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Featured Application: Porosity/permeability inversion in petroleum engineering; Log-conductivity
inversion with heads and tracer data in hydrogeology; Source contribution identification in air
pollution monitoring.

Abstract: Assimilation of spatio-temporal data poses a challenge when allowing non-Gaussian
features in the prior distribution. It becomes even more complex with nonlinear forward and
likelihood models. The ensemble Kalman model and its many variants have proven resilient when
handling nonlinearity. However, owing to the linearized updates, conserving the non-Gaussian
features in the posterior distribution remains an issue. When the prior model is chosen in the class
of selection-Gaussian distributions, the selection Ensemble Kalman model provides an approach
that conserves non-Gaussianity in the posterior distribution. The synthetic case study features
the prediction of a parameter field and the inversion of an initial state for the diffusion equation.
By using the selection Kalman model, it is possible to represent multimodality in the posterior model
while offering a 20 to 30% reduction in root mean square error relative to the traditional ensemble
Kalman model.

Keywords: data assimilation; EnKF; multimodality

1. Introduction

Data assimilation of spatio-temporal models is a challenge in many fields of study, including,
but not limited to, air pollution mapping, weather forecast, petroleum engineering, and ground water
flow assessment. Over the years, methods have been developed to handle increasingly complex
problems. It started with the Kalman filter as presented in the seminal publication [1]. The Kalman
filter is based on a Gaussian initial model and Gauss-linear forward and observation models. It defined
the foundation for data assimilation and is still used in many assimilation studies. The extended
Kalman filter (EKF) [2] appeared as a natural methodological extension that allowed for nonlinearity
in the Kalman filter framework by linearization. The ensemble Kalman filter (EnKF) [3,4] defined a
Monte Carlo approach to the filter and it became popular as it allowed for nonlinearity in the forward
and observation models without having to evaluate analytical gradients. The EnKF and its variants
have proven to be efficient in solving high-dimensional and nonlinear problems, see [5,6]. In the EnKF,
the initial ensemble members represent the initial state which may not have an analytical expression.
The forward model then propagates the ensemble members forward in time. Pseudo observations are
generated using the observation model. The conditioning of each ensemble member is made with the
Kalman weights estimated from the ensemble to give the best linear update. In cases where the initial
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model is non-Gaussian, the distribution of the variable of interest conditioned on the data will tend
toward Gaussianity as observations are assimilated due to the linear assimilation rule.

Non-Gaussian initial distributions may be conserved by using a univariate transform into
Gaussian marginals while assuming multi-Gaussianity in the transformed space. A univariate back
transform is then used to return to the original space. This approach has a long history in traditional
statistics, geostatistics, and more recently in ensemble methods for data assimilation, which is referred
to as copulas [7], normal score transform [8], and Gaussian anamorphosis [9], respectively. The latter
has shown to improve the performance of the EnKF in many applications [10,11]. There are however
some unresolved issues since Gaussian anamorphosis transforms the marginal distributions rather
than the full distribution, and the effect on the resulting variables interdependence is uncertain.

The Ensemble Randomized Maximum Likelihood Filter (EnRML) [12] and its close relative the
Iterative EnKF (IEnKF) [6] are primarily used to handle nonlinearities in the forward and observation
models, but they will also retain certain non-Gaussian features in the filtering distribution. These filters
require gradient evaluations to execute the update which can be complicated even if the adjoint
state method is used. One alternative is to evaluate the gradient using the ensemble itself [13],
but this approach introduces an approximation with unclear consequences, particularly in models
with multimodal marginals.

Multimodality in the prior model can be represented using categorical auxiliary variables to
construct Gaussian mixture prior models [14–16]. In a spatial setting, these models appear as
a combination of Gaussian random fields whose parameters depend on the value taken by the
categorical variable, but in order to retain spatial dependence, the categorical variable must also have
a spatial dependence. This indicator spatial variable can be modeled as a Markov [17] or truncated
pluri-Gaussian [18] random field. For both of these models, there are challenges related to temporal
data assimilation, although some encouraging examples have been developed [19].

We define and study an alternative prior model, the selection-Gaussian random field [20,21],
which may represent multimodality, skewness, and peakedness. This random field model is conjugate
with respect to Gauss-linear forward and observation models, similarly to the Gaussian random field
model. The posterior distribution is therefore analytically tractable under these assumptions [22].
For general forward and observation models, ensemble based algorithms along the lines of the EnKF
can be designed. Such selection ensemble Kalman algorithms are the focus of this study, and they are
evaluated on a couple of examples.

In Section 2, we introduce the selection ensemble Kalman model. It provides a framework for
the use of the selection-Gaussian distribution as a prior in data assimilation. This framework is then
used for ensemble filtering and smoothing through the selection EnKF (SEnKF) and the selection EnKS
(SEnKS) algorithms. In Section 3, a synthetic case study of the diffusion equation, with two distinct test
cases, showcases the ability of the proposed approaches to assess a parameter field and the initial state
of a dynamic field. Results from the SEnKF and the SEnKS are compared to that of the traditional EnKF
and the EnKS, respectively. In Section 4, potential shortcomings are discussed and the results are put
into perspective with respect to applicability in more realistic applications. In Section 5, conclusions
are presented.

In this paper, f (y) denotes the probability density function (pdf) of a random variable y,
ϕn(y; µ, Σ) denotes the pdf of the Gaussian n-vector y with expectation n-vector µ and covariance
(n× n)-matrix Σ. Furthermore, Φn(A; µ, Σ) denotes the probability of the aforementioned Gaussian
n-vector y to be in A ⊂ Rn. We also use in to denote the all-ones n-vector, In to denote the identity
(n× n)-matrix and 1(S) to denote the indicator function that equals 1 when S is true and 0 otherwise.
We consider log-diffusivity to be an adimensional quantity and it will therefore not be given a unit.

2. Materials and Methods

Consider the unknown temporal n-vector rt for t ∈ Tr : {0, 1, . . . , T, T + 1}. Let r =

{r0, r1, . . . , rT , rT+1} denote the variable of interest and let ri:j denote {ri, ri+1, . . . , r j}, ∀(i, j) ∈ T 2
r , i ≤ j.
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Assume that the temporal m-vectors of observations dt for t ∈ Td : {0, 1, . . . , T} are available, and define
d = {d0, d1, . . . , dT} and di:j = (di, . . . , dj} accordingly. The model specified hereafter defines a hidden
Markov (HM) model [23] as displayed in Figure 1.

