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Université de Bordeaux, France

*Correspondence:
Yuichiro Miki

y_miki@med.osaka-cu.ac.jp

Specialty section:
This article was submitted to

Molecular and Cellular Oncology,
a section of the journal
Frontiers in Oncology

Received: 01 June 2020
Accepted: 21 September 2020

Published: 16 October 2020

Citation:
Miki Y, Yashiro M, Moyano-Galceran L,

Sugimoto A, Ohira M and Lehti K
(2020) Crosstalk Between

Cancer Associated Fibroblasts
and Cancer Cells in Scirrhous

Type Gastric Cancer.
Front. Oncol. 10:568557.

doi: 10.3389/fonc.2020.568557

REVIEW
published: 16 October 2020

doi: 10.3389/fonc.2020.568557
Crosstalk Between Cancer
Associated Fibroblasts and Cancer
Cells in Scirrhous Type
Gastric Cancer
Yuichiro Miki1,2*, Masakazu Yashiro1, Lidia Moyano-Galceran2, Atsushi Sugimoto1,
Masaichi Ohira1 and Kaisa Lehti2,3

1 Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan,
2 Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden, 3 Department of Biomedical
Laboratory Science, Norwegian University of Science and Technology, Trondheim, Norway

Gastric cancer (GC) is the third leading cause among all cancer deaths globally. Although
the treatment outcome of GC has improved, the survival of patients with GC at stages III
and IV remains unsatisfactory. Among several types of GC, scirrhous type GC (SGC)
shows highly aggressive growth and invasive activity, leading to frequent peritoneal
metastasis. SGC is well known to accompany abundant stromal cells that compose
the tumor microenvironment (TME) along with the produced extracellular matrix (ECM)
and secreted factors. One of the main stromal components is cancer associated fibroblast
(CAF). In the SGC microenvironment, CAFs are a source of various secreted factors,
including fibroblast growth factors (FGFs), which mediate prominent tumor-stimulating
activity. In turn, cancer cells also secrete numerous factors, which can activate and
educate CAFs. Current findings suggest that cancer cells and stromal cells communicate
interactively via the soluble factors, the ECM, and likely also by exosomes. In this review,
we focus on the soluble factors mediating communication between cancer cells and CAFs
in SGC, and consider how they are related to the modulation of TME and the high rate of
peritoneal metastasis. At last, we discuss the perspectives on targeting these
communication pathways for improved future treatment.

Keywords: cancer associated fibroblast, gastric cancer, tumor microenvironment, scirrhous carcinoma of the
stomach, fibroblast growth factor receptor, transforming growth factor b1
INTRODUCTION OF SCIRRHOUS GC MICROENVIRONMENT

Gastric cancer (GC) is diagnosed with 5th frequency among all cancers and is the third-leading cause
of cancer death, with one million new cases and nearly 800,000 deaths globally in 2018 (1). Although
the survival outcome has been improved by early screening, optimal surgery, chemotherapy, and
molecular targeted therapy, the median overall survival is reported to be only 10–16 months in
patients with metastatic or unresectable GC (2–5).

Scirrhous gastric cancer (SGC), an aggressive subtype of GC, shows rapid infiltration in the
gastric wall, progressive invasion into the serosal layer, and seeding to the peritoneum. GC
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classification into 6 types (type 0–5) by macroscopic features, as
Borrmann proposed (Table 1), has been used clinically. On the
other hand, Laurén classified GC into two main subtypes of
intestinal type (differentiated type) and diffuse type
(undifferentiated type) by microscopic features (6). By using
these two classifications, SGC can be defined as macroscopic
Borrmann type 4 and microscopic diffuse type (Figure 1). The
incidence of SGC was 7.5% (284/3,842) in the registry of our
institute (unpublished data), which is consistent with the
Japanese nation-wide registry data (6.6%) (7). The Cancer
Genome Atlas (TCGA) Research Network has suggested a
molecular-based classification of GC into four subtypes: 1) the
Ebstein–Barr Virus positive tumors (EBV 8%), with frequent
PI3KCA mutations, high DNA hypermethylation, JAK2/PDL1
amplification and PDL2/CDKN2A silencing; 2) MicroSatellite
Unstable tumors (MSI 22%), with high rates of mutations,
including genes that encode oncogenic proteins; 3) genomically
stable tumors (GS 20%), characterized by diffuse histology,
mutations in CDH1/RHOA and fusions in the CLDN18
Frontiers in Oncology | www.frontiersin.org 2
family; and 4) tumors which have chromosomal instability
(CIN 50%), characterized by intestinal histology and
amplification of several tyrosine-kinase receptor genes (8).
Most SGCs can be classified into the GS group defined by the
TCGA classification, although there is insufficient data regarding
this issue (8).

The prognosis of SGC is worse than it is for the other types,
and the 5-year survival rate of Japanese patients with
macroscopic type 4 is reported to be 17.7%, while for all
registered patients the Japanese Gastric Cancer Association
(JGCA) registry reports a 5-year survival of 68.9% (9). An
Italian group reported worse survival data for this sub-
population of GC, and 5-year survival rate after R0 resection
was reported to be only 4% (10). These unsatisfactory survival
outcomes are partly because of diagnostic difficulties in early
stage due to rapid growth, which leads to low percentage of
curative resection for patients with SGC. Even when we perform
standard treatment with curative intent, SGC often recur with
peritoneal metastasis, which frequently develop resistance to
TABLE 1 | Macroscopic type of gastric cancer according to Japanese Gastric Cancer Association criteria.

