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Abstract: Chitosan (CS) has gained particular attention in biomedical applications due to its
biocompatibility, antibacterial feature, and biodegradability. Hence, many studies have focused on
the manufacturing of CS films, scaffolds, particulate, and inks via different production methods.
Nowadays, with the possibility of the precise adjustment of porosity size and shape, fiber size, suitable
interconnectivity of pores, and creation of patient-specific constructs, 3D printing has overcome the
limitations of many traditional manufacturing methods. Therefore, the fabrication of 3D printed CS
scaffolds can lead to promising advances in tissue engineering and regenerative medicine. A review of
additive manufacturing types, CS-based printed constructs, their usages as biomaterials, advantages,
and drawbacks can open doors to optimize CS-based constructions for biomedical applications.
The latest technological issues and upcoming capabilities of 3D printing with CS-based biopolymers
for different applications are also discussed. This review article will act as a roadmap aiming to
investigate chitosan as a new feedstock concerning various 3D printing approaches which may be
employed in biomedical fields. In fact, the combination of 3D printing and CS-based biopolymers
is extremely appealing particularly with regard to certain clinical purposes. Complications of 3D
printing coupled with the challenges associated with materials should be recognized to help make this
method feasible for wider clinical requirements. This strategy is currently gaining substantial attention
in terms of several industrial biomedical products. In this review, the key 3D printing approaches
along with revealing historical background are initially presented, and ultimately, the applications of
different 3D printing techniques for fabricating chitosan constructs will be discussed. The recognition
of essential complications and technical problems related to numerous 3D printing techniques
and CS-based biopolymer choices according to clinical requirements is crucial. A comprehensive
investigation will be required to encounter those challenges and to completely understand the
possibilities of 3D printing in the foreseeable future.
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1. Introduction

Lesions and disorders that need tissue as well as organ transplantation continue to be important
issues in clinical medicine, and there are also issues concerning the use of current methods which consist
of auto-transplantation and xeno-transplantation. Thus, one can find substantial restrictions. Donor
deficiency regarding organ transplantations tends to be a significant clinical problem globally [1,2].
Possible challenges which are undoubtedly experienced with conventional approaches consist
of difficulties, extra injuries, restricted source donors, and immunological rejection. However,
the implantation of synthetic organs in clinical treatments is frequently effective and enhances the
sufferers’ quality of life. These synthetic organs are usually created from synthetic and natural polymers,
ceramics, metals, and composites [1,2]. Concerning these kinds of materials, natural-based polymers
tend to be considered among the large number of ubiquitous types of components in the medical
related field [3]. Due to the fact that they occur in nature, components of both plant and animal
origin are typically assumed to display an improved compatibility with human hosts, a capability
to present bioactivity and biodegradation. Consequently, natural nano-materials and particulate
components can demonstrate these features in circumstances in which synthetic components have never
fulfilled medical objectives [1–3]. Natural polymers present in nature are usually gathered directly
into six primary categories with regard to their resources: proteins, polysaccharides polynucleotides,
polyisoprenes, polyesters, and lignin [4]. One of the polysaccharides which is made from shells of
aquatic animals is chitin. CS, the main derivative of chitin, dates back to 1859 based on a study
conducted by Rouget. The term CS was initially presented in 1894 by Hoppe-Seyler [5]. Chitosan
as a biodegradable polymer has drawn considerable attention for biomedical purposes such as
nano-fibers for wound dress applications, drug release systems, and space fillers [6,7]. Figure 1
exhibits the 3D printing concept and characteristic for augmentation of chitosan 3D printing technique.
These characteristics include favorable physicochemical properties, biocompatibility, biodegradability,
non-toxic degradation products, and antibacterial feature as well as their capacity for carrying cells and
drugs for the recovery of soft and hard tissues [8–12]. Additionally, CS has great possibilities to enhance
cell adhesion and viability, and also a substantial influence on the reproduction of damage tissue.

