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Abstract: Together with the enhancement of the load-bearing implant process for bone substitution
and reproduction, an increasing requirement was observed concerning biodegradable magnesium
and its alloys with lighter density and outstanding characteristics. Regardless of the current great
potential of Mg utilization currently, the broader use of Mg alloys continues to be constrained by
several natural causes, such as low resistance of corrosion, inadequate mechanical integrity during
the healing process, and poor antibacterial performance. In this perspective, Mg-based composite
encapsulated within graphene family nanomaterials (GFNs) such as graphene (Gr), graphene oxide
(GO), graphene nanoplatelets (GNPs), and reduced graphene oxide (rGO) as reinforcement agents
present great antibacterial activity, as well as cellular response and depicted numerous benefits
for biomedical use. Magnesium matrix nanocomposites reinforced with GFNs possess enhanced
mechanical properties and high corrosion resistance (low concentration graphene). It is worth noting
that numerous elements including the production technique of the Mg-based composite containing
GFNs and the size, distribution, and amounts of GFNs in the Mg-based matrix have a crucial role in
their properties and applications. Then, the antibacterial mechanisms of GFN-based composite are
briefly described. Subsequently, the antibacterial and strengthening mechanisms of GFN-embedded
Mg-based composites are briefly described. This review article is designed to wrap up and explore the
most pertinent research performed in the direction of Mg-based composites encapsulated within GFNs.
Feasible upcoming investigation directions in the field of GFN-embedded Mg-based composites are
discussed in detail.

Keywords: magnesium; graphene; composite; fabrication process; biological characteristics;
mechanical properties; corrosion behavior

1. Introduction

The requirement for impressive metallic biomaterials for synthetic implants is mounting
continuously and is anticipated to increase to meet the requirements of consumers with bone injuries
and deterioration resulting from accidents, sports-related accidental injuries, or the typical course of
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aging, which generally require biomaterial implants to recover functionality [1]. Numerous studies
were carried out on biodegradable implants, referred to as “smart” implants, in recent years. The
primary benefit of biodegradable implants is their degradation characteristic in the simulated body fluid
(SBF) solution [2]. The most effective choice provided by this kind of material is that non-degradable
implants might be employed in one clinical procedure, and when the devices turn out to be ineffective,
they could possibly totally disappear [3,4]. One of the drawbacks of this kind of a treatment is that as
soon as the tissue is sufficiently treated, an additional operative treatment pertaining to eliminating the
implant ought to be carried out; however, biodegradable implants tend not to need this operation [3,5].
Consequently, issues (such as permanent endothelial dysfunction, long-term physical discomfort,
and persistent inflammatory local responses) resulting from non-degradable implants tend to be
diminished or vanish [2,6]. Biodegradable implants possess the capability to offer short-term support
throughout the healing process to totally substitute a diseased structure of the entire body [7–10].
Recently, attention toward establishing temporary support implants including cardiovascular stents
and orthopedic products has increased dramatically [9,11]. In this connection, polymers are exceptional
in the current medical industry, and Mg-based, Fe-based, and Zn-based alloys possess greater capability
as biodegradable materials pertaining to load-bearing purposes due to the fact that they concurrently
possess strength and ductility in comparison with polymers [12,13]. Biodegradable polymers including
poly-glycolic acid and poly-lactic acid are typically employed as biodegradable implant materials.
The weak mechanical strength of these kinds of polymers considerably lessens their load-bearing
and tissue-assisting abilities [14,15]. Commonly, degradable biomaterials need to possess adequate
strength, a matching degradation rate with tissue healing rate, and great biocompatibility. The elastic
modulus of magnesium (41–45 GPa) in contrast to iron (211.4 GPa) or zinc (90 GPa) is more comparable
to natural bone (3–20 GPa) [16]. When the elastic moduli are mismatched, the implant bears a
considerably greater part of the load, which results in stress shielding of the bone [3,16]. Furthermore,
Mg engages effectively in the bone mineral surface response, which leads to bone proliferation and
reconstruction [4,17]. Furthermore, Mg exhibits great biocompatibility along with biodegradability for
implant purposes, which causes the elimination of an additional operation to remove the implant [18].
Nevertheless, Mg-based alloys are generally not extensively employed due to their inferior corrosion
resistance as a result of their high reactivity. Hence, considerably more consideration ought to be paid
to the corrosion resistance of magnesium, which is a crucial concern [3,13]. The need pertaining to
lightweight and high-strength materials has resulted in the establishment of metal matrix composites
(MMCs) [9,19].

The size of reinforcing agents seems to have a significant influence on the mechanical characteristics
of fabricated composites. Regarding the composites incorporated with ceramic reinforcing agents, both
the tensile strength and ductility reduce with the increasing particle size of reinforcing agents [20]. The
mechanical properties of MMCs might be furthermore amplified by lessening the size of reinforcing
agents from the micro- to nano-meter scale, creating the “nanocomposite” specimens [21–26]. With
the introduction and rapid growth of nanotechnology, numerous kinds of nanocrystalline materials
have already been created [27]. The implementation of nanotechnology in materials science and
engineering creates new possibilities and study paths pertaining to the production of new metal matrix
nanocomposites (MMNCs) [28]. Nanomaterials with distinctive properties present excellent prospects
for use as the reinforcing materials of metals [27].

Nano-sized reinforcement agents present great possibilities to improve the mechanical
characteristics of metal matrices according to the Orowan equation and load-transfer strengthening
mechanisms [29,30]. Currently, carbonaceous nanomaterials such as graphene and carbon nanotubes
(CNTs) appear as essential types of novel materials for structural engineering and practical product
applications as a result of their remarkable mechanical characteristics along with outstanding electrical
and thermal properties. Associated with numerous nano-additive phases (reinforcements), graphene,
an innovative two-dimensional (2D) material, has captured the consideration of researchers because it is
characterized as a single atomic layer of sp2 bonded carbon atoms [12]. Single layer or few layer GNPs



Metals 2020, 10, 1002 3 of 41

elevate the ductility of metal matrices as they demonstrate outstanding mechanical characteristics and
have a lower inclination to agglomerate in comparison with other carbon nanomaterials including
CNTs and ball-shaped fullerenes [22,23]. Graphene has distinctive characteristics that allow it to
be more useful. First of all, it has substantial stability in chemical and thermal circumstances [31].
Subsequently, an intuitive penetration barrier among the protected metal and reactants might be
created through the surfaces of the sp2 carbon allotropes [32,33]. It was likewise revealed [34] that the
bacterial cytotoxicity of GFNs could be assigned to both membrane and oxidative stress. The GFNs
are inclined to trigger cellular deposition, since it is more probable to interact with bacterial cells as a
result of its greater density of functional groups (FGs) and small size [35]. The GFN nanosheets may
destroy the cell caused by stress induction of its membrane layer, which results in interrupting and
destroying the cell walls [34]. Consequently, it is crucial to evaluate the latest studies in these fields and
sum up their results. Figure 1 [31] depicts a schematic regarding some applications of GFNs including
biosensors, phototherapy, tissue engineering (TE), gene and drug delivery, and the formation of coating
layers on metallic implants. In this review article, we summarize the mechanical, corrosion, and
biological characteristics of recent studies regarding Mg-based matrix composites containing GNPs.
We additionally offer our points of views on the forthcoming fabrication methods and development of
Mg-based matrix composites containing GFNs pertaining to biodegradable implant purposes.
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Figure 1. Schematic representation of some of the application of graphene family nanomaterials (GFNs)
reproduced from [31], with permission Elsevier, 2019.

2. Development of Mg-Based Biodegradable Metals

Magnesium and its alloys tend to be extremely lightweight metals with density varying from 1.74
to 2.0 g/cm3, which is certainly lower in comparison with the non-degradable Ti alloy (4.4–4.5 g/cm3)
and almost similar to bone (1.8–2.1 g/cm3) [14]. The fracture toughness of magnesium is more significant
in comparison with ceramic-based components, although the elastic modulus (41–45 GPa) is similar
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to bone, a fact that reduces the risk for stress shielding occurrence. Mg is fundamental to human
metabolism and is a plentiful cation in the body system, with approximately 25 g Mg saved in the
body system and roughly a part of the total content saved in bone tissue. Mg is likewise a cofactor for
numerous enzymes and stabilizes the structures of DNA and RNA [14,36]. Magnesium is a kind of
active metal with high corrosion potential (−2.37 V), and pristine magnesium metal reveals actually a
lower anticorrosion property in the SBF solution with Cl− [37]. To address this issue and extended
the applications of Mg-based alloys, several approaches have been considered including alloying,
heat treatment and cold/hot working, powder metallurgy (PM), and surface treatment. Among these,
Mg-based composites fabricated with the PM method present versatile mechanical and anticorrosion
characteristics attained via the choice of the range of the reinforcement phase.

In this context, Mg and its alloys have been examined as implant materials for several human
trials since 1878, which continue to be reviewed by Witte [38] in terms of their historical background.
Nevertheless, industrial implant products are not really accessible on the medical market. The historical
background concerning clinical examination of Mg-based orthopedic devices since 1900 is shown
in Figure 2 [39]. Up to 1980, Mg-based materials were typically priced too high to manufacture; a
feasible fabrication process and the resulting mechanical characteristics were restricted; and numerous
unsettled issues in connection with the high corrosion rate remain. It is shocking that in the previous
decades, no clinical trial report was found regarding Mg pertaining to implant applications [30,39].
Currently, there is a new anticipation pertaining to a wide range of novel technologies regarding Mg
alloys’ utilization in mass production. There is certainly a demand for a novel class of biomaterials
for revolutionary implants and tissue scaffolds that should be in a position to promote the healing
rate of damaged tissues at the molecular level [40–44]. In numerous situations, the body requires an
implant merely for short-term applications, wherein materials presenting a biodegradable behavior are
considered a better strategy compared to stable and inert ones. The perfect biodegradable material, for
instance in bone reproduction methods (polymer, ceramic, metal, or composite), has to offer sufficient
mechanical fixation, full degradation at the time when it is no longer required, and total substitution
by fresh bone tissue [44].
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3. Mg-Based Biocomposites and Bio-Alloys

Mg-based bio-alloys are considered to degrade throughout the body system at a suitable
degradation rate; however, they likewise possess the issue of a rapid degradation rate throughout
tissue regeneration, which restricts their use for clinical purposes [45]. Mg-based alloys likewise are
considered as a great option in the areas of tissue engineering, orthopedics, and cardiovascular stents
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as a result of their appropriate mechanical characteristic, cytocompatibility, and suitable corrosion
rate [46]. The biocompatibility of a metallic biomaterial is its capability to function with an appropriate
host reaction throughout its designed clinical utilization in a body system. The interaction between
host tissue, the performance of the metallic implant, and its material characteristics regulate the
biocompatibility of an implant, as demonstrated in Figure 3 [47]. The biological reaction of this kind
of implant might alter with any specific post-implantation modifications in the host tissue. These
biological reactions rely on the chemical and physical characteristics of an implant, the kinds and
regions of host tissues that are subjected to an implant, the length of the exposure, the implant’s surface
characteristics, structure, and forces employed on synthetic implant, and the physical performance for
which the particular metallic implants was initially chosen [47].