Macroscopic type Description

Type 0 (superficial) Typical of T1 tumors.
Type 1 (mass) Polypoid tumors, sharply demarcated from the surrounding mucosa.
Type 2 (ulcerative) Ulcerated tumors with raised margins surrounded by a thickened gastric wall with clear margins.
Type 3 (infiltrate ulcerative) Ulcerated tumors with raised margins surrounded by a thickened gastric wall without clear margins.
Type 4 (diffuse infiltrate) Tumors without marked ulceration or raised margins, the gastric wall is thickened and indurated and the margin is unclear.
Type 5 (unclassifiable) Tumors that cannot be classified into any of the above types.
A B

DC

FIGURE 1 | (A) Endoscopic view of scirrhous type gastric cancer (SGC); (B) Image of resected specimens of total gastrectomy. Tumors did not have marked
ulceration or raised margins, the gastric wall was thickened, showing typical macroscopic view of SGC. (C, D) Microscopic images from the specimen shown in (B).
Cancer cells are invading into the stroma containing fibroblasts and extracellular matrix.
October 2020 | Volume 10 | Article 568557
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chemotherapy as well as available molecular targeted therapy.
Possibly, small cytological lesions in the peritoneum grow and
generate a fibrotic microenvironment that may later interfere
with drug delivery to the cancer cells.

SGC cell proliferation is coupled with remarkable fibrosis when
the cancer cells enter into the submucosa composed of stromal
cells. Coincidentally, the fibrosis is induced by the excessive
deposition of collagen (COL), including COL1A1, COL1A2,
COL3A1, COL4A1, COL4A2, COL5A1, and COL5A2 in GC
(11). The unique feature of SGC, compared to the other GC
types, is high expression of type IV collagen in the stroma of
undifferentiated GC with desmoplastic reaction (40.4% vs 9.0%)
(12). The distinctive histological findings of rapid tumor
enlargement with fibrosis imply that the growth of the fibrotic
tumor microenvironment (TME) can be controlled by intercellular
communication between the SGC cells and the stromal cells. One
of the main cellular components of SGC microenvironment is
cancer associated fibroblasts (CAF). CAFs secrete various
molecules, such as fibroblast growth factor (FGF), which directly
stimulate cancer cells. Conversely, cancer cells also secrete factors
which can activate and educate CAFs. While it has been well
established that cancer cells and CAFs communicate interactively
through soluble factors, the communication via exosomes has only
been recognizedmore recently (13, 14). In this review, we will focus
on the reciprocal communication between cancer cells and CAFs in
SGC, as well as the relevance of this communication to both the
remodeling of TME and the high rate of peritoneal metastasis.
Finally, we will discuss the perspectives on future treatment
targeting these communication pathways/mechanisms.
TME COMMUNICATIONS VIA SOLUBLE
FACTORS

FGF-FGFR Axis
Fibroblast growth factors (FGFs) regulate various cellular
processes, such as stemness, proliferation, apoptosis evasion,
migration, and invasion (see Table 2) (15, 21, 30–32).

The FGF family includes 22 secreted factors, which are
divided into seven subgroups according to their phylogenetic
relation, homology, and biochemical function (33). Members of
five FGF subfamilies: FGF1 (FGF1, FGF2), FGF4 (FGF4, FGF5,
FGF6), FGF7 (FGF3, FGF7, FGF10, FGF22), FGF8 (FGF8,
Frontiers in Oncology | www.frontiersin.org
.

)
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FGF17, FGF18), and FGF9 (FGF9, FGF16, FGF20) are released
to function in paracrine and autocrine manner. On the other
hand, the FGF15 (FGF15, FGF19, FGF21, FGF23) subfamily is
produced by endocrine glands as secreted hormones for
metabolic modulation with a- and b-Klotho family proteins.
In contrast, FGF11, FGF12, FGF13 and FGF14 lack secretory N-
terminal peptides that direct newly produced proteins to
secretory pathway, and thus remain intracellular (33).

As for the receptors of the FGF ligands, four distinct FGF
receptors (FGFRs), FGFR1 (Flg), FGFR2 (K-sam), FGFR3, and
FGFR4 exist, and if deregulated can function as oncogenes to
drive specific cancer types including GC (17, 34–36). For
example, we have previously shown that FGFR4 interaction
with the membrane-type matrix metalloproteinase MT1-MMP
increases both FGFR4-FRS2-Src kinase signaling and MT1-
MMP-driven cancer cell invasion in a Gly388Arg SNP
dependent manner (36). Canonically, FGFRs are monomers in
their inactive state, and the binding of FGF ligands triggers
receptor dimerization. The binding of FGF to FGFR causes
activation of the receptor via cross-phosphorylation of the
intracellular kinase domains. This leads to the recruitment of
adaptor and scaffold proteins, and biochemical signals are
transduced by activated FGFRs into cytosolic signaling
cascades. Among four FGFRs, FGFR2 is identical to the K-
sam-II gene, and it was originally identified in an extract from the
SGC cell line KATO-III (37). We can observe this amplification
of FGFR2 in OCUM-2M, which was also established from
patients with SGC (38).

Gastric cancer with FGFR2 amplification is significantly
associated with poor survival outcome. Although FGFR2
amplification has been found in 5–10% of GC, the ratio is
significantly higher in diffuse type (including SGC) (8),
suggesting that FGFR2 amplification is one of key factors in
the most aggressive SGC.

