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Phase-controlled spin and charge currents in a superconductor-ferromagnet hybrid
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We investigate spin-dependent quasiparticle and Cooper-pair transport through a central node interfaced with
two superconductors and two ferromagnets. We demonstrate that voltage biasing of the ferromagnetic contacts
induces superconducting triplet correlations on the node and reverses the supercurrent flowing between the two
superconducting contacts. We further predict that such triplet correlations can mediate a tunable spin current flow
into the ferromagnetic contacts. Our key finding is that noncollinearity in combination with spin-mixing results
in equal-spin-triplet correlations on the node and leads to a net charge current between the unbiased two magnets.
Our proposed device thus enables the generation, control, and detection of the typically elusive equal-spin-triplet
Cooper pairs.
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I. INTRODUCTION

Cooper pairs from a superconductor (S) placed in the
vicinity of a ferromagnet (F) may diffuse into the latter, thus
modifying their electronic properties [1–5]. The engineering
of this proximity effect in hybrid structures generated over
the past few years considerable interest in thermoelectricity
[6–16], spin caloric transport [17,18], and topological super-
conductivity [19–24]. Somewhat unexpected is that not only
can ferromagnets [25–28] and antiferromagnetic insulators
[29] cause spin imbalances into superconductors, but also
normal metals [30] exploiting a superconductor itself may
serve as a spin filter [31].

By sandwiching a normal metal or ferromagnet between
two superconductors, one can realize a Josephson junction
featuring a current of Cooper pairs between them, which is
characterized by the junctions’ free energy [32–34]. Its global
minimum determines the ground state of the system. While a
ground state at zero phase difference indicates a Josephson
current mediated by singlet Cooper pairs, a shifted ground
state about π , occurring in magnetic Josephson junctions
[35–44], signals triplet superconductivity [45–48] manifesting
in a reversed current phase relation (CPR) [49–51]. Such
magnetic Josephson junctions are interesting for quantum
computation [52–54] and cryogenic memories [55,56].

Recently, the generation of equal-spin-triplet pairs has
been demonstrated in S/F structures that contain noncollinear
magnetizations [57], as originally predicted by Kadigrobov
[58] and Bergeret et al. [59,60]. Mixed-spin-triplet pairs with
a zero-spin projection on the z axis, however, already arise for
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a homogeneous magnetization. It is the immunity of equal-
spin-triplet correlations against internal magnetic fields which
causes a long penetration length into ferromagnets compared
to the ones of singlet and mixed-triplet correlations [61–63].
This property of equal-spin-triplet pairs makes them particular
attractive for low-power spintronics [64–66].

In this work, we study spin and charge transport in a
four-terminal S/F system consisting of two s-wave super-
conducting (n = S1, S2) and two ferromagnetic (n = F1, F2)
terminals with a common contact region [Fig. 1(a)]. Our key
finding is that a voltage applied to the two ferromagnetic
leads in combination with noncollinear magnetizations can
induce triplet superconducting correlations in the system and
therewith transitions in the CPR. We show that the mechanism
sketched in Fig. 1(b) allows the relative magnetization angle θ

to control the spin currents in the ferromagnetic and supercon-
ducting contacts for voltages above the superconducting gap.
As shown in the Fig. 1(b), left image, the interaction between
the quasiparticle spin chemical potential and the condensate
induces triplet correlations which are being spin split and dis-
tributed within the superconducting leads, resulting in the net
spin supercurrent. Above the superconducting gap, the left and
right magnetic leads inject up- and down-spin electrons into
the node, respectively [see the right image of Fig. 1(b)]. This
implies that there is (an up-)spin flow from the left to the right
magnet. Note that Iz

F is a purely-quasiparticle-mediated spin
transport and does not depend on the superconducting phase
difference. Finally, we predict that asymmetric spin-mixing
conductances (e.g., Gφ