Metals 2020, 10, 1002 5 of 40 

 

appropriate host reaction throughout its designed clinical utilization in a body system. The 
interaction between host tissue, the performance of the metallic implant, and its material 
characteristics regulate the biocompatibility of an implant, as demonstrated in Figure 3 [47]. The 
biological reaction of this kind of implant might alter with any specific post-implantation 
modifications in the host tissue. These biological reactions rely on the chemical and physical 
characteristics of an implant, the kinds and regions of host tissues that are subjected to an implant, 
the length of the exposure, the implant’s surface characteristics, structure, and forces employed on 
synthetic implant, and the physical performance for which the particular metallic implants was 
initially chosen [47]. 

 

Figure 3. Characteristics of metallic materials regulating the cellular response of an artificial implant 
reproduced from [47], with permission from Wiley, 2019. 

Despite the fact that Mg-based bioalloys have considerable properties, it is still required to 
enhance the mechanical characteristics to maintain their strength throughout the incubation period. 
Magnesium possesses a hexagonal close packed (HCP) structure, which has a restricted number of 
slip systems and, for that reason, presents a brittle behavior. This is essential to increasing the 
ductility of Mg materials with little or no effect on strength. Therefore, nanocomposites may boost 
the strength and ductility at the same time [45]. The appropriate option for reinforcements, their 
grain size, and their natural biocompatible characteristics can achieve the greatest degree of 
mechanical and anticorrosion properties and a great cell response. The composite materials consist 
of a minimum of two materials, which are known as the matrix and reinforcement. All the materials 
of the composite ought to be cytocompatible and not induce toxicity in any SBF solution. The 
composite material permits the mixture of the matrix and reinforcement properties including great 
mechanical characteristics (compressive strength (CS) and tensile strength (TS)), high anticorrosion 
performance, and biocompatibility. The choice of matrix component and reinforcement component 
is extremely vital to attain the desirable characteristics [45]. 

Experts have employed new ideas to enhance the mechanical properties, corrosion 
performance, and biocompatibility of these materials, which are extensively reviewed due to the 
stability of Mg-based materials in the biomedical area. Carbon-based materials display a broad 
variety of distinctive characteristics, such as a great aspect ratio, an outstanding high Young’s 

Figure 3. Characteristics of metallic materials regulating the cellular response of an artificial implant
reproduced from [47], with permission from Wiley, 2019.

Despite the fact that Mg-based bioalloys have considerable properties, it is still required to enhance
the mechanical characteristics to maintain their strength throughout the incubation period. Magnesium
possesses a hexagonal close packed (HCP) structure, which has a restricted number of slip systems
and, for that reason, presents a brittle behavior. This is essential to increasing the ductility of Mg
materials with little or no effect on strength. Therefore, nanocomposites may boost the strength and
ductility at the same time [45]. The appropriate option for reinforcements, their grain size, and their
natural biocompatible characteristics can achieve the greatest degree of mechanical and anticorrosion
properties and a great cell response. The composite materials consist of a minimum of two materials,
which are known as the matrix and reinforcement. All the materials of the composite ought to be
cytocompatible and not induce toxicity in any SBF solution. The composite material permits the mixture
of the matrix and reinforcement properties including great mechanical characteristics (compressive
strength (CS) and tensile strength (TS)), high anticorrosion performance, and biocompatibility. The
choice of matrix component and reinforcement component is extremely vital to attain the desirable
characteristics [45].

Experts have employed new ideas to enhance the mechanical properties, corrosion performance,
and biocompatibility of these materials, which are extensively reviewed due to the stability of
Mg-based materials in the biomedical area. Carbon-based materials display a broad variety of
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distinctive characteristics, such as a great aspect ratio, an outstanding high Young’s modulus and
strength, as well as remarkable electrical and thermal characteristics. These outstanding properties
have resulted in the employment of carbonaceous nanomaterials as the reinforcements for polymers,
ceramics, and MMC for their distinctive characteristics [27]. The characteristics of GFN-associated
components and their capabilities to be functionalized and coupled with biomolecules and materials
provide numerous possibilities to offer biocomposites with tailored characteristics, as presented in
Figure 4.
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4. Graphene Family Nanomaterials

Despite the fact that composite materials can offer a number of positive aspects that
single-component materials cannot, they could possibly likewise offer features that need more
enhancements. As an illustration, ceramic-polymeric composites might be bioactive, whereas they
could result in sensitive responses and offer minimal mechanical characteristics [48]. Even with the
latest developments, the progress of novel materials and approaches to produce the new class of
biocomposites with enhanced features is being given great attention [49]. Metals are employed for
a number of biomedical purposes in neat form or as alloys because of their great toughness and
stiffness. The Gr-family components might enhance the characteristics of metals even more and present
a bioactive character to the metal-based composites.

As a new nanomaterial family, GFNs demonstrate outstanding capabilities against a wide range of
bacteria including Gram-positive and -negative bacteria [31]. Single-GFN and GFN-based composites
exhibit obvious antibacterial functionality. Furthermore, the reasonable design of GFN-based
composites might improve this particular potential. A comprehensive overview of single-GFNs’
antibacterial functionality is presented in Table 1. The antibacterial activity of Gr was first documented
in 2010 [50,51], where graphene was observed to significantly destroy and cause the dysfunction of
the bacteria attaching to it [51]. This antibacterial approach was effective and fast for Escherichia coli
(E. coli) and Staphylococcus aureus (S. aureus), and destruction was observed to primarily take place in
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the cell membrane. A test disclosed that graphene nanosheets actually possessed a greater antibacterial
activity in comparison with conventional antibiotics, including kanamycin [52]. Similar to Gr, GO
also exhibits an outstanding bactericidal capability for a wide range of bacteria [51]. Gr is a plane of
carbon atoms, and GO is an oxidized Gr sheet with numerous oxygen-containing FGs [53]. Right after
reducing the functional oxygen-containing groups, GO will certainly turn out to be rGO. Commonly,
rGO nanosheets tend to be reduced through hydrazine [51] and dithiothreitol [54]. Bacteria were
suggested to reduce GO by means of the metabolism of glycolysis in a self-limiting fashion [55]. Neat
Gr spread out with complications in the solutions (aqueous and organic) as a result of the insufficient
hydrophilic groups. On the other side, GO and rGO demonstrate a particular amphiphilicity (lipophilic
and certainly hydrophilic) because of the amount of extra FGs [31].

Table 1. The antibacterial effect of the single-graphene family of nanomaterials (GFNs) on bacteria.

Material Fabrication
Method Bacteria Strains Killing

Rate
Incubation
Time (h)

Material
Concentration (mg/L) cfu/mL Ref.

Gr Chemical
exfoliation

Escherichia coli
(E. coli) 59% 1 - 108 [51]

Gr Chemical
exfoliation

Staphylococcus
aureus (S. aureus) 74% 1 - 108 [51]

rGO Hummers and
Offeman E. coli 88% 4 100 106 [51]

rGO Hummers and
Offeman E. coli 81% 2 150 106–107 [51]

GO Chemical
exfoliation E. coli 84% 1 - 108 [54]

GO Chemical
exfoliation S. aureus 95% 1 - 108 [54]

GO Modified
Hummers

Fusarium
graminearum

(F. graminearum)
90% 7 500 3 × 107 [56]

GO Modified
Hummers

Fusarium
oxysporum

(F. oxysporum)
80% 7 500 3 × 107 [56]

GO Modified
Hummers E. coli 69% 2 80 106–107 [57]

GO Hummers and
Offeman

Xanthomonas
oryzae pv. oryzae
(X. o. pv. oryzae)

100% 4 250 107–108 [58]

GO Modified
Hummers Activated sludge 35% 5 100 5 × 105 [59]

GO Hummers and
Offeman

Pseudomonas
aeruginosa

(P. aeruginosa)
100% 2 175 106 [60]

Gr is another appealing and distinctive crystalline allotrope of carbon that demonstrates 2D
properties. It is regarded as the initial 2D material [61,62]. In this regard, Figure 5 exhibits the historical
background and development stages of Gr formation [49]. Gr was identified in 2004 by Geim and
Novoselov [62]. They effectively separated graphene through mechanical exfoliation of graphite
crystals employing the cohesive tape approach. Their breakthrough was recently privileged with the
2010 Nobel Prize in Physics. Nevertheless, the low efficiency of this particular approach causes it to
be inappropriate for large-scale manufacturing purposes. The essential advancements in relation to
GFNs, in particular Gr, are described pictorially in Figure 5. Gr might be generated by four approaches:
(1) CVD [63]; this research that commenced in the 1970s was accompanied by a considerable amount
of studies conducted by surface researchers on monolayer graphite [64]; (2) epitaxial growth of the Gr
layer by electrically insulating substrates [65]; (3) mechanical exfoliation of Gr from bulk graphite (e.g.,
using Scotch tape); and (4) reduction of graphene derivatives including GO [66,67]. The latter approach
exhibits possibilities pertaining to the manufacturing of graphene sheets in the mass amounts that are
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required for applying it to composites. GO sheets might be taken out of “graphite oxide (GRO)”, which
is commonly prepared through the oxidation of graphite [68,69]. GRO could be entirely exfoliated
to create an aqueous solution of GO sheets by sonication [61]. Extensive investigation [70] on these
kinds of aqueous solutions was performed in the 1950s and the 1960s. Chemical reduction of GO
in colloidal suspensions might be conducted to fabricate massive volumes of chemically modified
graphene (CMG) sheets [61,71], which are appropriate for compositing purposes. Thermal reduction
of GRO is a different method that is usually employed to attain massive volumes of Gr platelets. Fast
heating (> 2000 ◦C/min) up to 1050 ◦C exfoliates, as well as reduces GRO [61,72,73]. However, GO
and rGO are usually manufactured through relatively inexpensive chemical approaches employing
graphite as the basis material [74–77]. They are usually distributed evenly in stable aqueous solutions
to construct macroscopic structures at commercial-scale [76,78].
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Gr also offers a fracture strength of 130 GPa, a Young’s modulus of 1 TPa, a low density of 1
g/cm3, and a great specific surface area that might enable it to be a remarkable reinforcement intended
for MMC [79,80]. The reason behind the great stiffness and elastic strength is the Sp2 hybridized
and covalently bonded C-atoms in a hexagonal network. Furthermore, graphene might experience
substantial elastic strains up to 15% [81]. The issues including insufficient bonding at the Gr/metal
interface lead to the poor interface adhesion and decrease the mechanical characteristic of the metal
matrix resulting from the elastic incompatibility [82,83]. Moreover, Gr has more difficulty in spreading
out in comparison with other reinforcements, as a result of its interfacial contact region [83]. The
maintenance of the integrated structure of GNPs is the essential matter due to the fact the more
complete the structure of the GNPs is, the greater and considerably more productive the bearing
potential of GNPs might be in the matrix throughout a loading procedure. Thus, composites might
attain greater strength and modulus and considerably more issues in elastic deformation [84].