On the other hand, many studies have made an effort to fabricate CS-based constructs by utilizing
several conventional methods. However, limitations of these methods, such as low mechanical
properties for electro-spinning, residual solvents in product and little control in pore size for solvent
casting, energy usage, extensive timescale, the utilization of cytotoxic solvents, and the creation of
tiny and abnormal-sized pores for freeze drying [13], have limited applications for thermoplastic
components in phase separation, while closed pore structures for gas foaming have raised the necessity
to look for another method of fabrication [11,13,14]. To overcome these limitations, a new technique
called 3D printing or additive manufacturing has emerged. Appealing manipulations to produce
personalized and patient certain designs, capability to duplicate, and the potential to prognosticate
are the main advantages of this method. Furthermore, bio-printers offer a possibility to print the
cell-laden matrices intended for productive reconstruction [11]. Additive manufacturing three is
founded on the theory of layered production through which the components tend to be simply
overlapped layer by layer. This system might be employed for rapidly prepared materials along with
any complicated design by precisely gathering the components utilizing solid modeling based on a
computer aided design (CAD) model [15,16]. Stereo-lithography (SLA), powder bed fusion (selective
laser sintering (SLS), selective laser melting (SLM)), binder jetting, or indirect 3D printing, sheet
lamination, directed energy deposition, material extrusion, and material jetting are the various types
of additive manufacturing (AM) [17–28]. The 3D printing approaches developed in recent years can
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be traced back to the 1980s when the earliest SLA techniques were presented by Charles Hull [26,29],
and in 1988, 3D systems launched from the commercial perspective with the accessible 3D printer,
the SLA-250 [29–35] as shown in Figure 2.
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The 3D printing continues to be employed in a broad range of health-related settings. One such
setting is personalized pre-operation therapy which is intended for preoperative preparation and
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personalized operative equipment and prostheses. Adhering to a medicinal therapy, 3D printing
is important in confirming the results attained by the affected person. Another one is examining
various gadgets in particular pathways; an obvious illustration is the duplication of various vascular
designs to examine the usefulness of a cardiovascular process utilized to deal with peripheral and
cardiac artery illness. Enhancing healthcare education [26,36–44] is another 3D printing application,
as certain 3D-printed patient types have shown that they might improve functionality and promote
quick learning. The affected person education can be mentioned as another applicable advantage of
these methods as patient-based care creates individual education among the major concerns for nearly
all health-related suppliers. Furthermore, the 3D printing enables the creation of implantable tissue
by bio-printing. Also, the 3D printing of drugs containing inks as a customized drug delivery can be
done where the powdered drug layer to speed up its dissolution in comparison with the typical pills.
Finally, the 3D printing could stand for a possibility to save life, decreasing the waiting list of affected
individuals who require transplantation [26]. Despite all the advantages and the progress made in
tissue engineering, it seems that creating whole organs remains a real challenge which has not been
overcome yet.

Many studies have been performed to review the potential of CS and its derivatives for medical
applications [36–44], but it is worth mentioning here that one of the most prominent differences between
the present review and the others is that CS constructs created via 3D printing methods are reviewed
specifically. In addition, for first time recent developments of methodology and the capabilities of 3D
printing CS-based polymer are highlighted. Ultimately, essential restrictions are outlined to inspire the
upcoming studies regarding 3D printing of CS-based polymers. Figure 3 shows various 3D printing
applications for the preparation of different structures, including bone, cartilage, nerve, skin, vascular
regenerations, and liver repairing as well as their capacity for carrying cells and drugs in order to
recover soft and hard tissues. Nevertheless, nearly all 3D printed polymers products are employed as
conceptual prototypes instead of practical components, considering that neat polymers constructed
by 3D printing usually suffer from insufficient strength and performance as completely practical and
load-bearing components. This kind of disadvantage limits the broad commercial applications of 3D
printed polymers. The purposes of this figure are to determine a number of possible 3D printing
purposes in various areas and to boost product development in a sustainable manner.
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2. 3D Printing Methods

