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Abstract: Pharmaceutical nano-fibers have attracted widespread attention from researchers for reasons
such as adaptability of the electro-spinning process and ease of production. As a flexible method for
fabricating nano-fibers, electro-spinning is extensively used. An electro-spinning unit is composed of a
pump or syringe, a high voltage current supplier, a metal plate collector and a spinneret. Optimization
of the attained nano-fibers is undertaken through manipulation of the variables of the process and
formulation, including concentration, viscosity, molecular mass, and physical phenomenon, as well
as the environmental parameters including temperature and humidity. The nano-fibers achieved
by electro-spinning can be utilized for drug loading. The mixing of two or more medicines can
be performed via electro-spinning. Facilitation or inhibition of the burst release of a drug can be
achieved by the use of the electro-spinning approach. This potential is anticipated to facilitate
progression in applications of drug release modification and tissue engineering (TE). The present
review aims to focus on electro-spinning, optimization parameters, pharmacological applications,
biological characteristics, and in vivo analyses of the electro-spun nano-fibers. Furthermore, current
developments and upcoming investigation directions are outlined for the advancement of electro-spun
nano-fibers for TE. Moreover, the possible applications, complications and future developments of
these nano-fibers are summarized in detail.

Keywords: electrospinning; fabrication; parameters effect; nano-fibers; drug delivery; wound dressing

1. Introduction

As one-dimensional nano materials, nano-fibers have attracted a lot of attention from researchers
and found widespread applications [1]. Compared to many other common base materials, nano fibers
have numerous important characteristics, including a very thin diameter (a 1000 times thinner than the
diameter of human hair), three dimensional topography, flexible surface capabilities, large surface
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area, adjustable porosity, and good mechanical characteristics such as tensile strength and stiffness [2].
Owing to the progress of nano-fiber technology, an interesting point in this regard is that a large number
of different materials can be utilized for the fabrication of these fibers. Such materials include synthetic
and natural polymers, metals and their oxides, composite as well as carbon based nano-materials [3].
Additionally, it is possible to modify the surface of nano-fibers together with their bulk properties for
different purposes, and this result in a variety of physical qualities and many different applications
and usages [4]. The nano-fiber production methods are categorized into two main groups, namely
top-down and bottom-up techniques. In a top-down procedure, like mechanical and chemical treatment
of wood pulp, nano-fibers are obtained by breaking down the bulk material. Top-down techniques
are usually used for obtaining cellulose nano-fibers or CNFs [5]. On the other hand, in bottom-up
methods such as electro-spinning, drawing, self-assembly, template synthesis, and phase separation,
nano-fibers are fabricated from constituting molecules. Due to their distinctive features that make
them quite appropriate for drug delivery systems and biomedical engineering, nano-fibers have been
the target of attention of many scientists and researchers [6,7]. These unique characteristics include
high porosity, tunable pore size, high surface to volume ratio, as well as morphological correspondence
with the extra-cellular matrix. Polymeric fibrous structures were identified as suitable candidates for
drug-release systems, and fibrous polymer structures have been prepared by a variety of methods like
the electro-hydrodynamic techniques (EHD). In the electro-hydrodynamic methods, electrostatic forces
are employed for the production of fibers or particles with an adjustable micro-structure [6]. As an
outstanding cost-efficient EHD method, electro-spinning has found vast applications in the industry
and laboratory for fiber fabrication. In this method, pharmaceutical biomolecules or agents are directly
encapsulated within the fibers, leading to their protection from the environmental parameters and,
simultaneously, to the release control [5]. This approach is an extensively employed method compared
to other fabrication approaches, due to such properties as low cost, simplicity, and potential of mass
production. On top of that, it is feasible to control the composition, orientation and diameter of the
nano-fibers in accordance with the desired application [8]. When exploited for the fabrication of wound
dressing, electro-spinning offers many benefits, including adjustable porosity, great surface-to-volume
ratio, and the capacity of imitating the tissue extra-cellular matrix [3]. As a consequence of these
characteristics, on one hand, cytocompatibility will be enhanced, and on the other hand, there will
be a high potential of keeping the wound moisture microenvironment and absorbing the wound [9].
According to literature, an electro-spinning setup consists of four basic parts: a glass syringe that
contains a polymer solution, a metallic needle, a power supply, and a metallic collector with an
adaptable shape [10]. The approach initiates with the motion of electric charges in the polymer solution
by means of the metallic needle. Subsequently, the polymer solution becomes instable as the charges
are induced on the polymer droplet [11]. Simultaneously, an opposing force to the surface tension is
generated by the reciprocal repulsion of the charges. Eventually, the polymer solution flow will be
aligned with direction of the electric field. More escalation in the electric field results in the deformation
of the droplet shape from spherical to conical. At this point, ultrafine nano-fibers will appear through
the conical polymer droplet. These fibers are gathered on the metallic collector that is maintained at an
adjusted distance [2]. Essentially, as soon as the polymer solution presented enough cohesive force,
a constant charge jet could be created. During the procedure, the liquid jet whipping in the path of
the collector will be induced by the inner and outer charge forces [11]. The whipping motion causes
the stretching of the polymer chains inside the solution and their sliding past each another, which
consequently leads to the formation of fibers that can aptly be called nano-fibers due to their very
small diameters [12]. In the recent years, this method has attracted a lot of attention from biomedical
researchers from all over the world for fabricating micro- and nano-structures to be applied as drug
carriers and scaffolds. In electro-spinning, in order to produce polymeric and non-woven fibers, an
electrical field is applied [13]. Three-dimensional scaffolds with different sizes and shapes can be
obtained via such a versatile technique. An electro-spinning apparatus setup comprises three main
components: a grounded metal collector, a solution reservoir associated with a spinneret, and a high
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voltage power supply [14]. The properties of the solution and the process parameters are important for
the fibers physical, morphological, and biomechanical performance. This cutting-edge technology
has a high potential in controlled drug delivery and tissue engineering because an extensive range of
materials can be used [15].