Prior model: The prior model on r consists of an initial and a forward model,

f (r) = f (r0) f (r1:T+1|r0), (1)

where f (r0) is the pdf of the initial state and f (r1:T+1|r0) defines the forward model.
(a) Initial distribution: The distribution for the initial state f (r0) is assumed to be in the class of

selection-Gaussian distributions [20,21]. Consider a Gaussian (n + n)-vector [r̃, ν],[
r̃
ν

]
∼ ϕ2n

([
r̃
ν

]
;

[
µr̃
µν

]
,

[
Σr̃ Σr̃ΓT

ν|r̃
Γν|r̃Σr̃ Σν

])
, (2)

with n-vectors µr̃ and µν, (n × n)-matrix Γν|r̃, and where Σr̃, Σν, and Σν|r̃ are all three covariance
(n× n)-matrices with Σν = Γν|r̃Σr̃ΓT

ν|r̃ + Σν|r̃. Define a selection set A ⊂ Rn of dimension n and let
r0 = [r̃|ν ∈ A]; then, r0 is in the class of selection-Gaussian distribution and its pdf is,

f (r0) = [Φn(A; µν, Σν)]
−1 (3)

×Φn(A; µν + Γν|r̃(r0 − µr̃), Σν|r̃)× ϕn(r0; µr̃, Σr̃).

Note that the class of Gaussian distributions constitutes a subset of the class of selection-Gaussian
distributions with Γν|r̃ = 0× In. The dependence in [r̃, ν] represented by Γν|r̃ and the selection subset A
are crucial user-defined parameters with the latter being temporally constant. The selection-Gaussian
model may represent multimodal, skewed, and/or peaked marginal distributions, see [21]. In this
study, the initial distribution is defined to be a discretized stationary selection-Gaussian random field
with parametrization,

µr̃ = µr̃in

µν = µνin

Σr̃ = σ2
r̃ Σ

ρ
r̃ (4)

Σν = γ2Σ
ρ
r̃ + (1− γ2)In

Γν|r̃ = γσ−1
r̃ In.

For a given spatial correlation (n× n)-matrix Σ
ρ
r̃ , a stationary selection-Gaussian random field

is fully parametrized by ΘSG = (µr̃, µν, σr̃, Σ
ρ
r̃ , γ, A). Similarly, a stationary Gaussian random field is

parametrized by ΘG = (µr, σr, Σ
ρ
r ).

(b) Forward model: The forward model given the initial state [r1:T+1|r0] is defined as

f (r1:T+1|r0) =
T

∏
t=0

f (rt+1|rt), (5)

with

[rt+1|rt] =ωt(rt, εr
t) ∼ f (rt+1|rt), (6)

where ωt(·, ·) ∈ Rn is the forward model with random n-vector εr
t , independent and identically

distributed (iid) for each t. This forward model may be nonlinear, but, since it only involves the
variable at the previous time step rt, it defines a first-order Markov chain. Note that f (rt+1|rt) cannot
generally be written in closed form.



Appl. Sci. 2020, 10, 5742 4 of 24

r0 r1 r2 . . . rT rT+1

d0 d1 d2 . . . dT

Figure 1. Graph of the hidden Markov model.

Likelihood model: The likelihood model for [d|r] is defined as conditional independent with
single-site response,

f (d|r) =
T

∏
t=0

f (dt|rt), (7)

with

[dt|rt] =ψt(rt, εd
t ) ∼ f (dt|rt), (8)

where ψt(·, ·) ∈ Rm is the likelihood function with random m-vector εd
t , iid for each t. Note that

f (dt|rt) cannot generally be written in closed form.
Posterior model: The posterior model for the HM model in Figure 1 is given by

[r|d] ∼ f (r|d) = const× f (d|r) f (r)

= const× f (d0|r0) f (r0)
T

∏
t=1

f (dt|rt) f (rt|rt−1) f (rT+1|rT) (9)

= f (r0|d)
T

∏
t=1

f (rt|rt−1, dt:T) f (rT+1|rT),

and is also a Markov chain, see [23,24]. This model is denoted the selection ensemble Kalman model.
If the forward and likelihood models are Gauss-linear, the posterior model is also selection-Gaussian
and analytically tractable, see [22]. When the forward and/or likelihood models are nonlinear, however,
approximate or sampling based assessment of the posterior model must be made. For this purpose,
we introduce the selection ensemble Kalman filter (SEnKF) and smoother (SEnKS) in the spirit of the
traditional ensemble Kalman model [3].

The traditional EnKF algorithm aims at assessing the forecast pdf f (rT+1|d0:T), and it is justified
by general HM model recursions, see [23]. The algorithm is initiated by

[r1|d0] ∼ f (r1|d0) =
∫

f (r1|r0)[ f (d0)]
−1 f (d0|r0) f (r0)dr0, (10)

and utilizes the recursion for t = 1, . . . , T,

[rt+1|d0:t] ∼ f (rt+1|d0:t) =
∫

f (rt+1|rt)[ f (dt|d0:t−1)]
−1 f (dt|rt) f (rt|d0:t−1)drt. (11)

The expressions are represented by an ensemble of realizations, which in each recursion is
conditioned using a linearized approximation with Kalman weights estimated from the ensemble.
Thereafter, the ensemble is forwarded to the next time step. The SEnKF introduced in this study relies
on the same relations as above, but it operates on the augmented (n + n)-vector [r̃·, ν], see Equation (2).
Hence, the forward model is defined as[

r̃t+1

νt+1

∣∣∣∣∣ r̃t

νt

]
=

[
ωt(r̃t, εr

t )

νt

]
. (12)
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where the auxiliary n-vector νt is temporally constant.
The likelihood model is defined as [

dt

∣∣∣∣∣ r̃t

νt

]
= ψt(r̃t, εd

t ). (13)

