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Abstract— This brief proposes a subspace-aided fault detection
approach for the drive systems of strip rolling mills. Con-
sidering the impact of the unknown periodic load generated
by the strip rolling process, the primary contributions are
concluded as follows. First, this brief presents an approach to
describe the subspace of the unknown/unmeasurable periodic
load. Second, a fundamental frequency identification approach
for the drive systems is proposed and then the subspace of the
unknown periodic load can be constructed by the fundamental
frequency. Third, this brief presents a subspace-aided fault
detection approach to identify the data-driven stable kernel
representation (SKR) of the closed-loop system by projecting the
input–output (I/O) process data, so as to obtain a robust residual
against the unknown periodic load. In addition, the effectiveness
and performance of the approaches are verified by numerical
examples and experimental data of the test rig for the drive
systems of strip rolling mills. The results show that a robust
residual generation against the unknown periodic load in the
drive systems can be obtained and the robust subspace-aided
fault detection can be achieved. Compared with the traditional
method, the proposed approaches can improve the fault detection
rate more effectively and be applied to the drive systems of strip
rolling mills reliably.

Index Terms— Data-driven, data-driven stable kernel represen-
tation (SKR), fault detection, industrial rolling mill drive system,
periodic load, subspace.

I. INTRODUCTION

W ITH the development of industrial production technol-
ogy, the operating conditions of modern production

systems have become more complex. Complex data make it
difficult to identify the operation state of industrial systems
directly. To ensure the safety and reliability of systems, it is
necessary to do fault detection category research [1], [2].
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Various fault detection methods have been basically covered
in industrial applications, such as plant-wide process [3], high-
speed train [4]–[8], and most techniques and applications of
fault detection are summarized in [9].

The data-driven scheme has been developed in [10] and
further studied in [11] and [12]. Yin et al. [13] propose
multivariate statistical analysis and optimization process mon-
itoring methods for data-driven fault detection. Luo et al. [14]
analyze the robustness of systems in this data-driven frame-
work. In the field of data-driven fault detection, subspace
identification technology has attracted more and more attention
over the past decades, focusing on dynamic processes. In this
way, without knowing the model of a system, the stable
kernel representation (SKR) of the system which forms the
residual generator can be identified. These subspace identi-
fication methods have been well verified in the numerical
examples of industrial systems. However, as the disturbance
is inevitable in the operating state of systems, the results of
process monitoring fault detection in the practical applications
are unsatisfactory. The disturbance needs to be considered in
practical application.

In recent years, the subspace-aided fault detection
approaches considering known/measurable disturbance have
drawn extensive attention [15], [16]. A subspace-aided fault
detection method is presented [17] to solve the problem of roll
eccentricity. However, the traditional subspace identification
approach is not ideal, and the disturbance cannot be measured
in practice, so the fault detection technology with unknown
disturbance is still a common problem. Different from [17],
based on the previous research [18], this brief takes into
account the impact of unknown periodic load generated by the
strip rolling process and proposes a subspace fault detection
approach for the drive systems of strip rolling mill, which is
verified by the actual experimental data. The contributions are
described as follows.

1) This brief proposes a fundamental frequency identifica-
tion approach in Section III-C, which sets the stage for
the subsequent contributions.

2) In Section III-B, it presents a signal subspace description
approach for unknown periodic load in the drive systems
of rolling mills generated by the roll bite area. The sub-
space can be constructed by the fundamental frequency
which is identified by the first contribution.

3) The subspace identification of the data-driven SKR with
unknown periodic load is studied for the drive systems
of rolling mills in Section IV, which is realized by
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Fig. 1. Strip rolling mill configuration.

projecting the process data into the different subspaces.
As a result, a robust residual generation against the
unknown periodic load in the drive system can be
obtained to achieve better fault detection.

The following is the structure of this brief. The problem
formulation of the strip rolling process is given in Section II.
Then, it presents the subspace description of unknown periodic
load and a fundamental frequency identification approach in
Section III. A data-driven SKR with the unknown periodic
load is identified by the subspace identification method in
Section IV. In Section V, the benchmark study is performed
that includes numerical simulation and experimental verifica-
tion. In the end, the conclusion is given in Section VI.

