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Creep failure in a threshold-activated dynamics:
Role of temperature during a subcritical loading
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Creep is a time-dependent deformation of solids at relatively low stresses, leading to the breakdown with
time. Here we propose a simple model for creep failure of disordered solids in which temperature and stress are
controllable. Despite its simplicity, this model can reproduce most experimental observations: Distribution of the
creep lifetime obeys the log-normal distribution, and the average creep lifetime decays in a scale-free manner
with the increasing stress. Finally, to characterize the failure abruptness, the average breakdown frequency is
introduced as an order parameter, which exhibits a series of jumps with varying temperature. Finite-size scaling
holds for these jumps, implying the existence of nonequilibrium transitions.
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I. INTRODUCTION

Failure point and the failure processes of disordered solids
and composite materials depend on temperature, pressure, and
driving conditions such as applied stress or strain rate [1].
Importantly, materials can deform and break with time, even if
the applied stress is below the critical value. This phenomenon
is known as creep failure or creep rupture. Study of creep
failure is essential in many contexts such as constructions,
in which the building blocks are subject to the load for a
considerable duration. The time elapsed until creep failure
is referred to as the creep lifetime. From a practical point
of view, estimate of creep lifetime leads to a forecast of the
catastrophic failure event and is therefore important in materi-
als science. The creep lifetime depends on many ingredients,
among which applied stress and temperature have prominent
effects [2].

Since the physical mechanisms behind creep may be the
accumulation of plastic strain and damage, models for creep
should take such aging processes into account. Structural
randomness and heterogeneity should be also considered ap-
propriately. However, the fracture of heterogeneous solids is
hard to handle with the elasticity theory, and therefore there
have been some alternative approaches. A pioneering work by
Main [3] is based on the subcritical crack growth dynamics
and the phenomenological Voight’s model for precursory
strain [4]. Assuming a heterogeneous feedback system, the
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model can reproduce the time-dependent strain rate observed
in experiments.

More recently, another approach has obtained popularity,
making use of a simple and intuitive model for disordered
solids known as the fiber bundle model (FBM) [5]. The
original model is purely mechanical [6,7] and does not contain
any effect of temperature. Nevertheless, the model can exhibit
creeplike behaviors by interpreting the stress redistribution
time step as the real time [8,9]. However, due to the absence
of thermal effects, these creeplike behaviors can be observed
only in the proximity of the critical stress. Thus, if we wish
to propose a model for creep, thermal effects should be
incorporated appropriately.

In the literature of FBM, the effect of temperature has
been modeled in three different manners: (i) the applied
stress fluctuates, (ii) fibers have plasticity, and (iii) the failure
criterion for a single fiber is probabilistic. The first approach
is quite simple but appears to be successful in explaining
the time-dependent strain rate as well as the temperature
and the stress (or strain) dependencies in the creep lifetime
[10–14]. The fluctuating stress approach is also applicable to
some other purposes [15,16]. In the second approach, fibers
are not completely elastic but possess complex rheological
properties. For instance, the time evolution equation for the
strain of each fiber is introduced based on the Kelvin-Voigt
rheology [17,18] or a nonlocal rheology [19]. The model
behavior may somewhat depend on the specific rheology [20].
One can also consider damage rheology for each fiber [21].
These models may be categorized into the second approach,
and they can reproduce time-dependent strain rate as well as
the temperature and the stress dependences of creep lifetime.
Naturally, the results may depend on the specific assumptions
on the rheological properties of fibers.

