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Summary

The thermodynamic and transport properties of fluids confined to porous media
are in this thesis investigated with nanothermodynamics, non-equilibrium ther-
modynamics, and molecular simulations. This thesis has two parts, where the
first part gives an introduction to porous media, thermodynamics, and molecular
simulations. The thermodynamics used and developed in this work are described
in detail, with extra focus on the theory of nanothermodynamics. The molecular
simulations used in this work are described, and the calculation of the local pres-
sure tensor is described in detail. The second part of this thesis consists of nine
scientific articles. Six of them are published in peer-reviewed journals, while three
have been submitted and are available as preprints. The articles are enumerated
from I to IX and are sorted by their published date, or submission date for those
that have not been published yet.

Articles I and II apply non-equilibrium thermodynamics to describe the non-
isothermal transport of a two-phase fluid in a representative elementary volume
(REV) of a porous medium. The thermodynamic variables of the REV are de-
fined, and the entropy production and flux-force equations are derived. The ther-
modynamic variables of the REV are constructed from additive contributions,
namely from the bulks phases, surfaces, and three-phase contact lines. There are
three driving forces present, the thermal force, a chemical force, and a pressure
force. These articles set the stage for subsequent computational investigations of
transport in porous media.

In article III, we investigate a single-phase fluid in a face-centered cubic (fcc)
of solid particles. The fcc lattice is nanoporous, and we find that we need to
introduce the integral pressure. The integral pressure is a concept from nanoth-
ermodynamics and is different from the differential pressure for small systems,
which is the normal pressure. We realized with this work, that to calculate the
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driving force in non-equilibrium conditions, namely the pressure gradient, we first
needed to compose a procedure to calculate the pressure of a porous medium.
This article initiated our interest in using nanothermodynamics to describe fluids
in nanoporous media.

In the next articles IV, V, VI, VIII, we calculated the thermodynamic prop-
erties of fluids in nanoporous media using nanothermodynamics. The thermo-
dynamic properties we calculated were for example the integral pressure, surface
tension, entropy, and disjoining pressure. We investigated slit pores (IV, V, VI),
pipes (VI), and fcc lattices (VIII). In articles IV, VI, and VIII we investigated
a single-phase fluid, while in article V we investigated a liquid-vapor equilibrium
in a slit pore. These articles gave us confidence that we understood and could
describe such systems. For the slit pore, we related the mechanical pressure tensor
to the thermodynamic integral pressure, normal pressure, and surface tension.

In article VII, we investigated a transition from a bulk fluid to a close-packing
fluid in a slit pore when controlling either the height of the slit pore or the normal
pressure. The system can be seen as a primitive model for deformable porous
media when controlling the pressure because the pore volume was free to fluc-
tuate. When controlling the height on the other hand the porous medium was
completely non-deformable. To transform from the height-controlled free energy
to pressure-controlled free energy we found for certain conditions that one must
use the Legendre-Fenchel transform, and not the usual Legendre transform [1,2].
This article was inspired by the stretching of short polymers, which shows a similar
behavior [3].

In article IX, we applied what we learned in the previous works and calculated
the transport coefficients of a single-phase fluid in a fcc lattice of solid spheres. We
assumed that the integral pressure is constant when the system is in equilibrium
and used this to calculate the integral pressure in a bulk fluid in equilibrium
with the porous media. From this, we constructed an equation of state which
relates the fluid density of the porous medium, temperature, and porosity to the
integral pressure. The gradient in integral pressure is the driving force for fluid
flow. Together with the mass flux and shear viscosity, we calculated the hydraulic
conductivity and permeability of the system.

In addition to the articles listed above, I have published an article on the
interactions between prolate ellipsoidal nanoparticles adsorbed at liquid-vapor in-
terfaces [4]. This article is based on my master’s thesis [5] and is not included here.
In this article, we investigated interactions between prolate ellipsoidal nanoparti-
cles adsorbed to liquid-vapor interfaces. Here the interaction between fluid and
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solid is central, which is also the case for fluids in porous media.
During my time as a PhD candidate, I have primarily used the open-source

software LAMMPS for molecular simulations [6]. I have contributed to LAMMPS
by implementing two modules. These modules have been essential in this work,
and hopefully, they will also be useful for others.
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Chapter 1
Introduction

A porous medium is a material that contains space, which can be occupied by
fluids. Examples of porous media include water and petroleum reservoirs, zeo-
lites, membranes, blood vessels, and cement. This long list of examples hints at
the challenge posed by studying fluids in porous media; there is a vast range of
different types of porous media. Figure 1.1 shows two examples of porous media,
a porous membrane electrode assembly found in a fuel cell and a metal-organic
framework (MOF). The systems considered in this thesis are systems with two or
three phases, where one of the phases always is the solid material that makes up
the porous structure and the other(s) are fluid phases.

Many new green technologies use different porous media, and precise descrip-
tions of transport in these are consequently very important. This can be used
to find the optimal design of fuel cells [7, 8], understand how to store captured
carbon dioxide [9–14], how to produce clean water and electricity from waste
heat [15–19], or how to describe transport in lithium-ion battery electrodes and
separators [20–22].

The mechanisms of transport in porous media have varying impacts on the
vast range of sizes and shapes of the pores. The size of the pores can vary from
nanometer size and up, and the shapes can vary from simple shapes like pipes and
slit pores to complex geometries found in zeolites or sandstone. The proportion
of surface energy to the total energy increases with decreasing size. This is a
consequence of the square-cubed law, namely that the surface area scales with the
square of the system size, while the volume scales with the cube of the system size.
For porous media, the surface energies are significant. In addition, the chemistry
and mechanical properties of the porous medium must also be considered. The
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(a) (b)

Figure 1.1: (a) Scanning electron micrograph of a membrane electrode assembly
cross section in a proton-exhange fuel cell. Reproduced from Yin et al. [23]1. (b)
Scanning electron micrograph of a crystal of metal-organic framework. The porous
structure is much smaller than the resolution of the image and can not be seen.
Reproduced from CSIRO2.

ambition of the field is to have a detailed description of transport in porous media
with a minimal amount of complexity. Typical variables to describe transport in
porous media are saturation, porosity, tortuosity, pore connectivity, contact angle,
and surface-to-volume ratios. Which of these variables are necessary? This thesis
contributes to answers to these questions.

In this work, the thermodynamic properties of fluids in porous media are de-
scribed with nanothermodynamics. Thermodynamics is a field of science that
describes physical properties which are central in transport in porous media, for
example, pressure and temperature. Classical thermodynamics describes systems
in the thermodynamic limit, where the number of atoms and molecules approaches
a very large number. However, fluids in porous media are not necessarily within
the thermodynamic limit. To tackle this issue, we have for the first time utilized
nanothermodynamics to describe fluids in porous media [24]. The transport prop-
erties are then described with non-equilibrium thermodynamics. Non-equilibrium
thermodynamics extends classical thermodynamics to describe the transport of
systems out of equilibrium [25–28]. The combination of nanothermodynamics
and non-equilibrium thermodynamics to describe transport in porous media is
novel, and I consider this to be a promising direction to obtain general and pre-
cise descriptions.

1Reproduced from Yin et al. [23] under the CC BY-SA 4.0 license.
2Reproduced from CSIRO under the CC BY 3.0 license.
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Figure 1.2: A single-phase fluid in a slit pore (left) and a face-centered cubic
(fcc) lattice of solid spheres (right). The blue spheres represent solid and the red
spheres represent fluid particles. The dotted black lines indicate the size of the
representative elementary volume (REV), which gives a continuous description in
which fluxes and forces can be determined.

Upscaled descriptions of transport in porous media are a prominent strategy
to reduce the complexity. In general terms, this entails taking the complex details
of a system and defining a combination with less complexity. The goal is to reduce
the complexity while keeping the necessary detail for the purpose. For example,
we can take molecular details such as atom positions, velocities, and forces, and
combine them into properties such as pressure, mass flux, and temperature. One
common procedure in porous media research is to define a representative elemen-
tary volume (REV). In this work, we define the REV to be a volume that is large
enough, but not larger, to be statistically representative of the system. From a
statistical mechanical point of view, the REV includes all available microstates of
the system. Two REVs are illustrated in figure 1.2, the REVs of a single-phase
fluid in a slit pore and a face-centered cubic (fcc) lattice of solid spheres. The
REV gives a continuous description of the porous media, which in turn gives an
integration path to calculate transport coefficients from local fluxes and forces.
In this work, we specify a thermodynamic procedure to construct the REV which
is general for all porous media. We derive the Gibbs equation for the REV, and
in turn derive the entropy production and flux-force equations for the REV. This
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gives a thermodynamic theory of coupled transport on the Darcy scale and gives
a thermodynamic basis for Darcy’s law. This definition of the REV differs from
other definitions, such as the definition by Nordahl and Ringrose [29], which uses
a constant permeability as a criterion for the REV size. We follow a similar pro-
cedure of volume integrals by Whitaker [30], as we use additive variables to define
the REV. In further analysis, however, we deviate from Whitaker.

To investigate the assumptions and relations in the theory described in chap-
ter 2 in this thesis, we apply molecular simulations as computational techniques.
Molecular simulations are alternatives to time-consuming and costly laboratory
and field experiments. They do not eliminate the need for experiments but are use-
ful supplements. Molecular simulations simulate individual atoms or molecules,
from which thermodynamic properties can be determined. To simulate transport
in porous media we employ non-equilibrium molecular dynamics [31]. The molec-
ular simulations are described in detail in chapter 3. More common in porous
media research is the use of computational techniques such as pore-network mod-
els [32–35] and lattice Boltzmann simulations [36, 37]. However, using molecular
simulations we can obtain thermodynamic variables such as pressure, temperature,
and chemical potential directly from the molecular variables. This is not the case
for pore-network models or lattice Boltzmann simulations. On the other hand,
molecular simulations are computationally expensive, and the systems studied
will inherently be much smaller than what pore-network models or lattice Boltz-
mann simulations can handle. All in all, molecular simulations are well suited for
tackling the research questions in this PhD thesis.

Pressure has been of special interest in this work. Using nanothermodynam-
ics, we define integral and differential pressures as well as surface tensions. With
molecular simulations, we calculate the mechanical pressure tensor. There is no
consensus on how these properties are related [38–40], and in fact, the local me-
chanical pressure tensor is ambiguous [41]. It was shown by Schofield and Hen-
derson that the pressure due to a pair-wise particle interaction can be distributed
along any curve connecting the pair [42]. In articles V and VI, we related the me-
chanical pressure tensor to the integral pressure, differential pressure, and surface
tension by volume averages. These relations gave self-consistent relations between
the properties. Other relations may also be possible. In articles VIII and IX, we
used an equation of state approach, where the integral pressure was calculated in
a bulk fluid. The integral pressure of a representative elementary volume (REV)
in equilibrium with the bulk fluid was assumed to be constant. In this way, we
were able to construct an equation of state for the integral pressure as a function
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of the temperature, fluid mass density, and porosity of the REV. This is a new
procedure, which I believe is general and can be applied to complex geometries
and multiphase fluids.

The field of porous media research started with Henry Darcy in the 19th
century. In 1856 he published a book with the English translation The Public
Fountains of the City of Dijon [43], in which a section of the appendix de-
scribed a collection of experiments of water flow in sand columns, and subsequently
the discovery of what is now known as Darcy’s law. Darcy’s law describes the
volume flux of a single-phase fluid in a porous medium with an applied pressure
difference, in its later generalized form it is given as

q = −k∆p

ηL
, (1.1)

where k is the permeability of the porous medium, η is the shear viscosity, ∆p

is the pressure difference across the medium, and L is the length of the porous
medium. Darcy’s law is similar to Fourier’s law of heat conduction and Fick’s
law of diffusion. Later, it was shown that the Navier-Stokes equation reduces
to Darcy’s law by assuming laminar flow. Non-equilibrium thermodynamics also
yields a similar equation when the volume flux and pressure gradient are the only
flux-force terms. Darcy’s law has been successfully applied in many engineering
applications, maybe most notably in the petroleum industry. The law has been
empirically extended to include two-phase flow, to model for example water and
oil transport in petroleum reservoirs. However, for describing coupled transport
in for example porous separators [44] we need more precise descriptions.

Darcy’s equation describes transport on what is known as the Darcy scale.
The REV is on the Darcy scale. For a single-phase fluid in a slit pore or a pipe,
the REV spans the width of the pore [45–47], while for a single-phase fluid in a fcc
lattice of solid spheres, the smallest REV is a unit cell [48–50]. This is illustrated
in figure 1.2. The REV gives a continuous path in which fluxes and forces can
be described. If we imagine displacing each solid particle in the fcc lattice a tiny
amount or if we allow the width of the slit pore to vary along its surface, the
REV increases to accommodate the variation. In addition, for multi-phase flow,
the size of the REV must also increase. The REV is constructed of additive
thermodynamic variables of the individual phases, surfaces, and contact lines of
the REV. For example, the internal energy of the REV is a sum of the internal
energy of the phases, surfaces, and lines.

In the next chapters, the thermodynamic theory and molecular simulations
used in this work are described. In chapter 2, the thermodynamic theory is
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described with an extra emphasis on nanothermodynamics. In chapter 3, the
molecular simulations are described with a special focus on the calculation of the
mechanical pressure tensor in Cartesian and spherical coordinates.
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Chapter 2
Thermodynamics

The properties of fluids depend on temperature and pressure, but also the size
and shape of the fluids. Fluids in porous media can have a vast range of differ-
ent sizes and shapes. In this work, we use thermodynamics to get a systematic
description of fluids in porous media. Thermodynamics is a field of science that
describes how physical properties such as energy, chemical potentials, pressure,
and temperature are related. In section 2.1, the mathematical background of
thermodynamics is emphasized, as this becomes important when thermodynamic
relations are applied to nanosized systems in section 2.3. Section 2.2 introduces
the connection between thermodynamics and statistical mechanics, and transport
in porous media is described with non-equilibrium thermodynamics in section 2.4.

2.1 Introduction to thermodynamics

The first law of thermodynamics states that the total energy of an isolated system
is conserved [51]. The classical statement of this is that an infinitesimal change in
internal energy dU of a system is the sum of the infinitesimal heat δQ and work
δW supplied to the system,

dU = δQ+ δW. (2.1)

Internal energy is the energy contained in the system, such as thermal energy and
particle interactions.
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2.1.1 Exact and inexact differentials

The symbols df and δf represent infinitesimal changes in the function f . The
difference between the two is that df represents the exact differential of f , while
δf represents the inexact differential. Heat and work are path functions which
means that they depend on the path taken, and can not be written as exact
differentials. The internal energy is a state function which means that it only
depends on the state it is in and not the path that it has taken to get there, and
it can be written as an exact differential. The exact differential is also be called
the total differential. In this chapter, the terms exact and inexact differentials
will be used, but note that we have used the terms total differential instead of
exact differential in some of the articles in this thesis.

The exact differential of the function f = f(x, y) is

df(x, y) =
(
∂f

∂x

)
y

dx+

(
∂f

∂y

)
x

dy (2.2)

where x and y are independent variables. The subscripts of the partial derivatives
indicate the variables that are held constant when differentiating. In this example,
it is obvious which variables are kept constant during differentiation. In section
2.1.3 I introduce transformations of control variables, which underlines that this
notation is important in thermodynamics.

Exact and inexact differentials

The differential of a function f = f(x1, x2, . . . , xn) is exact when it can be
written as

df(x1, x2, . . . , xn) =
n∑

i=1

(
∂f

∂xi

)
xj 6=i

dxi. (2.3)

If it can not, the differential δf(x1, x2, . . . , xn) is inexact.

When a function can be written as an exact differential, the order of differen-
tiation does not matter. This implies(

∂

∂y

(
∂f

∂x

)
y

)
x

=

(
∂

∂x

(
∂f

∂y

)
x

)
y

, (2.4)

which is known as Maxwell relations. From this, relations between thermodynamic
variables can be obtained, which is a great advantage of describing systems in
terms of thermodynamics.
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Heat and work are path functions, but if we assume reversible processes they
can be expressed in terms of state functions. Work can for example be pressure-
volume work where the system does work on the environment by expanding its
volume. In that case, the infinitesimal reversible work applied to the system is

δW = −pdV, (2.5)

where p is the pressure and dV is the exact differential of the volume. Work can
also be the work of stretching a surface or line. In the ideal case of reversible
processes, the infinitesimal heat is

δQ = TdS, (2.6)

where T is the temperature and dS is the exact differential of the entropy. By
introducing this into equation 2.1 we obtain the exact differential of the internal
energy

dU(S, V ) = TdS − pdV. (2.7)

Since this is the exact differential of the internal energy, temperature and pressure
must be

T =

(
∂U

∂S

)
V

and p = −
(
∂U

∂V

)
S

, (2.8)

respectively. We will from now on consider these as the definitions of tempera-
ture and pressure. Temperature and entropy are conjugate variables, and so are
pressure and volume. We have the following Maxwell relation,(

∂T

∂V

)
S

= −
(
∂p

∂S

)
V

. (2.9)

Temperature and pressure are intensive variables, while entropy and volume are
extensive variables. Extensive variables double in size when the system doubles in
size, while intensive variables do not depend on the system size. Extensive vari-
ables are Euler homogeneous functions of the first order, while intensive variables
are Euler homogeneous functions of the zeroth-order.

2.1.2 Euler’s theorem of homogeneous functions

An Euler homogeneous function increases by a factor λk when the arguments are
multiplied by a factor λ,

f(λx, λy) = λkf(x, y) (2.10)
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where f is Euler homogeneous of order k. For example, the function f = 2x+3y is
Euler homogeneous of the first order, while the function f = 2x2+5y is not Euler
homogeneous. By differentiating with respect to λ on both sides, reorganizing,
and letting λ = 1, we obtain

kf(x, y) =

(
∂f

∂x

)
y

x+

(
∂f

∂y

)
x

y. (2.11)

The functions (∂f/∂x)y and (∂f/∂y)x are homogeneous of degree k − 1. This is
known as Euler’s theorem of homogeneous functions.

Euler’s theorem of homogeneous functions

Let f = f(x1, x2, . . . , xn) be a homogeneous function of order k such that

f(λx1, λx2, . . . , λxn) = λkf(x1, x2, . . . , xn), (2.12)

then

kf(x1, x2, . . . , xn) =

n∑
i=1

(
∂f

∂xi

)
xj 6=i

xi. (2.13)

The internal energy is a function of only extensive variables and is consequently
an Euler homogeneous of the first order. It can for example be a function of
entropy, volume, and the number of particles of each component i. Since it is an
Euler homogeneous function of the first order, we can in that case write

U(S, V,N) =

(
∂U

∂S

)
V,N

S +

(
∂U

∂V

)
S,N

V +
C∑
i=1

(
∂U

∂Ni

)
S,V,Nj 6=i

Ni, (2.14)

where N = [N1, N2, . . . , NC ] is a vector with the number of particles of C com-
ponents.

The conjugate variable to the number of particles of component i is the chem-
ical potential of component i. The temperature, pressure, and chemical potential
are defined as

T :=

(
∂U

∂S

)
V,N

, p := −
(
∂U

∂V

)
S,N

, µi :=

(
∂U

∂Ni

)
S,V,Nj 6=i

. (2.15)

In the definition of the chemical potential, the number of particles of all other
components j 6= i is kept constant together with the entropy and volume. The
symbol := indicates that the left-hand side is equal to the right-hand side by

22



definition. The chemical potential can be considered to be the energy required
to add one more particle to the system while keeping the mentioned variables
constant.

If you take the exact differential of both sides of equation 2.14 and apply the
chain rule, you will get

dU(S, V,N) = TdS + SdT − pdV − V dp+ µ · dN +N · dµ. (2.16)

Where µ = [µ1, µ2, . . . , µC ] is the vector with the chemical potentials of each
component and µ · dN denotes the inner product of the chemical potentials and
number of particles. This equation of the exact differential of the internal energy
does not agree with the definition in equation 2.3. However, Euler’s homogeneous
function theorem states that a function of T, p, and µ must be of the zeroth-order
when the conjugate variables S, V, and N are of the first order. This means that

SdT − V dp+N · dµ = 0. (2.17)

This equation is known as the Gibbs-Duhem equation. The exact differential of
the internal energy stated in equation 2.16 reduces to

dU(S, V,N) = TdS − pdV + µ · dN . (2.18)

This equation comes from requiring that the internal energy is a state function
and that it is an Euler homogeneous function of the first order with the control
variables S, V,N .

A necessary assumption when using thermodynamic relations is that the inter-
nal energy is an Euler homogeneous function of the first order. One way to think
of it is to ask oneself if the control variables completely describe the system. Is
this the complete set of independent control variables? If the system for example
has surfaces or lines, and the surface area or line length is not included as a control
variable the internal energy will not be Euler homogeneous of the first order. For
example, a function f(x, y) = πx+

√
2y+ez is not Euler homogeneous of the first

order with the given variables, while the function f(x, y, z) = πx +
√
2y + ez is.

One may always include surface areas, line lengths, points, and so on. Fluids in
porous media can be complex, and there might be unknown extensive variables
that the internal energy is a function of which makes it problematic to describe
with classical thermodynamics. However, nanothermodynamics as described in
section 2.3, can describe fluids in porous media in a very general and original
manner.
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2.1.3 Free energy transforms

Gibbs and Helmholtz introduced the concept of free energy, which is the energy
available to do work in a given environment [51]. The free energies are state
functions, but they are not Euler homogeneous. The environment decides which
variables are controlled. For example, imagine a sealed container that allows
energy, but not masses, to be transferred from the environment. In this case, the
sensible control variables are temperature, volume, and the number of particles.
In statistical mechanics, a set of control variables is characterized as an ensemble,
and this particular set of control variables is called the canonical ensemble. In
article VII, we investigate the free energy transforms of a single-phase fluid in a
slit pore.

The Helmholtz energy is the free energy in an environment where the temper-
ature, volume, and number of particles are controlled. The Helmholtz energy is
by definition [51,52]

A(T, V,N) := U(S, V,N)− TS. (2.19)

This is a Legendre transform of the internal energy. Similarly, the enthalpy is
defined as

H(S, p,N) := U(S, V,N) + pV, (2.20)

and the Gibbs energy is defined as the Legendre transforms of the enthalpy,

G(T, p,N) := H(S, p,N)− TS. (2.21)

The grand potential, with the temperature, volume, and chemical potential as
control variables, can be defined as

Ω(T, V,µ) := A(T, V,N)− µ ·N . (2.22)

Legendre transform

The Legendre transform of a differentiable convex function f = f(t) is

F (s) = f(t)− st. (2.23)

The Legendre-Fenchel transform is sometimes called the Legendre transform, how-
ever, in this work, we will keep the distinction between the two transforms. The
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Legendre-Fenchel transform is defined in section 2.2. The Legendre-Fenchel trans-
form applies to differentiable non-convex functions, while the Legendre transform
applies to differentiable convex functions. For convex functions, the Legendre-
Fenchel transform reduces to the Legendre transform. A convex function has a
non-negative second derivative everywhere. In article VII, we investigate a system
where the Helmholtz energy is non-convex. In that case, the Legendre transform
does not apply. In section 2.3, we shall see that nanothermodynamics defines the
free energies differently.

2.2 Statistical mechanics

In statistical mechanics, statistical methods are applied to collections of particles
to describe for example fluids and solids. This is done by expressing the particles
and their interactions with a Hamiltonian and calculating the partition function.
The Hamiltonian describes the energy of the possible states, and the partition
function describes the statistics of each possible state in a given ensemble. Ther-
modynamic variables can be derived from the partition functions.

The Hamiltonian is a function of the generalized momenta pi and positions
ri of particle i. The Hamiltonian of a system of N particles interacting with a
pair-wise interaction potential u(ri, rj) is

H(p1, . . . ,pN , r1, . . . , rN ) =
N∑
i=1

pi · pi

2mi
+

N∑
i=1

N∑
j>i

u(ri, rj), (2.24)

where mi is the mass of particle i and the last two sums indicate a sum over all
particle pairs of i and j. The Hamiltonian depends on the momenta and position
of all N particles. The pair-wise interaction potential will be simplified in section
3.3 to only depend on the distance between particle i and j, rij = |rj − ri|.
This implies that the pair-wise interaction is rotational spherical symmetric, and
does not depend on the relative orientations of the particles. Other forms of the
Hamiltonian are possible, for example with more complex interact potentials or
with external forces.

In the microcanonical ensemble, the internal energy U , volume V , and the
number of particles N are constant. The internal energy is simply equal to the
Hamiltonian. In the canonical ensemble, where the temperature, volume, and the
number of particles are constant, the internal energy is free to fluctuate. The
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canonical partition function is the integral of the Boltzmann factor

Z =
1

h3NN !

∫ ∞

−∞
· · ·
∫ ∞

−∞
exp(−βH)dp1 . . . dpNdr1 . . . drN . (2.25)

The integrals are of all momenta and positions from minus infinity to plus infin-
ity. There are 6N integrals, one per dimension and particle for the momenta and
positions. This integral can only be solved analytically for very simple cases. The
factor N ! in the denominator is because the particles are indistinguishable, and
the factor h3N comes from the requirement that the quantum mechanical par-
tition function approaches the classical partition function given here. The ther-
modynamic beta is β = (kBT )

−1, kB is Boltzmann’s constant, and h is Planck’s
constant. The exponential exp(−βH) is known as the Boltzmann factor and is
proportional to the probability for a system to be in the given state. The internal
energy in the canonical ensemble is the ensemble average of the Hamiltonian

U =
1

Z

1

h3NN !

∫ ∞

−∞
· · ·
∫ ∞

−∞
H exp(−βH)dp1 . . . dpNdr1 . . . drN = 〈H〉

= −∂ lnZ

∂β
.

(2.26)

which can be simplified to the derivative of the logarithm of the canonical parti-
tion function with respect to the thermodynamic beta. The ensemble average is
denoted with angle brackets 〈. . . 〉. From the definition of the Helmholtz energy
from thermodynamics, one can show that the Helmholtz energy is related to the
canonical partition function

A = −kBT lnZ. (2.27)

2.2.1 Ensemble transformations

The isothermal-isobaric partition function can be obtained from a Laplace trans-
form of the canonical partition function

∆ =

∫ ∞

0
Z exp(−βpV )dV, (2.28)

where the Gibbs energy is
G = −kBT ln∆. (2.29)

Correspondingly, the grand canonical partition function can also be obtained from
a Laplace transform of the canonical partition function. However, in this case with
the chemical potential and number of particles as variables,

Ξ =

∫ ∞

0
Z exp(−βµN)dN, (2.30)
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where the grand potential is

Ω = −kBT ln Ξ. (2.31)

The identification of the Gibbs energy and grand potential comes from thermo-
dynamics.

Laplace transform

The Laplace transform of a function f = f(t) is

F (s) =

∫ ∞

0
f(t) exp(−st)dt. (2.32)

By introducing the Gibbs energy and Helmholtz energy into the Laplace trans-
form of the canonical partition function to the isothermal-isobaric partition func-
tion we obtain

exp(−βG) =

∫ ∞

0
exp(−β(A+ pV ))dV. (2.33)

If the variance of the pressure in the canonical ensemble is sufficiently small we can
use the saddlepoint approximation, and the expression can be simplified to [2,3,53]

G = min(A+ pV ). (2.34)

This is known as the Legendre-Fenchel transform [1]. If the Helmholtz energy is
convex, this reduces to the familiar Legendre transform G = A + pV . Similar
transformations can be done for the enthalpy and grand potential, and other free
energies.

Legendre-Fenchel transform

The Legendre-Fenchel transform of a differentiable function f = f(t) is

F (s) = max
s

[f(t)− ft] (2.35)

In article VII we investigate the free energy transform of a single-phase fluid
in a slit pore with controlled width to controlled normal pressure. We show that
the transformation must be done with the Legendre-Fenchel transform, and not
the Legendre transform when the system is sufficiently small. This is because the
Helmholtz energy is non-convex. Bering et al. have shown that the free energy of
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a short polymer stretched is non-convex when stretched with controlled length [3].
Similarly, aggregating nanoparticles in solution have non-convex free energy as a
function of nanoparticle separation [4, 54, 55]. In these cases, one must therefore
apply the Legendre-Fenchel transform to obtain the transformed free energy.

Statistical mechanics can undoubtedly describe nanosized systems in a way
that classical thermodynamics can not, as statistical mechanics starts with parti-
cle momenta and interactions with the Hamiltonian. This requires complete infor-
mation about the Hamiltonian. However, statistical mechanics does not give the
framework of thermodynamics and is therefore not sufficient. In the next section,
we shall see that nanothermodynamics can give the thermodynamic framework of
nanosized systems in an original and general manner.

2.3 Nanothermodynamics

Nanothermodynamics [24] is also known as thermodynamics of small systems,
and was developed by Terrell Hill (1917-2014). The book Thermodynamics of
small systems. Part I by Hill was published in 1963 [56], in the following year
he published part II. In the early 2000s he published several papers on the topic
[57–60]. Hill set to solve the issue that the internal energy is not necessarily Euler
homogeneous of the first order for small systems. This problem was solved by
instead of describing one small system, he described a large ensemble of non-
interacting small systems. The single system is small, but the ensemble is large.

Hill imagined the large ensemble of small systems to be for example a dilute
solution of colloids, such that each colloid is a small system. Each small system
has internal energy, entropy, volume, and a number of particles of each compo-
nent. By introducing the ensemble of small systems the number of small systems
and the subdivision potential is introduced as a new set of conjugate variables.
Figure 2.1 illustrates the process of changing the number of small systems. The
energy required to add one more small system to the ensemble of systems, while
keeping the total internal energy, entropy, volume, and the number of particles of
each component, is the subdivision potential. In this section, I describe the nan-
othermodynamic procedure in general and afterward apply it to fluids in porous
media.

2.3.1 The nanothermodynamic procedure

The internal energy of the ensemble of small systems is a function of the total
entropy St, total volume Vt, the total number of particles of each component i
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Figure 2.1: Illustration of an ensemble of spherical colloids, where each colloid
(red circle) is considered a small system. The number of small systems increases
from left to right, while keeping the total entropy St, total volume Vt, and the
total number of particles of each component Nt,i constant.

Nt,i, and the number of small systems N ,

Ut = Ut(St, Vt,Nt,N ). (2.36)

The exact differential of the total internal energy of an ensemble of small systems
is

dUt(St, Vt,Nt,N ) =

(
∂Ut

∂St

)
Vt,Nt,N

dSt +

(
∂Ut

∂Vt

)
St,Nt,N

dVt

+

C∑
i=1

(
∂Ut

∂Nt

)
St,Vt,Nt,j 6=i,N

dNt +

(
∂Ut

∂N

)
St,Vt,Nt

dN ,

(2.37)

where the subscript t denotes that it is the total internal energy, entropy, volume,
and the number of particles of the ensemble of small systems. The temperature,
pressure, and chemical potential are defined similarly as in Gibbs thermodynam-
ics,

T :=

(
∂Ut

∂St

)
Vt,Nt,N

,

p := −
(
∂Ut

∂Vt

)
St,Nt,N

,

µi :=

(
∂Ut

∂Nt

)
St,Vt,Nt,j 6=i,N

.

(2.38)
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The subscripts indicate which variables are kept constant during differentiation.
With the introduction of the number of small systems N , the subdivision potential
ε is introduced as a new conjugate variable. It is defined as

ε :=

(
∂Ut

∂N

)
St,Vt,Nt

. (2.39)

This is the energy required to add one more small system to the ensemble of
systems while keeping the total entropy, volume, and the number of particles con-
stant. This is a general type of work, which can include the work of stretching or
bending a surface. The advantage of this description of work is that it describes
all types of work, without explicitly defining variables such as lines, points, cur-
vatures, and so on. The internal energy is an Euler homogeneous function of the
first order, which means that we can write it as

Ut(St, Vt,Nt,N ) = TSt − pVt + µ ·Nt + εN . (2.40)

So far I have described the total internal energy of an ensemble of small sys-
tems, however, we usually want to describe a single small system in a specific
ensemble. As an example to clarify the procedure, I will describe a single-phase
and single-component system in the canonical ensemble. The procedure is as
follows.

1. Choose additive variables that describe the ensemble of small systems and
the desired control variables for the single small system. The control vari-
ables must be represented in terms of the additive variables. In this exam-
ple we choose the additive variables St, Vt, Nt, and N and control variables
T, V = Vt/N , and N = Nt/N .

2. Replace the total additive variable with the average additive variable for the
variables that are not transformed and introduce them to the exact differ-
ential of the total internal energy. In this example, we wish to transform
the free energy to be a function of the temperature in place of the entropy.
We introduce the average additive variables of the other variables Vt = VN
and Nt = NN into the exact differential of the total internal energy

dUt = TdSt − pNdV + µNdN + (ε− pV + µN)dN . (2.41)

The terms in the parentheses in the last term defines the replica energy of
the ensemble,

X(T, V,N) := ε− pV + µN. (2.42)

In this example, we can identify the replica energy as the Helmholtz energy.
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3. Introduce the average additive properties and divide the total internal en-
ergy by the number of small systems. From this, we obtain the internal
energy of a single small system. In this example, we have Ut = UN and
St = SN in addition to the previously stated averages. From this, we obtain
the average internal energy of one small system,

U =
Ut

N
=

1

N
(TSt − pVt + µNt + εN )

= TS − pV + µN + ε

= TS +X(T, V,N).

(2.43)

This is a Legendre transform of the internal energy to the replica energy,
see equation 2.23.

4. Introduce the remaining average additive properties into the exact differen-
tial of the total internal energy in equation 2.41 and collect terms,

NdU = TNdS − pNdV + µNdN + (X + TS − U)dN (2.44)

In the previous step, we found the terms in the parentheses in the last term
to be zero. By dividing this equation with the number of small systems we
obtain the exact differential of the internal energy of one small system,

dU(S, V,N) = TdS − pdV + µdN. (2.45)

The internal energy of the single system is not necessarily Euler homoge-
neous of the first order, it is only the total internal energy of the ensemble
that is Euler homogeneous of the first order.

5. Finally, we find the exact differential of the replica energy

dX(T, V,N) = −SdT − pdV + µdN. (2.46)

With this equation, we can obtain relations between the thermodynamic
properties of a small system. The difference between the replica energy and
the free energy is that the replica energy is defined in terms of the subdivision
potential and its additive properties and not the Legendre transform.

2.3.2 Subdivision potential

We started with the set of additive variables St, Vt,Nt,N in equation 2.37, but
other choices of additive variables are also possible. Changing the set of additive
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variables changes the definitions of the conjugate variables. For example, with the
set of variables St, Vt, at,Nt,N , where at is the total surface area, the subdivision
potential is defined as

ε :=

(
∂Ut

∂N

)
St,Vt,at,Nt

. (2.47)

This may seem like an insignificant difference from the previous definition of
the subdivision potential in equation 2.39. However, this can be understood as
extracting the work of stretching a surface from the term εdN and placing it into
the new term γdat, where

γ :=

(
∂Ut

∂at

)
St,Vt,Nt,N

(2.48)

is the surface tension. Another way to view it is that the term εdN collects any
work that can be done on the system which is not described by the other control
variables. The definition of the subdivision potential changes accordingly. In
this way, the total internal energy is Euler homogeneous of the first order. For
simple systems where the other control variables completely describe the system
the subdivision potential is zero. In this work, we have observed that for systems
encountered in the field of porous media research the subdivision potential will
be an important part of the description.

2.3.3 Integral pressure

For the control variables T, V , and µ the system is in the grand canonical ensemble.
By following the nanothermodynamic procedure described above with St, Vt, Nt,
and N as an additive variable, we obtain the replica energy

X(T, V, µ) = ε− pV. (2.49)

This is equal to the grand potential. The exact differential of the replica energy
is

dX(T, V, µ) = −SdT − pdV −Ndµ. (2.50)

Hill defined a new pressure, namely the integral pressure, as the replica energy
divided by volume,

p̂ := −X

V
= p− ε

V
. (2.51)

The integral pressure p̂ is different from the differential pressure p for non-zero
subdivision potentials. The name integral and differential pressure was coined by
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Hill and reflects the fact that they are integral and differential properties. The
differential pressure is related to the integral pressure by

p = −
(
∂X

∂V

)
T,µ

= p̂+ V

(
∂p̂

∂V

)
T,µ

. (2.52)

From this equation, we conclude that the differential and integral pressures are
equal when the integral pressure does not depend on the volume. This must also
imply that the subdivision potential is zero. A system is large when the differential
and integral pressures are equal.

For porous media, there can be multiple bulks, surfaces, and contact lines. The
grand potential is additive, meaning that we can attribute energy contributions
from each bulk phase, each surface, and each line. This can consequently also be
done for the integral pressure. In general, the integral pressure is

p̂ =
1

V

 m∑
α=1

pαVα −
m∑

α=1

m∑
β>α

γαβaαβ −
m∑

α=1

m∑
β>α

m∑
δ>β

ταβδLαβδ − ε

 , (2.53)

where m are the number of phases, andταβδ and Lαβδ are the line tension and line
length of the three-phase line between the α-, β-, and δ-phases, respectively. In
general, the line energy is very small compared to the bulk and surface energy and
can be neglected [54]. We incorporate the subdivision potential into the pressures
and surface tensions,

p̂ =
1

V

 m∑
α=1

p̂αVα −
m∑

α=1

m∑
β>α

γ̂αβaαβ

 , (2.54)

where the integral pressure of phase α is p̂α and the integral surface tension of the
αβ-surface is γ̂αβ. For small systems, the integral pressures and surface tensions
differ from the differential properties. For a two-phase fluid of a wetting fluid w

and non-wetting fluid nw in a porous medium, the integral pressure is

p̂ =p̂wφSw + p̂nwφ(1− Sw) + p̂s(1− φ)

− γ̂w,nw
aw,nw

V
− γ̂w,s

aw,s

V
− γ̂nw,s

anw,s

V
,

(2.55)

where the line tensions are neglected. The porosity is the fraction of pore volume
to the total volume, defined as φ := (Vw + Vnw)/V . The wetting saturation is
defined as the fraction of volume of wetting fluid to the pore volume, defined as
Sw := Vw/(Vw + Vnw).
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2.3.4 Single-phase fluid in an open slit pore

The slit pore with a single-phase and -component fluid is a simple porous medium.
It has two parallel stiff walls separated by a distance h, and the volume of a slit
pore is V = ah/2, where a is the surface area. The representative elementary
volume (REV) of this system is a volume that spans the height h of the slit pore.
This system was investigated in articles V, VI, and VII. In this subsection, I
emphasize the impact of the various choices for additive variables.

A valid choice of additive variables for this system are St, Vt, Nt, and N , but
other choices are also valid. An open thermodynamic system can exchange parti-
cles and energy with the environment, which means that the energy and number
of particles can fluctuate. The control variables are then T, V , and µ. The exact
differential of the total internal energy is

dUt(St, Vt, Nt,N ) = TdSt − pdVt + µdNt + εdN . (2.56)

The temperature, pressure, chemical potential, and subdivision potential are de-
fined as

T :=

(
∂Ut

∂St

)
Vt,Nt,N

, p := −
(
∂Ut

∂Vt

)
St,Nt,N

, (2.57)

µ :=

(
∂Ut

∂Nt

)
St,Vt,N

, ε :=

(
∂Ut

∂N

)
St,Vt,Nt

. (2.58)

To obtain the desired control variables, we must transform the entropy to temper-
ature and the number of particles to chemical potential. We do this by introducing
the total volume Vt = VN ,

dUt(St, Vt, Nt,N ) = TdSt − pNdV + µdNt + (ε− pV )dN . (2.59)

We define the last term as the replica energy,

X := ε− pV. (2.60)

The internal energy is
U = TS + µN +X (2.61)

and the exact differential of the internal energy is

dU(S, V,N) = TdS − pdV + µdN. (2.62)

The exact differential of the replica energy is then

dX(T, V, µ) = −SdT − pdV −Ndµ. (2.63)
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Since this is an exact differential, we can identify the entropy, pressure, and num-
ber of particles as

S = −
(
∂X

∂T

)
V,µ

, p = −
(
∂X

∂V

)
T,µ

, N = −
(
∂X

∂µ

)
T,V

. (2.64)

From this, we can investigate the subdivision potential by introducing the defini-
tion of the pressure into the replica energy, and obtain

ε = X − V

(
∂X

∂V

)
T,µ

. (2.65)

The volume of a slit pore can change in two ways, either by changing the distance
between the plates h or the size of the plates a.

ε = X − h

(
∂X

∂h

)
T,µ,a

− a

(
∂X

∂a

)
T,µ,h

. (2.66)

By introducing the definition of the integral pressure p̂ := −X/V we obtain

ε = p̂V + hV

(
∂p̂

∂h

)
T,µ,a

+ aV

(
∂p̂

∂a

)
T,µ,h

. (2.67)

In article VI, we show that for large heights h the pressure is constant and as a
consequence, the subdivision potential with this definition is also constant. For
small heights, the pressure oscillates as a function of the height with a period
equal to the diameter of the fluid particle size. This is known as the disjoining or
solvation pressure [61,62]. With this definition, the subdivision potential must be
non-zero when the disjoining pressure is non-zero.

Surface area as a variable

We made an arbitrary choice for the additive variables. If we add the total surface
area at to the set of additive variables, the control variables are T, V, a, and µ.
We can do this because for a slit pore we can vary the volume while keeping the
surface area constant, and vice versa. The additive variables are independent.
The subdivision potential for this set of additive variables is defined as

ε :=

(
∂Ut

∂N

)
St,Vt,at,Nt

. (2.68)

The total volume and the total surface area are kept constant during differen-
tiation. In the previous definition, only the volume was kept constant during
differentiation. The replica energy is defined as

X := ε− pV + γa, (2.69)
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and the exact differential of the replica energy is

dX(T, V, a, µ) = −SdT − pdV + γda−Ndµ (2.70)

where we can identify the pressure and surface tension as

p = −
(
∂X

∂V

)
T,a,µ

and γ =

(
∂X

∂a

)
T,V,µ

. (2.71)

To get information about the subdivision potential we introduce the pressure and
surface tension into the replica energy and reorganize

ε = X − V

(
∂X

∂V

)
T,a,µ

− a

(
∂X

∂a

)
T,V,µ

. (2.72)

The only way to change the volume while keeping both the surface area and shape
constant is to change the height h. To change the surface area while keeping the
volume constant, the slit pore must be deformed in two steps. First, the surface
area is deformed at a constant height, then the height is deformed at a constant
surface area, while the total change in volume is zero. We rewrite the partial
derivatives in terms of the height and surface area and obtain

ε = X − a

(
∂X

∂a

)
T,h,µ

, (2.73)

where the derivatives in terms of the height have been canceled. By defining the
integral pressure p̂ := −X/V and introducing this, we find

ε = aV

(
∂p̂

∂a

)
T,µ,h

. (2.74)

Since the height derivative term has been canceled, this entails that the subdivision
potential does not depend on the height. The subdivision is zero for any height,
given that the surface area is large.

Height as a variable

If we substitute the volume with the height in the set of additive variables, such
that the additive variables are St, ht, at, Nt, and N , and the control variables are
T, h, a, and µ we have yet another definition of the subdivision potential,

ε :=

(
∂Ut

∂N

)
St,ht,at,Nt

. (2.75)
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With this definition, the total height is kept constant instead of the total volume.
The definition of replica energy is the same

X := ε− pV + γa, (2.76)

while the exact differential of the replica energy is

dX(T, V, a, µ) = −SdT − pa

2
dh+ γda−Ndµ. (2.77)

We can identify the pressure and surface tension as

p = −2

a

(
∂X

∂h

)
T,a,µ

and γ =

(
∂X

∂a

)
T,h,µ

. (2.78)

By introducing these definitions and the integral pressure p̂ := −X/V to the
replica energy and reorganizing, we obtain

ε = p̂V + hV

(
∂p̂

∂h

)
T,µ,a

+ aV

(
∂p̂

∂a

)
T,µ,h

. (2.79)

This gives the same relation as the control variable set T, V, and µ.
There are many valid choices for the additive variables and it is indeed a choice.

However, some choices are better than others, sets that give minimal description
are preferable. In the latter example, the additive variables St, Vt, at, Nt, and
N define the subdivision potential such that the system is only small when the
surface area is small. For this reason, this set of additive variables is preferred and
was the one used in article VI. The definition of the conjugate variables depends
on the set of additive variables, the subdivision potentials between the sets of
variables can’t be compared. In general, we are interested in quantifying the
subdivision potential, as this will give a measure of the smallness of the system.

Another reason to not choose height as a variable is because the definition of
the surface tension will be very uncommon. This can be seen by introducing the
integral pressure into the surface tension,

γ(T, h, a, µ) = − p̂h

2
− V

(
∂p̂

∂a

)
T,µ,h

. (2.80)

For large heights h, the integral pressure approaches the differential pressure, but
from the first part of this equation, it is clear that the surface tension decreases
with a slope equal to p̂/2 as the height increases. This is very counterintuitive, as
one would expect the surface tension to approach a constant for increasing heights.
This set of control variables should therefore be avoided. With the volume and
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surface area as control variables, the definition of the surface tension gives the
equation

γ(T, V, a, µ) = −h2

2

(
∂p̂

∂h

)
T,µ,a

− V

(
∂p̂

∂a

)
T,µ,a

. (2.81)

This is the usual form of surface tension. The only difference is that in the
equation 2.80, the height is kept constant in the definition of the surface tension,
while in equation 2.81 the volume is kept constant.

Similar procedures can be done to determine the subdivision potential for
pipes, where the volume, surface area, radius, or length are sensible control vari-
able choices to describe the geometry. Maximum two of these can be chosen at
a time. By doing the same procedure as for the slit pore, we find that volume
and surface area are the control variables that give the minimal description of the
subdivision potential. For this reason, we have chosen volume and surface area
instead of other geometrical variables.

For a spherical geometry, there is only one degree of freedom, namely the
radius. In this case, one must choose either the volume, surface area, or radius as
a control variable. Strøm and co-authors have investigated nanothermodynamic
descriptions of adsorptions on spherical surfaces using the volume as a control
variable [63], and surface area as a control variable [64].

2.4 Non-equilibrium thermodynamics

Non-equilibrium thermodynamics extends thermodynamics to describe systems
out of equilibrium, which has been used to describe transport in porous media in
the articles in this thesis. Lars Onsager (1903-1976) is considered to be the founder
of the field with his papers from 1931 [25,26]. de Groot and Mazur have written a
thorough description of non-equilibrium thermodynamics [27], and Kjelstrup and
Bedeaux have extended this with a description for heterogeneous media [65]. In
non-equilibrium thermodynamics, the entropy production and flux-force relations
of a system are derived. This can be used to model coupled transport processes
in porous media.

To obtain a complete non-equilibrium description, we need the balance equa-
tions for the entropy and other relevant additive properties. This can for example
be the mass, charge, and internal energy balance equations. Depending on which
forces are present in a system, different balance equations are relevant. In this
thesis, only the balance equations for entropy, mass, and internal energy are nec-
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essary. The entropy balance equation is,
∂

∂t
s(x, t) = −∂Js

∂x
+ σ, (2.82)

where s(x, t) = S/V is the entropy density of the volume element, Js is the
entropy flux, and σ is the entropy production. The entropy production has SI
units J/m3sK and is the entropy produced in the volume element. This is caused
by the system being out of equilibrium and as the second law of thermodynamics
states, σ ≥ 0.

In the case when the entropy, S, volume, V , and mass, Mi of each component
i are the set of additive variables, the exact differential of the entropy density is
the local form of Gibb’s equation,

ds = 1

T
du− 1

T

C∑
i=1

µidρi. (2.83)

Where u = U/V is the internal energy density, ρi = Mi/V is the mass density
of component i, and C is the number of components. By using this equation, we
assume the system to be in local equilibrium. There is evidence for the assumption
of local equilibrium to hold for chemical reactions in temperature gradients [66],
in two-phase systems [67, 68], and even in shock waves [69, 70]. However, it is
far unknown if local equilibrium holds for the REV. By introducing the Gibbs
equation to the entropy balance we obtain

∂

∂t
s(x, t) =

1

T

∂u

∂t
− 1

T

C∑
i=1

µi
∂ρi
∂t

. (2.84)

For non-reacting neutral components, the internal energy and mass balances are
∂

∂t
u(x, t) = −∂Ju

∂x
and ∂

∂t
ρi(x, t) = −∂Ji

∂x
. (2.85)

where Ju is the internal energy flux and Ji is the ith mass flux. We use these
equations to obtain the entropy flux and entropy production. This is done by
introducing the energy and mass balance into the entropy balance equation,

∂

∂t
s(x, t) = − ∂

∂x

[
1

T

(
Ju −

C∑
i=1

µiJi

)]
+ Ju

∂

∂x

(
1

T

)
−

C∑
i=1

∂

∂x
Ji

(µi

T

)
. (2.86)

Where the product rule on the form gf ′ = (fg)′ − fg′ has been used. In this
equation, we can identify the entropy flux as

Js(x, t) =
1

T

(
Ju −

C∑
i=1

µiJi

)
(2.87)
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and the entropy production as

σ(x, t) = Ju
∂

∂x

(
1

T

)
−

C∑
i=1

Ji
∂

∂x

(µi

T

)
(2.88)

Other variables and effects may also come into the Gibbs equation and balance
equations.

In general, the second law of thermodynamics is a sum of the flux-force prod-
ucts

σ =

n∑
i=1

JiXi ≥ 0, (2.89)

where Ji are independent fluxes, Xi are the conjugate forces, and n is the number
of flux-force conjugate pairs. The flux-force conjugate pair can be for example the
internal energy flux Ju and gradient of the inverse temperature ∂T−1/∂x. So far,
the only assumption has been local equilibrium. The next assumption needed is
a relation between the fluxes and forces. A common assumption is that the fluxes
Ji are linear combinations of all forces Xj ,

Ji =

n∑
j=1

LijXj , (2.90)

where Lij are the transport coefficients for transport, which must be obtained
from experiments or simulations. Onsager proved that the coefficient matrix is
symmetric Lij = Lji [25,26]. In 1968 he was awarded the Nobel Prize in Chemistry
for this discovery. In articles I and II, we use this to derive the entropy production
and flux-force equations of a non-isothermal two-phase fluid in a REV. In article
IX, we use the equations from articles I and II to simulate single-phase flow in
porous medium and to calculate the permeability.
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Chapter 3
Molecular simulations

Molecular simulations have been the tools to investigate assumptions in the ther-
modynamic theories of fluids in porous media. Molecular dynamics (MD) and
Monte Carlo (MC) simulations are computational techniques to simulate indi-
vidual atoms, molecules, or collections of atoms. They are particle-based, where
each particle has a mass and position. In MD the particle also has a velocity.
The particles interact with an interaction potential that depends on the particle
positions. The particles in molecular simulations can make up complex structures
such as proteins [71, 72], DNA [73, 74], viruses [75–77], and much more. How-
ever, molecular simulations are computationally expensive techniques, meaning
that the timescale and system size are limited. The most advanced simulations
can simulate 1012 particles for 0.6 ns [78]. Molecular simulations are suitable to
investigate a wide range of questions such as CO2 sequestration in metal-organic
frameworks [9, 13, 14] or water transport in carbon nanotubes [79]. It has a close
relationship to thermodynamics and is well suited to investigate thermodynamic
relations.

3.1 Molecular dynamics

In molecular dynamics, the particle positions and velocities are iteratively updated
based on the total force acting on each particle. Symbols in bold represent vectors.
Particle i is iteratively assigned a new position ri and velocity vi based on the
total force fi acting on the particle and its mass mi. This is done by numerically
integrating Newton’s second law [80, 81]. Symbols in bold are vectors. The force
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acting on particle i due to all other particles j is

fi(ri) = −
N∑
j=1
j 6=i

fij(rij), (3.1)

where the sum is over all other particles j and fij(rij) is the force acting on
particle i due to particle j, and rij = rj − ri is the vector from particle i to j.
The pair-wise force is obtained from the pair-wise interaction potential,

fij(rij) = −∂u(rij)

∂rij
. (3.2)

The pair-wise interaction u(rij) is in this case rotational spherical symmetric;
it only depends on the distance rij = |rij | and not the relative orientations of
the particle pair. The pair-wise interaction u(rij) determines the nature of the
particles. This can model for example Coulomb interactions, bond, and torsional
angles, Pauli repulsion, and more. In this work, we have used variations of the
Lennard-Jones potential [82] which models Pauli repulsion due to overlapping
electron orbitals and London dispersion forces.

The first step of an MD program is to initialize the particle positions and
velocities. The particle positions can for example be initialized by being placed
in a regular lattice. The velocities are typically initialized by assigning a velocity
to a particle from a Maxwell-Boltzmann distribution.

The velocity Verlet algorithm has been used in this work to numerically inte-
grate Newton’s second law [83]. This algorithm is a further development of Verlet
integration [84], which is named after and applied to MD by the french physicist
Loup Verlet (1931-2019). The cumulative errors in position and velocity from the
velocity Verlet algorithm are O(∆t2). The positions, accelerations, and velocities
of particle i at timestep t+∆t is calculated as follow

1. Calculate positions

ri(t+∆t) = ri(t) + vi(t)∆t+
1

2
ai∆t2. (3.3)

2. Calculate accelerations

ai(t+∆t) = − 1

mi

N∑
j=1
j 6=i

∂

∂ri
uij(ri(t+∆t)). (3.4)

3. Calculate velocities

vi(t+∆t) = vi(t) +
1

2
(ai(t) + ai(t+∆t))∆t. (3.5)
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3.2 Monte Carlo

Monte Carlo methods are a class of computational algorithms to obtain numerical
averages by random sampling. The name refers to the randomness in the casinos
of Monte Carlo. Monte Carlo has been used in statistical physics to calculate
ensemble averages of thermodynamic properties. The statistical mechanical back-
ground has been described in more detail in section 2.2. The ensemble average of
a property A can be approximated with

〈A〉 ≈ 1

n

n∑
k=1

Ak(r1, . . . , rN ) (3.6)

where n is the number of configurations, Ak(r1, . . . , rN ) is value of a A with the
particle configuration r1, . . . , rN [85]. To ensure that the configurations are drawn
from the correct probability distribution. An initial configuration is generated.
This can for example be a face-centered lattice of particles, and this configuration
is denoted o (old). A trial move is then made to make a new configuration n
(new) from the old configuration. This trial move can be for example displacing
a random particle with a small random displacement ∆r. This move is accepted
with a probability

acc(o → n) = exp(−β(U(n)− U(o))). (3.7)

This move is accepted if a uniformly random number between 0 and 1 is less than
acc(o → n), and rejected it otherwise. Trial moves are iteratively applied to the
configurations until a large number of configurations are generated. From this,
the ensemble average can be calculated.