II. STRIP ROLLING PROCESS AND

PROBLEM FORMULATION

A. Strip Rolling Process

Strip rolling is a process of converting raw materials into
finished products. The thickness of the steel plate is reduced
during rolling. The steel plate is first heated in the furnace and
then rolled into coils for further processing.

A typical mill-stand arrangement and the whole strip rolling
process are briefly described as shown in Fig. 1. Taking a
four-high roll in a typical stand-alone two-stand rolling mill,
the steel plate passes through two separate pairs of work rolls
which are supported by the backup rolls. The work rolls are
directly in contact with the plate and are powered by the drive
systems of rolling mills such as electric motors, in general.

The reduction in thickness is due to high pressure in a small
area between the work rolls called the roll bite area [19]. The
bite area begins when the head of the steel plate almost touches
the work rolls and terminates when the tail of the steel plate
is almost away from the work rolls. Therefore, the whole
process in the bite area will be divided into two parts: the
entry and exit of bite. Correspondingly, the plates are also
classified as incoming plates and exiting plates. Referring to
Fig. 1, the steel plate will enter the bite area at vin speed and

Fig. 2. Schematic of the impact of periodic load on the speed of drive
systems.

exit the bite area at vout speed. As a result, all steel plates are
passed one by one between the work rolls, which generates
a set of loads similar to the pulse waveform in Fig. 1, where
p(t) denotes the function of the periodic pulse wave.

Due to the high bearing force, the deformation of the steel
plate causes an abnormal speed variation of the work rolls.
As each steel plate passes through, the motor drive is in a
cycle from load to no-load as shown in Fig. 2. Under this load,
the drive system of the rolling mill is easy to go wrong. If the
periodic load in the rolling process is not considered, once the
drive system is in the faulty condition, the fault signal cannot
be separated from the periodic load and is easily submerged in
the periodic load, so it cannot be detected in time, which may
cause significant industrial accidents. Therefore, it is important
to study fault detection of drive systems in the rolling process.
In this brief, a fault detection approach for the drive systems
of rolling mills under periodic load is studied. It is devoted to
accurately and timely monitoring the drive system of rolling
mills under periodic load situations.

B. Problem Formulation

The dynamic performance of the drive systems studied in
this brief is evaluated in a dynamic discrete-time system,
which is simplified as linear time-invariant (LTI) in terms of
closing to the working point. The nonlinearity case [20] is
beyond the scope of this brief. A drive system G(z) of the
strip rolling mill can be described as

y(z) = G(z)u(z) + d(z) + α(z) (1)

where u(z) ∈ Rl and y(z) ∈ Rm are input vector and
output vector, respectively. The vector α(z) ∈ Rnα is unknown
noise sequence, which is independent of the input vector u(z).
d(z) is the periodic load sequence affecting the drive system
generated by the roll bite area. The state-space representation
is another description which takes the form

xk+1 = Axk + Buk + Eddk + Eααk (2)

yk = Cxk + Duk + Fddk + Fααk (3)

where xk ∈ Rnx denotes the state, αk is the noise vector, and
dk represents the periodic load vector.
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Fig. 3. Feedback control diagram.

The feedback control diagram of the drive systems is shown
as Fig. 3. The general feedback controller K(z) has the
following state-space realization:

xc,k+1 = Acxc,k + Bc(ωk − yk) (4)

uk = Ccxc,k + Dc(ωk − yk) (5)

where the tracking reference ωk is uncorrelated with the sys-
tem’s unknown noise sequence. Following are the assumptions
of feedback control structure.

1) The closed-loop in Fig. 3 is internally stabilized by the
feedback controller K(z).

2) The tracking reference ωk ∈ Rm is independent of the
noise αk ∈ Rnα and satisfies the persistent excitation
condition.

3) The state vector xk ∈ Rnx is fully excited, and it has
enough measurements ωk , uk , and yk available.