Numerous approaches are associated with the 3D printing, every one of which is displayed by
one or more industrial technologies concept, as demonstrated by the ASTM International [45]. All the
techniques displayed in Figure 4 [18,19,21] which are listed in Table 1 reveal the details regarding the
technologies included, the components utilized, the clinical applications associated with every single
method, and the positive aspects and drawbacks of each approach [26].
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Regarding the, SLA method, it should be stated that it could be categorized based on build platform
motion (There are two techniques that fall under this classification; namely, top-down and bottom-up)
and laser movement (There are two types of techniques that are normally applied: projection-based
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stereo-lithography (PSL)) and scanning-based stereo-lithography (SSL) (see Table 1) [18]. The top-down
method has a number of benefits in comparison with a bottom-up method. Initially, it is safer and more
reliable to apply due to the fact that the laser is enclosed within just the printing unit. Therefore, the user
is not subjected to the laser beam. Next, the curing procedure is performed in a closed atmosphere
to protect against oxygen prohibition throughout photo-polymerization. Subsequently, recoating
of the liquid resin employing a roller is not needed due to the fact that refilling occurs routinely
with the help of gravitational pressure. Consequently, a top-down strategy may create softer printed
components as a result of the complete contact between the liquid resin and the even base surface of the
tank [18]. Stereo-lithography employs photopolymers which could be cured by UV laser. A UV-laser is
normally manipulated in a preferred route to shoot in the resin tank, and the photo-curable resin could
polymerize into a 2D patterned layer. Then each layer is cured, the system lowers, and an additional
layer of uncured resin is prepared to be designed. Common polymer materials employed in SLA
tend to be acrylic and epoxy resins. Comprehending the curing responses taking place throughout
polymerization is essential to manage the level of quality of ultimate printed components [12,18,46].
Strength of the laser power, scan rate and timeframe of exposure has an impact on the curing period
and printing quality. Photo-initiators and UV absorbers could be incorporated with the resin to
handle the degree of polymerization. The primary benefit of SLA printing systems is the capability to
print components with a high quality. Furthermore, considering that SLA is a nozzle-free approach,
the problem of nozzle clogging might be prevented. Regardless of these positive aspects, the high price
of this method is a primary issue for commercial plans. Feasible cytotoxicity of residual photo-initiator
and uncured resin is an additional issue [12,46]. PSL prints every single layer together with a single
shot of laser exposure through generating designed laser lights and SSL scans the surface of each one
layer to produce designs. Therefore, PSL is appropriate for higher quality printing of small components
as a consequence of the restricted size of the designed laser light. SSL, alternatively, is great for big size
printing at the price of quality. PSL likewise offers a faster printing period in comparison with SSL
since every single layer is printed in an individual shot [12,46]. Lately, the experts have designed a
scanning-projection-dependent stereo-lithography (SPSL) which often couples PSL with SSL. SPSL
employ a digital micro-mirror device (DMD), which is employed to generate designed laser lights
in PSL and, by shifting the DMD, designed laser lights are also able to scan the resin surface area to
permit big size printing. In the next approach, powder bed fusion (PBF)-centered systems, in which
thermal energy selectively fuses regions of a powder bed. Selective laser sintering/melting (SLS and
SLM), direct metal laser sintering (DMLS) laser, and electron beam melting (EBM) are the primary
representative systems of PBF-centered methods. In the PBF approach, DMLS is an AM or rapid
prototyping (RP) method which employs metal powder and also a great power laser to jointly sinter a
useable component [12,22,46]. This kind of approach is suitable for generating extremely compacted
components although in order to attain gas or pressure rigidity, post-treatment is typically needed.
A large number of trade names including laser sintering explain the same method but not a different
approach. The method is highly comparable to the current AM approach known as selective laser
sintering (SLS). Both SLS and DMLS are basically the same approach; however, rather than employing
polymers or coated metal powders in the case of SLS, DMLS utilizes uncoated pre-alloyed metal
powders as the sintering material [12,22,46]. The EBM system utilizes a heated powder bed of metal in
a vacuum which is subsequently melted and created layer by layer by utilizing electron beam energy
(EBE) origin comparable to that of an electron beam welding (EBW)/electron microscope (EM) [22].

