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Highly tunable exchange-only singlet-only qubit in a GaAs triple quantum dot
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We propose an implementation of a singlet-only spin qubit in a GaAs-based triple quantum dot with a (1,
4, 1) charge occupation. In the central multielectron dot, the interplay between Coulomb interaction and an
out-of-plane magnetic field creates an energy spectrum with a tunable singlet-triplet splitting, which can be
exploited to create a six-particle singlet-only qubit with a qubit splitting that can straightforwardly be tuned over
tens of μeV by adjusting the external magnetic field. We confirm the full exchange-based electric control of the
qubit and demonstrate its superior coherence properties due to its singlet-only nature.
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Introduction. Semiconductor spin qubits are among the
most promising candidates for the physical realization of
quantum processors [1,2]. Multispin exchange-only (XO)
qubits, in particular, have drawn much attention in recent
years since they offer fast qubit manipulation and full electric
control [3–10]. However, rapid decoherence of the qubit—due
to magnetic noise from randomly fluctuating nuclear spins
[11,12], electric noise in the qubit’s environment [13–15],
electron-phonon coupling [16–18], and other spin-mixing
mechanisms [19–22]—still causes the usable operation time
of most XO qubits to be too short for scaling up. Besides, the
typically small qubit splitting [4,8] hinders the long-distance
coupling of XO qubits via, e.g, microwave resonators, where
a large qubit splitting is required for fast two-qubit gates
[23–25].

There have been several proposals put forward to increase
the coherence time of quantum-dot-based XO qubits while
retaining their conceptual simplicity and ease of manipulation.
Of special interest are (i) proposals to suppress the effects of
charge noise and electron-phonon interaction, via a symmetric
operation of the qubit or operating at a sweet spot (SS) [17,26–
28], and (ii) proposals to reduce magnetic noise or suppress
its effects, either by isotope purification or by constructing
decoherence-free qubit subspaces [9,29–32].

In the exchange-only singlet-only (XOSO) spin qubit pro-
posed in Ref. [31], the leading effects of magnetic noise are
suppressed by encoding the qubit states in a four-electron
singlet-only subspace, while electric noise can be mitigated
by operating the system symmetrically at a SS. However,
the exceptionally long coherence time of the qubit comes at
the cost of an increase in device complexity (a quadruple
quantum dot in a T geometry) and the proposal suffers from
the common problem with XO qubits of having a relatively
small qubit splitting.

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

Here, we propose a GaAs-based implementation of the
XOSO qubit that overcomes both drawbacks and, further-
more, has a qubit splitting that is straightforwardly tunable
over a large range of energies. The reason why the XOSO
qubit of Ref. [31] used a fourth quantum dot is that the qubit
splitting scales with the singlet-triplet splitting of the “central”
two electrons: Implementing the same qubit in a linear triple
dot in a (1, 2, 1) charge configuration is in principle possible
but results in a qubit with a splitting of the order of the orbital
level splitting on the central dot (∼ meV), which is too large
for practical purposes. In Ref. [32], it was pointed out that
one can implement the same qubit in a Si-based triple dot,
where the on-site singlet-triplet splitting is typically set by the
valley splitting, which can be 20–200 μeV. The drawback of
this proposal is that (i) the magnitude of the valley splitting is
hard to control or predict in practice [2] and (ii) uncontrollable
phase differences between valley couplings on different dots
can severely affect the exchange effects used to define and
operate the qubit [33]. Besides, Si can be purified to be almost
nuclear spin free, which eradicates the need for a singlet-only
qubit [9].