According to the definition of the left coprime factoriza-
tions [21] of G(z) and the data-driven SKR [11], the residual
generator rk can be denoted as follows, which includes the
unknown periodic load and noise:

rk = Kd,s

[
us,k

ys,k

]
= unknown periodic load + noise

where the full-row rank matrix Kd,s ∈ RnK×s(l+m) is the data-
driven SKR, us,k and ys,k represent the stacked data vectors
of length s as follows:

us,k =
⎡
⎢⎣

uk
...

uk+s−1

⎤
⎥⎦ ∈ Rsl, ys,k =

⎡
⎢⎣

yk
...

yk+s−1

⎤
⎥⎦ ∈ Rsm. (6)

III. SUBSPACE DESCRIPTION OF THE UNKNOWN

PERIODIC LOAD IN THE DRIVE SYSTEMS

In the strip rolling process, it is difficult to measure the
load. To solve this problem, a subspace description approach is
proposed which can accurately simulate the real load generated
by the strip rolling process. The periodic load in the drive
systems of strip rolling mills could be considered as a periodic
pulse wave [22].

A. Fourier Series of Periodic Pulse Wave

For a continuous-time period signal f (t), the Fourier series
expansion can be described as

f (t) =
∞∑

n=−∞
cneinω0 t = c0 +

∞∑
n=1

(
cneinω0 t + c−ne−inω0t

)

Fig. 4. Periodic pulse wave function pτ,T (t).

where the fundamental frequency ω0 = 2π/T , with T being
the period of the signal. The component signals with different
values of n have harmonic relationships, and the frequencies of
the component functions are all integer multiples of fundamen-
tal frequency. c0 and cn are the complex Fourier coefficients
of f (t), which have the following form [23]:

cn = 1
T

∫ T +t0
t0

f (t)e−inω0t dt, for n ∈ Z.

Consider a periodic pulse wave function pτ,T (t) with an
amplitude of A, then the complex Fourier coefficients become

c0 = Aτ

T
, cn = c−n = 2A

T
· sin(nω0τ/2)

nω0

where τ is the pulse time, and τ/T and φ denote the duty
cycle and the phase offset, respectively.

Therefore, an ideal periodic pulse wave in Fig. 4 can be
described as follows, which is composed of a series of cosine
waves:

pτ,T (t) = Aτ

T
+

∞∑
n=1

2A

nπ
· sin

(πτn

T

)
· cos(nω0(t − φ)).

B. Subspace Description

In this brief, it is necessary to discuss the number of cosine
waves in order to accurately describe the subspace of the
unknown periodic load in this brief. Therefore, the unknown
periodic load in the drive systems is expressed as the sum of
finite cosine waves

dk = Aτ

T
+

n f∑
n=1

2A

nπ
· sin

(πτn

T

)
· cos(nω0(kts − φ))

= C +
n f∑

n=1

an cos(ωnkts + ϕn) (7)

where C, ωn , an, and ϕn denote the bias, frequency, amplitude,
and phase of the nth cosine wave component, respectively.
n is the integer multiple of the fundamental frequency in
the series of cosine waves, n f not only ensures the accuracy
of the subspace of the unknown periodic load, but also
consider the computational complexity. The integer k is the
discrete-time sampling points. ts denotes the sampling period
which satisfies the Nyquist–Shannon sampling theorem, that
is, ts ≥ π/(nω0), and therefore, the integer multiple of the
fundamental frequency should be n ≤ π/(ω0ts).

In (7), since the following trigonometric identity holds:

an cos(ωnk + ϕn) = βn,1 sin(ωnk) + βn,2 cos(ωnk) (8)
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Algorithm 1 Subspace Description of the Unknown Periodic
Load

in which

βn,1 = −an sin(ϕn), βn,2 = an cos(ϕn)

the periodic load dk in (7) can be rewritten as follows:

dk = P · ρk (9)

where P contains the bias, amplitude, phase, and duty cycle,
and ρk includes frequencies

P = [C β1,1 β1,2, . . . , βn,1 βn,2
]

ρk = [
1 sin(ω1k) cos(ω1k), . . . , sin(ωnk) cos(ωnk)

]T
.

Then, a data vector ds,k of length s is presented

ds,k =

⎡
⎢⎢⎢⎣

dk

dk+1
...

dk+s−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Pρk

Pρk+1
...

Pρk+s−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

P
PT
...

PTs−1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Ps

ρk . (10)

where T is the diagonal matrix that contains the rotation
invertible matrices. The detailed derivation and the Hankel
matrix form are shown in the previous research in [17] which
are not be covered again here. Therefore, the unknown periodic
load in the drive systems can be described as the following
Hankel matrix. (For the construction of the Hankel matrix, see
the reference [12], and so on.)