FGFR2 isoforms IIIb and IIIc are mainly expressed in epithelial
and mesenchymal tissues (39–41). In general, the FGFR2 IIIb
isoform binds FGF3, FGF7, and FGF10 with high affinity, while
the IIIc isoform has preference for FGF2, FGF4, and FGF20 (42, 43).
It has also been reported that FGF10 and FGFR2-IIIb promote
proliferation and patterning of the forestomach, and are involved in
early epithelial growth before differentiation (44).

Despite these general findings, there are only a few studies
regarding FGF-FGFR axis particularly in SGC. Yashiro et al.
identified that the growth-stimulating factor from gastric
fibroblasts to SGC cells is FGF7 (17). FGF7 stimulates the
growth of SGC cells, but not that of well-differentiated
adenocarcinoma cells. Since FGFR2 amplification is more often
observed in SGC than non-SGC, FGF-7 secreted by gastric
fibroblasts is significant in the progression of SGC with FGFR2
amplification in a paracrine manner. This was supported by the
report from Huang et al., which described that FGF7/FGFR2
increase invasion and migration of GC cells through a
thrombospondin 1 (THBS1)-mediated pathway. Increased
expression of THBS1, an extracellular glycoprotein that has
multiple roles in cell-matrix and intercellular interactions (45),
significantly correlated with tumor differentiation.
TABLE 2 | FGFs classification according to their functions in cancer progression

Function FGFs (reference)

Proliferation FGF1 (15), FGF2 (16), FGF3 (15), FGF7 (17, 18), FGF10 (19
Stemness FGF2 (20)
Apoptosis evasion FGF2 (21), FGF9 (22)
Migration and
invasion

FGF2 (16)

Angiogenesis FGF1 (15, 23), FGF2 (24), FGF3 (15), FGF4 (25), FGF8 (26),
FGF18 (27)

Resistance to
therapy

FGF1 (28), FGF2 (28), FGF3 (29), FGF4 (29), FGF19 (29)
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Sun et al. reported that CAF-secreted and MMP7-activated
FGF9 promotes apoptosis evasion and invasive ability of
gastric cancer cells (22). MMP7 not only has the potential to
degrade the extracellular matrix, but also promotes apoptosis
evasion in cancer cells. In a Chinese GC cohort study, FGF9 was
also associated with accelerated proliferation and apoptosis
inhibition of GC cells in an autocrine manner (46).

TGFBR Axis
Transforming growth factor b (TGFb) produced by fibroblasts
increases the invasive capabilities of SGC cells (47) (Figure 2).
Whole exome and RNA sequencing analyses comparing CAFs
Frontiers in Oncology | www.frontiersin.org 4
and normal fibroblasts (NF) revealed that many of the genes with
upregulated expression in CAFs were associated with TGFb1
(TGFB1) pathway (48).

In the conditioned medium from fibroblasts, TGFb is mainly
in a latent form, whereas its active form is detected in the
conditioned medium from GC cells (47, 49). Proteases such as
plasmin and cathepsin can activate the latent TGFb (50). Most
GC cells secrete urokinase-type plasminogen activator (uPA)
which converts latent TGFb to active TGFb (51, 52). Our group
previously reported that SGC cells derived from peritoneal
metastasis (OCUM-2D) produced six times higher amounts of
uPA than SGC cell line (OCUM-2M) which was established
FIGURE 2 | Schematic representation of SGC cells invasion and communication with CAFs. FGF-FGFR and TGFb-TGFbR axis are the main players in the tumor
microenvironment of SGC. SGC (scirrhous gastric cancer), CAF (cancer associated fibroblasts), FGF (fibroblast growth factor), FGFR (FGF receptor), HGF
(hepatocyte growth factor), MMP (matrix metalloproteinases), uPA (urokinase-type plasminogen activator), TGFb (transforming growth factor b), TGFbR (TGFb
receptor), ECM (extracellular matrix), EMT (epithelial-to-mesenchymal transition).
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Miki et al. CAF and Scirrhous Type GC
from primary lesion of the same patient (53), suggesting the
possible role of uPA in peritoneal metastasis of SGC. The latent
TGFb from gastric fibroblasts and SGC cells is activated by uPA
from SGC cells. It has been shown that TGFb promotes collagen
synthesis not only by fibroblasts but also by cancer cells, resulting
in diffuse fibrosis of SGC (54).

Although the effect of TGFb on tumor growth is
controversial, Komuro et al. used a SGC cell line (OCUM-
2MLN) and showed that disruption of TGFb signaling in SGC
may accelerate tumor growth through upregulated tumor
angiogenesis that is induced by decreased expression of THBS1
after inhibition of TGFb signaling by dominant-negative
TGFBR (55).

TGFb produced by either gastric fibroblasts or cancer cells
affects the invasive capabilities of SGC cells by inducing a
morphologic change of the cells to a spindle shape, a process
known as the epithelial-to-mesenchymal transition (EMT) (56).
Cancer cells experiencing EMT develop invasive and migratory
capabilities (57–59). Shinto et al. revealed that TGFb significantly
upregulates the activity of RhoA and myosin light chain-2
phosphorylation, whereas TGFb1 decreases ZO-2 and E-
cadherin in SGC cells. Moreover, the TGFBR kinase inhibitor
Ki26894 inhibited both invasion and EMT in SGC cells. It has
been also revealed that the combination of S-1 (Tegefur/
Gimeracil/Osteracil, 5-FU derivative) and Ki26894 decreases
tumor growth and lymph node metastasis more effectively
than Ki26894 alone. We have confirmed that TGFb produced
by CAFs increased the migration and invasion ability of cancer
cells derived from SGC (60). Our group has also shown that
hypoxia stimulates EMT in SGC cells via autocrine TGFb
signaling (61).