The third one, binder jetting, occasionally known as (indirect) 3D printing, is outlined by ASTM
as an additive manufacturing technique in which a liquid bonding agent is selectively precipitated to
bind the powder components. Table 1 demonstrates the key elements of a binder jetting (BJ) device,
including the powder roller, powder stock, build platform, powder bed, binder cartridge, and inkjet
print-head [24,47]. The printing approach functions as follows: initially, the powder roller develops
a thin film of powder from the powder stock onto the develop system, creating the powder bed.
Subsequently, the print-head jets binder (BJ) onto places which have already been outlined through the
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layer pattern of the 3D data file and afterward the powder particles in the selected parts are attached
with the nearby particles. After one layer is completed, the created system is diminished by an outlined
height and after that a fresh powder layer is propagated onto that completed layer. These actions are
duplicated until the entire component is eventually completed. The completed component, known as
the green component, is subsequently split up from the loose powder. The post-handling actions are
curing, debinding, sintering, and recommended compaction [24,47].

Sheet lamination process as the fourth method consists of ultrasonic additive manufacturing
(UAM) and laminated object manufacturing (LOM). LOM is one of the primary commercially accessible
AM techniques, which can be dependent upon layer-by-layer cutting and lamination of the sheets or
rolls of components [19,21,24,47]. Effective layers are accurately cut, implementing a technical cutter or
laser, and tend to be then attached together (form-then-bond) or the other way around (bond-then-form).
The form-then-bond technique is specifically valuable in the case of the thermal bonding of ceramics
and metallic components that makes it possible for the building of inner characteristics by eliminating
unwanted components prior to bonding. The unwanted components after cutting are remaining
intended for assistance and right after completion of the procedure they are usually eliminated and
reused. LOM could be employed for a wide range of components such as polymer composites, ceramics,
and paper and metal-filled tapes. Post-handling like high-temperature treatment could be needed
based on the kind of components and preferred characteristics. Ultrasonic additive manufacturing
(UAM) is a novel subcategory of LOM which is a combination of the two methods including ultrasonic
metal seam welding and CNC milling in the lamination process [19,21,24,47]. UAM is the only
AM technique that is certainly capable of building metal constructions at low temperature. LOM is
actually employed in numerous industries, including paper production, foundry sectors, electronics,
and smart setups. Smart setups are categorized as constructions that may be multi-tasking with several
sensors and processor chips. In contrast to traditional techniques, UAM may identify cavities in the
framework according to the incorporated computer model for loaded electronic equipment, sensors,
pipes, and additional characteristics. Electronic equipment is often printed in the identical lamination
approach of UAM applying direct write systems. LOM might result in a lessening of tooling expense
and production period, and is one of the greatest AM approaches for bigger constructions [19,21].
Nevertheless, LOM offers unfavorable surface quality without post-handling and its dimensional
precision is less compared to the powder-bed methods. Furthermore, eliminating the unwanted
components of laminates following the creation of the item is time-consuming compared to the
powder-bed approaches. For this reason, it is not suggested for complicated patterns [19,21].

The fifth method, direct energy deposition (DED), is actually employed for the production of
high-performance super alloys. DED works by using an origin of energy (laser or electron beam)
which is often specifically concentrated on a small area of the matrix and is additionally employed
to simultaneously melt the feedstock components (powder or wire). The melted components are
subsequently precipitated and merged directly into the melted matrix and solidified right after the
motion of the laser beam [19,21]. The DED and SLM approaches can be distinguished from each other
by the fact that no powder bed is applied in DED and the feedstock is melted prior to precipitation
in a layer-by-layer trend compared to FDM however by having an incredibly greater quantity of
energy intended for melting materials. Hence, this might be valuable for filling cracks and retrofitting
constructed components for the purpose of the application of the powder-bed approach. This approach
permits for each multiple-axis precipitation and several components simultaneously. On top of
that, DED could be combined effortlessly with traditional subtractive techniques to accomplish
machining [19,21]. This approach is typically employed with titanium, inconel, stainless steel,
aluminum, and the associated alloys in the aerospace industry. DED is often applied for big parts with
low difficulty and complexity and also for fixing bigger parts. DED may lessen the production period
and price, and offers outstanding mechanical characteristic, manipulated microstructure, and precise
composition adjustment [19]. The next method is the fused deposition modeling (FDM) or fused
filament fabrication (FFF) approach. FDM employs a continuous thermoplastic filament as the printing
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component to form great structures and scaffolds [26]. In this method, it functions by melting the
plastic filament in the extruder nozzle head and accurately deposit ignite on a 3D platform to form
a 3D structure based on the 3D data supplied to the printer. FDM procedure requirements support
constructions pertaining to numerous bio-applications with affecting geometries. FDM procedure is an
extremely precise and reliable procedure which is studio-friendly [26].