3.3 Force fields

The force field, also called the interaction potential, describes the interaction be-
tween particles in molecular simulations, and as a consequence the nature of the
particles. The force field can model Coulombic interactions, Pauli exclusion forces,
London dispersion forces, covalent bonds, and more. In this work, we have used
three variations of the Lennard-Jones (LJ) potential. We have used the trun-
cated and shifted Lennard-Jones (LJTS), the Lennard-Jones/spline (LJ/s), and
the Weeks-Chandler-Anderson (WCA) interaction potentials. The LJ potential
is [82]

uLJ(r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
, (3.8)
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where ε and σ characterize the interaction strength and particle size, respectively.
The minimum of the interaction potential is ε and σ is the pair-wise separation
distance r where the interaction strength is zero. The Lennard-Jones potentials
are short-ranged, where the r−12 term models the Pauli repulsion of overlapping
electron orbitals, while the r−6 models London dispersion forces. The truncated
and shifted Lennard-Jones potential is truncated such that the potential is zero
above a cut-off rc = 2.5σ, and is shifted such that the potential is continuous,

uLJTS(r)

uLJ(r)− uLJ(rc) r ≤ rc

0 r > rc.
(3.9)

The Lennard-Jones/spline fits a third-degree polynomial from the inflection point
rs of the LJ potential to the cut-off rc

uLJ/s(r) =


uLJ(r) if r ≤ rs,

a(r − rc)
2 + b(r − rc)

3 if rs < r ≤ rc,

0 else.

(3.10)

The parameters are fitted such that the potential, force, and the derivative of
the force are continuous at the inflection point rs. The parameters are rs =

(26/7)(1/6)σ, a = −24192/3211(ε/r2s), b = −387072/61009(ε/r3s) and rc = (67/48)rs.
Hafskjold et.al. [86] and Kristiansen [87] describe details on the properties of the
Lennard-Jones/spline potential.

The Weeks-Chandler-Anderson interaction potential is

uWCA(r) =

uLJ(r)− uLJ(21/6) r ≤ 21/6

0 r > 21/6.
(3.11)

The WCA potential is only repulsive since the Lennard-Jones potential is at the
minimum at r = 21/6.

We have used Lennard-Jones reduced units in this work to work with numbers
close to unity. For example, the particle diameter is reduced units is equal to σ

instead of 10−12m. Units are reduced with the particle diameter σ, potential
energy minimum ε, particle mass m, and the Boltzmann constant kB. A full list
of reduced units is shown in table 3.1. To obtain SI units values for σ and ε fitted
to a specific material can be inserted.
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Table 3.1: Properties are reduced with Lennard-Jones variables σ and ε, and
the mass m and Boltzmann constant kB.

Property Symbol Reduced form
Energy E∗ E/ε

Length L∗ L/σ

Temperature T ∗ TkB/ε

Time t∗ t
√
ε/(mσ2)

Force f∗ fσ/ε

Density n∗ nσ3

Entropy S∗ S/kB

Pressure p∗ pσ3/ε

3.4 Boundary conditions

To simulate a large system while minimizing computational cost, we used periodic
boundary conditions. A particle close to the boundary interacts with periodic
images of particles on the other side of the simulation box, and if a particle
crosses the boundary, it is moved to the other end of the simulation box.

In articles IV, V, VI, and VII, we have used flat or cylindrical walls as bound-
ary conditions, with two different implementations. In articles IV and VI, the
walls were implemented as external fields with the Weeks-Chandler-Anderson and
Lennard-Jones/spline potentials, as described section 3.3, and in articles V and
VII, the walls were implemented by placing particles in a fcc lattice. In the first
case, the wall is completely smooth, while in the second case the walls have a
surface roughness. The slip conditions are not specified directly but depend on
the nature of the particle-wall interaction. For an external wall potential, there
will be full-slip flow (plug flow), since there is no resistance for the fluid to flow,
while for a particle wall there will be partial- or no-slip flow [79,88–90].

3.5 Ensembles

The control variables describe the connection between the system and the environ-
ment, as described in chapter 2. In molecular simulations, the environment is often
imagined, and not part of the simulation. In the canonical ensemble (N,V, T ),
the temperature T is controlled while the internal energy U and entropy s are free
to fluctuate. To control the temperature we need to use a thermostat algorithm.
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Common thermostat algorithms include Langevin, Nosé-Hoover, and Berendsen.
In this work, we have used a Nosé-Hoover [91,92] style thermostat by Shinoda et
al. [93].

In the grand canonical ensemble (µ, V, T ) the chemical potential µ is controlled
and the number of particles is free to fluctuate. To control the chemical potential
we have used grand canonical Monte Carlo. This is done by adding or removing
particles to the simulation box [80]. A particle is inserted at a random position
in the simulation box with a probability

acc(N → N + 1) =
V

Λ3(N + 1)
exp[β(µ− U(N + 1) + U(N)]. (3.12)

A random particle is removed from the simulation box with a probability

acc(N → N − 1) =
Λ3(N + 1)

V
exp[−β(µ+ U(N − 1)− U(N)]. (3.13)

Where Λ =
√

h2/(2πmkBT ) is the de Broglie thermal wavelength, h is the Planck
constant, U is the total potential energy and β = 1/(kBT ).

In article VII the isothermal-isobaric ensemble (N, p, T ) was simulated, where
the normal pressure p was controlled in a slit pore. This was done by applying a
controlled force on the walls of the slit pore.

3.6 The mechanical pressure tensor

The pressures of heterogeneous systems have been of special interest in this work.
The pressures of a fluid in a slit pore were investigated in articles IV, V, VI, VII,
in a cylindrical pore in articles IV, and a REV of a porous medium in articles I, II,
III, VIII, IX. The thermodynamic pressures are usually equated to components
of the mechanical pressure tensor, however, it is debated how and if this should
be done [38–40].

For homogeneous media, there is only one thermodynamic pressure, and the
mechanical pressure tensor is isotropic, i.e. the diagonal components are equal.
The thermodynamic pressure of a bulk fluid is equal to the mean of the diagonal
components of the mechanical pressure tensor. In Cartesian coordinates it is,

p =
1

3
〈Tr(P)〉 = 1

3
〈Pxx + Pyy + Pzz〉. (3.14)

To avoid confusion, the thermodynamic pressure is denoted with a lower case
p, the mechanical pressure tensor with blackboard bold P, and the mechanical

46



pressure tensor components with upper case Pαβ with subscripts indicating the
component. Where Pαβ = P · (eTα × eβ), where eα and eβ are the unit vectors in
the α- and β-directions, respectively. The Cartesian mechanical pressure tensor
components are

P =

Pxx Pxy Pxz

Pyx Pyy Pyz

Pzx Pzy Pzz

 . (3.15)

The mechanical pressure tensor is symmetric, meaning that Pαβ = Pβα. The α

and β can also indicate the same direction, i.e. the components Pxx, Pyy, and Pzz

are also included in the general term Pαβ.
The diagonal components are commonly assigned to thermodynamic pressures

or tensions. For example in a slit pore of width h, as described in article V
and VI, we equate the integral pressure to the average of the tangential pressure
component, the differential pressure to the normal pressure tensor component,
and the surface tension to the excess,

p̂ =
1

h

∫ h

0
PT (x)dx, p⊥ = PN , and γ =

∫ xb

xa

(PN − PT (x))dx. (3.16)

The slit pore walls are here in the yz-plane, such that PT = 1
2(Pyy + Pzz) and

PN = Pxx. The off-diagonal components can for example be used to calculate the
shear viscosity [94–96], as we did in article IX.

The method of calculating the mechanical pressure tensor used in most molec-
ular simulations was first derived by Irving and Kirkwood in 1950. The mechanical
pressure tensor can be written as a sum of a kinetic and a virial contribution [41],

Pαβ = P k
αβ + P v

αβ. (3.17)

The kinetic contribution in a volume V is

P k
αβ =

1

V

N∑
i=1

mi(vi,α − 〈vα〉)(vi,β − 〈vβ〉) (3.18)

where N is the number of particles in the volume V . This volume can be a
subvolume of the total volume. The mass of particle i is mi and vi,α = vi · eα is
the velocity of particle i in the α-direction. In Cartesian coordinates the velocity
vector is

vi =
[
vi,x vi,y vi,y

]
. (3.19)
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The streaming velocity in the α-direction is

〈vα〉 =
1

N

N∑
i=1

vi,α. (3.20)

The mean of the diagonal components of the kinetic contribution reduces to the
ideal gas law when the streaming velocity is zero, 〈Pαα〉 = ρkBT . The virial
contribution to the mechanical pressure tensor in a volume V is

P v
αβ =

Nt∑
i=1

Nt∑
j>i

P v
ij,αβ. (3.21)

Here the sums are over all particles Nt regardless of whether they are in the
volume V or not, and P v

ij,αβ is the virial,

P v
ij,αβ = −fij,α

V

∫
Cij∈V

dlβ. (3.22)

The force acting on particle i due to particle j in the α-direction is fij,α = fij ·eα.
The curve Cij can be any continuous curve that starts at the center of particle i

and ends at the center of particle j. The line integral is the β-component of the
curve Cij that is inside the volume V . This implies that particle pairs where both
particles are outside the volume can contribute to the pressure of that volume, as
long as the curve Cij is contained in the volume.

Schofield and Henderson showed that since any continuous curve Cij from the
center of particle i to the center of particle j is allowed, the mechanical pressure
tensor is ambiguous [42]. Figure 3.1 shows two common choices for the curve
Cij in Cartesian and spherical coordinates, namely the Irving-Kirkwood and the
Harasima curves. The dotted lines indicate the subvolume boundaries, the black
solid line indicates a phase boundary, and the colored solid lines indicate two
possible choices for the curve Cij . The Irving-Kirkwood curve is the line from
the center of particle i to the center of particle j. The Harasima curve is made
up of three continuous curves [97]. First the line normal to the phase boundary
from the center of particle i to the phase boundary, second the curve along the
phase boundary, and third the line normal to the phase boundary from the phase
boundary to the center of particle j. The two choices for Cij contribute differently
to the subvolumes, but the total contribution is the same. Harasima [97] and
Schofield and Henderson [42] showed that for a sufficiently large volume, the choice
of the curve does not matter. If both particle i and j are inside the volume, then

P v
ij,αβ = −

fij,αrij,β
V

(3.23)
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Figure 3.1: The Irving-Kirkwood and Harasima curves for calculating the virial
contribution to the mechanical pressure tensor in Cartesian coordinates (left) and
spherical coordinates (right).

for both the Irving-Kirkwood and the Harasima curves. Where rij,β = rij · eβ is
the distance between particle i and j in the β-direction.

The mechanical pressure tensor calculation can be controlled by checking if
they obey conservation of momentum at mechanical equilibrium,

∇ · P = 0, (3.24)

where ∇ is the differential operator. In Cartesian coordinates it is

∇ =
[

∂
∂x ,

∂
∂y ,

∂
∂z

]
. (3.25)

Ikeshoji and Hafskjold have shown that the mechanical pressure tensor calculated
with the Irving-Kirkwood and the Harasima curves obey conservation of momen-
tum at mechanical equilibrium in Cartesian coordinates [98]. In spherical coordi-
nates, the mechanical pressure tensor calculated with the Irving-Kirkwood curve
obeys conservation of momentum at mechanical equilibrium, while the Harasima
curve does not [98]. Blokhuis and Bedeaux have also shown that the Harasima
curve gives incorrect expressions for the Tolman length for spherical surfaces [99].
In this work, we have used the Irving-Kirkwood curve for all calculations of the
mechanical pressure tensor.
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3.6.1 Cartesian coordinates

In this subsection, the mechanical pressure tensor of a volume V = ∆x∆y∆z with
the Irving-Kirkwood curve in Cartesian coordinates is described in detail. First,
we define two points a and b. If particle i is in the volume, then a = ri, and if
particle j is in the volume then b = rj . If particle i is outside the volume a is the
point where the curve Cij enters the volume. If particle j is outside the volume b

is the point where the curve exits Cij the volume.
The virial contribution to the mechanical pressure tensor due to the ij particle

pair with the Irving-Kirkwood curve is then

P v
ij,αβ = −

fij,α(bβ − aβ)

V
, (3.26)

where (bβ−aβ) is the length of the β-component of the curve Cij that is contained
in the volume. If both particles are in the volume (bβ − aβ) = rij,β, meaning
that equation 3.26 reduces to equation 3.23. Figure 3.2 shows an example where
particles i and j are outside the volume, but the curve Cij passes through the
volume. To be clear, the full tensor of the contribution due to the ij particle pair
is

Pv
ij = − 1

V

fij,x(bx − ax) fij,x(by − ay) fij,x(bz − az)

fij,y(bx − ax) fij,y(by − ay) fij,y(bz − az)

fij,z(bx − ax) fij,z(by − ay) fij,z(bz − az)

 . (3.27)

For flat phase boundaries in the yz-plane, the yy- and zz-components of the
mechanical pressure tensor are equal. The tensor can be rewritten as a normal
component PN = Pxx and a tangential component PT = (Pyy + Pzz)/2. Conser-
vation of momentum at mechanical equilibrium states that

∂PN

∂x
= 0 and ∂PT

∂y
=

∂PT

∂z
= 0. (3.28)

This means that the normal component is constant through a flat surface and
that the tangential component is constant along a flat surface. We have used this
fact to control the calculation of the Cartesian mechanical pressure tensor. The
surface tension of a flat surface in the yz-plane can be calculated as

γ =

∫ xb

xa

(PN − PT )dx, (3.29)

where xa and xb are positioned far away from the surface on either side of it.
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Figure 3.2: A projection of a simulation where particles i and j are outside the
subvolume V = ∆x∆y∆z, but the Irving-Kirkwood curve (black dashed line) is
partly inside. The points a and b are the entry and exit points of the curve in the
volume. The contribution to the mechanical pressure tensor is calculated from
the distances bx − ax, by − ay, and bz − az (not shown), see equation 3.27.
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Figure 3.3: A projection of a spherical shell volume where both particle i and
j are outside. Since the Irving-Kirkwood contour passes through the volume
the interaction contributes to the pressure. The red dashed lines illustrate the
segments of the contour that contributes, while the black dashed lines illustrate
the segments that do not contribute to the spherical shell. There are two entry
and two exit points, (a, b) and (a′, b′).

3.6.2 Spherical coordinates

In this subsection, the calculation of the mechanical pressure tensor in spherical
coordinates with the Irving-Kirkwood curve is described in detail. A spherical
shell of radius R and thickness ∆R is considered. In spherical coordinates the
mechanical pressure tensor is

P =

Prr Prθ Prφ

Pθr Pθθ Pθφ

Pφr Pφθ Pφφ

 , (3.30)

where r is the radial direction, θ ∈ [0, π] is the polar angle, and φ ∈ [0, 2π] is the
azimuthal angle.

A point on the Irving-Kirkwood curve can be described as

l(λ) = ri + λrij , where 0 ≤ λ ≤ 1, (3.31)

where ri is the position of particle i, rij = rj − ri is the vector from particle i to
j, and ri and rj are vectors from the origin of the spherical coordinate system.
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The length of the vector l(λ) is

l(λ) = |l(λ)| =
√
r2i + 2λ(ri · rij) + λ2r2ij , (3.32)

where ri = |ri| and rij = |rij |. We define two points a and b on the curve Cij .
These points are the entry and exit points of the Irving-Kirkwood curve if particle
i and j are outside the volume. An Irving-Kirkwood curve can have up to two
entry and exit points, see figure 3.3, but each pair of entry and exit points will be
handled separately.

The entry and exit points can be described as

a = ri + λarij and b = ri + λbrij , (3.33)

where 0 ≤ λa ≤ 1 and 0 ≤ λb ≤ 1. If particle i and j are outside the subvolume,
then a and b are the entry and exits points of the curve Cij . If they are inside the
subvolume, then a = ri and b = rj . The virial contribution to the mechanical
pressure tensor due to the ij particle pair with the Irving-Kirkwood curve is then

P v
ij,αβ = − 1

V

∫ λb

λa

(eα · fij)(eβ · rij)dλ =
fij
rijV

∫ λb

λa

(eα · rij)(eβ · rij)dλ (3.34)

where eα is the unit vector in the α direction, which is a function of λ. In the
second equality we have used that the force vector is parallel to the distance
vector, such that we can insert fij = −fij(rij/rij), where fij = |fij |. The force
and the distance vectors do not depend on λ.

The unit vectors are

er =
l(λ)

l(λ)

eθ =
1

l
√

l2x + l2y

[
lxlz lylz −(l2x + l2y)

]
, and

eφ =
1√

l2x + l2y

[
−ly lx 0

]
.

(3.35)

The rr-component of the spherical mechanical pressure tensor is

P v
ij,rr =

fij
rijV

∫ λb

λa

λ2r4ij + 2λr2ij(ri · rij) + (ri · rij)2

λ2r2ij + 2λ(ri · rij) + r2i
dλ

=
fij
V

(rij(λb − λa) + F (λb)− F (λa)) .

(3.36)
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The function F (λ) is

F (λ) = −l0 arctan

(
λr2ij + (ri · rij)

rijl0

)
, where l0 =

√
r2i −

(ri · rij)2
r2ij

. (3.37)

The φφ-component is

P v
ij,φφ =

fij
rijV

∫ λb

λa

(ri,xrij,y − ri,yrij,x)
2

λ2r2ij,xy + 2λ(ri,xy · rij,xy) + r2i,xy
dλ

=
fij
rijV

(ri,xrij,y − ri,yrij,x)
2

rij,xylxy,0
(G(λb)−G(λa))

, (3.38)

where ri,xy = [ri,x, ri,y, 0] and rij,xy = [rij,x, rij,y, 0] are projects of ri and rij on
the xy-plane, respectively. The function G(λ) is

G(λ) = arctan

(
r2ij,xy + (ri,xy · rij,xy)2

rij,xylxy,0

)
, (3.39)

where

lxy,0 =

√
r2i,xy −

(ri,xy · rij,xy)2
r2ij,xy

. (3.40)

For spherical radially symmetric systems, the θθ- and φφ-components of the
mechanical pressure tensor are equal. The tensor can be rewritten with the normal
component PN = Prr and tangential component PT = (Pφφ + Pθθ)/2. Conserva-
tion of momentum at mechanical equilibrium states that

PT (r) = PN (r) +
r

2

∂PN (r)

∂r
. (3.41)

This relation can be used to check if the normal and tangential components are
consistent.

3.7 Non-equilibrium molecular dynamics

In article IX, we used non-equilibrium molecular dynamics to study the mass
flux and pressure gradient relationship. To generate the flux and force, we used
the reflecting particle method (RPM) [100]. It was applied to the x-boundary of
the simulation box to induce a pressure gradient. The RPM allowed particles to
cross the periodic x-boundary from right to left with a probability 1−q, and to be
reflected with a probability q ∈ [0, 1]. A value q = 0 entailed that no fluid particles
were reflected, while a value q = 1 entailed that all fluid particles were reflected
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when attempting to cross the x-boundary from right to left. The fluid particles
were never reflected when crossing the x-boundary from left to right. The pressure
gradient was controlled by varying the probability q. This is a boundary-driven
non-equilibrium molecular dynamics method to induce a pressure gradient that
has minimal disturbance on the fluid particles away from the boundary [31]. An
alternative would be to apply a constant force to all particles in the simulation [79],
which is a bulk-driven method.
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Chapter 4
Conclusions

The main goal of this work has been to contribute to the development of an
upscaled thermodynamic theory of transport in porous media. The theory we
have proposed is upscaled in the sense that it describes the thermodynamic state
of the representative elementary volume (REV) as a whole, rather than the state
of the individual phases, surfaces, lines, and points. The REV was here defined
as a volume large enough to be statistically representative of the thermodynamic
properties of the system. In articles I and II, we derived the Gibbs equation of the
REV, which was used to derive the entropy production and flux-force equations
for isothermal two-phase flow in porous media. This gave a thermodynamic basis
for Darcy’s law but also allowed for coupled transport in porous media. More
importantly, we believe this upscaling procedure is general and can be applied to
all transport phenomena in porous media.

The first step to investigate the proposed theory was to construct the REV
for a simple system in equilibrium and determine the thermodynamic properties
of the REV. Article III investigated a single-phase fluid in a porous structure
made up of solid particles in a face-centered cubic (fcc) lattice with molecular
dynamics simulations. With the assumption that the pressure of the REV is
constant everywhere, we find that we must introduce the integral pressure to give
a coherent relationship between the fluid and solid pressures. The integral pressure
was first described by Hill, in what is now known as nanothermodynamics. This
work was the first step in calculating the REV pressure of a porous medium, and
w concluded that the REV of this system was the size of a unit cell.

In articles IV, V, and VI, we further investigated the integral pressure in
different geometries. In article IV, we investigated the integral pressure in both
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a cylindrical and a slit pore, and we investigated the relationship between the
differential and integral pressures in these geometries. In article V, we investigated
a liquid-vapor interface in a slit pore. We find that by relating the fluid pressure to
the average normal mechanical pressure tensor component, the integral pressure
is equal to the average tangential mechanical pressure tensor component. In
equilibrium, this relation is shown to be constant across the liquid-vapor interface.
The fluid pressure is not constant for contact angles θ 6= 90◦, since the difference
in liquid and vapor pressure is given by Young-Laplace’s equation. We find that
as a consequence of Young-Laplace’s and Young’s equation the integral pressure
is constant. We conclude that the integral pressure gradient is the driving force
for fluid flow, and not for example the fluid pressure gradients. In article VI,
we give a pedagogical and in-depth nanothermodynamic description of a single-
phase fluid in a slit pore. The difference between the integral pressure and the
differential pressure is the subdivision potential. In this work, we conclude that
the subdivision potential is zero for a single-phase fluid in a slit pore when the
surface area is sufficiently large, regardless of how close the parallel walls are.

Article VII considers again a single-phase fluid in a slit pore, however, now
the Helmholtz and Gibbs energies are compared. We investigated the system
when either the height or when the normal pressure was controlled. We find that
since the Helmholtz energy is non-convex for sufficiently small pores, one can not
use the Legendre transform to transform the Gibbs energy but need to use the
Legendre-Fenchel transform.

Article VIII lays the equilibrium foundation for non-equilibrium studies in
article IX. In article VIII, a procedure to calculate an equation of state for the
REV of a single-phase fluid in a fcc lattice of solid spheres was developed. This
was done with the assumption that the integral pressure is constant everywhere in
equilibrium. Since the integral pressure is equal to the differential pressure in the
bulk phase, we can determine the integral pressure of the REV. In this way, we
have an equation of state that relates the temperature, fluid density, and porosity
of the REV to the integral pressure. This procedure is used in article IX in non-
equilibrium conditions to calculate the transport coefficient. One conclusion from
this work is that the integral pressure of the REV for this particular system is
equal to the differential pressure, because of the symmetry of the fcc lattice.

This work has laid a theoretical foundation for studying coupled transport
processes in porous media, and we have developed a procedure to obtain the
thermodynamic properties of the REV. So far, we have only applied this to simple
systems with a single driving force. In the future, I hope this can be used to study
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coupled transport of heat, mass, and charge in porous media with multiple fluid
phases.

One crucial assumption of non-equilibrium thermodynamics is the assumption
of local equilibrium. It is unknown if this assumption holds for the REV. There
are competing interests for the size of the REV since the REV must be large
enough to represent the system, but also small enough for the assumption of
local equilibrium to hold. There is evidence for local equilibrium to hold for
heterogeneous media, such as liquid-vapor interfaces. Related to this, it is not
determined what the subdivision potential of a generalized REV is. In article
IX, we conclude that the integral pressure is equal to the differential pressure for
the given geometry on the REV scale. Since the REV by definition is large, it is
reasonable to assume the integral pressure of the REV always to be equal to the
differential pressure of the REV. This has yet to be investigated. However, we
emphasize that this is not the case for the individual phases. For example, the
integral solid pressure is not necessarily equal to the differential solid pressure.

59



60



Article I

Article I
Signe Kjelstrup, Dick Bedeaux, Alex Hansen, Bjørn Hafskjold, Olav Galteland

Non-isothermal Transport of Multi-Phase Fluids in Porous Media. The Entropy
Production

Frontiers in Physics, 6, 126. (2018)
doi: 10.3389/fphy.2018.00126

61



Article I

62



ORIGINAL RESEARCH
published: 08 November 2018
doi: 10.3389/fphy.2018.00126

Frontiers in Physics | www.frontiersin.org 1 November 2018 | Volume 6 | Article 126

Edited by:

Antonio F. Miguel,

Universidade de Évora, Portugal

Reviewed by:

Francisco J. Valdes-Parada,

Universidad Autónoma Metropolitana,

Mexico

A. Murat,

University of Ontario Institute of

Technology, Canada

*Correspondence:

Signe Kjelstrup

signe.kjelstrup@ntnu.no

Specialty section:

This article was submitted to

Interdisciplinary Physics,

a section of the journal

Frontiers in Physics

Received: 05 September 2018

Accepted: 16 October 2018

Published: 08 November 2018

Citation:

Kjelstrup S, Bedeaux D, Hansen A,

Hafskjold B and Galteland O (2018)

Non-isothermal Transport of

Multi-phase Fluids in Porous Media.

The Entropy Production.

Front. Phys. 6:126.

doi: 10.3389/fphy.2018.00126
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The Entropy Production
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1 PoreLab, Department of Chemistry, Norwegian University of Science and Technology, Trondheim, Norway, 2 PoreLab,
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We derive the entropy production for transport of multi-phase fluids in a non-deformable,

porous medium exposed to differences in pressure, temperature, and chemical

potentials. Thermodynamic extensive variables on the macro-scale are obtained by

integrating over a representative elementary volume (REV). Contributions come from

porous media specific properties, phase volumes, surface areas, and contact lines.

Curvature effects are neglected. Using Euler homogeneity of the first order, we obtain the

Gibbs equation for the REV. From this we define the intensive variables, the temperature,

pressure, and chemical potentials, and, using the balance equations, we derive the

entropy production for the REV. The entropy production defines sets of independent

conjugate thermodynamic fluxes and forces in the standard way. The transport of

two-phase flow of immiscible components is used to give a first illustration of the

equations.

Keywords: porous media, energy dissipation, two-phase flow, excess surface- and line-energies, pore-scale,

representative elementary volume, macro-scale, non-equilibrium thermodynamics

1. INTRODUCTION

The aim of this article is to develop the basis for a macro-scale description of multi-phase flow in
porous media in terms of non-equilibrium thermodynamics. The system consists of several fluid
phases in a medium of constant porosity. The aim is to describe the transport of these on the scale
of measurements; i.e., on the macro-scale, using properties defined on this scale, which represent
the underlying structure on the micro-scale. The effort is not new; it was pioneered more than 30
years ago [1–4], and we shall build heavily on these results, in particular those of Hassanizadeh and
Gray [2, 3] and Gray and Miller [5].

The aim is also still the original one; to obtain a systematic description, which can avoid
arbitrariness and capture the essential properties of multi-component multi-phase flow-systems.
Not only bulk energies need be taken into account to achieve this for porous media. Also excess
surface- and line-energies must be considered, see e.g., [6]. But, unlike what has been done before,
we shall seek to reduce drastically the number of variables needed for the description, allowing us
still to make use of the systematic theory of non-equilibrium thermodynamics. While the entropy
production in the porous medium so far has been written as a combination of contributions
from each phase, interface and contact line, we shall write the property for a more limited set of
macro-scale variables. In this sense, we deviate widely from the Thermodynamically Constrained
Averaging Theory [5]. Nevertheless, we will be able to describe experiments and connect variables
within the classical scheme of non-equilibrium thermodynamics. The reduction of variables is
possible as long as the system is Euler homogeneous of the first kind.
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The theory of non-equilibrium thermodynamics was set up
by Onsager [7, 8] and further developed for homogeneous
systems during the middle of the last century [9]. It was the
favored thermodynamic basis of Hassanizadeh and Gray for their
description of porous media. These authors [2, 3] discussed also
other approaches, e.g., the theory of mixtures in macroscopic
continuum mechanics, cf. [1, 4]. Gray and Miller [5] argued that
it is the simplest of the many approaches in non-equilibrium
thermodynamics.

The theory of classical non-equilibrium thermodynamics
has been extended to deal with a particular case of flow
in heterogeneous systems, namely transport along [10] and
perpendicular [11] to layered interfaces. A derivation of the
entropy production for heterogeneous systems on themacro-scale
has not been given, however, even if one can find several uses of
this property [6]. Transport in porous media takes place, not only
under pressure gradients. Temperature gradients will frequently
follow from transport of mass, for instance in heterogeneous
catalysis [12], in polymer electrolyte fuel cells, in batteries [11,
13], or in capillaries in frozen soils during frost heave [14]. The
number of this type of phenomena is enormous. We have chosen
to consider first the vectorial driving forces related to changes in
pressure, chemical composition, and temperature, staying away
for the time being from deformations, chemical reactions, or
forces leading to stress [15]. Themulti-phase flow problem is thus
in focus.

The development of a general thermodynamic basis for multi-
phase flow started by introduction of thermodynamic properties
for each component in each phase, interface, and three-phase
contact line [2, 3]. A representative volume element (REV) was
introduced, consisting of bulk phases, interfaces, and three-phase
contact lines. Balance equations were formulated for each phase
in the REV, and the total REV entropy production was the sum of
the separate contributions from each phase.

Hansen et al. [16] recognized recently that the motion of
fluids at the coarse-grained level could be described by extensive
variables. The properties of Euler homogeneous functions could
then be used to create relations between the flow rates at this
level of description. This work, however, did not address the
coarse-graining problem itself. We shall take advantage of Euler
homogeneity also here and use it in the coarse-graining process
described above.

Like Gray et al. [2, 3, 5], we use the entropy production as
the governing property. But rather than dealing with the total
entropy production as a sum of several parts, we shall seek to
define the total entropy production directly from a basis set of a
few coarse-grained variables. This will be done here for the REV,
see [17] for a preliminary version. Once the entropy production
has been formulated, we shall set up the independent constitutive
equations. This will be done in subsequent work, see the
preliminary version [18]. There we highlight the consequences
of the model, and show that new experimental relations can
be found. We shall find that the description is able to add
insight in already published experimental results and design new
experiments.

The overall aim is thus to contribute toward solving the scaling
problem; i.e., how a macro-level description can be obtained

consistent with the micro-level one, by defining transport
equations on the macro-level. The aim of the present work,
seen in this context, is to present the basis for a description
of central transport phenomena, namely those due to thermal,
chemical, mechanical, and gravitational forces. We shall propose
a systematic, course-grained procedure that will be simple in
practical use.

2. SYSTEM

Consider a heterogeneous system as illustrated by the (white) box
in Figure 1. The system is a porous medium of fixed porosity
filled with several immiscible fluids. There is net transport in one
direction only, the x-direction. On the scale of measurement, the
system is without structure. By zooming in, we see the pore scale.
A collection of pores with two fluids is schematically shown in
Figure 2.

A temperature, pressure, and/or chemical potential difference
is applied between the inlet and the outlet, and these differences
can be measured. The pressure difference 1p between the outlet
and the inlet was defined for steady state conditions by Tallakstad
et al. [19], as the time average of the fluctuating difference 1p(t):

1p =
1

te − tb

∫ te

tb

1p(t)dt. (1)

Here t is the time. Subscript “b” denotes beginning and
“e” denotes the end of the measurement. We adopt similar
definitions for 1T and 1µi. It is possible, through application
of separate inlet channels, to control the flow into and out of the
system and find the flow of each component, to define the flow
situation in Figure 1. In the presence of two immiscible phases, it
is only possible to define the pressure difference between the inlet
and the outlet for the phases, 1pw and 1pn, if there is continuity
in the respective phases.

We will repeatedly use two-phase flow of single components
as an example, where w indicates the most wetting and n the
least wetting phase. We refer to them simply as the wetting
and the non-wetting phase. In most of the paper we consider
a multi-phase fluid. In the system pictured in Figure 2, there is
flow within the REV in the direction of the pore. This is not
necessarily the direction given by the overall pressure gradient.
The flow on the macro-scale, however, is always in the direction
of the pressure gradient. Net flow in other directions are zero
due to isolation of the system in these directions. By flow on the
macro-scale, wemean flow in the direction of the overall pressure
gradient along the x-coordinate in Figure 1. The value of this
average flow is of interest.

The representative volume element, REV, is constructed from
a collection of pores like those contained in the red square
in Figure 2. In Figure 1, three REVs are indicated (magenta
structured squares). In a homogeneous system, statistical
mechanical distributions of molecular properties lead to the
macroscopic properties of a volume element. In a heterogeneous
system like here, the statistical distributions are over the states
within the REV. The collection of pores in the REV, cf. Figure 2,
should be of a size that is large enough to provide meaningful
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FIGURE 1 | Schematic illustration of a heterogeneous system (white box, length L) exposed to a difference in temperature, 1T, pressure, 1p, or chemical

potential 1µi . The system is isolated in the y, z−directions. Net flows take place in the x−direction. Three representative elementary volumes, REVs (magenta

squares, length l) are indicated. The REVs may overlap. Each is represented by a set of variables (p,T,µi ) which defines a state (blue dot). Such states can be defined

anywhere on the x-axis.

FIGURE 2 | A schematic collection of pores filled with two immiscible liquids.

In order to compute the system properties, we define a REV. A REV is

indicated in the figure by the red square. Courtesy of M. Vassvik.

values for the extensive variables, and therefore well defined
intensive variables (see below, Equations 19 and 20), cf. section
3.2 below. Thermodynamic relations can be written for each
REV.

State variables characterize the REV. They are represented by
the (blue) dots in Figure 1. The size of the REV depends on its
composition and other conditions. Typically, the extension of a
REV, l, is large compared to the pore size of the medium, and

small compared to the full system length L. This construction of
a REV is similar to the procedure followed in smoothed particle
hydrodynamics [20], cf. the discussion at the end of the work.

The REVs so constructed, can be used to make a path of states,
over which we can integrate across the system. Each REV in the
series of states, is characterized by variables T, p,µi, as indicated
by the blue dots in Figure 1. Vice versa, each point in a porous
medium can be seen as a center in a REV. The states are difficult
to access directly, but can be accessed via systems in equilibrium
with the states, as is normal in thermodynamics. This is discussed
at the end of the work. We proceed to define the REV-variables.

3. PROPERTIES OF THE REV

3.1. Porosity and Saturation
Consider a solid matrix of constant porosity φ. We are dealing
with a class of systems that are homogeneous in the sense that
the typical pore diameter and pore surface area, on the average,
are the same everywhere. There are m phases in the system. The
pores are filled with a mixture of m − 1 fluid phases; the solid
matrix is phase number m. Properties will depend on the time,
but this will not be indicated explicitly in the equations.

In a simple case, the phases are immiscible single components.
The chemical constituents are then synonymous with a phase,
and the number of phases is the number of components. The
state of the REV can be characterized by the volumes of the fluid
phases Vα,REV, α = 1, ..,m− 1 and of the solid medium Vm,REV.
The total volume of the pores is

Vp,REV ≡

m−1
∑

α=1

Vα,REV. (2)
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while the volume of the REV is

VREV ≡ Vm,REV + Vp,REV +

m
∑

α>β>δ=1

Vαβδ,REV. (3)

Superscript REV is used to indicate a property of the REV. The
last term is the sum of the excess volumes of the three-phase
contact lines. While the excess volume of the surfaces is zero
by definition, this is not the case for the three-phase contact
lines. The reason is that the dividing surfaces may cross each
other at three lines which have a slightly different location. The
corresponding excess volume is in general very small, and will
from now on be neglected. This gives the simpler expression

VREV ≡ Vm,REV + Vp,REV. (4)

All these volumes can be measured.
The porosity, φ, and the saturation, Ŝ, are given by

φ ≡
Vp,REV

VREV
and Ŝα ≡

Vα,REV

Vp,REV
=

Vα,REV

φVREV
. (5)

The porosity and the saturation are intensive variables. They
do not depend on the size of the REV. They have therefore no
superscript. It follows from these definitions that

m−1
∑

α=1

Ŝα = 1 and Vm,REV = (1− φ)VREV (6)

In addition to the volumes of the different bulk phases (they are
fluids or solids) m ≥ α ≥ 1, there are interfacial areas, �,
between each two phases in the REV: �αβ ,REV, m ≥ α > β ≥ 1.
The total surface area of the pores is measurable. It can be split
between various contributions

�p,REV =

m−1
∑

α=1

�mα,REV (7)

When the surface is not completely wetted, we can estimate
the surface area between the solid m and the fluid phase α, from
the total pore area available and the saturation of the component.

�mα,REV = Ŝα�p,REV (8)

This estimate is not correct for strongly wetting components
or dispersions. In those cases, films can form at the walls, and
�mα,REV is not proportional to Ŝα . In the class of systems we
consider, all fluids touch the wall, and there are no films of one
fluid between the wall and another fluid.

3.2. Thermodynamic Properties of the REV
We proceed to define the thermodynamic properties of the REV
within the volume VREV described above. In addition to the
volume, there are other additive variables. They are the masses,
the energy, and the entropy. We label the components (the
chemical constituents) using italic subscripts. There are in total

n components distributed over the phases, surfaces, and contact
lines. The mass of component i, MREV

i , in the REV is the sum of

bulk masses, Mα,REV
i , m ≥ α ≥ 1, the excess interfacial masses,

M
αβ ,REV
i ,m ≥ α > β ≥ 1, and the excess line masses,M

αβδ,REV
i ,

m ≥ α > β > δ ≥ 1.

MREV
i =

m
∑

α=1

Mα,REV
i +

m
∑

α>β=1

M
αβ ,REV
i +

m
∑

α>β>δ=1

M
αβδ,REV
i (9)

There is some freedom in how we allocate the mass to the various
phases and interfaces [11, 21]. We are e.g., free to choose a

dividing surface such that oneM
αβ ,REV
i equals zero. A zero excess

mass will simplify the description, but will introduce a reference.

The dividing surface with zero M
αβ ,REV
i is the equimolar surface

of component i. The total mass of a component in the REV is,
however, independent of the location of the dividing surfaces.
From the masses, we compute the various mass densities

ρi ≡
MREV

i

VREV
, ρα

i ≡
Mα,REV

i

Vα,REV
,

ρ
αβ
i ≡

M
αβ ,REV
i

�αβ ,REV
, ρ

αβδ
i ≡

M
αβδ,REV
i

3αβδ,REV
(10)

where ρi and ρα
i have dimension kg.m−3, ρ

αβ
i has dimension

kg.m−2 and ρ
αβδ
i has dimension kg.m−1.

All densities are for the REV. If we increase the size of
the REV, by for instance doubling its size, VREV, MREV

i and
other extensive variables will all double. They will double, by
doubling all contributions to these quantities. But this is not
the case for the density ρi or the other densities. They remain
the same, independent of the size of the REV. This is true also
for the densities of the bulk phases, surfaces, and contact lines.
Superscript REV is therefore not used for the densities.

Within one REV there are natural fluctuations in the densities.
But the densities make it possible to give a description on the
macro-scale independent of the precise size of the REV. The
densities will thus be used in the balance equations on the macro-
scale. The density ρα

i may vary somewhat in Vα . We can then
find Mα

i as the integral of ρα
i over Vα . Equation (10) then gives

the volume-averaged densities.
The internal energy of the REV, UREV, is the sum of bulk

internal energies, Uα,REV, m ≥ α ≥ 1, the excess interfacial
internal energies, Uαβ ,REV, m ≥ α > β ≥ 1, and the excess
line internal energies, Uαβδ,REV,m ≥ α > β > δ ≥ 1:

UREV =

m
∑

α=1

Uα,REV+

m
∑

α>β=1

Uαβ ,REV+

m
∑

α>β>δ=1

Uαβδ,REV (11)

The summation is taken over all phases, interfaces, and contact
lines (if non-negligible). We shall see in a subsequent paper how
these contributions may give specific contributions to the driving
force. The internal energy densities are defined by

u ≡
UREV

VREV
, uα ≡

Uα,REV

Vα,REV
,

Frontiers in Physics | www.frontiersin.org 4 November 2018 | Volume 6 | Article 126



Kjelstrup et al. Entropy Production in Porous Media Flow

uαβ ≡
Uαβ ,REV

�αβ ,REV
, uαβδ ≡

Uαβδ,REV

3αβδ,REV
(12)

Their dimensions are J.m−3 (u, uα), J.m−2 (uαβ ), and J.m−1

(uαβδ), respectively.
The entropy in the REV, SREV, is the sum of the bulk entropies,

Sα,REV, m ≥ α ≥ 1, the excess entropies, Sαβ ,REV, m ≥ α > β ≥

1, the excess line entropies, Sαβδ,REV, m ≥ α > β > δ ≥ 1,
and a configurational contribution, SREV

conf
, from the geometrical

distribution of the fluid phases within the pores:

SREV =

m
∑

α=1

Sα,REV +

m
∑

α>β=1

Sαβ ,REV +

m
∑

α>β>δ=1

Sαβδ,REV + SREVconf

(13)
The entropy densities are defined by

s ≡
SREV

VREV
, sα ≡

Sα,REV

Vα,REV
, sαβ ≡

Sαβ ,REV

�αβ ,REV
,

sαβδ ≡
Sαβδ,REV

3αβδ,REV
, sconf ≡

SREV
conf

VREV
(14)

and have the dimensions J.K−1.m−3 (s, sα , sconf), J.K−1.m−2

(sαβ ), and J.K−1.m−1 (sαβδ), respectively. To explain the
configurational contribution inmore detail; consider the example
of stationary two-phase flow in a single tube of varying diameter
described by Sinha et al. [22]. The tube contains one bubble of
one fluid in the other. The bubble touches the wall; it can not form
a film between the tube wall and the other fluid. The probability
per unit of length of the tube to find the center of mass of the
bubble at position xb, was 5(xb) [22]. Knowing this probability
distribution, we can compute the entropy of an ensemble of single
tubes (in this case a very long tube composed of the single ones).
It is equal to

SREVconf = kB

∫ ℓ

0
5(xb) ln ℓ5(xb)dxb (15)

For a network of pores it is more appropriate to give the
probability distribution for the fluid-fluid interfaces. This has not
yet been done explicitly.

For the volume, Equations (2) and (4) apply when the contact
lines give a negligible contribution. The dividing surfaces have
by definition no excess volume. For all the other extensive
thermodynamic variables, like the enthalpy, Helmholtz energy,
Gibbs energy, and the grand potential, relations similar to
Equations (11) and (13) apply. We shall later show how this
affects the driving forces [18].

To summarize this section; we have defined a basis set of
variables for a class of systems, where these variables are additive
in the manner shown. From the set of REV-variables we obtain
the densities, u, s, or ρi to describe the heterogeneous system
on the macro-scale. A series of REVs of this type, is needed for
integration across the system, see section 5.

3.3. REV Size Considerations
As an illustration of the REV construction, consider the internal
energy of two isothermal, immiscible and incompressible fluids

TABLE 1 | Fluid properties used to compute the candidate REV internal energy,

for a network containing water (n) and decane (w) within silica glass beads (p) at

atmospheric pressure and 293 K.

Parameter Value Unit References

ηw 9.2 × 10−4 Pa.s [25]

ηn 1.0 × 10−3 Pa.s [25]

γwp 2.4 × 10−2 N.m−1 [26]

γ np 7.3 × 10−2 N.m−1 [26]

γwn 5.2 × 10−2 N.m−1 [27]

−uw 2.8 × 108 J.m−3 [25]

−un 3.4 × 108 J.m−3 [25]

(water and decane) flowing in a Hele-Shaw type cell composed
of silicone glass beads. The relevant properties of the fluids can
be found in Table 1 The porous medium is a hexagonal network
of 3,600 links, as illustrated in Figure 3. The network is periodic
in the longitudinal and the transverse directions and a pressure
difference of 1.8 × 104 Pa drives the flow in the longitudinal
direction. The overall saturation of water is 0.4. The network
flows were simulated using the method of Aker et al. [23], see
[24] for details.

The internal energy of the REV is, according to section 3.2,
a sum over the two fluid bulk contributions and three interface
contributions,

UREV = Um,REV +
∑

i∈{w,n}

{

U i,REV
}

+ Uwn,REV + Unp,REV

+Uwp,REV (16)

= Um,REV + Vp,REV
∑

i∈{w,n}

{

Ŝiui
}

+uwn�wn,REV + unp�np,REV + uwp�wp,REV. (17)

where, ui is the internal energy density of phase i and uij is the
excess internal energy per interfacial area between phase i and
phase j. We assume ui and uij to be constant. For simplicity, uij

is approximated by interfacial tension, denoted γ ij. The internal
energy of the porous matrix is constant in this example and is
therefore set to zero.

Candidate REVs are of different sizes, see Table 2. The 5.4 ×

6 mm (green), and 10.4 × 12 mm (blue) candidate REVs are
shown in Figure 3. For all candidate REVs, UREV is calculated
according to Equation (17) at each time step. Since the measured
saturations and interfacial areas are fluctuating in time, so is the
internal energy. A time-step weighted histogram of the internal
energy presents the probability distribution.

The probability distributions of UREV are shown in Figure 4

for the 5.2 × 6 mm (green) and 10.4 × 12 mm (blue) candidate
REVs. In both plots, the vertical lines represent the internal
energy the REVwould have if it were occupied by one of the fluids
alone. We denote the difference in internal energy between these
two single-phase states by 1UREV.

The mean value of the UREV for all candidate REVs are given
in Table 2, along with mean density u = UREV/VREV and
the standard deviation of UREV divided by 1UREV. The latter
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FIGURE 3 | Illustration of the link network and two of the candidate REVs under consideration. The left candidate REV (green) is 5.2 × 6 mm and the right candidate

REV (blue) is 10.4 × 12 mm.

TABLE 2 | Mean values of UREV and u for candidate REVs of different sizes, along

with the standard deviation of UREV divided by 1UREV. The latter quantity

represents a measure of the relative size of the fluctuations in UREV.

Candidate REV Mean
(

UREV
)

±

(

UREV
)

Mean (u)

Size /J /1UREV / 107 J m−3

5.2 × 6.0 mm −2.82 0.069 −6.04

7.8 × 9.0 mm −5.46 0.047 −5.19

10.4 × 12.0 mm −9.60 0.037 −5.13

13.0 × 15.0 mm −15.4 0.028 −5.25

15.6 × 18.0 mm −22.2 0.024 −5.27

18.3 × 21.0 mm −29.9 0.021 −5.22

20.8 × 24.0mm −39.1 0.017 −5.23

quantity is a measure of the relative size of the fluctuations in
UREV. Due to the additivity of UREV, the mean values of UREV

increases roughly proportional to the candidate REV size. But
this happens only after the REV has reached a minimum size,
here 7.8× 9.0mm. For the larger candidate REVs, themean value
of u changes little as the size increases. The relative size of the
fluctuations in UREV decreases in proportion to the linear size of
the candidate REVs.

This example indicates that it makes sense to characterize
the internal energy of a porous medium in terms of an internal
energy density as defined by Equation (11), given that the size
of the REV is appropriately large. About 100 links seem to be
enough in this case. This will vary with the type of porous
medium, cf. the 2D square network model of Savani et al. [28].

4. HOMOGENEITY ON THE MACRO-SCALE

Before we address any transport problems, consider again the
system pictured in Figure 1 (the white box). All REVs have

variables and densities as explained above. By integrating to a
somewhat larger volumeV , using the densities defined, we obtain
the set of basis variables, (U, S,Mi), in V . The internal energy U
of the system is an Euler homogeneous function of first order in
S,V ,Mi:

U (λS, λV , λMi) = λU (S,V ,Mi) (18)

where λ is a multiplication factor. The internal energy U, volume
V , entropy S, and component massMi, obey therefore the Gibbs
equation;

dU =

(

∂U

∂S

)

V ,Mi

dS+

(

∂U

∂V

)

S,Mi

dV +

n
∑

i=1

(

∂U

∂Mi

)

S,V ,Mj

dMi

(19)
No special notation is used here to indicate that U, S,V ,Mi are
properties on the macro-scale. Given the heterogeneous nature
on the micro-scale, the internal energy has contributions from
all parts of the volume V , including from the excess surface
and line energies. By writing Equation (18) we find that the
normal thermodynamic relations apply for the heterogeneous
system at equilibrium, for the additive properties U, S,V ,Mi,
obtained from sums of the bulk-, excess surface-, and excess
line-contributions.

We can then move one more step and use Gibbs equation to
define the temperature, the pressure, and chemical potentials on
the macro-scale as partial derivatives of U:

T ≡

(

∂U

∂S

)

V ,Mi

, p ≡ −

(

∂U

∂V

)

S,Mi

, µi ≡

(

∂U

∂Mi

)

S,V ,Mj

(20)
The temperature, pressure, and chemical potentials on the
macro-scale are, with these formulas, defined as partial
derivatives of the internal energy. This is normal in
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FIGURE 4 | Probability distributions of internal energy in two the candidate REVs. The left candidate REV (green) is 5.2 ×6 mm and the right candidate REV (blue) is

10.4 ×12 mm. In each plot, the left dashed line represents the internal energy the candidate REV would have if it contained non-wetting fluid only and the right dashed

line represents the internal energy the candidate REV would have if it contained wetting fluid only.

thermodynamics, but the meaning is now extended. In a
normal homogeneous, isotropic system at equilibrium, the
temperature, pressure, and chemical equilibrium refer to a
homogeneous volume element. The temperature of the REV
is a temperature representing all phases, interfaces and lines
combined, and the chemical potential of i is similarly obtained
from the internal energy of all phases. Therefore, there are only
one T, p, and µi for the REV. The state can be represented by the
(blue) dots in Figure 1.

On the single pore level, the pressure and temperature in
the REV will have a distribution. In the two immiscible-fluid-
example the pressure, for instance, will vary between a wetting
and a non-wetting phase because of the capillary pressure. One
may also envision that small phase changes in one component
(e.g., water) leads to temperature variations due to condensation
or evaporation. Variations in temperature will follow changes in
composition.

The intensive properties are not averages of the corresponding
entities on the pore-scale over the REV. This was pointed
out already by Gray and Hassanizadeh [3]. The definitions are
derived from the total internal energy only, and this makes them
uniquely defined. It is interesting that the intensive variables do
not depend on how we split the energy into into bulk and surface
terms inside the REV.

By substituting Equation (20) into Equation (19) we obtain
the Gibbs equation for a change in total internal energy on the
macro-scale

dU = TdS− pdV +

n
∑

i=1

µidMi (21)

As a consequence of the condition of homogeneity of the first
order, we also have

U = TS− pV +

n
∑

i=1

µiMi (22)

The partial derivatives T, p and µi are homogeneous
functions of the zeroth order. This implies that

T(λS, λV , λMi) = T(S,V ,Mi) (23)

Choosing λ = 1/V it follows that

T(S,V ,Mi) = T(s, 1, ρi) = T(s, ρi) (24)

The temperature therefore depends only on the subset of
variables s ≡ S/V , ρi ≡ Mi/V and not on the complete set of
variables S,V ,Mi. The same is true for the pressure, p, and the
chemical potentials, µi. This implies that T, p and µi are not
independent. We proceed to repeat the standard derivation of
the Gibbs-Duhem equation which makes their interdependency
explicit.

The Gibbs equation on the macro-scale in terms of the
densities follows using Equations (21) and (22)

du = Tds+

n
∑

i=1

µidρi (25)

which can alternatively be written as

ds =
1

T
du−

1

T

n
∑

i=1

µidρi (26)

The Euler equation implies

u = Ts− p+

n
∑

i=1

µiρi (27)

By differentiating Equation (27) and subtracting the Gibbs
equation (25), we obtain in the usual way the Gibbs-Duhem
equation:

dp = sdT +

n
∑

i=1

ρidµi
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This equation makes it possible to calculate p as a function of T
and µi and shows how these quantities depend on one another.

We have now described the heterogeneous porous medium by
a limited set of coarse-grained thermodynamic variables. These
average variables and their corresponding temperature, pressure,
and chemical potentials, describe a coarse-grained homogeneous
mixture with variables which reflect the properties of the class of
porous media. In standard equilibrium thermodynamics, Gibbs’
equation applies to a homogeneous phase. We have extended
this use to be applicable for heterogeneous systems at the macro-
scale. On this scale, the heterogeneous system (the REV) is then
regarded as being in local equilibrium.Whether or not the chosen
procedure is viable, remains to be tested. We refer to the section
7 of this paper for more discussion and to a paper to follow [18]
for an experimental program.

5. ENTROPY PRODUCTION IN POROUS
MEDIA

Gradients in mass- and energy densities produce changes in the
variables on the macro-scale. These lead to transport of heat and
mass. Our aim is to find the equations that govern this transport
across the REV. We therefore expose the system to driving forces
and return to Figure 1.

The balance equations formasses and internal energy of a REV
are

∂ρi

∂t
= −

∂

∂x
Ji (28)

∂u

∂t
= −

∂

∂x
Ju = −

∂

∂x

[

J
′

q +

n
∑

i=1

JiHi

]

(29)

The transport on this scale is in the x−direction only. The mass
fluxes, Ji, and the flux of internal energy, Ju, are all macro-scale
fluxes. The internal energy flux is the sum of the measurable

(or sensible) heat flux, J
′

q and the partial specific enthalpy (latent

heat), Hi (in J.kg−1) times the component fluxes, Ji, see [3, 9, 11]
for further explanations. Component m (the porous medium)
is not moving and is the convenient frame of reference for the
fluxes.