Ishimoto et al. reported that CAFs express high levels of
Rhomboid 5 homolog 2 (RHBDF2). Expression of RHBDF2 in
fibroblasts is prompted by inflammatory cytokines secreted by
SGC cells. RHBDF2 promotes cleavage of TGFBR by activating a
disintegrin and metallopeptidase domain 17 (ADAM17, also
called TACE) and motility of CAFs in response to TGFb1.
They reported that these CAFs with high motility can also
increase the invasion of SGC cells into extracellular matrix and
lymphatic vessels in nude mice (48). Kawajiri et al. revealed that
A-77, another TGFb inhibitor, decreased the invasion capability
of SGC by decreasing the intercellular interaction between SGC
cells and CAFs, in conjunction with decreased tumor growth and
dissemination in an intraperitoneal tumor model.

In addition to the function of TGFb in the regulation of
invasiveness, CAFs regulate cancer cell stemness in SGC.
Conditioned medium (CM) from CAFs can significantly
increase spheroid colonies and the expression of cancer
stemness markers of SGC cells. These stimulating activities by
CM are significantly abolished by TGFb inhibitors, but not by
FGFR and c-Met inhibitors. Thus, TGFb from CAFs is
considered to be an important factor to sustain stemness in
SGC (62).

On the other hand, TGFb from SGC surrounding CAFs
increases a-smooth muscle actin (a-SMA) expression in
fibroblasts thorough SMAD pathway, suggesting that SGC cells
Frontiers in Oncology | www.frontiersin.org 5
can reprogram NFs into CAFs (63). This means that SGC cells can
educate CAFs to sustain the favorable microenvironment, and
TGFb plays a critical role in this inter-cellular communication.

HGF, Matrix Metalloproteases,
and Cytokines
CAFs also produce HGF, which is a known regulator of the SGC
cell invasiveness. The c-met gene encoding the HGF receptor c-
Met is amplified more frequently in SGC than in non-scirrhous
gastric cancer (64). HGF is not usually detected in the CM from
gastric cancer cells, thus, it can affect the invasive capabilities of
SGC cells in a paracrine fashion (Figure 2). In diffuse-type
gastric carcinoma, E-cadherin is frequently down-regulated by
methylation and mutations, a phenomenon that may be related
to tumor invasion (65). Additionally, another adherens junction
protein, Desmoglein-2 is down-regulated in diffuse-type gastric
cancer (66, 67). Sank-Uk Han reported that exposure of SNU-16
gastric cancer cells to HGF down-regulates the expression of E-
cadherin, and induces morphological changes from epithelial to
mesenchymal type (68). Thus, HGF could be one of the main
factors which control cell-cell adhesion in SGC.

Tendo et al. reported that COX2 inhibitor in combination
with S-1 (5-FU derivative) decreases the production of HGF in
CAF, and suppresses tumor growth and lymph node metastasis
in SGC mouse model. It has also been reported that the HGF
antagonist NK4 can effectively inhibit the progression of
peritoneal metastasis of SGC, revealing c-Met as a promising
target candidate to halt SGC progression.

In addition to secreting growth factors, fibroblasts produce
matrix metalloproteinases (MMPs) that allow cancer cells cross
tissue boundaries (69, 70). In early stages, cancer cells growing at
the mucosa need to invade into the submucosa beyond the
muscularis mucosae. Extracellular matrix degradation and loss
of cell-cell adhesion facilitate the tumor invasion. MT1-MMP on
the surface of GC cells activates MMP-2 produced by fibroblasts
(71). Therefore, MMP2 from the stromal cells may affect cancer
progression in a paracrine manner, even though at the early
stage cancer cells are separated from stromal cells by the
basement membrane.

Lysyl oxidase (LOX) is produced as a 50-kDa proenzyme
(pro-LOX). This pro-LOX is secreted and then cleaved by bone
morphogenetic protein 1 in the extracellular space to form a 30-
kDa mature enzyme and an 18-kDa pro-peptide (LOX-PP) (72,
73). LOX and LOX-like 1-4 oxidize lysine residues in collagens
and elastin (74), leading to covalent cross-linking and
stabilization of these ECM structural components, conferring
much of the tensile strength to collagen and elastic fibers (75).
Kasashima et al. reported that the expression of LOX in GC cells
affects the EMT in hypoxic conditions (76). Furthermore, CAFs
produce more LOXL2 than normal gastric fibroblasts, which
increases the invasive capability of SGC cells in a paracrine
manner (77).