The SEnKF algorithm provides an ensemble representation of[
r̃T+1

ν

∣∣∣∣∣d0:T

]
∼ f (r̃T+1, ν|d0:T), (14)

and, based on this ensemble, empirical sampling based inference, see [21], is used to obtain the forecast
of interest:

[rT+1|d0:T ] ∼ f (rT+1|d0:T) = f (r̃T+1|d0:T , ν ∈ A). (15)

The SEnKF algorithm is specified in Algorithm A1 in Appendix A.
The traditional EnKS algorithm aims at evaluating the interpolation pdf f (r0:T |d0:T) with

corresponding HM model recursions, see [23]. The algorithm is initiated by

[r0|d0] ∼ f (r0|d0) = [ f (d0)]
−1 f (d0|r0) f (r0), (16)

and the recursions for t = 1, . . . , T,

[r0:t|d0:t] ∼ f (r0:t|d0:t)

= [ f (dt|d0:t−1)]
−1 f (dt|r0:t, d0:t−1) f (rt|r0:t−1, d0:t−1) f (r0:t−1|d0:t−1) (17)

= [ f (dt|d0:t−1)]
−1 f (dt|rt) f (rt|rt−1) f (r0:t−1|d0:t−1).

The expressions are represented by an ensemble of realizations. Forwarding is made on the
ensemble and the conditioning is empirically linearized. Note that the dimension of the model
increases very fast, one may therefore only store the interpolation pdf f (rs|d0:T) at the time point s of
interest. The SEnKS introduced in this study relies on the relations defined above and uses an extended
(n + n)-vector [r̃, ν] as defined in Equation (2). The forward and likelihood models are identical to
those defined for the filter. The SEnKS algorithm provides an ensemble representation of[

r̃0:T
ν

∣∣∣∣∣d0:T

]
∼ f (r̃0:T , ν|d0:T), (18)

and by using empirical sampling based inference, see [21], the interpolation of interest is assessed,

[r0:T |d0:T ] ∼ f (r0:T |d0:T) = f (r̃0:T |d0:T , ν ∈ A). (19)

The SEnKS algorithm is specified in Algorithm A2 in the Appendix A. Both algorithms, SEnKF
and SEnKS, contain empirically linearized conditioning and asymptotic results, when the ensemble size
goes to infinity, and are consistent only for Gauss-linear forward and likelihood models. Under these
assumptions, the model is analytically tractable; however, see [22]. In spite of this lack of asymptotic
consistency for general HM models, the ensemble Kalman scheme has proven surprisingly reliable for
high-dimensional, weakly nonlinear models even with very modest ensemble sizes [25].

3. Results

We consider two test cases to illustrate the relevance of the selection ensemble Kalman algorithms
presented in Section 2. The model, common to both test cases, is based on the diffusion equation.
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The test cases are designed such that it will be opportune to consider bi-modal initial distributions.
In the first test case, we compare the SEnKF to the traditional EnKF with a focus on predicting the
diffusivity field that contains a high diffusivity channel. In the second test case, we compare the SEnKS
to the traditional EnKS with a focus on evaluating the initial temperature field that is divided into two
distinct areas where the initial temperature is substantially higher in one than in the other.

3.1. Model

Consider a discretized spatio-temporal random field, {rt(x), x ∈ Lr ⊂ R2} where t ∈ Lt :
{0, 1, . . . . , T} and rt(·) ∈ R that represents temperature (◦C). Let a discretized spatial random field,
{λ(x), x ∈ Lr ⊂ R2}; with λ(·) ∈ R⊕ representing diffusivity (m2 s−1). Let x be the spatial reference
on the regular spatial grid Lr on the domain D, while t is the temporal reference on the regular
temporal grid Lt. The number of spatial grid nodes is n = 21× 21, and they are placed every 10 cm
vertically and horizontally. The discretized temperature field at time t may be represented by the
n-vector rt and the diffusivity field by the n-vector λ. Both are assumed to be unknown. Note that the
Kalman models are defined on the joint variable [rt, λ].

Assume that, given the initial temperature field, the field evolves according to the
diffusion equation:

∂rt(x)
∂t
−∇ · (λ(x)∇rt(x)) = q (20)

∇rt(x) · n = 0,

with n the outer normal to the domain and q a source term. The expression in Equation (20) is
discretized using finite differences and the forward model is defined as

[rt+1|rt, λ] =ω∗(rt, λ), (21)

with ω∗(·, ·) ∈ Rn. Convergence and stability of the numerical method are easily ensured for the finite
difference scheme that is used. The initial temperature field r0 is considered unknown in the test cases.

The forward model is assumed to be perfect in the sense that there is no model error. The forward
model in Equation (6) then takes the form,

ω([rt, λ], 0in) =

[
ω∗(rt, λ)

λ

]
. (22)

This forward model is nonlinear due to the product of rt and λ in Equation (20). Consequently,
the assumption of Gauss-linearity required for both the traditional Kalman model [1] and the selection
Kalman model [22] is violated and necessitates ensemble based algorithms.

The observations are acquired in a m = 5 location pattern on the spatial grid Lr at each temporal
node in Lt, providing the set of observations m-vectors dt, t ∈ Lt. The corresponding likelihood model
is defined as

[dt|rt] = ψt(rt, εd
t ) = Hrt + εd

t (23)

f (dt|rt) = ϕm(dt; Hrt, Σd|r),

where the observation (m× n)-matrix H is a binary selection matrix, while the centered Gaussian
m-vector εd

t with the covariance (m×m)-matrix Σd|r = σ2
d|r Im, and σ2

d|r = 0.1 represents independent
observation errors. This likelihood model is in Gauss-linear form.
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3.2. Test Case 1: Predicting the Parameter Field

The focus of this test case is to predict the unknown diffusivity field λ based on the observations
d. Because diffusivity is constant in time, smoothing and filtering give an identical prediction of the
field. However, filtering is preferred because it does not require updating the ensemble at all future
times in addition to the previous one, see [26]. The posterior model is evaluated using the SEnKF,
see Appendix A and the results are compared to those from the traditional EnKF algorithm.