1 = 0 and Gφ

2 > 0) in a noncollinear
magnetization configuration leads a finite net charge current
between the ferromagnetic contacts. As illustrated in Fig. 1(c),
the origin is the generation of equal-spin-triplet correlations in
the central node. As depicted in the right image, introducing
the finite Gφ

2 results in an imbalance between the injected
Andreev currents to the left and right magnets, which in return
gives rise to the current. Altogether, our proposal allows for
the experimental detection and exploitation of spin-polarized
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FIG. 1. (a) Four-terminal circuit. Two superconductors with
phases ±ϕ/2 and gap � (green) and two ferromagnets with relative
magnetization angle θ (blue) are connected to a central node (yel-
low). (b) The left (right) sketch of the central node illustrates a net
spin current injection into the superconductors (ferromagnets) due to
(anti)parallel magnetization of the ferromagnetic leads for εTh � �

and V � �/e in the absence of spin-mixing conductances. Singlet
(mixed-triplet) correlations are indicated by encircled arrows con-
taining a minus (plus) sign. (c) Finite spin mixing Gφ

2 > 0 allows the
generation and detection of equal-spin-triplet correlations (encircled
arrows of the same color) by measuring a net charge current between
the ferromagnetic leads.

currents by nonequilibrium quasiparticles. In comparison
with previous literature [38,43,46] investigating spin-triplet
supercurrents via the Josephson effect in S/F/S structures,
our proposed device allows an easy voltage control of the
spin-triplet correlations and supercurrents. Furthermore, its
multiterminal topology allows the currents to be channeled in
various ways, making it a potential building block for future
superconducting spintronics technologies [64,65].

II. METHOD

We study diffusive transport, within a semiclassical
[67–71] circuit theory [72,73]. In this framework, hybrid
structures are discretized as a network of nodes, terminals, and
connectors. Here we map our system to a layout consisting
of a central node which is interfaced with two supercon-
ducting and two ferromagnetic terminals via corresponding
connectors [see Fig. 1(a)]. An additional leakage terminal
can account for losses of superconducting correlations. The

Green’s function Ǧc of the node, which is an 8 × 8 matrix in
Keldysh-Nambu spin space, is here the central quantity char-
acterizing the transport properties. The conservation of the
total matrix current at this node, 08 = ∑

n Ǐn, together with
the normalization condition Ǧ2

c = 18 determines Ǧc and there-
with the individual matrix currents Ǐn ≡ [M̌n, Ǧc] between
terminal n ∈ {S1, S2, F1, F2, leak} and the central node.1

The superconducting contacts are characterized by the
BCS bulk Green’s functions (2/GS )M̌Sα = ǦSα , with GS the
conductance of the corresponding connector to the central
node and α = 1, 2. Its retarded/advanced component reads,
in the spinor basis {	†

↑, 	
†
↓, 	↓,−	↑} [6,7],

ĜR,A
Sα = ± sgn(ε)√

(ε ± i
)2 − |�α|2
(±i
 + ε �α

−�∗
α ∓i
 − ε

)
⊗ 12,

(1)
where �1,2 ≡ � exp[±iϕ/2] denotes the superconducting gap
with phase difference ϕ across the junction. A small imaginary
component in the denominator of Eq. (1) (here 
 = 10−3�)
accounts for a finite lifetime h̄/
 of the quasiparticles, with
energy ε, smearing out the superconducting gap [74]. The fer-
romagnetic contacts are governed by M̌Fα = (1/2)[GN (18 +
Pκ̌α )ǦF − iGφ

ακ̌α], with GN (Gφ
α) the normal (spin-mixing)

conductances of the corresponding connectors. In addition,
P denotes the contact spin polarization and κ̌α = 12 ⊗ σz ⊗
(mα · σ ) is the spin matrix which is diagonal in Keldysh
space. In the last expression, σ = {σx, σy, σz} labels the vector
of Pauli matrices and mα is the magnetization vector corre-
sponding to the ferromagnet Fα. Here we set m1 = (0, 0, 1)
in the z direction and consider m2 = (sin θ, 0, cos θ ) tilted
by an arbitrary angle θ . We further consider fully polarized
ferromagnetic contacts, i.e., P = 1. The retarded/advanced
component of the ferromagnetic Green’s function is given by
ĜR,A