The last one, material jetting (MJ), is a drop-on-demand inkjet approach with a great spatial
resolution that deposits one drop of ink at a period through jetting and subsequently a reaction or
evaporation is triggered by an external energy origin (e.g., ultra-violet light, heating) to form a solid
framework [48]. Whereas numerous aspects including liquid density or surface tension and print
head or nozzle design might have an impact on the outcomes, the restriction on rapid viscosity will
become the most challenging feature for droplet creation in material jetting. The transformation of the
liquid material droplets to solid geometry must be carefully controlled. Material jetting is based on a
phase transformation of the printed components. Types of phase transformation settings utilized in
current printing systems tend to be: solidification of a melted material (e.g., wax, solder), evaporation
of the liquid part of a solution (e.g., a number of ceramic methods), and healing of a photopolymer
(e.g., Objet, ProJet machines) or several other chemical responses. Though the common issues of
components jetting for 3D manufacturing are recognized, one can find many features which might not
be effectively or completely comprehended [26,48]. Open investigation concerns are readily available
in virtually all phases of the printing approach-droplet creation, precipitation control, and multilayer
deposition. In the case of polymer jetting, one of the most suitable restrictions to tackle is that of droplet
creation [48,49]. Due to the fact that devices designed for inviscid components are being employed for
these purposes, several accommodations and restrictions are presently available. Users typically deal
with this by adjusting the components to fit the specifications of the present equipment. Nevertheless,
if the technique of droplet formulation might be improved as an alternative, this could possibly permit
the precipitation of a broader variety of components [49].
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Table 1. 3D printing methods and their raw materials, advantages and disadvantages.

3D Printing Method Materials Device Components Manufacturing Process Advantage Disadvantage Ref.

Stereolithography (SLA);
Bottom-up SLA;
Top-down SLA

A resin with
photo-active
monomers

Laser, Vat of resin, UV
light, Platform

The SLA technique is
classified to top-down
and bottom-up (based on
build platform movement
and laser motion).
The laser is utilized for
initiating
photopolymerization and
converting liquid resin to
solid shape via
photocuring process.

Various applications, Printing
living tissues, Having the highest
resolution among other printing
methods, SLA has the ability of
making structures with a
resolution of 20 µm or less,
which is the highest resolution
among other printing methods
(with resolution of 50–200 µm)

Lack of monolithic
mechanical structure
due to layer by layer
fabrication process.
Time consuming
process caused by low
photopoly-merization
rates

[18,25]

PBF (SLS, SLM, 3DP)
Metals and alloys,
Limited polymers,
Ceramic

Laser, Powder roller,
Powder bed, Powder
stock, Platform

The working method is to
spray powder materials
on the previous layers
and laser is utilized for
fusing powders together.

Good resolution, High quality
Slow printing rate,
Expensive process,
High porosity

[20,22]

Binder Jetting or indirect
3D printing

Metals, Polymers,
Ceramics

Powder roller,
Powder stock, Build
Platform, Powder
bed, Binder cartridge,
and inkjet print head.

The binder jetting
techniques is used for
powders and powder
layers binds together
with adhesive.
The powder is sprayed on
the platform via roller.
The head of print
sprinkled the adhesive on
top of the powder
according to the structure
designed by the
computer. The platform
comes down by the
thickness of object’s layer.
Next layer is made by
spraying powder on the
previous layer. The object
is fabricated via powder
and the liquid bounding.