The true diffusivity n-vector λ is displayed in Figure 2. The diffusivity λ is always positive.
To ensure that ensemble updates do not lead to negative diffusivity values, we work on log(λ).
The figure shows a channel in which the diffusivity is higher than in the rest of the field. The diffusivity
field is formally defined as

λ(x) = λ11(x ∈ D1) + λ21(x ∈ D2), (24)

where D1 ⊂ D is the low diffusivity area and D2 ⊂ D is the high diffusivity channel. The parameter
values are λ1 = e−12 m2 s−1 and λ2 = e−5 m2 s−1. The true temperature field is initially at 20 ◦C and
the heat source on the lower border of the high diffusivity channel starts pumping in heat at T = 0 at a
constant volumetric rate q = 15 W m−3, see Figure 2. The temporal evoluation of the temperature field,
shown in Figure 3, is obtained by solving the diffusion equation in Equation (20) for the log-diffusivity
field in Figure 2 and the initial temperature field defined above. The temperature observations d,
see Figure 4, are then collected from the five locations shown in Figure 2 using the likelihood model
defined in Equation (23). The measurements are taken every second from T = 0 to T = 100. As the
heat from the source diffuses mostly along the high diffusivity channel, the observed temperature
increases substantially at observation locations within the channel.

The unknown initial field for log-diffusivity log(λ) is assigned a stationary selection-Gaussian
random field prior model with parameters ΘSG

λ = (µλ
r̃ , µλ

ν , σλ
r̃ , Σ

ρ
r̃ , γλ, A), see [21] and Equation (2).

The parameter values for the prior model are listed in Table 1.

Figure 2. Initial log-diffusivity field with observation locations ·, monitoring locations ×, and heat
source4.
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Figure 3. True temperature (◦C) field evolution over time.

Figure 4. Data collected over time (·) and true temperature evolution (line) at the data collection points.

Table 1. Parameter values for the selection-Gaussian initial distribution for the initial log-diffusivity field.

Parameters Values

µλ
r̃ −8.5

µλ
ν 0

σλ
r̃

√
1.6

γλ 0.9
A ]−∞,−0.3] ∪ [0.5,+∞[n
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The unknown initial temperature field r0 is assigned a stationary Gaussian random field prior
model with parameters ΘG

r = (µr, σr, Σ
ρ
r ) with expectation and variance levels µr = 20 and

σ2
r = 2, respectively. The variance level is relatively large as we assume little prior knowledge

of the initial temperature field. For both prior models, the spatial correlation (n × n)-matrix Σ
ρ
· is

defined by the second order exponential spatial correlation function ρ·(τ) = exp (−τ2/δ2); δ = 0.15,
with interdistance τ.

Figure 5 contains realizations from the prior model of the log-diffusivity field and their associated
spatial histograms. The prior model is specified to be spatially stationary except for boundary effects
with bi-modal spatial histograms. The selection set A ⊂ Rn for the prior model is chosen to obtain
bi-modal marginal distributions with a very dominant mode centered slightly above the value for λ1

and a very small mode centered slightly below the value for λ2. The prior is therefore not centered at the
true values. Note that the joint random field [log(λ), r0] will appear as a bi-variate selection-Gaussian
random field, see [21].

Figure 5. Realizations from the initial selection-Gaussian distribution of the log diffusivity f (log(λ))
at time T = 0 (upper panels) and associated spatial histogram (lower panels). Lower panels:
the horizontal axes represent the log-diffusivity, the vertical axes represent the relative prevalence of
each log-diffusivity value for the realization in the panel right above.

The SEnKF operates on the 3n-vector [log(λ̃), ν, r0], and therefore we generate an initial ensemble
with ne = 10,000 ensemble members that are sampled from the Gaussian 3n-vector [log(λ̃), ν, r0]

with pdf,log(λ̃)
ν

r0

 ∼ ϕ3n


log(λ̃)

ν

r0

 ;

µλ
r̃

µλ
ν

µr

 ,

 σλ
r̃

2
Σ

ρ
r̃ γλσλ

r̃ Σ
ρ
r̃

T
0

γλσλ
r̃ Σ

ρ
r̃ γλ2

Σ
ρ
r̃ + (1− γλ2

)In 0
0 0 σr

2Σ
ρ
r


 . (25)

The EnKF operates on the 2n-vector [log(λ), r0], and therefore we generate an initial ensemble
with ne = 10,000 ensemble members that are sampled from the selection-Gaussian distribution
f (log(λ), r0). The variables log(λ) and r0 are independent, so we generate them independently:
10,000 samples from the selection-Gaussian n-vector log(λ) with parameters ΘSG

λ and 10,000 samples
from the Gaussian n-vector r0 with parameters ΘG

r . It is important to understand that both ensemble
algorithms are initiated with an ensemble from an identical selection-Gaussian random field prior
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model for [log(λ), r0] at T = 0, which reflects the bi-modality of the prior model. Due to the size of the
ensemble relative to the dimension of the problem, we are using neither localization nor inflation in
the algorithms.

To illustrate the differences between the SEnKF and the EnKF, we present the following results for
both algorithms:

1. The marginal posterior distributions f (log(λi)|d0:T) of the log-diffusivity field at four monitoring
locations denoted 1, 2, 3, 4 on Figure 2, at time T = 0, 50, 80, 100.

2. The marginal maximum a posteriori (MMAP) prediction of the log-diffusivity field at time at
time T = 0, 50, 80, 100.

3. Realizations from the posterior distribution f (log(λ)|d0:T) at time T = 100.
4. The root mean square errors (RMSE) of the MMAP prediction of the log-diffusivity field relative

to the true log-diffusivity field at time T = 100.

Figures 6 and 7 show the marginal posterior pdfs f (log(λi)|d0:T) at the four monitoring locations
at time T = 0, 50, 80, 100 for the SEnKF and EnKF algorithms, respectively. Monitoring locations 1
and 2 are placed within the high diffusivity area while the two other locations are placed far into
the low diffusivity area. At T = 0, all pdfs are identical, in all locations due to the stationary prior
model and for both algorithms due to identical prior models. The SEnKF results appear to preserve
bi-modality as observations are assimilated. As more data are made available, the high value mode
increases at monitoring locations 1 and 2 that are inside the high diffusivity area. The low value
mode remains dominant at monitoring locations within the low diffusivity areas. These results reflect
expected behaviors. The traditional EnKF results are significantly different since the bi-modality of
the marginal pdfs disappears already at T = 50. The marginal pdfs are Gaussian-like and are gently
moved toward high and low values depending on which diffusivity area the monitoring locations
are in. This regression toward the mean effect of the EnKF is generally recognized as it gives the best
prediction in the squared error sense [27].