Dk,s,N = [
ds,k ds,k+1 . . . ds,k+N−1

] = PsDb,N (11)

where Db,N = [
ρk ρk+1 . . . ρk+N−1

] ∈ R(2n f +1)×N is the
subspace description of the unknown periodic load. ρk holds
a matrix of sines and cosines with different multiples of
fundamental frequency ω0.

The subspace description method is summarized in the
following algorithm. In order to verify the accuracy of
the algorithm, the similarity between the real pulse wave
and the subspace description Db,N is tested, so as to provide
guidance for selecting the appropriate n f . More details will
be presented in Section V-A.

C. Fundamental Frequency Identification

It is necessary to require a given fundamental frequency
to describe the subspace Db,N, so a fundamental frequency
identification method is proposed in this section.

The unknown periodic load in the drive systems with noise
can be expressed as

dk = C +
n f∑

n=1

an cos(ωnkts + ϕn) + vk . (12)

According to the formulas of trigonometric functions based
on Chebyshev method, it yields

cos(ωk) = 2 cos(ω) cos(ω(k − 1)) − cos(ω(k − 2))

sin(ωk) = 2 cos(ω) sin(ω(k − 1)) − sin(ω(k − 2))

that is,[
cos(ω(k − 1))

cos(ωk)

]
=

[
0 1

−1 2 cos(ω)

][
cos(ω(k − 2))
cos(ω(k − 1))

]
[

sin(ω(k − 1))
sin(ωk)

]
=

[
0 1

−1 2 cos(ω)

][
sin(ω(k − 2))
sin(ω(k − 1))

]
then the nth component of the periodic load dk can be denoted
by the second-order dynamic system

xdn,k+1 = Adnxdn,k, xdn,0 (13)

dn,k = Cdnxdn,k (14)

where

Adn =
[

0 1
−1 2 cos(ntsω0)

]
, Cdn = [

0 1
]

xdn,k =
[

αn cos((k − 1)ntsω0 + ϕn)
αn cos(kntsω0 + ϕn)

]

xdn,k+1 =
[

αn cos(kntsω0 + ϕn)
αn cos((k + 1)ntsω0 + ϕn)

]
.

Therefore, the periodic load dk in (12) can be formulated
as

xdk+1 = Adxdk (15)

dk = C + Cdxdk + vk (16)

where

Ad =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ad1 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · Adn · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · Adn f

⎤
⎥⎥⎥⎥⎥⎥⎦, xd0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

xd1,0
...

xdn,0
...

xdn f ,0

⎤
⎥⎥⎥⎥⎥⎥⎦

Cd = [
Cd1 · · · Cdn · · · Cdn f

]
xdk = [

xd1,k · · · xdn,k · · · xdn f ,k

]T

xdk+1 = [
xd1,k+1 · · · xdn,k+1 · · · xdn f ,k+1

]T
.

Since the eigenvalues of Adn are

λn = cos(ntsω0) + j sin(ntsω0) (17)

where λn represents the eigenvalues of Adn for the imaginary
number. Then, the problem of frequency estimation in (12)
is reduced to the eigenvalue identification problem of system
matrix Ad in the dynamic system (15) and (16), that is,

ω0 = 1

nts
arccos(Re(λn)) (18)

where Re(·) represents the real part of a complex number.
Then, a fundamental frequency identification approach is
presented.
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The periodic load dk in (12) can be reformulated into
following stacked data vectors by sdp and sdf:

dsdp,k−sdp =
⎡
⎢⎣

dk−sdp

...
dk−1

⎤
⎥⎦ ∈ Rsdp, dsdf ,k =

⎡
⎢⎣

dk
...

dk+sdf−1

⎤
⎥⎦ ∈ Rsdf .

After N times of the truncations from truncating instant k
to k + N − 1, the following Hankel matrices are constructed:

Dsdp,N = [
dsdp,k−sdp . . . dsdp,k−sdp+N−1

] ∈ Rsdp×N

Dsdf ,N = [
dsdf ,k . . . dsdf ,k+N−1

] ∈ Rsdf×N .