5. Fabrication of Graphene-Mg MMNCs

Magnesium MMCs present versatile mechanical and anticorrosion characteristics as obtained
via the choice of the range of the reinforcement phase. The amount, dispersion, and size of the
reinforcements are key elements regarding the mechanical performance and degradation rate of Mg
MMCs. Numerous reinforcements were used to fabricate Mg MMCs, including Ca-P- and bioglass
(BG)-based ceramic [85–88], ZnO [25], and Ca particles [89], by means of powder metallurgy (PM) and
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stir casting (SC) methods. In this context, it was suggested that the uniform distribution of GNPs in the
metal matrix is a crucial issue throughout the fabrication of composites. The thickness of GNPs with
joint stacked sheets is hence considerably greater in comparison with an individual graphene sheet.
GNPs are usually effortlessly dispersed in any kind of solvent and matrix. The Mg-GFs nanocomposite
is usually manufactured through employing various manufacturing approaches including disintegrated
melt deposition (DMD), stir casting, liquid infiltration, gravity casting, melting, PM, and semi-powder
metallurgy (SPM). Nevertheless, current research reveals that PM coupled with the hot extrusion
(HTE) procedure and SPM is one of the successful approaches to achieve the appropriate mechanical
characteristics. Traditional manufacturing approaches, for example stir casting, are not able to address
this issue [83].

5.1. Powder Metallurgy

The PM approach is an adaptable method for fabrication of Mg-based composites with GFN
nanofillers because of its ease of use, overall flexibility, and close proximity to net-shaped functionality,
as shown in Figure 6. The procedure consists of mechanical mixing of nanofillers with metal/alloy
powders in a rotary mill, accompanied by sintering and various types of densification approaches
including cold isostatic pressing (CIP), hot pressing/hot isostatic pressing (HP/HIP), or spark plasma
sintering (SPS). In particular circumstances, extra mechanical deformation modifications including HTE,
HF (hot forging), hot rolling (HR), friction stir processing (FSP), and equal channel angular processing
(ECA) approaches are employed to additionally compact them into full-compact nanocomposite
specimens. With the PM approach, which consists of three fundamental stages (blending, densification,
and sintering), a homogeneous and even distribution of reinforcing agents within the matrix alloy has
been accomplished [90,91]. The HTE procedure is applied to enhance the densification of composites
due to the fact that it is complicated to avoid the creation of micropores in the composite following
sintering [92,93]. This review article describes the current trends in processing and the mechanical and
anticorrosion characteristics of Mg-based alloys incorporated with Gr-family nanomaterials.

The accomplishment of a uniform additive phase via simply blending metal powders with
carbon-based components is fairly inadequate, as anticipated. By utilizing a ball mill or mechanical
alloying (MA) approaches, a greater distribution of additive agents is usually obtained. Nevertheless,
the handling methods must be done with care in order to maintain the structural integrity of
carbon-based components. This is due to the fact that the long-term ball milling procedure might
damage the crystallinity of carbon-based components [27]. A number of authors used a traditional
mixed press-sinter method to fabricate the MMCs. Incorporation of Gr-family nanomaterials into
Mg matrix improves the thermal conductivity, and GNPs are likewise great additive agents for
strengthening the mechanical performance of the Mg composite. Furthermore, Mg is generally defined
as a light metal; it is typical used in the vehicle and aviation industrial sectors to be able to lessen
fuel usage. Thus, the manufacturing and advancement of Mg-GNP composites are extremely crucial.
Shahin et al. [94] employed MA methods to spread out 0.5 wt.% and 0.1 wt.% Zr and GNPs, respectively,
in the Mg matrix. The blend’s powder was subsequently cold pressed and sintered at 760 MPa and
610 ◦C respectively to obtain the nanocomposite. Their outcome revealed that the Mg and Zr powders
showed an irregular flake-like shape, even though Gr powders presented a flake-like shape along with
wrinkled edges and a particle size of 15 µm.
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5.2. Stirring Casting

PM approaches are quite costly and might lead to the destruction of additive phases throughout
the ball milling procedure, which will ultimately have an effect on the mechanical characteristics
of the produced composites. On the other side, the stir casting approach is desirable because of
numerous benefits compared to the PM approach. For instance, the stir casting approach is more
affordable, and porosity forms as a result of the solidification shrinkage, while hydrogen generation
is extremely low. In addition, a broad range of patterns and sizes (of matrix and additive phases)
can certainly be employed. The additive phases do not cause any damage, and virtually any type of
matrix/reinforcement is usually applied regardless of the melting points [95]. An additional method
for MMCs’ advancement is to embed the additive phases into the melt accompanied by the stirring
casting approach. Typically, bioceramic or BG is chosen to be the additive phases; however, the weak
wettability of the bioceramic restricts the content of additive phases, besides the distribution of the
additive phases. A number of approaches has already been performed to overcome this restriction of
the SC approach. Du et al. [92] evaluated the strengthening mechanism of Mg (ZK60)-GNP composites
fabricated via melting stirring accompanied by the HTE procedure. Homogeneous dispersion of GNPs
in the ZK60 matrix was obtained via a melting mixture approach. Moreover, GNP embedding in ZK60
matrix led to increasing both the tensile and compressive strength. Overall, the PM method following
the HTE procedure leads to enhancement of the mechanical characteristics of MMCs. In contrast to PM
MMCs, which possess a lower than 0.5% porosity because of the HTE procedure, the semi-solid cast
composite was observed to be microporous, hence suggesting a higher degradation rate in comparison
with the PM coupled with HTE procedure [96]. In this context, Ramezanzade et al. [96] prepared
Mg-based composites by embedding various contents of GNPs (0.1, 0.2, and 0.4 wt.%) as additive
agents via an SC method accompanied by homogenization and extrusion in an effort to strengthen the
mechanical characteristics of the Mg-based alloy. Their outcome showed that embedding 0.2 wt.%
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GNPs into the Mg-based alloy resulted in grain refinement (36%) and the lessening of anisotropy (14%),
as well as a reduction of twin formation. The homogeneous distribution of GNPs accompanied by
enhanced non-basal slip and grain refinement enhanced the tensile fracture strain.

5.3. Disintegrated Melt Deposition

Materials researchers have invested substantial effort by presenting enhanced melt procedures
to be able to accomplish a greater distribution of GNPs in the metal matrix. Wang et al. [97–99]
and Rashad et al. [95,100] systematically examined the manufacturing process and mechanical
performance of Mg-based composites incorporated with Gr. The DMD approach was implemented to
distribute nano-additives in molten Mg alloys [27], as shown in Figure 7. This approach consists of
mechanical stirring Mg chips and the nano-additive under a neutral gas (e.g., argon) to cast ingots
with the subsequent HTE procedure. Microstructural assessment showed that the extruded composite
specimens presented a relatively even dispersion of Gr-family nanomaterials [27].
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Rashad et al. [95] also fabricated Mg alloy-GNP composite via the DMD approach accompanied by
homogenization treatment and the subsequent HTE procedure, and their outcomes showed that GNP
incorporation had a considerable influence on reducing the grain size and modifying the basal textures
because of their homogeneous distribution within the matrix of the Mg-based composite, which led to
substantial enhancement of the mechanical properties including the hardness, TS, and CS. Aside from
that, the TS of an extruded Mg alloy-GNP composite was also evaluated at higher temperatures, and
their result showed that fracture strain increased and TS diminished with increasing testing temperature.
The increase of fracture strain at elevated temperature was primarily caused by substantial grain
refinement and homogeneous nano-additive dispersion. The fracture surface evaluation showed that
deformation potentially took place via grain boundary (GB) moving accommodated via penetration
transport. Wang et al. [99] also uniformly dispersed GNPs in the matrix of bare Mg in a dynamic
solidification approach. In this approach, via the pre-dispersion procedure, incorporated GNPs
split up the agglomerate particles of neat GNPs and maintained the GNPs in a repulsive situation.
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This type of distribution resulted in further reducing the grain size and more enhancements of the
mechanical properties.

5.4. Friction Stir Processing

FSP is established by the alteration of friction stir welding (FSW) to create a composite with a
sub-microstructure close to the surface area of metallic materials via dynamic recrystallization, as
demonstrated in Figure 8 [90]. In this approach, a spinning device pin is introduced to the substrate in
a way that the friction and plastic deformation caused by the device heat and soften the workpiece.
The device pin subsequently stimulates the intermixing of the material in a local area [27]. To
manufacture GFN-reinforced composites, numerous holes are initially drilled into a metallic plate
accompanied by filling up with GFNs and modifying with subsequent FSP (Figure 8). Arab et al. [101]
manufactured a nanocomposite that was prepared via embedding GNPs into AZ31 magnesium alloy
via FSP. Traditional FSP samples confirmed a 133% increase in strain-to-fracture, even though it was
diminished by incorporating GNPs. Nevertheless, the existence of GNPs elevated the YS and UTS
to 217 and 278 MPa, respectively. Chen et al. [17] also successfully fabricated Mg-GNP composite
via liquid state approaches followed by solid state stirring. Their approach is schematically revealed
in Figure 8. In this procedure, GNPs are incorporated into the molten magnesium via a feeding
procedure and subsequently distributed into the molten composite via an ultrasonic procedure for a
short time. Microstructural evaluation results revealed that GNPs were not evenly distributed within
the Mg-based matrix. To obtain an enhanced distribution of GNPs in the composite, FSP was employed
on the surface of the cast specimens. In this regard, FSP led to enhancement of the distribution of
GNPs in the matrix of the composite.
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5.5. Selective Laser Melting

The laser deposition approach pertains to utilizing coherent and extreme laser beams for fabricating
MMNCs employing metal powders. Laser beams usually have the ability of achieving extremely
high-speed rates of surface melting accompanied by solidification at cooling rates of ∼107 ks−1. The
laser processing approach provides unique benefits regarding creating composites including a short
handling period, a reduced amount of distortion of the specimen, and near net shape manufacturing.
As shown in Figure 9, SLM was employed by Shuai et al. [102] to also prepare 3D honeycomb
nanostructure-embedded Mg alloys, in which the honeycomb nanostructure was reinforced with
GO as an additive phase. Results revealed that GO was dispersed within the GBs and progressively
wrapped α-Mg grains when the content of GO increased. The close and complete wrapping suggested
a beneficial affinity and useful protection of GFNs, for instance GO in Mg-based alloys, against
corrosion attack.
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Figure 9. Schematic diagram for the preparation of GO reinforced AZ61 magnesium alloy by selective
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5.6. Multi-Step Dispersion Route