Figure 6. SEnKF approach: Marginal posterior distribution of the log diffusivity f (log(λi)|d0:T) at
time T = 0, 50, 80, 100 at the monitoring locations (1, 2, 3, 4) denoted (p1, p2, p3, p4).
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Figure 7. EnKF approach: Marginal posterior distribution of the log diffusivity f (log(λi)|d0:T) at time
T = 0, 50, 80, 100 at the monitoring locations (1, 2, 3, 4) denoted (p1, p2, p3, p4).

Figure 8 displays the MMAP predictions based on the SEnKF and the traditional EnKF at time
T = 0, 50, 80, 100. At T = 0, the predictions from the two algorithms are identical since they use
identical prior models. As observations are assimilated, the SEnKF predictions reproduce the high
diffusivity area relatively well, with clear contrast. The traditional EnKF predictions also indicate the
diffusivity areas, but with less contrast. Figure 9 displays the MMAP prediction at T = 100 along
the section B-B’ shown in Figure 2. The high contrast reliable reconstruction of the high diffusivity
channel by the SEnKF algorithm is confirmed. The traditional EnKF predictions appear less reliable.
The 80% highest density interval (HDI) [28] covers the true diffusivity values for the SEnKF while
these values are far outside the interval for the traditional EnKF results. The results are consistent with
the observations made regarding the marginal posterior pdfs in Figures 6 and 7.

Figures 10 and 11 show realizations and spatial histograms from the posterior distribution
of the log-diffusivity at time T = 100 for the SEnKF and traditional EnKF algorithms, respectively.
The realizations from the SEnKF largely reproduce the channel with clear contrast while the realizations
from the EnKF also reproduce the channel, but with much less contrast. The spatial histograms also
underline the difference in contrast in that they are clearly bi-modal for the SEnKS and much more
Gaussian-like for the EnKS.

Table 2 shows that the RMSE of the MMAP prediction relative to the true diffusivity field for the
SEnKF is approximately 30% lower than for the EnKF .

Table 2. RMSE comparing the MMAP prediction and the true log diffusivity field at time T = 100.

SEnKF ENKF

RMSET=100 2.72 3.76

This test case clearly illustrates the SEnKF’s ability to conserve multimodality in the posterior
distribution and it leads to predictions with better constrast and accuracy. We conclude that the
reconstruction of the true diffusivity field is done more reliably by the SEnKF algorithm than by the
EnKF algorithm.
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Figure 8. MMAP predictions of the log diffusivity field (log(λ)|d0:T) at time T = 0, 50, 80, 100 (upper
panels—SEnKF approach, lower panels—EnKF approach).

Figure 9. MMAP predictions of the log diffusivity field with 80% HDI in cross section B-B’ at time
T = 100 with SEnKF (left) and with EnKF (right).

Figure 10. SEnKF approach: Realizations of the posterior distribution of the log diffusivity
f (log(λ)|d0:T) at time T = 100 (upper panels) and associated spatial histogram (lower panels).
Lower panels: the horizontal axes represent the log-diffusivity, the vertical axes represent the relative
prevalence of each log-diffusivity value for the realization in the panel right above.
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Figure 11. EnKF approach: Realizations of the posterior distribution of the log diffusivity
f (log(λ)|d0:T) at time T = 100 (upper panels) and associated spatial histogram (lower panels).
Lower panels: the horizontal axes represent the log-diffusivity, the vertical axes represent the relative
prevalence of each log-diffusivity value for the realization in the panel right above.

3.3. Test Case 2: Reconstructing the Initial Field

The focus of the study is to evaluate the unknown initial state of the temperature field r0 based on
the observations d. The posterior model f (r0|d) is assessed using the SEnKS, see Appendix A, and the
results are compared to those from the traditional EnKS.

The true initial temperature field r0 is set at 20 ◦C except for a square shaped region with
temperature set at 45 ◦C, see Figure 12. The temperature field is formally defined as

r0(x) = τ11(x ∈ D1) + τ21(x ∈ D2), (26)

where D1 ⊂ D is the low temperature area and D2 ⊂ D is the high temperature area, and τ1 = 20 ◦C
and τ2 = 45 ◦C. Figure 12 shows the true log-diffusivity n-vector log(λ). The diffusivity λ is always
positive. To ensure that ensemble updates do not lead to negative diffusivity values, we work on log(λ).
The heat contained in the high temperature area will diffuse towards the rest of the field according to
the diffusion equation in Equation (20), see Figure 13. The temporal observations are collected at five
different observation locations according to the likelihood model in Equation (23), see Figure 12.
Figure 14 displays the observations d where it is clear that the observed temperature increases
substantially only at the observation locations close to the high temperature area. The measurements
are taken every second from T = 0 to T = 50.

The unknown initial temperature field r0 is assigned a stationary selection-Gaussian random
field prior model with parameters ΘSG

r = (µr̃, µν, σr̃, Σ
ρ
r̃ , γ, A). The parameter values are listed in

Table 3. The unknown log-diffusivity field log(λ) is assigned a stationary Gaussian random field prior
model with parameters ΘG

λ = (µλ, σλ, Σ
ρ
λ) with expectation and variance levels µλ = −8.5 and σ2

λ = 2,
respectively. For both prior models, the spatial correlation (n× n)-matrix Σ

ρ
· is defined by the second

order exponential spatial correlation function ρ·(τ) = exp (−τ2/δ2); δ = 0.15, with interdistance τ.
Figure 15 contains four realizations from the prior model of the temperature field and their spatial

histograms. The marginal initial distributions of the realizations are bi-modal and spatially stationary
except for boundary effects. The selection set A ⊂ Rn in the prior model is chosen to obtain a bi-modal
marginal distribution with one large mode approximately centered about 20 ◦C and a smaller mode
centered close to 45 ◦C.
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Table 3. Parameter values for the selection-Gaussian initial distribution for the initial temperature
prior model.