There are many different electro-spinning methods such as coaxial, single jet, emulsion, and
needleless. Among these, the coaxial electro-spinning or core–shell systems have a multidimensional
nature [2]. To illustrate, it is possible to fabricate a continuous double layer of nano fibers with this
method. For this purpose, two materials that encapsulate different drug types are electro-spun in
a simple one-stage process [16]. On-demand biomaterial platforms for drug delivery and tissue
engineering have been provided by this technique through the generation of structures that have two
separate parts, an inner part, or core, that is completely enclosed by an outer part, or shell [17,18].
Such a porous structure possesses a morphology that can be beneficial for wound dressing and also
drug delivery. In the case of full thickness wounds, since the local vessels have been destroyed, the
blood supply encounters obstacles which will inevitably delay the healing of the wound as well as
the delivery of the drug [19]. Moreover, wound dressing polymers should be as flexible as the skin
and, at the same time, should be capable of loading and releasing the drugs in a controlled mode.
Another noteworthy factor that is essential in therapeutic procedures is the reduction of overall dose
and this is offered by nano-fibers as they enhance the drugs bioavailability and dissolution [20]. The
electro-spun nano-fibers can be exploited for different purposes; in addition to drug delivery systems,
tissue engineering, and wound dressing, it has been used in many different fields of biomedicine as
can be seen in Figure 1 [21]. Nevertheless, even with the extensive utilization of the electro-spinning
approach, the comprehension of this technique is very limited, even now. Hence, the recent review
article covers the research carried out on the electro-spinning method, optimization parameters, and
pharmaceutical uses of the nano-fibers (range of 50–900 nm) obtained via electro-spinning with the aim
of yielding a complete understanding of this approach for tissue engineering (TE) applications. In the
subsequent sections of this review article, a comprehensive summery is offered on the cell viability,
antimicrobial activity and in vivo analysis of the electro-spun nano-fibers.

Materials 2020, 13, x FOR PEER REVIEW 3 of 27 

 

properties of the solution and the process parameters are important for the fibers physical, 
morphological, and biomechanical performance. This cutting-edge technology has a high potential 
in controlled drug delivery and tissue engineering because an extensive range of materials can be 
used [15]. 

There are many different electro-spinning methods such as coaxial, single jet, emulsion, and 
needleless. Among these, the coaxial electro-spinning or core–shell systems have a multidimensional 
nature [2]. To illustrate, it is possible to fabricate a continuous double layer of nano fibers with this 
method. For this purpose, two materials that encapsulate different drug types are electro-spun in a 
simple one-stage process [16]. On-demand biomaterial platforms for drug delivery and tissue 
engineering have been provided by this technique through the generation of structures that have two 
separate parts, an inner part, or core, that is completely enclosed by an outer part, or shell [17,18]. 
Such a porous structure possesses a morphology that can be beneficial for wound dressing and also 
drug delivery. In the case of full thickness wounds, since the local vessels have been destroyed, the 
blood supply encounters obstacles which will inevitably delay the healing of the wound as well as 
the delivery of the drug [19]. Moreover, wound dressing polymers should be as flexible as the skin 
and, at the same time, should be capable of loading and releasing the drugs in a controlled mode. 
Another noteworthy factor that is essential in therapeutic procedures is the reduction of overall dose 
and this is offered by nano-fibers as they enhance the drugs bioavailability and dissolution [20]. The 
electro-spun nano-fibers can be exploited for different purposes; in addition to drug delivery systems, 
tissue engineering, and wound dressing, it has been used in many different fields of biomedicine as 
can be seen in Figure 1 [21]. Nevertheless, even with the extensive utilization of the electro-spinning 
approach, the comprehension of this technique is very limited, even now. Hence, the recent review 
article covers the research carried out on the electro-spinning method, optimization parameters, and 
pharmaceutical uses of the nano-fibers (range of 50–900 nm) obtained via electro-spinning with the 
aim of yielding a complete understanding of this approach for tissue engineering (TE) applications. 
In the subsequent sections of this review article, a comprehensive summery is offered on the cell 
viability, antimicrobial activity and in vivo analysis of the electro-spun nano-fibers. 

 
Figure 1. The electro-spun nano-fiber application in different biomedical fields (adapted from Miguel 
et al. [21]). 

2. Electro-Spinning for Biomedical Applications 

Figure 1. The electro-spun nano-fiber application in different biomedical fields (adapted from
Miguel et al. [21]).



Materials 2020, 13, 2153 4 of 25

2. Electro-Spinning for Biomedical Applications

There is a lot of research investigating antimicrobial biomedical application [22–27]. Many
researchers have studied the electro-spinning method for biomedical application [28–37]. Multi-level
structured nano-fibers have been successfully developed via electro-spinning for different purposes
through the use of such diverse materials as polyacrylic acid, silica nylon, polyacrylonitrile, SU-8
2100, polycarbonate, polybenzimidazole, polyurethane, polyethylene oxide, polystyrene, polyvinyl
alcohol, gelatine, cellulose, chitosan, chitin, and carbon nano-materials [36–38]. Electro-spun fibers with
various shapes such as cylindrical, hollow, porous, ribbon beads, patterned mats, and helices have been
developed through the use of different polymers by numerous research teams [39]. The electro-spinning
methods include such techniques as blend, coaxial, needleless, and emulsion (Figure 2). Among
these, coaxial electro-spinning is used more extensively for biomedicine applications such as wound
dressing [21,33]. Due to the production of non-defect nano-fibers, the electro-spinning parameters
should be highlighted to attain a significantly better understanding of the electro-spinning approach and
the effects of virtually all of these types of regulating parameters. Therefore, Table 1 will help to provide
an overview of the parameters of electro-spinning different polymers such as the solvent, tip collector
distance, and voltage which have significant effects on the quality of the fabricated nano-fibers [40–54].
Table 2 depicts the effects of the electro-spinning equipment setup and their corresponding parameters
on the characteristics of polymer-based electro-spinning [55–74]. The fiber morphology is a factor of
great significance to guide the application of electro-spun nano-fibers in numerous manufacturing
areas. To be able to enhance and/or attain various morphologies, numerous electro-spinning equipment
setups and their corresponding experimental parameters including solvent and voltage should be
evaluated, since these factors have a significant effect on the cell adhesion and proliferation as well as
antibacterial performance of polymers. Hence, these characteristics are summarized in Table 2 with
the aim of fulfilling polymer-based electro-spinning applications requirement.