Then, the state-space realization

Dsdf ,N = CCCsdf ,N + �sdf Xdk,1,N + Vsdf ,N (19)

where Xdk,1,N = [ xdk . . . xdk+N−1 ] ∈ R2n f ×N , CCCsdf ,N is the
duty cycle term, Vsdf ,N represents the noise term in Dsdf ,N

which is constructed by vk , �sdf is an extended observability
matrix of full-column rank form

�sdf =

⎡
⎢⎢⎢⎣

Cd

CdAd
...

CdAsdf−1
d

⎤
⎥⎥⎥⎦ ∈ Rsdf×2n f .

Assume that the noise sequence vk is white zero-mean and
independent of the initial state vector xd0, then perform the
following LQ decomposition:⎡

⎣ Tc

Dsdp,N

Dsdf ,N

⎤
⎦ =

⎡
⎣ Ld11 0 0

Ld21 Ld22 0
Ld31 Ld32 Ld33

⎤
⎦

⎡
⎣ Qd1

Qd2

Qd3

⎤
⎦ (20)

where Tc = [ 1 1 · · · 1 1 ] ∈ RN represents the duty cycle
subspace of the periodic load. It leads to Vsdf ,N = Ld33Qd3,
and thus it holds

�sdf Xdk,1,N = Ld32Qd2. (21)

Then, perform the singular value decomposition (SVD) on
Ld32Qd2

Ld32Qd2 = [
U1 U2

]︸ ︷︷ ︸
U

[
�1 0
0 �2 ≈ 0

]
︸ ︷︷ ︸

�

[
VT

1
VT

2

]
︸ ︷︷ ︸

VT

. (22)

�sdf can be determined as

�sdf = U1�
1/2
1 . (23)

Then, Ad can be identified as

Ad = �
†
sdf ,1:sdf−1�sdf ,2:sdf (24)

where

�sdf ,1:sdf −1 = �sdf (1 : sdf − 1, :)
�sdf ,2:sdf = �sdf (2 : sdf, :)

and † denotes the left-inverse.
As a result, the proposed subspace-aided approach for the

frequency estimation can be summarized as follows:

Algorithm 2 Fundamental Frequency Identification

IV. ROBUST DATA-DRIVEN FAULT DETECTION APPROACH

FOR THE DRIVE SYSTEMS OF ROLLING MILLS

In this section, a subspace-aided fault detection method with
the unknown periodic load for the drive systems is proposed.

Based on the problem formulation in Section II-B, the input
and output Hankel matrices can be denoted as Uk,s,N ∈ Rsl×N

and Yk,s,N ∈ Rsm×N , and the extended state vector can
be denoted as Xk,1,N ∈ Rnx ×N . Their forms are similar
to that of the Hankel matrix for unknown periodic load in
Section III-B. Then, the extended state-space representation
of the drive systems in (2) and (3) can be formulated as

Yk,s,N = �sXk,1,N + Hu,sUk,s,N + Hd,sDk,s,N + Hα,s�k,s,N

(25)

where Hd,sDk,s,N denotes the sequence of periodic load.
Hα,s�k,s,N denotes the noise sequence in which �k,s,N con-
sists of the noise vector αk , and the structures of Hα,s and
Hu,s are similar. �s is the extended observability matrix and
Hu,s depicts the lower triangle block-Toeplitz matrix

�s =

⎡
⎢⎢⎢⎣

C
CA
...

CAs−1

⎤
⎥⎥⎥⎦, Hu,s =

⎡
⎢⎢⎢⎣

D 0 · · · 0
CB D · · · 0
...

...
. . .

...
CAs−2B CAs−3B · · · D

⎤
⎥⎥⎥⎦.

According to LQ decomposition, assume the control loop
is internally stable, a new data Mk,s,N can be expressed as

Mk,s,N = Uk,s,N + Hu,sYk,s,N

= �c
s Xc

k,1,N + Hc
u,sWk,s,N (26)

where the Hankel matrix Wk,s,N is formed by the tracking
reference ωk ∈ Rm . The matrices �c

s and Hc
u,s consist of the

system matrices of K(z)

Mp,N = Up,N + Hc
u,sp

Yp,N ∈ Rspl×N

Mf,N = Uf,N + Hc
u,sf

Yf,N ∈ Rs f l×N

Zc,p,N = [
UT

p,N YT
p,N

]T ∈ Rsp(l+m)×N

where Db,N is the subspace of the unknown periodic load
derived previously.