Since the origin of CAFs of SGC remained uninvestigated, our
group tackled the issue. Conditioned medium from SGC cells
significantly increased twofold or threefold the migratory ability
of bone marrow mesenchymal cells (BM-MCs) but not of
October 2020 | Volume 10 | Article 568557
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non-SGC cells. This implied that BM-MCs were preferentially
recruited by a factor(s) from SGC cells. To confirm the molecules
increasing the homing capability of BM-MCs, chemokines were
screened using a protein array and the protein production level
between diffuse type GC cells and non-diffuse type GC cells were
compared. Seven out of 102 screened chemokines (CXCL1,
CXCL5, lipocalin-2, CXCL8, Dkk1, CCL20, and EMMPRIN)
were expressed in SGC but not in the non-SGC cell lines MKN74
and SNU16. Among them, only CXCL1 significantly increased
both the invasion capacity and motility of BM-MCs. Thus, we
concluded that BM-MCs are recruited to SGC TME via CXCL1-
CXCR2 signaling (78).
EXTRACELLULAR VESICLES, miRNA

Exosomes are small vesicles with a diameter of ~30–100 nm
originated from the endosomal system during formation of
multivesicular bodies (79). In cancer, exosomes have been
implicated in proliferation, angiogenesis, immunosuppression,
and preparation of premetastatic niches in secondary organs
(80). Various studies have reported that exosomes mediate local
and systemic cellular communication through the transfer of
information viamicroRNAs, long non-coding RNAs (lncRNAs),
mRNAs, proteins, metabolites and other substances.

Although their model was not gastric cancer, Webber et al.
reported that exosomal TGFb can differentiate fibroblasts into
CAFs. At the surface of exosomes, TGFb elicits SMAD-
dependent signalling (13). Thus, exosomal TGFb may be
related to the differentiation of CAFs in SGC.

Naito et al. investigated the miR-143 expression in SGC and
non-SGC, and reported that miR-143 expression is significantly
higher in SGC tissue than in non-SGC tissue. They also showed
that miR-143 enhances the expression of collagen type III in
normal gastric fibroblasts and CAFs by activation of TGFb/
SMAD signaling, suggesting that miR-143 and TGFb signaling
regulate fibrosis of SGC tissue.

Our group showed that CD9 expression is higher in CAF-
secreted exosomes than in NFs exosomes, and that CAF-secreted
exosomes are taken up by SGC cells, but not by the other types of
GC cells. Exosomes from CAFs stimulate the migration and
invasion of SGC cells, which is inhibited by antibody or siRNA
against the exosomal CD9. Interestingly, MMP2 expression in
SGC cells is decreased by CD9-siRNA. Thus, we concluded that
CD9-positive exosomes from CAFs stimulate the MMP2
expression and migration ability of SGC cells (81).

The role of miRNA in GC has been reported in the context of
FGF-FGFR signaling. FGF18 is overexpressed in genomically
stable and chromosomal instable GC subtypes, where it is
associated to poor patient survival. Similarly, FGF18 is
upregulated in seven out of eleven (63.6%) GC cell lines.
Knocking down FGF18 inhibits tumor formation capabilities,
induces cell cycle arrest in G1 phase and enhances drug
sensitivity. In this report, miR-590-5p was identified as a direct
target of FGF18, implying that FGF18 secretion can be regulated
by exosomal miRNA (82).
Frontiers in Oncology | www.frontiersin.org 6
Exosomal miRNA from CAFs may be related to chemo-
resistance of GC cells. It was recently reported that exosomal
miR-522 secreted by CAFs targets ALOX15 and blocks lipid-
ROS accumulation in cancer cells, inhibiting ferroptosis and
resulting in decreased chemo-sensitivity (83).

Finally, we will refer to the function of apoptotic vesicles from
cancer cells. Cancer cells co-invade with CAFs, and CAF
invasion often precedes invasion by cancer cells, resulting in
CAF-led cancer cell invasion. When cancer cells interact with
CAFs by death receptor 4, caspase-8 is activated in cancer cells
and leads to apoptosis. Apoptotic cancer cells conversely release
apoptotic vesicles and stimulate invasion of CAFs. In CAF-led
cancer invasion, cancer cells move through tunnels in the
substrate made by the leading CAFs. It has also been reported
that cancer cells become highly motile along collagen bundles
and these bundles are used as ‘highways’ for efficient migration.
This may be one of the mechanisms responsible for the highly
invasive characteristics of SGC (84).
HIGH RATE OF PERITONEAL
METASTASIS; RELATION TO EMT, NICHE
FORMATION

The most frequent type of metastasis in GC is peritoneal
metastasis. The peritoneum constitutes a superficial monolayer
of mesothelial cells and submesothelial stromal tissue, in which
cancer-stroma interactions occur (85). Fibroblasts at peritoneal
metastatic sites contribute to tumor progression.

The initial step of peritoneal metastasis is the adhesion of
cancer cells to the peritoneal mesothelial cells (PMCs), followed
by the exfoliation of these mesothelial cells and the adhesion to
the submesothelial connective tissue (Figure 3). The interaction
between cancer cells and PMCs is mediated by the adhesion
molecule CD44 expressed on the cancer cells and the hyaluronic
acid expressed on PMCs surface (86). Stromal fibroblasts
increase CD44 expression of GC cells through TGFb signaling,
thus stimulating the adhesion of SGC cells to the mesothelium
(87). Another important step in peritoneal dissemination is the
adhesion of cancer cells to the submesothelial components. The
main components of the submesothelial matrix are laminin,
fibronectin, type IV collagen at the basement membrane and
type I collagen in the underlying interstitial matrix. Cancer cells
adhere to these components via integrins, in particular a2b1-
and a3b1-integrins (88). In the peritoneal cavity, GC cells which
disseminated from the primary tumor are usually exposed to low
oxygen levels (89). Experimentally, hypoxic (1% O2) conditions
increase the adhesion capability of SGC cells, compared to
normoxic (21% O2) conditions. Under hypoxia, TGFb
increases the expression of a2-, a3-, and a5-integrin in GC
cells, promoting adhesion to the peritoneum. This can partially
explain the high metastatic potential of SGC cells.