Table 1. Parameters of electro-spinning of different polymers.

Polymer Solvent Voltage Tip Collector
Distance

Fiber
Diameter Ref.

PCL (Polycaprolactone) Formic acid/acetic acid 12 kV 12.5 cm 266 nm [40]
PVA (Polyvinyl alcohol) Deionized water 22 kV 10 cm 240 nm [41]
PLA (Poly(lactic acid)) Acetone 20 kV 15 cm 757 nm [42]

PLLA (poly (l-lactic acid) Chloroform and acetone 20 kV 12 cm 150 nm [43]
Chitosan Acetic acid 40 kV – 130 nm [44]

Silk fibroin CaCl2/H2O/C2H5OH 12.5 kV 21 cm 700 nm [45]
Collagen Acetic acid 15–20 kV 19–21 cm 100–600 nm [46]

Hyaluronic acid (HA) Deionized water 22 kV 15 cm 200 nm [47]
Poly hydroxyl butyrate Chloroform: Dichloroethane 20 kV 7.5 cm 280 nm [48]

Cellulose Acetate Acetone 12 kV 10 cm 801 nm [49]

Poly (glycerol sebacate) Chloroform/
dimethyl formamide 9 kV 30 cm 590 nm [50]

Elastin Hexafluoro-2-propanol 10 kV 12 cm 605 nm [51]
Gelatin 2,2,2-trifluoroethanol (TFE) 10 kV 13 cm 200–300 nm [52]

Poly (ethylene-co-vinyl
alcohol)

Deionized water/isopropyl
alcohol (IPA) 15 kV 15 cm 500 nm [53]

Chitin 1,1,1,2,2,2-hexafluoro-2-propanol
(HFIP) 15 kV 7 cm 100 nm [54]
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Table 2. Effects of electro-spinning equipment setup and their corresponding parameters on the characteristics of polymer-based electro-spinning.

Polymer Electrospinning
Technique Fiber Diameter Application Condition Results Ref.

Collagen + Silk fibroin (SF) Blend 320–360 nm Wound healing In vitro The cell attachment is 300 cells/0.53 mm2 [55]
PCL Blend 250 nm Wound healing In vitro The duration of the cell culture proliferation is around 7 days [56]

Poly (L-lactide) + Poly (D-lactide) Blend 300 nm Wound healing In vitro and In vivo Crystallinity 61% -4 week (Before implantation) and 49%
(after implantation) [57]

Chitosan + PCL Blend 177 nm Acute and chronic wound
healing In vitro and In vivo 45% wound recovery in during 6 days [58]

PCL + BC (Bacterial cellulose) Blend 400 nm Wound dressing - In vitro The 100% cell viability has been appeared in during 72 h [59]
Carboxyethyl chitosan (CECS) + PVA Blend 131–456 nm Wound dressing In vitro The adhesion study of the L929 cells (48 h) [60]

Chitosan/poly ethylene oxide Blend 60-120 nm Wound dressing In vitro The viscosity is 2.25 Pa.s and electric conductivity is 3 mS/cm [61]
PEG-Lysozyme PEG-Bovine Serum Albumin

(BSA) + PCL Co-axial 571 nm Wound healing In vitro 50% drug release in during 24 day [62]

PLA + collagen Co-axial 168 nm Wound dressing In vitro
The cell viability has been increased during 14 days and

antimicrobial efficiency against S. epidermis, P. aeruginosa and
E. coli

[63]

PLA + Chitosan (CS) Co-axial 236 nm Wound healing In vitro The antibacterial efficiency against E. coli bacteria [64]
Chitosan + PEG Blend 50–200 nm Wound healing In vivo The time of the cells spreading is around 3 days [65]

Poly-(3-hydroxybutyrate-co-3-hydroxyvalerate)
(PHBV)/Ag nanofibers poly Emulsion 603 nm Wound healing In vitro The drug release of the AgNPs is 0.55 ppm during 30 days [66]

(Llactide-co-D, L-lactide) + poly (vinyl alcohol) Blend 275 nm Wound dressing In vitro

The anti-bacterial efficiency against E.coli and S.aureus, the
tensile stress is around 19 MPa and Young’s modulus is around
532 MPa and SNL 76/7 fibroblast cell line culture shows good

proliferation.

[67]

Dimethyloxalylglycine (DMOG) PCL/Col I Co-axial 200–500 nm Wound healing In vivo
53% drug release of nanofiber during 12 h and 72% during 24 h.
drug release of core/shell nanofibers: 17% during 12 h and 36%

during 24 h
[68]

Polyhydroxybutyrate (PHB) + Gelatin (GEL) Blend 80 nm Wound healing In vitro and in vivo The 71.8% degradation rate during 12 h [69]

Gelatin/Oleoyl Chitosan (OC) Blend 150–400 nm Full-Thickness Excisional
Wound Healing In vitro The swelling is around 380% and the water contact angle is 80◦ [70]

Chitosan + PEO Co-axial 250 nm Wound healing In vitro The tensile strength is 4.0 MPa and porosity is around 84% [71]
Gelatin + poly-methyl vinyl ether-altmaleic
anhydride (PMVE/MA) + nano zinc oxide Emulsion 500–700 nm Wound healing In vivo 99% wound healing during 10 days [72]

Dimethyloxalylglycine (DMOG) + PLLA Co-axial — Diabetic wound, chronic
wound In vivo 97% wound healing happened during 15 days [73]