F = ±σz ⊗ 12. Finally, the leakage terminal is described
by M̌Leak = −iGS (ε/εTh)12 ⊗ σz ⊗ 12, with εTh the Thouless
energy. The Keldysh component of the S and F Green’s
functions follows from ĜK

n = ĜR
n ĥn − ĥnĜA

n , with the distri-
bution function ĥn = diag(tanh[(ε − eVn)/2kBT ], tanh[(ε +
eVn)/2kBT ]) ⊗ 12. Hereafter, we assume all contacts at zero
temperature kBT = 0, the superconductors at zero (refer-
ence) voltage VS1 = VS2 = 0, equally biased ferromagnetic
contacts V ≡ VF1 = VF2, and equal conductances GS = GN .
The cases of asymmetric device configurations and partially
polarized ferromagnets are discussed in Appendixes A and B,
respectively.

The Keldysh component of the matrix currents Ǐn leads to
the charge currents

In = 1

8e

∫ ∞

−∞
dε tr

[
(σz ⊗ 12)ÎK

n (ε)
]

(2)

and the z-polarized spin currents

Iz
n = h̄

16e2

∫ ∞

−∞
dε tr

[
(12 ⊗ σz )ÎK

n (ε)
]

(3)

1The symbol 0n (1n) labels the zero (identity) matrix in n × n di-
mensions and the haček indicates the Keldysh⊗Nambu⊗spin space
of dimension 8 × 8.
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FIG. 2. (a) Modulus of the net supercurrent IS as a function of the Thouless energy εTh for different voltages V . The divergencies
occurring for large voltages V � �/e indicate 0-π transitions. The parameters are θ = 0, ϕ = π/2, and Gφ

1 = Gφ

2 = 0. The thin purple line
indicates the corresponding critical current IC = maxϕ IS for V � �/e. (b) Net supercurrent IS and net spin currents Iz

S and Iz
F between the

superconductors/ferromagnets for θ = ϕ = π/2 and εTh � �. The inset shows the net spin currents as a function of θ for V = 1.2�/e, as
indicated by the horizontal dotted line in (b).

[73,75–77]. In particular, we will analyze the charge IX =
IX1 − IX2 and spin net current Iz

X = Iz
X1 − Iz

X2 between the
superconductors/ferromagnets (X = S, F ). The matrix ele-
ments fss′ = 〈	s|ĜK

c |	s′ 〉, with s, s′ =↑,↓, contain the spec-
tral information about spin-pair correlations in nonequilib-
rium. Here we consider the integrated quantities over pos-
itive energies ε > 0 (triplet correlations are odd in ε) to
quantify singlet FS = ∫

dε( f↑↓ − f↓↑)/
√

2, mixed-spin triplet
FT 0 = ∫

dε( f↑↓ + f↓↑)/
√

2, and equal-spin-triplet correla-
tions FT s = ∫

dε fss.

III. SCALING

Before analyzing the interplay between Cooper-pair and
quasiparticle transport, let us recall that in equilibrium only
a Josephson current Ieq