The third approach, in which the failure rate of fibers
depends on temperature, may be less common but possesses
remarkable simplicity. The present study is classified into
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this category. In the literature, we are aware of two relevant
studies [22,23]. They adopt as the failure rate some probability
functions that are similar to the Arrhenius factor, but the creep
behaviors are not thoroughly investigated. Here we adopt a
similar yet simpler function for the failure rate, thus bringing
thermal fluctuations into the model in addition to the time-
independent (i.e., quenched) randomness. Interplay between
the two kinds of randomness yields nontrivial time-dependent
behaviors. We have numerically studied the model focusing
on the effects of temperature and applied stress on the creep
behaviors: statistics of the creep lifetime and the avalanche
statistics. In the next section, we provide a detailed description
of the conventional fiber bundle model along with the modifi-
cations we have made for the present work. This is followed
by the numerical results together with some brief comments
and discussions on the future scope as a continuation of the
present observations.

II. DESCRIPTION OF THE MODEL

The model consists of L vertical fibers in between two
parallel bars. A load F is applied to the bars to create a stress
σ = F/L per fiber. Each fiber has an individual strength cho-
sen from a threshold distribution randomly. This heterogene-
ity in the strength may be regarded as a quenched randomness
in the model, and the dispersion of threshold distribution
measures the extent of disorder in the model. When the
applied stress exceeds a threshold value, the corresponding
fiber breaks irreversibly and the load borne by that fiber is
redistributed within the model, either among all the surviving
fibers (mean-field model) or among the surviving nearest
neighbors only (local stress concentration). Due to such re-
distribution, the local stress values of some fibers increase,
and that can lead to further breaking and redistribution. This
is an avalanche. After a certain number of avalanches, the
model breaks completely or relaxes to a stable state with
nonzero surviving fibers. In the latter case, the external load
F needs to increase to break the next weakest fiber, leading to
further avalanches. This process continues until all the fibers
are broken. The applied load just before the global failure is
referred to as the critical load Fc.

Here we adopt the mean-field model for stress redistribu-
tion. To incorporate the effect of temperature in creep, we
introduce a probabilistic failure criterion for a single fiber,
namely, the probability of the ith fiber to break at time t is
given by

Pr (t, i) = P′ exp

[
σ (t, i) − σth(i)

T

]
. (1)

Here σ (t, i) and σth(i) are, respectively, the local stress and the
stress threshold of the ith fiber at time t , and P′ is a constant
chosen to be unity hereafter. With this criterion, any fibers
can rupture even if the local stress is less than its threshold
value. If σ (t, i) � σth(i), Pr reaches unity and the fibers break
with probability 1. Note that Eq. (1) is just an Arrhenius factor
and is similar to those adopted previously [22,23], but yet it is
slightly different. This model reduces to a conventional one
[8] in the limit of T → 0, in which a fiber can break only
when σ (i) � σth(i).

The time evolution of the system is as follows. At t = 0,
the load is applied to the system, leading to a nonzero fracture
probability of Pr (0, i). This Pr (0, i) is then compared with
a random number P∗(0, i) generated uniformly within the
interval of [0,1]. If Pr (0, i) > P∗(0, i), the ith fiber breaks
irreversibly and the borne load is redistributed among all other
surviving fibers in equal amount. From this point, the broken
fiber remains broken and does not contribute to the dynamics.
At the next time step (t = 1), different rupture probabilities
are calculated for the intact fibers based on the new local
stress profiles σ (1, i). The model keeps evolving at each time
by comparing the two probabilities, Pr (t, i) and P∗(t, i). The
present authors adopt essentially the same time evolution rule
in a fiber bundle model with a deterministic rupture rule
(i.e., at T = 0) and find creeplike time evolution [8]. Here we
extend this model to investigate the effect of stochasticity, the
amplitude of which may be proportional to temperature.

Equation (1) suggests that Pr increases with temperature T
and the local stress σ (t, i). Then the nature of breakdown of
the system will be determined by the interplay between the
local stress profile, the individual strength of the fibers, and
the temperature. In the present study we concentrate on the
mean-field model in which σ (t, i) are uniform (independent
of i) as a result of democratic load redistribution.