The solution is to tune the triple quantum dot to a (1, 4, 1)
charge configuration and apply an out-of-plane magnetic field.
On the central dot, the interplay between the magnetic field
and the Coulomb interaction between the electrons results
in an energy spectrum with many crossings between levels
with different total spin and orbital angular momentum. For
the case of four electrons, the ground state changes from a
triplet to a singlet character, typically at a moderate field of
≈ 100 mT [34]. Tuning close to this crossing and adding the
singly occupied outer dots to the picture yields a XOSO qubit
where the singlet-triplet splitting on the central dot, and thus
the qubit splitting, can be tuned by adjusting the external mag-
netic field. This yields a superior GaAs-based XOSO qubit
that is not more complicated to create or operate than existing
spin qubits and has a qubit splitting that is straightforwardly
tunable from zero to tens of μeV [35]. This high degree of
tunability could also be beneficial for a Si-based version of
this qubit.

Multielectron dot. The single-particle Hamiltonian of an
electron labeled i in a two-dimensional planar quantum dot,
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assuming a parabolic confinement and an external magnetic
field perpendicular to the plane, is

H (i)
0 = [pi + eA(ri )]2

2m∗ + 1

2
m∗ω2

0r2
i + 1

2
gμBBσ z

i , (1)

where A(r) = 1
2 B(xŷ − yx̂) is the vector potential, ω0 sets the

effective radius of the dot in the absence of a magnetic field
σ0 = √

h̄/m∗ω0, g is the g factor of the host material, and σ z

is the third Pauli matrix. The eigenstates of this Hamiltonian
are the Fock-Darwin states

ψn,l,η(r) =
√

n!

πσ 2(n + |l|)!ρ
|l|e−ρ2/2L|l|

n (ρ2)e−ilθ , (2)

in terms of the dimensionless polar coordinates ρ = r/σ and

θ . We used σ =
√

h̄/m∗	, with 	 =
√

ω2
0 + ω2

c/4 and ωc =
eB/m∗, and Lb

a(x) is the associated Laguerre polynomial. The
quantum numbers n ∈ N0, l ∈ Z, and η = ±1 label the radial
state, orbital angular momentum, and spin of the electron,
respectively. The corresponding eigenenergies are (we will set
h̄ = 1 from now on)

En,l,η = 	(2n + |l| + 1) − 1

2
ωcl + 1

4
gωc

m∗

me
η. (3)

In order to find the approximate eigenenergies and
spin structure of multielectron states in the presence of
electron-electron interactions, we follow the method used in
Refs. [34,36]; see the Supplemental Material [37] for the
details. We create a many-particle basis of antisymmetrized
products of single-particle states (2), where we restrict our-
selves to the states with n � 1 and |l| � 3, which corresponds
to including all single-particle levels up to ≈ 4 	 at small
fields. In the thusly constructed basis, we evaluate all matrix
elements of the interaction Hamiltonian

V =
∑
i< j

e2

4πε|ri − r j | , (4)

and the eigenstates and eigenenergies of the full many-particle
Hamiltonian H1 = ∑

i H (i)
0 + V can then be found from nu-

merical diagonalization or, in the weak-interaction limit char-
acterized by κ ≡ e2/4πεσ0ω0 � 1, from perturbation theory
in κ . For few particles and not too large κ (we consider
up to five electrons and κ � 1.5), the low-energy part of
the spectrum of H1 will resemble the exact many-particle
spectrum fairly accurately [34,44].

In Fig. 1(a), we present typical results for the lowest few
levels for the case of four electrons, where we set κ = 0.5 and
g = −0.4. The dots show the numerically calculated lowest
five eigenenergies, where green (blue) dots indicate a state
with a four-particle spin singlet (triplet) structure. The three
triplet states are labeled |Tβ〉 and have the largest weight in
the orbital configuration (0, 0)2(0, 1)1(0,−1)1, where (n, l )m

means m electrons in the orbital state (n, l ) [34]. The three
lowest singlet states, labeled |Sα,β,γ 〉, live mostly in the or-
bital configurations (0, 0)2(0, 1)2, (0, 0)2(0, 1)1(0,−1)1, and
(0, 0)2(0,−1)2, respectively.