Due to the independence of future noise sequence, the Han-
kel matrix Yk,s,N could be orthogonally projected into different
subspaces by an LQ decomposition so that to identify closed-
loop data-driven SKR. Therefore, a subspace-aided fault detec-
tion method is summarized into the following theorem with
considering the periodic load in the strip rolling process.

Theorem 1: As shown in Fig. 3, a standard feedback control
loop which is composed of feedback controller K(z) in (4)–(5)
and the drive system G(z) satisfies the following assumptions.
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1) The controller K(z) is internally stable and the closed-
loop is well-posed.

2) The reference signal ω and the periodic load dk are
uncorrelated with the state vector xk and the unknown
noise αk .

3) s f m > sp(l +m)+ (2n f +1) and N are large enough to
ensure that the matrix: Zd,N = [ZT

c,p,N DT
b,N MT

f,N YT
f,N]T

has full-row rank.
Thus, the thin LQ decomposition can be denoted as⎡

⎢⎢⎣
Zc,p,N

Db,N

Mf,N

Yf,N

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Lc,11 0 0 0
Lc,21 Lc,22 0 0
Lc,31 Lc,32 Lc,33 0
Lc,41 Lc,42 Lc,43 Lc,44

⎤
⎥⎥⎦

︸ ︷︷ ︸
Lc

⎡
⎢⎢⎣

Qc,1

Qc,2

Qc,3

Qc,4

⎤
⎥⎥⎦

︸ ︷︷ ︸
Qc

then a data-driven SKR Kd,sf ∈ RnK×s f (l+m) can be
described as

Kd,sf = [ Ku,sf Ky,sf

]
Ku,sf = Kc,m,sf

Ky,sf = Kc,y,sf + Kc,m,sf H
c
u,sf

(27)

where [ Kc,m,sf Kc,y,sf

][ Lc,31 Lc,32 Lc,33

Lc,41 Lc,42 Lc,43

]
= 0. (28)

Proof: The detailed proof is similar to that shown in [18],
which is not enumerated here.

Remark 1: Ky,sf is a part of the parity subspaces of the
system with the length s f , that is, Ky,sf �sf = 0. If Db,N is
determined though the fundamental frequency of the unknown
periodic load, a robust data-driven fault detection approach can
be realized through Kd,sf .

Then, a robust residual generator can be achieved by using
the data-driven SKR Kd,sf

rd,k = Kd,sf

[
usf ,k

ysf ,k

]
(29)

which can be rewritten as

rd,k = εk + fk, fk =
{

0 : fault-free

�= 0 : faulty
(30)

where εk ∈ N (0,
r ) with the covariance matrix 
r . The fol-
lowing algorithms can solve the problem of detecting changes
in fk . First, the threshold can be set by Algorithm 3.

V. BENCHMARK STUDY

For verifying the effectiveness of the proposed methods,
this section is divided into two parts: numerical simulation
and experimental verification. In experimental verification,
the experimental data of the test rig for the drive systems of
strip rolling mills is used.

A. Numerical Simulation

In the numerical simulation, a numerical example of a motor
control system is given to verify Algorithm 1 and Remark 1.
The variance of the noise sequence is set to be Pαi = 0.001
for i = 1, . . . , nα . The length N is assumed to be 104.

Algorithm 3 Offline Setting

Algorithm 4 Online Fault Detection Algorithm

The sampling time of periodic load is ts = 0.01 s. Further-
more, the fundamental frequency ω0 is identified by measuring
the output of the drive system and using Algorithm 2, which
is consistent with the fundamental frequency of the original
periodic load, that is, 0.1 Hz.

To verify the validity of Algorithm 1, the similarity between
the real pulse wave and the subspace of the unknown periodic
load constructed by different number of frequencies is shown
in Fig. 5. The similarity is calculated as (1 − (‖Df,N −
Df,N�Db,N‖2/‖Df,N‖2))×100%, where the Hankel matrix Df,N

has the same structure as Uf,N, and Df,N�Db,N denotes the
operator that projects the matrix Df,N onto the subspace Db,N.
In particular, the number of frequencies n f depends on the
practice.

Then, Algorithm 4 is given to compute the online residual
evaluation and make a decision.