The stress threshold of each fiber, σth(i), is a random
quantity to be sampled from a certain probability distribution,
ρ(σth ). Unless otherwise indicated, we adopt a uniform distri-
bution with the mean of 1/2 and the half-width of δ:

ρ(σth ) =
{

1/2δ, (1/2 − δ < σth < 1/2 + δ)
0 (otherwise). (2)

III. NUMERICAL RESULTS

Numerical results are produced for the mean-field model
with system sizes ranging between 103 and 105. To compute
average values of physical quantities such as creep lifetime,
104−105 configurations are sampled at each system size. Here
we have mainly studied the behavior of creep lifetime as
temperature, applied stress, and extent of disorder is tuned.
Additionally, a series of dynamical transitions observed dur-
ing the creep failure will be discussed in detail.

A. Distribution of creep lifetime

In this section we discuss the distributions of creep lifetime
in the parameter space of σ -T to understand whether any
extreme statistics is associated with it. Hereafter the creep
lifetime is denoted as τc, which varies from sample to sample.
To compute the distributions of creep lifetime, 105 samples are
computed for the system size of 103. Figure 1 shows that the
peak of the distribution shifts to lower values as either of the
parameters, temperature or applied stress, is increased. This
happens as the probability of rupture increases with increasing
σ or T . A simultaneous increment in both parameters shifts
the peak even faster.

The distribution of creep lifetime develops a tail, suggest-
ing the existence of extreme statistics. As shown in Figs. 2(a)
and 2(d), a closer look at the distribution functions reveals
that they are well fitted with the log-normal distribution given
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FIG. 1. Distribution of creep lifetime for several parameter val-
ues of (σ, T ). The average of the distribution shifts to lower value if
either σ or T increases. δ is kept constant at 0.5.

below:

P(τc) = 1

τcv
√

2π
exp

[
− (ln τc − μ)2

2v2

]
, (3)

where v is the variance and μ is the mean of log τc. The values
of (μ, v) are shown in the legends of individual panels of
Figs. 2(a) and 2(d). They depend on the applied stress and the
temperature as shown in Figs. 2(b), 2(c), 2(e), and 2(f). We
observe that the mean value decreases gradually as either the
temperature or the applied stress increases. On the other hand,
the variance is insensitive to the applied stress but decreases
with increasing temperature.

The lifetime distributions are also compared with the three-
parameter Weibull distribution, which looks very similar to
the log-normal distribution but still can be discriminated [24].
The comparison is shown in Fig. 2(g) for T = 0.08 and σ =
0.14. Apparently, the log-normal distribution fits the simu-
lation result better, particularly at the tails. The distribution
remains the same at any temperature and stress, as well as
in the limit T → 0 [9] (and hence applied stress � critical
stress), where the fluctuation in creep time arises from the
fluctuation of critical stress for different configurations.

At a constant temperature and varying applied stress, we
observe the following scaling:

P(τc) � σβ�(τcσ
β ), (4)

with β = 4.0. The scaling is demonstrated in Fig. 3(a) for dif-
ferent applied stress but at a constant temperature T = 0.08.
The inset of the same figure shows the unscaled behavior.
The above scaling also tells that, at constant temperature T ,
the average lifetime decreases with the applied stress in a
scale-free manner with a temperature-dependent exponent, β:

〈τc〉 ∼ σ−β(T ). (5)

The behavior is examined numerically and shown in Fig. 3(b).
The exponent β is a decreasing function of temperature. This
is understandable since the probability at high temperature is
high enough to create abrupt failure independent of how much
stress is applied on the bundle. In this limit, the creep time will
be very small, and the affect of applied stress on creep time
will be absent.