For small κ , these lowest eigenenergies can also be ap-
proximated through perturbation theory in the interaction
Hamiltonian V . Up to second order in κ , this yields for the

FIG. 1. (a) Field-dependent low-energy part of the spectrum of a
four-electron quantum dot with κ = 0.5 and g = −0.4. Dots present
numerical results and solid lines show the perturbative results of (5).
(b) The numerically evaluated energy of the state |Sα〉 (green lines)
relative to |T 0

β 〉 for two values of κ .

lowest six states the generic expression

Eν = 6	− L

2
ωc + S

2
gωc

m∗

me
+ c(ν)

1 κ
√

	ω0 + c(ν)
2 κ2ω0, (5)

where L and S denote the total orbital and spin angular
momentum along ẑ of the four electrons. The coefficients
c(ν)

1,2 ∼ 1 differ per state |ν〉 but can be found explicitly; see
Ref. [37] for their exact values. The resulting energies Eν are
plotted in Fig. 1(a) as solid lines and show good agreement
with the numerics. For larger κ , the perturbation theory breaks
down, but the low-energy part of the spectrum is qualitatively
the same. This suggests that one can use Eq. (5) to describe
the Eν if one treats the coefficients c(ν)

1,2 as fit parameters to
the numerical data. As illustrated in Ref. [37] for the case
κ = 1.5, this still leads to excellent agreement. In Fig. 1(b),
we show the numerically evaluated energy of the state |Sα〉
relative to |T 0

β 〉 as a function of ωc, for κ = 0.5 and κ =
1.5. In both cases, the splitting between |Sα〉 and |T 0

β 〉 is to
good approximation linear in ωc in the regime of interest,
and the ground state changes from a spin triplet to a singlet
around ωc/ω0 ∼ 0.1. These two generic features are the key
ingredients for our qubit proposal.

Triple-dot six-electron states. We will construct our qubit in
two six-electron states hosted in a linear arrangement of three
quantum dots with a perpendicular magnetic field applied,
such as sketched in Fig. 2(a), where the effective on-site
potentials Vi and the interdot tunnel couplings ti j can be
controlled through nearby gate electrodes, as schematically

-0.4

 0

 0.4

-0.4 0  0.4

FIG. 2. (a) Sketch of the linear triple-dot setup in a (1, 4, 1)
charge configuration with a perpendicular magnetic field applied.
(b) Six-electron charge stability diagram around the (1, 4, 1) ground
state, as a function of Vm and Vd .
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indicated. We describe this system using a simple Hubbard-
like Hamiltonian [16,31,45],

H =
3∑

i=1

(
H (i)

1 − Vini
) +

∑
〈i, j〉

Ucnin j −
∑

〈i, j〉,η

ti j√
2

c†
iηc jη, (6)

where ni = ∑
η c†

iηciη is the number operator for dot i, ciη

annihilates an electron on dot i with spin η, Uc accounts for the
cross capacitance between neighboring dots, and H (i)

1 is the
single-dot many-particle Hamiltonian for dot i as described
above. We thus made several simplifying assumptions: (i) The
gate-induced potentials are smooth enough so that they affect
all electronic orbitals in the same way. (ii) The separation
between the dots is large enough to allow us to treat the
interdot electrostatic energy as being dependent only on the
ni and not on the exact orbital configuration of the electrons
on the neighboring dots. (iii) All tunneling processes we will
consider below mostly involve a (0, 0) orbital on a lateral
dot and a (0,±1) orbital on the central dot; since all (0,±1)
orbitals have the same radial structure, we assume that this
allows us to use tunneling coefficients ti j that are independent
of the exact electronic orbitals involved.