Melt stirring is a traditional method for MMC fabrication, while the direct encapsulation of
GFNs like Gr (additive phase) into the melt could effortlessly result in carbon float and aggregation
because of the layered structure of Gr [100]. To disperse the GNPs effectively into the metals’
matrix, the multi-step dispersion route combining different process steps was developed. Xiang
et al. [83] encapsulated Mg-based composites with GNPs by employing the multi-step dispersion
method comprising pre-dispersion of the additive phase, semi-solid treatment stirring (SSTS), and
high energy ultrasonic processing, followed by the HTE procedure, as shown in Figure 10 [83].
Effectively-distributed however non-uniformly dispersed GNPs were attained in the Mg matrix. A
perfect distribution of GNPs inside the Mg matrix was because of the existence of carboxyl groups
(-COOH) at the edges of GNPs, which were stable in the molten Mg based on the chemical stability
of GRO below 1050 ◦C. Actually, The SSTS inhibited the extreme oxidation of Mg-based chips and
the floating of GNPs owing to the lower temperature and the greater viscosity of the semisolid metal
in comparison with the liquid state melt. Furthermore, the following processes of SSTS, ultrasonic
vibration, and the HTE procedure additionally supported the dispersion of GNPs, as noted in the
earlier studies [103,104]. Du et al. [92] synthesized a Mg alloy-GNP composite via melt stirring coupled
with the HTE procedure. Prior to melting, GNPs were pre-dispersed inside the Mg matrix under
various stirring modes to ensure the suitable distribution GNPs inside the Mg matrix. Their outcome
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showed that in contrast to the Mg-based alloy without GNPs, the Mg-based composite containing
0.05 wt.% GNPs had significantly improved mechanical properties.Metals 2020, 10, 1002 14 of 40 
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5.7. Semi-Powder Metallurgy

Rashad et al. [91] performed Mg-GNP composite synthesis by employing the SPM approach.
They noticed that the Mg structure was modified because the encapsulation of GNPs had an effect on
the mechanical performance of the composite. Turan and coworkers [105–109] likewise investigated
the influences of carbon-based additives on the microstructure and properties of Mg-based composites
by this approach. The SPM approach provides a homogeneous dispersion of the additive phase in
the Mg matrix alloy. This method is free of ball milling since ball milling is regarded as a major issue
when employing Mg due to the fact that it generates heat, which might burn the Mg powder readily,
as exhibited in Figure 11 [110]. Thus, this approach is used as an alternate choice to ball milling, and
it has good possibilities regarding the fabrication of a Mg-based composite, which is regarded as a
great candidate for engineering purposes. GNPs are usually distributed in almost all types of solvents
and matrices effortlessly in comparison to CNTs. The Mg alloy-GNP composite is manufactured by
the semi-powder metallurgy method accompanied by the HTE procedure. Their result exposed the
homogeneous distribution of GNPs in the matrix [109]. In this regard, Sabri et al. [110] also synthesized
a Mg-based composite by SPM, which was encapsulated within GNPs, and their result revealed that
homogeneous and even dispersing of the low amount of GNPs inside the Mg-based matrix led to
partial agglomeration of GNPs with better mechanical properties. In the same manner, Rashed et
al. [111] utilized a simple approach to enhance the mechanical properties of Mg-GNP composites by
intercalating a small amount of MWCNTs among the layers of GNPs. Their outcome demonstrated
that that reduction of the grain size did not occur homogeneously within the matrix surface. This could
be caused by the weak distribution of 2D GNPs as an additive phase in the matrix. In this view, the
microstructure of Mg alloy-CNTs composite shows the presence of micropores on its surface, whereas
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Mg alloy/CNTs-GNPs are free of micropores and present great chemical bonding among the additive
phase and the matrix. Their outcome likewise confirmed that GNPs as part of GFNs are encapsulated
in Mg matrix with outstanding interfacial adhesion without the presence of cracks.
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6. Mechanical Properties of Mg-GNP-Based Composites

The considerable enhancement of the mechanical performance of the Mg-based composite was
basically caused by decreasing grain size and close interfacial bonding of GFNs within the matrix. In
particular, the wrinkled surface of Gr-family materials like GNPs might result in successful mechanical
interlocking with the composite matrix [112]. When a crack grows around the GNPs, the stress in
the matrix might be properly shifted to GNPs as a result of the superior elastic modulus of GNPs in
comparison with other bioactive ceramics. During this period, GNPs are lengthened and fractured or
possibly pulled out through the matrix when going above the greatest interface bonding strength; the
mechanisms of pull-out impact, crack bridging, deviation in the path of crack growth, and crack tip
blunting via GNPs absorb a great amount of outward energy, although keeping a small amount of
energy for additional growth of the crack, as shown in Figure 12. Consequently, the crack grows in a
step-like fashion and progressively reduces or possibly ends, in that way enhancing the load-bearing
ability of the matrix [32].

There are widely recognized toughening systems for the Mg matrix. These mechanisms are
refined grain structure, Orowan looping, solid solution strengthening, precipitation strengthening,
stress transfer or load bearing, the coefficient of thermal expansion (CTE), and modulus mismatch
toughening [113]. Nevertheless, a uniform dispersion of GNPs within the Mg matrix is not virtually
attainable. Moreover, to be able to obtain stress transfer through Mg matrix to GNPs, we require a
solid attaching mechanism of graphene to metal [84]. Due to the fact GNPs are a 2D material, the stress
transfer toughening system might be among the primary strengthening mechanisms in the Mg matrix
strengthened by GNPs [114–120]. The stress that often is employed on the Mg matrix could transfer to
the additive phases (GFNs) from the Mg matrix via shear stresses combined with the interface among
the Mg matrix and additive phases.
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Fig. 12 Figure 12. Schematic diagram showing the pull-out (a), crack bridging (b), crack deflection (c), and
crack tip (d) shielding mechanisms by graphene.

Due to the fabrication technique, the grain size of the Mg matrix reduces. Because of the refined
grain structure of the Mg matrix, which leads to enhancement of the strength of the Mg-based composite
based on the Hall–Petch formula [92,97,98,113], it is among the primary strengthening systems in the
Mg matrix strengthened via GFNs. Aside from that, due to the strain hardening, increasing dislocation
amount, and CTE mismatch toughening amplified in the Mg-based composites, this likewise leads
to toughening of the Mg matrix strengthened via GNPs [30,90,114,115]. It is worth mentioning that
CTE mismatch among the Mg matrix and Gr may result in enhancing the dislocation amounts and
increasing the toughness of the Mg-based composites [30,93,116,117]. The CTE mismatch toughening
systems in the Mg matrix strengthened by GFNs are determined by the size, morphology, and geometry
of the Mg matrix and additive phases. Another toughening system in the Mg matrix strengthened by
GNPs is Orowan looping, which was suggested by Rashad et. al. [118,119], where unmodified particles
are positioned inside the grains. Hence, the size of grains and additive phases are extremely crucial to
obtain the Orowan toughening in the Mg matrix. Residual dislocation loops could be created close to
GNPs following a dislocation that bows out and bypasses all of them. Substantial work hardening is
usually ordered through these loops [101,120].

Munir et al. [30] examined a Mg-based matrix strengthened with GNPs that were prepared via
PM for biomedical purposes. GNPs (5–9 nm layer thicknesses) with various amounts (0.1–0.3 wt.%)
were distributed within the Mg-based matrix via the ball milling method. The outcomes revealed
that GNPs’ incorporation enhanced the mechanical characteristics of Mg through thermal mismatch
and reducing the grain size. Furthermore, maintaining the structural integrity of GNPs throughout
the procedure enhanced the mechanical and corrosion properties of the Mg-GNP composites. Their
research illustrated that Mg-xGNPs with x < 0.3 wt.% may present potential biodegradable materials
for implant applications. Moreover, more incorporation of GNPs, up to a specific amount, increased
the mechanical properties of metal matrices including hardness and YS [121–123]. Nevertheless,
throughout the composite fabrication procedure, structural modifications in dispersed GFNs take
place such as re-agglomeration, with the following buildup of defects because of their connection
with nearby GNPs in the agglomerate through friction and impact, which leads to the constantly
changing mechanical and general performance of the Mg-based matrix [30]. A Mg-GNP composite was
prepared via the SPM technique by Rashad et al. [91], and their results exhibited that GNP were actually
dispersed uniformly in the Mg matrix and, for this reason, worked as a successful reinforcing phase to
protect against further deformation. The enhancements in elongation (EL), YS0.2%, UTS, and Vickers
HR were significantly higher for the Mg-0.3GNP composite in comparison with bare Mg. Rashad et
al. [119] synthesized a Mg-1Cu-xGNP composite via the SPM technique, and their result showed that
composite specimens presented higher mechanical strength compared to the bare Mg. The superior
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strength of the composites might be caused by fundamental strengthening systems, such as CTE and
EL mismatch, Orowan toughening, and stress transfer. In this context, Saberi et al. [110] synthesized a
Mg-based-GNP composite through the SPM technique with various concentrations of GNPs. Their
result presented that strong interfacial bonding was found between GNPs and the Mg-based alloy
owing to the presence of residual oxygen in GNPs. Likewise, Yuan et al. [116] further confirmed
that the existence of residual oxygen in GNPs had a critical role in increasing the interfacial bonding
between the Mg matrix and reinforcement agent (GNPs). This great interfacial bonding resulted in
increasing the mechanical characteristics including yield strength and elongation and the prevention
of the occurrence of cavities at the Mg-Gr interface of the matrix and reinforcement agent (GNPs). This
enhancement of the mechanical characteristics due to the presence of residual oxygen in GNPs was also
found by Chen [90], Rashad [124], and Xiang et al. [83]. In another study, a Mg matrix encapsulated
within 0.3 wt.% graphene via SSIT with the subsequent HTE procedure was demonstrated by Yang et
al. [93]. Their result showed that the structure of the composite had been obviously refined after the
HTE procedure, which resulted in the enhancement of the mechanical properties. The other reason
for such strength improvement was related to the homogenous distribution of graphene and great
interfacial bonding. The effect on the graphene family nanomaterials (GFNs) on the strength and
ductility of the Mg-based alloy/composite is summarized in Table 2.
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Table 2. Mechanical properties of Mg-based nanocomposites containing GFNs.