Parameters Values

µr̃ 28.75
µν 0
σr̃

√
10

γ 0.8
A ]−∞,−0.2] ∪ [0.5,+∞[n

Figure 12. Initial temperature (◦C) field (left) with data collection points · and monitoring locations ×
and reference log-diffusivity field (right).

Figure 13. True temperature (◦C) field evolution over time.

The SEnKS operates on the 3n-vector [r̃0, ν, log(λ)], and therefore we generate an initial ensemble
with ne = 10,000 ensemble members that are sampled from the Gaussian 3n-vector [r̃0, ν, log(λ)]
with pdf,  r̃0

ν

log(λ)

 ∼ ϕ3n


 r̃0

ν

log(λ)

 ;

µr̃
µν

µλ

 ,

σr̃
2Σ

ρ
r̃ γσr̃Σ

ρ
r̃

T
0

γσr̃Σ
ρ
r̃ γ2Σ

ρ
r̃ + (1− γ2)In 0

0 0 σλ
2Σ

ρ
λ


 . (27)

The EnKS operates on the 2n-vector [r0, log(λ)] , and therefore we generate an initial ensemble
with ne = 10,000 ensemble members that are sampled from selection-Gaussian distribution f (r0, log(λ)).
The variables r0 and log(λ) are independent, so we generate them independently: 10,000 samples
from the selection-Gaussian n-vector r0 with parameters ΘSG

r and 10,000 samples from the Gaussian
n-vector log(λ) with parameters ΘG

λ . Due to the size of the ensemble relative to the dimension of the
problem, we used neither localization nor inflation in the algorithms.

To illustrate the differences between the SEnKS and the EnKS we present the following results for
both algorithms:
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1. The marginal posterior distributions f (r0,i|d0:T) of the initial temperature field at four monitoring
locations denoted 1, 2, 3, 4 on Figure 12, at time T = 0, 20, 30, 50.

2. The marginal maximum a posteriori (MMAP) prediction of the initial temperature field at time at
time T = 0, 20, 30, 50.

3. Realizations from the posterior distribution f (r0|d0:T) of the initial temperature field at time
T = 50.

4. The root mean square errors (RMSE) of the MMAP prediction of the initial temperature field
relative to the true initial temperature field at time T = 50.

Figure 14. Data collected over time (points) and true temperature (◦C) evolution at the data collection
points (line).

The marginal posterior pdfs f (r0,i|d0:T) at the four monitoring locations at time T = 0,20,30,50 are
displayed in Figures 16 and 17 for the SEnKS and EnKS algorithms, respectively. At T = 0, the prior
models for both algorithms are identical and so are the marginal pdfs. Monitoring location 1 is placed
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inside the high temperature area. As observations are assimilated, the marginal pdf from the SEnKS
remain bi-modal, but the high value mode increases steadily. For the other monitoring locations, all placed
outside the high temperature area, the bi-modality is reproduced but with a dominant low value mode.
The relative size of the modes reflects the distance to the high temperature area and the observation
locations. The marginal pdfs from the EnKS lose their bi-modality after a few assimilation steps and from
then on the Gaussian-like marginal pdfs are only slightly shifted by the assimilation of observations.

Figure 15. Realizations from the selection-Gaussian initial distribution of the initial temperature field
f (r0) at time T = 0 (upper panels) and associated spatial histogram (lower panels). Upper panels: the
colorbar gives the temperature in ◦C. Lower panels: the horizontal axes represent the temperature
(◦C), the vertical axes represent the relative prevalence of each temperature value for the realization
right above.

Figure 16. SEnKS approach: Marginal posterior distributions of the initial temperature f (r0,i|d0:T) at
time T = 0, 20, 30, 50 at monitoring locations (i = 1, 2, 3, 4) denoted (p1, p2, p3, p4). The horizontal axes
representing temperature are expressed in ◦C.
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Figure 17. EnKS approach: Marginal posterior distributions of the initial temperature f (r0,i|d0:T) at
time T = 0, 20, 30, 50 at monitoring locations (i = 1, 2, 3, 4) denoted (p1, p2, p3, p4). The horizontal axes
representing temperature are expressed in ◦C.

Figure 18 displays the MMAP predictions of the initial temperature field based on the SEnKS
and the traditional EnKS at time T = 0, 20, 30, 50. For the SEnKS, the high temperature area is clearly
identifiable with clear contrast from time T = 30 while for the EnKS the high temperature area is
hardly ever identifiable on the MMAP predictions that show little contrast. Figure 19 displays the
MMAP prediction of the initial temperature field at T = 50 along the section A-A’, see Figure 12,
for the SEnKS and the traditional EnKS. The SEnKS clearly identifies the high temperature area and
the 80% HDI covers the truth, while the EnKS clearly fails to identify the high temperature area and
the 80% HDI does not even cover it.

Figure 18. MMAP predictions of the initial temperature (◦C) field at time T = 0, 20, 30, 50 for the SEnKS
approach (upper) and the EnKS approach (lower).
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Figure 19. MMAP predictions of the initial temperature (◦C) field (r0|d0:T) with 80% HDI in cross
section A-A’ at time T = 50 with SEnKS (left) and with EnKS (right).

Realizations of the posterior model at T = 50 based on the SEnKS and the traditional EnKS
algorithms are displayed in Figures 20 and 21, respectively. The SEnKS produces realizations
that appear bi-modal while the ensemble members from the EnKS display more symmetric spatial
histograms. Even though the differences between the realizations are quite subtle, they are consistent
with previous results.

Table 4 shows that RMSE of the MMAP prediction relative to the true initial temperature field for
the SEnKS is approximately 20% lower than for the EnKS.

This test case clearly illustrates the ability of the SEnKS to conserve multimodality in the posterior
distribution, and it leads to predictions with better contrast and accuracy. We conclude that the SEnKS
algorithm provides a more reliable reconstruction of the initial state of the temperature field than
the traditional EnKS algorithm. Note that the posterior model for the unknown diffusivity field
f (log(λ)|d) can also be assessed with the two algorithms. When comparing the MMAP predictions
relative to the true diffusivity field, see Figure 12, we observe that none of the algorithms provide
reliable predictions. We conclude that the small scale variations in the field are not sufficiently distinct
to be identified.