We first study the electrostatic properties of H by diago-
nalizing the first two terms in Eq. (6). The charge stability
diagram in Fig. 2(b) shows the resulting six-electron ground-
state charge configuration (n1, n2, n3), where ni is the number
of electrons on dot i, as a function of the detuning parameters
Vd = 1

2 (V3 − V1) and Vm = 1
2 (V1 + V3) − V2. We fixed V1 +

4V2 + V3 and focused on the regime around the (1, 4, 1) state.
As indicated in Fig. 2(a), we assumed different dot sizes,
σ0 = 30 nm for the central dot and σ0 = 20 nm for the lateral
dots, which results in a good ratio between the orbital splitting
on the outer dots and the splitting of the many-electron states
in the middle dot [46]. Furthermore, we used Uc = 0.2 ω0

(where ω0 is the bare level splitting on the central dot) and
set ωc/ω0 = 0.1, κ = 0.5, and m∗/me = 0.067.

In the (1, 4, 1) region, the four lowest-energy six-particle
states with S2 = 0 can be written as

|0〉 = |SαS(13)〉, (7)

|1〉 = 1√
3

[∣∣T 0
β T 0

(13)

〉 − |T −
β T +

(13)〉 − |T +
β T −

(13)〉
]
, (8)

|2〉 = |SβS(13)〉, (9)

|3〉 = |Sγ S(13)〉, (10)

where |S(13)〉 and |T(13)〉 indicate pairing in a singlet or triplet
state of the two electrons in the outer dots, and |Sα,β,γ 〉 and
|Tβ〉 are the lowest four-particle singlets and triplet on the
central dot, see above.

The qubit. We propose to tune close to the degeneracy
of |Sα〉 and |Tβ〉 on the central dot, which for σ0 = 30 nm
happens at B ≈ 75 mT. The two lowest-energy singlet states
|0〉 and |1〉 can then be used as qubit basis, and the singlets
|2〉 and |3〉 will be split off by an energy much larger than the
qubit splitting.

We assume that t/� � 1, with t the magnitude of the
tunnel couplings (typically t ∼ 10 μeV) and 2� the width of
the (1, 4, 1) region; see its definition in Fig. 2(b). Then we can

treat the tunnel coupling perturbatively for most of the (1, 4, 1)
region, and we thus project the full Hamiltonian (6) onto the
qubit subspace by means of a Schrieffer-Wolff transformation
[37], yielding to order t2

Hqb = 1
2 (EST + Jz )σz + Jxσx, (11)

where σx,z are Pauli matrices. The qubit splitting is dominated
by the singlet-triplet splitting on the central dot EST = ET 0

β
−

ESα
[see Fig. 1(b)], which follows to good approximation from

the expressions given in Eq. (5),

EST ≈ γ0ω0 + ωc, (12)

with γ0 = −0.235 κ + 0.128 κ2, accurate for κ � 0.5 (see
Ref. [37] for all derivations and an explicit expression for
γ0). We wrote EST here up to linear order in ωc/ω0; the
next correction is smaller by a factor ≈10−2κωc/ω0. Through
ωc ∝ B, this term, and thus the qubit splitting, can be easily
tuned over tens of μeV. We emphasize that this magnetic field
dependence arises through coupling of the field to the orbital
degrees of freedom of the electrons; the (singlet-only) qubit
subspace is insensitive to the coupling of magnetic fields to
the spin of the electrons.

Close to the line where Vd = 0 and assuming approx-
imately symmetric tunnel couplings t12 ≈ t23, the two ex-
change terms read as [37]

Jz ≈ − t2

[
�

�2 − V 2
m

+ 3(� + ωc)

(� + ωc)2 − V 2
m

]
, (13)

Jx ≈
√

6t�

�2 − V 2
m

[
δt + 2tVm

�2 − V 2
m

Vd

]
, (14)

for � as defined in Fig. 2(b) and with t = 1
2 (t12 + t23) and

δt = t12 − t23. We see that Jz in general presents a small
tuning-dependent correction to the qubit splitting, which is
dominated by EST , whereas Jx provides a coupling to σx linear
in δt and/or Vd (depending on tuning), which can be used to
drive Rabi oscillations.