The entropy balance on the macro-scale is

∂s

∂t
= −

∂

∂x
Js + σ (30)

Here Js is the entropy flux, and σ is the entropy production which
is positive definite, σ ≥ 0 (the second law of thermodynamics).
We can now derive the expression for σ in the standard way
[9, 11], by combining the balance equations with Gibbs’ equation.
The entropy production is the sum of all contributions within the
REV.

In the derivations, we assume that the Gibbs equation is valid
for the REV also when transport takes place. Droplets can form
at high flow rates, while ganglia may occur at low rates. We have
seen above that there is a minimum size of the REV, for which
the Gibbs equation can be written. When we assume that the
Gibbs equation applies, we implicitly assume that there exists a

uniquely defined state. The existence of such an ergodic state
was postulated by Hansen and Ramstad [29]. Valavanides and
Daras used it in their DeProF model for two-phase flow in pore
networks [30]. Experimental evidence for the assumption was
documented by Erpelding [31].

Under the conditions that we demand valid for the REV, the
Gibbs Equation (26) keeps its form during a time interval dt,
giving

∂s

∂t
=

1

T

∂u

∂t
−

1

T

n
∑

i=1

µi
∂ρi

∂t
(31)

We can now introduce the balance equations for mass and energy
into this equation, see [11] for details. By comparing the result
with the entropy balance, Equation (30), we identify first the
entropy flux, Js,

Js =
1

T
J′q +

n
∑

i=1

JiSi (32)

The entropy flux is composed of the sensible heat flux over the
temperature plus the sum of the specific entropies carried by the
components. The form of the entropy production, σ , depends
on our choice of the energy flux, Ju or J′q. The choice of form is
normally motivated by practical wishes; what is measurable or
computable. We have

σ = Ju
∂

∂x
(
1

T
)−

n
∑

i=1

Ji
∂

∂x
(
µi

T
)

= J′q
∂

∂x
(
1

T
)−

1

T

n
∑

i=1

Ji
∂

∂x
µi,T (33)

These expressions are equivalent formulations of the same
physical phenomena. When we choose Ju as variable with
the conjugate force ∂(1/T)/∂x, the mass fluxes are driven by
minus the gradient in the Planck potential µi/T. When, on
the other hand we choose J′q as a variable with the conjugate
force ∂(1/T)/∂x, the mass fluxes are driven by minus the
gradient in the chemical potential at constant temperature
over this temperature. The entropy production defines the
independent thermodynamic driving forces and their conjugate
fluxes. We have given two possible choices above to demonstrate
the flexibility. The last expression is preferred for analysis of
experiments.

In order to find the last line in Equation (33) from the first,
we used the thermodynamic identities µi = Hi − TSi and
∂(µi/T)/∂(1/T) = Hi as well as the expression for the energy
flux given in Equation (29). Here Si is the partial specific entropy
(in J.kg−1.K−1).

5.1. The Chemical Potential at Constant
Temperature
The derivative of the chemical potential at constant temperature
is needed in the driving forces in the second line for σ in Equation
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(33). For convenience we repeat its relation to the full chemical
potential [9]. The differential of the full chemical potential is:

dµi = −SidT + Vidp+

n
∑

j=1

(

∂µi

∂Mj

)

p,T,Mi

dMj (34)

where Si,Vi, and (∂µi/∂Mj)p,T,Mi are partial specific quantities.
The partial specific entropy and volume are equal to:

Si = −

(

∂µi

∂T

)

p,Mj

, Vi =

(

∂µi

∂p

)

T,Mj

(35)

and the last term of Equation (33) is denoted by

dµc
i =

n
∑

j=1

(

∂µi

∂Mj

)

p,T,Mi

dMj (36)

By reshuffling, we have the quantity of interest as the differential
of the full chemical potential plus an entropic term;

dµi,T ≡ dµi + SidT = Vidp+ dµc
i (37)

The differential of the chemical potential at constant temperature
is

dµi,T

dx
=

dµc
i

dx
+ Vi

dp

dx
(38)

With equilibrium in the gravitational field, the pressure
gradient is dp/dx = −ρg, where ρ is the total mass density and g
is the acceleration of free fall [32]. The well known separation of
components in the gravitational field is obtained, with dµi,T = 0
and

dµc
i

dx
=

RT

Wi

d ln(Ŝiyi)

dx
= Viρg (39)

whereWi is the molar mass (in kg.mol−1), Ŝi the saturation, and
yi the activity coefficient of component i. The gas constant, R,
has dimension J.K−1.mol−1. The gradient of the mole fraction of
methane and decane in the geothermal gradient of the fractured
carbonaceous Ekofisk oil field, was estimated to 5 × 10−4m−1

[33], in qualitative agreement with observations. We replace
dµi,T below using these expressions.

It follows fromEuler homogeneity that the chemical potentials
in a (quasi-homogeneous) mixture are related by 0 = SdT −

Vdp +
∑n

j=1 ρjdµj, which is Gibbs-Duhem’s equation. By

introducing Equation 37 into this equation we obtain an
equivalent expression, to be used below:

0 =

n
∑

j=1

ρjdµ
c
j (40)

6. TRANSPORT OF HEAT AND
TWO-PHASE FLUIDS

Consider again the case of two immiscible fluids of single
components, one more wetting (w) and one more non-wetting
(n). The entropy production in Equation (33) gives,

σ = J′q
∂

∂x
(
1

T
)−

1

T

(

Jw
∂µw,T

∂x
+ Jn

∂µn,T

∂x

)

(41)

The solid matrix is the frame of reference for transport, Jr = 0
and does not contribute to the entropy production. The volume
flux is frequently measured, and we wish to introduce this as new
variable

JV = JnVn + JwVw (42)

Here JV has dimension (m3.m−2.s−1 = m.s−1), and the partial
specific volumes have dimension m3.kg−1. The volume flows
used by Hansen et al. [16] are related to ours by Jnυn = Ŝnυn,
Jwυw = Ŝwυw and JV = υ = Ŝnυn + Ŝwυw.

The chemical potential of the solid matrix may not vary much
if the composition of the solid is constant across the system. We
assume that this is the case (dµc

m ≈ 0), and use Equation (40) to
obtain

0 = ρndµ
c
n + ρwdµ

c
w (43)

The entropy production is invariant to the choice of variables.We
can introduce the relations above and the explicit expression for
dµi,T into Equation (41), and find the practical expression:

σ = J′q
∂

∂x

(

1

T

)

− JV
1

T

∂p

∂x
− vD

ρw

T

∂µc
w

∂x
(44)

In the last line, the difference velocity vD is

vD =
Jw

ρw
−

Jn

ρn
(45)

This velocity (in m/s) describes the relative movement of the
two components within the porous matrix on the macro-scale.
In other words, it describes the ability of the medium to
separate components. The main driving force for separation
is the chemical driving force, related to the gradient of the
saturation. The equation implies that also temperature and
pressure gradients may play a role for the separation.

The entropy production has again three terms, one for each
independent driving force. With a single fluid, the number of
terms is two. The force conjugate to the heat flux is again the
gradient of the inverse temperature. The entropy production,
in the form we can obtain, Equations (41) or (44), dictates the
constitutive equations of the system.

6.1. A Path of Sister Systems
As pointed out above, through the construction of the REV
we were able to create a continuous path through the system,
defined by the thermodynamic variables of the REVs. The path
was illustrated by a sequence of dots in Figure 1. Such a path
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FIGURE 5 | A one-dimensional heterogeneous system cut into slices. Each cut is brought in equilibrium with a homogeneous (pink) mixture at the same temperature

and pressure as the REV.

must exist, tomake integration possible. Also continuummixture
theory hypothesizes such a path [4]: Hilfer introduced a series
of mixture states, to define an integration path across the porous
system, see e.g., [4].

The path created in section 2 is sufficient as a path of
integration across the medium. The access to and measurement
of properties in the REVs is another issue. It is difficult,
if not impossible, to measure in situ as stated upfront. The
measurement probe has a minimum extension (of some mm),
and the measurement will represent an average over the surface
of the probe. For a phase with constant density, the average is
well-defined andmeasurable. A link between the state of the REV
and a state where measurements are possible, is therefore needed.
We call the state that provides this link a sister state.

Consider again the path of REVs in the direction of transport.
To create the link between the REV and its sister state, consider
the system divided into slices, see Figure 5. The slice (the sister
system) contains homogeneous (pink) phases in equilibriumwith
the REV at the chosen location.

We hypothesize that we can find such sister states; in the form
of a multi-component mixture with temperature, pressure, and
composition such that equilibrium can be obtainedwith the REV-
variables at any slice position. The variables of the sister state
can then be measured the normal way. The chemical potential
of a component in the sister state can, for instance, be found
by introducing a vapor phase above this state and measure the
partial vapor pressure. We postulate thus that a sister state can be
found, that obey the conditions

T = Ts (46)

p = ps (47)

µi = µs
i (48)

Here i = 1, ..., n are the components in the REV, and superscript s
denotes the sister state. With the sister states available, we obtain

an experimental handle on the variables of the porous medium.
The hypothesis must be checked, of course.

The series of sister states have the same boundary conditions
as the REV-states, by construction, and the overall driving forces
will be the same. Between the end states, we envision the non-
equilibrium system as a staircase. Each step in the stair made
up of a REV is in equilibrium with a step of the sister-state-
stair. Unlike the states inside the porous medium, the sister states
are accessible for measurements, or determination of T, p, and
µi. The driving forces of transport can then be described by the
sequence of the sister states.

7. DISCUSSION

We have shown in this work how it is possible to extend the
method of classical non-equilibrium thermodynamics [9] to
describe transport in porous media. This was possible by

• constructing a REV in terms of a basis set of additive variables
• assuming that the REV is Euler homogeneous of degree one

in the basis set.

The method is developed in the same manner as the classical
theory is, but it extends the classical theory through the variable
choice. The assumption about Euler homogeneity is the same
for homogeneous (classical) as well as the heterogeneous porous
media. The new variable set is necessary in order to account for
the presence of the porous medium, i.e., the contributions from
interfaces and contact line energies. Film formation in the pore
is excluded. The properties of the porous medium will therefore
enter in the definition of the variable set. The consequences of the
choice will be elaborated in an article to come [18].

The classical equations have been written for single-phase
systems, as these can be regarded as homogeneous on the
molecular scale [34]. Equations (41) and (44), for instance, are
well-established in theory of transport for polymer membranes,
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see e.g., [34]. The idea of the sister states to define the state of
a porous media with larger pores and immiscible phases was
inspired by this. The way of dealing with lack of knowledge of
variables inside the system was for instance used in polymer
membrane transport long ago, see [35, 36]. The procedure, to
introduce a series of equilibrium states, each state in equilibrium
with the membrane at some location between the external
boundaries, was first used by Scatchard [35], and experimentally
verified much later [36, 37].

With the condition of Euler homogeneity we can set up the
Gibbs equation, which is essential in the derivation of the entropy
production. The total entropy production follows directly from
the new set of variables and Euler homogeneity. This procedure
is new, when compared to the literature where focus was set on
the single phases, interfaces and contact lines [2, 3, 5].

The REV obeys local equilibrium in the sense that it obeys
Gibbs equation. Some support for this can be found in the
literature. Prigogine and Mazur [38] investigated a mixture of
two fluids using non-equilibrium thermodynamics. Their system
consisted of superfluid - and normal helium. Two pressures were
defined, one for each of the two fluids. The interaction between
the two fluids was small, meaning that one phase flowed as if the
other one (aside from a small frictional force) was not there. The
situation here is similar, as we may have different liquid pressures
inside the REV. But the interaction between the two immiscible
components in our porous medium is large, not negligible as in
the helium case.

We are adding the contributions from each phase, interface,
and line to overall variables for the REV. But unlike Gray
and Miller [5] and others [39], we do not need to require
that thermodynamic equilibrium relations are obeyed within
the REV. This may seem to be drastic, but the Gibbs-Duhem
equation follows from Euler homogeneity alone, cf. section 5.
The assumption of Euler homogeneity is sufficient to obtain the
Gibbs-Duhem equation. In this aspect, we agree with those who
use that equation for porous media, see e.g., [6].

The surface areas and the contact line lengths are not
independent variables in our representation of the REV. These
variables have been included through the assumption that the
basic variables of the REV are additive. This means that a REV
of a double size has double the energy, entropy, and mass,
but also double the surface areas of various types and double
the line lengths. The contraction to the small set of variables
depend on this assumption. Otherwise, we need to expand the
variable set. This can be done, however. A promising route
seems to include Minkovski integrals [40]. Our approach can be
compared to the up-scaling method used in Smoothed Particle
Hydrodynamics [20]. Inspired by the idea behind smoothed
particle hydrodynamics, we can also define a normalized weight
function W(r), such that a microscopic variable a(r) may be
represented by its average, defined as

a(r) ≡

∫

dr′W(r− r′)a(r′). (49)

For example, if a(r′) is the local void fraction in a porous material
as determined from samples of the material, a(r) is the average
porosity of themedium. The average is assigned to the point r and

varies smoothly in space. The average porosity a(r) would then be
suitable for e.g., a reservoir simulation at the macro-scale.

In general, the system is subject to external forces and its
properties are non-uniform. The choice of W(r) is therefore
crucial in that it defines the extent of the coarse-graining and
the profile of the weighting. The illustration in Figure 1 alludes
to a weight function that is constant inside a cubic box and zero
outside, but other choices are possible. Popular choices used in
mesoscale simulations are the Gaussian and spline functions (see
[20] for details). A convenient feature of the coarse-graining is
that the average of a gradient of a property a is equal to the
gradient of the average.

∇a(r) = ∇a(r) (50)

Similarly the average of a divergence of a flux is equal to the
divergence of the average. This implies that balance equations,
which usually contain the divergence of a flux, remain valid after
averaging. Time averages can also be introduced along the same
lines.

Time scales relevant to porous media transport are usually
large (minutes, hours); and much larger than times relevant
for the molecular scale. Properties can change not only along
the coordinate axis, but also on the time scale. In the present
formulation, any change brought about in the REV must retain
the validity of the Gibbs equation. As long as that is true, we can
use the equations, also for transient phenomena.

The outcome of the derivations will enable us to deal with
a wide range of non-isothermal phenomena in a systematic
manner, from frost heave to heterogeneous catalysis, or multi-
phase flow in porous media. We will elaborate on what this
means in the next part of this work. In particular, we shall give
more details on the meaning of the additive variables and the
consequences for the REV pressure in a paper to come [18].
We will there return to the meaning of the REV variables and
how they will contribute and help define new driving forces of
transport.

8. CONCLUDING REMARKS

Wehave derived the entropy production for transport of heat and
immiscible, single components (phases) in a porous medium.
The derivations have followed standard non-equilibrium
thermodynamics for heterogeneous systems [11]. The only,
but essential, difference to current theories, has been the fact
that we write all these equations for a porous medium on the
macro-scale for the REV of a minimum size using its total
entropy, energy and mass. These equations are mostly written
for the separate contributions. Broadly speaking, we have been
zooming out our view on the porous medium to first define some
states that we take as thermodynamic states because they obey
Euler homogeneity. The states are those illustrated by the dots
in Figure 1. In order to define these states by experiments, we
constructed the sister states of Figure 5.

The advantage of the present formulations is this; it is
now possible to formulate the transport problem on the scale
of a flow experiment in accordance with the second law of
thermodynamics, with far less variables, see [18]. This opens up
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the possibility to test the thermodynamic models for consistency
and compatibility with the second law. Such tests will be explicitly
formulated together with the constitutive equations, in the next
part of this work [18].

AUTHOR CONTRIBUTIONS

SK and DB defined the variables of the REV and the sister states
and wrote the first draft. AH, BH, and OG critically examined all
proposals and contributed to revisions on the MS.

FUNDING

The authors are grateful to the Research Council of Norway
through its Centers of Excellence funding scheme, project
number 262644, PoreLab.

ACKNOWLEDGMENTS

Per Arne Slotte is thanked for stimulating discussions.

REFERENCES

1. Bedford A. Theories of immiscible and structured mixtures. Int J Eng Sci.

(1983) 21:863–960.

2. Hassanizadeh SM, Gray WG. Mechanics and thermodynamics of multiphase

flow in porous media including interphase boundaries. Adv Water Resour.

(1990) 13:169–86.

3. Gray WG, Hassanizadeh SM. Macroscale continuum mechanics for

multiphase porous-media flow including phases, interfaces, common lines

and commpon points. Adv Water Resour. (1998) 21:261–81.

4. Hilfer R. Macroscopic equations of motion for two phase flow in porous

media. Phys Rev E (1998) 58:2090.

5. Gray WG, Miller CT. Introduction to the Thermodynamically Constrained

Averaging Theory for Porous Medium Systems. Cham: Springer (2014).

6. Revil A. Transport of water and ions in partially water-

saturated porous media. Adv Water Resour. (2017) 103:119–38.

doi: 10.1016/j.advwatres.2016.07.016

7. Onsager L. Reciprocal relations in irreversible processes. I. Phys Rev. (1931)

37:405–26.

8. Onsager L. Reciprocal relations in irreversible processes. II. Phys Rev. (1931)

38:2265–79.

9. de Groot SR, Mazur P. Non-Equilibrium Thermodynamics. London: Dover

(1984).

10. Bedeaux D, Albano AM, Mazur P. Boundary conditions and non-equilibrium

thermodynamics. Phys A (1976) 82:438–62.

11. Kjelstrup S, Bedeaux D. Non-Equilibrium Thermodynamics of Heterogeneous

Systems. Singapore: Wiley (2008).

12. Zhu L, Koper GJM, Bedeaux D. Heats of transfer in the diffusion layer

before the surface and the surface temperature for a catalytic hydrogen

oxidation reaction (H2+(1/2)O2 = H2O). J Phys Chem A (2006) 110:4080–8.

doi: 10.1021/jp056301i

13. Richter F, Gunnarshaug AF, BurheimOS, Vie PJS, Kjelstrup S. Single electrode

entropy change for LiCoO2 electrodes. ECS Trans. (2017) 80:219–38.

doi:10.1149/08010.0219ecst

14. Førland T, Ratkje SK. Irreversible thermodynamic treatment of frost heave.

Eng Geol. (1981) 18:225–9.

15. Huyghe JM, Nikooee E, Hassanizadeh SM. Bridging effective stress and

soil water retention equations in deforming unsaturated porous media:

a thermodynamic approach. Transp Porous Med. (2017) 117:349–65.

doi: 10.1007/s11242-017-0837-9

16. Hansen A, Sinha S, Bedeaux D, Kjelstrup S, Gjennestad MA, Vassvik M.

Relations between seepage velocities in immiscible, incompressible two-phase

flow in porous media. arXiv:1712.06823. Availbale online at: https://arxiv.org/

abs/1712.06823

17. Kjelstrup S, Bedeaux D, Hansen A, Hafskjold B, Galteland O. Non-

isothermal two-phase flow in porous media. The entropy production. (2018)

arXiv.1805.03943.

18. Kjelstrup S, Bedeaux D, Hansen A, Hafskjold B, Galteland O. Non-

isothermal two-phase flow in porous media. Constitutive equations. (2018)

arXiv.1809.10378.

19. Tallakstad KT, Løvoll G, Knudsen HA, Ramstad T, Flekkøy EG, Måløy

KJ. Steady-state, simultaneous two-phase flow in porous media: an

experimental study. Phys Rev E (2009) 80:036308. doi: 10.1103/PhysRevE.80.

036308

20. Monaghan JJ. Smoothed particle hydrodynamics. Annu Rev Astron Astrophys.

(1992) 30:543–74.

21. Gibbs JW. The Scientific Papers of J.W. Gibbs. New York, NY: Dover (1961).

22. Sinha S, Hansen A, Bedeaux D, Kjelstrup S, Savani I, Vassvik M. Effective

rheology of bubbles moving in a capillary tube. Phys Rev E (2013) 87:025001.

doi: 10.1103/PhysRevE.87.025001

23. Aker E, Måløy KJ, Hansen A, Batrouni G. A two-dimensional network

simulator for two-phase flow in porous media. Trans Porous Media (1998)

32:163–86.

24. Gjennestad MA, Vassvik M, Kjelstrup S, Hansen A. Stable

and efficient time integration at low capillary numbers of a

dynamic pore network model for immiscible two-phase flow in

porous media. Front Phys. (2018) 6:56. doi: 10.3389/fphy.2018.

00056

25. Linstrom PJ, Mallard WG, editors. NIST Chemistry WebBook, NIST Standard

Reference Database Number 69. Gaithersburg MD: National Institute of

Standards and Technology (2018).

26. Neumann A. Contact angles and their temperature dependence:

thermodynamic status, measurement, interpretation and application. Adv

Colloid Interfaces (1974) 4:105–91.

27. Zeppieri S, Rodríguez J, López de Ramos A. Interfacial tension of alkane

+ water systems. J Chem Eng Data (2001) 46:1086–8. doi: 10.1021/je00

0245r

28. Savani I, Sinha S, Hansen A, Kjelstrup S, Bedeaux D, Vassvik M.

A Monte Carlo procedure for two-phase flow in porous media.

Transp Porous Med. (2017) 116:869–88. doi: 10.1007/s11242-016-

0804-x

29. Hansen A, Ramstad T. Towards a thermodynamics of immiscible two-

phase steady-state flow in porous media. Comp Geosci. (2009) 13:227.

doi: 10.1007/s10596-008-9109-7

30. Valavanides MS, Daras T. Definition and counting of configurational

microstates in steady-state two-phase flows in pore networks. Entropy (2016)

18:1–28. doi: 10.3390/e18020054

31. Erpelding M, Sinha S, Tallakstad KT, Hansen A, Flekkøy

EG, Måløy KJ. History independence of steady state in

simultaneous two-phase flow through two-dimensional porous

media. Phys Rev E (2013) 88:053004. doi: 10.1103/PhysRevE.88.0

53004

32. Førland KS, Førland T, Ratkje SK. Irreversible Thermodynamics. Theory and

Applications. Chichester: Wiley (1988).

33. Holt T, Lindeberg E, Ratkje SK. The Effect of Gravity and Temperature

Gradients on the Methane Distribution in Oil Reservoirs. Society of Petroleum

Engineers, SPE-11761-MS (1983).

34. Katchalsky A, Curran PF. Nonequilibrium Thermodynamics in Biophysics.

Harvard University Press (1965).

35. Scatchard G. Ion exchanger electrodes. Am Chem Soc. (1953) 75:

2883–7.

36. Lakshminarayanaiah N, Subrahmanyan V. Measurement of membrane

potentials and test of theories. J Polym Sci Part A (1964) 2:4

491–502.

Frontiers in Physics | www.frontiersin.org 12 November 2018 | Volume 6 | Article 126



Kjelstrup et al. Entropy Production in Porous Media Flow

37. Ratkje SK, Holt T, Skrede M. Cation membrane transport:evidence for

local validity of nernst–planck equations. Berich Bunsen Gesell. (1988) 92:

825–32.

38. Prigogine I, Mazur P. About two formulations of hydrodynamics

and the problem of liquid helium II. Physica (1951) 17:

661–79.

39. Helmig R. Multiphase Flow and Transport Processes in the Subsurface. Berlin:

Springer (1997).

40. McClure JE, Armstrong RT, Berrill MA, Schluter S, Berg S, Gray WG, et al. A

geometric state function for two-fluid flow in porous media. Phys Rev Fluids

(2018) 3:084306. doi: 10.1103/PhysRevFluids.3.084306

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Kjelstrup, Bedeaux, Hansen, Hafskjold and Galteland. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Physics | www.frontiersin.org 13 November 2018 | Volume 6 | Article 126



Kjelstrup et al. Entropy Production in Porous Media Flow

APPENDIX

Mathematical symbols, superscripts, subscripts.

Symbol Explanation

d differential

∂ partial derivative

1 change in a quantity or variable

6 sum

i subscript meaning component i

m number of phases

n subscript meaning non-wetting fluid

w subscript meaning wetting fluid

p superscript meaning pore

REV abbreviation meaning representative elementary volume

r superscript meaning solid matrix of porous medium

s superscript meaning interface

u superscripts meaning internal energy

αβ superscripts meaning contact area between phases αβ

αβδ superscripts meaning contact line between phases α,β, δ

x̄ average of x

Greek symbols

Symbol Dimension Explanation

α superscripts meaning a phase

β superscript meaning an interface

δ superscript meaning a contact line

φ porosity of porous medium

γ N.m−1 (N) surface tension (line tension)

3 m length of contact line

λ Euler scaling parameter

µi J.kg−1 chemical potential of i

ρi kg.m−3 density, ≡ Mi/V

σ J.s−1.K−1.m−3 entropy production in a homogeneous phase

σ s J.s−1.K−1.m−2 surface excess entropy production

σc J.s−1.K−1.m−1 line excess entropy production

� m2 surface or interface area

Latin symbols.

Symbol Dimension Explanation

G J Gibbs energy

M kg mass

m kg.mol−1

d m pore length

Hi J.kg−1 partial specific enthalpy of i

Ji kg.s−1.m−2 mass flux of i

Ju J.s−1.m−2 energy flux

J′q J.s−1.m−2 sensible heat flux

JV m3.s−1.m−2 volume flux

l m characteristic length of representative elementary

volume

L m characteristic length of experimental system

Lij , ℓij Onsager conductivity

p Pa pressure of REV

Q m3.s−1 volume flow

r̄ m avarage pore radius

S J.K−1 entropy

s J.K−1.m−3 entropy density

Si J.kg−1K−1 partial specific entropy of i

Ŝ degree of saturation, ≡ Vi/V

T K temperature

t s time

U J internal energy

u J.m−3 internal energy density

V m3 volume

Vi m3.kg−1 partial specific volume

vD m.s−1 difference velocity

x m coordinate axis

xi - mass fraction of i

Wi - kg.mol−1 molar mass of i

Frontiers in Physics | www.frontiersin.org 14 November 2018 | Volume 6 | Article 126



Article II

Article II
Signe Kjelstrup, Dick Bedeaux, Alex Hansen, Bjørn Hafskjold, Olav Galteland

Non-isothermal Transport of Multi-Phase Fluids in Porous Media. Constitutive
Equations

Frontiers in Physics, 6, 150. (2019)
doi: 10.3389/fphy.2018.00150

77



Article II

78



ORIGINAL RESEARCH
published: 04 January 2019

doi: 10.3389/fphy.2018.00150

Frontiers in Physics | www.frontiersin.org 1 January 2019 | Volume 6 | Article 150

Edited by:

Jürgen Vollmer,

Institut für Theoretische Physik,

Universität Leipzig, Germany

Reviewed by:

Constantinos Siettos,

University of Naples Federico II, Italy

Soren Taverniers,

Stanford University, United States

*Correspondence:

Signe Kjelstrup

signe.kjelstrup@ntnu.no

Specialty section:

This article was submitted to

Interdisciplinary Physics,

a section of the journal

Frontiers in Physics

Received: 08 October 2018

Accepted: 11 December 2018

Published: 04 January 2019

Citation:

Kjelstrup S, Bedeaux D, Hansen A,

Hafskjold B and Galteland O (2019)

Non-isothermal Transport of

Multi-phase Fluids in Porous Media.

Constitutive Equations.

Front. Phys. 6:150.

doi: 10.3389/fphy.2018.00150

Non-isothermal Transport of
Multi-phase Fluids in Porous Media.
Constitutive Equations
Signe Kjelstrup 1*, Dick Bedeaux 1, Alex Hansen 2, Bjørn Hafskjold 1 and Olav Galteland 1

1 PoreLab, Department of Chemistry, Norwegian University of Science and Technology, Trondheim, Norway, 2 PoreLab,

Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway

We define a representative elementary volume of a porous medium in terms of lumped

extensive variables, including properties of homogeneous phases, interfaces, and

contact lines. Using the grand potential, we define the pressure of the REV in a porous

medium in a new manner. From the entropy production expressed in these variables,

we develop new constitutive equations for multi-component, multi-phase, macro-scale

flow. The system is exposed to temperature, composition, and pressure gradients. New

contributions due to varying porosity or surface tension offer explanations for non-Darcy

behavior, and predict thermal osmosis special for porous media. An experimental

program is suggested to verify Onsager symmetry in the transport coefficients. The

analysis is limited to non-deformable systems, which obey Euler homogeneity on the

REV level.

Keywords: porous media, energy dissipation, two-phase flow, representative elementary volume, macro-scale,

excess surface energy, pressure, non-equilibrium thermodynamics

1. INTRODUCTION

We have recently [1] derived a coarse-grained form of the entropy production, σ , of a
representative elementary volume (REV) in a non-deformable porous medium with multi-phase,
multi-component, non-isothermal fluids. The coarse-grained description of the REV was
formulated for systems that obey Euler homogeneity. A Gibbs equation could therefore be
formulated for the REV itself, and used as a starting point, as is normal in non-equilibrium
thermodynamics [2].

Once the entropy production has been found, the driving forces and the constitutive equations
can be given. These will be specified here. We shall see that we can obtain the same form of the
constitutive equations as for homogeneous systems, but that the driving forces are particular for
the porous medium. To write out this particularity, is one aim of the present paper. We shall see
that we can obtain a new definition for the pressure in a porous medium and use this and the
chemical potential to find the constitutive equations. We are also giving internal relations between
experiments particular for the flows, as derived for instance from the Onsager relations.

We consider, as a premise, the REV as a complete thermodynamic system. Hansen and Ramstad
[3] suggested this possibility already some time ago. Since then, the hypothesis has been supported
through measurements on Hele-Shaw cells [4] and through network simulations [5]. The coarse-
grained variables of the REV will fluctuate similar to the variables in a normal thermodynamic state
around a mean value.

The procedure that we used to obtain the Gibbs equation for coarse-grained variables [1],
assumes that the additive thermodynamic variables of the REV are Euler homogeneous functions of
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order one. We give first a brief review of the procedure that
defines the basis set of thermodynamic variables (section 2.1).
The consequences for the chemical potential and the pressure in
the context of porous media is next described (sections 2.2, 2.3).
A new definition of the pressure is proposed in section 2.3.

The constitutive equations that follow from the new set of
variables, allow us to revisit previously published experimental
results. We shall see, for instance, that they can explain deviations
from Darcy’s law. Such deviations have been observed for
small volume flows, also for single fluids like water and water
solutions [6–10]. Thresholds and/or deviations from straight
lines in plots of flow vs. the overall pressure difference, have
been reported. Boersma et al. [8] found a dependency of such
a threshold on the average pore radius, r̄, for flow in a porous
medium made of glass-beads. The observations have, as of
yet, no final explanation. When dealing with immiscible fluids,
Tallakstad et al. [11] observed a dependence of the flow rate
on the square of the pressure difference under steady-state
flow conditions. Sinha and Hansen [12] attributed this square
dependence to a change in the conductivity, arising from the
successive opening of pores due to the mobilization of interfaces
when the pressure difference across the sample is increased.
The explanation was supported by a mean-field calculation
and numerical experiments with a network model. Sinha et al.
[10] followed up the original Tallakstad study, done in a two-
dimensional model porous medium, both experimentally and
computationally in three-dimensional porous media, with the
same result.

There is not only a need to better understand deviations from
Darcy’s law for volume transport. Other driving forces than those
related to the pressure difference, are also relevant to porous
media transport. Counter-current transport of components
can lead to gradients in composition (chemical potential) or
chemical driving forces. Injection of cold seawater into a warm
hydrocarbon reservoir can create thermal driving forces. This
leads to thermal diffusion. The separation of components in a
temperature gradient is an example of the Soret effect [13]. A
temperature gradient may also lead to a pressure gradient, a
phenomenon called thermal osmosis. These effects are not much
studied in porous media, see [14] for a review on membranes.
There are, for instance, contradictory findings in the literature
with respect to the impact of the porous medium on thermal
diffusion. Costeseque et al. [15] found that the porous medium
had no significant effect on the Soret coefficient, as determined
with a horizontal thermodiffusion cell (although the component
diffusion was slower in the porous medium). On the other hand,
Colombani et al. [16] found by molecular dynamics simulations
that both the porosity and the wettability of the porous medium
had an effect on the Soret coefficient. The presence of a porous
matrix had an impact on the flow pattern and therefore the
Soret coefficient according to Davarzani et al. [17]. The role of
a thermal driving force is therefore at best unclear. A better
understanding of its role could be important. An emerging
concept for water cleaning is, for instance, based on thermal
osmosis [18]. This process could help produce clean water using
industrial and natural heat sources, a very important topic in the
world today.

It is thus an open question in porous media theory, how
driving forces like the ones mentioned interact, and how the
porous medium makes these interactions special [17]. It is
therefore also the aim of this work to clarify the coupling that
can take place due to some central forces, by constructing a
non-equilibrium thermodynamic theory, particular for porous
media.

The paper is structured as follows. Section 2 gives first a
brief repetition of the variables used to obtain the coarse-grained
Gibbs equation and the corresponding entropy production [1].
As before, the analysis applies to systems that obeys Euler
homogeneity of the first order. We restrict ourselves to non-
deformable media, and systems with a constant ratio of fluid
surface area to volume (no film formation). For such systems
we proceed to find expressions for the chemical potential and
the pressure in the context of non-deformable porous media, cf.
sections 2.2, 2.3. We intend to extend the theory to deformable
media later.

The expression for the entropy productionwith these variables
is detailed in section 3. The driving forces, due to temperature
-, pressure -, and chemical potential gradients, are specified in
section 4. They obtain new contributions compared to their
normal form in homogeneous systems. In the last section 5,
we detail specific cases of component and volume flow in
combination with heat transport. An experimental program is
suggested in the end to verify Onsager symmetry in the transport
coefficients.

2. THERMODYNAMIC VARIABLES FOR
THE REV

2.1. The Basis Set of Variables
The central concept in this analysis is the representative
elementary volume; the REV [19, 20]. Its characteristic size, l,
is small compared to the size (length) of the full system, L, but
large compared to the characteristic pore length and diameter.
An illustration of the REV is given by the squares in Figure 1.
The REV (square) consists of several phases and components.
The problem is to find the representation on the larger scale.
For each point in the porous system, represented by a (blue) dot
in Figure 1, Kjelstrup et al. [1] used the REV around the dot
to obtain the variables of the REV (UREV, SREV,VREV,MREV

i ).
The variables were given superscript REV to indicate that they
constituted the only independent variables of the REV. From the
Euler homogeneity of these variables, the possibility followed
to define the temperature, pressure, and chemical potentials
of the REV, (T, p,µi). We refer to Kjelstrup et al. [1] and to
Tables A1–A3 in the Appendix for further details, terminology
and symbols.

The value of each of these REV-variables was obtained as a
sum of contributions from each phase, interface and three-phase
contact line present [19, 20]. The contributions are pore-scale
variables; they are not independent variables on the macro-scale.
To assume Euler homogeneity, means to assume that a REV of
the double size, for example, has double the energy, entropy, and
mass, as well as double the surface areas and double the line
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FIGURE 1 | A representative elementary volume (REV) (magenta squares,

length l) in a system (white box of length L) that is exposed to for instance a

pressure difference, 1p, a temperature difference, 1T, and differences in

chemical potentials 1µi . A (blue) dot is used to represent the state that

characterizes the REV. The set of state variables are positioned on the x-axis:
The temperature, pressure and the chemical potentials, (T,p, µi )(x). The figure

is adapted from Kjelstrup et al. [1].

lengths of various types. The average surface area, pore length
and pore radius, as well as the curvature of the surfaces per
unit of volume of the REV, are then everywhere the same. We
limit ourselves to non-deformable systems with a constant ratio
of fluid surface area to volume, for which this is the case. The
extension to deformable systems is more complicated and will be
considered later.

A system of k components in m homogeneous phases, has a
volume, VREV, with contributions from the homogeneous bulk
phases Vα,REV, m ≥ α ≥ 1, and the excess line volumes,
Vαβδ,REV,m ≥ α > β > δ ≥ 1.

VREV =

m
∑

α=1

Vα,REV +

m
∑

α>β>δ=1

Vαβδ,REV ≈

m
∑

α=1

Vα,REV (1)

The superscripts denote the relevant phases, surfaces or contact
lines. The surface area between phases α,β is denoted �αβ ,REV

while the contact line length between phases αβδ is denoted
3αβδ,REV. The surface area (line length) of the REV is the sum
over all areas (lines) in the REV. The excess surface volumes are
by construction zero. The excess line volumes are not, because the
dividing surfaces in general cross each other along three different
lines.

In this first exposition, we neglect contributions to the volume
from the contact lines, which are normally small also in porous
media. The volume of the pores is

Vp,REV =

m−1
∑

α=1

Vα,REV (2)

Superscript p is used for pore. The porosity, φ, and the degree of
saturation, Ŝα (saturation for short), are

φ ≡
Vp,REV

VREV
and Ŝα ≡

Vα,REV

Vp,REV
=

Vα,REV

φVREV
(3)

Superscript α is used for a component, which is equal to the
phase in the present case. The porosity and the saturation do
not depend on the size of the REV, and have therefore no
REV-superscript.

The mass of component i in the REV,MREV
i , is the sum of the

masses in the homogeneous phases of the REV, α, Mα,REV
i , m ≥

α ≥ 1, the excess interfacial masses, M
αβ ,REV
i , m ≥ α > β ≥ 1,

and the excess line masses, M
αβδ,REV
i , m ≥ α > β > δ ≥ 1. We

obtain:

MREV
i =

m
∑

α=1

Mα,REV
i +

m
∑

α>β=1

M
αβ ,REV
i +

m
∑

α>β>δ=1

M
αβδ,REV
i (4)

where the first term on the right-hand side also can be written in
terms of the (constant) densities ρα

i

m
∑

α=1

Mα,REV
i =

m
∑

α=1

ρα
i V

α,REV
i (5)

Similar contributions follow for the other terms.
We shall often use the example of two immiscible one-

component phasesw and n in a solid porousmaterial r of porosity
φ, where contact line contributions are negligible. We can think
of phase w as wetting, and n as non-wetting. The mass variables
from Equation (4) are for n:

MREV
n = ρnV

REV
n (6)

while for the other components we obtain also surface excess
contributions:

MREV
w = MREV

w +Mwn,REV
w

MREV
r = MREV

r +Mrn,REV
r +Mrw,REV

r (7)

When an interface is formed between two phases, we are free
to choose the position of the interface such that one of the
components has a zero excess mass. This is the position of the
equimolar surface of this component. This position is convenient
because the number of variables are reduced. When we use the
equimolar surface of n, Mrn

n = Mwn
n = 0, and when we use the

equimolar surface of w at the surface of the solid,Mrw
w = 0. These

choices simplify the description of the REV. Therefore, we shall
later use the chemical potential of component n, which has a bulk
contribution only, see section 2.2.

The expressions for UREV and SREV are similar to Equation
(4). This way to construct a REV is reminiscent of the geometric
construction of a state function, proposed for flow in porous
media by McClure et al. [21].

The basis set of macro-scale variables of the REV
(UREV, SREV,VREV,MREV

i ) apply to the whole REV. The
temperature, pressure and chemical potentials of the REV,
(T, p,µi), on the macro-scale were next defined, as is normal in
thermodynamics, as partial derivatives of the internal energy.
These definitions are normal in the sense that they have the
same form as they have in homogeneous systems. They are new
because the variables (say UREV) have contributions from all
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parts of the heterogeneous REV. The intensive variables T, p,
and µi are then not averages of the corresponding variables on
the pore-scale. The importance of this was also pointed out by
Hassanizadeh and Gray [11,12].

The macro-scale densities of internal energy, entropy and
mass; in the example, u, s, ρi, do not depend on the size of the
REV. The densities are therefore convenient when we need to
integrate across the system [1]. They are, however, functions of
the position of the REV, cf. Figure 1.

2.2. The Gibbs Energy of the REV
We proceed to define the Gibbs energy, G, as this variable is
needed in the definition of driving forces of transport, see section
3. The general expression for Gibbs energy is

G ≡ U + pV − ST =

k
∑

i=1

µiMi =

k
∑

i=1

Gi (8)

where G applies to the REV and Gi is defined for component i in
the last identity. All REV variables need be taken into account. In
principle, each component can exist in all phases in the REV. But
component contributions to the REV are additive, cf. Equation
(4). For component i we therefore have

GREV
i ≡ µREV

i MREV
i

=

m
∑

α=1

Gα,REV
i +

m
∑

α>β=1

G
αβ ,REV
i

=

m
∑

α=1

gα
i V

α,REV +

m
∑

α>β=1

g
αβ
i �αβ ,REV (9)

The expression gives the Gibbs energy contributions of
component i to the REV. We neglected again possible
contributions from contact lines.

In the case of two immiscible, one-component fluids in a non-
deformable porous rock, we can take advantage of the simpler
description of the non-wetting fluid (see previous subsection)
giving

GREV
n ≡ µnM

REV
n = Gn,REV

n = gnnV
n,REV (10)

For immiscible, one-component fluids, the label indicating the
components also gives the phase. The density gnn is an average
over Vn,REV. The local density in the pores may vary around the
average.

The total differential of U is used with the definition (8), and
we obtain

dG = −SdT + Vdp+
∑

i

µidMi (11)

where the superscript REV is skipped for convenience.

2.3. The Pressure of the REV
We find the pressure of the REV by starting, as above, with the
extensive property that holds the pressure as the variable. This

is the grand potential. The compressional energy of the REV is
equal to minus the grand potential:

ϒREV
(

T,VREV,µi

)

≡ −pVREV = UREV−SREVT−

k
∑

i=1

µiM
REV
i

(12)
The grand potential of the REV is additive, which gives

ϒREV =

m
∑

α=1

ϒα,REV+

m
∑

α>β=1

ϒαβ ,REV+

m
∑

α>β>δ=1

ϒαβδ,REV (13)

We introduce contributions from all phases, surfaces and contact
lines. This allows us the possibility to define, in a new way, the
pressure of the REV:

p =
1

VREV





m
∑

α=1

pαVα,REV −

m
∑

α>β=1

γ αβ�αβ ,REV

−

m
∑

α>β>δ=1

γ αβδ3αβδ,REV



 (14)

The last equationmakes it possible to compute the pressure of the
REV, p, from the pressures in the bulk phases, the surface tensions
and the line tensions. With knowledge of the pressure in the REV,
we can find the driving force,−dp/dx, in the entropy production,
see below, Equation (29).

We explain now how we can define and compute the pressure
from Equation (14), using the example of two immiscible single
fluids in a non-deformable medium.We shall neglect contact line
contributions for simplicity. Such contributions can be added
by the same procedure. We follow Equation (14) and sum over
the n, w and r bulk phases, and the nr,wr, and nw−interfaces.
The situation can be illustrated for a single cylindrical pore, see
Figure 2.

The figure shows two phases n and w in a tube with the
average radius. The wall material is r. Contact areas are therefore
�nr,REV, �wr,REV, and �nw,REV. The total surface area of the pore

FIGURE 2 | Illustration of contact areas between the phases. A cylindrical

pore is chosen as example.
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is�rp,REV ≡ �nr,REV+�wr,REV. The area�nw,REV is the smallest
contact area shown in the figure. The volumes in Equation (14)
depend on the saturation of the non-wetting component, Ŝn

and the porosity, φ. Neither of the fluids form a film between
the surface and the other fluid, so the surfaces satisfy in good
approximation

�nr,REV = Ŝn�rp,REV and �wr,REV = Ŝw�rp,REV

= (1− Ŝn)�rp,REV (15)

The pressure of the REV from Equation (14) can then be written
as:

p = [pnŜnφ + pw(1− Ŝn)φ + pr(1− φ)]

−[Ŝnγ nr + (1− Ŝn)γ wr]
�rp,REV

VREV
− γ nw �nw,REV

VREV
(16)

Contact-line contributions were again not taken along, for
simplicity. A consequence of the porous medium being
homogeneous is that �rp,REV/VREV is the same everywhere. The
ratio can be used as ameasure of the average curvature of the pore
surface, as will be explained below.

The volume-averaged contributions to the pressure from the
homogeneous phases is given the symbol p̄:

p̄ = pnŜnφ + pw(1− Ŝn)φ + pr(1− φ)

=
(

pn − pw
)

Ŝnφ + pwφ + pr(1− φ) (17)

The first term in the last equality shows that the saturation gives
an important contribution to the volume-averaged pressure. The
contributions of the 2nd and 3rd terms are due to pw and pr .
These contributions are usually constant.

The surface-averaged contributions to the pressure are
likewise given a separate symbol:

p̄c = [Ŝnγ nr + (1− Ŝn)γ wr]
�rp,REV

VREV
+ γ nw �nw,REV

VREV
(18)

The contribution of p̄c to the total pressure, p, may be called the
capillary pressure. The total pressure of the REV is thus, for short:

p = p̄− p̄c (19)

2.3.1. The Case of Approximately Cylindrical Pores
With an (approximately) cylindrical pore geometry, we can
define the average radius of the pores by

r ≡
2Vp,REV

�rp,REV
(20)

By introducing r into Equation (18) we obtain the capillary
pressure

p̄c =
(

γ nr − γ wr
)

Ŝn
2φ

r
+ γ wr 2φ

r
+ γ nw �nw,REV

VREV
(21)

Again the first term shows that saturation gives an important
contribution. The 2nd term only depends on the temperature and

is usually constant. The 3rd term is proportional to the surface
area of the fluid-fluid interface. In many experiments this surface
area is much smaller than �rp,REV. When that is the case, this
term is negligible.

The three equations above give an expression for the REV
pressure p for the example system.

To estimate the size of the various contributions, it is
convenient to usemechanical equilibrium for the contact line and
for the surface, although this conditionmay not apply to the REV,
not even under steady flow conditions.With a balance of forces at
the three-phase contact lines, Young’s law applies for the surface
tensions: γ nr−γ wr = γ nw cos θ , where θ is the (average) contact
angle. When there is furthermore mechanical equilibrium at the
fluid-fluid interfaces, the pressure difference between the fluids is
given by Young-Laplace’s law, pn − pw = 2γ nw cos θ/r̄.

In the single-fluid (w) case, Equation (16) simplifies. There are
volume-averaged and surface averaged contributions,

p = pwφ + pr(1− φ)− γ wr 2

r̄
φ (22)

We have defined above in detail what we mean by the pressure
of a REV. We have found, using the grand potential, that it can
be regarded as result of volume- and surface average properties,
and we have given some examples. These contributions
enter the driving force in Equations (23, 29), to be further
discussed below.

3. THE ENTROPY PRODUCTION OF
NON-ISOTHERMAL TWO-PHASE FLOW

Pressure-driven mass flows through porous media can lead
to gradients in composition and temperature, and vice versa;
temperature gradients can lead to mass flow, separation of
components and pressure gradients. The interaction of such
flows is of interest, andmotivated the search for convenient forms
of the entropy production [1].

3.1. Expression in Terms of Component
Flows
From the Gibbs equation for the REV, we derived the entropy
production for transport of heat and two immiscible fluid phases
through the REV [1]. With transport in the x-direction only, the
entropy production σ of the example system was

σ = J′q
∂

∂x
(
1

T
)−

1

T

(

Jw
∂µw,T

∂x
+ Jn

∂µn,T

∂x

)

(23)

The frame of reference for the mass transport is the non-
deformable solid matrix, Jr ≡ 0. Here J′q is the sensible heat flux

(in J.m−2.s−1), T is the temperature (in K), Ji is a component
flux (in kg.m−2.s−1) and ∂µi,T/∂x is the gradient of the chemical
potential (in J.kg−1.m−1) evaluated at constant temperature. All
properties are for the REV, so superscript REV is omitted.

The thermal force conjugate to the heat flux is the gradient
of the inverse temperature, where the temperature was defined
for the REV as a whole, see Kjelstrup et al. [1]. The chemical force
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conjugate to the mass flux is the negative gradient ofµi,T over the
temperature. The chemical driving forces are obtained from the
full chemical potential, which is the derivative of G with respect
toMi:

µi ≡

(

∂G

∂Mi

)

T,p

(24)

The total differential of the chemical potential is thus from
Equation (11);

dµi = −SidT+Vidp+

k
∑

j=1

µc
i,jdMj ≡ −SidT+Vidp+dµc

i (25)

where Si = − (∂µi/∂T)p,Mj
and Vi =

(

∂µi/∂p
)

T,Mj
and

µc
i,j = (∂µi/∂Mj)p,T,Mk

are partial specific quantities. The last

term describes the change in the chemical potential by changing
composition of the medium. The dµi,T is now defined as a part of
the whole differential:

dµi,T ≡ dµi + SidT = Vidp+ dµc
i (26)

The last term is zero when the composition is uniform. In the
expression of the entropy production in terms of component
flows, Equation (23), the driving force has contributions from the
composition variation and from the pressure gradient.

3.2. Expression in Terms of Volume Flow
The volume flow, rather than the component flows, is often the
measured variable. A description with the volume flow is thus of
interest. The volume flow of several components is JV = 6iJiVi.
We take the example of two fluids to demonstrate the principles.

JV ≡ JnVn + JwVw (27)

With two fluids in a uniform, non-deformable rock, there are
three components. On the coarse-grained level, these are mixed.
We assume that dµc

r = 0, and obtain Gibbs-Duhem’s equation
on the form

ρndµ
c
n + ρwdµ

c
w = 0 (28)

where ρi is the density of i in the REV (in kg.m3). This can be
used with Equation (26) and JV to change Equation (23) into

σ = J′q
∂

∂x

(

1

T

)

− JV
1

T

∂

∂x
p+ υD

ρn

T

∂µc
n

∂x
(29)

We have chosen to keep the chemical potential of n, which
has a simpler form than the other chemical potential (µn =

µn
n), cf. section 2.2. The entropy production in Equation (23) is

invariant, and this invariance defines υD as the relative velocity
of component w and n (in m.s−1):

υD ≡
Jw

ρw
−

Jn

ρn
(30)

The entropy production 29 has also three terms. While the first
term on the right-hand side is the same as before, the second

term is the volume flow with minus the pressure gradient over
the temperature as driving force, and the third term is the velocity
difference with the chemical potential gradient times the density
over the temperature as driving force.

Equations (23, 29) are equivalent. They describe the same
entropy production or flow dissipation. They provide alternative
choices of conjugate thermodynamic force-flux pairs. The choice
to use in the particular case, is determined by practical reasons;
what can be measured or not, or which terms are zero. For
instance, under isothermal conditions we need not take the term
containing the heat flux along, even if heat may be transported
reversibly. One set may give a negative contribution to the
entropy production (work is done), but the overall entropy
production is positive, of course. Each set can be used to obtain
constitutive equations for transport on the macro-scale. We shall
proceed to find these for porous media flow, finding first more
detailed expressions for the driving forces.

In the simple case of a single fluid, say w, we obtain directly
from Equations (23, 26) that

σ = J′q
∂

∂x
(
1

T
)− JV

1

T

∂p

∂x
(31)

In the absence of a gradient in composition, dµc
i = 0, the same

expression applies also for more components. We may follow
Hansen et al. [22] and write the component contributions as
JnVn = Ŝnvn, JwVw = Ŝwvw and JV = v = Ŝnvn + Ŝwvw. where
the saturation has been introduced, and vi is the volume flow of i.

4. DEFINITION OF THE DRIVING FORCES
IN THE CONTEXT OF A POROUS MEDIUM

We expand on the basis presented earlier [1], and give definitions
of the driving forces in the context of porous media flow.

4.1. The Saturation-Dependent
Contributions to the Chemical Potential
Gradient
The specific contribution to the chemical potential gradients
in the entropy production in Equation (23) is of interest. The
concentration dependent part of the chemical potential of i, µi,
for an ideal system is (in J.kg−1)

µi = µ0
i +

RT

Wi
ln

ρi

ρ
0,REV
i

(32)

Here R is the gas constant (in J.K−1.mol−1) and Wi is the molar
mass (in kg.mol−1). The chemical potential is measured referred
to a standard state,µ0

i , having the local concentration ρ0
i in all the

pores. In the description of porous media, a convenient reference
state may be the state when one component is filling all pores, or
when the saturation is unity, Ŝi = 1. The mass density of i in the
REV for the standard state is ρ

0,REV
i = ρ0

i V
REV
p /VREV = ρ0

i φ.

Away from this state ρi = ρ0
i Ŝ

iφ for i = n,w.When φ is constant,
this gives

ρi

Ŝi
= ρ0

i φ (33)

Frontiers in Physics | www.frontiersin.org 6 January 2019 | Volume 6 | Article 150



Kjelstrup et al. Non-isothermal Transport—Constitutive Equations

By introducing these definitions into Equation (32), we obtain for
the concentration dependent part of the chemical driving force of
n

∂µc
n

∂x
=

RT

Wn

1

Ŝn

∂ Ŝn

∂x
(34)

We see that any variation in saturation between REVs along the
x-axis (cf. Figure 1), will lead to a driving force. We integrate
between two REVs and obtain the chemical driving force for
porous media flow

ρn1µc
n = φ

ρ0
nRT

Wn
1Ŝn (35)

We have seen that the return to the Gibbs energy of the
porous medium helped define the chemical potential in terms of
properties relevant to porous media. All variables are measurable.

4.2. The Pressure Dependent Contribution
The driving force for volume flow is the negative gradient of the
REV pressure over the temperature. To measure the pressure
p inside the REV is difficult. The pressure in the fluid phases
adjacent to the porous medium can be determined. Tallakstad
et al. [11] defined the measured pressure difference, 1p′, at
steady state, as an average over the value 1p(t) over the time of
measurement:

1p′ =
1

te − ts

∫ te

ts

1p(t)dt (36)

Here t is the time and 1 refers to the extension of the system.
Subscript ’s’ denotes the start and ’e’ denotes the end of the
measurement. We will take this pressure difference as our 1p.
The pressure differences 1pw and 1pn can also be measured
when there is continuity in the fluids, w and n, respectively.

The pressure variation across the REV is given by Equation
(19), we have an interpretation of the pressure difference external
to the porous medium;

d

dx
p =

d

dx
(p̄− p̄c) (37)

We integrate over the system and obtain an interpretation of the
total pressure difference:

1p = 1p̄− 1p̄c (38)

We can assess the right-hand side of this equation using
Equations (17, 18).