Polyurethanes without dendrimer +
Polyurethanes with NO-releasing dendrimer Co-axial 393 nm Wound dressing In vitro The NO release during 9 h [74]
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2.1. Blend Electro-Spinning

Blend or single jet electro-spinning, as the most common electro-spinning method, involves the
mixing of all chemical compounds and polymer components by a single-solvent system. It is possible
to encapsulate lipophilic and hydrophilic drugs, as well as biomolecules (like proteins, RNA, and
DNA) within the fibers by blend electro-spinning [75,76]. Due to the exceptional characteristics of the
fibers, this method is quite effective for the generation of drug delivery systems (DDSs) with sustained
diffusion, minimum dosage and local delivery of drugs that will reduce systematic absorption. As a
consequence, side effects that result from high dosages can be limited or even avoided. Compared
to other methods and DDSs, electro-spun fibers offer reduced initial burst release [77]. Nevertheless,
there are some limitations of blend electro-spinning, specifically in terms of drug delivery. For instance,
the organic solvents that are used in electro-spinning denature sensitive pharmaceutical proteins,
molecules or even DNA. This results in the loss of bioactivity which, in turn, reduces the efficiency of
these molecules and proteins [78]. Additionally, due to the electric charge of most bioactive molecules
and their ability to migrate to the surface of the fiber (as a result of electrostatic repulsion), distribution
within the fibers might be casual [79]. This may ultimately result in the burst release of the encapsulated
materials when the fibers are located in an aqueous medium [80]. This technique has been used by
many researchers for the improvement of tissue engineering and biomedical applications [78–81]. To
illustrate, bombyx mori silk fibroin nano-fibers obtained by blend electro-spinning were used in wound
healing [82]. Poly (L-lactide) + Poly (D-lactide) and Polycaprolactone (PCL) nano-fibers prepared by
the same method have also been used for enhancing biomedical application [83,84]. In another study,
cellulose acetate (CA) nano-fiber was employed as wound dressing [85]. A simple technique involving a
combination of calcination and electro-spinning was exhibited by Kurniawan et al., [86] who fabricated
electro-spun poly (N-vinylpyrrolidone) mats that were decorated with gold nano-particles. Due to the
electrostatic interactions of the positively charged amino-silane groups with the negatively charged
gold nano-particles, the gold nano-particles were decorated on the nano-fibers’ surfaces to improve
the antimicrobial activity of the nano-fibers [86]. In blend electro-spinning, the bioactive molecules
dispersed or dissolved in the polymeric solution are encapsulated. After that, when the mixture is
electro-spun, hybrid fibers will be obtained [82]. As the biomolecules are entrapped within the fibers,
the release will be sustained and an early burst release will be prevented [82]. Li et al. prepared an
electro-spun nano-fibrous mesh by mixing sodium alginate and organic rectorite (OREC) (which is
a bacterial inhibitor) with polyvinyl alcohol (PVA). The in vitro results showed that the nano-fiber’s
bactericidal activity was improved by OREC [87]. Chouhan et al. [88] depicted non-mulberry silk
fibroin based (NMSF) electro-spun mats functionalized with epidermal growth factor (EGF) and
ciprofloxacin HCl as potential wound dressing. Their findings exhibited that the NMS-based mats
were cytocompatible, had a high water retention capacity, exhibited antibacterial activity and sustained
drug release. Although the blend electro-spinning method is an adaptable and versatile approach, an
important drawback of the fibers obtained by this method is the reduction of performance and activity
of the embedded biomolecules which accommodates the system’s healing rate [75]. To overcome
this limitation, co-axial and emulsion electro-spinning methods have been utilized for fabricating
core–shell fibers. The nano-fibers achieved in this manner show an accelerated bioactive/drug molecule
encapsulation efficiency and avoid the instantaneous interaction of these biomolecules with the outer
media, which is essential for the retention of the biological activity of unstable biological agents [2].