Fig. 6 shows the effectiveness of Remark 1 which describes
the relationship between the nuclear norm of Psf and the
number of frequencies n f . Psf denotes the product of a part
of kernel and the observability matrix Psf = Ky,sf �sf . From
Fig. 6, it can be concluded that as the number of frequencies
n f increases, the closer Psf is to zero, the more accurate
Ky,sf is identified.

B. Experimental Verification

To demonstrate the subspace-aided fault detection
method, the experimental verification is implemented by the
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Fig. 5. Similarity between the constructed load and the real load.

Fig. 6. Nuclear norm of Psf .

experimental data of the test rig for the drive systems of strip
rolling mills.

The periodic load generated by the strip rolling process can
directly affect the speed of drive systems as shown in Fig. 2.
The process data is collected for validation. The reference of
the drive system speed is 3000 rpm and the sampling time
is set to be 0.01 s. The lengths of sp, sf, and N are chosen
to be 20, 450, and 4000, respectively. During the operational
status of the drive system, an actuator fault is occurred with
a power reduction of 20% at the 2000th sampling instant.
For the threshold setting, the fault alarm rate is chosen as
α = 2% in (31). In Algorithm 3, the window width is selected
to be kw = 5.

The monitoring result by traditional subspace identification
method without consideration of the periodic load is shown
in Fig. 7. The periodicity of residual is obvious and the
existence of the periodic load affects the judgment. As can
be seen from Fig. 7, the online evaluation approaches is close
to or even exceeds the threshold before the fault occurs.

Meanwhile, the monitoring result by the proposed method
considering periodic load which is constructed by 150 fre-
quencies is shown in Fig. 8. As the number of frequencies
n f increases, the constructed periodic load becomes more and
more accurate. As can be seen from Fig. 8, the periodic load is

Fig. 7. Monitoring result without consideration of periodic load.

Fig. 8. Monitoring result with periodic load constructed by n = 150.

largely decoupled, and the periodicity of the residual is almost
invisible. The residual can avoid the impact of the periodic
load on the process monitoring. By comparing Figs. 7 and 8,
the results show that the proposed approach can avoid the
impact of the periodic load during the strip rolling process
and detect the fault of the drive systems more effectively.

A quantile–quantile plot (Q–Q plot) shows the compari-
son of the quantile values of the data with the theoretical
quantile values from a normal distribution. In the Q-Q plot,
the reference line connects the first and third quartiles of the
data, which is from the theoretical distribution. The degree
of proximity to the normal distribution of the residuals from
the two results above is tested in Fig. 9, which shows the
Q–Q plot of the quantile values of the two residuals. In Fig. 9,
the red lines are the reference lines for the no-fault residuals
in Figs. 7 and 8. The black line is the quantile values of the
no-fault residual in Fig. 7. In this case, the residual contains
the whole periodic load and noise. The green line is the
quantile values of the no-fault residual in Fig. 8, that is,
the residuals after constructing the unknown periodic load with
150 frequencies. As can be seen from the figure, the green line
is closer to its reference line than the black line and is almost
coincides with its reference line, which indicates that the
residual in Fig. 8 is almost normally distributed, and most of
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Fig. 9. Distribution of residuals between without consideration of periodic
load and with periodic load constructed by n = 150.

the load is reconstructed and projected into the subspace Db,N.
As can be seen from above, the unknown periodic load can
be constructed accurately by Algorithm 1 so that the residual
generation is robustness, which avoids the influence of the
periodic load and is conductive to fault detection.

The above reliable results prove that the proposed fault
detection method in this brief can be used to effectively detect
the fault in the drive systems of strip rolling mills.

VI. CONCLUSION

In this brief, a subspace-aided fault detection approach
is proposed for the drive systems of strip rolling mills.
Considering the unknown periodic load in the drive system
generated by the strip rolling process, a subspace description
approach and a fundamental frequency identification approach
for the unknown periodic load are proposed. The approaches
are verified by the numerical example and the experimental
data in the test rig for the drive systems of strip rolling
mills. Compared with the traditional approaches which do not
consider the unknown periodic load because of unmeasurable,
the proposed approach can reduce the periodicity of the
residual. The experimental results show that the proposed
approaches have a better robustness on the unknown periodic
load in the drive systems and avoid the impact on the fault
detection rate of the drive systems during the strip rolling
process and have practical application value.
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