4.2.1. The Case of Large Pressure Differences
When the pressure drop across the porous plug is large compared
to the capillary pressure contribution, the surface contributions
and therefore p̄c can be neglected. This is the case of large
capillary numbers. Furthermore pn = pw. In the pressure
difference, the terms with constant φ and pr disappears, and the
pressure difference is:

1p = 1p̄ = φ1pw (39)

The pressure is applied to the whole cross-sectional area. This
explains that the net driving force becomes a fraction, φ, of 1pw.
In other words, the force applies to the fraction φ of the pore area.

The conditions leading to Equation (39) are common in the
laboratory. Some numerical values for the air-glycerol system,
[4], can illustrate when the conditions apply. The value of
2φγ wr/r̄ is of the same order of magnitude as pcŜnφ (400 Pa)
when the surface tension γ = 6.4 · 10−2Nm−2, the average pore
radius r̄ = 0.2 mm and the porosity φ = 0.63. A typical value of
1p̄ in the experiments is close to 30 kPa, which is far from the
limit where capillary effects are significant.

4.2.2. The Case of Small Pressure Differences
For small capillary numbers the effective pressure drop across
a porous plug is comparable to or smaller than the capillary
pressure. Surface contributions need be taken into account.
Equation (38) gives the effective pressure difference. When we
can assume a constant average radius r̄, and constant porosity,
we obtain

1p = 1p̄−
2φ

r̄
1

[

(

γ nr − γ wr
)

Ŝn + γ wr
]

−1

(

γ nw �nw,REV

VREV

)

(40)
A fluid will be transported when the surface tensions of the
fluids with the wall are different and there is a difference in the
saturation. When there is only one fluid in the porous medium,
cf. Equation (22), and we have constant r̄ and porosity, the
pressure difference becomes

1p = 1p̄−
2φ

r̄
1γ wr (41)

The last term can lead tomass transport, when the surface tension
changes.

5. CONSTITUTIVE EQUATIONS. EXAMPLES

5.1. Constitutive Equations for
Non-isothermal, Two-Phase, Immiscible
Fluids
The constitutive equations follow from the entropy production.
We present these on differential form for two incompressible
flows. From Equation (23) we have:

J′q = lqq
∂

∂x
(
1

T
)− lqw

1

T

∂µw,T

∂x
− lqn

1

T

∂µn,T

∂x

Jw = lwq
∂

∂x
(
1

T
)− lww

1

T

∂µw,T

∂x
− lwn

1

T

∂µn,T

∂x

Jn = lnq
∂

∂x
(
1

T
)− lnw

1

T

∂µw,T

∂x
− lnn

1

T

∂µn,T

∂x
(42)

We can also use Equation (29) and obtain

J′q = lqq
∂

∂x

(

1

T

)

− lqp
1

T

∂

∂x
p+ lqd

ρn

T

∂µc
n

∂x

JV = lpq
∂

∂x

(

1

T

)

− lpp
1

T

∂

∂x
p+ lpd

ρn

T

∂µc
n

∂x

υD = ldq
∂

∂x

(

1

T

)

− ldp
1

T

∂

∂x
p+ ldd

ρn

T

∂µc
n

∂x
(43)
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The flux-force relations are linear on the REV-level. Our
construction of the coarse-grained entropy production has
followed the standard line in non-equilibrium thermodynamic
theory, meaning that the Onsager relations holds for each matrix
of coefficients. They may not hold, when the REV no longer can
be constructed using Euler homogeneity (i.e., can be regarded as
a thermodynamic state) or when the balance equations fail. Some
evidence exists that the REV is a thermodynamic state [4, 5]. Also,
there is theoretical and computational proof that the Onsager
relations apply, lij = lji [23–25]. Experimental proof for the
Onsager relations exists for one-phase flow in porous media[26],
but as far as we know, not for two-phase flow. We continue to
specify how this possibly can be achieved.

One set of conductivities can be expressed by the other, using
entropy production invariance. The element lqq is the same in
both formulations.

We have discussed above how the local and overall driving
forces can be determined.We integrate across the system in order
to relate experimental results to theory. We integrate the linear
laws 43 across the REV, and obtain

J′q = Lqq1(
1

T
)− Lqw

1

T
1µw,T − Lqn

1

T
1µn,T

Jw = Lwq1(
1

T
)− Lww

1

T
1µw,T − Lwn

1

T
1µn,T

Jn = Lnq1(
1

T
)− Lnw

1

T
1µw,T − Lnn

1

T
1µn,T (44)

and

J′q = Lqq1

(

1

T

)

− Lqp
1

T
1p+ Lqd

ρn

T
1µc

n

JV = Lpq1

(

1

T

)

− Lpp
1

T
1p+ Lpd

ρn

T
1µc

n

υD = Ldq1

(

1

T

)

− Ldp
1

T
1p+ Ldd

ρn

T
1µc

d (45)

Here Lij ≡ lij/l and l is the length of the REV, and the driving
forces are defined by Equations (35, 38).

The coefficients may become dependent on the force through
the integration as shown by Sinha et al. [27]. The averaging
procedure gave the conductivity as a function of (1p̄ - 1pc) in
the terminology of this paper. In the remainder of this work we
will discuss experimental conditions that allow us to determine
these coefficients. The presentation follows closely the derivation
of Stavermann [28] and Katchalsky et al. [29]. For transport in
discrete systems with polymermembranes, see also [30].We refer
to these works for further definitions of transport coefficients.

5.2. Constitutive Equation for Isothermal,
Single Fluid
For an isothermal single fluidw, flowing inside a porousmedium,
the entropy production 45 has one term; the volume flow
times the negative pressure difference over the temperature. By
including the constant temperature in the transport coefficient,

we obtain the common linear law. With the permeability Lp, we
write

JV = −Lp1p (46)

where Lp ≡ Lpp/T. The permeability is normally a function
of state variables (pressure, temperature). In the hydrodynamic
regime it is a function of viscosity, Lp = Lp(p,T, η). By
introducing the new expression for the pressure, Equation (22),
we obtain

JV = −LVV

(

1pw −
2

r̄
1γ wr

)

(47)

When the permeability and porosity are constant, LVV ≡

Lpφ. The equation predicts a threshold value for flow if there
is a (significant) change in the surface tension across the
REV. Transport will take place, when 1pw > 21γ wr/r̄. The
permeability LVV is inversely proportional to the viscosity η of
the fluid in the hydrodynamic regime. Interestingly, Boersma
et al. [8] and Miller et al. [7] plotted the volume flow vs. the
hydrostatic pressure difference 1pw and found a deviation from
Darcy’s law in the form of a pressure threshold, for water or
water solutions in clay. They offered no explanation for this.
Also Bernadiner et al. [9] and Swartzendruber [6] plotted the
volume flow of water solution JV vs. the pressure gradient in
sandstone with low clay content [9], and in NaCl-saturated Utah
bentonite [6]. The thresholds that they observed depended on the
content of salt in the permeating solution. They explained the
thresholds by water adsorption and pore clogging by colloids [9].
According to Equation (47), a varying surface tension (due to a
varying adsorption and clogging) might explain the existence of
a threshold or a non-linear flux-force relation. There is no reason
to believe that the non-linear flux-force relation is not caused by
creation of system disorder, as was shown analytically for a tube
[27] and in Sinha and Hansen [12] for a porous medium.

5.3. Constitutive Equations for Isothermal,
Two-Phase Fluids
The entropy production in Equation (29) has two terms when
two immiscible components flow at isothermal conditions. We
choose the formulation that has variables JV and υD; volume flux
and interdiffusion flux, respectively. Equation (45) gives then:

JV = −Lpp1p+ Lpd
(

ρn1µc
n

)

υD = −Ldp1p+ Ldd
(

ρn1µc
n

)

(48)

where L′ij ≡ Lij/T. The coefficients reflect, as above, the

mechanism of flow (pressure, diffusion). Four experiments can
be done to determine the four coefficients. There are only three
independent coefficients. When four experiments are done, we
can check the Onsager relations.

5.3.1. Main Coefficient: The Hydraulic Permeability
The (hydraulic) permeability K is related to the mobility
coefficient Lpp, by Lpp = K/η where η is the fluid viscosity.
Both coefficients are measured at uniform composition. By
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introducing the driving force for the volume flow from Equation
(38), we obtain [the last term on Equation (48)] is zero:

JV = −Lpp1p = −Lpp1(p̄− p̄c) (49)

With the present definition of variables the equation applies to
the overall behavior of the system. A plot of JV vs. 1p̄ may
show a threshold. This threshold has more contributions than
in the single component system, as there are contributions to
the pressure from surface and line energies. A threshold may be
detectable at low capillary numbers.

The hydraulic permeability, is found bymeasuring the volume
flow caused by the overall pressure difference at uniform
composition;

K = −η

(

JV

1p

)

dµc
n=0

(50)

The mobility is a function of the saturation, Lpp =

Lpp(p,T, η, Ŝw). In the hydrodynamic regime, the coefficient can
be modeled, assuming Poiseuille flow and the effective viscosity
ηeff = ηwŜ

w + ηnŜ
n [27]. Using a pore model, Sinha et al.

[27] found a dependence of the coefficient Lpp on the threshold
pressure. This non-linearity does not prevent the use of non-
equilibrium thermodynamics.

5.3.2. Main Coefficient: The Interdiffusion Coefficient
The main coefficient Ldd is an interdiffusion coefficient. It is
defined at uniform pressure from the difference flux created by
a difference in saturation;

Ldd =

(

υD

ρn1µc
n

)

1p=0

=
Wn

φRTρ0
n

(

υD

1Ŝn

)

1p=0

(51)

where we used Equation (35) for the driving force.

5.3.3. The Two Coupling Coefficients
The coupling coefficients in Equations (48) express that a
separation of components can be caused by a pressure gradient
(Ldp) and that a volume flow can be promoted by a gradient in
saturation (Lpd).

Consider first the determination of Ldp. A pressure gradient
may build as a consequence of a difference in composition [30].
The volume flux continues until a balance of forces is reached:

1p =
Lpd

Lpp
ρn1µc

n (52)

From the force-balance across the system, we obtain:

(

1p

1Ŝn

)

JV=0

=
Lpd

Lpp
φ

ρ0
nRT

Wn
(53)

This condition can be used to find the unknown coupling
coefficient, once the hydraulic permeability is known.

The remaining coupling coefficient can be found from the flux
ratio, r, that has been called the reflection coefficient r, see also
[30]. At constant saturation, we have

r = −

(

υD

JV

)

1µc
n=0

= −
Ldp

Lpp
(54)

We are now in a position to compare Lpd and Ldp and
verify the Onsager relations. The state of the system must be
(approximately) the same, when the comparison is made.

5.4. Constitutive Equations for
Non-isothermal, Two-Phase Fluids
The full set of equations given in Equation (45) must be used to
describe non-isothermal flow in porous media. The coefficients,
Lpp, Lpd = Ldp, Ldd in the lower right-hand side corner of the
conductivity matrix, were discussed above. The new coefficients
are those related to heat transport. The coefficient Lqq represents
the Fourier type heat conductivity at uniform composition and
pressure. The coefficients Lpq and Ldq are coupling coefficients.

Non-zero coefficients Lpq and Ldq mean that we can obtain
separation in a temperature gradient. Injection of cold water
into warm reservoirs may thus lead to separation. Likewise, a
pressure difference can arise from a temperature difference. This
is thermal osmosis [14].

Separation caused by a thermal driving force was observed
in clay-containing soils where water was transported in clay
capillaries against a pressure gradient. The coefficient, measured
at constant pressure, was called the segregation potential [31].
The coefficient Lpq can be obtained from Equation (45), setting

1p = 0 and 1µc
n = 0 (1Ŝn=0) in the second line. We obtain

(

JV

1T

)

1p=0,1µc
n=0

= −
1

T2
Lpq (55)

This coefficient can also be found from steady state conditions,
when the thermal gradient is balanced by a gradient in saturation
(chemical potential)

Lpq
1

T2
1T = Lpdρn1µc

n = Lpdφ
RTρ0

n

Wn
1Ŝn

(

1Ŝn

1T

)

υD=0

=
Wn

RT3ρ0
n

Lpq

Lpd
(56)

This determination of Lpq requires knowledge of Lpd.
Alternatively, we may obtain the coefficient from the thermal
osmosis experiment

(

1p

1T

)

JV=0,1µc
n=0

= −
1

T

Lpq

Lpp
(57)

The coupling coefficient Lqp can also be found by measuring
the heat flux that accompanies the volume flux for constant
composition and at isothermal conditions.

(

J′q

JV

)

1T=0,1µc
n=0

=
Lqp

Lpp
(58)

These interrelated effects are well-known in homogeneous media
[14], but have to the best of our knowledge, not been measured
for porous media with two-phase flow.
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6. DISCUSSION AND CONCLUSION

We have further developed a new coarse-grained formulation of
the entropy production [1] for porous media, and specified the
constitutive equations for flow of two immiscible fluids under
uniform or varying temperature, pressure and composition.
Several of the equations are new in the context of porous
media, but they follow well-documented tracks in classical
non-equilibrium thermodynamics [1, 28–30]. Experimental
observations exist on single fluid flow, that give support to the
theoretical description.

We have given a new definition of the pressure of the
representative elementary volume (REV), and used it to obtain
the pressure part of the driving force. The force obtains
contributions from homogeneous phases, surfaces—and, in
principle also line—tensions of the system. This distinguishes
the present formulation from their counterpart for homogeneous
systems [1, 28–30].

We have seen that surface contributions can be spelled out
for varying conditions, under the assumption that the additive
properties of the REV are Euler homogeneous of the first order.
Doing this, we have been able to explain for instance deviations
from Darcy’s law, or the occurrence of threshold pressures
in plots of flow vs pressure difference. We have pointed at
possibilities to describe non-isothermal phenomena.

As for instance sections 5.1–5.3 show, there is a multitude
of scenarios that can be further investigated, and used to check
the theory. The expressions open up the possibility to test the
thermodynamic models in use, for their compatibility with the
second law.

The basic assumption used is that the REV set of basis
variables are Euler homogeneous functions of degree one. This
means in essence that one temperature, one pressure and one
chemical potential per component can be defined for the REV.
Some evidence already supports the idea that the REV is a
thermodynamic state [4], [5], originally proposed by Hansen and
Ramstad [3] and Tallakstad et al. [11]. We did neither consider
surface areas, nor their curvature or the contact line length as
independent variables, but these may be included, cf.[21].

We have illustrated relations for some specific cases; the non-
isothermal flow of one or two immiscible single fluids in a non-
deformable medium. It is straight forward to include more terms
in the chemical potential (e.g. gravity). To include stress fields or
other fields that deform the porous medium is more problematic,
and has been postponed.

Flow of two isothermal, immiscible fluids in a porous medium
has often been described by Darcy’s law, using the relative
permeability concept. The seepage velocities vn and vw are related
to fluxes used here by vn = JnVn and vw = JwVw. The
expressions for the seepage velocities must be contained or be
equivalent to the expressions given here, using the condition
of invariance for the entropy production. A comparison can
elucidate assumptions that are made. Hilfer and Standnes et al.
[32, 33] gave a set of linear relations for the seepage velocities.
Their driving forces were the gradients in the single component
pressures, obtained by pressure measurements in the single
phases. Their description implies e.g., that the composition is
uniform.

We have seen through these examples how non-equilibrium
thermodynamic theory can provide a fundamental basis for
constitutive equations, also in porous media. For systems
that obey entropy production invariance and Onsager
symmetry, we have obtained relations between variables,
which have been used to a limited degree for two-phase
systems.
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APPENDIX

Symbol Lists

TABLE A1 | Mathematical symbols, superscripts, subscripts.

Symbol Explanation

c Superscript meaning capillary pressure

d Differential

∂ Partial derivative

1 Change in a quantity or variable

1f ,t The change is taken from f on the right

to t On the left hand side

6 Sum

i Subscript meaning component i

m Number of fluids

n Subscript meaning non-wetting fluid

w Subscript meaning wetting fluid

p Superscript meaning pore

REV Abbreviation meaning representative elementary volume

r Superscript meaning rock, solid matrix of medium

s Superscript meaning interface

u Subscript meaning internal energy

α,β Superscripts meaning surface between phases α and β

α,β, δ Superscripts meaning contact line between phases α,β, δ

θ Contact angle, average

TABLE A2 | latin symbols

Symbol Dimension Explanation

G J Gibbs energy

M kg Mass

d m Pore length

Hi J.kg−1 Partial specific enthalpy of i

J kg.s−1.m−2 Mass flux

J′q J.s−1.m−2 Sensible heat flux

l m Characteristic length of representative

elementary volume

L m Characteristic length of experimental

system

Lij Onsager conductivity

p Pa Pressure of REV

r̄ m Average pore radius

S J.K−1 Entropy

s J.K−1.m−3 Entropy density

Si J kg−1.K−1 Partial specific entropy of i

Ŝi Degree of saturation of i, ≡ Vi/V

T K Temperature

t s Time

U J Internal energy

u J.m−3 Internal energy density

V m3 Volume

Vi m3.kg−1 Partial specific volume

x m Axis of transport

Wi kg.mol−1 Molar mass of i

TABLE A3 | greek symbols, continued

Symbol Dimension Explanation

α Superscripts meaning a phase

β Superscript meaning an interface

δ Superscript meaning a contact line

φ Porosity of porous medium

γ N.m−1 Surface tension

µi J.kg−1 Chemical potential of i

ρi kg.m−3 Density, ≡ Mi/Vi

σ J.s−1.K−1.m−3 Entropy production in a homogeneous

phase

� m2 Surface or interface area
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Pressures Inside a Nano-Porous
Medium. The Case of a Single Phase
Fluid
Olav Galteland*, Dick Bedeaux, Bjørn Hafskjold and Signe Kjelstrup

PoreLab, Department of Chemistry, Norwegian University of Science and Technology, Trondheim, Norway

We define the pressure of a porous medium in terms of the grand potential and

compute its value in a nano-confined or nano-porous medium, meaning a medium

where thermodynamic equations need be adjusted for smallness. On the nano-scale,

the pressure depends in a crucial way on the size and shape of the pores. According

to Hill [1], two pressures are needed to characterize this situation; the integral pressure

and the differential pressure. Using Hill’s formalism for a nano-porous medium, we derive

an expression for the difference between the integral and the differential pressures in a

spherical phase α of radius R, p̂α − pα = γ /R. We recover the law of Young-Laplace

for the differential pressure difference across the same curved surface. We discuss the

definition of a representative volume element for the nano-porous medium and show that

the smallest REV is a unit cell in the direction of the pore in the fcc lattice. We also show,

for the first time, how the pressure profile through a nano-porous medium can be defined

and computed away from equilibrium.

Keywords: nano-porous media, thermodynamics of small systems, representative elementary volume, single

phase fluid, molecular dynamics simulations

1. INTRODUCTION

The description of transport processes in porous media poses many challenges that are well
described in the literature (see e.g., [2–6]). There is, for instance, no consensus, neither on the
definition nor on the measurement or the calculation, of the pressure in a porous medium with
flow of immiscible fluids. The problem with the ill-defined microscopic pressure tensor [5, 7] is
accentuated in a heterogeneous system with interfaces between solids and fluids. In a homogeneous
fluid phase one may define and calculate a pressure and a pressure gradient from the equation of
state. In a porous medium the presence of curved surfaces and fluid confinements makes it difficult
to apply accepted methods for calculation of the microscopic pressure tensor and, consequently,
the pressure gradient as driving force for fluid flow. The scale at which we choose to work will be
decisive for the answer. Moreover, the scale that the hydrodynamic equations of transport refer to,
remains to be given for nano-porous as well as micro-porous media.

A central element in the derivation of the equations of transport on the macro-scale is the
definition of a representative elementary volume (REV) (see e.g., [8, 9]). The size of the REV
should be large compared to the pore size and small compared to size of the porous medium. It
should contain a statistically representative collection of pores. We have recently discussed [10]
a new scheme to define a basis set of additive variables: the internal energy, entropy, and masses
of all the components of the REV. These variables are additive in the sense that they are sums of
contributions of all phases, interfaces and contact lines within the REV. Using Euler homogeneity
of the first kind, we were able to derive the Gibbs equation for the REV. This equation defines
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the temperature, pressure and chemical potentials of the REV as
partial derivatives of the internal energy of the REV [10].

As discussed in Kjelstrup et al. [11] the grand potential, ϒ ,
of the REV is given by minus kBT times the logarithm of the
grand partition function, Zg, where kB is Boltzmann’s constant
and T is the temperature. The grand potential is equal to minus
the contribution to the internal energy from the pressure-volume
term, kBT lnZg = ϒ = −pV , which we will from now on refer
to as the compressional energy. For a single fluid f in a porous
medium r, the result was [10, 11]

pV = pfV f + prVr − γ fr�fr , (1)

where p and V are the pressure and the volume of the REV.
Furthermore pf and V f are the pressure and the volume of the
fluid in the REV, pr and Vr are the pressure and the volume in
the grains in the REV, and γ fr and �fr are the surface tension and
the surface area between the fluid and the grain. The assumption
behind the expression was the additive nature of the grand
potential. This definition of the REV, and the expression for the
grand potential, opens up a possibility to define the pressure on
the hydrodynamic scale. The aim of this work is to explore this
possibility. We shall find that it will work very well for flow of
a single fluid in a porous medium. As a non-limiting illustrative
example, we use grains positioned in a fcc lattice. The work can
be seen as a continuation of our earlier works [10, 11].

The work so far considered transport processes in micro-
porous, not nano-porous media. In micro-porous media, the
pressure of any phase (the surface tension of any interface) is
independent of the volume of the phase (the area between the
phases). This was crucial for the validity of equation 1. For
nano-porous systems, we need to step away from Equation (1).
Following Hill’s procedure for small systems’ thermodynamics
[1], we generalize Equation (1) to provide an expression for the
thermodynamic pressure in a nano-porous medium.We shall see
that not only one, but two pressures are needed to handle the
additional complications that arise at the nano-scale; the impact
of confinement and of radii of curvature of the interfaces. In the
thermodynamic limit, the approach presented for the nano-scale
must simplify to the one for the macro-scale. We shall see that
this is so. In order to work with controlled conditions, we will first
investigate the pressure of a fluid around a single solid nano-scale
grain and next around a lattice of solid nano-scale grains. The
new expression, which we propose as a definition of the pressure
in a nano-porous medium, will be investigated for viability and
validity for this case. The present work can be seen as a first step in
the direction toward a definition and use of pressure and pressure
gradients in real porous media.

The pressure is not uniquely defined at molecular scale. This
lack of uniqueness becomes apparent in molecular dynamics
(MD) simulations, for which the computational algorithm has to
be carefully designed [7]. The predominant method for pressure
calculations in particular systems is using the Irving-Kirkwood
contour for the force between two particles [12]. This algorithm
works for homogeneous systems, but special care must be taken
for heterogeneous systems [5, 6]. However, if the control volume
(REV) used for pressure calculation is large compared with the

heterogeneity length scale, one may argue that the algorithm for
homogeneous systems gives a good approximation to the true
result. We are interested in the isotropic pressure averaged over
the REV, on a scale where the porous medium can be considered
to be homogeneous.

The paper is organized as follows. In section 2 we derive
the pressure of a REV for one solid grain surrounded by fluid
particles (Case I) and for a three-dimensional face-centered
cubic (fcc) lattice of solid grains (Case II). Section 3 describes
the molecular dynamics simulation technique when the system
is in equilibrium and in a pressure gradient. In section 4 we
use the theory to interpret results of equilibrium molecular
dynamics simulations for one solid grain and for an array of
solid grains in a fluid. Finally we apply the results to describe
the system under a pressure gradient. We conclude in the last
section that the expressions and the procedure developed provide
a viable definition of the pressures and pressure gradients in
nano-porous media.

2. THE PRESSURE OF A NANO-POROUS
MEDIUM

Equation (1) applies to a micro-porous medium, a medium
where the pore-size is in the micrometer range or larger
[10, 11]. For a nano-porous medium we need to apply the
thermodynamics of small systems [1]. In nano-porous media,
this technique is therefore well suited for the investigation.
The thermodynamic properties like internal energy, entropy and
masses of components of a small system are not proportional to
the system’s volume. As Hill explained, this leads to the definition
of two different pressures, for which he introduced the names
integral and differential pressure, p̂ and p, respectively. For a
system with a volume V , these pressures are related by

p(V) =
∂

(

p̂ (V)V
)

∂V
= p̂ (V) + V

∂
(

p̂ (V)
)

∂V
. (2)

The symbol p (the differential pressure) is given to the variable
that we normally understand as the pressure on the macroscopic
level. It is only when p̂ depends on V , that the two pressures are
different. For large systems, p̂ does not depend on V and the two
pressures are the same.

The integral and differential pressures connect to different
types of mechanical work on an ensemble of small systems. The
differential pressure times the change of the small system volume
is the work done on the surroundings by this volume change. The
name differential derives from the use of a differential volume.
This work is the same, whether the system is large or small. The
integral pressure times the volume per replica, however, is the
work done by adding one small system of constant volume to the
remaining ones, keeping the temperature constant. This work is
special for small systems. It derives from an ensemble view, but
is equally well measurable. The word integral derives from the
addition of a small system.

From statistical mechanics of macro-scale systems, we know
that pV equals kBT times the natural logarithm of the grand-
canonical partition function. For a small (nano-sized) system,
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Hill ([1], Equations 1–17), showed that this logarithm gives
p̂V . In nano-porous media this product is different from
pV , cf. Equation (1). Energies are still additive and the total
compressional energy within the small system is similar to
Equation (1). We replace Equation (1) by:

p̂V = p̂fV f + p̂rVr − γ̂ fr�fr , (3)

where p̂f , p̂r are integral pressures of the sub-volumesV f andVr ,
and γ̂ fr is the integral surface tension.

We consider here a nano-porous medium, so integral
pressures and integral surface tensions apply. The integral
pressure and integral surface tension normally depend on the
system size. In the porous medium there are two characteristic
sizes: the size of a grain and the distance between the surfaces
of two grains1. The quantities p̂, p̂f , p̂r and γ̂ fr may depend on
both. We shall here examine a system (cf. section 3) of spherical,
monodisperse grains, for which the radius R is a good measure
of the size. The volume of the grains may be a good alternative
measure, which we will also use. The dependence on the grain
size and on the distance between the surfaces of the grains will be
studied in an effort to establish Equation (3).

In the following, we consider a single spherical grain confined
by a single phase fluid (Case I) and a face-centered cubic (fcc)
lattice of spherical grains confined by a single phase fluid (Case
II). The size of the REV does not need to be large, and we will
show in section 4.2 that the smallest REV is a unit cell in the
direction of the pore in the fcc lattice.

2.1. Case I. Single Spherical Grain
Consider the inclusion of a spherical grain r in a box with fluid
phase f . This is system A in Figure 1. Phase f has volume V f

and phase r has volume Vr . The total volume is V = V f + Vr .
The surface area between phase f and r is�fr . The compressional
energy of system A has contributions, in principle, from all its
small parts

p̂AV = p̂fV f + p̂rVr − γ̂ fr�fr (4)

where p̂A is the unknown pressure in Equation (3). There is a hat
on the pressures and the surface tension, in the outset, because
the system is small. The pressure of the fluid in A is, however,
pf , meaning that p̂f = pf . When the surface tension depends
on the curvature, there is a dependence of γ̂ fr on �fr [13, 14].
This interesting effect, which we will not consider here, becomes
relevant as the grain size decreases. Only p̂r depends on the
volume of the phase, Vr . This gives

p̂AV = pfV f + p̂rVr − γ fr�fr (5)

We now introduce a system B in contact with A. System B
has volume V, contains pure fluid, and is tuned so that it is in
thermodynamic equilibrium with A. The equilibrium condition
requires that their grand canonical partition functions are equal,

1Another valid characteristic size is the size of the pores between the grains, but

this follows from the two we have chosen.

FIGURE 1 | A particle in a confined system (A) in equilibrium with a bulk fluid

phase (B).

which implies p̂AV = p̂BV , and with equal volumes this means
p̂A = p̂B. Furthermore, system B is not a small system in Hill’s
sense, which leads to:

p̂A = p̂B = pB = pf (6)

The fluid pressure pf is the same in phases A and B. We obtain

pfV = pfV f + p̂rVr − γ fr�fr , (7)

and by rearranging the terms,

p̂r = pf +
γ fr�fr

Vr
= pf +

3γ fr

R
. (8)

where we have used thatVr+V f = V and �fr

Vr = 3
R for a spherical

phase r.
The pressure of the rock particle depends on the volume of the

particle. The relation of the two pressures is according to Hill

pr =
∂(p̂rVr)

∂Vr
(9)

When this is combined with the equation right above, we find the
relation we are after

pr − pf =
2γ

R
, (10)

which is the familiar Young-Laplace’s law. By subtracting
Equation (10) from Equation (8), we obtain an interesting
new relation

p̂r − pr =
γ fr

R
(11)

The expression relates the integral and differential pressure
for a spherical phase r of radius R. It is clear that this pressure
difference is almost equally sensitive to the radius of curvature as
is the pressure difference in Young-Laplace’s law.

We see from this example how the integral pressure enters the
description of small systems. The integral pressure is not equal
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to our normal bulk pressure, called the differential pressure by
Hill, p̂r 6= pr . While two differential pressures satisfy Young-
Laplace’s law in Equation (10), the integral pressures do not. The
integral pressure has the property that when averaged over system
A using Equation (4), it is the same as in system B, cf. Equation
(6). This analysis shows that system A is a possible, or as we shall
see proper, choice of a REV that contains the solid grain, while
system B is a possible choice of a REV that contains only fluid.

2.2. Case II. Lattice of Spherical Grains
The above explanation concerned a single spherical grain and was
a first step in the development of a procedure to determine the
pressure of a nano-porous medium. To create a more realistic
model, we introduce now a lattice of spherical grains. The integral
pressure of a REV containing n grains is given by an extension of
Equation (3)

p̂AV = pfV f +

n
∑

i=1

p̂riV
r
i −

n
∑

i=1

γ̂
fr
i �

fr
i , (12)

For each grain onemay follow the same derivation for the integral
and differential pressure as for the single grain. By using Equation
(8), we obtain

p̂ri = pf + γ
fr
i

�
fr
i

Vr
i

= pf +
3γ

fr
i

Ri
, (13)

where the last identity applies to spherical grains only. The
differential pressure of the grains is given by a generalization of
Equation (10)

pri =
∂(p̂riV

r
i )

∂Vr
i

=
∂(pfVr

i )

∂Vr
i

+ γ
fr
i

∂�
fr
i

∂Vr
i

= pf + γ
fr
i

∂�
fr
i

∂Vr
i

= pf +
2γ

fr
i

Ri
, (14)

where the last identity is only for spherical grains. The differential
pressures again satisfy Young-Laplace’s law at equilibrium.

When all grains are identical spheres and positioned
on a fcc lattice, a properly chosen layer covering
half the unit cell can be a proper choice of the
REV. We shall see how this can be understood
in more detail from the molecular dynamics
simulations below. The REV is larger if the material
is amorphous.

3. MOLECULAR DYNAMICS SIMULATIONS

Cases I and II were simulated at equilibrium, while
case II was simulated also away from equilibrium.
Figures 3–8 illustrate the equilibrium simulations of the
two cases.

3.1. Systems
The simulation box was three-dimensional with side lengths
Lx, Ly, Lz .The box was elongated in the x-direction, Lx >

Ly = Lz . Periodic boundary conditions were used in all
directions in the equilibrium simulations. In the non-equilibrium
simulation, reflecting particle boundaries [15] were applied to
the x-direction, cf. section 3.5. Along the x-axis, the simulation
box was divided into n rectangular cuboids (called layers)
of size 1x, Ly, Lz , where 1x = Lx/n. The volume of each
layer is Vl = 1xLyLz . There are two regions A and B in
the simulation box. Region A contains fluid (red particles)
and grains (blue particles) and region B contains only fluid,
see Figure 2. The regions, B = B1 + B2 and A do not
have the same size, but the layers have the same thickness,
1x. The compressional energy of the fluid in one layer is,

p̂
f

l
V
f

l
= plV

f

l
.

The simulation was carried out with LAMMPS [16] in the
canonical ensemble using the Nosé-Hoover thermostat [17], at
constant temperature T∗ = 2.0 (in Lennard-Jones units). The
critical temperature for the Lennard-Jones/spline potential (LJ/s)
is approximately T∗

c ≈ 0.9. Fluid densities range from ρ∗ = 0.01
to ρ∗ = 0.7.

3.2. Case Studies
In case I the single spherical grain was placed in the center of
the box. A periodic image of the spherical grain is a distance
Lx, Ly and Lz away in the x, y and z-directions, see Figure 4A.
The surface to surface distance of the spherical grains is d =

Lα − 2R, where R is the radius of the grain, and α = y, z.
In case I, each spherical grain has four nearest neighbors in
the periodic lattice that is built when we use periodic boundary
conditions. We considered two nearest neighbor distances;
d = 4σ0 and d = 11σ0, where σ0 is the diameter of the
fluid particles.

In case II, the spherical grains were placed in a fcc lattice
with lattice constant a. The two shortest distances between the
surfaces were characterized by d1 = 1

2 (
√
2a − 4R) and d2 =

a − 2R, see Figure 2, where d1 < d2. We used d1 = 4.14σ0
and d1 = 11.21σ0, which is almost the same as the distances
considered in case I. The corresponding other distances were
d2 = 10σ0 and d2 = 20σ0. Each grain has 12 nearest neighbors
at a distance d1.

FIGURE 2 | A slice of the simulation box in case II. The box has side lengths

Lx , Ly , Lz , and properties are calculated along the x-axis in layers l of width

1x. Blue particles are grain r and red particles are fluid f . The A is the lattice

constant of the fcc lattice, d1 and d2 are the two shortest surface-to-surface

distances.
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In all cases we computed the volume of the grains Vr
l
, the

surface area �
fr

l
and the compressional energy of each layer, l,

in the x-direction.

3.3. Particle Interaction Potential
The particles interact with the Lennard-Jones/spline potential,

uij(r) =



























∞ if r < Rij

4ǫij

[

(

σij−Rij
r−Rij

)12
−

(

σij−Rij
r−Rij

)6
]

if Rij < r < rs,ij

aij(r − rc,ij)
2 + bij(r − rc,ij)

3 if rs < r < rc,ij

0 if r > rc,ij

.

(15)
Each particle type has a hard-core diameter Rii and a soft-core

diameter σii. There were two types of particles, small particles
with σff = σ0, Rff = 0 and large particles with σrr = 10σ0, Rrr =
9σ0. The small particles are the fluid (f ), and the large particles
are the grain (r). The hard-core and soft-core diameters for
fluid-grain pairs are given by the Lorentz mixing rule

Rfr =
1

2

(

Rff + Rrr
)

and σfr =
1

2

(

σff + σrr
)

. (16)

We define the radius of the grain particles as R ≡ (σff + σrr)/2 =

5.5σ0, which is the distance from the grain center where the
potential energy is zero. Fluid particles can occupy a position
closer to the grain than this, this is illustrated in Figure 3.
The figure shows the radial distribution function, g(r), of fluid
particles around a single spherical grain. The density of fluid
varied between ρ∗ = 0.1 and ρ∗ = 0.7. This shows that the
average distance from the grain particle and the closest fluid
particle is approximately 5.5σ0, but the fluid particles are able to
occupy positions closer to the grain particle.

The interaction strength ǫij was set to ǫ0 for all particle-
particle pairs. The potential and its derivative are continuous in
r = rc,ij. The parameters aij, bij and rs,ij were determined so that

FIGURE 3 | The radial distribution function of fluid particles around a grain, as

shown in Figure 4. Results are shown for densities that vary between

ρ∗ = 0.1 and ρ∗ = 0.7.

the potential and the derivative of the potential (the force) are
continuous at r = rs,ij.

3.4. Pressure Computations
The contribution of the fluid to the grand potential of layer l
is [12]

p
f

l
V
f

l
=

1

3

〈

∑

i∈l

mi(vi · vi)

〉

−
1

6

〈

∑

i∈l

N
∑

j=1

(rij · fij)

〉

, (17)

where p
f

l
is the fluid differential pressure, V

f

l
the fluid volume,mi

and vi are the mass and velocity of fluid particle i. The first two
sums are over all fluid particles i in layer l, while the second sum is
over all other particles j. Half of the virial contribution, the second
term in Equation (17), is assigned to particle i and the other half
to particle j. The virial contribution assigned to the solid particles
are not included. rij ≡ ri − rj is the vector connecting particle i
and j, and fij = −∂uij/∂rij is the force between them. The ·means

an inner product of the vectors. The computation gives p̂
f

l
, which

is the contribution to the integral pressure in layer l from the fluid
particles, accounting for their interaction with the grain particles.

3.5. The Porous Medium in a Pressure
Gradient
We used the reflecting particle boundary method developed by Li
et al. [15] to generate a pressure difference across the system along
the x-axis. Particles moving from right to left pass the periodic
boundary at x = 0 and x = Lx with probability

(

1− αp

)

and
reflected with probability αp, whereas particles moving from left
to right pass freely through the boundary. A large αp gives a high
pressure difference and a low αp gives a low pressure difference.

4. RESULTS AND DISCUSSION

The results of the molecular dynamics simulations are shown
in Figures 4–8 (equilibrium) and Figures 9, 10 (away from
equilibrium). The porous medium structure was characterized
by its pair correlation function, cf. Figure 3. The compressional
energy was computed according to equation 4 in case I with a
single spherical grain and case II with a lattice of spherical grains.

We computed the compressional energy, plVl, in the bulk
liquid (region B) and in the nano-porous medium (region A).
In the bulk liquid we computed the pressure directly from the

compressional energy, because plVl = p
f

l
V
f

l
(not shown).

Figures 4, 6 show the various contributions to the
compressional energy, cf. equation 4. The grain particles
were identical and the system was in equilibrium, so the
integral pressure in the grains was everywhere the same,
p̂r
l

= p̂r . Similarly, the surface tension was everywhere the

same, γ
fr

l
= γ fr .

The grain pressure p̂r and surface tension γ fr were fitted such
that the pressure is everywhere the same and are plotted as a
function of the fluid pressure pf . The results for case II were next
used in Figures 9, 10 to determine the pressure gradient across
the sequence of REVs in the porous medium.
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FIGURE 4 | (A) Illustration of case I, a single spherical grain surrounded by a

fluid phase with d = 4σ0. (B) Volume of grain, Vr , (C) surface area �fr and (D)

compressional energy pV as a function of the x-axis of the simulation box.

4.1. Case I. Single Spherical Grain.
Equilibrium
The single sphere case is illustrated in Figure 4A. Figures 4B,C
show the variation in the volume of the porous medium (rock),
Vr
l
, and the surface area between the rock and the fluid, �fr ,

along the x-axis of the simulation box. The two quantities were
determined for all layers, l, and these results were used in the plots
of Figures 4B,C. To be representative, the REV must include the
solid sphere with boundaries left and right of the sphere. In order
to obtain pREVVREV we summed plVl over all the layers in the
REV. At equilibrium, pREV = p, where p is the pressure in the
fluid in region B. For the REV we then have

pVREV =
∑

l∈REV

p
f

l
V
f

l
+ p̂r

∑

l∈REV

Vr
l − γ fr

∑

l∈REV

�
fr

l
, (18)

where we used that p̂r
l
= p̂r and γ

fr

l
= γ fr . We know the values of

all the elements in this equation, except p̂r and γ fr . The values of
p̂r and γ fr are fitted such that the pressure, p in Equation (18)
is everywhere the same. With these fitted values available, we
calculated plVl of each layer from

plVl = p
f

l
V
f

l
+ p̂rVr

l − γ fr�
fr

l
. (19)

The contributions to the compressional energy in this equation
for case I are shown in the bottom Figure 4D. We see the

contribution from (1) the bulk fluid p
f

l
V
f

l
, (2) the bulk fluid

and grain p
f

l
V
f

l
+ p̂rVr

l
and (3) the total compressional energy,

plVl = p
f

l
V
f

l
+ p̂rVr

l
− γ fr�fr , which gives the pressure of the

REV when summed and divided with the volume of the REV.
Figure 4D shows clearly that the bulk pressure energy gives

the largest contribution, as one would expect. It is also clear that
the surface energy is significant. As the surface to volume ratio
increases, the bulk contributions may become smaller than the
surface contribution (not shown). In the present case, this will
happen when the radius of the sphere is 2.25σ0. For our grains
with R = 5.5σ0, this does not happen.

The plots of p̂r and γ fr as functions of p in region B are shown
in Figure 5. The values for d = 4σ0 and d = 11σ0 are given in
the same plots. We see that the plots fall on top of each other.
This shows that the integral pressure and the surface tension
are independent of the distance d in the interval considered. If
confinement effects were essential, we would expect that p̂r and
γ fr were functions of the distance d between the surfaces of the
spheres. When the value of d decreases below 4σ0, deviations
may arise, for instance due to contributions from the disjoining
pressure. Such a contribution is expected to vary with the surface
area, and increase as the distance between interfaces become
shorter. In plots like Figure 5, we may see this as a decrease in
the surface tension.

4.2. Case II. Lattice of Spherical Grains.
Equilibrium
Consider next the lattice of spherical grains, illustrated in
Figure 6A. Figures 6B,C give the variation in the volume of the
porous medium Vr

l
and surface area, �fr , along the x-axis.

When the REV in region A is properly chosen, we know that
pREV = p. In equilibrium, the pressure of the REV is constant in
the bulk liquid phases, in regions B1 or B2, where p is the pressure
of the fluid in region B. In order to obtain pVREV in region A, we
sum plVl over all the layers that make up the REV, and obtain

pVREV =
∑

l∈REV

p
f

l
V
f

l
+ p̂r

∑

l∈REV

Vr
l − γ fr

∑

l∈REV

�
fr

l
, (20)

To proceed, we find first the values of all the elements in this
equation, except p̂r and γ fr . The values of p̂r and γ fr are fitted
such that the pressure is everywhere the same. Using these fitted
values, we next calculated p̂lVl of each layer using

plVl = p
f

l
V
f

l
+ p̂rVr

l − γ fr�
fr

l
(21)

The contributions to the compressional energy in this equation
are shown in three stages in Figure 6D: (1) bulk fluid

contribution p
f

l
V
f

l
, (2) bulk fluid and grain contribution

p
f

l
V
f

l
+ p̂rVr

l
and (3) the total compressional energy, plVl =

p
f

l
V
f

l
+ p̂rVr

l
− γ fr�fr . Figure 6D shows clearly that the bulk

contribution is largest, as is expected. However, the surface
energy is significant.

From Figure 6B it follows that a proper choice of the REV is a
unit cell, because all REVs are then identical, (except the REVs at
the boundaries). The integral over plVl in these REVs is the same
and equal to pVREV. The layers l are smaller than the REV and as
a consequence p̂lVl will vary, a variation that is seen in Figure 6D.
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FIGURE 5 | Fitted grain pressure p̂r and surface tension γ fr as a function of pressure p for a sphere (characteristic length d = 4σ0 and d = 11σ0).

FIGURE 6 | (A) Illustration of case II, a lattice spherical grain surrounded by a

fluid phase with a = 20σ0. (B) Volume of grain, Vr , (C) surface area �fr and

(D) compressional energy pV as a function of the x-axis of the simulation box.

The smallest REV is a unit cell.

The values for p̂r and γ fr are shown as a function of pf for case
II in Figure 7 for d1 = 4.14σ0 and d1 = 11.21σ0. We see now a
systematic difference between the values of p̂r and γ fr in the two
cases. The integral pressure and the surface tension increases as
the distance between the grains decreases. The difference in one
set can be estimated from the other. Say, for a difference in surface
tension1γ fr we obtain for the same fluid pressure from equation
11, a difference in integral pressure of 1p̂r = 31γ fr/R. This is
nearly what we find by comparing the lines in Figure 6, the lines
can be predicted from one another using R = 6.5σ0 while the
value in Figure 3 is R = 5.5σ0. The difference may be due to the
disjoining pressure. Its distribution is not spherically symmetric,
which may explain the difference between 6.5σ0 and 5.5σ0.

The results should be the same as for case I for the larger
distance, and indeed that is found, cf. Figure 8. As the distance

between the grain surfaces increases, we expect the dependence
on confinement to disappear, and this is documented by Figure 8
where the two cases are shown with distances d = 11σ0 and
d1 = 11.21σ0, respectively. The curves for the single grain and
lattice of grains overlap.

The knowledge gained above on the various pressures at
equilibrium is needed to construct the REV. The size of the REV
includes the complete range of potential interactions available in
the system, but not more. To find a REV-property, we need to
sample the whole space of possible interactions. The thickness of
the REV is larger than the layer thickness used in the simulations.

Our analysis therefore shows that the pressure inside grains
in a fcc lattice and the surface tension, depends in particular on
the distances between the surfaces of the spheres, including on
their periodic replicas. A procedure has been developed to find
the pressure of a REV, from information of the (equilibrium)
values of p̂r and γ fr as a function of pf . It has been documented
in particular for nano-porous medium, but is likely to hold for
other lattices, even amorphous materials when the REV can be
defined properly.

4.3. Case II. Lattice of Spherical Grains.
Non-equilibrium
Figure 9 illustrates the system in the pressure gradient, where
Figure 9B shows the compressional energy, pV , along the x-
axis. The dip in the pressure close to x = 0 is caused by the
reflecting particle boundary, cf. section 3.5. The reflecting particle
boundary introduces a surface between the high pressure on the
left side and the low pressure on the right side.

To show first how a REV-property is determined from the
layer-property, consider again the compressional energies of each
layer. In the analysis we used the fcc lattice with lattice parameter
a = 20σ0. The volume of the grain, Vr , and the surface area, �fr ,
varied of course in the exact same way as in Figures 6B,C. The
pressure gradient was generated as explained in section 3.5. The
pressure difference between the external reservoirs B1 and B2 was
large, giving a gradient with order of magnitude 1012 bar/m. The
fluid on the left side is liquid-like, while the fluid on the right
side is gas-like. The smallest REV as obtained in the analysis at
equilibrium is indicated in the figure.

In order to compute a REV variable away from equilibrium,
we therefore follow the procedure described by Kjelstrup et al.

Frontiers in Physics | www.frontiersin.org 7 April 2019 | Volume 7 | Article 60



Galteland et al. Pressures Inside a Nano-Porous Medium

FIGURE 7 | Fitted grain pressure p̂r and surface tension γ fr as a function of pressure p for the lattice of spheres (characteristic length d1 = 4.14σ0 and d1 = 11.21σ0).

FIGURE 8 | Fitted grain pressure p̂r and surface tension γ fr as a function of pressure p for the sphere (characteristic length d = 11σ0) and a lattice of spheres

(characteristic length d1 = 11.21σ0).

[10] and choose a layer as a reference point. We then compute
the average using five layers, two to the left, two to the right
and the central layer. Moving one layer down the gradient, we
repeat the procedure, and in this manner we obtain the property
variation on the REV scale. The results of the simulation gave, for
each individual layer, pl

l
V l
l
, as plotted in Figure 9B. The profile

created by the REV-centers is shown in Figure 10. We see a
smooth linear profile (central curve) as one would expect from
the boundary conditions that are imposed on the system. Some
traces of oscillation are still left in the separate contributions to
the total compressional energy.

We have seen that a nano-porous medium is characterized
by pressures in the fluid and the solid phases, as well as the
surface tension between the fluid and the solid. When one
reduces the size of a thermodynamic system to the nano-meter
size, the pressures and the surface tensions become dependent
on the size of the system. An important observation is then
that there are two relevant pressures rather than one. Hill [1]
called them the integral and the differential pressure, respectively.
It is maybe surprising that the simple virial expression works
so well for all pressure calculations in a fluid, but we have
found that it can be used. We will next be able to study
transport processes, where the external pressure difference is a
driving force. The method, to compute the mechanical force
intrinsic to the porous medium, may open interesting new
possibilities to study the effects that are characteristic for
porous media.

FIGURE 9 | (A) Illustration of case II in a pressure gradient. (B) Compressional

energy pV variation across the system.

In a macro-scale description, the so-called representative
elementary volume (REV) is essential. The REVmakes it possible
to obtain thermodynamic variables on this scale. We have here
discussed how the fact that the macro-scale pressure is constant
in equilibrium makes it possible to obtain the integral pressure
in the solid, as well as the surface tension, of the liquid-
solid contacts in the REV. An observation which confirms the
soundness of the procedure is that we recover Young-Laplace’s
law for the differential pressures. The existence of a REV for
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FIGURE 10 | Compressional energy pV variation across the system smoothed

over the representary elementary volume.

systems on the nano-scale supports the idea of a REV that can
be defined for pores also of micrometer dimension [10]. There is
no conflict between the levels of description as they merge in the
thermodynamic limit. The REV, as defined in the present work,
may allow us to develop a non-equilibrium thermodynamic
theory for the nano-scale.

5. CONCLUSIONS

The following conclusions can be drawn from the above studies

• We have obtained the first support for a new way to compute
the pressure in a nano-porous medium. The integral pressure
of themedium is defined by the grand potential. The definition
applies to the thermodynamic limit, as well as to systems which
are small, according to the definition of Hill [1].

• It follows that nano-porous media need two pressures in their
description, the integral and the differential pressure. This is
new knowledge in the context of nano-porous media.

• For a spherical rock particle of radius R, we derive a relation
between the integral and the differential pressure in terms
of the surface tension, p̂r − pr = γ /R. Their difference is
non-negligible in the cases where Young-Laplace’s law applies.

• We have constructed two models of a porous medium, case I
with a single spherical grain and case II with a fcc lattice of
spherical grains. The new method to compute the pressure

in these nano-porous mediums is not specific to these two
cases, it is general. The method can be used on, e.g., a random
distribution of spherical grains, but the REV will need to be

larger in order to include all possible microstates. The REV
needs in general to be larger as the heterogeneity of the porous
medium increases.

• To illustrate the concepts, we have constructed a system with
a single fluid. The rock pressure and the surface tension are
constant throughout the porous medium at equilibrium. The
assumptions were confirmed for a porosity change from φ =

0.74 to 0.92, for a REV with minimum size of a unit cell.
• From the assumption of local equilibrium, we can find the

pressure internal to a REV of the porous medium, under
non-equilibrium conditions, and a continuous variation in the
pressure on a macro-scale.

To obtain these conclusions, we have used molecular dynamics
simulations of a single spherical grain in a pore and then for
face-centered lattice of spherical grains in a pore. This tool is
irreplaceable in its ability to test assumptions made in the theory.
The simulations were used here to compute the integral rock
pressure and the surface tension, as well as the pressure of the
representative volume, and through this to develop a procedure
for porous media pressure calculations.

Only one fluid has been studied here. The situation is expected
to be more complicated with two-phase flow and an amorphous
medium. Nevertheless, we believe that this first step has given
useful information for the work to follow. We shall continue
to use the grand potential for the more complicated cases, in
work toward a non-equilibrium thermodynamic theory for the
nano-scale.
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Abstract: The accurate description of the behavior of fluids in nanoporous materials is of great
importance for numerous industrial applications. Recently, a new approach was reported to calculate
the pressure of nanoconfined fluids. In this approach, two different pressures are defined to take
into account the smallness of the system: the so-called differential and the integral pressures. Here,
the effect of several factors contributing to the confinement of fluids in nanopores are investigated
using the definitions of the differential and integral pressures. Monte Carlo (MC) simulations are
performed in a variation of the Gibbs ensemble to study the effect of the pore geometry, fluid-wall
interactions, and differential pressure of the bulk fluid phase. It is shown that the differential and
integral pressure are different for small pores and become equal as the pore size increases. The ratio
of the driving forces for mass transport in the bulk and in the confined fluid is also studied. It is
found that, for small pore sizes (i.e., <5σfluid), the ratio of the two driving forces considerably deviates
from 1.

Keywords: nanothermodynamics; porous systems; molecular simulation; differential pressure;
integral pressure

1. Introduction

The widespread application of nanoporous materials in several fields, such as chromatography,
membrane separation, catalysis, etc., has lead to a growing interest in the accurate description of the
thermodynamic behavior of fluids confined in nanopores [1–6]. The pressure of a nanoconfined fluid
is one of the most important thermodynamic properties which is needed for an accurate description
of the flow rate, diffusion coefficient, and the swelling of the nanoporous material [7–10]. Various
approaches for calculating the pressure of a fluid in a nanopore have been proposed [1,11–13]. The main
difficulty of the pressure calculation arises from the ambiguous definition of the pressure tensor inside
porous materials due to the presence of curved surfaces and confinement effects [7,14,15]. Traditional
thermodynamic laws and concepts, such as Gibbs surface dynamics, Kelvin equation, etc., may not be
applicable at the nano-scale [16]. In the past decade, several methods were reported using different
simulation techniques i.e., classical density functional theory [17,18], equation of state modeling [19],
etc., to model the behavior of fluids in confinement.

Recently, Galteland et al. [11] reported a new approach for the calculation of pressure in
nanoporous materials using Hill’s thermodynamics for small systems [20]. In this approach, two
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different pressures are needed to account for confinement effects in nanoporous materials: the
differential pressure P, and the integral pressure p̂. In an ensemble of small systems, the differential
pressure times the volume change of the small systems is equal to the work exerted on the surroundings
by the volume change. The differential pressure corresponds to the macroscopic pressure and does
not depend on the size of the system. The addition of a small system to an ensemble of small systems
exerts work on the surroundings which is equal to the integral pressure times the volume of the added
small system. The differential and integral pressures are different for small systems and become equal
in the thermodynamic limit. For a system with volume V, the two pressures are related by [11,20]:

P(V) =

(
∂( p̂(V)V)

∂V

)
T,µ

= p̂(V) + V

(
∂( p̂(V))

∂V

)
T,µ

. (1)

As shown in Equation (1), the two pressures are different only when the integral pressure p̂ depends
on the volume of the system. Galteland et al. [11] performed equilibrium and non-equilibrium
molecular dynamics simulations of Lennard–Jones (LJ) fluids in a face-centered lattice of spherical
grains representing a porous medium. Using Hill’s thermodynamics of small systems [20] and the
additive property of the grand potential, Galteland et al. [11] defines the compressional energy (p̂V) of
the representative elementary volume (REV) in the simulations as follows:

p̂V = p̂fV f + p̂rVr − γ̂frωfr, (2)

where p̂ is the integral pressure of volume V, p̂f and Vf are the integral pressure and volume of the
fluid, p̂r and Vr are the integral pressure and volume of the grain particles, and the γ̂fr and ωfr are the
integral surface tension and surface area between the fluid and grain particles. Based on the obtained
results, it was concluded that the definition of two pressures is needed to calculate the pressure of the
fluid in nanoporous medium.