Samples Processing route E (GPa)

Tensile Performances Compressive Performances
Hardness

(HV) Ref.0.2%TYS
(MPa)

UTS
(MPa)

Ductility or
Elongation (%) CYS (MPa) UCS (MPa) Failure Sstrain

δ (%)

Pure Mg SPM 13.2 ± 0.3 187 ± 4 219 ± 5 3.45 ± 0.5 - - - 57.5 ± 2 [91]

Mg-0.3GNPs SPM 14.6 ± 0.2 197 ± 3.1 238 ± 6 3.11 ± 0.4 - - - 68.5 ± 2 [91]

Mg-6Zn DMD + Sintering + the - 159 ± 5 276 ± 7 17 ± 1.5 109 ± 4.5 426 ± 6.1 21 ± 1.7 62.5 [91]

Mg-6Zn-0.5GNPs DMD + Sintering + HTE - 171 ± 4 295 ± 3.5 18 ± 1.9 226 ± 4.7 480 ± 5.6 20 ± 2 75 [100]

Mg-6Zn-1.5GNPs DMD + Sintering + HTE - 214 ± 2 313 ± 5.2 21 ± 1.1 226 ± 4.7 480 ± 5.6 16 ± 2.9 70 [100]

pure Mg DMD + Sintering + HTE - 96 ± 4 163 ± 3 7.5 ± 1.5 - - - - [99]

Mg-0.10 GNPs DMD + Sintering + HTE - 105 ± 1 176 ± 2 10.3 ± 0.6 - - - - [99]

Mg-0.25 GNPs DMD + Sintering + HTE - 122 ± 2 202 ± 3 14.5 ± 1.2 - - - - [99]

AZ31 alloy PM + Sintering + Extrusion - 195 ± 5 285 ± 2.9 14.5 ± 1.5 160 ± 6 363 ± 3.5 16.3 ± 1.5 58 ± 3 [125]

AZ31-0.3GNPs PM + Sintering + Extrusion - 173 ± 6.2 275 ± 5.7 21.7 ± 2.8 161 ± 4.5 397 ± 5.3 16.3 ± 1.5 71 ± 2.1 [125]

Pure Mg SPM + Vacuum sintering + HTE ET: 7.0 ± 0.3
EC: 6.4 ± 0.4 104 ± 4 164 ± 5 6.2±0.2 136 ± 3 286 ± 6 12 ± 0.2 46 ± 2 [111]

AZ31 Alloy SC - 183 ± 4.3 267 ± 6.5 9.74 ±1.5 100 ± 3.3 398 ± 5.1 21.0 ± 1.4 61 [126]

AZ31-1.5GNPs SC - 187 ± 3.5 284 ± 5.4 12.34 ± 3.4 121 ± 4.7 415 ± 3.4 21.2 ±2.1 65 [126]

AZ31-3GNPs SC - 195 ± 4.5 299 ± 6.2 12.56 ± 4.3 120 ± 2.8 406 ± 4.1 19.3±1.8 68.9 [126]

Mg-1Al SPM + Vacuum sintering + HTE ET: 12.8 ± 0.4
EC: 5.0 ± 0.3 155 ± 3 202 ± 3 6.9 ± 0.5 100 ± 2 377 ± 8 18 ± 0.5 50 ± 4 [111]

Mg-1Al-0.60 GNPs SPM + Vacuum sintering + HTE ET: 17.2 ± 0.1
EC: 7.6 ± 0.5 204 ± 9 265 ± 8 230 ± 5 407 ± 3 - 63 ± 2 [111]

Pure Mg SPM + Vacuum sintering + HTE ET: 7.4 ± 0.3
EC: 6.3 ± 0.4 104 ± 4 164 ± 5 6.2 ± 1.8 123 ± 5 264 ± 6 9 ± 2.5 40 ± 3 [119]

Mg-1Cu-0.18 Gr SPM + Vacuum sintering + HTE ET: 10.6 ± 0.4
EC: 5.9 ± 0.3 160 ± 6 240 ± 2 10.4 ± 2.1 140 ± 4 335 ± 8 - 44 ± 2 [119]

Mg-1Cu-0.36 Gr SPM + Vacuum sintering + HTE ET: 12.4 ± 0.25
EC: 8.4 ± 0.35 184 ± 3 252 ± 3 12.2 ± 1.3 143 ± 6 338 ± 5 - 46 ± 3 [119]

Mg-1Cu-0.54 Gr SPM + Vacuum sintering + HTE ET: 14 ± 0.16
EC: 7.7 ± 0.21 226 ± 5 260 ± 5 4.8 ± 2.5 166 ± 3 420 ± 6 - 56.7 ± 1 [119]

ZK60 SPM+ HTE + SC + HTE - 158 ± 2.0 282 ± 3.0 11 ± 0.8 126 ± 3.0 364 ± 2.8 9 ± 0.3 68 ± 2.8 [92]

ZK60-0.05GNPs SPM+ HTE + SC + HTE - 256 ± 4.0 336 ± 4.0 13 ± 1.2 249 ± 4.0 473 ± 6.2 10 ± 1.0 78 ± 2.0 [92]

ZK60-0.1GNPs SPM+ HTE + SC + HTE - 283 ± 3.5 343 ± 3.8 17 ± 2.0 279 ± 3.4 463 ± 5.0 12 ± 1.1 75 ± 2.5 [92]

AZ61 Alloy DMD + HTE - 184 ± 5.5 300 ± 7.1 11.5 ± 1.9 170 ± 5.1 461 ± 6.8 16.7 ± 2.1 75.7 ± 2.5 [95]

AZ61-3GNPs DMD + HTE - 232 ± 4.9 335 ± 6.6 10.7 ± 2.1 226 ± 4.7 480 ± 5.6 15.1 ± 3.5 87.5 ± 1.8 [95]
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Table 2. Cont.

Samples Processing route E (GPa)

Tensile Performances Compressive Performances
Hardness

(HV) Ref.0.2%TYS
(MPa)

UTS
(MPa)

Ductility or
Elongation (%) CYS (MPa) UCS (MPa) Failure Sstrain

δ (%)

AZ80-0.5Ca RC + Extrusion - 104 ± 5.2 271 ± 13.5 4.4 ± 0.22 78 ± 3.9 340 ± 17 9.5 ± 0.33 71.3 ± 2 [127]

AZ80-0.5Ca-0.1GNP RC + Extrusion - 146 ± 7.3 310 ± 15.5 6.6 ± 0.33 90 ± 4.5 419 ± 21 13 ± 0.6 77.6 ± 2.6 [127]

AZ80-0.5Ca-0.6GNP RC + Extrusion - 160 ± 16 325 ± 32 9.3 ± 0.85 102 ± 10 361 ± 36 11.5 ± 0.7 88.9 ± 5 [127]

AZ31 - - 215 256 13.3 - - - 56 [101]

AZ31-GNPs FSP - 217 278 15.8 - - - 79 [101]

AZ31-0.3Gr MBM + HTE - 214.82 310.79 5.99 - - - - [93]

Mg-0.3Sr-0.3Ca SC + HTE - 174 233 7.4 68 300 15.2 [114]

Mg-0.3Sr-0.3Ca-GNP SC + HTE - 213 235 10.2 90 303 16.9 55 [114]

Mg-0.3Sr-0.3Ca-GNPs
+ MgO SC + HTE - 224 239 13.8 96 330 18.3 68 [114]

Pure Mg SPM + Vacuum sintering + HTE - 162 ± 5 195 ± 4 3.7 ± 2.5 - - - 41 ± 4 [118]

Mg-0.5Al-0.18GNPs SPM + Vacuum sintering + HTE - 173 ± 4 230 ± 5.1 10.7 ±3 - - - 55 ± 2 [118]

Mg-1.0Al-0.18GNPs SPM + Vacuum sintering + HTE - 190 ± 5.3 254 ± 3 15.5 ± 3.4 - - - 58 ± 3.5 [118]

Mg-1.5Al-0.18GNPs SPM + Vacuum sintering + HTE - 209 ± 3.9 268 ± 4.5 12.7 ± 2 - - - 60 ± 3 [118]

Mg-1Al-1Sn SPM + Extrusion - 161 ± 04 236 ± 5.1 16.7 ± 03 - - - - [109]

Mg-1Al-1Sn-0.18GNPs SPM + Extrusion - 208 ± 5.3 269 ± 03 10.9 ± 3.4 - - - - [109]

Mg-0.3Sr-0.3Ca SC + HTE - 171 ± 8.5 228 ± 11.4 6 ± 0.3 65 ± 3.2 339 ± 17 14.3 ± 0.7 - [96]

Mg-0.3Sr-0.3Ca-0.1GNP SC + HTE - 184 ± 9.2 232 ± 11 8.1 ± 0.4 67 ± 3.4 335 ± 16 15.5 ± 0.8 - [96]

Mg-0.3Sr-0.3Ca-0.2GNPs SC+ HTE - 210 ± 10.5 231 ± 11.5 10 ± 0.5 93 ± 4.7 339 ± 18 18.3 ± 0.95 - [96]

Mg-0.3Sr-0.3Ca-0.4GNPs SC + HTE - 223 ± 13.5 245 ± 15 8.8 ± 0.55 82 ± 5 309 ± 17 14.3 ± 0.9 - [96]

AZ91-0.25GNPs SPM - 116 ± 9 172 ± 10 3.4 ± 0.7 - - - 65 ± 1.5 [117]

AZ91-0.50GNPs SPM - 128 ± 13 190 ± 14 2.8 ± 0.9 - - - 69 ± 2.5 [117]

Mg SPM + Sintering + HTE 5.98 119 ± 5 186 ± 6 9.7 ± 3 - - - 41 ± 3.5 [120]

Mg-1Al-0.09GNPs SPM + Sintering + HTE 13.40 148 ± 3 206 ± 4 10.5 ± 3.4 - - - 48 ± 2.9 [120]

Mg-1Al-0.18GNPs SPM + Sintering + HTE 12.18 162 ± 4.1 223 ± 5 15.2 ± 2 - - - 51 ± 3 [120]

Mg-1Al-0.30GNPs SPM + Sintering + HTE 13.84 178 ± 2.9 246 ± 3.5 16.9 ± 3 - - - 55 ± 4 [120]

Mg-10Ti SPM + Extrusion - 141 ± 04 212 ± 5.1 11 ± 03 - - - [128]

Mg-10Ti-0.18 GNPs SPM + Extrusion - 160 ± 5.3 230 ± 03 14 ± 3.4 - - - [128]

AZ91 SPM + HTE - 168 ± 5.0 215 ± 6.0 7.0 ± 0.2 - - - 72.4 ± 2.0 [116]

AZ91-0.1GNPs SPM + HTE - 223 ± 3.6 276 ± 4.2 7.0 ± 0.2 - - - 78.2 ± 1.5 [116]
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Table 2. Cont.