2.2. Coaxial Electro-Spinning

Contrary to the blend electro-spinning technique, coaxial electro-spinning is a new variation of the
electro-spinning technique which produces multi-layered core-sheath structured nano-fibers (or coaxial
fibers) and includes the utilization of two concentrically assembled nozzles linked to an excessive
amount of voltage source [89]. The polymeric solution is led through their corresponding reservoirs
into the coaxial spinneret by using two individual pumps while controlling the solution flow rate [90].
The mixing of the solvents will be prevented by this setup and the interface of the solutions occurs
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only at the tip of the spinneret, where the edges of the concentric nozzles end. Numerous research
teams have developed and utilized a unique spinneret to facilitate this process [89–91]. Fibers with a
core–shell structure will be obtained by this setup and these coaxial fibers have a potential to be used
as pharmaceutical as well as other sensitive biological molecules carriers, and they are also capable of
protecting these biomedical substances from environmental parameters and controlling their release
mechanism [92]. Simultaneously, coaxial electro-spinning permits the single-stage co-encapsulation
of two or more therapeutic additives in various sections of the coaxial fibers, thus providing us
with a multiple or dual drug release system [64]. One of the most interesting advantages of coaxial
electro-spinning compared to the blend method is that the former uses two different media, hence
minimizing the interaction between the solutions and preserving the internal media, where the
sensitive biomolecules or pharmaceutical agents are chiefly distributed, from the environment [92].
Moreover, the core and shell polymer concentrations as well as the ratio of core/sheath solution flow
rates are the most significant factors in the coaxial electro-spinning method. Lower flow rates of
the inner solution have been designated as more promising for achieving a stable procedure [93].
Both core and shell parts of the fibers can be used for encapsulating therapeutic agents and a proper
selection of a drug–polymer–solvent system can significantly improve drug encapsulation efficiency
and yield a multiple time-step drug release system in which different drugs are released either
simultaneously or one at a time [94]. Another interesting technique involves the utilization of the
same core and shell solvent while dissolving the therapeutic agent only in the core solution [95]. In
this manner, the distribution of the agent near the fiber core will be restrained and, consequently, the
diffusion of the drug in the polymeric matrix will be postponed [94]. PEG/PVA core–shell fibers were
used for encapsulating salicylic acid while acetylsalicylic acid (ASA) loaded PCL was electro-spun
upon a cylindrical collector to obtain tubular scaffolds for sustained delivery of anti-platelet and
anti-inflammatory agents [96]. Maleknia et al. reported that the core–shell polyurethane (PU)/chitosan
(Cs) nano-fibers can be used as a potential platform for bioactive scaffolds in tissue engineering. In
coaxial electro-spinning, different syringe pumps and coaxial needles are used for the generation of
both the core, in which the bioactive constituents are generally encapsulated, and the shell that offers
protection and ensures the sustainable release of the loaded molecules [97]. In a study by Maleki et al.,
the capacity of coaxially electro-spun tetracycline hydrochloride-loaded PLGA core–shell nano-fibers
was compared with blend fibers (prepared by using the same materials) for sustained drug release [98].
Other researchers prepared wound dressing by using simvastatin, ciprofloxacin, and other drugs via
coaxial electro-spinning. Most researchers confirmed that the core–shell nanostructures exhibited
better results in terms of controlled drug release [92,99]. Coaxially electro-spun fibers were employed
for encapsulating sensitive growth factors (GFs) in the fiber core. According to the in vivo studies, the
GFs sustained release was authenticated via applying polyurethane core–shell fibers, which revealed
an activity very similar to that of the fresh GFs [100]. Coaxial electro-spinning has been also utilized
for incorporating platelets into the fibers to function as GF reservoirs [101]. Likewise, the loading
of nucleic acids with or without extra carriers including plasmids seemed to be created through
electro-spinning [102]. Synthetic nano-fibered polymer/DNA composite scaffolds composed mainly of
a poly (D,L-lactide)–poly (ethylene glycol) (PLA−PEG) block copolymer and poly(lactide-co-glycolide)
(PLGA) random copolymer were used for loading plasmid DNA. Their obtained results pointed out
that the DNA released immediately from these scaffolds has the ability of cell attachment and effectively
protects the protein b-galactosidase [103].

2.3. Emulsion Electro-Spinning

In emulsion electro-spinning, the drug aqueous protein solution is emulsified in a polymer
solution. Emulsion electro-spinning can be used to construct core–shell nano-fibers without requiring
a specific needle setup [104]. The technique involves chemical separation. An emulsion is created
within a single solution and consequently, as the solvent evaporates from the electro-spun fibers, the
emulsified droplets are organized into two separate phases [105]. Wang et al. produced biodegradable
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nano-fibrous polycaprolactone/hyaluronan-epidermal growth factor scaffolds by using emulsion
electro-spinning. In vitro examination of human skin keratinocytes (HaCaT) and fibroblasts on these
scaffolds exhibited a considerable influence of hyaluronan and epidermal growth factor (EGF) on cell
adhesion and growth. Additionally, their results indicated that an elevated reproduction of completely
functional skin appeared to be enhanced by the EFG-loaded PCL/hyaluronan scaffolds [106]. In a
study by Qi et al. [107], nano-fibers with beads-in-string structures via emulsion electro-spinning from
either water-in-oil (W/O) or oil-in-water (O/W) emulsion. Ca-alginate microspheres, that work as
reservoirs for hydrophilic drugs, were prepared in a reverse emulsion method and then incorporated
into PLLA fibers by electro-spinning. They encapsulated the bovine serum albumin (BSA) into the
microspheres and demonstrated that BSA was generated from nano-fibers with lengthy periods of
release pattern and less rapid release rates compared with the bare Ca-alginate microspheres [107]. Hu
et al. assessed the drug release behavior of small molecule drugs from nano-fibrous scaffolds produced
by emulsion electro-spinning of either metoprolol tartrate (MPT) or metformin hydrochloride (MH)
with poly (3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) or poly (ε-caprolactone) (PCL).
According to their results, PCL was demonstrated to be a better drug delivery carrier than PHBV, and
MPT-incorporated nano-fibers showed less burst release [108]. Yan et al. evaluated the incorporation
of Rhodamine B and BSA into nano-fibers by the emulsion electro-spinning method with controlled
drug delivery [109]. In other research projects, smooth core-sheath nano-fibers were fabricated via
electro-spinning a W/O emulsion with the aqueous phase consisting of water-soluble drugs solution in
water and the oily phase consisting of a chloroform solution of an amphiphilic PEG/PLLA diblock
copolymer [110]. Emulsion electro-spinning has been regarded as a promising approach for preparing
nano-fibrous materials/scaffolds for GF delivery [111,112].

2.4. Needleless Electro-Spinning

In this method, the polymer solution is kept in the tank and a uniform distribution is provided
on the electrode through rotation. An electrostatic field is employed for creating fibers without
implementing needles [113]. Maver et al. addressed the needleless electro-spinning of carboxymethyl
cellulose/polyethylene oxide (CMC/PEO)/plant extract blend aqueous solutions for the purpose of
fabricating a cellulose-based wound dressing material that would be appropriate for curing severe
wounds. The released study and cell viability tests indicated the promising potential of the product to
be used for wound care [114]. Jun-Jye Ng and Pitt Supaphol investigated the production of polymer
nano-fiber mats through needleless electro-spinning of poly (caprolactone) (PCL), poly (lactic acid)
(PLA), and poly (vinyl alcohol) (PVA) [115]. Wang et al. prepared large scale ultrafine chitosan
hybrid nano-fibers containing TiO2 and/or Ag nanoparticles by needleless electro-spinning and found
that the chitosan hybrid nanofibers showed excellent antibacterial activity. It has been reported that
nano-fibers from inorganic polymers have been successfully electro-spun by using mixed solutions
of a non-inorganic polymer and an inorganic polymer [116]. The needleless electro-spinning of
chitosan nano-fiber has been accomplished using a blend of chitosan with another polymer such as
poly (ethylene oxide) (PEO) [117]. The poly (vinyl alcohol) (PVA) and poly vinyl pyrrolidone (PVP)
were usually fabricated by needleless electro-spinning method [118,119]. In recent years, researchers
have paid more attention to needleless electro-spinning for obtaining antimicrobial wound dressings
through the use of antimicrobial inorganic agents like metal and metal oxide nanoparticles [119,120].
On the other hand, these inorganic agents have been reported to generate free radicals through their
antimicrobial mechanism, leading to their higher level of toxicity [121–125]. The electro-spinning
methodologies of different electrospinning methods (blend electro-spinning, coaxial electro-spinning,
emulsion electro-spinning and needleless electro-spinning) are shown in Figure 2 [75,92,104,126].
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3. Drug Delivery Systems Prepared by Electro-Spinning