In this study, the relation between the differential and integral pressure is investigated by
performing Monte Carlo (MC) simulations of LJ fluids. The simulations are carried out in a modified
Gibbs ensemble, using two simulation boxes in equilibrium with each other. One box represents the
bulk fluid, while the other simulation box represents the nanoconfined system, including walls that
interact with the fluid particles, as shown in Figure 1. The effect of confinement on the integral pressure
is investigated by considering different fluid-wall interaction strengths and pore geometries, namely,
a cylinder and a slit pore. To investigate the relation between the differential and integral pressure,

the difference of the two pressures, P− 〈 p̂〉, and the ratio of driving forces for mass transport,
d〈 p̂〉
dP

,
are computed. In Section 2, the devised ensemble and the equations used to calculate the pressure
and energy of the system are presented. In Section 3, a rigorous derivation of the used expression
to compute the ratio of driving forces is shown. In Section 4, the results for the different differential
pressures and pore geometries are shown. In Section 5, our conclusions are summarized.
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Figure 1. Schematic representation of the Monte Carlo (MC) simulation scheme. Simulation Box 1
represents the bulk fluid with differential pressure P. Simulation Box 2 contains the confined fluid with
(average) integral pressure 〈 p̂〉. (a,b) The two investigated systems are shown where the bulk fluid
is in equilibrium with the nanoconfined fluid in a cylinder and in a slit pore, respectively. Due to the
particle exchange, the chemical potential of the two boxes are equal, but in general P 6= 〈 p̂〉.

2. Simulation Details

All MC simulations are carried out using an in-house simulation code. The MC simulations
consist of two simulation domains, Simulation Box 1 and Simulation box 2 (see Figure 1). Throughout
the manuscript the terms Simulation Box 1 and 2 are used to refer to the two domains, however,
simulation domain 2 does not correspond to an actual box. The total number of particles in the
system, NT , is fixed and particles can be exchanged between the simulation boxes. Box 1 is cubic
and has periodic boundary conditions imposed in all directions. Box 1 represents a bulk fluid. The
differential pressure, P, and temperature, T, in Simulation Box 1 are imposed, while the volume, V1,
and the number of particles, N1, can fluctuate. Simulation Box 2 is a cylinder or a slit pore with a
fixed volume V2. The size of the cylinder and the slit pore are defined by the radius, R, and by the
distance between the two parallel planes, 2R, respectively (Figure 1). In Box 2, periodic boundary
conditions are applied only in the axial direction for the cylinder and in the x and y directions for
the slit pore (see Figure 1). Box 2 represents the confined fluid which has an integral pressure p̂. In
Simulation Box 2, the volume, V2, and temperature T are imposed, while the number of particles N2

can fluctuate by exchanging particles with Box 1. The instantaneous integral pressure fluctuates, and
by definition [20] its ensemble average, 〈 p̂〉, will be equal to P only for macroscopic systems (R→ ∞).
The ensemble used is a variation of the NPT-Gibbs ensemble [21]. The main difference between the
ensemble used in this work and the conventional NPT-Gibbs ensemble is that in our simulations the
volume of Box 2 is fixed [21]. Essentially, Box 2 corresponds to the grand canonical ensemble with
the reservoir explicitly modeled in Box 1. This computational setup was also used in other studies,
i.e., A. Z. Panagiotopoulos et al. [21], P. Bai et al. [22], etc.

In the MC simulations, three types of trial moves are used: translation, volume change, and
particle exchange. The translation and particle exchange trial moves are used in both simulation boxes,
while volume change trial moves are only performed in Simulation Box 1. The acceptance rules of
the trial moves can be found elsewhere [23]. The particle exchange trial move, ensures that Box 1 and
Box 2 are in chemical equilibrium, i.e., the chemical potentials of the two boxes are equal (µ1 = µ2).
The chemical potentials of the boxes are defined as the sum of the ideal and excess chemical potentials
of the fluid in the respective box (µ1 = µid

1 + µex
1 , µ2 = µid

2 + µex
2 ). The ideal gas chemical potentials

(µid
1 , µid

2 ) are calculated based on the density and temperature of the fluid. The excess chemical potential
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(µex
1 , µex

2 ) can be calculated using different methods, i.e., Widom’s test particle insertion method [23],
Contionous Fractional Component Monte Carlo method [24,25], Bennet acceptance ratio method [26],
etc. Although the Bennet acceptance ratio method is computationally more efficient than the Widom’s
test particle insertion method, the Widom’s test particle method is sufficient for the systems considered
in this study. Separate simulations are carried out using different cylinder radii R, while imposing
P = 0.2 (in reduced units) in Box 1. In Figure 2, the chemical potential of Box 1 and Box 2 (Figure 2a),
as well as the density of Box 1 and Box 2 (Figure 2b), are shown as a function of the cylinder radius at
P = 0.2. As can be seen from Figure 2a, the chemical potentials of Box 1 and Box 2 are equal within the
uncertainties of the simulations.

Figure 2. The chemical potential (a) and density (b) of the bulk, Box 1, and confined fluids, Box 2, as a
function of the cylinder radius, R, at P = 0.2 (in Simulation Box 1). The blue and red colors represent
Box 1 and Box 2, respectively. The temperature is fixed at T = 2. All values are presented in reduced
units. The error bars are smaller than the symbol sizes.

In all simulations, the total potential energy, U, is calculated using the 12-6 LJ interaction potential:

U = Ufluid−fluid + Ufluid−wall, (3)

where Ufluid−fluid is the potential energy due to interaction between the fluid particles, and Ufluid−wall
represents the potential energy contribution from the interactions between the fluid particles and the
wall of Box 2. Ufluid−fluid in both simulation boxes is calculated according to:

Ufluid−fluid =

∑i<j

[
4εfluid

((
σfluid

rij

)12
−
(

σfluid
rij

)6)
−Ushift

]
rij < 2.5σfluid

0, otherwise
, (4)

where rij is the distance of particle i and j, Ushift makes the interaction potentially continuous at the
cut-off distance (2.5σfluid), and εfluid, σfluid are the LJ parameters. In the past, several studies were
reported using different types of interaction potentials to model the fluid-solid interactions in confined
spaces [22,27,28]. Since the aim of this study is to show the difference between the differential and
integral pressures and not to simulate some specific adsorption system, only two types of interaction
potentials are considered for the interaction of fluid particles with the wall in Simulation Box 2. In the
first case, the wall has only repulsive interactions with the fluid particles. The potential energy
contribution of this type is calculated based on the Weeks–Chandler–Andersen potential [29]:

Ufluid−wall =

∑N2
i=0

[
4εfw

((
σfw
rwi

)12
−
(

σfw
rwi

)6)
+ 1
]

rwi < 21/6σfw

0, otherwise
, (5)
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where N2 is the number of particles in Box 2, rwi is the closest distance of particle i from the walls,
and εfw and σfw are the LJ parameters for the interaction between the wall and the fluid particles. In
the second case, the attractive interactions between the wall and fluid particles are taken into account
using the traditional form of the 12-6 LJ interaction potential:

Ufluid−wall =

∑N2
i=0

[
4εfw

((
σfw
rwi

)12
−
(

σfw
rwi

)6)
−Ushift−fw

]
rwi < 2.5σfw

0, otherwise
, (6)

where Ushift−fw makes the interaction potential continuous at the cut-off distance, and εfw and σfw are
the LJ parameters.

The expression for calculating the integral pressure in Box 2 is as follows[30]:

p̂ =
N2

V2
kBT + p̂fluid−fluid + p̂fluid−wall, (7)

where p̂fluid−fluid represents the contribution of the fluid-fluid interaction to the integral pressure, kB is
the Boltzmann constant, and p̂fluid−wall represents the contribution of the fluid-wall interaction to the
integral pressure. The p̂fluid−fluid, and p̂fluid−wall terms represent the virial contributions of the integral
pressure. The terms are calculated based on the virial theorem [7], i.e., using the derivative of the
potential energy function with respect to r. The pressure term p̂fluid−fluid is calculated as follows [7]:

p̂fluid−fluid =
48

3V2
εfluid ∑

i<j

((σfluid
rij

)12
− 0.5

(σfluid
rij

)6)
. (8)

The third term in Equation (7) represents the pressure contribution related to the interactions of the LJ
particles with the wall of Box 2. The term p̂fluid−wall for the repulsive wall potential is derived based
on Equation (5) [7]. The following expression is obtained:

p̂fluid−wall =

∑N2
i=1

24
3V2

εfw

((
σfw
rwi

)12
− 0.5

(
σfw
rwi

)6)
rwi < 21/6σfw

0, otherwise
. (9)

The following expression is used to calculate the p̂fluid−wall when the wall has also attractive
interactions with the fluid [7]:

p̂fluid−wall =

∑N2
i=1

24
3V2

εfw

((
σfw
rwi

)12
− 0.5

(
σfw
rwi

)6)
rwi < 2.5σfw

0, otherwise
. (10)

By comparing Equations (8)–(10), it can observed that the multiplication factor 48 in Equation (8) is
replaced by the factor 24 in Equations (9) and (10). This difference means that only 50 % of the fluid-wall
interactions are taken into account at the calculation of the p̂fluid−wall term [7]. In the MC simulations,
Equations (7)–(10) yield instantaneous values from which ensemble averages are computed, i.e., 〈 p̂〉.

In all simulations, the LJ parameters of the fluid particles are εfluid = 1, σfluid = 1, and the cut-off
radius is rcut = 2.5σfluid for the fluid-fluid interactions. Regardless of the type of interaction potential
used to calculate the interaction of the fluid particles and the wall in Simulation Box 2, the LJ parameter,
σfw = 1 is used. In the case of the purely repulsive wall potential, the LJ parameter εfw = 1 is used.
In case of the attractive wall potential, five different values for the εfw LJ parameters are considered:
εfw = 0.3, 0.5, 0.7, 1.0, 1.5. In this study, all of the reported parameters are in dimensionless units. The LJ
interactions are truncated and shifted (i.e., no tail corrections are applied). To avoid phase transitions,
the temperature is fixed at T = 2 [31,32].
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3. Theory

To investigate the difference between the differential and integral pressures, the ratio
d〈 p̂〉
dP

is

calculated. The term
d〈 p̂〉
dP

is the ratio of the pressure gradient for mass transport in the bulk phase,

dP
dL

, and in the confined space
d〈 p̂〉
dL

(see Figure 3). Essentially, the ratio of driving forces,
d〈 p̂〉
dP

, equals
the ratio of transport coefficients when either P or p̂ is used as driving force for mass transport in

the corresponding transport equation.
d〈 p̂〉
dP

is referred to as the ratio of driving forces throughout
this work. One possible approach to compute the ratio of driving forces is to perform simulations at
different imposed differential pressures and calculate the difference in the differential and integral
pressures. To avoid the necessity of performing several simulations, in this study the ratio of driving
forces is calculated based on the fluctuation theory. Using this approach, the ratio of driving forces can
be obtained by performing a single simulation.

Figure 3. Schematic representation of a bulk fluid in equilibrium with a nanoconfined fluid in a pore.

The concept of the ratio of driving forces for mass transport,
d〈 p̂〉
dP

, can be introduced based on the

definition of ratio of driving forces in the two systems,
d〈 p̂〉
dL

and
dP
dL

.

To obtain an expression for
d〈 p̂〉
dP

, the partition function of the system is needed [23]:

Q = C
NT

∑
N1=0

VNT−N1
2

N1! (NT − N1)!

∫ ∞

0
dV1 VN1

1 e−βPV1

∫
drNT e−βU , (11)

where C is a constant, β = 1
kBT , N1 is the number of particles in Box 1, NT is total number of particles

in the simulation, V1 is the volume of Box 1, V2 is the volume of Box 2, and U is the potential energy.
The ensemble average of a thermodynamic property X can be obtained using:

〈X〉 =
∑NT

N1=0
V
(NT−N1)
2

N1! (NT−N1)!

∫ ∞
0 dV1 VN1

1 e−βPV1
∫

drNT e−βUX

∑NT
N1=0

V
(NT−N1)
2

N1! (NT−N1)!

∫ ∞
0 dV1 VN1

1 e−βPV1
∫

drNT e−βU
. (12)
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Therefore, to obtain the expression for
d〈 p̂〉
dP

, the following relation is used:

d〈 p̂〉
dP

=
d

dP

∑NT
N1=0

V
(NT−N1)
2

N1! (NT−N1)!

∫ ∞
0 dV1 VN1

1 e−βPV1
∫

drNT e−βU p̂

∑NT
N1=0

V
(NT−N1)
2

N1! (NT−N1)!

∫ ∞
0 dV1 VN1

1 e−βPV1
∫

drNT e−βU
. (13)

By switching the order of the integration and differentiation, the following expression is obtained:

d〈 p̂〉
dP

=(
∑NT

N1=0

∫ ∞
0 dV1

∫
drNT

V
(NT−N1)
2 V

N1
1

N1! (NT−N1)!
(−β V1)e−βPV1 e−βU p̂

)
(

∑NT
N1=0

∫ ∞
0 dV1

∫
drNT

V
(NT−N1)
2 V

N1
1

N1! (NT−N1)!
e−βPV1 e−βU

)2

×
( NT

∑
N1=0

∫ ∞

0
dV1

∫
drNT

V(NT−N1)
2 VN1

1
N1! (NT − N1)!

e−βPV1 e−βU
)

−

(
∑NT

N1=0

∫ ∞
0 dV1

∫
dr V

(NT−N1)
2 V

N1
1

N1! (NT−N1)!
(−β V1)e−βPV1 e−βU

)
(

∑NT
N1=0

∫ ∞
0 dV1

∫
drNT

V
(NT−N1)
2 V

N1
1

N1! (NT−N1)!
e−βPV1 e−βU

)2

×
( NT

∑
N1=0

∫ ∞

0
dV1

∫
drNT

V(NT−N1)
2 VN1

1
N1! (NT − N1)!

e−βPV1 e−βU p̂
)

= 〈−βV1 p̂〉 − (〈−βV1〉〈 p̂〉) = β(〈V1〉〈 p̂〉 − 〈V1 p̂〉) = 〈V1〉〈 p̂〉 − 〈V1 p̂〉
kbT

.

(14)

The final expression in Equation (14) is essentially the cross correlation between V1 and p̂. In this
study, this expression is used to calculate the ratio of driving forces.

4. Results and Discussion

In this work, the difference between the differential and integral pressure, P− 〈 p̂〉, and the ratio

of driving forces
d〈 p̂〉
dP

, are investigated. Two different pore geometries, a cylinder and a slit pore, are
studied with varying fluid-wall interaction potentials. The effect of confinement is investigated for gas
(ρ ≈ 0.1) and liquid (ρ = 0.58, 0.8) phases, corresponding to P = 0.2, 2.0, 6.0, respectively.

4.1. Difference between the Differential and Integral Pressure

In Figure 4, the difference between the differential, P, and the ensemble average of the integral
pressure, 〈 p̂〉, is shown as a function of the inverse radius, R−1, of Box 2 for the cylindrical and slit pore
cases for the two types of wall potentials. As can be seen in Figure 4, as R−1 decreases, the difference
between the differential and integral pressure decreases in all cases. The data are fitted to AR−1+B,
where A and B are constants. The coefficient of determination of the fitted lines is above 0.99 showing
that the relation between the R−1 and P− 〈 p̂〉 is indeed linear. For large radii (R > 30σ), where the
fluid in Box 2 behaves like in the bulk, P− 〈 p̂〉 approaches 0, which is also indicated by the fitted
lines. In Figure 4a,c,e, the difference between the two pressures are shown for the cylindrical pore.
In Figure 4b,d,f, the difference in the pressures are shown for the slit pore. By comparing the magnitude
of P− 〈 p̂〉 for the cylindrical and slit pore cases, it can be seen that the pressure difference is larger
in the cylindrical pore than in the slit pore. The larger value of P− 〈 p̂〉 for the cylindrical pores can
be attributed to the stronger confinement effects compared to the slit pore. The stronger confinement
effects are also indicated by the steeper slopes (constant A in the fitted lines) of the cylindrical pore
compared to the slit pore. It can also be observed that by increasing the interaction strength between
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the wall of Box 2 and the fluid, εwf, the difference between the differential and integral pressure at the
same pore size decreases. By comparing the calculated values of P−〈p̂〉 for P = 0.2 and P = 6.0, it can be
seen that the effect of the interaction strength between the wall in Box 2 and the fluid, εwf, is considerably
larger at the lower differential pressure. For example, in the case of the slit pore, the ratio of slopes of the
fitted line for εwf = 1.0 and εwf = 1.5 at P = 0.2 is 0.88, as shown in Figure 4b, and at P = 6.0 is 0.96, as
shown in Figure 4f. This can be caused by the different number of particles inside the pore at the two
differential pressures. In the case of P = 0.2, by increasing the interaction strength, more particles can
enter the pore which results in larger integral pressures, while at P = 6.0, the pore is practically saturated
for all εwf; therefore, the interaction strength has a lower effect on the integral pressure.

Figure 4. The difference between the differential, P, and the ensemble average of integral pressure, 〈 p̂〉,
is shown as a function of the inverse radius R−1 of Box 2 at P = 0.2, 2.0, and 6.0 for cylindrical and
slit pores with fluid-wall interactions. (a,c,e) The pressure difference is shown for cylindrical pores
at differential pressure P = 0.2, 2.0, and 6.0, respectively. (b,d,f) The pressure difference is shown for
slit pores at differential pressure P = 0.2, 2.0, and 6.0, respectively. The simulation results are shown
with symbols, while the lines are fits to the data points. The equation used for the fitting is AR−1 + B,
where A and B are constants. The colors denote the different level of attraction between the wall of Box
2 and the fluid, repulsive wall potential (black), εwf = 0.3 (blue), 0.5 (red), 0.7 (gray), 1.0 (orange), and
1.5 (cyan). The results for the cylindrical pore are shown with closed circles and for the slit pores with
open rectangles. The temperature of both boxes is set to T = 2. The average densities of Box 1 are ρ ≈
0.10, 0.58, and 0.8 at P = 0.2, 2.0, and 6.0, respectively.
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Based on the work of Galteland et al. [11], the slope of the fitted line can also be related to

the effective surface tension between the fluid particles and the wall in Box 2, i.e., P− 〈 p̂〉 ∼ γ̂fr
effective

R .
The linear relation between P− 〈 p̂〉 and R−1 shows that the effective surface tension does not depend
on the curvature of the wall. In Figure 4, it can be observed that the effective surface tension decreases
as the fluid-wall interactions become more attractive. In Figure 4a–f, it can be seen that the ratio of the
effective surface tensions (slopes of the fitted lines) for the same εwf with the slit and cylindrical pore
is nearly constant. For example, at εwf = 0.5 and P = 2.0, the ratio of the slope of the fitted lines for
the slit and cylindrical pore is ∼ 0.54, as shown in Figure 4c,d, and at εwf = 0.3 and P = 0.2, the ratio
of the two slopes is also ∼ 0.54, as shown in Figure 4a,b. The ratio of the effective surface tensions
between the slit and cylindrical pores are in the range of ∼0.52–0.56 and considered constant since it is
within the uncertainties of simulations. The constant ratio of effective surface tension between the slit
and cylindrical pore also indicates the larger confinement effects in the cylindrical pore.

4.2. Ratio of Driving Forces

In Figure 5, the ratio of driving forces for mass transport,
d〈 p̂〉
dP

, is shown as a function of the

inverse radius of Box 2, R−1, at three different pressures, P = 0.2, 2.0, 6.0, for both the slit and cylindrical

pores. From Figure 5, it can be observed that
d〈 p̂〉
dP

is considerably smaller than 1 for small pore sizes.
This means that a change in the differential pressure, P, of Box 1 results in a smaller change in the
integral pressure, 〈 p̂〉, of Box 2. This difference underlines the effect of the confinement on the pressure
of the fluid in nanopores and shows the difference in driving forces in the bulk and confined fluid.

As R increases,
d〈 p̂〉
dP

approaches 1, i.e., the fluid in the pore behaves more like a bulk fluid. As can be

seen in Figure 5,
d〈 p̂〉
dP

is larger for the slit pore than for the cylindrical pore at the same conditions. This
means that in case of the slit pore a change in the differential pressure, P, results in a larger difference
in the integral pressure, 〈 p̂〉, than for the cylindrical pore. The larger change in the integral pressure
indicates that the confinement effects are weaker in the slit pore. In Figure 5a,b, it can be observed that
by increasing the interaction strength between the wall of the pore and the fluid particles, the ratio
of the driving forces decreases. At higher differential pressures the decrease in the ratio of driving
forces due to the increasing fluid-wall interaction strength becomes less pronounced, as shown in
Figure 5c–f. The smaller influence of the interaction strength, εfw, on the ratio of driving forces may
be caused by the increasing contribution of the fluid-fluid interactions to the integral pressure due to
the larger number of fluid particles in the pore at higher differential pressure. In Figure 5a–f, the ratio
of driving force is shown for the slit and cylindrical pores at the same differential pressure. It can be
seen that the ratio of the slopes of the fitted lines for the same value of εwf with the slit and cylindrical
pore is constant within the uncertainties of the simulations. The ratio of the slopes is in the range of
∼0.52–0.58, which indicates that the confinement effects in the cylindrical pore are almost twice as
strong as in the slit pore.
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Figure 5. The ratio of driving forces, d〈 p̂〉
dP , is shown as a function of the inverse radius, R−1, of

Box 2 at P = 0.2, 2.0, and 6.0 for the cylindrical and slit pore cases with repulsive and attractive
wall potentials. (a,c,e) d〈 p̂〉

dP is shown for cylindrical pores at differential pressure P = 0.2, 2.0, and

6.0, respectively. (b,d,f) d〈 p̂〉
dP is shown for slit pores at differential pressures P = 0.2, 2.0, and 6.0,

respectively. The simulation results are shown with symbols, while the lines are fits to the data points.
The equation used for the fitting is AR−1 + B, where A and B are constants. The results for the
cylindrical pore are shown with closed circles and for the slit pores with open rectangles. The colors
denote the different wall potential used in Box 2, repulsive wall potential (black), εwf = 0.3 (blue),
εwf = 0.5 (red), εwf = 0.7 (gray), εwf = 1.0 (orange), and εwf = 1.5 (cyan). The temperature of both
boxes is set to T = 2. The average densities of Box 1 are ρ ≈ 0.10, 0.58, and 0.8 at P = 0.2, 2.0, and 6.0,
respectively.
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5. Conclusions

In this study, the new approach reported by Galteland et al. [11] is used to investigate the effects
of confinement on a fluid in a nanopore by performing MC simulations. The simulations are carried
out in a variation of the Gibbs ensemble with two simulation boxes in chemical equilibrium. One
of the simulation boxes represents the bulk fluid with differential pressure P, and the other a slit or
cylindrical pore with repulsive or attractive wall interaction potential. In case of the attractive wall
potentials, several scenarios are considered for the strength of the interaction between the wall and the
fluid particles. The effect of confinement is investigated for three differential pressures, P = 0.2, 2.0,
6.0, corresponding to gas (ρ ≈ 0.1) and liquid phases (ρ = 0.58, 0.8). It is concluded that the difference
between the differential and integral pressure P− 〈 p̂〉, for all studied cases, approaches 0 when R→
∞. It is shown that the increase in the interaction strength between the wall and the fluid particles has
smaller effect on the difference in the pressures, P− 〈 p̂〉, as the differential pressure increases. Based
on the work of Galteland et al. [11], the difference of the differential and integral pressure is related
to the effective surface tension between the fluid particles and wall of the pore. It is shown that the
effective surface tension does not depend on the curvature of the wall. It is found that by considering
a bulk fluid in equilibrium with a cylindrical or slit nanopore, the ratio of driving forces for mass

transport in the bulk phase is larger than in the nanopore (
d〈 p̂〉
dP

<< 1) for small pore sizes. As R

increases,
d〈 p̂〉
dP

approaches 1, i.e., the fluid in the pore behaves more like a bulk fluid. This clearly
shows that the approximation that p̂ ≈ P does not hold on the nanoscale.
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Abstract: It is known that thermodynamic properties of a system change upon confinement. To know
how, is important for modelling of porous media. We propose to use Hill’s systematic thermodynamic
analysis of confined systems to describe two-phase equilibrium in a nanopore. The integral pressure,
as defined by the compression energy of a small volume, is then central. We show that the integral
pressure is constant along a slit pore with a liquid and vapor in equilibrium, when Young and
Young–Laplace’s laws apply. The integral pressure of a bulk fluid in a slit pore at mechanical
equilibrium can be understood as the average tangential pressure inside the pore. The pressure
at mechanical equilibrium, now named differential pressure, is the average of the trace of the
mechanical pressure tensor divided by three as before. Using molecular dynamics simulations,
we computed the integral and differential pressures, p̂ and p, respectively, analysing the data with
a growing-core methodology. The value of the bulk pressure was confirmed by Gibbs ensemble
Monte Carlo simulations. The pressure difference times the volume, V, is the subdivision potential of
Hill, (p− p̂)V = ε. The combined simulation results confirm that the integral pressure is constant
along the pore, and that ε/V scales with the inverse pore width. This scaling law will be useful for
prediction of thermodynamic properties of confined systems in more complicated geometries.

Keywords: pressure; confinement; equilibrium; thermodynamic; small-system; hills-thermodynamics;
pore; nanopore; interface

1. Introduction

It is well known that thermodynamic properties of fluids significantly change when the fluid
phases become confined [1,2]. Given the importance of porous media for applications in for example
fuel cells [3], batteries [4], and membranes for drinking water production [5–7], it is essential to
understand how properties change upon confinement. In particular, one would like to be able to
predict how thermodynamic properties of the system change with size. We have earlier documented
how the thermodynamic factors and the pressures of some systems scale with a characteristic inverse
system size (surface area over volume) [8–10]. The aim of the present work is to continue this line
of work and present a geometric scaling law for the pressure of a nanopore. This work can, in a
general context, be seen as an extension of Hill’s thermodynamics of small systems [11]. The essential
idea of Hill was to introduce a large ensemble of N small systems, enabling the use of standard
thermodynamic tools for the ensemble. System properties were obtained by dividing the ensemble
value by N . In this way, he was able to deal with the impact of shape- and size-variation of the
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small system, within the normal structure of thermodynamics. The dimensions of a nano-pore, which
make molecular interactions at the pore surface important, can promote changes in phase transitions,
surface adsorption, pore vapor pressure, and phase stability [2,12–14]. The literature offers, however,
several definitions of the pressure inside a nano-porous material [15,16]. This situation calls for a
robust definition of the representative elementary volume (REV) of the small system, to serve as a
basis for a definition of pressure. Kjelstrup et al. [17] offered a definition of the REV-pressure based
on the compression energy of the REV. Galteland et al. [18] showed, by evaluating this property for a
single component in a nanoporous system, that the REV was not sufficiently described by the bulk
fluid pressure. Also the integral pressure, p̂, as defined by Hill was required to describe the degree of
confinement in the REV. In Hill’s [11] terminology, one distinguishes between the integral pressure p̂,
and the differential pressure, p. Erdos et al. [10] provided an expression for the ratio of the driving
forces for adsorption into a pore, by means of the integral and differential pressures. They expressed
the ratio by the cross-correlation of the volume and the integral pressure.

Hill defined the difference of the two pressures times the volume by the subdivision potential
ε = (p − p̂)V [11]. The integral pressure can differ significantly from the differential pressure in
confined systems [10,18]. In the limit of a bulk fluid, they are the same, however. Galteland et al.
studied pores between an fcc type-lattice of spheres [18], and found that the difference in the differential
and integral pressure depended on the inverse radius of the spheres in the lattice. Here, we investigate
a slit pore of nano-scale dimensions, with a constant pore slit-width ranging from 3 to 5 nm, and filled
with a vapor and liquid phase of the same component. The purpose is to find thermodynamic and
mechanical equilibrium conditions in terms of the pressures defined by Hill, and compare these to
existing descriptions in terms of Young’s and Young–Laplace’s laws. The analysis leads to a new
equilibrium condition, stated in terms of the integral pressure: This property is constant along the
nano-sized pore. When this condition is combined with Youngs’ equation for the contact angles,
one recovers the Young–Laplace equation.

For the geometry studied here, it is possible to derive a scaling law for the integral pressure.
The pore shape is kept constant in the derivations, as shape is a variable in small system
thermodynamics [19]. The new scaling law relates properties of one system size to another size,
with the same shape. This is helpful in a situation where measurements are lacking. Hill extended
the thermodynamic variable set, including an ensemble of the small system, thereby providing a new
basis for introduction and examination of size effects in thermodynamics. Hill’s formulation of surface
thermodynamics contain Gibbs’ method [20].

Molecular dynamics and Monte Carlo simulations [10,21] are excellent tools for equilibrium
studies of confined systems. Two fluid phases will be simulated in a slit pore of varying width. Focus
is directed to the equilibrium conditions, when single phases are in contact with each other and the
wall. The choice of the system was motivated by the simple geometry, which makes it possible to test
particular scaling laws for slit pores and cylindrical pores.

The structure of the paper is as follows: We first present the equations of a REV leading to the
relation between the differential pressure p and the integral pressure p̂. We next test the derived
equations for slit pores of different sizes and different interactions between pore wall and fluid.
The new growing-core methodology, brings out the difference between the differential and the integral
pressure. Finally, results are discussed and put in perspective.

2. Theory

2.1. Thermodynamic Relations for Small Systems

Hill used the name “small system” for systems with properties that are not extensive in the
system volume [11]. Such systems are frequently confined, i.e., bounded by the surroundings.
To obtain a generalized thermodynamic description of small systems, and to deal with size and
shape-dependencies, Hill [11] introduced an ensemble of N identical and independent replicas of the
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small system. Keeping the total entropy St, and particle number, Nt, constant, while increasing the
number of small systems N (each with constant volume V) in the ensemble, an extended version of
the Gibbs equation was obtained:

dUt = TdSt − pNdV + ∑
j

µjdNj,t − p̂VdN (1)

which we call the Hill-Gibbs equation. Here, Ut is the total internal energy of the ensemble, T is
the temperature, p is the pressure, and µj is the chemical potential of component j. The new term,
− p̂VdN , is the reversible work needed to change the total volume, by changing the number of small
systems, keeping St, V, and Nt,j constant.

Hill [11] distinguished between p and p̂ by calling the properties the differential and integral
pressure, respectively. This work aims to elucidate the difference of these variables for a small system
which is confined to a pore, in the grand-canonical ensemble.

The average values in the grand-canonical ensemble for a single small system are

U =
Ut

N , Nj =
Nj,t

N , S =
St

N . (2)

By introducing these equations into Equation (1), we obtain the usual Gibbs equation for dU, and
what we call the Hill-Gibbs-Duhem’s equation.

d( p̂V) = SdT + ∑
j

Njdµj + pdV (3)

The equation reduces to the usual Gibbs-Duhem equation when p̂ = p. When T and µj are
constant in Equation (3), we obtain a relation between the integral and differential pressure when the
shape of the system is controlled [11]:

p =

(
∂ p̂V
∂V

)
T,µ

= p̂ + V
(

∂ p̂
∂V

)
T,µ

. (4)

The expression shows that p and p̂ differ for small systems, for which p̂ depends on the volume.
In a macroscopic system, with V → ∞, p and p̂ are the same. The relation clarifies the chosen names;
p is obtained by differentiation.

The above equations will be applied to a two-phase system in a slit pore and a cylindrical pore.
Inside the pore, the differential pressure of the liquid differ from that of the vapor phase. For the
time being, we introduce the notation pv

d and pl
d for the differential pressure of the vapor and liquid,

respectively, and p f
d to indicate either of the two. The difference of the differential and the integral

pressure times the volume is equal to the subdivision potential [11], ε. By rearranging Equation (4),
using p f

d = p, we obtain:

p− p̂ =
ε(T, V, µj)

V
= V

(
∂ p̂
∂V

)
T,µj

. (5)

The subdivision potential is an additive thermodynamic property [11]. When such a property is
divided by the small system volume, a scaling law can be found; of a similar type as we have found
earlier [8,9]. The ratio ε/V is proportional to the the inverse characteristic size Ω/V of the system,
where Ω is the surface area between the fluid and the solid [18]. In general terms,

p− p̂ =
ε

V
= ζ∞ + ζs

(
Ω
V

)
+ ζse

(
Ω
V

)2
+ ... (6)

The coefficients ζ∞, ζs and ζse do not depend on Ω/V, but are functions of T and µj. As p and p̂
are equal in the thermodynamic limit, it follows that the coefficient ζ∞ = 0.
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2.2. The Integral Pressure of a Representative Volume Element

To define the differential and integral pressures, and the conditions for thermodynamic and
mechanical equilibrium between two phases within a pore, we need suitable REVs. In a porous
medium with two fluid phases, we need more than one type of REV, one for each phase. A REV needs,
as the name says, to be representative for all molecular interactions in the system [17]. It should be
large enough to contain a statistically representative amount of the fluids and solids. The purpose
of the REV is to define a volume element, to be used to define equilibrium, but also to define local
equilibrium in a large system where fluid transports take place [17].

A liquid droplet in equilibrium with its vapor inside a slit pore is an example of a two-phase
confined fluid. The droplet system is illustrated in Figure 1. Various REVs are possible. Each REV
need to cover the whole cross section of the pore. In the following we are concerned with two REVs,
one in the vapor- and one in the liquid phase. None of them includes the surface between liquid and
vapor. Two examples of REVs (REV1 and REV2) are illustrated in Figure 1. The x-axis is located at the
center of the pore.

Figure 1. Slit pore of width 2a with a liquid droplet in the middle, which is in equilibrium with a vapor
phase on both sides. The representative volume elements are REV1 (vapor of volume Vv) and REV2

(liquid of volume Vl), both with length d. The x-axis is located at the center of the pore.

The integral pressure of an isothermal REV with constant chemical potentials is expressed in
terms of the compression energy, p̂V, which is defined by the grand potential, Υ [11].

p̂V = −Υ ≡ kBT ln Ξ (7)

Here kB is the Boltzmann constant and Ξ the grand-canonical partition function. Similar to ε,
also the compression energy is additive. It is the sum of contributions from all phases and interfaces
present within the REV. The grand potential provides then the statistical mechanical link to particle
behaviour, and is a tool for pressure computations (see below). The system is small in the sense of Hill,
when the integral pressure deviate from the (bulk) fluid pressure.

The general expression for the compression energy for a REVn, with n = 1, 2 is then

p̂REVn V = p̂ f V f − γ̂ f sΩ f s (8)

where V is the volume of the REV, V f is the volume of the fluid, Ω f s is the surface area between the
fluid and the wall, and γ̂ f s is the integral surface tension at the wall, or the surface tension of the small
system. In the present case, the two REVs are completely filled with a fluid; a vapor (REV1) or a liquid
(REV2). The REV volume in both cases obeys V = V f = Vv = V l = 2adw, where a is the slit pore half
width, d the REV length and w the width of the REV. Superscripts v and l refer again to the vapor and
the liquid. The surface area between fluid and solid is Ω f s = 2dw. The surface tension between fluid
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and pore surface are γ̂ls and γ̂vs, respectively, where the hat indicate that the system may be small.
In that case, the surface tension is a function of the contact area/system geometry.

For sufficiently large values of a, the fluid in the center of the pore has macroscopic bulk properties.
In that case; the integral pressure in the vapor p̂v and the liquid p̂l are independent of Vv or V l ,
respectively, and

p̂v = pv, p̂l = pl . (9)

Here, pl and pv are bulk pressures of the liquid and vapor, respectively.
In a slit pore, the wall surface is not curved. When the distance between the walls (2a) is sufficiently

large, the fluid–solid surface tension show macroscopic behaviour, and:

γ̂vs = γvs, γ̂ls = γls. (10)

By introducing the expressions, Equations (9) and (10), the volume and the fluid–solid surface
area into Equation (8), we obtain expressions for the integral pressure of the liquid and vapor REVs:

p̂REV2 = pl − γls

a
, p̂REV1 = pv − γvs

a
. (11)

Suppose now that integral pressure is constant everywhere at equilibrium, or that:

p̂REV2 = p̂REV1 . (12)

This means we can write:

pl = pv +
γls − γvs

a
(13)

Young’s law derives from a force balance at phase equilibrium:

γls = γvs + γlv cos θ, (14)

Here γlv is the liquid-vapor surface tension. We introduce this law in the equation above
and obtain:

pl = pv +
γlv

a
cos θ = pv +

γlv

R
. (15)

This is Young–Laplace’s equation for a slit pore. Young–Laplace’s equation has been verified
in the experimental literature numerous times [22,23]. The radius of curvature of the liquid-vapor
surface, R = a/ cos θ, was used, where θ is the contact angle at the pore wall, see Figure 1. We have
found this equation without examining the liquid-vapor interface per se.

Equation (12) is thus equivalent to validity of the laws of Young and Young–Laplace.
These familiar laws apply to thermodynamic and mechanical equilibrium, so we expect the equality to
do the same. In this sense we have derived a new way to express phase equilibrium in nanopores.

Consider again a state of equilibrium where the integral pressure is constant. The integral
pressures of the fluids are shown by Equation (11). For each fluid, the difference of the differential and
integral pressure for the slit pore follows from Equation (4):

p− p̂ = a3
(

∂ p̂
∂a3

)
T,µ

=
γ f s(α)

3a
. (16)

where we have indicated that the surface tension depends on a parameter α which characterizes
the molecular interactions of the fluid and the wall. The shape is a variable in small system
thermodynamics, and remains constant when we determine the derivative. To keep the shape constant,
means to take the isomorphic derivative of the integral pressure in Equation (16).
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A change from the slit pore to a cylindrical pore, will change the proportionality factor in a
concrete way. The ratio of the area over the volume in the REV of a cylindrical pore is double the value
in a slit pore. The ratio of the slope in a cylindrical pore over that from a slit pore is therefore equal
to 2. The corresponding scaling law for a cylindrical pore becomes:

p− p̂ = a3
(

∂ p̂
∂a3

)
T,µ

=
2γ f s(α)

3a
. (17)

By changing the geometry of the pore only, keeping the fluid wall interactions constant, we predict
that the slope of pressure difference vs the surface tension will change by a factor 2.

For large systems (when a → ∞), the difference between p and p̂ disappears, leading to
p = p̂ = p f in the REV. For small systems, however, the difference between p and p̂ is described
by the ratio between fluid–solid surface tension and the half channel width (γ f s/a) divided by 3.
We have thus found that the pressure difference follows a scaling law, similar to the one proposed by
the Small System Method [8,9], and given in Equation (6).

Equation (16) can be tested by molecular dynamics simulations. In such a test, one can identify
independently all terms in the equation, and confirm that the condition p̂REV1 = p̂REV2 holds. Essential
in the calculation is that p and p̂ refer to the same volume.

These theoretical results demonstrate why it may pay to take the effort to invoke the perhaps
more complicated thermodynamic scheme of Hill. Young and Young–Laplaces’ laws describe
the same physical phenomenon as Equations (16) and (17). Hill’s theory shows how the two
Equations (16) and (17) are linked to each other and to new variables (e.g., ε), in manners which
can be tested.

2.3. A Mechanical Interpretation of the Pressures

The above derivation showed that the condition of constant integral pressure at equilibrium is
required by Young’s and Young–Laplace’s laws. The integral and differential pressures are therefore
also related to the mechanical pressure tensor. The mechanical pressure tensor will from now be
denoted with upper case P, while the thermodynamic pressures are denoted as before, with lower case
p. A complete set of relations between P and p is provided in the Appendix A. Here, we present the
main relations.

Consider again the liquid droplet in a slit pore, as shown in Figure 1. The slit pore wall is parallel to
the yz-plane. The pressure tensor component acting normal to the wall is the xx-component, PN = Pxx

(cf. the Appendix A). There are two tangential components of the pressure tensor, the yy-component
and the zz-component, which are equal in equilibrium. The tangential pressure tensor component is
the average of the two, PT = 1

2 (Pyy + Pzz). The surface tension is minus the excess of the tangential
pressure tensor [24],

γ f s =
1
2

∫ a

−a
(PN(x)− PT(x))dx. (18)

The factor of one half accounts for the fact that the integral is for two fluid–solid surfaces.
By introducing the fluid–solid surface tension into the equation for the integral pressure of a single
fluid phase, cf. Equation (11), we obtain

p̂ = p f − 1
2a

∫ a

−a
(PN(x)− PT(x))dx, (19)

where superscript f again refers to either the liquid or vapor. The normal component of the mechanical
pressure tensor is constant through flat surfaces at mechanical equilibrium. The integral of the normal
component divided by 2a is therefore equal to PN . We assume that the normal component is equal to
the differential pressure of the bulk fluid, p f = PN . Below, the assumption is shown to hold.
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The differential pressure of the bulk fluid and the integral over the normal component of the
pressure cancel each other, and the integral pressure is equal to the average tangential component,

p̂ =
1
2a

∫ a

−a
PT(x)dx = 〈PT〉. (20)

This equation shows that the integral pressure of a bulk fluid in a slit pore at mechanical
equilibrium can be understood as the average tangential pressure.

The differential pressure can also be related to the mechanical pressure tensor. The difference
between the differential and integral pressures is equal to the fluid–solid surface tension divided by 3a.
By introducing Equation (18) for the fluid–solid surface tension, we obtain

p− p̂ =
1
6a

∫ a

−a
(PN(x)− PT(x))dx (21)

By reorganizing and inserting the average of the tangential pressure for the integral pressure,

p =
1
3
(〈PN〉+ 2〈PT〉) =

1
3

Tr〈P〉 (22)

The differential pressure is equal to the average of the trace of the mechanical pressure tensor
divided by 3.

3. Simulations

3.1. Molecular Dynamic Simulations

3.1.1. System

Simulations were carried out for a droplet in a slit pore. The droplet in the middle of the pore was
surrounded by its vapor phase on both sides (see Figure 2). The simulation box, with the side lengths
Lx = Ly 6= Lz had periodic boundary conditions in all directions.

Figure 2. System used in the simulation. The droplet in the middle of the slit pore is surrounded by a
vapor phase on both sides.

The simulation box was divided into n rectangular layers along the z-axis with a layer thickness
of ∆z = Lz/n. Both the pore-wall (grey) and the fluid (red) consisted of Lennard-Jones/spline
particles [25]. The particles of the wall were immobilized, such that the particles were able to interact
with the fluid particles, but not move. Due to periodic boundary conditions, the wall thickness was
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t = 3.5σ0 and had a density of ρwall = 1.05. The fluid inside the pore was initialized in a way that the
overall density inside the pore was ρ f luid = 0.27, thus in the two phase regime [25]. The averaged
density of the bulk liquid was ρliquid = 0.75± 0.0015 and the one of the vapor ρvapor = 0.03± 0.0025.

The simulations were carried out using LAMMPS [26] in the canonical (NVT) ensemble at a
temperature of T∗ = 0.70. The Nosé-Hoover thermostat [27] was used to keep the temperature constant.
We used Lennard-Jones reduced units, which are indicated by superscript * [28]. The system was
simulated for four slit widths, a = 8.7σ0, 10.45σ0, 12.2σ0 and 13.7σ0. The half channel widths were
chosen so that both, the pressure of the fluid in the center, p f , as well as the fluid–solid surface tension,
γ f s, are independent of the distance a, i.e., they show macroscopic bulk properties. Furthermore,
the slit widths are large enough to avoid the effect of the disjoining pressure, as discussed in [13].

3.1.2. Particle Interaction Potential

The interaction between particles of type i and j was defined by the Lennard-Jones/spline
potential [25,28],

uij(r) =


4εij

[(
σij
r

)12
− αij

(
σij
r

)6
]

if r < rs,ij

aij(r− rc,ij)
2 + bij(r− rc,ij)

3 if rs,ij < r < rc,ij

0 if r > rc,ij

(23)

where r is the distance between the particles. The interaction parameters, εij and σij, were set to 1 for
all particle pairs (Lennard-Jones units). The interaction parameter αij is used to control the attractive
interaction between the wall and the fluid, where we used αs f = 0.05, 0.15 and 0.25. For wall-wall and
fluid-fluid interactions the interaction parameter was set to αss = α f f = 1. All αs f values represent a
strong, repulsive interaction between wall and fluid, thus a non-wetting behaviour. The parameters aij,
bij, rc,ij and rs,ij were determined such that the potential and its derivative are continuous functions at
rs,ij = 1.24σ and rc,ij = 1.74σ [25].

3.1.3. Computation of REV Pressures and Wall-Fluid Surface Tension

The mechanical pressures in any layer l or combination of layers, or in a REV (core plus all layers
included), were computed following Kirkwood [24]:

Pβκ =
1

3V ∑
i∈l

mi(vi,β − vm,β)(vi,κ − vm,κ)−
1

6V ∑
i∈l

N

∑
j=1

(rij,β fij,κ). (24)

The subscripts β and κ denote the Cartesian coordinates, x, y and z, while V is the volume of the
layer, mi is the mass of particle i, vi,β is the velocity of fluid particle i in the β-direction, and vm,β is the
average velocity in the β-direction. This velocity is zero in our equilibrium simulations. The properties
rij,β and fij,β are, respectively, the distance and the force between particle i and j in the β-direction.
The first term is the kinetic energy contribution from the particles, and the second term arise from
pairwise interactions. Because of isotropy, the tensor is diagonal (see Appendix A).

Half the value of the pairwise energy contribution is assigned to the layer that contains particle
i, while the other half is assigned to the layer that contains particle j. A more precise distribution
of the contributions is available [29–32], but the present method has sufficiently small errors for the
volumes used.

The pressure of a fluid volume element was calculated, starting with the core of the pore (lightest
color in Figure 3), which has volume V1. Volume was gradually added to the core, including in the
end also the wall (black color in Figure 3). In this manner, the volume of the core was growing, layer
by layer, until in the end s− 1 layers were added to the central core. The pressure was computed for
the core (V1), for the core plus one subsequent layer (V2), and for the total volume (Vtot). The total
volume, Vtot, is equal to the volume V of the REV (see Figure 1). Thus, the pressure was computed
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in growing pore core -volumes until the volume was large enough to cover the whole width (2a) of
the pore. This new growing-core methodology enabled an calculation of the pressure in the center
of the pore (the core) and the averaged pressure of the whole cross section of the pore, including all
interactions with the pore wall. When all layers plus the wall inside the pore were included (Vtot),
we obtained p̂ of the REV. As long as there is no impact of the wall, (the core plus layers is sufficiently
far away from the wall) we observed the bulk fluid pressure, p f . This procedure was applied to two
REVs, one in the liquid and one in the vapor phase.

Figure 3. The core layer of the slit pore (lightest color) and subsequent layers (progressively darker
color) used in the calculation of the pressure tensor of the fluid. V1 and V2 are the volumes of the core
and the core plus one layer, respectively. Vtot is the total volume, covering all interactions with the
pore wall.

The fluid–solid surface tension was computed as the excess of the tangential pressure tensor
component [24] from Equation (18).

The extrapolated normal component PN was taken to be equal to the pressure in core, where
the fluid–solid surface has no effect on the pressure. The tangential component of the pressure was
calculated using PT = 1

2 (Pyy + Pzz). The value was obtained using a low resolution in x-direction and
by averaging over multiple chunks of the liquid phase, along the pore in the z-direction.

3.2. Gibbs Ensemble Monte Carlo

In the derivation of Equation (20), the pressure tensor normal to the slit pore wall, PN , is assumed
to be equal to the bulk pressure p f . This assumption was tested using Gibbs ensemble Monte Carlo
simulations for two values of p f (0.2 and 6.0 reduced units). The method is the same as reported
recently by Erdős et al. [10]. In the simulations, two simulation boxes were defined. Simulation box
1 represents a reservoir of a bulk fluid with periodic boundary conditions applied in all directions.
The fluid particles interact with the shifted and truncated Lennard-Jones potential with σ = 1, ε = 1
and cut-off rc = 2.5. The pressure, p f , and temperature, T, of the fluid in simulation box 1 are imposed,
while the number of particles, N1, and the volume of the box can fluctuate. Simulation box 2 was a slit
pore with fixed volume and temperature. The size of the slit pore was defined by the distance between
the two parallel planes, 2a. In simulation box 2, periodic boundary conditions were applied in the
directions parallel to the planes. The total number of particles, N1 + N2, was fixed in the simulations.
Simulation box 1 and 2 can exchange particles, which ensured that the two boxes were in chemical
equilibrium. The pressure of the fluid in simulation box 2 was equal to the differential pressure in
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equilibrium with the pressure imposed in the reservoir (box 1), p f . A more detailed description of the
simulation setup is given by Erdős et al. [10]. The high and low pressures were computed for varying
pore sizes a.

4. Results and Discussion

The results for the independent computations of the pressure of a bulk fluid and corresponding
pressure in the pore, using Gibbs ensemble Monte Carlo simulations, are shown in Table 1 in Section 4.1.
The results of the molecular dynamics simulations are shown in Figures 4–7 in Sections 4.2–4.5.
The figures show the pressure variation from the center of the slit to the wall, in the direction
perpendicular to the wall (Figure 4) and parallel to the wall (Figure 5). The next figures confirm,
as we shall see, that we can use a constant p̂ to define equilibrium, and that a small system scaling
law applies.

4.1. Pressure Component Normal to the Pore Wall

The normal component of the pressure tensor in simulation box 2 and bulk pressure in simulation
box 1 are shown in Table 1.

Table 1. The pressure tensor normal to the slit pore wall, PN , and the bulk pressure p f with varying
pore sizes a. Two total pressures are studied for various pore sizes.

Pore Size a/σ0 Normal Pressure, PN σ3
0 /ε0 Bulk Fluid Pressure, p f σ3

0 /ε0

5 6.178± 0.005 6.023± 0.005
6 6.017± 0.005 6.011± 0.005
9 6.014± 0.005 5.995± 0.006
12 6.011± 0.005 5.995± 0.003
15 6.029± 0.004 5.995± 0.004
21 6.011± 0.004 6.000± 0.003
27 5.997± 0.004 6.002± 0.003
35 5.998± 0.004 5.997± 0.003

5 0.2011± 0.0009 0.2002± 0.0002
6 0.1988± 0.0009 0.2005± 0.0002
9 0.2007± 0.0008 0.2000± 0.0002
12 0.2020± 0.0007 0.2002± 0.0002
15 0.1980± 0.0007 0.1997± 0.0002
21 0.1993± 0.0006 0.1997± 0.0001
27 0.2005± 0.0006 0.2000± 0.0001
35 0.2000± 0.0005 0.2001± 0.0001

The pressure tensor normal to the pore wall in simulation box 2 is according to Table 1 equal to
the bulk pressure in simulation box 1 within the accuracy of the simulation. The results show that this
assumption is correct. Therefore, the integral pressure can be understood as the average value of the
pressure tensor components tangential to the pore wall, p̂ = 〈PT〉.

4.2. Pressure Variation in the Direction Normal to the Pore Wall

The variation in the pressure component normal to the surface walls is shown for the liquid
(top) and the vapor phases (bottom) in Figure 4, for pore widths, 2a = 17.4σ0 (left) and 2a = 27.4σ0

(right), using αs f = 0.15 (repelling interactions). The horizontal straight line in all sub-figures is the
xx-component extrapolated to the walls. We know there is bulk fluid in the core, as the pressures in
V1 and V2 are the same, so this component is equal to the bulk pressure. For the other curves in the
figure, the tangential components of the pressures (the yy- and zz-components) fall on top of each
other. The distances 2a, b and c between the 4 dashed lines and the pore wall (grey) in the figure
represent three fluid volumes, of increasing size (V1, V2 and Vtot). These are the core volume (width c,
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volume V1), the core plus layer 1 (width b, volume V2) and the whole volume (width 2a, volume Vtot).
The distance 2a is the width of the channel.

Figure 4. Pressure variation of the three pressure components normal to the surface shown for (a) the
liquid phase with pore width 17.4σ0, (b) the vapor phase with pore width 17.4σ0, (c) the liquid phase
with pore width 27.4σ0 and (d) the vapor phase with pore width 27.4σ0, for αs f = 0.15. The normal
component of the pressure, P′xx, is extrapolated from the center of the slit pore.

In the liquid phase (top), the tangential pressure component becomes negative close to the surface.
This variation was used to compute the surface tension between solid and liquid from Equation (18).
The value was found, within the accuracy of the calculation, to be independent of the distance between
the two surface walls, see Table 2.

For the vapor phase, there is no dip in the pressure tensor into the negative regime. In the vapor,
not only the extrapolated normal pressure component, P′xx, but also the two tangential components,
Pyy and Pzz, are constant and independent of the distance between the two surfaces. Therefore,
the surface tension between the vapor and the wall is negligible.

The pressure in the pore core depends on the distance between the surface walls, i.e., it is larger
in the pore with a smaller distance (left) than in the one with a larger distance (right). The bulk fluid
pressures are related to the curvature of the liquid-vapor meniscus by Young–Laplace’s law, which
depends on the slit pore width 2a.

4.3. Pressure Variation along the Pore

The pressure tensor components were computed for three volumes of increasing size (V1, V2 and
Vtot) using the growing-core methodology. V1 and V2 are subvolumes in the center of the REVs and Vtot

is the volume covering the whole REV, i.e., Vtot = V l = Vv (see Figures 1 and 3). In Figure 5, the pressure
components are plotted as a function of the z-direction. The z-direction is parallel to the pore wall and
passes through the vapor and the liquid droplet.

The volumes V1 and V2 contain bulk fluid, and are not influenced by the pore wall. The pressure
components of the two volumes in the center of the box are equal. It was shown (Table 1) that the
pressure was that of a bulk fluid in equilibrium with the pore. Therefore, the liquid bulk pressure is pl .
The pressures are equal to the vapor bulk pressure, pv, on both sides of the liquid droplet.