Figure 20. SEnKS approach: Realizations from the posterior distribution f (r0|d0:T) of the initial
temperature field at time T = 50. Upper panels: the colorbar gives the temperature in ◦C. Lower panels:
the horizontal axes represent the temperature (◦C), the vertical axes represent the relative prevalence of
each temperature value for the realization right above.
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Figure 21. EnKS approach: Realizations from the posterior distribution of the initial temperature field
f (r0|d0:T) at time T = 50. Upper panels: the colorbar gives the temperature in ◦C. Lower panels: the
horizontal axes represent the temperature (◦C), the vertical axes represent the relative prevalence of
each temperature value for the realization right above.

Table 4. RMSE comparing the MMAP prediction of the initial temperature field and the initial
temperature field at time T = 50.

SEnKS ENKS

RMSET=50 2.92 3.72

4. Discussion

The traditional EnKF and EnKS algorithms provide an ensemble that directly represents
the posterior models f (rT+1|d0:T) and f (r0:T |d0:T), respectively. Hence, the posterior models
can be assessed by displaying statistics based on these ensembles. Reliable assessment of the
posterior model in the two test cases can be obtained with approximately 1000 ensemble members.
The SEnKF and SEnKS algorithms under study provide an ensemble of the augmented posterior
models, f (r̃T+1, ν|d0:T) and f (r̃0:T , ν0:T |d0:T), respectively. In order to obtain the posterior models of
interest, f (rT+1|d0:T) and f (r0:T |d0:T), the conditioning on ν ∈ A must be made by empirical sampling
based inference, see [21,22]. This inference requires the estimation of the expectation vector µr̃ν and
covariance matrix Σr̃ν. The two test cases are defined on a (21× 21)-grid for both r̃t and ν—hence in
dimension 882. The expectation and covariance will have 882 and 389,403 unique entries, respectively.
Our experience from this study is that approximately 10,000 ensemble members are required to obtain
reliable assessment of the posterior models of interest. To reduce the ensemble size, we have tested
various localization approaches [29], without notable success, and leave the subject for further research.

5. Conclusions

Data assimilation of spatio-temporal variables with multimodal spatial histograms is challenging.
Traditional ensemble Kalman algorithms enforce a regression towards the mean due to the linearized
conditioning on observations, hence the multimodality is averaged out. We introduce the selection
ensemble Kalman algorithms, termed SEnKF and SEnKS. These algorithms are based on recursive
expressions similar to the ones justifying the traditional ensemble Kalman algorithms, but they are
defined in an augmented space including the selection variable. From the two case studies, we conclude
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that multimodality is much better represented by the selection ensemble Kalman algorithms than by
the traditional ones. We obtain RMSE reductions in the range of 20 to 30%.

The traditional ensemble Kalman algorithms provide an ensemble representation of the posterior
model of interest hence making assessment of the posterior pdf simple. The selection ensemble Kalman
algorithms are defined in an augmented space and conditioning on the selection variable must be
made a posteriori. For this conditioning to be reliable, the ensemble size needs to be much larger
than for the traditional algorithms. Hence, there is a trade-off between improved reproduction of
multimodal characteristics of the phenomenon under study and the computational demands. In our
case study, the ensemble size needed to be increased by approximately a factor of ten.

We have not fully explored the possibilities of robust estimation of model parameters in
the conditioning of the selection variable. This robustification may reduce the ensemble size
requirements. Note that parallelization in forwarding of the ensemble is possible and it will reduce the
computer demands.
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Glossary

rt ∈ Rn discretized spatial variable at time t.
[r̃t, ν] ∈ R2n Gaussian variables; basis and auxiliary variables, at time t.
A ⊂ Rn selection set.
rt = [r̃t|ν ∈ A] selection Gaussian variable at time t.
µ· ∈ Rn expectation vector.
Σ· ∈ Rn ×Rn covariance matrix.
Σ

ρ
· ∈ Rn ×Rn correlation matrix.

Γ·|· ∈ Rn ×Rn matrix cross-correlation
dt ∈ Rm observation variable at time t.
ω(rt, εr

t) forward function at time t.
ψ(rt, εd

t ) observation function at time t.
ρ·(τ) ∈ R[−1,1] spatial correlation function.

Appendix A

The algorithms detailed in Algorithms A1 and A2 follow the formalism in [4].
Algorithm A1 description: The SEnKF is a two-step algorithm. The first step is a traditional EnKF

that evaluates [r̃T+1, ν|d0:T ]. The second step consists of a sampling step where the target quantity
[rT+1|d0, ..., dT ] is evaluated using [r̃T+1, ν|d0:T ] from the first step.
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Algorithm A1 Selection Ensemble Kalman Filter (SEnKF)

A time series of ensembles is defined as et = {(r̃u(i)
t , ν

u(i)
t , di

t), i = 1, ..., ne}, ∀t = 0, · · · , T and the
(2n + m)-vector [r̃t, νt, dt] has the following covariance matrix:

Σr̃νd =

[
Σr̃ν Γr̃ν,d
Γd,r̃ν Σd

]

1. Initiate:
2. ne = No. of ensemble members

3. Generate

[
r̃u(i)

0
ν

u(i)
0

]
∼ f (r̃0, ν), i = 1, ..., ne

4. Generate ε
d(i)
0 ∼ Um[0, 1], i = 1, ..., ne

5. di
0 = ψ0(r̃

u(i)
0 , ε

d(i))
0 ), i = 1, ..., ne

6. e0 = {(r̃u(i)
0 , ν

u(i)
0 , di

0), i = 1, ..., ne}
7. Iterate t = 0, ..., T:
8. Conditioning:
9. Estimate Σr̃νd from et −→ Σ̂r̃νd

10.

[
r̃c(i)

t

ν
c(i)
t

]
=

[
r̃u(i)

t

ν
u(i)
t

]
+ Γ̂r̃ν,dΣ̂

−1
d (dt − di

t), i = 1, ..., ne

11. Forwarding:

12. Generate ε
r̃(i)
t ∼ Un[0, 1], i = 1, ..., ne

13.