A very significant feature of the drug delivery systems (DDSs) is that they might minimize
the operations frequency and have a constructive influence on the patient’s conformity [19]. Over
the past few years, the drug delivery systems based on electro-spun fibers have received increasing
attention due to the unique properties of the fibers [10]. Formulations for transdermal, oral, ocular, and
parenteral delivery have been developed by research teams [75,95,99]. GFs and proteins have been
successfully encapsulated in the blend and coaxially electro-spun nano-fibers, retaining their bioactivity
at the same time [127]. Core–shell fibers composed of PCL in the shell and BSA in the core have been
synthesized and by the incorporation of a secondary water-soluble polymer in the shell (PEG), the
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release kinetics of albumin could be vigorously controlled [128]. Diverse pharmacological agents
including analgesics, antibiotics, anti-oxidants, and anti-cancer drugs from natural products have
been encapsulated into electro-spun nano-fibers [3,11,19]. Mickova et al. fabricated liposome-loaded
core–shell nano-fibers (with PVA as the core and PCL as the shell) as a promising drug delivery system
with adequate maintenance of the enzymatic activity of horseradish peroxidase (HRP). Furthermore,
it has been reported that the scaffolds induced the mesenchymal stem cells (MSC) proliferation, making
them competent biomedical candidates for drug delivery [129]. Aiming to obtain better drug-polymer
compatibility and to improve the drug activity, Peng et al. suggested the use of a drug delivery
system based on a blend of polymers for the sustained release of paracetamol [130]. PCL/polyurethane
(PU) and PCL electro-spun nano-fibers were examined as ketoprofen carriers for local chemotherapy
and the results were promising [131]. Doxorubicin hydrochloride, an anti-cancer agent, was loaded
within PLLA nano-fibers [132]. Paclitaxel and doxorubicin encapsulated into PLA nano-fibers for
anti-cancer treatment exhibited different release profiles [19]. Multi-layered chitosan and hyaluronic
acid nano-fibrous scaffolds were employed for delivering paclitaxel, and they proved to be capable of
preventing the DU145 prostate cancer cells attachment and proliferation even at low doses [133]. As an
anti-coagulant and anti-proliferative pharmaceutical agent, dipyridamole has been used for treatment
of cardiovascular diseases [134]. Tubular scaffolds were prepared by electro-spinning biodegradable
polyurethane urea (BPU) fibers for the sustained release of dipyridamole [135]. Tensile strains and
strengths of the obtained scaffolds were comparable to human coronary artery and the release of
dipyridamole over 91 days could reduce human platelet deposition and extend human blood clotting
time, indicating that the dipyridamole-loaded BPU scaffolds have a potential to be used as acellular
biodegradable small diameter vascular grafts (SDVGs) for vascular replacement [136]. Similar results
were observed for the PCL-based coaxially electro-spun fibers for encapsulating dipyridamole fabricated
by our research team [135]. Although the utilization of a drug additive including dipyridamole might
be considered as lacking novelty, a deeper assessment of therapeutic developments would lead to
the inference that the most capable medicines might have already been discovered [137]. With a
meticulous design of a drug delivery system, the local delivery of drugs with reduced side effects
can enable the use of very powerful pharmaceutical agents that were either overlooked or left out of
clinical usage [138]. Ciprofloxacin hydrochloride-loaded electrospun polycarbonate urethane nanofiber
prepared for wound dressing showed prolonged drug release [139]. Eudragit L100-55 nano-fibers
incorporated with diclofenac sodium (DS) exhibited a pH-dependent drug generation pattern when
used for the constant release of the anti-inflammatory agent and presented a great possibility to be
employed as oral colon-targeted drug release systems [140]. In addition to drugs, vitamins have been
encapsulated within electro-spun nano-fibers as transdermal delivery carriers with increased agent
activity, and drug delivery systems for cancer treatment showed improved tumor suppression [141].
Furthermore, mechanical characteristics of the electro-spun nano-fibers were almost similar with
those of human skin and cartilage [142]. SiRNA, a bioactive macromolecule that has been used as a
therapeutic agent against genetic diseases, was encapsulated into polycaprolactone (PCL) nano-fibers
and displayed enhanced cellular uptake [143]. Finally, electro-spun nano-fibers have been scrutinized
as anti-HIV drug carriers for preventing HIV infection [144]. One method to protect against virus
diffusion is the utilization of microbicides that are capable of eradicating viruses and microbes by using
drug delivery systems [145]. Electro-spun c-Cbl-associated protein (CAP)-based nano-fibers loaded
with either tenofovir disoproxil fumarate or the reverse-transcriptase inhibitor TMC 125 (anti-HIV
agents) were produced and displayed appealing outcomes [146]. Due to their capability of dissolution
in basic environment, the CAP nano-fibers could regulate the drug release based on the pH of the
vaginal fluids. During sexual intercourse, human semen can raise the vaginal pH levels above 7, which
leads to the immediate dissolution of the CAP fibers. The combination of antimicrobial properties of
CAP with the anti-HIV drug agents could prevent HIV disease in vitro even in substantially minimal
doses [146].
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The possibilities of different kinds of electro-spun nano-fibers for DDSs to be employed in
prohibition, diagnosis and/or treatment seem to be unrestricted, provided that the many manufacturing
obstacles are removed and great clinical information is attained via extreme, great quality, and
extensive investigation collaborations are formed between pharmaceutical industry and academic
foundations within the area of scientific research [147,148]. Table 3 represents a summary of
some of the most important applications of the drugs encapsulated within electro-spun fibers as
DDSs [92,139,146,149–180].