The volume Vtot includes the fluid and its interface with the pore wall. The pressure component
normal to the fluid wall is still equal to the fluid pressure, Pxx = p f . The pressure components
tangential to the fluid wall in the bulk liquid and bulk vapor, are equal to the integral pressure,
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p̂ = 〈PT〉. The integral pressure is the same in the liquid and vapor phases, in agreement with
Equation (20).

Figure 5. Pressure components (a) Pxx, (b) Pyy and (c) Pzz, as a function of the z- direction for three
regions defined using the growing-core methodology. The liquid droplet is in the center of the box,
from z = 30σ0 to z = 75σ0. There is a vapor phase on both sides of the liquid droplet.

4.4. Pressure Differences Across the Liquid-Vapor Interface

Figure 6 (left) shows the difference between the normal components of the bulk pressures in the
liquid and vapor. The pressure difference is shown as a function of the inverse half channel width,
a, for three values of the interaction parameter α, all values representing wall-fluid repulsive forces.
Figure 6 (right) shows the difference between the liquid and vapor for the tangential components
of the pressures, i.e., the integral pressure p̂ (dashed lines) and the bulk pressure = p f (solid lines).
Results are shown as a function of the inverse half channel width between the two pore walls, 1/a,
and three fluid–solid interactions parameters α. These plots allow us to test Equations (10) and (12).

We first observe that the integral pressure differences for the two fluids are zero, meaning that the
integral pressure is constant along the pore, see Figure 6 right bottom. The results support Equation (12).
In the bulk phases, the tangential and normal components are the same. This confirms the soundness
of the calculation procedures.
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Figure 6. Difference between (a) the normal components of the pressure of the bulk liquid and vapor
and (b) the difference in the tangential component of the pressure of the bulk liquid and vapor, for three
different solid-fluid interactions (α) plotted as a function of the inverse half pore width. The bulk
pressure, p f and the integral pressure are represented by solid and dashed lines, respectively.

Both figures show that the difference in bulk pressure components depends on the distance
between the two pore walls and the interaction parameter α. This is a consequence of a corresponding
decrease of the liquid-vapor curvature. The uncertainties in the results, did not allow a determination
of θ. We have therefore not computed the liquid-vapor surface tension, to confirm directly the
law Young–Laplace. However, results of the two REVs combined, imply the validity of this law.
The liquid–solid and vapor–solid surface tensions, computed with Equation (18), are given in Table 2
for the three α-values. The surface tension changes slightly with α.

Within the accuracy of the calculation, it was possible to estimate the slope of the three data sets.
Lines to guide the eye were fitted through zero in the left-hand side figure, following Young–Laplace
or the scaling law. The values of the slopes were 0.35/0.31/0.29, for α= 0.05/0.15/0.25, respectively.
The slope is equal to γlv cos θ which is approximately equal to γls since γvs ≈ 0 (see Equation (14) and
Table 2).

The slopes depended on the interaction parameter α. The value increased for decreasing values of
α. This is expected: The more repelling the surface is, the higher is the surface tension. The slopes are
in agreement with the liquid-solid surface tensions given in Table 2.

Table 2. Surface tensions for the liquid/solid and vapor/solid interfaces. Values are presented for three
interaction parameters α in the Lennard-Jones potential used in the computations. The surface tensions
were computed via the excess of the tangential pressure tensor (see Equation (18)).

α γls γvs

0.05 0.36 ± 0.02 0.0067 ± 0.0026
0.15 0.33 ± 0.01 0.005 ± 0.0035
0.25 0.31 ± 0.01 0.004 ± 0.0045

4.5. The Small System Scaling Law and the Subdivison Potential

Following the definition of Hill, the difference between the differential pressure, p, and the integral
pressure, p̂, was given by Equation (16), or ε/V = γ f s/(3a). The relation is an example of a small
system scaling law, cf. Equation (6).
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To investigate this further, the differential pressure, p, of the liquid REV minus the integral
pressure p̂ of the same was plotted in Figure 7 as a function of the inverse half channel width for
α = 0.15. The difference between p and p̂ was proportional to 1/a, and the slope was as predicted by
the liquid/solid surface tension from Table 2 divided by the half channel width, a, and a factor of 3.
The line goes through zero, when 1/a becomes zero. This is the thermodynamic limit value.

Figure 7. Difference between p and p̂ for the liquid REV2 as a function of the inverse half channel
width for α = 0.15..

Erdos et al. [10] reported slopes for cylinder pores in addition to slit pores. The ratio of slopes
between slit and cylinder pore was 0.52–0.58. From Equations (16) and (17), we obtain the ratio 0.50,
when the surface tension is constant. The surface tension is a function of the interaction parameter,
as we have seen. The surface tension may also depend on curvature. It follows that results from two
pores with different geometries, having the same α, and a surface tension which is independent of
curvature, will fall on top of each other.

The scaling law, that relate the integral and differential pressure of a REV, offer a new procedure
for calculation of surface tensions. This defined dependence on the inverse characteristic length, may
help distinguish between various other types of dependencies (curvature).

5. Conclusions

In this work we have confirmed, using molecular dynamics simulations, that the integral pressure
in a nano-confined single fluid in two phases is constant along a pore. This supports and extends
earlier investigations of Galteland et al. [18] for a single fluid between spheres arranged in a fcc lattice.
The results imply, that Young’s and Young–Laplace equations apply, equations which have been
validated experimentally numerous times. The integral pressure in mechanical equilibrium can be
understood as the average tangential component of the pressure. It is this component that is constant
through a pore at equilibrium. The differential pressure at mechanical equilibrium can be understood
as the average of the trace of the mechanical pressure tensor divided by 3.

The integral pressure, introduced by Hill, is relevant for descriptions of nano-pores. Using this,
we have developed a small system scaling law for nano-pores. Equation (6) is valid for a slit pore
and a cylindrical pore. The findings allowed us to speculate on wider applications of the scaling law.
One may imagine using the law for more complex geometries, where higher order terms are relevant
(line tension contributions). Once the subdivision potential is known, other thermodynamic quantities,
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like the enthalpy-hat, can also be computed for the confined system [33]. This opens up new ways to
study confined systems.
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Appendix A

In an isotropic system, the differential pressure p is normally defined by the trace of the pressure
tensor [34]:

p =
Pxx + Pyy + Pzz

3
(A1)

where Pii is the pressure component in the direction ii. Also the integral pressure can be understood in
terms of these pressure components. The integral pressure, p̂, in the present slit pore was expressed by
Equation (20):

p̂ =
1
2a

∫ a

−a
PTdx = 〈PT〉 =

Pyy + Pzz

2
(A2)

where Pyy and Pzz are the pressure components in tangential direction, and x is the direction normal to
the surface. The difference between p and p̂ can then be written as

p− p̂ =
Pxx + Pyy + Pzz

3
−

Pyy + Pzz

2
(A3)

which results in

p− p̂ =
Pxx

3
−

Pyy + Pzz

6
(A4)

By using the definition for the tangential pressure from Equation (A2), we obtain

p− p̂ =
Pxx

3
− 〈PT〉

3
(A5)

The normal pressure is equal to the tangential pressure in the thermodynamic limit (the bulk
fluid). For the bulk fluid;

Pxx = 〈PT〉 = p f (A6)

These relations mean that there is no difference between p and p̂.
With the assumption used in Equation (A2), Pxx, is constant in the direction perpendicular to the

pore surface, and
Pxx = p f (A7)

also away from the thermodynamic limit. By combining Equation (A2) with the definition of p̂,
Equation (11), we obtain

〈PT〉 = p f − γ f s

a
(A8)
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By introducing Equations (A7) and (A8) into Equation (A5), we obtain

p− p̂ =
p f

3
− p f

3
+

γ f s

3a
(A9)

which is

p− p̂ =
γ f s

3a
(A10)

The difference between the differential pressure p and the integral pressure p̂ in this equation is
the same as the difference in Equation (16), which was obtained using Hills formalism.
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Abstract: We have described for the first time the thermodynamic state of a highly confined single-
phase and single-component fluid in a slit pore using Hill’s thermodynamics of small systems. Hill’s
theory has been named nanothermodynamics. We started by constructing an ensemble of slit pores
for controlled temperature, volume, surface area, and chemical potential. We have presented the
integral and differential properties according to Hill, and used them to define the disjoining pressure
on the new basis. We identified all thermodynamic pressures by their mechanical counterparts in
a consistent manner, and have given evidence that the identification holds true using molecular
simulations. We computed the entropy and energy densities, and found in agreement with the
literature, that the structures at the wall are of an energetic, not entropic nature. We have shown that
the subdivision potential is unequal to zero for small wall surface areas. We have showed how Hill’s
method can be used to find new Maxwell relations of a confined fluid, in addition to a scaling relation,
which applies when the walls are far enough apart. By this expansion of nanothermodynamics,
we have set the stage for further developments of the thermodynamics of confined fluids, a field that
is central in nanotechnology.

Keywords: Hill’s thermodynamics of small systems; porous media; integral pressure; molecular
simulation

1. Introduction

The thermodynamic state of a fluid in confinement is important for the understand-
ing of adsorption to walls, chemical reactions, film formation and transport in porous
media [1–6]. The molecular structuring at the walls and the forces between particles and
walls are central. The change in thermodynamic properties upon confinement is substantial.
This has been known for a long time [1,7]. Derjaguin considered the measurable force that
attracts or repels two walls that are close together, and defined from this the disjoining
pressure [7]. The disjoining pressure has also been called the solvation pressure [1]. When
the walls are far apart, the disjoining pressure vanishes. It is not well known, however,
how size and shape, as variables, affect the disjoining pressure or other properties of the
confined fluid.

Confinement is considered to be important, for instance, in the context of CO2 separa-
tion and sequestration by metal-organic frameworks [2] or for adsorption in zeolites [3].
The disjoining pressure is of interest when studying aggregation of colloidal particles, sus-
pended or adsorbed [4–6]. It is likely to be important also for film flow on the macroscale [8].

More knowledge of confined fluids on the nanoscale is therefore needed. It may,
for instance, help us solve the well-known up-scaling problem in porous media science [9].
The central problem is to understand how to integrate properties on the pore scale to the
macroscale where Darcy’s law applies. In order to account for shape and size effects, it
was recently proposed to use the four Minkowski functionals [10–12]. This simplifies the
description of a representative elementary volume (REV). Another procedure using the
grand potential for average variables in the REV was also proposed [13,14].
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In this work, we want to further examine this procedure [13,14], by looking for a
way to describe the confined fluid in a pore. We are looking for a way to deal with size-
and shape-dependent variables in a systematic and general manner. Two thermodynamic
approaches are common. The approach following Gibbs is most popular [15–19]. However,
the method of Hill may offer an attractive alternative [20–25], partly because it may provide
an independent check on Gibbs procedure, but also because general geometric scaling
relations are obtainable from Hill’s method. We will see that this is also the case in the
present study.

We will pursue the method of Hill. This starts with the observation that a small system
has surface energy comparable to its bulk energy. A consequence is that the properties are
not Euler homogeneous. Hill proposed to deal with such systems in an original manner [26].
His idea was to introduce an ensemble of replicas of the small systems, on which standard
thermodynamics could be applied. Hill’s method has not gained much attention, in spite
of a renewed effort to spur interests [27,28].

The long-range aim of this work is to contribute to the effort of finding variables that
characterize the confined fluid, for instance in a REV. The grand potential offers one option
to describe the pressure and other variables [13,14]. We will pursue this route and study a
single-phase and single-component fluid in a slit pore using Hill’s method. The so-called
integral and differential pressures introduced by Hill are central. Hill did not consider the
disjoining pressure, however, it is a small system property and we will see that this concept
has benefited from insights of nanothermodynamics. The purpose of this paper is to clarify
the use of Hill’s nanothermodynamics, by applying the method to a fluid in a slit pore
with walls of large surface areas. This is a well-studied case in the literature [1,29], and is
well suited to bring out new results on the confined state, the disjoining pressure and other
properties. Grand canonical Monte Carlo and molecular dynamics simulation techniques
are well suited to investigate thermodynamic relations. We will use these tools to simulate
a single-phase fluid in a slit pore in the grand canonical ensemble. A particular advantage
of this technique is that the simulations offer a mechanical picture of the system.

Solid–fluid and fluid–fluid interactions are considered here, but not solid–solid inter-
actions. The solid–solid interactions will have a large effect on the thermodynamic state of
the system at very small slit pore heights. We do not consider quantum effects that follow
from system smallness in this work. We will consider slit pores of height h/λB = 6 to 71,
where λB is the thermal de Broglie wavelength.

Section 2.1 introduces the reader to Hill’s nanothermodynamics. We show in Section 2.2
how this theory can be used to define size- and shape-dependent properties, and new
Maxwell relations that follow from these. A definition of the disjoining pressure follows
naturally in Section 2.3. In order to be able to verify relations with molecular simulations
as a tool, we need to identify the integral pressures and surface tension in terms of the
mechanical pressure tensor components. This is done in Section 2.4. In Section 3 we
describe the molecular simulations.

We proceed in Section 4 to investigate relations in the theory, and illustrate them
with numerical results. We compute the local mechanical and thermodynamic variables
according to Hill; i.e., the integral and differential pressures, and the integral and differential
surface tensions. The grand potential, or the replica energy, is equal to minus the integral
pressure times the volume. The set of thermodynamic variables of the nanothermodynamic
framework, in terms of mechanical properties, is found to be self-consistent. We offer
concluding remarks in Section 5.

2. Theory
2.1. Hill’s Nanothermodynamics

Consider an ensemble ofN slit pores, where each slit pore is filled with a single-phase
and single-component fluid. The slit pores do not interact with each other. The j-th slit pore
has two parallel plane walls of area Ωj, separated by a distance hj. The ensemble of slit
pores has the total internal energy Ut, total entropy St, total volume Vt = ∑Nj=1 hjΩj, total
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surface area 2Ωt = 2 ∑Nj=1 Ωj, and total number of particles N. The factor of two in the total
surface area arises because there are two fluid–solid surfaces of equal area per slit pore.
By construction, the ensemble variables Ut, St, Vt, Ωt, N, and N are Euler homogeneous
functions of the first order in the number N of slit pores. The total differential of the total
internal energy is

dUt = TdSt − p⊥dVt + 2γdΩt + µdNt + εdN . (1)

This type of equation for the total internal energy we call the Hill-Gibbs equation [25].
The last term was added by Hill. The partial derivatives of the total internal energy
define the temperature T, the normal pressure p⊥, the surface tension γ and the chemical
potential µ (

∂Ut

∂St

)
Vt ,Ωt ,Nt ,N

= T,
(

∂Ut

∂Vt

)
St ,Ωt ,Nt ,N

= −p⊥,(
∂Ut

∂Ωt

)
St ,Vt ,Nt ,N

= 2γ,
(

∂Ut

∂Nt

)
St ,Vt ,Ωt ,N

= µ.
(2)

The control variables in subscripts are kept constant while taking the derivatives. The vol-
ume derivative is taken while keeping the total surface area constant, which implies that the
volume is changed by changing the distance between the surfaces hj ≡ Vj/Ωj. The surface
derivative is taken while keeping the volume constant, which implies that both the pore
heights and surface areas are changed in such a way that the change in the total volume
is zero.

The new thermodynamic variable ε is the subdivision potential. It is(
∂Ut

∂N

)
St ,Vt ,Ωt ,Nt

= ε. (3)

The subdivision potential is defined here as the increase in the total internal energy as the
number of slit pores N increases while keeping St, Vt, Ωt, and Nt constant. This definition
is different from the definition in a previous article by us [23], where only the entropy,
volume and number of particles were kept constant and not the surface area. This led to a
different expression for the subdivision potential.

The subdivision potential is the work done on the system when adding a new slit
pore while keeping the other control variables constant. The subdivision potential may be
positive or negative, depending on whether work is needed or gained by adding new slit
pore replicas.

We are aiming to describe the disjoining pressure, see Section 2.3, of an open slit pore
when the volume, surface area, temperature and chemical potential are control variables.
We will change to this ensemble. This ensemble is useful for describing experiments and
simulations. We use the average volume per slit pore V = Vt/N and the average surface
area per slit pore 2Ω = 2Ωt/N , rather than the total volume Vt and the total surface area
2Ωt. In order to obtain an appropriate Hill-Gibbs equation for this case, we substitute the
total volume with the average volume Vt = VN and total surface area with the average
surface area 2Ωt = 2ΩN . The total differentials of the volume and surface area are

d(VN ) = NdV + VdN and d(ΩN ) = NdΩ + ΩdN . (4)

By introducing this into the Hill–Gibbs equation, see Equation (1), we obtain

dUt = TdSt − p⊥NdV + 2γNdΩ + µdNt + (ε− p⊥V + 2γΩ)dN . (5)

The parenthesis define the replica energy

X(T, V, Ω, µ) ≡ ε− p⊥V + 2γΩ. (6)
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The subdivision potential ε, normal pressure p⊥, and surface tension γ depend on the
control variable set T, V, Ω, and µ. The replica energy density will be used to define the
disjoining pressure.

The grand partition function covers all microstates available to the slit pore. In order
to calculate this partition function one chooses a volume V and a surface area Ω. Both can
be varied independently. For large h and Ω only a change in the volume V = hΩ, and not
in h and Ω separately, matters. For a small volume, it is necessary to use the volume V and
the surface area Ω as independent variables. This is because the same volume change due
to a change of the pore height h = V/Ω or due to a change of the surface area Ω produces
different changes in the partition function, and therefore in the thermodynamic variables.

The replica energy was identified by Hill as the grand potential, here equal to minus
the integral pressure times the volume [26],

X(T, V, Ω, µ) = − p̂V = − p̂⊥V + 2γ̂Ω. (7)

In the last equality, we have chosen to identify the integral pressure as the integral normal
pressure times the volume minus the integral surface tension times the surface area. We
will refer to p̂⊥, γ̂ and p̂ as the integral normal pressure, the integral surface tension and
the integral pressure, respectively, while p⊥ and γ are the differential normal pressure and
the differential surface tension, respectively. The names integral and differential pressure
were coined by Hill to reflect that the differential pressure involves the differential of the
integral pressure. We have chosen a control variable set with volume and surface area,
such that we do not have a differential pressure but a differential normal pressure p⊥ and
differential surface tension γ in its place.

From Equations (6) and (7) it follows that the subdivision potential is

ε = (p⊥ − p̂⊥)V − 2(γ− γ̂)Ω. (8)

The subdivision potential ε indicates that the integral normal pressure and the integral
surface tension may be different from the corresponding differential variables.

2.2. Maxwell Relations for a Slit Pore

Using that the total internal energy is Euler homogeneous of the first order in the
number of slit pores, see Equation (5), we integrate it at constant T, V, µ and Ω

Ut = TSt + µNt + XN . (9)

We introduce the average internal energy, entropy and number of particles per slit pore

Ut = UN , St = SN , and Nt = NN . (10)

By introducing the average properties into the total internal energy in Equation (9) we
obtain the internal energy per slit pore

U = TS + µN + (ε− p⊥V + 2γΩ) = TS + µN + X. (11)

Substituting the average properties per slit pore in Equation (10) into the corresponding
Hill-Gibbs equation, see Equation (5), and using the internal energy in Equation (11),
we obtain the total differential of the internal energy

dU = TdS− p⊥dV + 2γdΩ + µdN. (12)

By differentiating the internal energy in Equation (11) and using the total differential of the
internal energy in Equation (12), we obtain the total differential of the replica energy

dX = −d( p̂⊥V − 2γ̂Ω) = −d( p̂V) = −SdT − p⊥dV + 2γdΩ− Ndµ. (13)
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This equation was termed the Hill-Gibbs-Duhem Equation [25], because it reduces to the
Gibbs-Duhem equation for a large system. It follows that the partial derivatives of the
grand potential is

(
∂( p̂V)

∂T

)
V,Ω,µ

= −
(

∂X
∂T

)
V,Ω,µ

= S,(
∂( p̂V)

∂V

)
T,Ω,µ

= −
(

∂X
∂V

)
T,Ω,µ

= p⊥,(
∂( p̂V)

∂Ω

)
T,V,µ

= −
(

∂X
∂Ω

)
T,V,µ

= −2γ,(
∂( p̂V)

∂µ

)
T,V,Ω

= −
(

∂X
∂µ

)
T,V,Ω

= N.

(14)

Rather than the names replica energy or grand potential, we name from now X = − p̂V by
minus the integral pressure times the volume. In Section 2.4 we will define the integral
pressure in terms of the average tangential mechanical pressure which can be calculated
from molecular simulations. In the simulations, we consider surface areas Ω much larger
than the diameter of the fluid particles and heights h = V/Ω comparable to the diameter
of the fluid particles. This implies that p̂, p̂⊥, γ̂, u ≡ U/V, s ≡ S/V, p⊥, γ, and ρ ≡ N/V
do not depend on Ω, but the variables will depend on the height h and therefore on the
volume V.

The volume and surface derivative can be rewritten in terms of derivatives of the slit
pore height and surface area. These derivatives are needed to calculate the differential
normal pressure and differential surface tension. The differential normal pressure is

p⊥ =

(
∂( p̂V)

∂V

)
T,Ω,µ

= p̂ + V
(

∂ p̂
∂V

)
T,Ω,µ

= p̂ + h
(

∂ p̂
∂h

)
T,Ω,µ

. (15)

The differential surface tension is

γ = −V
2

(
∂ p̂
∂Ω

)
T,V,µ

=
h2

2

(
∂ p̂
∂h

)
T,Ω,µ

− V
2

(
∂ p̂
∂Ω

)
T,h,µ

. (16)

Combining the equations for the differential normal pressure and surface tension it follows
that the integral pressure is

p̂ = p⊥ −
2
h

γ−Ω
(

∂ p̂
∂Ω

)
T,µ,h

. (17)

The last term is the equal to minus the subdivision potential divided by volume, see
Equations (7) and (8). The subdivision potential is

ε = ΩV
(

∂ p̂
∂Ω

)
T,µ,h

. (18)

This implies that in the grand canonical ensemble with T, V, Ω, µ as control variables,
the thermodynamic description of the slit pore with a small height is the same as for the
slit pore with a large height. However, it changes when the integral pressure depends on
the surface area. This may not be the case for any other set of control variables. In general,
the properties of a small system (confined fluid) depend on the set of control variables.

In this work, we deal with large surface areas, such that the integral pressure does
not depend on it. As a consequence the subdivision potential is zero. We will find that
the integral and differential normal pressure are equal. Using that ε = 0, it follows
that the integral and differential surface tensions are also equal for a large surface area,
see Equation (8),
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p̂⊥ = p⊥ and γ̂ = γ. (19)

We will investigate the first identity for large surface areas using molecular simulations.
From Equation (13) we obtain the following Maxwell relations of the differential

surface tension,

(
∂γ

∂T

)
V,Ω,µ

= −1
2

(
∂S
∂Ω

)
T,µ,V

=
h2

2

(
∂s
∂h

)
T,µ,Ω

,(
∂γ

∂µ

)
T,V,Ω

= −1
2

(
∂N
∂Ω

)
T,µ,V

=
h2

2

(
∂ρ

∂h

)
T,µ,Ω

,(
∂γ

∂V

)
T,Ω,µ

= −1
2

(
∂p⊥
∂Ω

)
T,µ,V

=
h

2Ω

(
∂p⊥
∂h

)
T,µ,Ω

.

(20)

In the second identity, we have used that the entropy density, fluid number density and
differential normal pressure are independent of the surface area for large surface areas.
Other Maxwell relations are possible, see the Hill–Gibbs–Duhem Equation (13). The last
equality can be written as (

∂γ

∂h

)
T,µ

=
h
2

(
∂p⊥
∂h

)
T,µ,Ω

. (21)

The important implication of this expression is that the constant nature of one variable
implies the constant nature of the other for large pore heights. With the mechanical
description of the integral properties given in Section 2.4 the consistency of all the above
thermodynamic relations can be tested.

2.3. The Disjoining Pressure

We define the excess replica energy as the replica energy of a slit pore of height h
minus the replica energy of the slit pore where the slit pore height approaches infinity,

Xex = X− lim
h→∞

X. (22)

We denote the thermodynamic variables where the slit pore height approaches infinity
with ∞ in superscript,

lim
h→∞

X = X∞. (23)

The excess replica energy can be written in terms of the excess integral pressure p̂ex, excess
integral normal pressure p̂ex

⊥ , and excess integral surface tensions γ̂ex

Xex = − p̂ex V = − p̂ex
⊥V + 2γ̂exΩ. (24)

We define now the disjoining pressure as the excess normal pressure,

Π(h) ≡ p̂ex
⊥ ≡ p̂⊥ − p∞

⊥ . (25)

Other possible names are minus the excess replica density, or the excess grand poten-
tial density.

This definition of the disjoining pressure is different from the typical definition found
in the literature [7,29,30]. Typically the disjoining pressure is defined to be equal to what
we in this work call the excess differential normal pressure, where the excess is relative
to a bulk fluid. For large surface areas we will show with molecular simulations that
p̂⊥ = p⊥. We will furthermore show that the integral normal pressure, as the slit pore
height approaches infinite separation, equals the bulk fluid pressure p∞

⊥ = pb. This shows
that our choice is equivalent to the usual definition.
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2.4. A Mechanical Description of the Slit Pore

The thermodynamic description of integral and differential pressures and surface
tensions has its mechanical equivalent description in terms of components of the mechanical
pressure tensor. A recent discussion on this topic clarified the challenge of translating
the mechanical pressure tensor into a thermodynamic scalar variable in a meaningful
manner [31–33]. We will identify the integral normal pressure, integral surface tension,
and integral pressure in such a way that thermodynamic framework is self-consistent.
However, we do not claim that this is the only valid choice of thermodynamic pressures
and tensions in terms of the mechanical pressure tensor.

The mechanical pressure tensor of a heterogeneous system is ambiguously defined.
This has been known for a long time, at least since the work by Irving and Kirkwood
in the 1940s. It was shown by Schofield and Henderson [34] that the ambiguity is due
to the arbitrary choice of the integration contour Cij, which is needed to calculate the
configurational contribution to the pressure tensor. The local mechanical pressure tensor is
calculated in a subvolume Vl as a sum of the kinetic and the configurational contributions,

Pαβ(x) = Pk
αβ + Pc

αβ. (26)

Upper case P is used to denote mechanical pressure tensor components in order to dis-
tinguish them from the thermodynamic pressures, which are denoted by the lower case
p. The kinetic contribution is the ideal contribution to the mechanical pressure and is
calculated as

Pk
αβ =

1
Vl

〈
∑

i∈Vl

mivi,αvi,β

〉
. (27)

The sum with subscript i ∈ Vl represents a sum over all particles in the subvolume Vl .
The particle mass is mi and vi,α is the velocity in the α-direction. The solid walls do
not have a velocity and consequently do not directly contribute to the kinetic pressure.
The brackets 〈. . . 〉 represent ensemble average. The configurational contribution is the
non-ideal contribution to the mechanical pressure and is calculated as

Pc
αβ = − 1

2Vl

〈
N

∑
i=1

N

∑
j=1
j 6=i

fij,α

∫
Cij∈Vl

dlβ

〉
. (28)

The sum represents a sum over all particle pairs. The α-component of the force vector
acting on particle i due to particle j is fij,α. The fluid–fluid and fluid–solid interactions
contribute to the configurational pressure, the solid–solid interaction is zero and does not
contribute to the pressure. The line integral is the β-component of the part of the contour
Cij contained in the subvolume Vl .

The contour Cij is the source of the ambiguity of the mechanical pressure tensor, it can
be any continuous line from the centers of particles i to j. The Harasima [35] and the
Irving–Kirkwood [36] contours are two common choices for Cij. The Harasima contour is
defined as two continuous line segments, a line from the center of particle i parallel to the
surface and a line normal to the surface to the center of particle j. The Irving–Kirkwood is
the straight line from particle i to j. For flat surfaces they are equal. However, for spherical
surfaces, the Harasima contour does not obey momentum balance [37]. There are cases
where the Harasima contour is more useful than the Irving–Kirkwood contour [38]. In this
work, we will use the equations by Ikeshoji et al. [39] with the Irving–Kirkwoood contour
to calculate the mechanical pressure tensor.

We will only consider surface areas Ω much larger in both directions than the fluid
particle diameter. This implies the mechanical pressure tensor does not depend on Ω.
It does, however, depend on the height h ≡ V/Ω and therefore on the volume V.
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Using the translational symmetry of the slit pore in the y- and z-direction, where the
x-direction is normal to the solid surface, the equilibrium mechanical pressure tensor in
the slit pore has the form

P(x; h) = P⊥(h)exex + P‖(x; h)(eyey + ezez), (29)

where ex, ey and ez are the unit vectors in the x-, y- and z-directions. The normal pressure
tensor component is equal to the xx-component, and tangential pressure tensor component
is the average of the yy- and zz-components,

P⊥(h) = Pxx and P‖(x, h) =
1
2
(

Pyy + Pzz
)
. (30)

Mechanical equilibrium requires that the tangential pressure is independent of the y- and
z-coordinates, but depends on the x-coordinate. The normal pressure is independent of all
spatial coordinates.

We identify the thermodynamic integral normal pressure in terms of the volume
integral of the normal mechanical pressure divided by the volume. However, since the
normal mechanical pressure and the area are constant everywhere, this simplifies to

p̂⊥(h) ≡
1
h

∫ h

0
P⊥(h)x = P⊥(h). (31)

The integral normal pressure in a large pore is equal to the pressure in a bulk phase in
equilibrium with the pore. The difference in the integral normal pressure in a liquid and
vapor phase in a slit pore is described the Young–Laplace equation, while the integral
pressure is the same in both the liquid and vapor phase [23]. An alternative route to the
integral normal pressure is via the local fluid number density profile [40]

P⊥(h) =
∫ h

0
f f s(x)ρ(x, h)x, (32)

where f f s(x) is the fluid–solid force and ρ(x, h) is the local fluid number density. The fluid
density and fluid–solid forces are uniquely defined, and do not have the inherent problem
that the mechanical pressure tensor has. We can use this equation to validate our method
of calculating the integral normal pressure.

We identify further the integral surface tension as the integral of the normal minus
tangential pressure tensor components,

γ̂(h) ≡ 1
2

∫ h

0

(
P⊥(h)− P‖(x; h)

)
dx, (33)

where the factor half is due to the fact that there are two fluid–solid surfaces. It follows
from Equation (7) together with Equations (31) and (33) that the integral pressure is,

p̂(h) =
1
h

∫ h

0
P‖(x; h)dx. (34)

As shown by Harasima [35] and Schofield and Henderson [34] a sufficiently large volume
integral of the mechanical pressure tensor components does not depend on the choice
of the integral contour Cij. We have identified the integral normal pressure, integral
surface tension and integral pressure in terms of the mechanical pressure tensor. The local
mechanical pressure tensor has an inherent problem, specifically that the contour Cij can
be any continuous line from i to j. However, the thermodynamic variables do not have this
inherent problem. This is because we integrate the local mechanical pressure tensor across
the whole volume V. This volume integral includes all interactions.

The internal energy can be calculated as the sum of the kinetic and potential energy,

U = Ek + Ep. (35)
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By dividing the internal energy in Equation (11) by the volume we obtain the internal
energy density u = U/V. We also use the entropy density s = S/V, and fluid number
density ρ = N/V. By rearranging the equation we obtain the entropy density as

s =
1
T
(u + p̂− µρ), (36)

where the internal energy density, integral pressure and fluid number density are known.
The volume, chemical potential and temperature are imposed on the system.

3. Simulation Details

The thermodynamic state of slit pores of varying heights h was investigated by us-
ing grand-canonical Monte Carlo (GCMC) [41] in combination with molecular dynamic
(MD) simulations with the Nosé–Hoover thermostat [42]. This produced the grand canon-
ical ensemble, i.e., constant chemical potential, temperature, volume and surface area.
The GCMC method inserted and deleted fluid particles to and from the simulation box
from an imaginary fluid particle reservoir at the same temperature and chemical potential.
This controlled the chemical potential of the fluid in the slit pore. The MD procedure
updated the positions and velocities of the fluid particles and controlled the temperature
with the Nosé–Hoover thermostat.

The simulations were carried out using LAMMPS [43]. The local mechanical pressure
tensor was calculated by post-processing the particle trajectories with in-house software
(available at D.O.I. 10.5281/zenodo.4405267). The chemical potential and temperature were
kept constant at µ∗ = 1 and T∗ = 2. The critical temperature of the Lennard–Jones/spline
fluid is T∗c = 0.885 [44]. All units in this work are in reduced Lennard–Jones units, see
Table 1 for a definition.

Table 1. The reduced units are denoted with an asterisk in superscript, for example T∗. The variables
are reduced using the molecular diameter σ, potential well depth ε, fluid particle mass m and
Boltzmann constant kB.

Description Definition

Energy E∗ = E/ε
Entropy S∗ = S/kB

Temperature T∗ = TkB/ε
Distance x∗ = x/σ
Pressure p∗ = pσ3/ε

Chemical potential µ∗ = µ/ε

The simulation box was a rectangular cuboid of side lengths Lx, Ly = Lz. The side
lengths Ly = Lz were chosen such that the surface area was large. Large in this context
indicates large enough for p̂, p̂⊥, γ̂, p⊥, and γ to be independent of the surface area
Ω = LyLz. The simulation box size was decided such that the average number of fluid
particles was approximately 2× 104. The simulation box was periodic in the y- and z-
directions, and non-periodic in the x-direction. This implies that the particles did not
interact across the simulation box boundary in the x-direction.

The fluid–fluid and fluid–solid interaction was modeled with the Lennard-Jones/spline
potential [44]. The fluid–fluid and fluid–solid interactions were equal. The potential energy
of a fluid–fluid or fluid–solid pair separated by a distance r was

uLJ/s(r) =


4ε
[(

σ
r
)12 −

(
σ
r
)6
]

if r < rs

a(r− rc)2 + b(r− rc)3 if rs < r < rc

0 else,

(37)

where rs, a, b and rc were chosen such that the potential energy and the force were con-
tinuous at the inflection point r = rs and the cut-off r = rc. The solid walls were placed
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at the simulation box boundaries x = −Lx/2 and x = Lx/2. The distance between the
fluid and solids were r = |x f − Lx/2| and r = |x f + Lx/2|, where x f is the x-position of
the fluid particle.

The dividing surfaces of the fluid–solid surfaces were chosen to be at x = −Lx/2 and
x = Lx/2. The slit pore height was consequently determined to be h = Lx. Other choices
of the dividing surface are possible, for example, the Gibbs dividing surface or the surface
of tension. When Lx < 2rc the fluid particle can interact with both solid walls. See Figure 1
for an visualization of the simulation box for the case Lx = 4σ.

Figure 1. Visualization of the fluid particles in a slit pore of height Lx = 4σ, chemical potential µ∗ = 1,
and temperature T∗ = 2. The fluid particles are rendered in red, and their diameter is rendered at σ.
The solid is not rendered. The solid lines illustrates the edges of the simulation box. The simulation
was rendered with Open Visualization Tool (OVITO) [45].

The mechanical pressure tensor was calculated in thin rectangular cuboids, called
layers l, of side lengths ∆x, Ly, Lz. The thickness of the layers was ∆x = 0.005σ and the
number of layers was nl = h/∆x. The diagonal components of the mechanical pressure
tensor was calculated using Equations (27)–(29).

The kinetic energy was calculated as the sum of the kinetic energy for each fluid
particle and the potential energy was calculated as the sum of the potential energy of each
fluid–fluid and fluid–solid pairs,

Ek =
1
2

N

∑
i=1

mi(vi · vi) and Ep =
N

∑
i=1

N

∑
j>i

uLJ/s(rij). (38)

The sums of the kinetic and potential energies were used to calculate the internal energy
and entropy densities.

4. Results and Discussion

The results are presented in Figures 2–10 and discussed in that order before general
remarks are offered.

The normal mechanical pressure P⊥ is presented in Figure 2a. It does not depend on
the position x, but it depends strongly on the slit pore height h. The figure shows a straight
line of various lengths for each of the three heights, which reflect the slit pore height h.
The integral normal pressure was identified as this component, p̂⊥ = P⊥. We see that it
is always constant, as demanded by Equation (31). For slit pore heights h > 7σ we find
that the normal mechanical pressure is equal to the bulk pressure. At h = 2.04σ the normal
mechanical pressure is at a global maximum and at h = 2.59σ it has a local minimum for the
given temperature and chemical potential. The normal mechanical pressures divided by the
bulk pressure for the two cases are P⊥/pb = 2.5135± 0.0008 and P⊥/pb = 0.5539± 0.0002,
respectively. The global minimum, which is zero, is at h < 1.8σ when no fluid particles
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fit in the slit pore. This is because solid–solid interactions and quantum effects are not
considered in this work.

(a)

(b)

(c)
Figure 2. (a) Normal mechanical pressure, (b) tangential mechanical pressure, and (c) fluid number
density ρ as a function of th e x-direction for slit pore heights h = 2.04σ, 2.59σ, and 8σ.
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The tangential mechanical pressure P‖, illustrated in Figure 2b, depends in contrast on
the position x as well as on the slit pore height h. The integral pressure is the average of P‖,
see Equation (34). The tangential mechanical pressure follows the trend of the fluid number
density, compare Figures 2b,c. For pore sizes h > 7σ the tangential mechanical pressure
is constant and equal to the bulk pressure pb in the center of the pore. This indicates that
the pore is large enough to accommodate bulk liquid in the center. The fluid is highly
structured close to the fluid–solid surface [1]. As the slit pore height is decreased, fluid
structures on the two sides overlap. When regions of structured fluids overlap, repulsive
and attractive forces between the surfaces appear, and the disjoining pressure becomes
non-zero.

The fluid number density ρ = N/V is presented in Figure 3 as a function of the
slit pore height h. The bulk fluid number density ρb in equilibrium with the slit pore is
shown as a dashed line. The fluid number density converges to the bulk value as the slit
pore height approaches infinity. The volume V depends on the choice of the fluid–solid
dividing surfaces. We have chosen the dividing surfaces to be at x = −Lx/2 and x = Lx/2.
The choice of the dividing surface determines how rapidly the slit pore values converge to
the bulk values. A dividing surface closer to the fluid phase will reduce the volume and
consequently the slit pore values will converge faster to the bulk values. Other choices of
the dividing surface are possible.

Figure 3. Fluid number density ρ = N/V as a function of slit pore height h. The bulk fluid number
density is shown as a dashed line.

The entropy density is presented in Figure 4 as a function of the slit pore height h.
The entropy density is a monotonically increasing function of the height h. This confirms
the observation by Israelachvili [1] that the origin of the oscillations of the disjoining
pressure as a function of the height is not entropic. As a further confirmation of this
point, we find that the internal energy density oscillates with a period equal to the particle
diameter, see Figure 5. The oscillating forces or pressures are thus of energetic origin.
The bulk entropy and internal energy densities are shown as dashed lines. The entropy
and internal energy densities of the slit pore converge to the bulk values as the slit pore
height is increased.
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Figure 4. Entropy density s = S/V as a function of slit pore height h. See Equation (36). The dashed
line shows the entropy density of the bulk sb.

Figure 5. Internal energy density u = U/V as a function of slit pore height h. See Equation (35).
The dashed line shows the internal energy density of the bulk ub.

The integral pressure is equal to the volume average tangential mechanical pressure
p̂ = h−1

∫ h
0 P‖dx. It is of special interest because it is equal to minus the grand potential

divided by volume p̂ = −X/V, or the replica energy density. The grand potential is the
starting point for the definition of the average thermodynamic properties of the REV [13].
The integral pressure is presented in Figure 6 as a function of the slit pore height h. The in-
tegral pressure converges to the bulk pressure pb as the slit pore height approaches infinity,
as expected. The bulk pressure is shown as a dashed line.

In previous works [13,14,21] we argued that the gradient of the integral pressure
is the driving force for mass flux. In another work [23] we found the integral pressure
of a two-phase system in a slit pore to be equal in the liquid and vapor in equilibrium.
The identification of the integral pressure in this work is consistent with this interpretation.
The gradient of the integral pressure is the driving force of the mass flux. For fluid flows
tangential to the slit pore surfaces it is the gradient in the tangential mechanical pressure
tensor component that gives the driving force when the system is out of equilibrium. In this
work we identify the integral pressure as the average of the tangential mechanical pressure
tensor components.
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As stated in Section 2.2, the integral and differential normal pressures and integral
and differential surface tensions are expected to be equal when the surface area is large.
If this is correct, the integral pressure can be computed as

p̂(h) =
1
h

∫ h

h0

p̂⊥h′ =
∫ h

h0

2γ̂

h′2
h′. (39)

The lower integration limit is h0 = 1.8σ, at which point the integral pressure is in good
approximation zero. The integral pressure computed from Equation (39) is shown in Figure
6. The curves are identical. This implies that the integral and differential normal pressures
are equal. As we have already shown that the subdivision potential is zero ε = 0 for large
surface areas with this set of control variables, it follows that the integral and differential
surface tensions are also equal. We will from now on refer to the integral normal pressure
and integral surface tensions as the normal pressure and surface tension.

Figure 6. Integral pressure p̂ as a function of slit pore height h. The integral pressure is computed as
the average tangential mechanical pressure, see Equation (34), and from the normal pressure and
surface tension, see Equation (39).

The normal pressure was identified as the normal mechanical pressure p⊥ = P⊥ in
Equation (31). It is presented in Figure 7 as a function of the slit pore height h. The normal
pressure was also calculated from the local fluid density and the fluid–solid force using
Equation (32). The two methods of calculating the normal pressure agree, which indicates
that we have calculated the mechanical pressure tensor correctly.

The normal pressure oscillates with a period equal to the fluid particle diameter
at small heights h. The oscillations decay as the height h increases. Such oscillations
have been observed in experiments and are well known, see for example Israelachvili [1].
The oscillations are caused by the structuring of the fluid particles between the surfaces,
and by the fact that the fluid particles all have the same diameter. As the height is increased
above h > 7σ the oscillations vanish and the normal pressure is constant and equal to
the bulk pressure. The bulk pressure is shown as a dashed line in the figure. At heights
h > 7σ the fluid structuring near the walls do not overlap. At lower densities, smaller
oscillations are expected with a faster decay. The normal pressure shows a similar trend to
previous works [15,16,40]. At very small heights, the solid–solid interaction will dominate
and completely overshadow the fluid-fluid and fluid–solid interactions presented here.
We have not included any solid–solid interaction in this work, and as a consequence the
normal pressure approaches zero because there is no room for any fluid particles to enter
the slit pore.
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Figure 7. Normal pressure p⊥ = P⊥ as a function of slit pore height h. It is computed as the normal
mechanical pressure tensor component, see Equation (31), and as the integral of the fluid–solid force
times the local fluid density, see Equation (32).

When p⊥ = p̂⊥ and ε = 0, it follows from Equation (8) that the integral and differential
surface tensions are equal γ = γ̂. The surface tension as a function of the slit pore height
is presented in Figure 8, see Equation (33). The surface tension at infinite separation γ∞

is computed as the average surface tension of the slit pore, with height h > 10σ, at which
point the surface tension is independent of h.

Figure 8. Surface tension γ as a function of slit pore height h, see Equation (33). The dashed line
shows the surface tension at infinite separation γ∞.

The disjoining pressure Π was computed from Equation (25), and is shown as a func-
tion of the slit pore height h in Figure 9. The disjoining pressure was here defined to be
equal to the integral normal pressure minus the normal pressure at infinite separation.
Because the integral and the differential normal pressures are the same and because the
normal pressure at infinite separation is equal to the bulk pressure, in this case, the defini-
tion contain the commonly used definition of the disjoining pressure [7,29]. The normal
pressure is constant for slit pore heights h > 7σ. Consequently, the normal pressure at
infinite separation can be calculated as the normal pressure when h > 7σ. The normal pres-
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sure at infinite separation is equal to the pressure in a bulk fluid with the same temperature
and chemical potential.

For the present case, we can claim that our definition of the disjoining pressure is
equivalent to the common definition. Our definition is general, as it also covers the cases
where the integral and the differential normal pressures are unequal. Examples where this
is the case are given below.

Figure 10 shows how the normal pressure minus the integral pressure scales with
inverse slit pore height. It is equal to the scaling law presented in a previous work [23].
The slope of this ideal curve is equal to two times the surface tension. When the inverse slit
pore height approaches zero, i.e., when the walls are far apart, the normal pressure and
integral pressures are equal as predicted. For pores that are so small that no bulk fluid can
form in the center, the structuring at the walls starts to overlap, and a fluctuating difference
is seen in the difference of the normal and integral pressures. In the region of the straight
line, we have a scaling law, that relates states of different heights. At heights smaller than
approximately h < 5σ the scaling law breaks down, the difference of the two pressures
starts to oscillate. There are positive and negative deviations from the law.

Figure 9. Disjoining pressure as a function the slit pore height h, see Equation (25).

Figure 10. The scaling of normal pressure minus integral pressure as a function of the inverse slit
pore height h.

In our earlier work [23], we studied liquid-vapor coexistence in a slit pore. In that
work the surface area was not a control variable, and as a consequence the subdivision
potential was found to be equal to two times the surface tension divided by the slit pore
height, see Figure 10. Another reasonable set of control variables is the height h instead of
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the volume V. For a control variable set consisting of temperature, height, surface area and
chemical potential, the differential normal pressure is equal to

p⊥ =
1
Ω

(
∂( p̂V)

∂h

)
T,Ω,µ

= p̂ + h
(

∂ p̂
∂h

)
T,Ω,µ

. (40)

The differential surface tensions is

γ = −1
2

(
∂( p̂V)

∂Ω

)
T,µ,h

= − p̂h
2
− V

2

(
∂ p̂
∂Ω

)
T,µ,h

. (41)

For this set of control variables, the height h is kept constant instead of the volume V.
The subdivision potential is accordingly

ε = − p̂V + p⊥V + 2γΩ

= p̂V + hV
(

∂ p̂
∂h

)
T,Ω,µ

+ ΩV
(

∂ p̂
∂Ω

)
T,h,µ

.
(42)

These relations also help us characterize the smallness of the slit pore with the large
walls. The subdivision potential, introduced by Hill as a measure of smallness, deviates
from zero in the last relation, also when the integral pressure does not depend on the
size of the area, with height h and surface area Ω as control variables. A dependency
on the area is relevant when adsorption takes place on small spheres [24]. A slit pore
with large walls may be expected to be small for small heights h, since the confined fluid
is not bulk-like. However, we have seen that when we use volume V and surface area
Ω as control variables, the subdivision potential is zero for large surface areas. A zero
subdivision potential means that the system also can be described perfectly using regular
thermodynamics [18]. It is nevertheless meaningful to define a non-zero integral pressure,
because the integral pressure enters the grand potential. It, therefore, determines the
thermodynamic properties of a REV. Away from equilibrium, it will create a driving force.

The grand potential or minus the integral pressure times the volume are equal to the
replica energy. The replica energy is not zero in the present case. Clearly, we have here an
example where smallness is brought out in Hill’s terms through the replica potential.

5. Conclusions

We have developed a nanothermodynamic description based on the ideas of Hill to
describe single-phase and single-component fluids in slit pores in a new manner. As en-
vironmental control variables we chose the chemical potential, temperature, volume and
surface area. We have seen that the outcome varies with the set chosen, but the procedure
can be used for complex geometries and different sets.

Following Hill, we introduced the subdivision potential. It is non-zero only when
the integral pressure depends on the surface area Ω. For large surface areas we have
shown that the subdivision potential is zero, and that p⊥ = p̂⊥ and γ = γ̂. In this
sense, we have found that nanothermodynamics is equivalent to the usual thermodynamic
description for all heights. The replica energy, and therefore the integral pressure, were
shown to be non-zero. This allowed us to identify a scaling law, which confirms earlier
results [22,23]. By choosing height h rather than volume V among the control variables, a
non-zero subdivision potential appears.

We have identified the thermodynamic properties by their mechanical counterparts in
a consistent manner. The integral pressure, which is equal to minus the grand potential
divided by volume, can be understood as the average tangential mechanical pressure.
The normal pressure is the normal mechanical pressure, and the surface tension is the
integral of the normal minus the tangential mechanical pressure. The entropy and in-
ternal energy densities vary with the slit pore height, confirming the observations of
Israelachvili [1]. The entropy density increases monotonically with increasing height, while
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the energy density oscillates. This confirms that the disjoining pressure is not of entropic
origin, it is of energetic origin [1].

By these investigations of the nanothermodynamic theory and the subsequent simu-
lations, we hope to have expanded on the knowledge on Hill’s method, making it more
available for further studies, for instance of flow and reactions in porous media.
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23. Rauter, M.T.; Galteland, O.; Erdős, M.; Moultos, O.A.; Vlugt, T.J.; Schnell, S.K.; Bedeaux, D.; Kjelstrup, S. Two-Phase Equilibrium
Conditions in Nanopores. Nanomaterials 2020, 10, 608. [CrossRef] [PubMed]

24. Strøm, B.A.; He, J.; Bedeaux, D.; Kjelstrup, S. When Thermodynamic Properties of Adsorbed Films Depend on Size: Fundamental
Theory and Case Study. Nanomaterials 2020, 10, 1691. [CrossRef] [PubMed]

25. Bedeaux, D.; Kjelstrup, S.; Schnell, S.K. Nanothermodynamics. General Theory; NTNU: Trondheim, Norway, 2020.
26. Hill, T.L. Thermodynamics of Small Systems - Two Volumes Bound as One; Dover: New York, NY, USA, 1964.
27. Hill, T.L.; Chamberlin, R.V. Extension of the thermodynamics of small systems to open metastable states: An example. Proc. Natl.

Acad. Sci. USA 1998, 95, 12779–12782. [CrossRef] [PubMed]
28. Hill, T.L.; Chamberlin, R.V. Fluctuations in energy in completely open small systems. Nano Lett. 2002, 2, 609–613. [CrossRef]
29. Hansen, J.P.; McDonald, I.R. Theory of Simple Liquids; Elsevier: Amsterdam, The Netherlands, 1990.
30. Radke, C. Film and membrane-model thermodynamics of free thin liquid films. J. Colloid Interf. Sci. 2015, 449, 462–479. [CrossRef]
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Abstract

We have investigated the state of a nanoconfined fluid in
a slit pore in the canonical and isobaric ensembles. The
systems were simulated with molecular dynamics simula-
tions. The fluid has a transition to a close-packed structure
when the height of the slit approaches the particle diame-
ter. The Helmholtz energy is a non-convex function of the
slit height if the number of particles does not exceed that of
one monolayer. As a consequence, the Legendre transform
cannot be applied to obtain the Gibbs energy. The Gibbs en-
ergy of a non-deformable slit pore can be transformed into
the Helmholtz energy of a deformable slit pore using the
Legendre-Fenchel transform. The Legendre-Fenchel trans-
form corresponds to the Maxwell construction of equal ar-
eas.

1 Introduction

Over the last years, there has been an increasing number of
observations of phase transitions in confined fluids. Fluids
can for instance change their critical temperature by several
tens of degrees [1, 2], a two-dimensional layer at an interface
may develop more than one structure [3], and adsorption to
droplets may depend largely on droplet size [4, 5]. Classical
Gibbs thermodynamics ceases to exist on the nanoscale. The
need for the inclusion of shape and size has been met in
several ways. Gibbs and followers included curvature as a
variable [6] to deal with droplet size dependence. Not only
size and shape will matter for the outcome of the analysis of
simulations; the thermodynamic properties will also depend
on the small system’s environment or the set of variables
that control the system (the ensemble) according to Hill
[7, 8]. Dong [9] argued that thermodynamic variables, like
the surface tension, change as we shrink the small system,
and proposed to add as variable the integral surface tension,
to complement the normal (differential) surface tension. The
pressure of fluids in porous media is of special interest as its
gradient is the main driving force for mass transport [10, 11].

A systematic way to address these problems was given by
Hill [7, 8] already 50 years ago. We have argued that the
problems are best addressed by his method [12, 13, 14, 3],
because the method provides a general description of small

systems. We have for instance been able to write scaling
laws for small system variables [15], and a new equilibrium
criterion for pressure was developed for two-phase equilibria
in slit pores [15]. Hill’s method is therefore our first choice
when the aim is to learn more about structural transitions
in confined fluids or how variables change. We shall find
here that a transforming procedure exists in terms of the
Legendre-Fenchel transform. This is a more general trans-
form than the Legendre transform and can be used for large
as well as small systems. It will enable us to compute the
Gibbs energy from the Helmholtz energy and vice versa.

We have recently reported the changes in free energy dur-
ing polymer stretching. The free energy depends on the con-
ditions used, whether the polymer is stretched at controlled
length or force [16, 17]. For sufficiently short polymers,
the Helmholtz energy is a non-convex function of the con-
trolled length of the polymer. A convex function has a non-
negative second derivative everywhere. To transform from
the Helmholtz to the Gibbs energy the Legendre-Fenchel
transform could be applied. Similarly, we observed that the
grand potential of a fluid in a slit pore is a non-convex func-
tion of the distance between the parallel plates at constant
chemical potential and temperature [3]. Also, the Helmholtz
energy of solid colloids in solution is non-convex as a func-
tion of the controlled distance between the colloids, keep-
ing the temperature, volume, and the number of particles
constant [18]. Both cases can be explained by a disjoining
pressure (also known as the solvation pressure) [19], which
is the excess normal pressure relative to the bulk pressure
due to the packing of fluid particles between the solids. The
observations mentioned all stem from size effects. To ob-
tain the free energy of the corresponding constant pressure
ensemble the Legendre-Fenchel transform must be applied,
and not the Legendre transform.

The three pillars that science progresses from are theory,
experiments, and simulations. The theory part is lacking in
nanotechnology. Energy converting devices are abundant,
but there is little available general theory of energy con-
version for the nanoscale. The laws of energy conversion
are the laws of thermodynamics, and the question we are
asking is which form these take. Nanothermodynamics has
been constructed, mostly by adding terms to Gibbs’s classi-
cal formulation for large-scale systems. While this mending
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procedure may serve the purpose in some special cases, it
does not present us with a systematic procedure to be used
as a general tool. Here we argue that the theory of Hill
presented more than 50 years ago, presents an underused
opportunity for a systematic procedure. To show the ad-
vantage of this approach, we study a transition between two
structural regimes in a molecular fluid in a porous media
model and document the applicability of an important tool,
namely the Legendre-Fenchel transform.