Upon peritoneal metastasis, a monolayer of PMCs that lines the
peritoneal cavity undergoes mesothelial-to-mesenchymal transition
(MMT). TGFb from GC cells promotes morphological changes in
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mesothelial cells and thus likely associates with peritoneal
dissemination (90). In fact, when mesothelial cells are exposed to
fibroblasts, they become hemispherical and separated from each
other, while unexposed mesothelium remains a flat monolayer.
Both cancer cells and host fibroblasts stimulate morphological
changes in mesothelial cells (91). HGF produced by peritoneal
fibroblasts is associated with the morphology of mesothelial cells in
monolayers so that the resulting microenvironment becomes
suitable for the peritoneal dissemination of cancer cells (92).

Regarding exosomal communication, an investigation of
exosomal miRNA profiles in peritoneal fluid showed that miR-
21-5p was highly expressed in GC with serosal invasion. These
findings suggest that miR-21-5p may be one candidate biomarker
of peritoneal metastasis after GC resection. Exosomal miR-21-5p
derived from GC cells was proven to induce MMT by activating
TGFb/SMAD pathway by alleviating the inhibitory action of
SMAD7 (93).
PERSPECTIVE ON TREATMENT

FGFR2
Since previous data suggests that up-regulation of FGFR2
signaling is critical in a subset of GC patients including SGC,
Frontiers in Oncology | www.frontiersin.org 7
precision medicine approaches targeting FGFR2 by specifically
designed drugs have recently emerged. Anti-FGFR2 specific
monoclonal antibodies, FGF traps, and selective and non-
selective FGFR inhibitors are among these drugs.

Monoclonal Antibodies, FGF Traps
There are several antibodies which have shown promise in pre-
clinical studies (Table 3). Among trials with them, bemarituzumab
(FPA144) have provided preliminary data suggesting promising
efficacy in patients with GC.

Bemarituzumab is a humanized immunoglobulin G1 (IgG1)
monoclonal antibody specific to FGFR2b (a splice-variant) that
blocks FGF7, FGF10, and FGF22 ligand binding. In the phase I
study, bemarituzumab seems to be well tolerated and
demonstrates single agent activity as late-line therapy in GC
patients. A phase III trial is currently evaluating Bemarituzumab
in combination with chemotherapy (FOLFOX6) as front-line
therapy for patients with FGFR2b-overexpressing advanced
gastroesophageal cancer (FIGHT trial, Five Prime).

As FGFs are rich in gastric cancer tissues, another strategy is
the use of FGF traps which can neutralize FGF and reduce cancer
cell malignancy. FGF ligand traps are a fusion of an
immunoglobulin Fc fragment and a soluble FGFR extracellular
domain that competitively binds with FGF1, 2, 3, 7, and 10 to
FIGURE 3 | Schematic representation of peritoneal invasion by SGC cells and communication with the stroma. Step 1: interaction between SGC cells and peritoneal
mesothelial cells (PMCs). Step 2: PMCs undergo mesothelial-to-mesenchymal transition (MMT) and allow SGC cells to invade the submesothelial connective tissue.
SGC (scirrhous gastric cancer), CAF (cancer associated fibroblasts), ECM (extracellular matrix), TGFb (transforming growth factor b), TGFbR (TGFb receptor), HGF
(hepatocyte growth factor), c-Met (HGF receptor), MMP (matrix metalloproteinases), uPA (urokinase-type plasminogen activator).
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suppress ligand-dependent FGFR signaling. For example, FP-
1039 (GSK3052230) is a soluble fusion of the extracellular
ligand-binding domain of FGFR1 linked to a modified hinge
and native Fc regions of IgG1. FP-1039 was well tolerated, even
when used in combination with chemotherapy for lung cancer
patients (94). Although there is no clinical data regarding FP-
1039 for GC patients, it may be promising considering that FGF7
is possibly a critical player in TME of SGC.

Another FGF trap, the extracellular NSC12, can be used as an
FGF antagonist in anti-angiogenic treatment with anti-vascular
endothelial growth factor.

FGFR Inhibitors
According to their target specificities, FGFR kinase inhibitors can
be divided to FGFR1/2/3 inhibitors, FGFR4 inhibitors, pan-
FGFR inhibitors or multi- kinase FGFR inhibitors. Out of all
the FGFR inhibitors, we summarize here the inhibitors which
have been tested in clinical trials for gastric cancer patients or
some other types of solid tumors.

AZD4547 is a selective FGFR1/2/3 inhibitor which was
preclinically tested in FGFR2 amplified SNU16 and SGC083
(GC cell lines) xenograft models, showing positive results. The
randomized phase II SHINE study (NCT01457846) investigated
whether AZD4547 administered as second-line treatment for
advanced GC patients with FGFR2 polysomy or gene
amplification improved survival outcome compared to
paclitaxel treatment (95). As a result, AZD4547 did not
significantly improve progression-free survival (PFS) compared
to paclitaxel in these patients. However, the lack of correlation
between FGFR2 amplification/polysomy and FGFR2 expression
together with significant intratumor heterogeneity for FGFR2
gene amplification indicate the need for further development of
predictive biomarkers.

