating
the system (37) with a RKMKmethod of order 4.
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Figure 15. Components of the load position (in blue) and the desired trajectory (in red) as a function time.

Figure 16. Deviation of the load position from the target trajectory.

7. Summary and outlook

In this paper, we have considered Lie group integrators with a particular focus on problems from
mechanics. In mathematical terms, this means that the Lie groups and manifolds of particular inter-
est are SO(n), n = 2, 3, SE(n), n = 2, 3 as well as themanifolds S2 andTS2. The abstract formulations
by, e.g. Crouch andGrossman [11],Munthe-Kaas [41] andCelledoni et al. [6] have often been demon-
strated on small toy problems in the literature, such as the free rigid body or the heavy top systems.
But in papers like [4], hybrid versions of Lie group integrators have been applied to more complex
beam andmulti-body problems. The present paper is attempting tomove in the direction ofmore rel-
evant examples without causing the numerical solution to depend on how the manifold is embedded
in an ambient space, or the choice of local coordinates.
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Figure 17. Direction error of the links.

Figure 18. Preservation of the norms of q1, q2 ∈ S2.

It will be the subject of future work to explore more examples and to aim for a more systematic
approach to applying Lie group integrators tomechanical problems. In particular, it is of interest to the
authors to consider models of beams that could be seen as a generalization of the N-fold pendulum
discussed here.

Notes

1. If the Lie group action is smooth, a map f of the same regularity as F can be found [53].
2. ω(g,μ) is obtained from the natural symplectic form on T∗G (which is a differential two-form), defined as

�(g,pg )((δv1, δπ1), (δv2, δπ2)) = 〈δπ2, δv1〉 − 〈δπ1, δv2〉,
by right trivialization.

3. The Euler–Poincaré equations are Euler–Lagrange equations with respect to a Lagrange–d’Alembert principle
obtained taking constraint variations.

4. In this paper, we will assume p̃ < p in which case the local error estimate is relevant for the approximation ỹn+1.
5. There are many options for how to do this in practice, and the choice may also depend on the application. E.g. a

Riemannian metric is a natural and robust alternative here.
6. It follows from the definition of the inertia tensor, i.e.

0 ≤ T̃(q, q̇) = 1
2

N∑
i=1

⎛
⎝∑

j≥i
mj

⎞
⎠ LiLjq̇Ti q̇j :=

1
2
q̇TMq̇.
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Moreover, in this situation it is even possible to explicitly find the Cholesky factorization of the matrixM with an
iterative algorithm.
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