Table 3. Summary of the drug delivery of different drugs and their biomedical applications.

Drug Polymer Electrospinning
Method Application Ref.

Ascorbylpalmitate PCL Blend Infection treatment [149]
Amoxicillin PCL; PLGA Blend Infection treatment [150,151]
Ampicillin PMMA/nylon; PCL Blend; Co-axial Infection treatment [152,153]
Berberine Collagen/ZN Blend Infection treatment [154]

Cilostazol PCL Blend Preventing coagulation of
blood [155]

Cefazolin Gel; PLGA Blend Infection treatment [156,157]
Cefoxitin PLGA/PEG-b-PLA Blend Infection treatment [158]

Ciprofloxacin PCNU; PGS/PHB Blend; Co-axial Infection treatment [92,139]

Captopril PLLA/PLCL/PLGA Blend
Preventing the

complications of high
blood pressure

[159]

Doxorubicin PEG/PLA Emulsion Cancer therapy [160]
Doxycycline Span 60; PCL; SLS Emulsion Infection treatment [161]
Fusidic acid PLGA Blend Infection treatment [162]
Gentamycin CS, PCL Blend; Co-axial Infection treatment [163,164]

Indomethacin ERS/ES Blend Reducing inflammation [165]
Ketoprofen PVP Blend Reducing inflammation [166]

Lidocaine PLLA Co-axial
Ventricular treatment
tachycardia and nerve

blocker
[167]

Mefoxin PDLA/PLLA;
PLGA Blend Infection treatment [158,168]

Metronidazole PCL Blend Infection treatment in
periodontal diseases [169]

Mupirocin PCL Blend Infection treatment [170]

Nifedipine PLGA Blend Prevent the complications
of high blood pressure [171]

Paclitaxel PLGA Blend Cancer therapy [172]
Rifampicin PLLA Blend Infection treatment [173]
Resveratrol PCL Blend Inflammation treatment [174]
Simvastatin PGS/PHB Co-axial Infection treatment [92]

Salicylic Acid CS/ZN Blend Infection treatment and
reducing inflammation [175]

Streptomycin PU/CA/Zein Blend Infection treatment [176]

Tetracycline
PCl/CA/Dextran;

PLA/PEVA;
PVA/CS

Blend Infection treatment [177–179]

Tenofovir PVA; CAP Blend; Needleless Treatment of viral
infections [146,180]

CAP: cellulose acetate phthalate; PHB: poly (hydroxybutyrate; PLLA: Poly (l-lactic acid); PEVA: poly
(ethylene-co-vinyl acetate; CA: Cellulose acetate; CS: Chitosan; PLCL: poly (lactic-co-E-caprolactone; ERS:Eudragit
RS100; ES: Eudragit S100; Gel: Gelatin; PCL: Polycaprolactone; PDLA: Poly-d-lactide; PEG: Poly (ethylene glycol);
PLA: Poly (lactic acid); SLS: sodium lauryl salt; PEUU: Poly (ester urethane) urea; PCNU: Polycarbonate urethane;
PLGA: Poly Lactic-co-Glycolic Acid; PGS: Poly (glycerol sebacate); PLLCL: Poly (llactic acid)-b-poly (-caprolactone);
PMMA: Poly (methyl methacrylate); PU: Polyurethane; PVA: Polyvinyl alcohol; PVP: Polyvinylpyrrolidone;
ZN: Zein.
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4. In Vivo Assessment of Electro-Spun Wound Dressing