We now discuss two regimes of special interest in the
charge stability diagram shown in Fig. 2(b): (i) In the
resonant-exchange (RX) regime, close to the top and bottom
of the (1, 4, 1) region, the strong coupling to the other charge
states offers fast qubit control through Vd [8]. In Fig. 3(a),
we show the lowest-lying states as a function of Vd along the
horizontal dashed line in Fig. 2(b) (Vm/ω0 = 0.27) calculated
from the Hamiltonian as given in (6), where we ignored the
Zeeman splitting for clarity. We used the same parameters as
in Fig. 2(b) and further set t = 25 μeV and δt = 0. We labeled
the two qubit states |0〉 and |1〉, three spin triplets |T1,2,3〉,
and a spin quintuplet |Q〉; including the Zeeman effect, a
triplet (quintuplet) acquires an additional threefold (fivefold)
splitting of 1.7 μeV for ωc/ω0 = 0.1. (ii) In the center of the
(1, 4, 1) region, we find a SS where the qubit is to linear order
insensitive to fluctuations of the potentials Vi, offering some
protection against charge noise. In Fig. 3(b), we show the
spectrum at the SS for the same parameters as in Fig. 3(a), now
as a function of δt while setting Vd = 0. At the SS exchange
effects are much smaller and thus the qubit splitting is closer
to EST (≈18.3 μeV for ωc/ω0 = 0.1), but apart from that the
spectrum looks similar to the RX regime.
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FIG. 3. Low-energy part of the spectrum of the Hamiltonian (6)
(a) as a function of Vd at Vm/ω0 = 0.27 and (b) as a function of δt at
the SS, Vd = Vm = 0. The green and blue lines show the spin-singlet
qubit states |0〉 and |1〉 respectively; the gray lines show the spin
triplet and quintuplet states. (c) The qubit splitting as a function of
the magnetic field, where ωc/ω0 = 0.1 corresponds to B ≈ 75 mT.
(d) The derivative dJx/dq for q ∈ {δt,Vd} as a function of Vm and at
Vd = 0.

In Fig. 3(c), we plot the qubit splitting ωqb as a function
of the magnetic field, in the RX regime (Vm = 0.27, Vd = 0,
yellow line) and at the SS (purple line). This confirms the
high degree of tunability of our qubit. We further note how
the spectra in Figs. 3(a) and 3(b) strongly resemble those in
the XOSO spin-qubit proposals of Refs. [31,32], the main
difference being the large and straightforwardly tunable qubit
splitting ωqb ∝ B in our proposal. This permits an efficient
and adaptable coupling to other systems such as microwave
cavities which can be used to couple distant qubits [47–50].

Qubit operation. Single-qubit rotations can be performed
via resonant Rabi driving, using a sinusoidal modula-
tion of a tuning parameter q = {Vd ,Vm, t, δt} with a small
amplitude q̃ and frequency ω, i.e., q(t ) = q0 + q̃ sin(ωt ).
For small enough q̃, the qubit Hamiltonian (11) can be
approximated as

Hqb = 1
2ωqbσz + Aq sin(ωt )σx, (15)

where Aq = q̃ (dJx/dq)q=q0 . Driving the qubit resonantly,
ω = ωqb, then induces Rabi oscillations with a frequency Aq.
At the RX regime, where we can use Vd as the driving pa-
rameter, an amplitude of Ṽd = 5–10 μeV gives a Rabi period
of TRabi ≈ 20–40 ns. At the SS, Rabi rotations are much more
efficient via a driving of δt , which gives a period of TRabi ≈
20 ns for an amplitude δt̃ = 2 μeV. Fast qubit rotations can
therefore be achieved both in the RX regime and at the SS. In
Fig. 3(d), we plot the “efficiency” dJx/dq of the two driving
parameters q ∈ {δt,Vd} as a function of Vm, along the line
Vd,0 = 0. We see that at the SS the sensitivity to Vd vanishes, in
accordance with Eq. (14), whereas driving of δt stays effective
all the way down to Vm = 0.