BGJ398 is another selective FGFR1/2/3 inhibitor, which was
identified from integrative analysis of the Cancer Cell Line
Encyclopedia (96). Promising results were shown in phase I
study for patients with advanced solid tumors, where antitumor
activity was demonstrated in patients with FGFR1-amplified lung
cancer and FGFR3-mutant bladder or urothelial cancer (97).
However, the study did not include GC patients. In vitro, we have
Frontiers in Oncology | www.frontiersin.org 8
shown that BGJ398 significantly decreases the growth of SGC
patient-derived OCUM-14 cells (38). Therefore, BGJ398 could
be promising for SGC. A small phase I study for patients with
advanced solid tumors having alterations of FGFR pathway has
been completed (NCT01697605), and the result regarding SGC is
awaited from the study.

E7090 is another potent FGFR1/2/3 inhibitor. In vitro, E7090
treatment inhibited the phosphorylation of FGFR2 as well as
FRS2, ERK1/2, and AKT in SNU-16 GC cells. Moreover, E7090
also had antitumor activity in SNU-16 xenograft mouse model
(98). Clinically, the phase I study showed that it has manageable
safety profile in patients with advanced solid tumors (99). A
phase II study for patients with cholangiocarcinoma is in
progress, and the application for gastric cancer may be relevant
in the future.

LY2874455 is a reversible pan-FGFR inhibitor that competes
for the ATP-binding pocket the kinase domain. A phase I study
to determine optimal phase II dose was performed
(NCT01212107). Among 29 patients with GC enrolled in the
study, one patient was reported to show partial response (PR;
more than 30% reduction of the tumor size from the baseline),
while 12 patients had best overall response of stable disease (SD;
increase in tumor size by at least 20% from the baseline) (100).
The median PFS in the GC group was 62.0 days. LY2874455 in
combination with other agents should be investigated in
the future.

JNI-42756493 (Erdafitinib) is another potent pan-FGFR
inhibitor. The first human study reported that Erdafitinib had
a manageable safety profile, although it has not been shown
whether the study included GC patients (101). Another phase I
study was performed in patients with advanced or refractory
solid tumors in Japan, and this study includes two GC patients
among 19 enrolled patients. This study concludes that
Erdafitinib was well tolerated (102). The new phase II study is
ongoing to evaluate the efficacy of Erdafitinib in which overall
response rate [ORR; the rate of complete response (CR) and PR]
is the primary outcome for participants with advanced solid
tumors with FGFR mutations and gene fusions (NCT4083976).

Lucitanib is a potent, oral inhibitor of FGFR1, 2, vascular
endothelial growth factor receptor types 1, 2, and 3 (VEGFR),
TABLE 3 | Drugs targeting FGFRs.

Drug Mechanism Clinical data Ongoing trial

Bemarituzumab (FPA144) FGFR2 IIIb antibody 5 PR out of 28 patients with high FGFR2b overexpressing GEA Phase III trial (FIGHT)
(NCT03343301)

FP-1039 (GSK3052230) FGF trap No objective responses in phase I study for patients with advanced solid tumor
NSC12 FGF trap Only preclinical data
AZD4547 FGFR1/2/3 inhibitor FGFR2 amplification cohort: 1PR, 4SD SHINE trial (NCT01457846)
BGJ398 FGFR1/2/3 inhibitor No data for GC Phase I
E7090 FGFR1/2/3 inhibitor Only one GC patient enrolled in the study showed PR Phase I/II

(NCT02275910)
LY2874455 Pan-FGFR inhibitor 1 PR, 12SD/29 patients
JNI-42756493(Erdafitinib) Pan-FGFR inhibitor Safety profile was shown in phase I Phase II
Lucitanib Multi kinase inhibitor 7 responses/27 patients Phase II
ARQ087 (Derazantinib) Multi kinase inhibitor 3PR/18 evaluable patients with FGFR genetic alterations
Dovitinib Multi kinase inhibitor 1 PR, 2SD/14 evaluable patients (NCT01719549)
October 2020 |
FGFR, fibroblast growth factor receptor; FGF, fibroblast growth factor; PR, partial response; GEA, gastroesophageal cancer; SD, stable disease; GC, gastric cancer.
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platelet-derived growth factor receptor types a and b (PGFRa/
b). Lucitanib showed promising efficacy and a manageable
profile of adverse events. Clinical benefit was shown in both
FGF-aberrant and angiogenesis-sensitive patients (103). A
comprehensive phase II program has been planned. Although
the reported phase I study did not include GC patients, it might
be a promising drug for targeting FGFR2 in a subpopulation
of GC.

ARQ087 (Derazantinib) is another multi kinase inhibitor, and
it works as pan-FGFR inhibitor. In phase I study, ARQ087 had
manageable toxicity at the recommended phase II dose (RP2D)
of 300 mg once a day, showed pharmacodynamic effects, and
achieved objective responses, particularly in patients with FGFR2
genetic alterations (104). A further study for patients with
intrahepatic cholangiocarcinoma is ongoing.

Dovitinib is also a potent multi-kinase inhibitor, and was
evaluated in a phase I study of 35 solid tumors including two GCs
(105). It was unsatisfactory that neither patient with GC had SD for
more than 4 months. On the other hand, three phase II studies of
Dovitinib are ongoing in GC (GASDOVI-1, NCT01719549).

Albeit according to preclinical data FGFR alterations were
expected to be predictive of responsiveness to FGFR targeted
therapies, FGFR alterations alone are not sufficient biomarkers
for selecting patients for monotherapies using FGFR-targeted
agents. Expression of FGFR mRNA or protein might be more
helpful than FGFR amplification for predicting sensitivity to
FGFR inhibitors in future studies.