Electro-spun nano-fibers are mainly fabricated in order to obtain a biomaterial to be used in in vivo
tissue regeneration [181,182]. Nonetheless, the first approach to understand the interaction between
the cells and substrate and also the materials biocompatibility involves in vitro models. Accordingly,
cell cultures are ideal for analyzing a particular cell type in certain circumstances [183]. Consequently,
the complexity of the numerous variables of in vivo investigations would be avoided [181,182]. In a
study by Ghosal et al., electro-spun nano scale fibers were fabricated by using various polymers and
also TiO2 composites for wound dressing and tissue engineering. They highlighted the significance
of incorporating titanium dioxide nano-particles within or on nano-fibrous scaffolds to impart
functional antimicrobial properties, and the relevance of polymer-titanium dioxide nano-composites
to wound dressing, drug delivery, and tissue engineering with an emphasis on in vivo biomedical
applications [184]. According to Sapru et al., the nonmulberry (Antheraea mylitta) silk protein
sericin-based nano-fibrous matrices prepared by electro-spinning displayed enhanced mechanical
strength and proper stability (i.e., more than four weeks) as is essential for tissue reconstruction.
The sericin-based nano-fibrous matrix also enhanced antibiotic (cephalexin hydrate) delivery [185].
Additionally, they added that antibiotic-loaded nano-fibrous mats accelerated wound healing with
negligible inflammation and without any symptoms of illness. The in vitro and in vivo experimentations
results, according to Sapru et al., indicate the clear prospect of the prepared nano-fibrous matrices for
skin tissue reconstruction [185]. In vivo studies of antibiotic-loaded nano-fibrous matrices presented
augmented wound healing with negligible signs of inflammation, regeneration of the lost epidermal
layer as well as hair follicles, and neovascularization [99]. Tseng et al. the studies bio-gradable poly
[lactic-co-glycol acid] (PLGA) nano-fibers for sustainable vancomycin delivery to the brain tissue
by using electro-spinning. Their results indicate the great possibilities of these polymeric fibers
to effectively address the issues of pharmacokinetics and also pharmacodynamics and to enhance
the effectiveness of the therapeutic products that are employed for cerebral infections [186]. By the
examination of the in vitro and in vivo release behaviors of pharmaceuticals through the membranes,
their experimental outcomes indicated that the high concentrations of vancomycin could be released
by bio-gradable nano-fibers pertaining to greater than eight weeks in the cerebral cavity of rats.
Additionally, better drug delivery could be achieved without causing negative adverse reactions in
the brain. Based on histological examinations, moreover, no inflammation response of the brain was
observed, indicating that bio-gradable nano-fibrous drug eluting membranes can be adopted for long
term deliveries of different antibiotics in the cerebral cavity [186]. Core–shell polyurethane fibers were
used for controlled release of growth factors and, according to in vivo studies, presented an activity
comparable to fresh GFs [187]. In another study, hyaluronic acid (HA) nano-fiber was electro-spun and a
sterilized HA nano-fiber wound dressing was prepared and compared with four other wound dressings.
The in vivo results indicated that the sterilized HA nano-fiber wound dressing was the greatest kind
of dressing among other types of dressings [188]. Over the last few years, electro-spun nano-fibers
have received the focal attention of many in vivo studies on biomedical applications including wound
dressing by different drugs. Electro-spun PVA with phenytoin sodium nano-fibers have been utilized
for wound healing purposes and the in vivo results indicated a 90% wound healing in two week [189].
Another researcher reported the PCL nano-fiber embedded with nano-silver in order to improve the
wound healing rate and based on the in vivo test results, infection was properly controlled [190]. The
PCL nano-fiber with carbon nano-dots (CND) showed in vivo wound recovery and full thickness
wound healing in 14 days [191]. PCL Europium hydroxide nano-rods (EHNs) displayed good wound
healing properties in the rat model [192]. PCL with ZnO showed 85% wound healing in in vivo
situations in 25 days [193]. In the case of CS/PEO nanofibers the 87% wound healing during 10 days
and CS/PEO/1wt% cefazolin nano-fibers shows 99% wound healing in the same days [194]. In another
in vivo test, the PLGA nano-fiber showed skin tissue regeneration [195]. The PCL/gelatin nano-fibers
contain in metronidazole (MNA) demonstrated an in vivo good result in 7 days [196]. PCL/gelatin
6-aminopenicillanic acid (APA) with gold nanoparticles is another electro-spun nano fiber with an
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outstanding wound healing capacity in in vivo conditions [197]. The polyurethane/keratin/AgNP
nanofiber also revealed good in vivo results in wound healing [198]. The in vivo wound healing
process: (a) Hemostasis stage (b) Inflammation stage (c) Proliferation stage (d) Remodeling stage by
electro-spinning wound dressing as shown in Figure 3 [199].Materials 2020, 13, x FOR PEER REVIEW 15 of 27 
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Figure 3. The in vivo wound healing process ((a) Hemostasis stage (b) Inflammation stage
(c) Proliferation stage (d) Remodeling stage) by electro-spinning wound dressing (adapted from
Farokhi et al. [199]).

5. Summary and Future Road Maps

Nowadays, nano-fiber technology advances permit the fabrication of nano-fibers from a wide
range of materials including natural and synthetic polymers [200–213], ceramics, metals, as well
as inorganic/inorganic or organic/inorganic composite systems [214–220]. A unique combination of
properties such as the conductivity of metallic dopants accompanied by the flexibility of polymers can
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be obtained by a combination of various materials. In this area, the use or incorporation of functional
nano-fibers will open new horizons of application for nano-fibrous materials. Presently, many attempts
have been made to enhance the nano-fibers properties by developing different fabrication methods.
Electro-spinning has the exceptional capability of generating nano-fibers by the use of different materials
in different fibrous assemblies. This method has been very interesting for academic and industrial
applications as it has a relatively simple setup and a high production rate. Several electrospinning
methods have been developed to overcome the main limitations of the standard electrospinning
method: low productivity (e.g., needleless electrospinning) and the requirement of organic solvents.
These new methods also add new functions, such as controlling nanofiber morphology, compositing,
electrospinning of low conductivity polymers and high molecular weight polymers [75].

In brief, electro-spun fibers are competent biomedical candidates, particularly for drug delivery
purposes. Electro-spinning is usually effortlessly tuned and employed in a commercial scale to
fabricate scaffolds and wound dressings pertaining to clinical purposes. Of course, there is still a lot to
understand regarding the features and the usages of the electro-spun nano-fibers. This technology
has been found promising in drug delivery and regenerative medicine. While antibiotic drugs and
inorganic antimicrobial agents are commonly used for controlling infections, they show more acute
side effects like cytotoxicity. Due to toxicity and harmful effects of the previous antibiotic medicines,
researchers have been trying to find new antimicrobial agents instead of the previous ones. On the other
hand, herbal medicine features antimicrobial and antioxidant antimicrobial activity and low price [221].
Herbal medicine can show positive effects on wound healing [222–224]. It is also worth noting that
herbal extracts have attracted wide attention, thanks to their affordable cost and minimal negative
effects compared to the antibiotic drugs. A blend of herbal extracts with electro-spun nano-fibers
is certainly appealing in the field of wound dressing. In particular, these compound extracts have
the ability to enhance the wound healing rate and to elevate skin regeneration. Moreover, they have
the capability of hydroxyproline formation, cell adhesion, and growth attachment. Therefore, the
electro-spun nano-fibers encapsulating herbal medicine have created a new interesting field in all
sciences due to their unique properties. These materials can be replaced by antibiotic drugs and
other antimicrobial agents like metal and metal oxide nanoparticles in electro-spun nano-fiber wound
dressing. The application of these drugs has already resulted in the development of new practical
productions. Considering the unquestionable role of bio-application in human life, these new fields in
biomedical industry are increasingly welcomed. However, designing a new affordable and applicable
system for large-scale production will not only open up a new field of study, but will also meet
expanding human needs.
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