Samples Processing route E (GPa)

Tensile Performances Compressive Performances
Hardness

(HV) Ref.0.2%TYS
(MPa)

UTS
(MPa)

Ductility or
Elongation (%) CYS (MPa) UCS (MPa) Failure Sstrain

δ (%)

AZ91-0.3GNPs SPM + HTE - 268 ± 4.6 318 ± 5.0 8.2 ± 0.1 - - - 84.4 ± 1.2 [116]

AZ91-0.5GNPs SPM + HTE - 296 ± 3.7 335 ± 4.8 8.2 ± 0.1 - - - 88.5 ± 1.0 [116]

AZ91-0.8GNPs SPM + HTE - 252 ± 5.5 307 ± 5.0 6.8 ± 0.1 - - - 81.6 ± 1.4 [116]

AZ91-1.2GNPs SPM + HTE - TYS: 234 ±
3.0 287 ± 5.0 6.5 ± 0.2 - - - 74.7 ± 1.2 [116]

Mg-0.25GNPs
Sprayed GNPs on Mg foils

(laminated composite) + HTE +
Rolling

- - 160 4.9 - - - - [115]

Mg-0.75GNPs
Sprayed GNPs on Mg foils

(laminated composite) + HTE +
Rolling

- - 179 2.7 - - - - [115]

ZK60 Mechanical agitation + SC + HTE 161 281 15.6 - - - - [98]

ZK60-1GNPs Mechanical agitation + SC + HTE - 261 336 16.6 - - - - [98]

Mg-6Zn In situ reaction wetting process +
SC + HTE procedure 46.9 ± 0.7 136 ± 5 269 ± 6 19.5 ± 2.0 - - - - [97]

Mg-6Zn-0.1(GO-ZnO) In situ reaction wetting process +
SC + HTE 47.4 ± 0.3 206 ± 2 306 ± 5 15.1 - - - 71 ± 2.9 [97]

Mg-6Zn-0.3(GO-ZnO) In situ reaction wetting process +
SC + THE 47.8 ± 0.5 221 ± 4 316 ± 3 14.8 - - - 86 ± 3.6 [97]

Mg-3Zn-1Ca SPM - - - - - 8559 N - 48 [110]

Mg-3Zn-1Ca-0.5GNP SPM - - - - - 14,900 N - 57 [110]

Mg-3Zn-1Ca-1GNPs SPM - - - - - 20,586 N 60 [110]

Mg-3Zn-1Ca-2GNPs SPM - - - - - 2002 N 62 [110]

Pure Mg HEBM + Compaction + Sintering - - - - 59 ± 2 85 ± 10 6 ± 0.5 - [30]

Mg-0.1GNP
Particle size (15 µm) HEBM + Compaction + Sintering - - - - 99 ± 1 146 ± 5 12 ± 2.4 - [30]

Mg-0.2GNP
Particle size (15 µm) HEBM + Compaction + Sintering - - - - 130 ± 4 182 ± 14 6 ± 3.9 - [30]

Mg-0.3GNP
Particle size (15 µm) HEBM + Compaction + Sintering - - - - 126 ± 6 246 ± 1 14 ± 1.7 - [30]

Mg-0.1GNP
Particle size (5 µm) HEBM + Compaction + Sintering - - - - 76 ± 5 143 ± 14 9 ± 0.3 - [30]

Mg-0.2GNP
Particle size (5 µm) HEBM + Compaction + Sintering - - - - 97 ± 6 183 ± 4 13 ± 0.2 - [30]
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Table 2. Cont.

Samples Processing route E (GPa)

Tensile Performances Compressive Performances
Hardness

(HV) Ref.0.2%TYS
(MPa)

UTS
(MPa)

Ductility or
Elongation (%) CYS (MPa) UCS (MPa) Failure Sstrain

δ (%)

Mg-0.3GNP
Particle size (5 µm) HEBM + Compaction + Sintering - - - - 110 ± 8 169 ± 18 9 ± 0.8 - [30]

AZ61-0.2GO SPM + SLM - - - - ∼177.5 - - 93 [102]

AZ61-0.4GO SPM + SLM - - - - ∼188.5 - - 97 [102]

AZ61-0.6GO SPM + SLM - - - - ∼202.5 - - 100 [102]

AZ61-0.8GO SPM + SLM - - - - ∼208.75 - - 102 [102]

AZ61-1GO SPM + SLM - - - - ∼221.05 - - 104.5 [102]

AZ61-1.2GO SPM + SLM - - - - ∼192.5 - - 108.52 [102]

GNPs: graphene nanoplatelets, DMD: disintegrated melt deposition, PM: powder metallurgy, SPM: semi-powder metallurgy, HTE: hot extrusion, SC: stir casting, HEBM: high energy ball
milling, MBM: mechanical ball milling, SLM: selective laser melting, RC: rheocasting, E: elastic modulus, ET: elastic modulus in tensile, EC: elastic modulus in compressive, TYS: tensile
yield strength, UTS: ultimate tensile strength, CYS: compressive yield strength, UCS: ultimate compressive strength.
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7. Biocorrosion and Biodegradability of Mg-GFNs-Based Composites

The entire biomaterial should make it through a certain healing period for 12–18 weeks [14,125–128].
All examinations regarding Mg-based alloys have demonstrated high degradation, where the Mg
alloys are fully absorbed prior to the least healing duration of 12 weeks [129], which results in
H2 gas release, inducing cavities, reduced mechanical integrity, regional swelling, and discomfort
for the patient [130–132]. To address this restriction, Mg-based composites that were recently
fabricated intended for implant applications should possess corrosion rates lower than 0.5 mm/year
in physiological fluids at 37 ◦C [133]. The corrosion mechanism can be understood by analyzing the
corroded surfaces of Mg-based specimens when exposed to the SBF. As can be seen in Figure 13,
Mg-based specimens react with the SBF along with H2 generation. The general corrosion reaction of
Mg in physiological media is presented below [134]:

Mg + 2H2O→Mg(OH)2 + H2↑ (1)
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Based on the previously mentioned reactions, Mg(OH)2 is created on the Mg alloy surface. The
chloride ion is considered to have an adverse effect on the corrosion resistance of Mg. Numerous
investigations have verified that a high chloride amount is facilitated by replacing Mg(OH)2 with
MgCl2 and enhances the degradation rate of the Mg alloy [135]. On the other side, the OH− coming
initially from Mg degradation can easily react with the HPO4

2− in physiological fluids based on
Equation (2), leading to the generation of PO4

3−.

HPO4
2− + OH-

→ PO4
3− + H2O (2)

Subsequently, the PO4
3− reacts with the Ca2+ in physiological media or Mg2+ to deposit apatite

or Mg-P on the composite surface [136–139]. Phosphate ions might slow down the corrosion rate
significantly and postpone the occurrence of pitting corrosion [135]. Neupane et al. [140] suggested
the increased corrosion resistance of GNPs embedded within the Mg matrix. GNPs were successfully
embedded into nanocomposites, which led to augmenting new bone generation and restoration
because GNPs tend not to simply degrade in physiological fluids and anti-infiltrate corrosive media,
thus reducing the degradation rate of the Mg-based composite [133]. A Similar examination showed
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that [138–140] the corrosion performance of Mg-based composites was enhanced by the embedding of
sufficient amounts of GFNs.

Shuaia et al. [102] fabricated a Mg alloy/GO composite with a 3D honeycomb nanostructure
accompanied by remarkable corrosion resistance via the SLM process. Outcomes revealed that
GO dispersed along the GBs and progressively covered α-Mg grains as the GO amount increased.
Because of this remarkable anti-infiltration property of GO, the honeycomb nanostructure served
as a solid obstacle to inhibit the increasing corrosion rate. The oxygen-incorporating groups on
GO accelerate the precipitation of apatite and additionally inhibit further attack of the corrosive
solution [141,142]. Turan et al. [107] also prepared Mg-xGNPs (x = 0.1, 0.25, and 0.5 wt.%) composites
via SPM approaches with GNPs. A homogeneous dispersion was attained for the entire specimens
while partial agglomeration might be observed in Mg-0.5GNPs. In comparison with the bare Mg, the
corrosion property was impacted adversely in composite encapsulated within graphene. In this context,
Rashad et al. [143] likewise examined the influence NaCl solutions have on the corrosion performance
of Mg-Gr composites. The outcomes showed that the existence of GNPs in various matrices reduces
the corrosion property of the composites. They also revealed that due to the presence of dislocation
amounts at the interface of composites, crevice invasions were generated, and hence, GNPs induce
the corrosion of Mg/Mg alloys as a result of the galvanic cell; this particular effect increases with
increasing GNP amount. The corrosion rates with various processing methods, corrosion solutions,
and measurement techniques are described in Table 3.
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Table 3. Corrosion properties of Mg-based nanocomposite containing GFNs.

Samples Reinforcement Processing
Route

Reinforcement
Particle Size

Corrosion
Medium

Icorr
(µA.cm−2) Ecorr vs. SCE

Corrosion Rate (mm/year)

Rp
(Ω.cm2) Ref

Non Polarized Polarized

Immersion
Time (h) HE or WL PDP

Pure Mg -

HEBM +
Compaction+

Sintering

-

Hank’s

0.81 ± 0.02
(mA.cm−2) -

24

32.52 ± 1.58
mL.cm−2.day−1

74.11 ± 3.61
mm/year

25.02 ± 1.79

[30]

Mg

0.1GNPs

Particle size (15 µm);
thickness (5 nm)

0.42 ± 0.02
(mA.cm−2) -

15.16 ± 0.41
mL.cm−2.day−1

34.57 ± 0.94
mm/year

13.28 ± 0.27 -

0.2GNPs 0.58 ± 0.03
(mA.cm−2) -

26.93 ±1.08
mL.cm−2.day−1

61.38 ± 2.48
mm/year

18.50 ± 0.83 -

0.3GNPs 0.35 ± 0.04
(mA.cm−2) -

30.41 ± 1.39
mL.cm−2.day−1

69.32 ± 3.16
mm/year

11.00 ± 1.08 -

Mg

0.1GNPs

Particle size (5 µm);
thickness (9 nm)

0.50 ± 0.05
(mA.cm−2) -

29.55 ± 2.61
mL.cm−2.day−1

67.35 ± 5.95
mm/year

15.13 ± 0.91 -

0.2GNPs 0.69 ± 0.03
(mA.cm−2) -

31.54 ± 2.97
mL.cm−2.day−1

71.88 ± 6.77
mm/year

21.45 ± 1.91 -

0.3GNPs 0.91 ± 0.03
(mA.cm−2) -

34.93 ± 1.82
mL.cm−2.day−1

79.62 ± 4.17 mm/year
28.74 ± 3.06 -

Mg-Sr-Ca - SC + HTE -

SBF

7.373 1.832 - - 0.241

[114]Mg-Sr-Ca GNPs SC + HTE - 6.980 1.776 - - 0.231 -

Mg-Sr-Ca GNPs + MgO SC + HTE - 9.279 1.800 - - 0.269 -

AZ61 -

SPM + SLM

-

SBF

50 ± 4 1.54 ± 0.02

360

- 1.21 ± 0.09 -

[102]
AZ61

0.2GO

Diameter (8–15 µm)

89 ± 12 1.54 ± 0.02 2.03 ± 0.27 -

0.4GO 212 ± 16 1.52 ± 0.03 205.23
mL.cm−2 4.84 ± 0.36 -

0.6GO 118 ± 13 1.57 ± 0.02 2.67 ± 0.30 -
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Table 3. Cont.