[
r̃u(i)

t+1

ν
u(i)
t+1

]
=

[
ωt(r̃

c(i)
t , ε

r̃(i)
t )

ν
c(i)
t

]
, i = 1, ..., ne

14. If t < T
15. Generate ε

d(i)
t+1 ∼ Un[0, 1], i = 1, ..., ne

16. d(i)
t+1 = ψt+1(r̃

u(i)
t+1 , ε

d(i)
t+1), i = 1, ..., ne

17. et+1 = {(r̃u(i)
t+1 , ν

u(i)
t+1 , di

t+1), i = 1, ..., ne}
18. Else
19. et+1 = {(r̃u(i)

t+1 , ν
u(i)
t+1), i = 1, ..., ne}

20. End iterate
21. Estimate µr̃ν, Σr̃ν from eT+1 → µ̂r̃ν, Σ̂r̃ν

22. Assess
23. f̂ (rT+1|d0, ..., dT) =

[
Φn(A; µ̂ν, Σ̂ν)

]−1 ×Φn(A; µ̂ν + Γ̂ν|r̃(r− µ̂r̃), Σ̂ν|r̃)× ϕn(r; µ̂r̃, Σ̂r̃)
24. End Algorithm

The ensemble eT+1 represents [r̃T+1, ν|d0:T ]. To assess f (rT+1|d0:T) = f (r̃T+1|d0:T , ν ∈ A),
the sampling algorithm specified in [21] requires E[r̃T+1, ν|d0:T ] = µr̃ν and Cov[r̃T+1, ν|d0:T ] = Σr̃ν

which are estimated using the ensemble eT+1.

Algorithm A2 description: The SEnKS is a two-step algorithm. The first step is a traditional
EnKS that evaluates [r̃t, ν|d0:T ]. The second step consists of a sampling step where the target quantity
[rt|d0, ..., dT ] is evaluated using [r̃t, ν|d0:T ] from the first step.
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Algorithm A2 Selection Ensemble Kalman Smoother (SEnKS)
Two time series of ensemble sets are defined as

er̃ν
t ={(r̃i

t, νi
t), i = 1, . . . , ne}

}
for t = 0, . . . , T

ed
t ={di

t, i = 1, . . . , ne}

and the accumulated ensemble set defined as

Er̃ν
0:t = {(r̃i

0:t, νi
0:t), i = 1, . . . , ne} for t = 0, . . . , T

The (2n + m)-vector [r̃t, νt, dt] has covariance matrix Σt
r̃νd =

[
Σt

r̃ν Γt
r̃ν,d

Γt
d,r̃ν Σt

d

]

The (2n(t + 1) + m)-vector [r̃0:t, ν0:t, dt] has covariance matrix Σ0:t
r̃νd =

[
Σ0:t

r̃ν Γ0:t
r̃ν,d

Γ0:t
d,r̃ν Σt

d

]
1. Initiate
2. ne = No. of ensemble members

3. Generate

[
r̃u(i)

0
ν

u(i)
0

]
∼ f (r̃0, ν), i = 1, ..., ne

4. Er̃ν
0:0 = {(r̃u(i)

0 , ν
u(i)
0 ), i = 1, . . . , ne}

5. Generate ε
d(i)
0 ∼ Um[0, 1], i = 1, ..., ne iid

6. di
0 = ψ0(r̃

u(i)
0 , ε

d(i)
0 ), i = 1, ..., ne

7. ed
0 = {di

0, i = 1, . . . , ne}
8. Estimate Σ0

r̃νd from Er̃ν
0:0, ed

0 −→ Σ̂
0
r̃νd

9.

[
r̃c(i)

0
ν

c(i)
0

]
=

[
r̃u(i)

0
ν

u(i)
0

]
+ Γ̂

0
r̃ν,dΣ̂

0
d
−1

(d0 − di
0), i = 1, ..., ne

10. Iterate t = 1, . . . , T:
11. Fowarding

12. Generate ε
r̃(i)
t ∼ Un[0, 1], i = 1, ..., ne

13.

[
r̃u(i)

t
ν

u(i)
t

]
=

[
ωt(r̃

c(i)
t−1, ε

r̃(i)
t )

ν
c(i)
t−1

]
, i = 1, ..., ne

14. Er̃ν
0:t = {Er̃ν

0:t−1, (r̃u(i)
t , ν

u(i)
t ), i = 1, . . . , ne}

15. Generate ε
d(i)
t ∼ Um[0, 1], i = 1, ..., ne iid

16. di
t = ψ0(r̃

u(i)
t , ε

d(i)
t ), i = 1, ..., ne

17. ed
t = {di

t, i = 1, . . . , ne}
18. Estimate Σ0:t

r̃νd from Er̃ν
0:t, ed

t −→ Σ̂
0:t
r̃νd

19.

[
r̃c(i)

0:t
ν

c(i)
0:t

]
=

[
r̃u(i)

0:t
ν

u(i)
0:t

]
+ Γ̂

0:t
r̃ν,dΣ̂

t
d
−1

(dt − di
t), i = 1, ..., ne

20. End iterate
21. ES

0:t = {(r̃
c(i)
0:T , ν

c(i)
0:T ), i = 1, . . . , ne}

22. Select
23. For arbitrary t ∈ [0, T], select corresponding ensemble eS

t from ES
0:T

24. Estimate µt
r̃ν, Σt

r̃ν from eS
t −→ µ̂t

r̃ν, Σ̂
t
r̃ν

25. Assess

26. f̂ (rt|d0:T) =
[
Φn(A; µ̂t

ν, Σ̂
t
ν)
]−1
×Φn(A; µ̂t

ν + Γ̂
t
ν|r̃(r− µ̂t

r̃), Σ̂
t
ν|r̃)× ϕn(r; µ̂t

r̃, Σ̂
t
r̃)

27. End Algorithm

The ensemble ES
0:T represents [r̃0:T , ν0:T |d0:T ]. To assess f (rt|d0:T) = f (r̃t|d0:T , ν ∈ A), the sampling algorithm

in [21] requires E(r̃t, ν|d0:T) = µt
r̃ν and Cov(r̃t, ν|d0:T) = Σt

r̃ν, which are estimated using the sub-ensemble eS
t of

ES
0:t.
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