B. Transitions in abruptness

In this section, we have studied the abruptness of failure.
Denoting the number of unbroken fibers at time t as Lt , we
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FIG. 2. (a) Distribution of creep lifetime at applied stress σ = 0.14 and temperature T = 0.08, 0.1, and 0.12. The mean and the variance
of log τc depend on temperature T as shown in (b) and (c), respectively. (d) Distribution of creep lifetime at temperature T = 0.08 and applied
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FIG. 3. (a) At a constant T (= 0.08), as we vary the applied stress
σ we observe the following scaling: σ−βP(τc ) ∼ �(τcσ

β ), where
β = 4.0. The inset shows the unscaled behavior. (b) Variation of
average creep lifetime 〈τc〉 with applied stress for three different
temperatures. We keep δ fixed at 0.5.

define the decreasing rate of fibers as s(t ) = Lt − Lt+1. Then
the time average of s(t ) is computed for each sample from
t = 0 to the time of creep failure, τc. This time-averaged
value of s(t ) is denoted by s. For instance, s = L if τc = 1,
and s = L/2 if τc = 2, and so forth. (Here L = L0.) Indeed,
one can easily confirm that s = L/τc. Larger s thus implies
that the breakdown is more abrupt. Since this s varies from
sample to sample, the ensemble average, which is denoted
by 〈s〉, is taken over 104 configurations. Note that 〈s〉/L =
〈τ−1

c 〉. This is interpreted as the average breakdown rate,
and we regard this quantity as an order parameter for the
abruptness.

Figure 4 shows the behavior of 〈s〉/L. The applied stress
σ is varied from 0.1 to 0.4, while the extent of disorder
δ ranges between 0.1 and 0.3. At high temperatures, the
total bundle breaks in a single time step, i.e., 〈s〉/L = 1. As
temperature decreases, 〈s〉/L decreases abruptly at a certain
temperature, and then similar drops occur repeatedly with
smaller amplitudes. Specifically, the first jump is from 1 to
1/2, and the second jump is from 1/2 to 1/3, and so on. The
height of the nth jump, denoted by 	hn, is

	hn � 1

n(n + 1)
. (6)

This is understandable if one recalls that 〈s〉/L = 〈τc〉 and
that τc increases from n to n + 1 for the nth jump. Figure 4
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FIG. 4. The average breakdown rate 〈s〉/L is shown as a function
of temperature at several values for the extent of disorder (horizon-
tally) and external stress (vertically). The behavior is characterized
by several discontinuous jumps. The number and the temperatures of
these jumps depend on the stress σ , while the extent of disorder δ

affects the temperatures only.

also shows that the jump height increases with stress σ . For
example, there are a number of jumps with decreasing jump
heights for σ = 0.1, whereas for σ = 0.4 there is a single
jump from 1 to 1/2. This is because the system ruptures
within only one or two time steps after a few large avalanches.
This behavior remains almost unaltered with increasing
the extent of disorder, whereas the jump temperatures are
affected.

To study these jumps more closely, we have carried out the
finite-size scaling. Figure 5 shows the behavior of 〈s〉/L at
several system sizes ranging from L = 5×102 to 5×104. The
scaling form is given as follows:

〈s〉/L ∼ 

[(

T − T c
n

)
Lα

]
, (7)
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δ = 0.5. The inset shows the system size scaling for the first jump,
〈s〉/L ∼ 
[(T − T c

1 )Lα], where α = 0.45 and T c
1 = 2.12.
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where T c
n is the temperature at the nth jump, and the exponent

α is a constant. The inset of Fig. 5 shows the finite-size scaling
for n = 1 with T c

1 = 2.12, where the scaling exponent α is
approximately 0.45. This value is irrespective of the stress σ

and the extent of disorder δ, as shown in the insets of Fig. 6.
Here the exponent is estimated for the first jump (n = 1), but
we confirm that this behavior is also independent of the jump
number n.

The jump temperatures T c
n and the interval between two

consecutive jumps, T c
n+1 − T c

n , decrease with n. Figure 6
shows the variation of T c

n with n for different values of stress
σ (panel a) and the extent of disorder δ (panel b). Both panels
indicate the decrease in T c

n with n in a power-law fashion. The
exponent depends on the stress and the extent of disorder. The
transition temperatures T c

n decrease with increasing applied
stress, while they increase with the extent of disorder.