Samples Reinforcement Processing
Route

Reinforcement
Particle Size

Corrosion
Medium

Icorr
(µA.cm−2) Ecorr vs. SCE

Corrosion Rate (mm/year)

Rp
(Ω.cm2) Ref

Non Polarized Polarized

Immersion
Time (h) HE or WL PDP

0.8GO 85 ± 6 1.51 ± 0.02 1.94 ± 0.14 -

1.0GO 35 ± 3 1.56 ± 0.03 15.3 mL.cm−2 0.76 ± 0.07 -

1.2GO 135 ± 15 1.53 ± 0.02 65.25
mL.cm−2 3.08 ± 0.34 -

AZ31 -

SPM

-

0.1 M
Na2SO4

371.54 1.416 - - ∼4 108.6 (Ω)

[143]AZ31

0.2r-GO
Thickness

(up to 5.8 nm)

992.08 1.456 - - ∼11.5 465.7 (Ω)

0.3r-GO 207.25 1.464 - - ∼2.4 755 (Ω)

0.4r-GO 61.21 1.328 - - ∼0.5 221.4 (Ω)

0.5r-GO 207.41 1.464 - - ∼1.8 754 (Ω)

Mg-3Zn-Ca

0.5GNPs

SPM

-

SBF

186.54 1.46 - - - 134.57

[110]1GNPs - 112.89 1.45 - - - 166.55

2GNPs - 420.76 1.49 - - - 66. 21

AZ91 GNPs SPM
Diameter (5, 8 nm);

surface area
(about 750 m2/g)

3.5 wt.%
NaCl 388.43 µA 1.491 - - 4.92 - [108]

AZ31 -

SC
Diameter (5, 8 nm);

surface area
(about 750 m2/g)

3.5 wt.%
NaCl

15.47 µA 1.453 - - - -

[141]

AZ31 1.5GNPs 18.13 µA 1.465 - - - -

AZ31 3.0GNPs 19.31 µA 1.479 - - - -

AZ61 - 11.54 µA 1.457 - - - -

AZ61 3.0GNPs 14.21 µA 1.476 - - - -

Pure Mg -

SPM

- - 0.12
(mA.cm−2) 1.63 - - 249.9

(mpy) -

[107]
Mg

0.1 GNPs

Thickness (5–8 nm);
surface area
(750 m2/g)

3.5 wt.%
NaCl

0.51
(mA.cm−2) 1.59 - - 1048 (mpy) -

0.25 GNPs 0.89
(mA.cm−2) 1.58 - - 1813 (mpy) -

0.50 GNPs 1.02
(mA.cm−2) 1.59 - - 2090 (mpy) -

Mg-0.5
MWCNT GNPs PEO Coating - 3.5 wt.%

NaCl 101 µA 1.424 - - 14.46
(mpy) - [144]

GNPs: graphene nanoplatelets, MWCNTs: multi-walled carbon nanotubes, Icorr: corrosion current density, Ecorr: corrosion potentials, HE: hydrogen evolution, WL: weight loss, PDP:
potentio-dynamic polarization, Rp: polarization resistance, DMD: disintegrated melt deposition, PM: powder metallurgy, SPM: semi-powder metallurgy, HTE: hot extrusion, SC: stir
casting, HEBM: high energy ball milling, SLM: selective laser melting, PEO: plasma electrolytic oxidation.
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8. Biodegradability of Mg-GFN-Based Composites

Commonly, GNPs tend not to simply degrade in physiological fluids; even so, their full degradation
might be attained by human enzymes accelerating chemical reactions in the body [137]. GNPs offer
a distinctive orientation of sp2 carbon atoms, creating a 2D structure (honeycomb shape) with great
electron density, ultimately causing an impenetrable performance against entire gas molecules, which
increase the corrosion resistance of Mg alloys [47,144–147]. The GNPs with a thin layer work as
a barrier film within the metal matrix, leading to a substantial lessening in current densities and
subsequent corrosion rates throughout immersion tests of composites containing GNPs [138,139].
GNPs, by possessing an atomic-scale barrier, are also favorable in reducing or suppressing H2 gas
formation in Mg-based specimens during the degradation process when exposed to the body fluids, as
presented in Figure 14 [47].
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Neupane et al. [140] revealed the improved anti-corrosion behavior of GNPs embedded in Mg
substrates. The impenetrability and outstanding mechanical characteristics (1100 GPa) of GNPs make
them suitable as an additive phase (reinforcement agent) embedded into the Mg matrix for implant
applications. As mentioned previously, the degradation of GNPs mostly takes place in enzymatic
oxidation in biological fluid [148], while surface treatment of GNPs results in the attachment of specific
FGs including carboxylic acid, which is favorable for degradation performance. The great specific
surface areas of GNPs additionally help their degradation behavior by improving the biomolecules’
attraction on the surfaces [149]. Other researchers also further confirmed that these elements likewise
have an effect on the degradation process of GNPs including 2D planar sheets that offer substantially
more connection surfaces with the biomolecules [150], along with the unsmooth, wrinkled surface
morphology of GNPs, noticeably promoting their interlocking performance with the surrounding
media, hence improving the attachment of biomolecules on their surfaces [151]. It should be mentioned
that the volume fraction of GNPs in metal-based biomaterials ought to be in the amount of 1–10% due
to the fact that a high concentration of GNPs results in dramatically elevated stiffness of the composite,
which would possibly not be biomechanically suitable with natural bone.

9. Cellular Response of Mg-GFN-Based Composites

Regardless of the appealing features of MMNCs incorporating different nano-additive phases,
safety and toxicity issues hinder their use in bone tissue engineering (BTE). The most recent
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advancements in nanotechnology have made it possible for experts to create composite materials
presenting appealing characteristics by modulating their features on the nanoscale. Nevertheless,
from the viewpoint of biomedical purposes, biological characteristics and the interaction of these
nanomaterials in an SBF have remained questionable subjects as a result of unclear studies on their
toxicity. For that reason, it is crucial to further examine the biological characteristics of these composites
including cell response, biocorrosion, and cytotoxicity. Biodegradable materials including Mg absorb
in vivo and dissolve fully after fulfilling the healing process time. The alloying elements are the key
factors of biodegradable materials that might be effortlessly absorbed by the body. Nevertheless,
Mg-based composites degrade quickly in physiological media prior to adequate healing of the tissues.
This kind of quick degradation of Mg-based composites likewise affects their capacity to be used
for load-bearing implant purposes [152]. Typically, the biocompatibility of MMNCs is determined
by their connections with different biological systems including cells, proteins, and other complex
biomolecules, for example DNA [152]. It is actually recognized that GFNs cause the attachment of
cell-binding proteins and the following cellular attachment [153,154]. The effective binding of proteins
existing in SBF and tissues on the GFNs results in the generation of biocorona protein on composite
surfaces [155]. The structure of this kind of biocorona primarily relies on the intrinsic characteristics of
Gr and has the ability of modifying of the extracellular matrix (ECM). Consequently, the tendencies
of Gr in biological systems are usually accurately forecasted by knowing the creation procedure of
biocorona on their surfaces [47,154]. Current reports likewise revealed that π-π stacking, a result of
the solid van der Waals force, is actually identified as a dominant adsorption system of proteins on
top of the GNPs’ surfaces. This kind of solid π-π stacking mainly takes place among the solid sp2

bonding of carbon atoms in GFNs and the benzene rings in amino acids [156,157]. Accordingly, any
kind of enzymatic degradation of GNPs through the defense mechanisms of competent cells could
work as a distinctive case of biocoronal interactions within the body. GNP embedded nanocomposites
are effective in electrically inducing tissues owing to their outstanding conductive characteristics,
and this is favorable in facilitating new bone generation and restoration. These sorts of conductive
nanobiomaterials likewise enhance the adsorption of ECM proteins, hence enhancing the expression of
osteogenic differentiation and the generation of pertinent growth factors. BMP is a widely recognized
protein that elevates the osteogenic differentiation of Mg-based composites containing GFNs and
has demonstrated outstanding attachment on the Gr surfaces [154,156,157]. In this regard, it was
suggested [34] that the bacterial cytotoxicity of GFNs could possibly be caused by both membrane and
oxidative stress. GFNs have a tendency to lead to cellular attachment, due to the fact that it really is
more probable to interact with bacterial cells because of the greater density of FGs and small size [35].
GFNs could destroy the cells as a result of membrane stress generation, which results in destroying
the cell walls [34]. This sort of biocompatibility causes this to be an appealing nano-additive phase
for MMNCs. In vitro cytotoxicity examinations were performed by Saberi et al. [110] and Munir et
al. [30], and no negative consequences with encapsulation of GNPs in pure Mg and Mg-based matrix,
respectively, were found. Mg-based matrix with homogeneously distributed GNPs with lower defect
amounts presented a greater level of cell viability ratio (CVR). Furthermore, MG-63 cells were observed
by Shuai et al. [102] to be attached and to greatly proliferate on AZ61-1.0GO alloy and exhibited
greater cytocompatibility as opposed to AZ61 alloy. The sluggish corrosion along with lower pH value
increase cause greater cell attachment and growth on the nanocomposite surface with a lower content
of GNPs [110]. Nevertheless, Saberi et al. [110] exhibited that more addition of GNPs up to 2 wt.% had
an effect on cellular attachments and diminished the density and growth of the cells resulting from
activating the mitochondrial pathway. Table 4 exhibits in vitro the cytotoxicity examination regarding
Mg-GFN composites.
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Table 4. The cellular characterization in Mg-GFN-based nanocomposites.

Materials Processing Route Reinforcement
Particle Size Cell Type Cell Viability

(%) ALP Activity Cell
Attachment Application Ref.