S = IC sin ϕ may flow between both
s-wave superconductors, which has a purely sinusoidal CPR;
all other currents require quasiparticle excitations. Depending
on the effective size L of the central node, the Josephson
current scales in the diffusive regime for εTh � � (large
island) with the Thouless energy εTh ≡ h̄D/L2, where D is
the diffusion constant [see the black solid line in Fig. 2(a)].
For εTh � � (small island), however, it is characterized by
the superconducting gap � [34]. While the superconducting
condensate is in equilibrium entirely formed by spin-singlet
Cooper pairs, finite voltages may cause triplet correlations in
the system. They can lead, for voltages below the gap [dashed
line in Fig. 2(a)], to a reduction of the Josephson current; here
we consider parallel collinear magnetization. For voltages
above the gap and intermediate values of the Thouless energy
εTh, such triplet correlations can even induce current reversals
in the Josephson current IS . In Fig. 2(a), showing the modulus
of IS on a double logarithmic scale, these zero crossings (at
which the logarithm diverges) result in the two sharp dips of
the dash-dotted curve. Also the corresponding critical current
IC = maxϕ IS [purple line in Fig. 2(a)] indicates with the kinks
the presence of triplet correlations.

For Thouless energies much smaller (larger) than the su-
perconducting gap, the corresponding net supercurrent stays

always positive and is dominated by spin-singlet correlations.
We show in the following that applied voltages in combination
with nonparallel magnetization θ �= 0 can induce triplet corre-
lations and transitions in the CPR also in the regimes εTh � �

and εTh � �.

IV. PHASE TRANSITIONS AND SPIN CURRENT CONTROL

First, let us consider the large-island regime εTh � �,
where the Cooper-pair transport is characterized by the Thou-
less energy, i.e., IS, Iz

S ∝ εTh. While the net current between
both superconductors follows in equilibrium the usual sinu-
soidal CPR, IS ∝ sin ϕ, nonequilibrium in combination with
noncollinear magnetization, 0 < θ < π , can induce 0-π tran-
sitions for voltages V > 0 (and P � 0.6; cf. Appendix B)
below the gap �, due to mixed-spin-triplet correlations [black
solid line in Fig. 2(b)]. Above the gap, quasiparticle transport
sets in and IS saturates. In this regime, a finite net spin
current Iz

F ∝ V (red dash-dotted line) emerges between the
ferromagnetic contacts for a nonzero magnetization angle,
irrespective of ϕ. For the chosen symmetric configuration,
however, no corresponding net charge current IF flows.

A special feature of our setup is the occurrence of a
finite net spin current Iz

S between both superconductors (blue
dashed line) for voltages V � �/e. This effect is maximal for
parallel magnetization θ = 0, as can be seen in the inset, for
which only mixed-triplet and singlet correlations are present.
It vanishes for antiparallel orientation θ = π , where no triplet
correlations arise, and when the Josephson phase ϕ is a
multiple of π . Notice that Iz

S is antisymmetric in ϕ, and Iz
S and

Iz
F are symmetric in θ . While voltages V above the gap can

trigger net spin currents Iz
F and Iz

S , the magnetization angle
θ can control their ratio (see the inset), making the proposed
setup thus attractive for future applications.

V. SPIN-MIXING-INDUCED CHARGE CURRENT

Let us now turn to the small-island regime εTh �
�, where losses of superconducting coherence become
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FIG. 3. (a) Net charges IS and IF and net spin currents Iz
S and Iz

F

as a function of θ for εTh � �, ϕ = π/2, V = 2�/e, Gφ

1 = 0, and
Gφ

2 = 2GN . (b) Modulus of the spin singlet FS and the spin-triplet
pairing functions FT 0, FT ↑, and FT ↓. Notice that the finite spin-mixing
conductance Gφ

2 induces a net charge current IF [in (a)] following the
curve progression of the equal-spin-triplet correlations, thus making
them experimentally attainable by standard current measurements
[see Fig. 1(c) for θ ≈ 0.3π , where |FT ↓| < |FT ↑|].

irrelevant and the Josephson transport is characterized by the
gap energy, i.e., IS, Iz

S ∝ �. Here we find that nonantiparallel
magnetization θ �= π can indeed induce triplet correlations
for sufficiently large voltages, which results in an asymmetric
sinusoidal CPR. However, it cannot induce 0-π transitions. To
cure this circumstance, we consider in the following finite spin
mixing for voltages above the gap. Indeed, Fig. 3(a) indicates
that the system is for parallel magnetization θ = 0, but finite
spin mixing Gφ