Figure 7 shows the variation of T c
1 and T c

2 with the applied
stress σ and the extent of disorder δ. The two planes corre-
spond to the first (T c

1 ) and second (T c
2 ) transitions, respec-

tively. The region above the first (n = 1) plane corresponds to
the instantaneous failure when the system breaks in a single
time step, resulting in the smallest creep lifetime (τc = 1). In
this region, the distribution of τc is a δ function at 1.
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FIG. 7. Variation of the critical temperature T c
n with the applied

stress σ and the extent of disorder δ. The variation is shown for the
first (n = 1) and second (n = 2) transition.

IV. UNIVERSALITY

We have carried out numerical simulations using the uni-
form threshold distribution for fiber strength. To see the
robustness of the results, two other functions are adopted
as the threshold distribution: a Gaussian distribution and
a power-law distribution. The exponent for the power-law
distribution is −1 and spans the range of [10−η, 10η], with η

representing the extent of the disorder. We have confirmed that
the results are mostly independent of the choice of threshold
distributions. See Appendix for further details.

V. DISCUSSION

In the present work, the effect of temperature in creep
failure is probed by a fiber bundle model with a probabilistic
algorithm. As a result of the stochasticity, the model can fail
even if the applied stress is below the critical value when
T > 0. The dynamical properties of the model, including the
exponents for power-law behaviors, are comparable to those
of real materials. The model exhibits a large scatter in the
creep lifetime, which can be described by a log-normal dis-
tribution with the temperature-dependent mean and variance.
The mean lifetime depends on the applied stress in a scale-free
manner.

For practical purposes, the average lifetime alone does not
provide us with sufficient information on creep failure since
the lifetime distribution is skewed [25]. Both the log-normal
and the Weibull distributions are observed for the lifetime of
some alloys [26,27]. The Weibull distribution was also found
for STS304 stainless steel [28]. In our study, the creep lifetime
distribution is fitted more convincingly with the log-normal
distribution than the Weibull distribution. Another major dif-
ference is, in our case the Weibull distribution contains three
parameters, while the above experimental creep lifetimes are
fitted well with the two-parameter Weibull distribution. In
addition, the stress dependence of the lifetime in our model
agrees well with experimental behaviors [29–31]. In [29], the
authors showed a scale-free decrease of creep lifetime for
a MarBN steel variant at elevated temperatures. Similar to
our numerical results, the exponent of the power law was
observed to decrease (from 19.77 to 13.02) as the temperature
is increased (625–675 K). Reference [30] explored the power-
law behavior of applied stress with creep time for Grade
22 gold and observed a nice fitting there. The power-law
exponent here also follows an increasing trend with decreas-

023104-5



SUBHADEEP ROY AND TAKAHIRO HATANO PHYSICAL REVIEW RESEARCH 2, 023104 (2020)

10-5

10-4

10-3

10-2

 0  100  200  300

T=0.08
σ=0.14

(b)

μ=4.83
v=0.23

P
(τ

c)

τc

10-5

10-4

10-3

10-2

 0  200  400  600

T=0.08
σ=0.14

(a)

μ=5.25
v=0.34

P
(τ

c)

τc

FIG. 8. Distribution of the creep lifetime is fitted with the log-
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(b) Gaussian, respectively.

ing temperature (goes from 4 to 16 when temperature is
increased from 723 to 923 K). The same has been done
for various kinds of steels in [31]. Apart from engineering,
the stress dependence, discussed above, is also observed in
medical science during the failure of human achilles tendons
under creep and cyclic loading [32]. In addition to the stress
dependence, an exponential increase in creep lifetime has
been observed in Refs. [30] and [31] with temperature. Such
increments with temperature have already been observed in
fiber bundle creep lifetime in an early study [22]. Overall, the
present numerical results are mostly consistent with experi-
mental results on materials [25–29].