Mg-0.1GNPs HEBM + PM Particle size (15 µm);
thickness (5 nm) SaOS-2 cells CVR: 1.13 - Excellent In vitro [30]

Mg-0.2GNPs HEBM + PM Particle size (15 µm);
thickness (5 nm) SaOS-2 cells CVR: 0.92 - Excellent In vitro [30]

Mg-0.3GNPs HEBM + PM Particle size (15 µm);
thickness (5 nm) SaOS-2 cells CVR: 0.9 - Excellent In vitro [30]

AZ61-1GO SPM + SLM Diameter (8–15 µm) MG-63 cells Optic density =
1.7 after 5 days - Good In vitro [30]

Mg-3Zn-Ca-0.5GNPs SPM - MG-63 cells 83 % for 24 h
87 % for 48 h

3.4 for 24 h
4.7 for 48 h Adequate In vitro [102]

Mg-3Zn-Ca-1GNPs SPM - MG-63 cells 65 % for 24 h
60 % for 48 h

3.7 for 24 h
5.5 for 48 h Adequate In vitro [110]

Mg-3Zn-Ca-2GNPs SPM - MG-63 cells 100 % for 24 h
100 % for 48 h

2.5for 24 h
3.4 for 48 h Adequate In vitro [110]

Mg-1ND PM Particle size < 10 nm L-929 cells 93.2 % for 24 h
105.8 % for 72 h - Good In vitro [110]

Mg-3ND PM Particle size < 10 nm L-929 cells 94.1 % for 24 h
102.2 % for 72 h - Good In vitro [158]

Mg-5ND PM Particle size < 10 nm L-929 cells 95.4 % for 24 h
113.1 % for 72 h - Good In vitro [158]

* HEBM: high energy ball milling, PM: powder metallurgy, SPM: semi-powder metallurgy, SLM: selective laser melting, ND: nanodiamond, CVR: cell viability ratio.
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10. Antibacterial Performance of Mg-GFN-Based Composites

Saberi et al. [110] demonstrated that Mg-GNP composites offered great antibacterial performance
towards Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria based on disk diffusion.
According to the results, employing GNPs within the Mg matrix improves the inhibition zone. The
charge transfers and the infiltration into the cells are the primary antibacterial systems [34,159]. As
soon as the bacterial cells come into contact with the GFNs, they will likely be finally damaged as a
consequence of numerous mechanisms including membrane stress, oxidative stress, and/or wrapping
isolation. The bacterial development is prevented through these mechanisms that might function
independently or with each other [160]. Initially, the bacterial cells were resistant to the Gr-based
materials for a limited period, and subsequently, owing to a few cells having a smaller weight of
surface phospholipid, the cell walls’ integrity was to some extent sacrificed. Ultimately, an extreme
reduction happened in the cell walls [160]. Within these conditions, the lipid bilayer is infiltrated by
coming into contact with the GNPs. The membrane layer is routinely pierced by the sharp sheet edges
of the GFNs, which reduce the energy required for membrane infiltration. Among the elements that
could assist in the cell membrane layer destruction are the negative charges of the bacterial cells, which
enhance the connections with the sheet edges, since they function as great electron acceptors.

It is suggested that the primary function of oxidative stress is the antibacterial activity of GO.
Actually, the oxidation of lipids, nucleic acids, and proteins that ultimately contributes to cell membrane
layer damage and cellular growth inhibition is caused by the activity of oxidative stress on bacteria [34].
The reactive oxygen species’ (ROS) release is the reason for this inhibition that might result in the
modification of the cellular redox circumstance. In the condition in which usually the particles are
absorbed, the main systems for cellular protection are generally oxidative stress, as well as ROS
release. By disturbing the equilibrium among the intracellular oxidant and antioxidant functions,
the GNPs might enhance the oxidative stress [161]. The ROS, which usually can destroy cellular
parts, in particular proteins and DNA, commonly includes OH, O2−, and H2O2 [162]. Following
that, Gr exhibited antibacterial capacity, despite the fact that GO of similar amounts showed greater
antibacterial performance than that of Gr. The main antimicrobial mechanisms were charge transfer and
infiltration into the cell walls [163]. Consequently, Gr and GO with their antimicrobial capacity might
fulfill the specifications regarding bone restoration components below the safety limit [161]. Another
investigation [159] demonstrated that Gr seriously destroys and deactivates the microorganisms when
it attaches to them. This antimicrobial action was effective and quick against E. coli and S. aureus,
and the destruction took place mainly in the cell membrane layer. Based on an examination, the Gr
nanosheets experienced a greater antimicrobial capacity than standard antibiotics including kanamycin.
Likewise, concerning the antimicrobial mechanisms, Shuai et al. [164] revealed that the inhibitory
characteristics of the Gr-based nanocomposites elevated cellular injuries owing to the occurrence of
oxidative stress. In other research [163], GFNs, for instance fullerene and CNTs, were considered as the
agents to generate the oxidative stress. Furthermore, consistent with some other examinations, the
cell wall experiences a charge imbalance, which might destroy the cell walls. The solid connection of
the negatively charged microbial cell walls with the outstanding electron acceptors Gr encapsulated
nanocomposites results in the previously mentioned electrons from the bacterial membrane to the
GNPs, and therefore, the microbial cell walls might be encircled by means of a conductive system.
For that reason, this destroys the microbial cell by way of generating oxidative stress in the microbial
cell membrane.

11. Future research Directions in using GFNs for Bone Tissue Engineering

The potential of Mg-based encapsulated GFNs was reviewed in the former sections, suggesting
their use as new biomaterials pertaining to BTE. All of the research indicated that GFNs are appearing
as new components in the associated areas of biomedicine, drug release systems, and TE, and they
are developing quickly. Comprehensive investigation is continuing to set up a system for employing
GFNs as the nano-additive phase in present metallic biomaterials to be able to create new and very
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useful implants and scaffolds for TE usage. For these kinds of nanocomposites, a lower amount of
CNT and Gr (≈ 5 vol.%) was recommended, thus to restrict the portions getting into the human body
system [165]. The immobilization of CNT and Gr in metallic biomaterials prevents the exposure of
adjacent tissues, therefore providing biosafety for these kinds of particles [47]. It is worth noting
that the application of biodegradable Mg-GFN composites fabricated through various fabrication
procedures and structural modifications for load-bearing implant process for bone substitution and
reproduction attracts a huge amount of attention [166–180]. Taking into consideration the outstanding
biological response and incredible mechanical characteristics of Gr, as described in earlier sections, it is
anticipated that a number of implants and scaffolds will be created in the near future. Despite the
fact that the results from initial in vitro and in vivo biological tests on Gr are motivating, additional
comprehensive, methodical research works are expected to comprehend their long-term biological
results. With the current literature on the biomedical usage of Gr, it is still not feasible to determine them
as safe components concerning BTE. Among the key factors for the inability of these nanomaterials
to convert directly into clinically verified use is the absence of reliable in vivo research to evaluate
their nanotoxicity. In addition to other biomedical usage, GFN-based implants and scaffolds for BTE
are usually regarded as safe as there is minimal chance that these nano-additive phases in metal
matrices are going to be directly connected to living microorganisms. These demands create mindful
technology and scientific strategies to reduce the nanotoxicological effect of Gr even while keeping the
appealing ideal characteristics regarding BTE. The current review article offers more examination to
be performed to utilize GFNs as nano-additive phases for Mg-based alloys. Specifically, additional
in vivo examination is required to confirm the appropriateness of these materials for implant usage.

12. Conclusions

This review significantly examined the possibilities, current progress, challenges, and upcoming
exploration guidelines with regard to GFNs as nano-additives (reinforcements) in Mg-based matrices.
Mg alloys have benefits compared to the traditional stainless steel, Co-based alloys, and Ti-based
alloys because of the outstanding biodegradability and cytocompatibility along with the appropriate
mechanical performance concerning implant usage [181–202]. From this perspective, the mechanical
characteristics of bioimplants ought to be adequate to maintain their strength throughout the healing
process. Nano-additives (reinforcements) are able to enhance the mechanical integrity of Mg-based
composites along with ductility at the same time. Following that, GFNs effectivity act as functional
components and reinforcement phases for Mg-based composites, which offer distinctive characteristics
including large surface areas and outstanding mechanical, thermal, and electrical characteristics, along
with great chemical stability. The synergetic capability of GFNs to enhance ductility together with
strengthening, as well as decreasing weight is extremely attractive and prevails over the drawbacks
of other reinforcement phases like ceramic particles. Furthermore, GFNs, in particular GO, have
considerable biological characteristics and reveal effective antibacterial performance owing to ROS
release and oxidative stress. Furthermore, the fabrication process of composites such as SC, PM, SPM,
SLM, and FSP, as well as other parameters including GFN amount and type have a significant effect on
the mechanical, anticorrosion, and biological properties Mg-based composites encapsulated within
GFNs. On top of that, apparently, the presence of GFNs, in particular GO and GNPs, within Mg-based
matrices in lower amounts could provide better anticorrosion and biological properties in vitro and
in vivo. In addition, there are widely recognized strengthening systems for Mg matrices; among
them, refined grain structure, Orowan looping, and stress transfer are the primary strengthening
mechanisms in Mg matrices strengthened by GNPs. Taken together, GFNs as nano-additive phases
(reinforcement agents) offer incredible potential to be employed for load-bearing implants and BTE
applications. However, the cytocompatibility of GFNs is nevertheless an arguable matter that hinders
developments in employing these appealing reinforcement agents for clinical usage. Their safe clinical
implementation as revolutionary reinforcement agents for application in load-bearing implants and
BTE requires additional assessment.
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Abbreviations

MMCs Metal matrix composites
MMNCs Metal matrix nanocomposites
GFNs Graphene family nanomaterials
Gr Graphene
GNPs Graphene nanoplatelets
GO Graphene oxide
rGO Reduced graphene oxide
GRO Graphite oxide
CNTs Carbon nanotubes
MWCNTs Multi-walled carbon nanotubes
SBF Simulated body fluid
GB Grain boundary
CMG Chemically modified graphene
BG Bioglass
PM Powder metallurgy
DMD Disintegrated melt deposition
MSDR Multi-step dispersion route
SPM Semi-powder metallurgy
HTE Hot extrusion
SC Stir casting
HEBM High energy ball milling
MBM Mechanical ball milling
SLM Selective laser melting
SSTS Semi-solid treatment stirring
RC Rheocasting
UTS Ultimate tensile strength
TS Tensile strength
TYS Tensile yield strength
E Elastic modulus
EL Elongation
ET Elastic modulus in tensile
CS Compressive strength
UCS Ultimate compressive strength
EC Elastic modulus in compressive
CYS Compressive yield strength
CTE Coefficient of thermal expansion
FGs Functional groups
CIP Cold isostatic pressing
HP Hot pressing
HIP Hot isostatic pressing
SPS Spark plasma sintering
HTE Hot extrusion
HF Hot forging
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HR Hot rolling
FSP Friction stir processing
ECA Equal channel angular processing
MA Mechanical alloying
Icorr Corrosion current density
Ecorr Corrosion potentials
HE Hydrogen evolution
WL Weight loss
PDP Potentio-dynamic polarization
Rp Polarization resistance
PEO Plasma electrolytic oxidation
FSW Friction stir welding
TE Tissue engineering
BTE Bone tissue engineering
CVR Cell viability ratio
ECM Extracellular matrix
ROS Reactive oxygen species
BMP Bone morphogenetic protein
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