Qubit initialization and readout can be accomplished by
standard spin-to-charge conversion, i.e., pulsing the qubit to
one of the neighboring charge configurations that has only
one low-lying six-particle singlet state. For example, when
tuning into the (1, 3, 2)/(2, 3, 1) charge regions, only the
qubit state |0〉 is adiabatically connected to the new ground-
state charge configuration. This allows for initialization in
|0〉 as well as readout of the qubit by means of charge
detection.

Decoherence. In most GaAs-based spin qubits, the main
source of decoherence is the fluctuating bath of nuclear spins
that couples to the electron spins via contact hyperfine inter-
action. On a mean-field level, the effect of this interaction can
be described by the Hamiltonian Hhf = 1

2 gμB
∑

i Ki · σ i, with
Ki being a random effective nuclear field acting on electron i,
typically of the order of a few mT. In the device we propose
in this paper, both qubit states are singlets and therefore the
qubit splitting is not directly influenced by any intrinsic or
external (gradient) of Zeeman fields acting on the electrons,
thereby reducing the hyperfine-induced decoherence dramati-
cally [31,32]. We estimate the coupling between the nuclear
magnetic moments and the orbital degrees of freedom of
the electrons to be negligible and dominated by hyperfine
coupling of the qubit states to nearby triplet states, which leads
to random higher order shifts of the qubit levels [31]. The
timescale of this residual hyperfine-induced dephasing can
be estimated as T ∗

2 ∼ Aqh̄(δε)2/σ 4
K , where δε is the energy

splitting between |0〉 and |T1〉; see Figs. 3(a) and 3(b) [37].
For the range of parameters considered here, we find T ∗

2 ∼
0.5–5 μs [37], giving a number of visible, coherent Rabi
oscillations of ncoh = T ∗

2 /TRabi ∼ 25–250.
Another source of decoherence for exchange-based qubits

are low-frequency fluctuations in the electrostatic environ-
ment of the system. A common way to mitigate such charge
noise is to operate the qubit at the SS [Fig. 3(b)], where the
qubit splitting is insensitive to fluctuations in the potentials
Vi to leading order; there we find a dephasing time of T ∗

2 �
10 μs. Away from the SS, the effects of charge noise are
larger. At the RX regime [Fig. 3(a)], far away from the SS, the
contribution from charge noise to dephasing becomes similar
to that of nuclear noise, with a dephasing time of T ∗

2 ∼ 0.5 μs
[37].

Finally, qubit relaxation via electron-phonon coupling
causes qubit decoherence. The relaxation rate can be esti-
mated using Fermi’s golden rule and depends on the qubit
splitting and on the strength of the exchange interaction [31].
In the RX regime, where the qubit splitting can be extensively
tuned through ωc, we estimate relaxation rates from �rel ∼
1 GHz for ωqb ∼ 50 μeV to �rel ∼ 1 MHz for ωqb ∼ 10 μeV.
And, as is common in exchange-based qubits [18,31], the
relaxation rate is strongly suppressed as we approach the SS.

Conclusions. We propose a six-electron exchange-only
singlet-only spin qubit hosted in a GaAs linear triple quan-
tum dot. Its singlet-only nature makes the qubit intrinsically
insensitive to randomly fluctuating nuclear fields. The qubit
can be operated fully electrically, either in an RX regime
which enables fast qubit operations or at a SS where the
qubit is better protected against charge noise. Furthermore,
the fact that the qubit splitting is highly tunable over a large
range of energies allows for efficient and adaptable coupling
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to microwave resonators, enabling coupling of distant qubits.
The only ingredient on which this tunability relies is the
appearance of a ground-state singlet-triplet transition at finite
magnetic field in the multiparticle spectrum of the central dot.
This is a very commonly observed feature in quantum dots of
various shapes and sizes.
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