TGFb
TGFb in tumor-stroma interactions favors tumor progression
through mechanisms that are still unclear and controversial
(106). Before cancer initiation and during the early phase of
carcinogenesis, TGFb can function as a tumor suppressor.
Conversely, during the advanced stages, cancer progression
and metastasis are promoted by TGFb signaling (107). To
clarify the clinical efficacy of TGFBR inhibitors on the
progression of GC at both the early and advanced stages
additional studies are needed.

Tranilast [N-(3,4-dimethoxycinnamoyl) anthranilic acid] is a
drug which is used clinically for the treatment of excessive
proliferation of fibroblasts. By blocking the interactions
between fibroblasts and SGC cells, it reduces GC growth and
induces cancer cell apoptosis (71). Tranilast not only inhibits
fibroblast proliferation but also the release of growth-promoting
factors from fibroblasts and cancer cells, and the interactions
between these cells (108). In addition, Tranilast and cisplatin
combinatorial treatment reduces tumor size, fibrosis, and
mitosis, and increases apoptosis in SGC xenograft model (109).
Furthermore, the invasion-stimulating ability of fibroblasts is
suppressed by Tranilast through inhibiting the production of
MMP2 and TGFb in fibroblasts (110).

Another study also supports the hypothesis that Tranilast
could be a new strategy to decrease fibrous tumor represented by
peritoneal dissemination. In this study, human peritoneal
mesothelial cells (HPMCs) were used to investigate the effects
of Tranilast treatment on cells and a xenograft mouse model of
fibrosis. TGFb-mediated EMT-like changes in HPMCs were
Frontiers in Oncology | www.frontiersin.org 9
inhibited in a dose-dependent way by Tranilast treatment
through inhibition of Smad2 phosphorylation. In the mouse
model, Tranilast significantly decreased tumor size and inhibited
fibrosis, compared with the control group proliferation and
invasion (111).

Considering these preclinical studies, Tranilast may be a
promising novel drug to decrease proliferation and invasion
stimulation between fibroblasts and SGC cells (108).

In spite of many preclinical studies about TGFb, there is still a
difficulty in using TGFb inhibitors clinically. Because TGFb is a
potent inhibitor of epithelial cell proliferation, it could be better
to use TGFBR inhibitors with other chemotherapeutic drugs or
molecular targeted agents in the future.

c-Met
Considering the progression mechanism of SGC, c-Met could be
a targetable molecule in a subgroup of patients with SGC.
Rilotumumab (monoclonal antibody for HGF) showed greater
activity than placebo in phase II trial (112). However, it did not
improve clinical outcomes in MET positive gastroesophageal
cancer in phase III trial (113).

AMG337 is a small molecule MET inhibitor, and it showed
promising efficacy in MET-amplified gastroesophageal cancer
(114). The result of phase III trial is awaited.
FUTURE PERSPECTIVES

Immune checkpoint inhibitors (ICIs), such as atezolizumab,
avelumab, durvalumab, nivolumab, and pembrolizumab, are
monoclonal antibodies (mAbs) that block the interaction
between programmed cell death protein 1 (PD-1) and its
ligand PD-L1, preventing an immunosuppressive signaling
cascade. Even though some subsets of patients showed a
complete response to these agents (CR rate of 1.1%) (115), the
ORR of unselected patients with GC who received anti-PD-1
mAbs remains approximately 10% (116).

Distinct FGFR3 alterations and FGFR3 upregulation were
specifically detected in non T cell- inflamed TMEs and associated
to resistance against ICIs (117). The specific FGFR inhibitor
erdafitinib when administered with anti-PD-1 mAbs in mouse
models of FGFR2-driven cancers showed synergistic antitumor
outcomes (118), implicating that the combination of FGFR
inhibitors and ICIs could be a promising strategy.

M7824 (MSB0011359C) is a novel bifunctional fusion protein
formed by an anti-PD-L1 mAb fused with the extracellular
domain of TGFb receptor II, which works as a TGFb trap
(119). In phase I trial, 5 among 31 patients showed PR with
manageable safety profile. The combination therapy targeting
both TGFb and ICIs can become a promising treatment strategy
for SGC in future.

As described in the previous section, exosomes work as an
important messenger between cancer cells and CAF. Therefore,
blocking the signaling which starts from exosomes could also be a
promising strategy. For example, silencing of exosomal miR-21-
5p could block MMT by attenuating TGFb/SMAD pathway.
However, we should confirm which molecules, including
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miRNAs, are critical players in the TME. Further pre-clinical
studies will be needed in developing strategies to target exosomes.
CONCLUSION

CAFs communicate with SGC cells in a number of ways, and
contribute to the progression of SGC mainly by FGF/FGFR and
TGFb/SMAD signaling axes. In this review we have collected
evidence from SGC studies but also from commonGC reports and
thus we highlight here the need for more basic research in SGC to
fully understand the mechanisms of SGC-CAF communication.

Many drugs targeting FGF/FGFR and TGFb/SMAD signaling
pathways have been tested in clinical settings. Among them,
bemarituzumab (monoclonal antibody specific to the splice
variant FGFR2b) showed 19.0% of ORR in patients with late-
line gastroesophageal cancer with FGFR2b expression, and is the
only drug being evaluated in phase III clinical trial. Considering
the significant role of FGFR2 expression in SGC, a promising
treatment strategy will be to use bemarituzumab for SGC cohort.
Frontiers in Oncology | www.frontiersin.org 10
Ultimately, combination therapy targeting multiple players
involved in the communication between CAF and SGC cells
could improve the survival outcome of patients with SGC in
the future.
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