2 > 0 in a π phase featuring a negative net
supercurrent IS (black solid line). Here we consider the spin-
mixing conductance Gφ

2 of the order of the normal one [57].
Roughly at θ = π/4, the CPR undergoes a π -0 transition.
Similar to the large-island regime [inset of Fig. 2(b)], a net
spin current Iz

F may flow between the ferromagnets [red dash-
dotted line in Fig. 3(a)] which is essentially unaffected by
spin-mixing. The net spin current Iz

S between the supercon-
ductors (blue dashed line), on the contrary, is apart from θ = 0
modified by spin mixing and features a current reversal about
θ = π/2.

Remarkably, the noncollinear magnetization in this system
gives rise to equal-spin-triplet correlations |FT ↑| and |FT ↓|
[see Fig. 3(b)]. A distinctive feature, however, is that these
equal-spin-triplet correlations can induce a finite net charge
current IF into the ferromagnets [green dotted line in Fig. 3(a)]
for asymmetric spin mixing Gφ

1 �= Gφ

2 . This feature is at-
tributed to the creation of an imbalance in the ferromagnetic
spin channels [see Fig. 1(c)]. This effect also persists for
vanishing Josephson phase ϕ. Under a mutual exchange of the
spin-mixing conductances (Gφ

1 ↔ Gφ

2 ), the net charge current
IF just inverts. However, IF additionally contains an offset for
asymmetric device configurations, detailed in Appendix A.
An experimentally measurable charge current IF serves also
in the large-island regime as a signature of equal-spin-triplet
correlations. It features in this regime a similar curve progres-
sion, but scales instead with εTh.

VI. CONCLUSION

Spin-dependent quasiparticle and Cooper-pair transport
have been analyzed in a proximity-coupled multiterminal
S/F heterostructure in nonequilibrium. We have shown that
0-π transitions can be induced in the CPR by biasing the
ferromagnetic contacts and bearing noncollinear magnetic
moments, as long as the loss of superconducting coherence
is large, εTh � �. In this limit, voltages exceeding the super-
conducting gap, V � �/e, trigger net spin currents into the
ferromagnets/superconductors, which can be controlled by
the relative magnetization angle θ . The small-island regime,
however, requires additionally finite spin mixing to induce
a 0-π transition in the CPR. The proposed heterostructure
constitutes an ideal platform for the generation of triplet
correlations of different spin projection and as a voltage-
and phase-controlled switch for spin and electron currents.
In particular, it constitutes a minimal setup for generating,
controlling, and detecting equal-spin-triplet correlations by
current measurements.
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APPENDIX A: ASYMMETRIC DEVICE SETUP

In this Appendix, we address the effect of an asym-
metric setup and discuss in particular asymmetric boundary
conductances of the connectors between the central node
and the ferromagnetic/superconducting terminals. Unlike the
voltages, they cannot be tuned externally and differ from
sample to sample, although a low asymmetry can generally be
achieved within a single device and fabrication process. We
distinguish here the conductances to the ferromagnetic termi-
nals n = Fα with GNα (α = 1, 2) and define the conductances
to the superconducting terminals n = Sα with GSα . Note that
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1 = 0, Gφ

2 = 2GN , and GS2 = GN with GN ≡ GN2. The black lines indicate the symmetric
configuration.

these four conductances have been chosen to be equal in
the main text and hence are denoted therein by the same
symbol GN .