Several problems arise for systems dependent on size and
shape. To which extent can we still use the thermodynamic
tools on nanoscale systems that apply to macroscale sys-
tems? When additional independent variables are needed in
the Gibbs equation, from which pool do we draw them and
how?

The free energies of a molecular fluid in a slit pore will
be investigated at two conditions; at constant volume and
constant normal pressure. In the first case, the system is in
the canonical ensemble, and in the second case, the system
is in the isobaric ensemble. In the thermodynamic limit,
where the free energy is convex, we can transform the free
energy from one ensemble to another using the Legendre
transform. For small systems, this is not always the case.
However, in the case of polymer stretching, we have recently
found that the Legendre-Fenchel transform can be used [17].
This experience has led us to wonder whether Legendre-
Fenchel transforms can be used also for fluids confined to
the slit pore, thereby motivating this paper. In the isochoric
ensemble, the volume of the slit pore is controlled, and we
will consider this as a simple model of a non-deformable
porous medium. In the isobaric ensemble, the pore normal
pressure is controlled, and the pore volume can fluctuate.
We will consider this as a simple model of a deformable
porous medium.

The paper is outlined as follows. We give the theoreti-
cal background in section 2, including the Legendre-Fenchel
transform in section 2.1. We proceed to present the sim-
ulation technique in section 3 and show in section 4, that
the Helmholtz energy of an isochoric slit pore can be trans-
formed into the Gibbs energy of an isobaric slit pore using
the Legendre-Fenchel transform. The findings are discussed
and perspectives are pointed out. In short, we shall see that
systems that are small in Hill’s sense have additional tran-
sitions than the bulk systems have. The system is more
restricted when we control the fluid height than when we
control the normal pressure.

1.1 System description.

We investigate a single-phase fluid in a slit pore. This can
be seen as a simple model suited to bring out the features
described above. The system consists of a fluid placed be-
tween two parallel solid walls, see Fig. 1. The system has
periodic boundary conditions in the y- and z-directions. In
the canonical ensemble, the walls do not move, while in the
isobaric ensemble, the top wall can move in the x-direction
and will act as a piston with controlled normal pressure on

Figure 1: The fluid is placed between two parallel solid walls.
The walls are separated by a distance h (height) and the
side lengths of the walls are L. In the canonical ensemble
the height h is controlled and the normal pressure P fluctu-
ates, while in the isobaric ensemble the normal pressure P
is controlled and the height h fluctuates.

the fluid.
In the canonical ensemble the volume of the system is

controlled, and the normal pressure P fluctuates. In the
isobaric ensemble, the normal pressure P is controlled, and
the volume V = L2h = Ah fluctuates, where A = L2 is the
fluid-solid surface area of one of the walls. The side lengths
in the y- and z-directions are fixed equal to L, and it is only
the distance between the walls h (height) that fluctuates.
The side lengths L are much larger than the height such
that the system may be considered to be independent of the
surface area A.

2 Theory

In the canonical ensemble, the Helmholtz energy describes
the maximum obtainable work of the system. The total
differential of the Helmholtz energy is

dF (N,h, T ) = −SdT − PAdh+ µdN, (1)

where N is the number of fluid particles, T is the temper-
ature, S is the entropy, P is the normal pressure, A is the
fluid-solid surface area, and µ is the chemical potential. In
the isobaric ensemble, it is the Gibbs energy that describes
the maximum obtainable work of the system. The total dif-
ferential of the Gibbs energy is

dG(N,P, T ) = −SdT +AhdP + µdN. (2)

The normal pressure and height are defined in terms of the
free energies as

P ≡ − 1

A

(
∂F

∂h

)
T,N

and h ≡ 1

A

(
∂G

∂P

)
T,N

. (3)
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The difference in the specific Helmholtz energy ∆f =
F/M , where M is the total mass of the fluid, is calculated
by integrating the mean normal pressure as a function of the
volume in the canonical ensemble

∆f = f(N,h, T )− f(N,h0, T ) = − A
M

∫ h

h0

〈P 〉dh′, (4)

where 〈P 〉 is the mean normal pressure. Similarly, the dif-
ference in the specific Gibbs energy ∆g = G/M is calculated
by integrating the mean height as a function of the normal
pressure in the isobaric ensemble

∆g = g(N,P, T )− g(N,P0, T ) =
A

M

∫ P0

P

〈h〉dP ′, (5)

where 〈h〉 is the mean height, and f0 = f(N,h0, T ) and
g0 = g(N,P0, T ) are reference states at a large height h0
and low pressure P0. The difference in the specific entropy
of the system in the isochoric ensemble is

∆s =
1

T
(∆u−∆f), (6)

where ∆u is the change in the specific internal energy of the
system. The changes in specific entropy and internal energy
are relative to a system at height h0.

2.1 The Legendre-Fenchel transform.

In the isobaric ensemble, the control variables are tempera-
ture T , normal pressure P , and the number of fluid particles
N . The normal pressure is equal to the absolute force acting
on the walls divided by the surface area A. This is equal to
the normal component of the mechanical pressure tensor of
the fluid [3]. The isobaric partition function can be obtained
by a Laplace transform of the canonical partition function

Z(N,P, T ) = βPA

∫ ∞
0

Z(N,h, T ) exp(−βPAh)dh, (7)

where Z(N,h, T ) is the canonical partition function and
β = (kBT )−1 where kB is the Boltzmann constant. The
Helmholtz and Gibbs energies are given by the correspond-
ing partition functions

F (N,h, T ) = −kBT lnZ(N,h, T ) (8)

and

G(N,P, T ) = −kBT lnZ(N,P, T ), (9)

respectively. From the three equations above it follows that
the Gibbs energy can be obtained from the Helmholtz en-
ergy,

exp[−βG(N,P, T )] =

βPA

∫ ∞
0

exp[−β(F (N,h, T ) + PAh)]dh.
(10)

For sufficiently high surface number densities Γ = N/A, the
system is large and the Helmholtz energy F is a differen-
tiable and convex function of the height, and the above ex-
pression reduces to the Legendre transform of the Helmholtz
energy to the Gibbs energy,

GL(N,P, T ) = G(N,h, T ) + PhA. (11)

For low surface number densities Γ, the system is small,
and the Helmholtz energy is non-convex and the integral in
equation 10 does not reduce to the Legendre transform. If
the distribution of the normal pressure is sharply peaked it
can however be calculated with a saddlepoint approximation
[17, 20, 21],

GLF(N,P, T ) = min
h

(F (N,h, T ) + PhA). (12)

This is the Legendre-Fenchel (LF) transform of the
Helmholtz energy F to the Gibbs energyGLF. The LF trans-
form returns only convex functions. If we apply it again,

F ∗∗ = max
p

(GLF + PhA) = GLF + PhA, (13)

we obtain the convex envelope of the Helmholtz energy
F ∗∗. The convex envelope is the largest function satisfy-
ing F ∗∗ ≤ F , which is only equal to the original Helmholtz
energy F if it is a convex function. In other words, the LF
transform is not self-inverse if the function is non-convex
[20, 21]. The LF transform can be defined as either the
maximum or minimum. Since GLF must be convex, we can
also obtain F ∗∗ from a Legendre transform of GLF.

The Maxwell construction of equal areas for liquid-vapor
coexistence is equivalent to the convex envelope of the
Helmholtz energy F ∗∗. The equal area rule states that for a
liquid-vapor coexistence the system follows a constant pres-
sure Peq from volume Vl to Vg when the system evaporates,
and conversely for condensation. The two volumes Vl and
Vg at the pressure Peq are the binodal points of the pressure-
volume curve. The equal area rule states∫ Vg

Vl

P (V )dV = Peq(Vl − Vg) (14)

where P (V ) is a cubic equation of state, for example, the
van der Waals equation, below the critical point. This corre-
sponds to finding the double tangent line of the non-convex
Helmholtz energy. The double tangent line is a tangent of
the function at two different points. A double tangent line
does not exist for convex functions. The double tangent line
is exactly the convex envelope, as it is the largest function
that satisfies F ∗∗ ≤ F .

3 Simulation details

A fluid between two parallel solid walls in the canonical and
the isobaric ensemble was investigated with molecular dy-
namics simulations using LAMMPS [22, 23]. The tempera-
ture of the fluid was controlled using the Nosé-Hoover ther-
mostat to T = 2.26Tc = 2ε/kB, where Tc is the critical
temperature of the bulk fluid [24].
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The walls were made up of solid particles in a face-
centered cubic lattice with a number density n∗s = 1/σ3

corresponding to a lattice constant a = 22/3σ, where σ is
the fluid particle diameter. Each wall had Np = 5 × 104

solid particles and side lengths L = 100a ≈ 159σ. Each
solid particle had a mass equal to the fluid particle mass,
implying that the mass of the top solid wall (piston) was
5×104 times greater than a fluid particle. The mass of each
particle were equal to m, which in reduced units is equal to
one. The total mass of the fluid particles were M = Nm.
In the canonical ensemble, the solid particles were fixed in
space and could not move. In the isobaric ensemble, the
solid particles in the lower wall were fixed in space, while
the solid particles in the piston were free to move as a single
rigid body in the x-direction. The piston could not rotate
or move in the y- or z-directions. The fluid particles were
placed between the walls. The system is visualized in Fig. 2
using OVITO [25]. The fluid particles are drawn in red and
the solid particles are drawn in blue.

The fluid-fluid and fluid-solid particles interacted with the
Lennard-Jones/spline potential [24],

uLJ/s(r) =


4ε
[(
σ
r

)12 − (σr )6] if r < rs,

a(r − rc)2 + b(r − rc)3 if rs < r < rc,

0 else,

(15)

where r = |rrrj − rrri| is the distance between particle i and
j, σ is the particle diameter, and ε is the well-depth of the
interactions. The parameters rs = (26/7)(1/6)σ ≈ 1.24σ,
a = −24192/3211(ε/r2s), b = −387072/61009(ε/r3s) and
rc = 67/48rs ≈ 1.74σ were set such that the potential energy
and the force were continuous at rs and rc. An advantage
of the Lennard-Jones/spline potential is that the cut-off is
much shorter than the regular Lennard-Jones potential with
a typical cut-off at 2.5σ, which considerably decreases the
computation time. See for more details on the properties of
the Lennard-Jones/spline potential the work of Hafskjold et
al [24] and Kristiansen [26]. The fluid-fluid and fluid-solid
interactions were equal, while the solid-solid interaction was
zero. The size of the timesteps was set equal to δt = 0.002.
All units are in reduced Lennard-Jones units, meaning that
they are reduced with the mass, particle diameter σ, the
minimum of the interaction potential ε, and the Boltzmann
constant kB.

The system was initialized by creating one slab of fluid
particles between two slabs of solid particles, all in a face-
centered cubic lattice. The fluid particles were initialized
with a velocity such that the temperature was equal to T =
2ε/kB, and they were free to move for 104 timesteps to melt
the face-centered cubic lattice of the fluid. In the canonical
ensemble, the piston was moved with a constant velocity for
105 timesteps to reach the desired height h, from here on
defined as the minimum distance between the center of a
solid particle in the bottom solid wall and the center of a
solid particle in the piston. The controlled height was in the
range h ∈ [1.7, 110]σ. Then the position of the piston was
fixed, and the system was run for 106 timesteps to calculate

Figure 2: A rendering of simulations in the isobaric ensemble
with surface number density Γ = 0.81. The top solid wall
is the free to move in the normal direction and acts as a
piston on the fluid with a controlled normal pressure P .
The height h is shown in (a) and is defined as the minimum
distance between the center of a solid particle in the bottom
solid wall and the center of a solid particle in the piston.
The normal pressure and mean height were equal to (a)
P = 0.164ε/σ3 and 〈h〉 = (10.2± 0.09)σ, (b) P = 2.88ε/σ3

and 〈h〉 = (2.530 ± 0.009)σ and, (c) P = 2.89ε/σ3 and
〈h〉 = (1.865± 0.003)σ.
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the mean normal pressure, 〈P 〉.
The mean normal pressure was calculated as the arith-

metic mean of the instantaneous forces of the particles in
the piston at time t at time intervals ∆t = 0.2

〈P 〉 =
1

An

n∑
t=0

Np∑
i=1

fx,i,t, (16)

where fx,i,t is the force in the x-direction acting on the solid
particle i in the piston at time t, Np is the number of solid
particles, and n = 106(δt/∆t) = 104 is the number of sam-
ples where δt is the size of the timestep. Alternatively, the
normal pressure could be calculated as the normal compo-
nent of the mechanical pressure tensor in the fluid [3]. This
has been done as a consistency check.

In the isobaric ensemble, an external force was added to
the piston after melting the face-centered cubic lattice of
the fluid. The simulations with controlled normal pressures
were run sequentially from low to high normal pressure to
obtain the compression curve, and from high to low normal
pressure to obtain the expansion curve. This was done to
reach all available states of the system in the isobaric en-
semble. The controlled normal pressures were in the range
P ∈ [0.0045, 25]ε/σ3. Each of the simulations was run for
106 timesteps to calculate the mean height 〈h〉.

An external force fx in the x-direction was applied to each
solid particle in the piston,

fx =
PA

Np
(17)

where Np is the number of particles in the piston. The
mean height 〈h〉 was calculated as the arithmetic mean of the
instantaneous height at time t at time intervals of ∆t = 0.2

〈h〉 =
1

n

n∑
t

ht. (18)

The mean of the specific internal energy was calculated
as the mean potential energy plus the mean kinetic energy
of the fluid particles,

〈u〉 =
1

M

 N∑
i=1

N∑
j>i

uLJ/s(r) +
1

2

N∑
i=1

m(vvvi · vvvi)

 (19)

where vvvi is the velocity of particle i, m is the mass of each
fluid particle and M = Nm is the total mass of the fluid
particles. The specific internal energy was used together
with the specific Helmholtz energy to calculate the specific
entropy. The reference states f0, u0, and s0 were calculated
at height h0 = 110σ0, and g0 was calculated at pressure P0

corresponding to a mean height 〈h0〉 = 110σ0.

4 Results and discussion

The results are illustrated in Figs. 3 to 10. Fig. 3 shows
the normal pressure-height relationship in isochoric condi-
tions for various surface number densities. Figs. 4 to 6, give

Figure 3: Normal pressure as a function of the height in
isochoric conditions for varying surface number densities.
The insert is an enlargement of the region where structural
transitions occur.

Figure 4: Specific internal energy as a function of the height
in isochoric conditions for varying surface number densities.

Figure 5: Difference in specific entropy as a function of the
height in isochoric conditions for varying surface number
densities.
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Figure 6: Difference in specific Helmholtz energy as a func-
tion of height for isochoric conditions for varying surface
number densities.

the specific internal energy, difference in specific entropy,
and difference in specific Helmholtz energy, respectively, all
properties as a function of a controlled height. The differ-
ence in specific entropy and Helmholtz energy are given as
the difference relative to the reference state at h0 = 110σ.
Fig. 7 is a visualisation of the monolayer in isochoric condi-
tions when close to hexagonal packing appears.

The impact of the choice of environmental control vari-
ables on the normal pressure-height relationship, the basis
of the findings reported, is illustrated in Fig. 8. This pro-
vides a basis for examination of Legendre and the Legendre-
Fenchel transforms, see Figs. 9 and 10. The various results
will now be explained and discussed.

4.1 The normal pressure, specific internal
energy, entropy, and Helmholtz energy
as a function of height.

The normal pressure-height relationship as a function of
height and for various number densities was presented in
Fig. 3. The thermodynamic limit behavior is seen for large
heights or large surface number densities. The large system
has a differentiable convex Helmholtz energy, approximately
when the height h > 3σ and when the surface number den-
sities are Γ ≥ 1.18. The typical small system behaviour
appears for heights h < 3σ and surface densities Γ < 1.18.

For smaller heights or surface number densities, the nor-
mal pressure goes through a local minimum and maximum
as the height changes. This implies that the Helmholtz en-
ergy is non-convex. The specific internal energy has also a
minimum, see Fig. 4. The entropy is monotonically increas-
ing, except for the case Γ = 1.18 which has a local minimum,
see Fig. 5. The Helmholtz energy in Fig. 6 captures the
trade-off between the internal energy and the entropy. The
Helmholtz energy as a function of height is non-convex for
surface densities Γ < 1.18, which entails that the Legendre
transform can not be applied. The insert in Fig. 6 mag-

Figure 7: Top down view of fluid particles in isochoric con-
ditions which has formed a hexagonal monolayer at height
h = 22/3σ ≈ 1.59σ. The solid particles are not shown.
The mean normal pressure is 〈P 〉 = (9.4± 0.1)ε/σ3, specific
internal energy 〈u〉 = (−4.39 ± 0.03)ε/m, difference in the
specific entropy 〈∆s〉 = −9.7kB/m, and difference in specific
Helmholtz energy is 〈∆f〉 = 11.4ε/m [25].

nifies the interesting region. The emerging structures are
stabilized by the ability of the system to go to lower energy
and higher entropy. The curves indicate a smooth structural
transition.

4.2 A small system phase transition.

Figs. 3 to 6 showed a family of curves that represent the
small system in a transition region for small values of h.
This transition is special for a small thermodynamic system,
it disappears when surface number density increases. How
can we understand better the behavior of the particles in
this region?

For the system to change from a fluid to a close-packing
structure (face-centered cubic or hexagonal close-packed)
without defects, the surface number density Γ must be

Γ =
k

r2
, (20)

where k is the number of layers (for a monolayer k = 1)
and r is the distance between the fluid particles. The
total potential energy is at a minimum at the distance
r = 21/6σ ≈ 1.12σ, which is where the Lennard-Jones/spline
interaction potential is at a minimum. The interaction po-
tential is short-ranged, it is zero for distances larger than
the cut-off at rc ≈ 1.74σ. The surface number density for
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a monolayer (k = 1) is Γ ≈ 0.79, and for a double layer
(k = 2) it is Γ ≈ 1.59. An odd number of layers can com-
plete the face-centered cubic lattice of walls without faults,
while an even number of layers must have an odd number
of stacking faults.

In the extreme case of a monolayer, we assume that the
fluid is packed in such a way that each fluid particle lies
on average at a distance r0 = 21/6σ away from eight solid
particles and four fluid particles. In addition, there are two
solid particle neighbours and four fluid particle neighbours
each at a distance ra = 22/3σ. All other particles lie beyond
the cutoff distance rc and do not contribute to the potential
energy.

The minimum specific potential energy of a monolayer is
then

ep,0 = 10uLJ/s(r0) + 4uLJ/s(ra) ≈ −10.39ε/m, (21)

where m is the particle mass. Taking into account thermal
fluctuations, it is

〈ep〉 = ep,0 + a〈r2〉 (22)

where a is a constant. Assuming no defects, the average
deviation from the average position can be set to zero. The
quadratic term represents the lowest order correction to the
mean specific potential energy due to thermal fluctuations
making the fluid particle spend on average more time away
from the average position. By the equipartition theorem, we
then obtain the mean potential energy of a fluid particle

〈ep〉 = ep,0 +
3

2
kBT ≈ −7.39ε/m. (23)

The expected minimum mean specific internal energy is the
sum of the mean specific potential and kinetic energies

〈u〉min = 〈ep〉+ 〈ek〉 ≈ −4.39ε/m (24)

where we have used that the mean specific kinetic energy is
〈ek〉 = 3kBT/(2m) = 3ε/m at a temperature T = 2ε/kB.

The observed minimum of the specific internal energy for
Γ = 0.79 is indeed 〈u〉 = (−4.39± 0.03)ε/m at h = 22/3σ ≈
1.59σ, see Fig. 4. The simulated structure is visualised in
Fig. 7. The figure shows that the fluid particles have formed
a hexagonal monolayer layer. The mean normal pressure
is 〈P 〉 = (9.4 ± 0.1)ε/σ3, difference in the specific entropy
〈∆s〉 = −9.7kB/m, and difference in specific Helmholtz en-
ergy is 〈∆f〉 = 11.4ε/m. The specific internal energy is at
a minimum at this height, however, the Helmholtz energy is
not.

A transition from a fluid to a close-packed structure under
stress does not imply a first-order phase transition, a con-
tinuous transition from a fluid to a close-packed structure
packing may occur. In other words, the free energy can be
smooth and continuous during the transition.

Consider for comparison the familiar pressure-volume
isotherms of cubic equations of state, for example, the van
der Waals equation, for temperatures below the critical

point. The Helmholtz energy is a non-convex function of
volume. The binodal curve intersects the pressure-volume
isotherms at two points a = (peq, Vl) and b = (peq, Vg) for
T < Tc. The part of the isotherm between point a and b is
known as the van der Waals loop. The Helmholtz energy is
a non-convex function in this region. The line between the
points a and b corresponds to the Maxwell construction of
equal areas. See equation 14. The double Legendre-Fenchel
transform of the specific Helmholtz energy f gives its con-
vex envelope f∗∗, which corresponds to the Maxwell con-
struction of equal areas. The spinodal curve intersects the
isotherm at the local minimum and maximum, the spinodal
region is a subset of the binodal region. The binodal region
is metastable, while the spinodal region is unstable. Exper-
imentally it is observed that fluids do not necessarily follow
the van der Waals loop, but rather the straight line connect-
ing points a and b. This is a first-order phase transition, as
the pressure is non-smooth at the points a and b. The sys-
tem is free to decompose in the binodal and spinodal region,
which is energetically more favorable. During liquid-vapor
phase decomposition the pressure is constant and equal to
Peq. The constant pressure corresponds to the double tan-
gent line in the free energy. This double tangent line is the
largest convex curve that satisfies f∗∗ ≤ f , which is exactly
its convex envelope.

The states in the binodal and spinodal regions can be
stable due to the restrictions that the confinement imposes
on the system. The coexistence of fluid and close-packed
structures is not possible in these simulations, as this would
imply that there would be regions with differing heights.
This could be possible if the walls were free to rotate or de-
form, however, the system is restricted such that the height
is everywhere the same. In isochoric conditions, there is a
smooth transition from a fluid to a close-packed structure.
In isobaric conditions, the system is less restricted, and the
system undergoes a first-order phase transition when it en-
ters the spinodal region, see Figs. 8 (center). This is because
the spinodal region is unstable. The set of control variables
provide different stable states with their different restrictions
on the system.

4.3 Response functions.

In the isobaric conditions, it is useful to consider the re-
sponse function

KN,T = −A
(
∂h

∂P

)
N,T

= −
(
∂2G

∂P 2

)
N,T

≥ 0, (25)

where KN,T /Ah is the isothermal compressibility [27]. As
the states with negative KN,T cannot be stable under height
fluctuations, KN,T is restricted to be non-negative. This
can be seen in Fig. 8, where the states with negative KN,T

in isochoric conditions are not available in isobaric condi-
tions. The region with negative compressibility (positive
slope) corresponds to the spinodal region, which is the re-
gion between the local minimum and maximum. In the iso-
choric ensemble, the height is a control variable, and states
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Figure 8: Normal pressure as a function of the height for
isochoric and for isobaric conditions. The surface number
density in each figure is Γ = 0.22, Γ = 0.81, and Γ = 1.18
from top to bottom. The top and middle figures shows the
isobaric expansion and compression curves.

Figure 9: Specific Gibbs energy as a function of normal
pressure. The surface number densities from top to bottom
are Γ = 0.22, Γ = 0.81, and Γ = 1.18, respectively.
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Figure 10: Specific Gibbs energy as a function of height. The
surface number density in the figures from top to bottom are
Γ = 0.22, Γ = 0.81, and Γ = 1.18, respectively.

with negative isothermal compressibility can be realized. In
other words, the response function

1

KN,T
= − 1

A

(
∂P

∂h

)
N,T

=
1

A2

(
∂2F

∂h2

)
N,T

(26)

can be negative. This can be seen in Fig. 8.
The function gLF(N,P, T ) presents two non-smooth

points, indicating a first-order phase transition. The isother-
mal compressibility in isochoric conditions is negative, and
is well defined in all available states. In isobaric conditions,
the isothermal compressibility is undefined when the free
energy is non-smooth. It is well defined and non-negative
for all other states. The reason for this is that the normal
pressure is increased by applying a directed force that seeks
to compress the system. If the system was to increase its
volume in response to this compression force, the fluid cen-
ter of mass would have to move in the direction opposite
to the applied force, thus violating conservation of linear
momentum.

4.4 The specific Gibbs energy as a function
of normal pressure. Legendre-Fenchel
transforms.

Figs. 8 presents the normal pressure-height relationships
for isochoric and isobaric conditions. The states available
for the system to follow in isochoric conditions are blue,
while isobaric conditions provide states given by the orange
and green curves. The orange curve is for isobaric compres-
sion and the green curve is for isobaric expansion. Once the
maximum in a curve is reached during isobaric compression,
the system will switch to a smaller height. Alternatively, by
isobaric expansion all points near the minimum become ac-
cessible. The dotted line is the height computed from the
derivative of the Legendre-Fenchel transform gLF with re-
spect to the normal pressure P , see equation 3. This curve
gives the Maxwell construction of equal areas, or in other
words the straight line across the van der Waals loop or
the binodal region. For isobaric conditions, the system is
metastable in the binodal region and unstable in the spin-
odal region.

The specific Gibbs energy is presented in Figs. 9 and 10 as
a function of normal pressure and height, respectively. For
the large thermodynamic system, i.e. the bottom panels
where Γ = 1.18, the specific Gibbs energy of compression
(orange curve) coincides with the Legendre transform (blue
curve), and the Legendre-Fenchel transform (black dotted
curve) of the specific Helmholtz energy. This is the expected
behavior of large systems.

At lower surface number densities, the Legendre trans-
form ceases to apply. But we can still understand the sys-
tem in terms of its thermodynamic properties. The nor-
mal pressure-height curves form a van der Waals loop for
isochoric conditions. The specific Gibbs energy from com-
pression differs from that of expansion for isobaric condi-
tions. The Legendre-Fenchel transform (dotted curve) fol-
lows the Legendre transform (blue curve), except in the van
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der Waals loop, which is cut out by the Legendre-Fenchel
transform.

The underlying distribution of normal pressures in the iso-
choric conditions is highly peaked, implying that the condi-
tions for the saddlepoint approximation, necessary for the
Legendre-Fenchel transform, are obeyed. The small error
bar in the normal pressure, which is the standard deviation,
testifies to this, see Fig. 8. The mean relative standard de-
viation is 1.1%, 0.4%, 0.09% for Γ = 0.22, Γ = 0.81, and
Γ = 1.18, respectively.

The results of the slit pore simulations show that struc-
tural changes are more restricted when in isochoric condi-
tions than in isobaric conditions. The findings are simi-
lar to observations of polymer stretching [16]. Also here a
transition was found between states. But then the different
regimes referred to the type of degrees of freedom of the
molecule (active or frozen rotational or stretching degrees of
freedom) [16, 17]. We have seen that the Legendre-Fenchel
transforms apply to two widely different cases, so we may
pose the question: Does the transform apply in general to
energy conversion in small systems? From the mathematics
point of view, this seems likely [28, 29]. More data is needed
before we may conclude, but this study brings out an inter-
esting perspective. If the answer is yes, we may have a new
tool for energy conversion in small systems.

When the Helmholtz energy is non-convex in the isochoric
ensemble the system exhibits hysteresis in the isobaric en-
semble. Hysteresis means that the state of the system de-
pends on the system’s history. The specific Gibbs energy
depends on whether the system comes from a compressed
or expanded state. In the isobaric ensemble, available states
can be explored by first compressing and then expanding
the system. One of the two available states at the same
controlled normal pressure in the compression and expan-
sion curves are metastable, the other state is stable. The
Legendre-Fenchel transform gives the stable states. Since
the piston cannot deform the energy barrier to go from a
metastable state to a stable state is high, which is the rea-
son for the pronounced hysteresis in this system. The loop
created in the specific Gibbs energy profile in isobaric con-
ditions is interesting. The existence of a loop means in prin-
ciple, that work can be extracted from the loop by only two
steps, namely compression, and expansion. The slit pore
may serve as a very first model for deformable porous me-
dia in this context.

5 Conclusions

The normal pressure varies with the height. The excess nor-
mal pressure, the normal pressure minus the bulk pressure, is
often called the disjoining or solvation pressure [19, 3]. The
disjoining pressure is typically defined in the grand canon-
ical ensemble (an open system). The disjoining pressure
oscillates with a period equal to the fluid particle diameter
because of the fluid packing between the walls. The mech-
anism of the excess normal pressure is the same here as for

an open system, but the behaviour of the normal pressure
observed in the closed system is different than for an open
system. The observation of disjoining pressure is not new,
see for example the work by Israelachvili [19]. It has been
observed in simulations as well as experimentally. However,
Israelachvili does not apply thermodynamics and the ma-
chinery that follows it. In this work, we have expanded upon
the work by Israelachvili and others by giving a thermody-
namic description. As a result, we get additional relations
that can be used, for example, Maxwell relations.

In isochoric conditions, there is a smooth transition from
a fluid to a close-packed structure. The Helmholtz energy
of this smooth transition is non-convex for small surface
number densities. The system is restricted in such a way
that there must be a smooth transition. It is not possible
for the system to have coexistence of a fluid and a close-
packed structure because that would imply that the system
could have two different heights at the same time. A pos-
sible future generalization could be to allow the solid walls
to deform in a less restricted manner such that it would
be possible for the system to have varying heights. In this
way the system would allow for coexistence of a fluid and a
close-packed structure. We hypothesize that the hysteresis
in such a system will be less pronounced. Vapor-liquid coex-
istence is not restricted in this way, the vapor and liquid can
have two different volumes. Since the height is controlled,
the system is also restricted to that height. However, the
normal pressure is controlled in isobaric conditions. As a
result, there is a first-order phase transition from a fluid to
a close-packed structure for small surface number densities.
There is no coexistence of fluid and close-packed structure
for the same reason as for isochoric conditions. The Leg-
endre transform does not apply to non-convex free energies,
and we have shown the Legendre-Fenchel transform must be
applied.

Small systems in Hill’s sense are not extensive. They are
characterized by giving different responses to their ensem-
ble of control. In the present case, we have studied and
compared two small systems, i.e. isochoric and isobaric flu-
ids confined to slit pores. Despite their smallness, we have
found that they are perfectly well describable by thermo-
dynamics when the theory is adjusted to deal with small-
ness. One such adjustment means to use Legendre-Fenchel
transforms, rather than Legendre transforms. Doing that,
we have shown that the specific Helmholtz energy can be
transformed into the specific Gibbs energy. The findings
are general, and support the systematic approach of Hill for
descriptions of other small systems.
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Abstract

We describe the thermodynamic state of a single-phase fluid confined to a porous medium with Hill’s

thermodynamics of small systems, also known as nanothermodynamics. This way of defining small system

thermodynamics, with a separate set of control variables, may be useful for the study of transport in non-

deformable porous media, where presently no consensus exists on pressure computations. For a confined fluid, we

observe that there are two pressures, the integral and the differential pressures. We use molecular simulations to

investigate and confirm the nanothermodynamic relations for a representative elementary volume (REV). For

a model system of a single-phase fluid in a face-centered cubic lattice of solid spheres of varying porosity, we

calculate the fluid density, fluid-solid surface tension, replica energy, integral pressure, entropy, and internal energy.

Keywords: nanothermodynamics, Hill’s thermodynamics of small systems, porous media, molecular simu-

lations, integral pressure, representative elementary volume, heterogeneous media

1 Introduction

Transport in porous media takes place in a vast range of systems, natural as well as man-made. It is thus important

to have a deep understanding of the relevant driving forces and their coupling, for instance to describe production

of clean water [1, 2, 3], CO2 sequestration [4, 5, 6], transport of oxygen, hydrogen, and water in fuel cell catalytic

layers [7, 8], and transport in lithium-ion battery electrodes and separators [9, 10, 11].

The long-range aim of this work is to obtain a general thermodynamic theory of transport of immiscible fluids in

porous media on the macroscale [12, 13, 14]. This theory must first describe the thermodynamic state of the fluids in

the porous media. To do this we employ a bottom-up approach, a procedure that includes all details of the system

on the nanoscale in the construction of a representative elementary volume (REV) [15, 16, 17]. The procedure gives

a coarse-grained description of the REV on the macroscale, or what is called the Darcy level [15, 12, 16, 13, 14]. A

central issue is to find the pressure of the REV. Figure 1 illustrates the problem for the cases studied in this work.

A fluid (blue) occupies the pores in a porous material (grey). The pores are so narrow that interactions between

fluid and wall become significant, or in other words, that the fluid-wall surface energy becomes significant. But how

can we define and determine the properties of the REV, for instance, the pressure? Can we find a representative

elementary volume, for which this is possible? In this work, we aim to find answers to these questions.

In bulk fluids, the hydrostatic pressure is well defined, measurable, and well documented as the driving force of

the fluid flow. In porous media, where fluids are confined by the pores, however, there is no consensus of neither

the thermodynamic nor the mechanical definitions of the pressures. The microscopic mechanical pressure tensor is

inherently ambiguous [18, 19]. In this context, we make an emphasis on the milestone work of Israelachvili [20] who
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Figure 1: A single-phase and -component fluid in a porous medium. The fluid-solid interfaces can have complex
shapes and the volumes can be on the nanoscale.

documented short- and long-range forces on fluid particles exerted by the surroundings, and on the thermodynamic

analysis that was pioneered by Derjaguin [21].

We have previously proposed thermodynamic definitions for the pressure of heterogeneous media, applying Hill’s

idea of thermodynamics for small systems [13, 14, 22, 23, 24]. Hill’s definitions have so far only been tested under

simple conditions [25, 22, 23, 26]. They have not been studied for a variety of shapes and pore sizes.

In Hill’s thermodynamics of small systems or nanothermodynamics (See Bedeaux and Kjelstrup [17]), the REV of

the porous medium is considered as an open system, controlled by the temperature, chemical potential, or pressure

in the environment. The thermodynamic analysis is thus applied to a grand canonical ensemble of systems and

a new variable is introduced, the replica energy, i.e. the energy needed to create one more small system in the

ensemble. An adjusted Gibbs-Duhem equation (the Hill-Gibbs-Duhem’s equation) appears. This opens up a new

route to determine the REV pressure.

Using this as a starting point in section 2, we shall find expressions for the so-called integral and differential

pressures of the REV, from the system’s replica energy. We present a new route to the pressure via the chemical

potential of the reservoir in equilibrium with the REV. Molecular dynamics simulations, described in section 3, will

be used to illustrate and verify the theoretical steps.

2 Theory

The systematic procedure of Hill consists of the three steps [17], which we repeat to give an overview of the procedure.

Concepts will be defined in the text that follows.

1. To start, define the items which make the system small in Hill’s sense, by defining the relevant REV. Find the

corresponding Hill-Gibbs equation. Next, define the environmental variables that control the system.
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2. From an analysis of the ensemble of small systems, find the system’s replica energy in terms of its subdivision

potential.

3. Derive the corresponding Hill-Gibbs-Duhem equation. This equation can be used to find the REV thermody-

namic variables and their interrelations.

2.1 The general Hill-Gibbs equation of an ensemble of open porous media REVs

We shall consider the REV of a porous medium, filled with a single-phase, single-component fluid, see figure 1. The

REV volume is V = V f + V s, where V f is the volume of the fluid and V s is the volume of the solid. The porosity

is the fraction of the fluid volume to the total volume, φ = V f/V . These are time-independent properties in the

system. The REV is a small system in Hill’s sense [27, 17] because the fluid is confined; it does not have bulk-scale

properties. The system is open for the supply of fluid particles and energy. The number of solid particles is fixed,

however.

The ensemble of N REVs has a total entropy St, total fluid volume V ft , total number of fluid particles Nf
t , total

number of solid particles Ns
t (with total volume V st ), and total fluid-solid surface area At. The total differential of

the total internal energy of the ensemble of REVs is then

dUt = TdSt − pfdV ft − psdV st + µfdNf
t + µsdNs

t + γdAt + εdN . (1)

This equation has been called the Hill-Gibbs equation [17, 23]. The temperature, fluid pressure, and solid pressures,

chemical potentials, and surface tension are defined from the variables involved as

T ≡
(
∂Ut
∂St

)
V f
t ,V

s
t ,N

f
t ,N

s
t ,At,N

, pf ≡

(
∂Ut

∂V ft

)
St,V s

t ,N
f
t ,N

s
t ,At,N

,

ps ≡
(
∂Ut
∂V st

)
St,V

f
t ,N

f
t ,N

s
t ,At,N

, µf ≡

(
∂Ut

∂Nf
t

)
St,V

f
t ,V

s
t ,N

s
t ,At,N

,

µs ≡
(
∂Ut
∂Ns

t

)
St,V

f
t ,V

s
t ,N

f
t ,At,N

, γ ≡
(
∂Ut
∂At

)
St,V

f
t ,V

s
t ,N

f
t ,N

s
t ,N

.

(2)

The subdivision potential ε is the property that deals with system smallness in particular. It is introduced with its

conjugate variable, the number of REVs, N . The subdivision potential is the internal energy required to add one

more REV to the ensemble under the specified conditions,

ε ≡
(
∂Ut
∂N

)
St,V

f
t ,V

s
t ,N

f
t ,N

s
t ,At

. (3)

When the subdivision potential differs from zero the system is small. This property will, as we shall see below, adjust

the common variables like the pressure, and turn them into effective new variables. In the case of the pressure, the

adjustment leads to the integral pressure, central for porous media.

2.2 The replica energy

To find the properties of one system, we need to describe the thermodynamic state of a single-phase, single-component

fluid in the REV. The fluid is free to move (the system is open), while the solid is not. The system exchanges

fluid particles with the surroundings, but not solid particles. The variables that are controlled by contact with the

environment are the temperature and the fluid chemical potential. Apart from these, as stated above, the fluid

volume, solid volume, surface area, and the number of solid particles are control variables too. The type of ensemble
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constituted by this set of variables is particularly suited for the transport of fluids through a porous medium.

In order to change the set of variables in the general expression equation 1, into the above preferred set of control

variables, we express the additive variables in the original set of total variables by their controlled value times the

number of replicas. This provides also the single system properties that we are after. The controlled fluid and

solid volumes, and surface area per REV are V ft = V fN , V st = V sN , and At = AN , respectively. In addition we

introduce the controlled number of solid particles per REV, Ns
t = NsN . By introducing these control variables into

the Hill-Gibbs equation for the ensemble, we obtain

dUt = TdSt − pfNdV f − psNdV s + µfdNf
t + µsNdNs + γNdA+XdN , (4)

where the last term is the replica energy of one small system

X = ε− pfV f − psV s + γA+ µsNs. (5)

The replica energy [27, 28] expresses in a simpler way, the energy required to add one more small system to the

ensemble of systems under the conditions controlled. The combination of terms can define the integral pressure

minus the integral solid chemical potential times number of solid particles [23],

−p̂V + µ̂sNs ≡ X, (6)

however, we need an additional equation to determine both p̂ and µ̂s separately. Through the introduction of an

ensemble of the systems, we have achieved that the internal energy, here Ut, is an Euler homogeneous of the first

order in the number of REVs. This gave Hill the motivation for the use of an ensemble, and to define the conjugate

variables ε and N .

2.3 The Hill-Gibbs equation for a single small system

We are now in a position to integrate the total differential of the total internal energy, see equation 4, at constant

T, V f , V s, µf , Ns, and A. This gives,

Ut = TSt + µfNf
t +XN . (7)

By introducing the REV average properties, we obtain the internal energy of one REV,

U = TS + µfNf +X. (8)

The total differential of the internal energy of one REV is

dU = TdS − pfdV f − psdV s + µfdNf + µsdNs + γdA. (9)

By differentiating the internal energy of the REV and using its total differential, we obtain the total differential of

the replica energy

dX = d(−p̂V + µ̂sNs) = −SdT − pfdV f − psdV s −Nfdµf + µsdNs + γdA. (10)

The equation is the outcome of step 2 in Hill’s procedure presented in the introduction to this section. The equation

can be seen as an extension of Gibbs-Duhem’s equation, so we have called it Hill-Gibbs-Duhem’s equation [17].

Applications can now be specified.
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The partial derivatives of the replica energy follow

S = −
(
∂X

∂T

)
V f ,V s,µf ,Ns,A

, pf = −
(
∂X

∂V f

)
T,V s,µf ,Ns,A

,

ps = −
(
∂X

∂V s

)
T,V f ,µf ,Ns,A

, Nf = −
(
∂X

∂µf

)
T,V f ,V s,Ns,A

,

µs =

(
∂X

∂Ns

)
T,V f ,V s,Nf ,A

, γ =

(
∂X

∂A

)
T,V f ,V s,Nf ,µs

.

(11)

With this set of equations we can calculate all the necessary REV properties of a porous medium. We shall

concentrate on the integral fluid pressure and the route to this quantity via the chemical potential.

2.4 The integral pressure and the chemical potential of the solid in the REV

We apply here the conditions of constant temperature, fluid volume, solid volume, number of solid particles, and

surface area. The Hill-Gibbs-Duhem’s equation reduces to

dX = d(−p̂V + µ̂sNs) = −Nfdµf (12)

or, after dividing by V , the volume of the REV,

dx = d(−p̂+ µ̂sρs) = −ρfdµf (13)

Where the density of the fluid in the REV is ρf = Nf/V and the density of the solid is ρs = Ns/V . These densities

are of the total REV volume V , and not the fluid volume V f or solid volume V s. The difference of the replica

energy density can be calculated from

x− x∞ = −
∫ µf

−∞
ρfdµ′f , (14)

The replica energy density is zero as the fluid chemical potential approaches minus infinity. The replica energy

density depends on two unknown variables, p̂ and µ̂s. To proceed we need to know more about these variables.

2.4.1 Constant integral pressure across boundary

The integral pressure of the REV can be obtained from equation 13

dp̂ = ρfdµf + ρsdµ̂s. (15)

The fluid in the porous medium is in equilibrium with its environment, here the bulk phase fluid that surrounds the

system (denoted b). The environment has the same temperature. The integral pressure was observed to be constant

across the phase boundary inside a pore [25]. We shall therefore make the assumption that also in this case;

p̂ = pb (16)

where pb is the bulk pressure of a fluid in equilibrium with the porous medium. For an ideal gas in a cubic confinement

it has been shown that the integral pressure is equal to the bulk pressure [29]. If this applies for this system, we also

have

p̂ =

∫ µf

−∞
ρbdµ′f , (17)
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where ρb is the fluid number density in the bulk phase. The integral pressure is zero as the fluid chemical potential

approaches minus infinity. As a consequence, the integral pressure depends only on the fluid chemical potential and

temperature. The integral chemical potential of the solid in the REV is then

µ̂s =
1

ρs

∫ µf

−∞
(ρb − ρf )dµ′f . (18)

The solid chemical potential is zero at minus infinite fluid chemical potential. The entropy density of the REV is

s =
S

V
=

1

T
(u− µfρf − x) (19)

where we used equation 8 and introduced the replica energy density, x.

2.5 Pressures and surface tension

There are three pressures; the integral, fluid and solid pressures. The latter two are differential pressures. The

integral pressure is a combination of the differential pressures and the (differential) surface tension,

p̂ = pfφ+ ps(1− φ)− γA/V = pb. (20)

We assume the integral pressure to be equal everywhere in equilibrium and also equal to the bulk pressure of a bulk

fluid in equilibrium with the porous medium. If we also assume the distances between solid surfaces to be large and

their curvature to be small, we can approximate the fluid pressure to be equal to the bulk pressure [23]. In that case,

the solid pressure is equal to

ps = pb +
γA

V s
. (21)

3 Simulation details

Systems of fluid and solid particles were investigated with molecular dynamics simulations using LAMMPS [30, 31].

The three different systems have been simulated: A bulk fluid, a single solid particle surrounded by fluid particles,

and a face-centered cubic (fcc) lattice of solid particles filled with fluid particles in the pore space. The two latter

systems are illustrated in figure 2. The systems were simulated in the grand canonical ensemble and had periodic

boundary conditions in all directions. The bulk fluid was simulated to calculate the bulk pressure as a function

of the fluid chemical potential. The single solid particle surrounded by fluid particles will be considered as if the

lattice constant of the fcc lattice is large. This system was simulated to calculate the fluid-solid surface tension when

the solid particles are far apart. The thermodynamic properties of the fluid in the fcc lattice were calculated as a

function of the fluid chemical potential.

The temperature was controlled by using a Nosé-Hoover thermostat [33, 34] adapted by Shinoda et. al. [35].

The fluid chemical potential was controlled by using grand canonical Monte Carlo insertions and deletions of fluid

particles [36]. A particle is inserted at random position in the simulation box with a probability

acc(Nf → Nf + 1) = min

{
1,

V

Λ3(Nf + 1)
exp[β(µ− Ep(Nf + 1) + Ep(N

f )]

}
. (22)

A random particle is removed from the simulation box with a probability

acc(Nf → Nf − 1) = min

{
1,

Λ3(Nf + 1)

V
exp[−β(µ+ Ep(N

f − 1)− Ep(Nf )]

}
. (23)
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Figure 2: Visualization of a two of the simulated systems. Fluid particles (red) and solid particles (blue) are
visualised with OVITO [32]. Only the particles in a slab centered on the solid particles of thickness 2.5σ is shown.
The fluid chemical potential is µf = ζ and the radius of the solid particles is R = 5σ. Left: Single solid particle.
Right: An fcc lattice with lattice constant a = 17.5σ and porosity φ = 0.61.

Where Λ =
√
h2/(2πmkBT ) is the de Broglie thermal wavelength, h is the Planck constant, Ep is the potential

energy and β = 1/(kBT ) where kB is Boltzmanns constant.

3.1 Simulation procedure

In the bulk system, the fluid chemical potential was varied in the range µf ∈ [−7, 1], in which the fluid density

varied from a dilute gas to a dense liquid. The system was initialized with an empty cubic simulation box of volume

V = (40σ)3, and the grand canonical Monte Carlo technique was used to insert particles. The simulation was run

until the average number of fluid particles was no longer increasing. The bulk fluid number density ρb = Nf/V and

pressure p = (Pxx + Pyy + Pzz)/3 were calculated as a function of the fluid chemical potential for 107 steps. The

calculation of the mechanical pressure tensor Pαβ is described below in subsection 3.4.

The system of the single solid particle was simulated by first placing the solid particle in the center of the cubic

simulation box of volume V = (30σ)3. The radius of the solid particle was R = 5σ, where σ is the diameter of the

fluid particle. The fluid chemical potential was varied in the range µ ∈ [−7, 1]ζ, where ζ is the minimum of the

pair-wise interaction. The system was initialized by placing the fluid particles in an fcc lattice with a fluid number

density approximately equal to the bulk fluid number density around the solid particle at a given fluid chemical

potential. This was done to reduce the computational time. The simulation was run until the average number of

fluid particles no longer increased, after which it was run for an additional 107 steps to calculate the surface tension

as a function of the fluid chemical potential. The calculation of the surface is described below in section 3.4.

The fcc lattice of solid particles was fixed in space with lattice constant in the range a ∈ [15, 30]σ, the radius of

the solid particles was R = 5σ. The simulation box lengths were L = 2a, total volume V = 8a3, number of solid

particles Ns = 32, and solid volume V s = 128πR3/3. We have previously found that the smallest REV of such a

system is a quarter unit cell [22]. The fluid particles were inserted in the pore space in between the solid particles.
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The porosity of the system was

φ =
V f

V
= 1− 16πR3

3a3
, (24)

where the radius of the solid particles was R = 5σ given that the lattice constant is a ≥ 2
√

2R ≈ 14σ. For lower values

of a the solid particles overlap, however, we do not look at such systems. The porosity varied from approximately

0.38 to 0.92. The fluid chemical potential, number of solid particles, temperature, and volume were controlled.

The system was initialized by placing the solid particles in an fcc lattice with lattice constant a and fluid particles

also in an fcc lattice with a number density approximately equal to ρb(µf ) around the solid particles. The simulation

was run until the number of fluid particles was constant, after which the simulation was run for an additional 107

timesteps to calculate thermodynamic properties.

3.2 The Lennard-Jones/spline potential

The particles interacted with the Lennard-Jones/spline (LJ/s) potential [37], which is equal to the Lennard-Jones

potential up to the inflection point rs shifted by a hard-core diameter d. At rs a third degree polynomial is fitted

for the potential to be zero at the cut-off rc and the force and potential to be continuous at the inflection point rs

and cut-off rc. See the works by Hafskjold et al. [37] and Kristiansen [38] for details on the properties of the LJ/s

potential. The LJ/s potential is,

νLJ/s(r) =


4ζ

[(
σ
r−d

)12

−
(

σ
r−d

)6
]

if r < rs,

a(r − rc)2 + b(r − rc)3 if rs < r < rc,

0 else

(25)

where ζ is the minimum of the interaction potential. This symbol is used to avoid confusion with the subdivision

potential ε. The soft-core diameter is σ, d is the hard-core diameter, r = |rj − ri| is the distance between particle

i and j. The distance r = σ + d is the smallest distance where the potential is zero. The Lennard-Jones/spline

interaction potential was equal for all particle pairs, but was shifted with hard-core diameter d. There were three

particle pair interactions, fluid-fluid, fluid-solid, and solid-solid, and only the hard-core diameter varied between

them. The solid-solid interaction we set to zero. The hard-core diameter was dff = 0, dfs = 4.5σ, and dss = 9σ

for the fluid-fluid, fluid-solid, and solid-solid interactions, respectively. The solid particle radius was defined as

R ≡ (dss + σ)/2 = 5σ. Other definitions of the radii are possible, for example based on Gibbs dividing surface or

the surface of tension. The parameters a, b, rs and rc were determined such that the potential and the force were

continuous at r = rs and r = rc. The masses of fluid particles were m, and the solid particles were considered to

have infinite mass as they were fixed in space.

3.3 Internal energy density

The internal energy density was calculated as the sum of the kinetic and potential energy densities,

u =
1

V

 N∑
i=1

N∑
j>i

uLJ/s(rij) +
1

2

N∑
i=1

mi(vi · vi)

 (26)

where V is the total volume, N is the total number of particles, and vi is the velocity of particle i. The solid particles

did not contribute to the kinetic energy, as their velocities were controlled to be zero. The internal energy density

was used to calculate the entropy density, see equation 19.
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3.4 The mechanical pressure tensor

The mechanical pressure tensor was calculated in spherical and Cartesian coordinates, see Ikeshoji et.al. for details

[39]. It was calculated in spherical coordinates for the single solid particle surrounded by fluid, and in Cartesian

coordinates for the bulk fluid and the fcc lattice of solid particles with inserted fluid particles. For the bulk fluid and

fcc lattice, the pressure was calculated for the whole simulation box, with sides L ∈ [30, 60]σ and interaction cut-off

rc ≈ 1.74σ. While for the single solid particle it was calculated in spherical shell subvolumes with the origin at the

center of the solid particle. This was done to calculate the surface tension.

To avoid confusion between the thermodynamic and mechanical pressures, we will use lower case p for all

thermodynamic pressures and upper case P for mechanical pressures. We make this distinction because there is no

consensus on how, if possible, to connect the two for heterogeneous media [40, 41, 42, 23].

The mechanical pressure tensor can be written as the sum of the ideal gas contribution and a virial contribution,

Pαβ = ρkBTδαβ + P vαβ , (27)

where δαβ is the Kronecker delta and the subscripts give the components of the tensor. The virial contribution is

due to particle pair interaction, and is calculated as a sum over all particle pairs. For a subvolume Vk the virial

contribution is

P vαβ = − 1

Vk

N∑
i=1

N∑
j>i

fij,α

∫
Cij∈Vk

dlβ . (28)

Where N is the total number of particles and fij,α is the α-component of force acting on particle i due to particle j.

The line integral is along the part of the curve Cij that is contained in the subvolume Vk. The virial contribution is

inherently ambiguous as any continuous curve that starts at the center particle i and ends at the center particle j is

permitted [18, 43, 19]. In this work, we have used the Irving-Kirkwood curve, which is the straight line from the

center of particle i to the center of particle j.

The Cartesian mechanical pressure tensor was calculated for the whole simulation box. The line integral in the

virial contribution reduces it to

P vαβ = − 1

Vk

N∑
i=1

N∑
j>i

fij,αrij,β . (29)

where rij is the line for the center of particle i to the center of particle j.

The pressure is calculated as the mean of the diagonal components of the Cartesian mechanical pressure tensor.

The bulk pressure is

pb =
1

3
(Pxx + Pzz + Pyy). (30)

This was also calculated for the fluid in the fcc lattice of solid spheres. However, we have not equated it to a

thermodynamic property.

The fluid-solid surface tension was calculated for the single-sphere simulation case from the spherical mechanical

pressure tensor,

γ =
1

R2

∫ r0

R

(PN − PT )r2dr. (31)

Where R = 5σ is the solid particle radius, and r0 = 14σ is a position in the fluid far away from the fluid-solid surface.

The normal component is PN = Prr and the tangential component is PT = (Pφφ + Pθθ)/2. This is the fluid-solid

surface tension of the porous medium given that the surfaces are sufficiently far apart. This will be used to calculate

the solid pressure, see equation 21.
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Figure 3: Local fluid number density (left) and normal and tangential pressure tensor components (right) in spherical
shells as a function of the distance from the center of the spherical particle in the single-sphere simulation case. The
fluid chemical potential is fixed to µf = 1ζ and the particle radius is R = 5σ.

4 Results and discussion

4.1 Single solid particle surrounded by fluid

For the single solid sphere, we show the local fluid number density and mechanical pressure tensor components of

the surrounding fluids in figure 3. The fluid chemical potential is fixed at the minimum of the pair-wise interaction

potential, ζ, giving µf = 1ζ. At this fluid chemical potential, the bulk density is ρb = 0.8σ−3. The fluid particles

pack in layers close to the surface of the solid particle of radius R = 5σ, as reflected in the density variations in

figure 3. The tangential component of the mechanical pressure tensor, shown in orange to the right in the figure, has

the same variation. The normal and tangential components were used to calculate the surface tension, shown in

figure 4 (see below). In this calculation, we do not equate the solid pressure to the mechanical pressure in any way.