We have also observed many jumps in the average break-
down frequency, 〈s〉/L. Since these jumps obey a finite-size
scaling, they may be an analog of phase transitions. However,
the average breakdown frequency involves the dynamic prop-
erty (i.e., breakdown) and therefore a nonequilibrium quantity.
Thus, these jumps may be nonequilibrium phase transitions
or dynamical transitions, to which the conventional theory for
phase transitions does not apply. The correlation length is also
an important quantity from the viewpoint of phase transitions;
we cannot define any length scale here as there are no spatial
degrees of freedom. To this end, we need to analyze the local
stress redistribution model.

Understanding of creep behavior is a fundamental problem
in materials science and engineering. Prior knowledge on the
creep lifetime for a particular material reduces the threat of
sudden catastrophic failure and increases predictability in the
failure process. At the same time, sufficient knowledge of
creep dynamics makes us aware if the system is approaching
the global failure. In this paper, we have presented a detailed
study of the creep dynamics in a disordered system. Our next
step is to explore the model with other modifications, such
as the inclusion of stress concentration around a broken fiber.
Application of time-dependent loading allows us to explore
the possibility of fatigue within the model.

APPENDIX A: OTHER THRESHOLD DISTRIBUTIONS

To check the robustness of our numerical result, we have
repeated some of the numerical results with other distribu-
tions. For this purpose, we have adopted two different distri-
butions:

(i) A power-law distribution ranging from 10−η to 10η:

ρ(σth ) =
{
σ−1

th , (10−η < σth < 10η )
0 (otherwise).

(A1)

(ii) A Gaussian distribution around a mean μg = 0.5 and
variance vg = 0.5:

ρ(σth ) = 1√
2πv2

g

exp

[
− (σth − μg)2

2v2
g

]
. (A2)

For the power-law distribution, η measures the extent of
disorder. On the other hand, the amount of disorder for the
Gaussian distribution is determined by μg and vg. For all the
numerical results, shown below, we have kept these parame-
ters fixed at η = 0.3, μg = 0.5, and vg = 0.5, respectively.

The distribution of the creep lifetime is fitted with the
log-normal distribution for both the threshold distributions
[see Figs. 8(a) and 8(b), respectively]. We have also studied
the stress dependence of the average creep lifetime at several
values of temperatures: 0.06, 0.08, and 0.1. We retain the
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FIG. 9. Variation of average creep lifetime 〈τc〉 with applied stress for three different temperatures: T = 0.06, 0.08, and 0.1. The extent of
disorder for (a) power-law and (b) Gaussian distribution is kept constant.
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FIG. 10. Variation of average avalanche size 〈s〉/L with increasing temperature T at applied stress σ = 0.15 and a certain degree of disorder
for (a) power-law and (b) Gaussian distribution. The inset shows the system size scaling: 〈s〉/L ∼ 
[(T − T c

1 )Lα].

power-law behaviors,

〈τc〉 ∼ σ−β(T ), (A3)

where the exponent β is a decreasing function of the temper-
ature in both cases. See Figs. 9(a) and 9(b).

Figures 10(a) and 10(b) show the dynamical transitions as-
sociated with the abruptness during the failure for power-law
and Gaussian distribution, respectively. We observe that the
average size of avalanches exhibits a number of transitions by
varying the temperature. Thus, the transitions are not affected
by the choice of threshold distribution, at least for the uniform,

power-law, and Gaussian distributions:

〈s〉/L ∼ 

[(

T − T c
n

)
Lα

]
. (A4)

We observe α = 0.41 for power-law and 0.1 for the Gaus-
sian distribution. The transition temperatures (T c values) are
expected to have higher values here, as there will be some
fibers of very high threshold values (though with smaller
probabilities) and the temperature has to be higher to achieve
instantaneous failure. Here, the temperature corresponding
to first transition is observed to be T c

1 = 12 and T c
1 = 8,

respectively.
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