Let us first consider the case of asymmetric conductances
of the connectors to the ferromagnets. Figure 4(a) shows that
the net supercurrent IS for asymmetric conductances GN1 �=
GN2 (red dashed line and blue dash-dotted line) only slightly
deviates from the symmetric case (black solid line). The oc-
currence of equal-spin-triplet correlations FT ↑ is comparably
robust, as can be seen in Fig. 4(c). On the contrary, the net
charge current IF [Fig. 4(b)] exhibits an additional offset
current which is independent of the relative magnetization
angle θ . Thus, the mere occurrence of a finite net charge
current IF does not suffice as an indicator for equal-spin-triplet
correlations for an asymmetric setup. In other words, the off-
set current, which in our normalized units is comparable to the
relative asymmetry (∼20% in Fig. 4), needs to be lower than
the current driven by the triplet correlations. This provides ex-
perimental guidance for the maximum GN asymmetry allowed
in the device. The experimentally realized asymmetry can be
rather small with contemporary in situ fabrication methods
and may not pose a hurdle in the suggested detection scheme.
The offset originates in the asymmetry-induced imbalance be-
tween the quasiparticle flows through each ferromagnet which
results in a net charge current Ioffset

F ≈ (GN1 − GN2)V/2.
Now let us turn to the case of asymmetric conductances

of the connectors to the superconductors. Here the net charge
current IF [colored lines in Fig. 4(e)] and the equal-spin-

triplet correlations FT ↑ [colored lines in Fig. 4(f)] show only
small deviations from the symmetric configuration (black
lines). However, the net supercurrent is roughly shifted due to
the asymmetry GS1 �= GS2 with an offset of Ioffset

S ≈ (GS1 −
GS2)V [see Fig. 4(d)]. Here we have to subtract this offset
contribution from IS to obtain the supercurrent from which
one can estimate the 0-π transitions.

APPENDIX B: PARTIALLY-SPIN-POLARIZED
FERROMAGNETS

While we focused in the main text on the ideal case of fully
polarized ferromagnets permitting us to more easily separate
occurring transport processes, we discuss in this Appendix
what changes when rather partially-spin-polarized ones are
used. In particular, we consider here typical ferromagnets such
as Ni, Co, and Fe, which have a spin polarization of about
P = 0.3–0.5; higher values may be achieved by using specific
compound semiconductors or alloys [38,78,79].

To get an overview of the chief differences with respect
to the fully polarized case, we depict in Fig. 5(a) how the
charge and spin currents, given in Fig. 3(a), change for a
polarization of P = 0.4. Note that we have also adapted the
phase difference (here ϕ = 0.23) in order to minimize the
supercurrent (black solid line). However, before elaborating
upon it, we note that the charge current IF (green dotted
line) and the spin currents Iz

F (red dash-dotted line) and
Iz
S (blue dashed line) are mainly reduced compared to the
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FIG. 6. Current phase relation of IS for different spin polariza-
tions and parallel magnetization θ = 0. The other parameters are as
in Fig. 5.

quadratically with P [green dotted line in Fig. 5(b)], the net
spin current Iz

F changes rather linearly [red dash-dotted line in
Fig. 5(b)].

Now let us turn to the net supercurrent IS , which for a
spin polarization of P = 0.4 no longer features a current
reversal [see Fig. 5(a)]. This disappearance is just related
to the fact that a weaker polarization also implies that the
triplet correlations are less pronounced. Figure 5(b) reflects
this interplay between the singlet and the triplet correlations
in the monotonic rise of IS for a decreasing P. It can be
seen that the system stays for a polarizations below P ≈ 0.6
(purple circle) always in a 0-like state. Finally, let us return
to the choice of the phase difference used in Fig. 5. To this
aim, we depict in Fig. 6 the current-phase relation of the net
supercurrent IS for different spin polarizations. We see that
the − sin ϕ behavior for strong polarization (P = 1) toward
a sin ϕ behavior for weak polarization (P = 0.4) goes along
with a shift of the minimum occurring at smaller values of ϕ.
Moreover, one sees that for an intermediate spin polarization
of P = 0.9 the net supercurrent IS picks up a large − sin 2ϕ

component.
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