Inside the solid particle, the tangential component is zero. This is because the cut-off of the fluid-fluid interaction

is relatively short, meaning that no fluid-fluid interaction contributes to the pressure inside the solid sphere. It

is only the fluid-solid interactions that contribute to the pressure inside, and these contribute only to the normal

component. The normal component is proportional to r−2 as a consequence, see Fig.3. This follows from mechanical

equilibrium in spherical coordinates,

PT (r) = PN (r) +
r

2

∂PN
∂r

. (32)

We used mechanical equilibrium and found that the mechanical pressure calculation in spherical coordinates is

consistent with this.

The surface tension was calculated for a single solid sphere surrounded by fluid particles, as a function of the

fluid chemical potential. This is presented in figure 4. It was calculated from the components of the mechanical

pressure tensor, see equation 31. Fluid particles have reduced contact with each other and with the solid in the

lower chemical potential-regime (µf ∈ [−7,−3]ζ), which is characterized by low densities. The surface tension is

accordingly very small. The surface tension between fluid and solid increases sharply at a chemical potential of

around µf = −2.3ζ. The increase indicates increasing interactions between particles (fluid-fluid and fluid-solid). For

a chemical potential below ≈ 2.3ζ, the fluid is more vapor-like, while above this value, it is more liquid-like.

In figure 5 the corresponding solid pressure is shown as a function of fluid chemical potential for a single-sphere

surrounded by fluid particles. It is calculated from the surface tension and bulk pressure, see equation 21. The bulk

pressure monotonically increases with the fluid chemical potential.

So far, the variations are all expected from mechanical equilibrium and standard thermodynamics as given by

10



Figure 4: Surface tension for the single-sphere case γ as a function of fluid chemical potential µf .

Figure 5: The solid pressure, ps, in a single sphere, calculated from equation 21 as a function of the fluid chemical
potential µf of the surrounding fluid.
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Figure 6: Fluid number density ρf = Nf/V as a function of fluid chemical potential µf at varying porosity
φ = V f/V .

the Young-Laplace equation. It is reasonable that the pressure of the solid increases monotonously, following the

variation in the surface tension.

4.2 The fluid number density and the replica energy density

Figure 6 presents the fluid number density ρf = Nf/V , where V is the total REV volume, as a function of the

controlled fluid chemical potential µf for various porosities φ of the fcc lattice. Results shown as black crosses

represent bulk fluid or the limit where the porosity approaches unity. The fluid number density starts at approximately

zero density for small fluid chemical potentials (a dilute gas-like phase) and converges to a density of a dense

liquid-like phase. The fluid number density decreases with decreasing porosity, which is mainly because of decreased

fluid volume compared to total volume. The fluid particles form layers on the solid surface, as was seen in figure 3.

The replica energy density is a characteristic property of the small system. It is shown for the first time for

a regular fcc-lattice in figure 7. The property was obtained as the integral over the fluid density, of the fluid

chemical potential, see equation 14. The replica energy density approaches the bulk fluid value (black crosses) in

the thermodynamic limit of increasing porosity, as expected. We see a similar development in the replica energy

density, as seen in the curve for the pressure of the solid around the single sphere. The replica energy is negative and

increases with decreasing porosity. When compared with other thermodynamic properties like the internal energy

(see below), the value is sizable. The system is small in the sense that it has non-negligible replica energy.

The integral solid chemical potential was next calculated from the fluid number density of the REV and the bulk,

see equation 18. It is presented in figure 8 as a function of the fluid chemical potential. The integral solid chemical

potential is much larger than the fluid chemical potential because each solid particle has a radius ten times larger

than a fluid particle. This implies that each solid particle interacts with more particles than each fluid particle. The

energy required to add one more solid particle is very large compared to adding one more fluid particle. Interestingly,

the integral solid chemical potential is independent of the porosity, it is a function of fluid number density and fluid

chemical potential. We interpret this to mean that the solid particle are sufficiently far away from each other, such

that the integral solid chemical potential is unaffected by the porosity.
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Figure 7: The negative replica energy density −x = −X/V as a function of the fluid chemical potential µf at varying
porosities φ = V f/V .

Figure 8: Integral solid chemical potential as a function of the fluid chemical potential µf at varying porosities
φ = V f/V .

13



Figure 9: Trace of the mechanical pressure divided by three as a function of the fluid chemical potential µf for
varying porosities φ = V f/V .

Figure 9 compares the average of the diagonal components of the mechanical pressure for the bulk fluid (black

crosses) and the fcc lattice of spheres filled with fluid particles. The mechanical pressure was calculated in Cartesian

coordinates for the whole simulation box, as described by equation 29. The bulk value was now equated to the

thermodynamic bulk pressure, which was assumed to be equal to the integral pressure. Note that we did not equate

the trace of the mechanical pressure tensor in the heterogeneous porous medium to any thermodynamic property.

Figure 9 serves purely for a comparison. However, even though the geometry inside the porous medium is more

complex than what can be captured by the Cartesian mechanical pressure tensor, the values fall almost on the same

line. This could suggest that the mean of the diagonal components of the Cartesian mechanical pressure tensor

gives the integral pressure. An exception is seen for the data obtained with the smallest porosity, φ = 0.38, when

fluid chemical potentials vary between approximately µ = −2ζ and µ = −ζ. The given porosity is near the closest

packing possible for spheres. While this is interesting, it may only hold for the present case, with a relatively simple

structure.

4.2.1 Internal energy and entropy densities

The internal energy and entropy densities as a function of the fluid chemical potential are presented in figure 10 and

11, respectively. The internal energy and entropy are divided by the REV volume V to give the respective densities.

The variation in the internal energy and entropy densities as a function of the fluid chemical potential, is similar to

that shown by fluids above the critical point, when they are described by cubic equations of state, for example, the

van der Waals equations of state. It is therefore reasonable that the maxima of the internal energy and entropy

densities are a consequence of a structural transition that takes place at the chemical potential in question. This will

explain why all maxima are located at the same chemical potential (-2.3 ζ). This location is close to the value of

the chemical potential, where the fluid-solid surface tension starts to increase and also where the replica energy

density begins to deviate stronger from its bulk value (see figures 4 and 7). The maxima locations remain at the

same chemical potential, as the porosity decreases and are given by the location in the bulk fluid. It may therefore

be possible to estimate this position using the equation of state for the bulk fluid. Thus, one can determine for
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Figure 10: Internal energy density u = U/V as a function of the fluid chemical potential µf for varying porosities
φ = V f/V .

which fluid states it is particularly important to take the system size into account.

The absolute value of the internal energy density decreased with the porosity, reflecting the fact that the fluid

number density decreased with the porosity. The entropy density became larger as we approached the bulk value.

This observation is typical for phase transitions in small systems, it becomes less clear cut first order, and has less of

a discontinuity in the phase variables [28].

4.3 Small system effects

A system is small when we need to take into account the subdivision potential to accurately describe the system.

The smallness of a system can also be measured by the replica energy (for the present system, see equation 5). The

replica energy depends in general on the set of control variables, and has accordingly an equivalent bulk variable

[17]. It changes proportional to the subdivision potential. The value of the subdivision potential is included in the

deviation of the replica energy from the corresponding value of a bulk fluid, see equation 5. This deviation can be

seen in figure 7; it increases with decreasing porosity. While a change in replica energy is expected with additional

contributions of the solid, the application of the replica energy as a variable allow us to quantify the smallness of

the system, the smallness that originate from the subdivision potential. For evaluation of the state of smallness,

the single contributions given in equation 5 must be computed independent of one another. We were not able to

compute the subdivision potential here, but the replica energy density may still be used to assess whether small

system effects can be neglected or not. This can be done by evaluating the total replica energy difference together

with the entropy density. Consider for the purpose of such an evaluation the left-hand side of the peak in entropy

density. Due to the small replica energy differences between the fluid bulk value and the corresponding values of the

nanoporous medium for small chemical potentials, it may be speculated that the subdivision potential is negligible

for vapor-like densities. On the right hand side of the peak, the difference is sizeable which is why the subdivision

potential cannot be assumed to be negligible a priori. It must therefore be included in the thermodynamic analysis

to ensure first-order Euler homogeneity in the total internal energy.
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Figure 11: The entropy density s = S/V as a function of the fluid chemical potential µf for varying porosities
φ = V f/V . The integral pressure is assumed to be equal to the bulk pressure.

4.4 The pressure of a REV in a porous medium

We are now in a position to discuss, if not answer completely, the questions posed upfront; what is the pressure of a

representative elementary volume (REV)?

In the present case, the structure of the porous system was regular fcc, and all different microstates are represented

by a small REV, a unit cell for all practical purposes. A system with irregular structure has probably a larger REV.

All thermodynamic properties defined, refer to the actual REV.

Equations 15,16 and 20 most central in the description. These relations were derived using Hill’s systematic

procedure for porous media with nanoscale pores. The effective pressure p̂ of the REV was given in equation 15. We

see that the expression is consistent with Young-Laplace equation. Not only a set of system variables is central in

the theory; also the set of control variables need be specified. When this is done, we can arrive, in the present case,

at the expression linking p̂ to two unknown system variables.

In order to proceed, we have next taken the bold assumption stated in equation 16, that the integral pressure p̂,

which clearly differ from the differential pressure p, is constant across the medium at equilibrium. It is then not far

from the next possible step; to construct the driving force for mass transport using p̂.

The mean of the diagonal components of the Cartesian mechanical pressure tensor, presented in figure 9, gives a

good approximation of the integral pressure for the largest porosities. This can give an alternative route to obtain

the integral pressure when the porosity is large. However, for small porosities it deviates from the bulk pressure and

the integral pressure.

5 Conclusion

The thermodynamic method of Hill for nanoscale systems was used to describe the thermodynamic state of a

single-phase fluid confined to a porous medium. The size and shape of the porous media were restricted, such that

the description can be said to be general for any porous media.

The system was open for fluid to be exchanged with the environment, while the solid was not allowed to be
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exchanged with the environment. In addition, the temperature was controlled by the environment, and the fluid and

solid volumes, surface area, and number of solid particles were controlled.

Nanothermodynamics introduces two new conjugate variables, the subdivision potential and the number of

replicas. The subdivision potential was incorporated into the definition of the integral pressure and integral solid

chemical potential. A fundamental assumption used in this work is that the integral pressure is constant everywhere

in equilibrium. We have shown in previous works that this holds for simple porous media such as the slit pore

[25, 23].

We have used this framework to demonstrate how to compute the fluid number density, replica energy density,

integral solid chemical potential, internal energy density, and entropy density of a fluid confined to a face-centered

cubic lattice of solid particles. The radius of the solid particles was ten times larger than the fluid particles, and

the porosity varied from φ = 0.38 to φ = 0.87. These porosities range from almost closest packing to rather open

structures. We have used this system as a relatively simple model of porous media, computing all its thermodynamic

properties, in particular its integral and differential pressures, liquid-solid surface tension, and solid pressure of a

single solid particle surrounded by fluid particles.

This way of defining the small system thermodynamic properties, for a given set of control variables, may be

useful for the study of transport in non-deformable porous media.
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Abstract

Darcy’s law for porous media transport is given a new local thermodynamic basis in terms of the grand

potential of confined fluids. The local effective pressure gradient is determined using non-equilibrium molecular

dynamics, and the hydraulic conductivity and permeability are investigated. The transport coefficients are

determined for single-phase flow in face-centered cubic lattices of solid spheres. The porosity changed from that

in the closest packing of spheres to near unity in a pure fluid, while the fluid mass density varied from that of

a dilute gas to a dense liquid. The permeability varied between 5.7 × 10−20 m2 and 5.5 × 10−17 m2, showing a

porosity-dependent Klinkenberg effect. Both transport coefficients depended on the average fluid mass density

and porosity but in different ways. These results set the stage for a non-equilibrium thermodynamic investigation

of coupled transport of multi-phase fluids in complex media.

Keywords: nanothermodynamics, Hill’s thermodynamics of small systems, non-equilibrium thermodynamics, non-

equilibrium molecular dynamics, nanoporous media, compressible flow, representative elementary volume

1 Introduction

Porous media are everywhere in nature and technology, and transport through them is important. To take some

widely different examples; we need to describe the transport of nanoparticles across cell layers with medicine to

cancerous tissue [1]. We also need to describe the selective transport across the porous separators in batteries and

fuel cells [2]. We are aiming for a description that reflects the underlying properties of the single pores.

Much of the fundamental work on flow in porous media has been done for the pore-scale, see Helmig for a

pedagogical presentation [3]. Recent developments in imaging techniques and computer capabilities have improved

our understanding of the physics at pore-scale considerably [4]. But there is no consensus on how to upscale from

the pore-scale to the Darcy scale. On the Darcy scale, transport is described as taking place between representative

elementary volumes (REVs).

The REV in this work is defined to be large enough to be statistically representative of the system. From a

statistical mechanics point of view, the REV includes all available microstates of the system. In this work, we are

investigating a compressible single-phase fluid in a porous structure made up of solid particles in a face-centered

cubic (fcc) lattice. The system is illustrated in Fig. 1. The blue large spheres represent solid, while the red particles

1

ar
X

iv
:2

20
3.

02
33

4v
1 

 [
ph

ys
ic

s.
ch

em
-p

h]
  4

 M
ar

 2
02

2



Figure 1: The representative elementary volume (REV) for a single-phase fluid in a face-centered cubic lattice of solid
spheres is the same size as the unit cell of the lattice. The radius of the solid particles is R and the lattice constant
is a. The squares with dashed lines mark the magnitude of the REV. All regions have the same thermodynamic
properties.

represent the fluid. We shall use additive variables to define the REV, similar to Whitaker [5]. This definition of

the REV differs from the one suggested by Nordahl and Ringrose [6] who used a constant permeability as criterion.

Because of the fcc symmetry, a unit cell is here a proper choice of REV. Around any point in the porous medium, we

can choose a unit cell with this point at its center. In this way, we can obtain a continuous path between unit cells

on the REV scale. We first determine the pressures of the REV at equilibrium, as a function of the temperature,

fluid mass density, and porosity, p̂(T, ρf , φ). This can be regarded as finding the equation of state of the REV. Up

to this point, we have used REV densities much like Whitaker [5].

Thermodynamic theories for transport in porous media are little developed. In confinement, fluid thermodynamic

properties will deviate from their corresponding bulk phase values. In an attempt to find a continuous description

on the Darcy scale, we need to reflect on properties of the pore scale or sub-pore scale, including the nanometer

scale. Hence, we need descriptions of fluxes and forces for the REV of the porous medium. Is it possible to find a

description that does not explode in complexity, but still brings forward the characteristic properties of the smaller

scale, such as wetting and adsorption? Pore-scale descriptions of REVs have contained up to 27 variables [7]. We

have claimed that we can reduce the number of variables to a more practical number, and describe here the first

steps in the direction to apply this relatively new thermodynamic procedure for coarse-graining [8, 9, 10].

In our search for a thermodynamic coarse-graining procedure to be applied to transport in porous media, we

have chosen to define effective thermodynamic variables by sets that combine in an additive manner [11, 12, 10].

We have derived the Gibbs equation for the REV, and in the analysis of transport, we have assumed validity of

Gibbs equation. This gives the entropy production for the REV and a thermodynamic basis for Darcy’s law in

isothermal system. Our proposal to find the equation of state and the Gibbs equation is new. Here, we apply the

method to isothermal, compressible, single-phase flow. This entails obtaining the REV grand potential as the sum

of contributions from all phases and surfaces. A theory of transport on the Darcy scale follows in a way which is

2



Figure 2: A visualization of a simulation, with porosity φ ≈ 0.87 and average bulk fluid mass density ρb =
(237± 1) kg/m3. The blue particles represent the solid particles of a fcc lattice, while the red particles represent the
fluid particles. There is an integral pressure difference ∆p̂, which drives a mass flux Jm from left to right. The slab
of volume Vl was used as REV. The simulation box had periodic boundaries in all directions (black dashed line),
apart from particles crossing the x-boundary from left to right. Here the reflecting particle method was applied, see
section 3 for details of this boundary condition [25]. The simulated system was visualized with OVITO [26].

standard in non-equilibrium thermodynamics.

An excellent tool to analyze transport in porous media is non-equilibrium molecular dynamics (NEMD) [13].

This tool allows us to simulate molecular properties (like velocities and forces), yet upscale to fluid properties (like

pressure) on the Darcy scale. In NEMD, we solve Newton equations for particles, so the outcome can also be used

to assess assumptions made in the thermodynamic theory. In this sense the tool supplements lattice Boltzmann

simulations and numerical solutions to the Navier-Stokes equation. A downside is that the length and time scale

becomes limited as NEMD is a computationally expensive technique. Here, we will use NEMD to simulate the

flow of methane-like molecules in a face-centered cubic (fcc) lattice made up of spherical solid particles, see Fig. 2.

We will investigate a vast range of fluid densities, which varies from highly compressible to nearly incompressible.

NEMD has been used to simulate many transport processes in heterogeneous media, as documented by, for example,

Ikeshoji and Hafskjold [14, 15, 16].

We use our coarse-graining procedure to obtain the effective pressure of the REV. Its negative gradient is the

driving force for fluid flow. The effective pressure of a REV, p̂, is called the integral pressure. It is in general a

combination of pressures, surface tensions, and line tensions. This approach originates from nanothermodynamics,

as described by Hill [17]. We believe, however, that this procedure for other porous media and other fluids. We

have shown that the method can replace the use of Young or Young-Laplace’s law [9]. For a recent formulation of

nanothermodynamics, see Bedeaux, Kjelstrup, and Schnell [18].

It is our long-range aim to obtain a procedure that provides equations of transport in porous media in general.

Not only for isothermal transport of one fluid but also coupled transport due to other driving forces, for example,

thermal driving forces [19, 20]. We start with a single-phase flow, to document the use of new concepts on porous

media pressure in a simple way. We have reported equilibrium studies with this coarse-graining procedure previously

[8, 21, 9, 22, 23, 24]. We expand these results to non-equilibrium conditions in this work.

This work aims to analyze this simple transport problem and compare its results to expressions that are

common in the literature, most importantly Darcy’s law in the presence of the Klinkenberg effect [3], but also the

Kozeny-Carman equation [27, 28, 29, 30].

Fig. 2 illustrates the chosen system, a fcc lattice of solid particles (blue), all with radius R, and a lattice constant
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a. The porosity φ is varied by varying a. The lattice is periodic in all directions. The REV is the size of the lattice

unit cell [8], but here we chose to integrate to a slab of volume Vl. The volume Vl contains four unit cells and is

practical for the purpose. A pressure difference arises using a reflecting particle boundary, which forces a mass flux

Jm through the cross-sectional area. This boundary-driven method gives minimal disturbance of fluid particles away

from the boundary.

In Section 2, we recapitulate the necessary thermodynamic equilibrium relations of the pertinent REV, followed

by a description of transport, and a procedure to find pressure profiles away from equilibrium. The equilibrium and

non-equilibrium simulation procedures that are applied, are described in Section 3. The results are discussed in

Section 4. We give the results needed to determine the local driving force inside the porous medium. The equation

of state of the porous medium is central here. The hydraulic conductivity and the permeability are however strong

functions of porosity and average fluid mass density. We shall also see that the Klinkenberg correction, as described

by Helmig [3], applies to the fluid permeability.

2 The thermodynamic variables of the REV

2.1 The grand potential and the pressure

We have chosen to describe the state of a porous medium using a basis set of thermodynamic variables that are

additive in the sense that each coarse-grained variable in the REV is a sum of contributions from all bulk phases,

surfaces, and possible contact lines [11, 12, 10]. The REV variables are controlled by the environment [18]. In the

present case, the control variables are temperature, volume, and fluid chemical potential. The REV of interest

belongs therefore to a grand canonical ensemble. We recapitulate the thermodynamic description of a REV of this

kind at equilibrium before we define the situation in the presence of flow.

In nanothermodynamic theory, the grand potential Υ of the REV is given by minus the so-called integral pressure

of the REV times the volume. The adjective “integral” was coined by Hill [17] to reflect the fact that it is an

integrated property. Conversely, the normal pressure was called the differential pressure. We can regard the integral

pressure as the effective pressure of the REV. The grand potential is,

Υ = −p̂V. (1)

In this expression, p̂ and V are the integral pressure and the volume of the REV, respectively. It can be understood

as the defining equation for p̂. The grand potential has its basis in statistical mechanics

Υ = −kBT ln Ξ, (2)

where Ξ is the grand canonical partition function, kB is Boltzmann’s constant, and T is the temperature. This basis

explains why Υ has additive contributions. Weakly coupled sub-systems will add to Υ, and result in a product of

partition functions. This expression explains also why the REV needs to include all possible micro-states of the

system.

A more colloquial name of the grand potential is the compressional energy, since it is a product of pressure and

volume, which is related to work. In the present case, the grand potential has several additive contributions. We

obtain

p̂V = p̂fVf + p̂sVs − γ̂A (3)

The contributions are from the fluid and solid phases, and the fluid-solid surface. The symbols p̂f , p̂s are the integral

pressure of the fluid and solid, respectively, and γ̂ is the integral fluid-solid surface tension. The surface energies are
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more significant because of the fluid confinement. For large fluid volumes, the surface energy may be neglected.

However, when Young-Laplace’s and Young’s equations are significant for multi-phase flow the surface energies

in this equation are too. The volume of the fluid and solid are Vf and Vs, respectively, and A is the surface area

between the solid and the fluid. The sum of the fluid and solid volumes is equal to the REV volume V = Vf + Vs,

and the porosity is φ = Vf/V . It follows that the fluid mass density of the REV is

ρf =
Mf

Vf + Vs
(4)

where Mf is the mass of the fluid in the REV. This fluid mass density follows the coarse-graining procedure. This

density is not the internal density given by Mf/Vf . The individual contributions to the integral pressure are

not needed, we only need the total sum. The integral pressure is obtained by calculating an equation of state in

equilibrium conditions, which is applied to non-equilibrium conditions. The equation of state for the porous medium

must as all equations of state be found from experiments or simulations. In the present work, the last method gives

the equation of state for the present medium

p̂ = p̂(T, ρf , φ). (5)

The functional dependence of p̂ on the variables (ρf , φ) will here be investigated by simulations at isothermal

conditions. The value of p̂ shall also be found by dividing both sides of Eq. 3 by the REV volume. This gives

p̂ = p̂fφ+ p̂s(1− φ)− γ̂A/V. (6)

In earlier work we determined p̂s from known values of A, V and φ [8]. Here we shall use Eq. 6 to compute p̂

and compare the result to the result from Eq. 5. Both procedures are completely general. In Eq. 6 we apply an

independent computation of the single parameters. The two expressions will be shown here to give the same result.

The general relation between the differential and integral pressures is given by

p =

[
∂(p̂V )

∂V

]
T,µ

= p̂+ V

(
∂p̂

∂V

)
T,µ

(7)

This shows that p or p̂ can enter the equation of state for the porous medium, see Eq. 5. The fcc lattice used in

the present model poses a special condition on the two pressures. Because of the lattice symmetry, the integral

pressure will not depend on the REV volume, giving the special condition p = p̂ for the REV. Any block of adjacent

unit cells will therefore also give the same value of p̂, see Fig. 1. It follows that the integral pressure in this lattice

is independent of the size of the REV. As a consequence, the differential pressure of the REV is identical to the

integral pressure, p = p̂ for the REV. This is only the case for this special system, and not in general. To be general,

we will keep the integral pressure p̂.

Such an equality does not apply for p̂f , p̂s and γ̂, which in general differ from pf , ps and γ. Only if the spheres

are far apart, p̂f = pf , and if the spheres are large enough, also γ̂ = γ. This was the special case considered before

[8]. In that work, we required that the fluid volume was so large that the fluid pressure was equal to the bulk

pressure and that the fluid-solid curvature was so small that the surface tension did not depend on it. By using such

requirements, we cannot take into account any disjoining pressure [31] or Tolman length [32]. The procedure in this

work is more general and can describe such effects and other capillary effects.

The presence of additional fluid phases would contribute by similar terms to Eq. 6. The saturation will appear

as a variable, and there are contributions from three-phase contact lines. Eq. 6 is an alternative definition of the

integral pressure of the REV. When there is equilibrium at the boundary between the porous medium and the bulk
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phase surrounding the porous medium, we have the condition

p̂ = pb. (8)

This condition was recently used to determine the solid integral pressure p̂s [22]. We shall here use the relation 8

to determine the REV integral pressure in the equation of state (Eq. 5). The equation of state is next applied to

non-equilibrium conditions assuming local equilibrium. This procedure is possible for any geometry.

2.2 The effective pressure gradient

The Gibbs equation can be written in terms of coarse-grained variables of the REV, as described in the previous

section. By introducing the entropy, mass, and energy balance equations, we can then obtain the entropy production

of the REV. In the present isothermal single-phase case, the entropy production has only one flux-force product.

The flux conjugate to the negative pressure gradient is the volume flux, JV

JV = −l ∂p̂
∂x
. (9)

This expression gives a thermodynamic basis for Darcy’s law; which is a locally linear relationship between the

volume flux and the driving force valid for the porous medium. According to non-equilibrium thermodynamics, this

equation does not assume laminar flow conditions. The only assumption is that there is local equilibrium and that

the fluxes are linear combinations of the forces. These assumptions have been shown to hold for coupled heat and

mass transport through liquid-vapor interfaces [33] and membranes [34]. The conductivity coefficient (the hydraulic

conductivity), l, is a function of state variables. The driving force is not necessarily constant along the medium. We

need the local value of ∂p̂/∂x and JV to find l.

When the porous medium is in contact with bulk fluids at both ends, the boundary condition will always give

∆p̂ = ∆pb. In the experimental situation, the gradient is the pressure difference divided by the length L of the

medium and the conductivity coefficient is the coefficient l obtained from

JV = −l∆p̂
L

= −l∆pb
L

. (10)

The permeability k enters Darcy’s law on the form

JV = − k

ηb

∆p̂

L
= − k

ηb

∆pb
L

, (11)

where ηb is the shear viscosity of the bulk fluid, and

l =
k

ηb
(12)

The volume flux is related to the mass flux by the fluid mass density, JV = Jm/ρf . While JV varies, Jm is

constant in the steady state,

Jm = JV ρf = −ρf
k

ηb

∂p̂

∂x
. (13)

We shall determine the coefficients l and k from the last two equations, with information of the mass flux Jm, fluid

mass density of the REV, ρf , and integral pressure gradient ∂p̂/∂x. Their dependence on the fluid mass density ρf

and the porosity φ is of interest.

The original form of Darcy’s law was obtained experimentally for the laminar flow of a single-phase fluid through
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a porous medium. It has also been given a mechanical basis [3]. The Reynolds number, used to characterize flow

patterns, is here calculated from Re = 2RJm/ηb, where Jm is the mass flux, and 2R the diameter of the solid

particles. For Reynolds numbers considered in this work, the flow is laminar [3].

A question of general interest is how the permeability of a porous medium, as used in Darcy’s law, can be

related to the properties of the porous medium. A well-known approach for a bed of granular solids is given by the

Kozeny-Carman equation. As the name suggests, it was first derived by Kozeny [27], assuming that the fluid in the

porous medium could be described as contained in a set of non-interfering parallel channels with the same internal

surface and pore volume, as the medium itself. The solid phase was a packed bed. The general equation was written

as [27, 28, 29, 30]

JV = −τ
2V 2φ3

c0A2

1

ηb

∆p

L
(14)

where φ is the porosity, c0 denotes the Kozeny constant, τ is the tortuosity, and A/V is the surface-to-volume ratio.

The tortuosity is the average length a particle travels across the medium divided by the medium length L. For

monodisperse spheres of diameter d the permeability simplifies to

k =
τ2d2

c0

φ3

(1− φ)2
. (15)

Klinkenberg gave a correction for low-density compressible fluids with basis in fluid slippage at the wall [35]. When

this correction is included, the effective permeability, k, is written as

k = k0

(
1 +

b

p

)
(16)

where k0 is the absolute permeability and b is the Klinkenberg constant [3]. The correction was found to be relevant

for permeabilities k¡ 10 −13 m2 [36].

3 Molecular simulations

3.1 The porous medium

Systems of a single-phase and single-component fluid were simulated in a porous structure using molecular dynamics

simulations with LAMMPS [37]. The porous solid structure was composed of solid spherical particles in a face-

centered cubic (fcc) lattice. The fluid particles were free to move, while the solid particles were immovable. As a

consequence, the porous medium was non-deformable. The mass of the fluid particles was m, while the mass of the

solid particle was not defined since they were immovable. The radius of the solid particles was R and the lattice

constant was a.

The particles interacted with the Lennard-Jones/spline potential, which is a pair-wise interaction potential that

models non-bonded neutral atom interactions. It is for example an accurate model for noble gasses and methane

[38, 39, 40, 41]. See Hafskjold et al. [42] and Kristiansen [43] for details on the thermodynamic and transport

properties for this potential. The potential is

u(r) =



∞ if r ≤ d,

4ε

[(
σ
r−d

)12

−
(

σ
r−d

)6
]

if d < r ≤ rs,

a(r − rc)2 + b(r − rc)3 if rs < r ≤ rc,

0 if r > rc.

(17)
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Where r = ‖rj − ri‖ was the distance between particle i and j. The interaction strength was characterized by the

depth of the interaction potential ε, and the particle diameter was characterized by the distance σ. The hard-core

diameter of the particles was d. The parameters a, b, rs and rc were set such that the potential and its derivative

were continuous at rs and rc.

The simulation data were related to SI units by using parameters ε, σ, and the fluid particle mass m for methane

[38, 39]. The aim of this is not to give accurate data for methane transport, but rather to present more identifiable

values. The parameters were in terms of SI units

ε/kB = 148.1 K, σ = 0.381 nm, and m = 2.661× 10−26 kg. (18)

The parameters εff = εfs = ε and σff = σfs = σ were equal for the fluid-fluid and solid-fluid interactions, while

the hard-core diameter was zero for the fluid-fluid interactions dff = 0 and dfs = 4.5σ ≈ 1.7 nm for the fluid-solid

interactions. The solid did not interact with other solid particles. The radius of the solid was constant and defined

to be R := dfs + σfs/2 = 5σ ≈ 1.9 nm, at which point the potential energy of the fluid-solid interaction is zero.

The fluid-solid slip conditions were not precisely defined, but depended on the shape of the fluid-solid surface and

fluid-solid interactions. The fluid-solid surface was completely smooth.

The lattice constant was varied from a = 2
√

2R ≈ 5.4 nm to a = 40σ ≈ 15.2 nm, where the lower limit is where

the surface of the solid particles are in contact. The porosity and surface-to-volume ratio of the porous structure

were

φ = 1− 16πR3

3a3
and A/V =

16πR2

a3
. (19)

Consequently, the porosity varied from 0.26 to 0.97 and the surface-to-volume ratio varied between approximately

0.05 nm−1 and 1.17 nm−1. The fcc lattice has four octahedral and eight tetrahedral voids. The octahedral voids

are the largest and can accommodate a sphere of radius a/2−R, which varies from 0.8 nm to 5.7 nm in the cases

studied here.

3.2 Shear viscosity

The shear viscosity of the bulk fluid was calculated with the OCTP plugin [44] from the time-integral of the

auto-correlation function of the off-diagonal components of the Cartesian mechanical pressure tensor,

ηαβ = lim
t→∞

1

2t

V

kBT

〈(∫ t

0

Pαβ (t′) dt′
)2
〉
. (20)

The system consisted of 32000 fluid particles and was initialized at temperature T = 296.2 K and bulk mass density

in the range 4.8 to 385 kg/m3. The system was equilibrated with an NV T -ensemble for 2× 106 steps. After that, an

additional 2× 106 steps were run in the NV E ensemble to collect data and compute the shear viscosity. The time

step was δt = 1.375 fs. The statistics were improved by running 30 independent simulations. The shear viscosity is

shown as a function of the fluid mass density in Fig. 3.

3.3 Simulation procedure

3.3.1 Equilibrium conditions

The systems were initialized by creating a fcc unit cell of solid particles with varying lattice constant a in a cubic

simulation box of side lengths a. In addition, a bulk fluid without solid particles was simulated. The boundaries of

the simulation box were periodic. The temperature of the fluid was controlled with a Nosé-Hoover type thermostat
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Figure 3: Shear viscosity as a function of fluid mass density.

to be constant and equal to T = 2ε/kB = 296.2 K [45], which is in the supercritical region (Tc = 0.885ε/kB ≈ 131 K

[42]). A supercritical fluid was investigated to avoid phase separation.

Fluid particles were inserted and removed from the porous structure using the grand canonical Monte Carlo [46].

This was done to generate initial configurations with varying lattice constants that were in equilibrium with each

other. Fluid particles were inserted into the pores with an acceptance probability

acc(Nf → Nf + 1) = min

{
1,

V

Λ3(Nf + 1)
exp[β(µf −∆Ep]

}
(21)

and a random fluid particle was removed from the simulation box with an acceptance probability

acc(Nf → Nf − 1) = min

{
1,

Λ3(Nf + 1)

V
exp[−β(µf + ∆Ep]

}
. (22)

Where β = 1/kBT is the thermodynamic beta, Λ =
√
h2/(2πmkBT ) is the de Broglie thermal wavelength, h is the

Planck constant, Nf the number of fluid particles, and ∆Ep is the potential energy difference of the system, when

inserting or removing a fluid particle. The fluid chemical potential varied in the interval µf ∈ [−10, 10]ε, which

resulted in a bulk fluid mass density variation from ρb = (3.3± 0.2) kg/m3 to (409.9± 0.5) kg/m3. The simulations

were run until the average number of fluid particles reached a constant value. For the largest porosities and chemical

potentials, this took up to 9× 106 steps. The time step was δt = 2.75 fs.

Fig. 4 illustrates nine visualizations of the equilibrium simulations for three porosities and three chemical

potentials. The figure provides a visual impression of the range of conditions studied, from closest packing of spheres

and porosity φ ≈ 0.26 (bottom row) to an open fcc lattice with porosity φ ≈ 0.97 (top row). The three chemical

potentials used in the snapshots correspond to bulk mass densities ρb = [(39.9± 0.8), (236± 1), (350.9± 0.8)]kg/m3

from left to right. The figure parts are scaled such that the figure sizes become the same. In the simulations, the
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Figure 4: Nine initialized simulations in equilibrium conditions of varying fluid chemical potential and porosity.
The three chemical potentials used in the snapshots correspond to bulk mass densities ρb = [(39.9± 0.8), (236.0±
1.1), (350.9± 0.8)]kg/m3 from left to right. Each illustration is scaled such that the figure sizes become the same. In
the simulations, the radius of the blue solid particles was constant in all simulations. The simulated system was
visualized with OVITO [26].

radius of all blue solid particles was the same.

3.3.2 Non-equilibrium conditions

The unit cells were replicated twice in the y- and z-directions and ten times in the x-direction in these studies. The

final side lengths of the simulation box in non-equilibrium conditions were (10, 2, 2)a, where a is the lattice constant.

The grand canonical Monte Carlo fluid particle insertions and removals from the porous medium were stopped,

while the temperature was controlled with a Nosé-Hoover type thermostat [45]. However, the temperature was also

controlled separately in each REV (volume Vl) to ensure that there was no temperature gradient.

The reflecting particle method (RPM) [25] was applied to the x-boundary of the simulation box to induce an

integral pressure gradient. The RPM allowed particles to cross the periodic x-boundary from right to left with a

probability 1− q and be reflected with a probability q ∈ [0, 1]. A value q = 0 entailed that no fluid particles were

reflected, while a value q = 1 entailed that all fluid particles were reflected when attempting to cross the x-boundary

from right to left. The fluid particles were never reflected when crossing the x-boundary from left to right. The

pressure gradient was controlled by varying the probability q. This is a boundary-driven non-equilibrium molecular

dynamics method to induce a pressure gradient that has minimal disturbance on the fluid particles away from the

boundary. The simulations were run until they had reached steady-state, where the mass flux was constant along

the x-axis. For the longest simulations, this took up to 8× 106 steps. The time step was δt = 2.75 fs.

The mass fluxes and integral pressures were calculated in layers l of volume Vl along the x-axis. The volume of
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each layer was equal to the lattice constant a and spanned the simulation box in the y- and z-directions. The side

lengths of the layers were (a, 2a, 2a) in the x-, y- and z-directions, respectively. The volume of each layer (the REV)

was consequently Vl = 4a3. Each layer contains four unit cells. The mass flux through layer l was calculated as

Jl,m =
1

Vl

∑
i∈Vl

mivi,x = ρf,l〈vi,x〉 (23)

where mi is the mass of fluid particle i, vi,x is the velocity of fluid particle i in the x-direction, and 〈vi,x〉 is the

average particle velocity in the x-direction. The sum is over all particles in the layer Vl. The integral pressure of

each layer was calculated by relating the fluid mass density ρf,l to the integral pressure calculated in equilibrium.

With this procedure, we were able to determine the transport coefficients l and k. The procedure has been used

earlier by us to establish the same gradient in integral pressure [24], however, the permeability calculations are done

for the first time here.

4 Results and discussion

The results of this work are shown in Figs. 5 - 14. The results are presented and discussed with reference to the

simulation procedure (Section 3.3) and to the Theory (Section 2).

4.1 Equilibrium conditions. The equation of state

The fluid mass density in the REV is shown as a function of fluid chemical potential in Fig. 5. The chemical

potential was set by the environment. The fluid mass density is shown for a varying porosity. We see that the fluid

mass density in the REV increases monotonically with the chemical potential, approaching the value of the adjacent

bulk phase (shown by black crosses in the figure). This approach is as expected.

The fluid mass density of the REV differs from the mass density outside the porous medium. But, the fluid

mass density of the REV, corrected by the porosity will also differ from the outside value (not shown in the figure).

This indicates that thermodynamic properties change upon fluid confinement. In the low porosity case, the effect is

large. For a fluid chemical potential near 0 J, the density ρf changes by a factor of 50, as the porosity changes from

densest packing of spheres to bulk fluid. Every single curve deviates from the bulk vapor mass density when the

fluid chemical potential is around −1020 J, where the adsorption of fluid into the pores starts to seriously increase.

The numbers refer to the chosen model; methane.

The dependence of the integral pressure on the fluid mass density for the various porosities is presented in Fig.

6. The rise in the integral pressure from a few bars to (3184± 27) bar is shown for all porosities. The slope of the

curves increases with decreasing porosity. The bulk isotherm is again indicated by black crosses and gives the lower

limit of the variation. Again, the curves approach the bulk value as the porosity increases, as expected. The curves

apply for a temperature T = 2.0ε/kB = 296.2 K.

The mean free path of the bulk vapor densities can be estimated with the kinetic theory of gases with the

equation ` = (
√

2πσ2nb)
−1, where nb is the number density of fluid particles in the bulk phase. For the lowest bulk

mass density, ρb = (3.3± 0.2) kg m−1 the mean free path is estimated to be ` = (12.7± 0.9) nm. The octahedral

voids in the fcc lattice can accommodate spheres with diameter 1.6 nm to 11.4 nm for the varying porosities, in which

case the system is in the Knudsen flow regime. For a bulk mass density ρb = (24.2± 0.6) kg m−1, the mean free path

is estimated to be ` = (1.71± 0.05) nm. The system will be in the Knudsen flow regime for the lowest densities.

The curves obtained for the equilibrium condition Eq. 6, can be regarded as an equation of state relating the

temperature, porosity, and fluid mass density of the REV to the integral pressure, see equation Eq. 5. we shall
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Figure 5: Fluid mass density as a function of fluid chemical potential for varying porosities. Bulk fluid values are
indicated by black crosses at the top.

use the sets of relations in the same manner as an equation of state. Once we know the fluid mass density of the

REV, we know also the chemical potential that controls it from Fig. 5, and therefore also the corresponding integral

pressure from Fig. 6.

4.2 Non-equilibrium conditions

By applying the reflective boundary method we generated a mass flux, a fluid mass density difference, and a difference

in integral pressure difference across the porous medium. By increasing the reflecting probability q we increased the

gradients. In this manner, we varied the integral pressure gradient between approximately ∆p̂/L = −7 bar µm−1

and 20 000 bar µm−1. The corresponding Reynolds numbers varied from approximately zero up to Re = 3.54± 0.08.

Gradients that are generated in non-equilibrium molecular dynamics can be very large because the length of the

simulation box is relatively short and the method can apply strong forces.

The fluid mass density profiles across the porous medium are shown in Fig. 7 for a porosity φ ≈ 0.87, and an

average fluid mass density of the REV ρf = (351.3± 0.7) kg/m3. The Reynolds numbers varied from Re = 0.02±0.01

to Re = 0.67± 0.02. From the fluid mass density profiles, we obtained the integral pressure profiles. Examples are

shown in Fig. 8. The integral pressure gradients were calculated from the integral pressure profiles. The gradient in

integral pressure was in good approximation constant. This was not expected and is also not needed in the data

reduction procedures. Because the mass flux is constant at a steady state (mass conservation), and the driving force

is approximately constant, it follows that ρf l and ρfk/η were constant across the porous medium. The conductivity

and the permeability are not necessarily constant in a porous medium of varying porosity.

There is not yet much experience with the integral pressure of porous media reported in the literature. It is

therefore appealing to examine the contributions to the integral pressure from the bulk phases and surface, and test

our way to compute p̂ from the equation of state, Eq. 5. By assuming p̂f = pf , p̂ = pf and γ̂ = γ, the individual
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Figure 6: Integral pressure as a function of fluid mass density for varying porosities, or equation of state for the
porous medium. Bulk fluid values are shown by black crosses at the bottom.

Figure 7: Fluid mass density as a function of the x-coordinate for porosity φ ≈ 0.87, average fluid mass density
ρb = (351.3± 0.7) kg/m3, and varying Reynolds numbers.

13



Figure 8: Integral pressure as a function of the x-coordinate for porosity φ ≈ 0.87, average fluid mass density
ρb = (351.3± 0.7) kg/m3, and varying Reynolds numbers.

contributions can be calculated. The outcome is illustrated in Fig. 9, again for a porosity φ ≈ 0.87, average fluid

mass density ρb = (351.3± 0.7) kg/m3. The Reynolds number was now Re = 0.67± 0.02. The assumptions hold for

large porosities when the disjoining pressure is zero, and when the surface tension is independent of the fluid-solid

surface curvature. These assumptions are not necessary for the continued analysis of this work, they are just chosen

to illustrate a case with individual contributions. The surface tension γ was calculated from the spherical mechanical

pressure tensor. The value increases monotonically with increasing density between (0.079± 0.009) mN m−1 and

(34± 1) mN m−1. See the supplementary information for more details on the surface tension.

The integral solid pressure was calculated from the integral pressure and surface tension

p̂s = pf + γA/Vs (24)

where A is the fluid-solid surface area and Vs is the volume of the solid phase, see Eq. 3. In Fig. 9, we see the

local contributions from the gradient in fluid pressure φ∇pf = (−8629± 106) bar µm−1, in integral solid pressure

(1− φ)∇p̂s = (−9965± 215) bar µm−1, and in surface tension (A/V )∆γ = (370± 214) bar µm−1. The single parts

sum to the total value shown in the figure. This value of p̂ was also determined from the equation of state, Eq. 5.

Within the accuracy of the calculation, we confirmed our hypothesis that the two routes give the same result.

A control of isothermal conditions was carried out. We know that a pressure difference may generate a temperature

difference, or vice versa [19]. Constant temperature is therefore a condition for the single flux-force product of the

entropy production, and consequently for Darcy’s law’s applicability. We, therefore, confirmed that the temperature

was constant across the system.

Figure 10 shows plots that are used to determine the conductivity and permeability in Darcy’s law. Rather than

using the volume flux, we have used the mass flux on the ordinate axis, as this flux, but not the volume flux is

constant across the porous media in a steady state. The figure illustrates varying porosities φ ≈ [0.26, 0.61] and the
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Figure 9: Profile of porosity φ ≈ 0.87, average fluid mass density ρb = (351.3± 0.7) kg/m3 and Reynolds number
Re = 0.67 ± 0.02. Top: Visualization of the simulation box. The border of a layer of volume Vl is marked with
a dashed line. Bottom: Contributions from the bulk phases and the surface to the integral pressure as function
of the x-coordinate. The x-axis of the visualization correspond to the graph. The points in the graph gives the
x-position of the center of the REV (the volume Vl).
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Figure 10: The mass flux as a function of the negative integral pressure gradient for porosities φ ≈ [0.26, 0.61] and
average bulk fluid mass density ρb = (108± 1) kg/m3. The dashed lines are linear fits to the points.

average bulk fluid mass density was ρb = (108± 1) kg/m3 in these plots.

We see that the mass fluxes in all cases can be regarded as linear functions of the negative integral pressure

gradient; the dashed lines are linear fits to the calculated mass fluxes. Also observed is that the fluxes intersect the

origin of the axes. This behavior is compatible with a linear theory like NET. There is no threshold for transport at

low-pressure gradients.

4.3 Conductivity and permeability

Fig. 8 gave the integral pressure gradient inside the porous medium. The integral pressure gradient from this

figure together with the constant mass flux was used to determine the conductivity of the porous medium. The

conductivity was plotted in Fig. 11 as a function of the factor φ3/(1− φ)2 in the Kozeny-Carman equation. There

was no convincing relationship between the variables.

It is more interesting to consider the permeability k. Its value was computed from the conductivity l and the

shear viscosity ηb, and the results are shown as a function of the inverse average integral pressure (which here

happens to be the same as the inverse differential pressure) in Fig. 12. We see that the permeability increases with

a constant slope for large values of the inverse average integral pressure (low densities), where the fluid is highly

compressible. For small values (high densities), the slope decreases as the fluid become less compressible. This

behavior is expected from the Klinkenberg correction [35, 36]. The results at the low pressure were therefore fitted

to a straight line and extrapolated to the high-pressure end to obtain the absolute permeability, k0.

The dependence of the permeability on other lattice parameters is shown in the log-plot of the permeability

as a function of the porosity in Fig. 13. A systematic variation is demonstrated over a change in four orders of

magnitude of k. The absolute permeability was calculated using the Klinkenberg correction formula (in the range

where this correction applies), by plotting the permeability vs 1/p and extrapolating to very large pressures. The
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Figure 11: Conductivity coefficient as a function of the porosity factor φ3/(1− φ)3 for various average fluid mass
densities.

Figure 12: Permeability as a function of inverse average pressure pressure.
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Figure 13: Permeability in logarithmic scale as a function of the porosity φ for varying average bulk fluid mass
density. The Kozeny-Carman equation is shown as a black dashed curve for a tortuosity τ = 1.

absolute permeability is shown as a black dashed line. We see that the absolute permeabilities form a lower limit for

the family of calculated permeabilities. On the other hand, the Kozeny-Carman equation with tortuosity τ = 1,

shown as a grey dash-dotted line, does not bring out any new physical insight.

Fig. 14 shows the Klinkenberg coefficient b as a function of porosity φ. The coefficient is porosity dependent and

significant for the whole range of porosities. To a good approximation, the dependence is linear for porosities below

0.6. The coefficient can be understood from the lack of interaction between solid spheres and fluid particles on the

particle level, which here is consistent with slippage.

5 Conclusion and Perspectives

We have demonstrated a new thermodynamic procedure to find the local effective pressure gradient that drives the

mass flow through a porous medium. The REV was constructed from additive thermodynamic variables, such that

the Gibbs equation and in turn the entropy production and flux-force equations could be derived. The method

was applied to single-phase fluid flow in an isothermal medium of varying porosity and fluid mass density under

laminar flow conditions. The hydraulic conductivity as well as the permeability were shown to vary with porosity

and fluid mass density, and give values that are typical in the literature. The systems studied in this work were in

steady-state. This does not pose any limitation on the method. The procedure can be used to describe transients. It

is interesting that the system supported the behavior behind the Klinkenberg effect, and that we obtained variables

of a size compatible with this effect, e.g. k < 10−13m2.

The procedure has its thermodynamic basis in standard non-equilibrium thermodynamics as combined with

Hill’s method of nanothermodynamics to describe the confined fluid. This method should now be tested with a

two-phase flow, to help solve problems stated in the literature on the upscaling problem; i.e. on how we can properly

describe the porous medium microstates, that is the origin of Darcy scale behavior. For instance, we can define the
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Figure 14: Klinkenberg constant b as a function of porosity φ.

effective pressure without consideration of the capillary pressure. For two-phase flow, the REV will be larger than a

unit cell to include the statistical variation of the two-phases.

A particular symmetric lattice was chosen to illustrate the derivations. This should also not be regarded as

a limitation. The method could be accommodated to deal with pore distributions. It can be applied to highly

confined systems, where the disjoining pressure is significant. The central point is the proper construction of the

grand potential.
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1 Surface tension

The fluid-solid surface tension was calculated from the spherical mechanical pressure tensor of a single solid sphere

surrounded by a fluid of varying mass density. This was considered as the surface tension of a lattice with a large

lattice constant, such that the solid surfaces were far apart. The mechanical pressure tensor can be written as a sum

of an ideal gas contribution and a virial contribution. The diagonal components of the mechanical pressure tensor

were calculated in spherical shells with origin at the center of the solid sphere

Pαβ(r) = ρ(r)kBTδαβ + P vαβ(r), (25)

where r is the distance to the origin, ρ(r) is the fluid mass density of the spherical shell, δαβ is the Kroenecker delta

and P s,vαβ is the virial contribution. The subscripts α and β refer to the spherical coordinates, (r, θ, φ). The virial

contribution is

P vαβ(r) = − 1

V (r)

N∑
i=1

N∑
j>i

fij,α

∫
Cij∈V (r)

dlβ . (26)

where V (r) is the volume of the spherical shell, fij,α is the α-component of the force acting on particle i due to

particle j. The line integral is along the Irving-Kirkwood contour Cij [?, ?, ?], which is the straight line between

particle i and j. The line integral gives the length of the β-component of the contour Cij that is contained in the

spherical shell V (r). The surface tension is calculated from the pressure tensor

γ =
1

R2

∫ r0

R

(PN − PT )r2dr, (27)

where PN = Prr is the normal to the fluid-solid surface and PT = (Pθθ + Pφφ)/2 is tangential to it. The integral

limit r0 is a position in the fluid far away from the fluid-solid surface such that PN = PT . The surface tension is

shown as a function of fluid mass density in Fig. 15.
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[9] M. T. Rauter, O. Galteland, M. Erdős, O. A. Moultos, T. J. Vlugt, S. K. Schnell, D. Bedeaux, and S. Kjelstrup,

“Two-Phase Equilibrium Conditions in Nanopores,” Nanomaterials, vol. 10, no. 4, p. 608, 2020.

[10] D. Bedeaux and S. Kjelstrup, “Fluctuation-dissipation theorems for flow in porous media,” Entropy, vol. 24,

p. 46, 2021.

[11] S. Kjelstrup, D. Bedeaux, A. Hansen, B. Hafskjold, and O. Galteland, “Non-isothermal transport of multi-phase

fluids in porous media. The entropy production,” Front. Phys., vol. 6, p. 126, 2018.

[12] S. Kjelstrup, D. Bedeaux, A. Hansen, B. Hafskjold, and O. Galteland, “Non-isothermal transport of multi-phase

fluids in porous media. Constitutive equations,” Front. Phys., vol. 6, p. 150, 2019.

21



[13] B. D. Todd and P. J. Daivis, Nonequilibrium molecular dynamics: theory, algorithms and applications. Cambridge:

Cambridge University Press, 2017.

[14] B. Hafskjold, T. Ikeshoji, and S. K. Ratkje, “On the molecular mechanism of thermal diffusion in liquids,” Mol.

Phys., vol. 80, no. 6, pp. 1389–1412, 1993.

[15] T. Ikeshoji and B. Hafskjold, “Non-equilibrium molecular dynamics calculation of heat conduction in liquid and

through liquid-gas interface,” Mol. Phys., vol. 81, no. 2, pp. 251–261, 1994.

[16] B. Hafskjold and T. Ikeshoji, “Non equilibrium molecular dynamics simulation of coupled heat-and mass

transport across a liquid/vapor interface,” Mol. Sim., vol. 16, no. 1-3, pp. 139–150, 1996.

[17] T. L. Hill, Thermodynamics of small systems, Parts I & II. New York: Dover Publications, 1994.

[18] D. Bedeaux, S. Kjelstrup, and S. K. Schnell, Nanothermodynamics. General theory. Trondheim: PoreLab,

Norwegian University of Science and Technology, 2020.

[19] M. T. Rauter, S. K. Schnell, B. Hafskjold, and S. Kjelstrup, “Thermo-osmotic pressure and resistance to mass

transport in a vapor-gap membrane,” Phys. Chem. Chem. Phys., 2021.

[20] M. T. Rauter, S. K. Schnell, and S. Kjelstrup, “Cassie–Baxter and Wenzel States and the Effect of Interfaces

on Transport Properties across Membranes,” J. Phys. Chem. B, 2021.
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Appendix A
Corrections to articles

The corrections to the known misprints in the articles printed in this thesis are
as follows.

1. Article III, page 5, and line 13:

R ≡ (σff + σrr) = 5.5σ0 should be R ≡ (Rff +Rrr) = 5σ0

2. Article VI, page 8, and line 15:

p̂⊥(h) ≡ 1
h

∫ h
0 P⊥(h)x = P⊥(h) should be p̂⊥(h) ≡ 1

h

∫ h
0 P⊥(h)dx = P⊥(h)

3. Article VI, page 8, and line 21:

P⊥(h) =
∫ h
0 ffs(x)ρ(x, h)x should be P⊥(h)

∫ h
0 ffs(x)ρ(x, h)dx

4. Article VI, page 14, and line 4:

p̂(h) = 1
h

∫ h
h0

p̂⊥h
′ =

∫ h
h0

2γ̂
h′2h

′ should be p̂(h) = 1
h

∫ h
h0

p̂⊥dh′ =
∫ h
h0

2γ̂
h′2 dh′
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