Ceramics has more challenges to
use by additive manufacturing
than polymers and metals
technologies due to high melting
temperature; Hence, binder
jetting can be a promising
method to fabricate ceramic
based materials. Cost effective,
No shrinkage

Low mechanical
properties [24,47]
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Table 1. Cont.

3D Printing Method Materials Device Components Manufacturing Process Advantage Disadvantage Ref.

Sheet Lamination

Metals
(aluminum,
copper, stainless
steel and
titanium),
Ceramic,
and Composite

Laser, Platform,
Mirror, Material
spool, Cross hatched
material, Support
material,

UAM and LOM are two
strategies of sheet
lamination. The material
is placed on platform and
bonded to the previous
layer by the adhesive
materials. The designed
structure is cut from the
layer via laser. Then next
layer is made.

Low shrinkage and residual
stresses, Quick process

Difficulty of precision
in the Z-dimension
control, Lack of
mechanical
homogeneity in
products because of
utilizing adhesive in
fabrication process

[21]

Directed Energy
Deposition

A resin with
photo-active
monomers,
Hybrid
polymer-ceramics,
Metals and alloys
in the form of
powder or wire,
Ceramics and
polymers

Electron beam, Metal
Wire supply, Metal
wire, Platform

The powder or wire is
placed in the pool of melt
which is glued to a lower
part or layers via source
of energy (laser or
electron beam).

Cost effective and quick process,
Favorable mechanical properties,
Control on microstructure

Low accuracy and
surface quality,
Restrictions on
printing complex
geometric shapes
with precise details

[19]

Material extrusion FDM
and FFF Plastics, Polymers

Material spool, Heater
element, Nozzle,
Heater element

Thermoplastic materials
are melted and extruded
and create layers by
moving the nozzle
according to the
computer design.

Ease of use, Suitable mechanical
properties

Filament required,
Restriction of raw
materials, Inability to
print live cells

[26]

Material jetting Plastics, Polymers UV light, Elevator,
Platform,

The MJM mechanism of
action is similar to ink jet
printer. Material jetting
on platform is done (drop
or continuous)

High accuracy, Low waste of
material

Restriction of raw
materials: polymers
and waxes, Required
support material

[48,49]
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3. Chitosan (CS)

When the level of deacetylation (DA) of chitin gets to around 50% according to the source of
the polymer, it becomes soluble in aqueous acidic media and is known as CS. The level of DA offers
the glucosamine to N-acetyl-glucosamine ratio and is commonly categorized in the spectrum of
50%–95% [50–52]. The molecular weight of commercially accessible CS ranges from ~100 to 800 kDa
according to the origin and handling parameters. Each of these, i.e., the level of DA and the molecular
weight (Mw) presented a significance effect on additional physicochemical characteristic of CS such
as solubility, crystallinity, and degradation [50–52]. As an illustration, chitin (0% DA) and complete
(100%) DA chitosan achieve the highest crystallinity in contrast to CS with moderate degrees of DA
which is semi-crystalline. Also, the greater degree of DA resulted in greater degradation rates.

CS is insoluble in neutral and basic solutions (pH > 7). However, primary amines on deacetylated
subunits of CS have a pKa of 6.5 and hence the CS types are water-soluble salts in each organic and
inorganic acids [50–52]. The solubilization takes place through protonation of the -NH2 function on
the C-2 placement of the D-glucosamine replicate unit, by which the polysaccharide is transformed
into polyelectrolyte in acidic solution. The deacetylation, typically carried out in the solid state,
provides an irregular structure because of the semi-crystalline feature of the original polymer.
Assessment of the part of the protonation of CS in the presence of acetic acid and hydrochloric
acid (HCl) on solubility revealed that the level of ionization relies on the pH and the pK of the
acid [8]. The degradation behavior of CS in living organisms relies on the degree of DA and Mw.
CS is usually absorbed by enzymes that hydrolyze linkages between glucosamine-glucosamine,
glucosamine-N-acetyl-glucosamine, and N-acetyl-glucosamine-N-acetyl-glucosamine units. In the
body system, CS is absorbed because of the activity of lysozyme and bacterial enzymes present in the
colon. Similarly, the absorption of CS is often performed by chitosanase, chitin deacetylase, and β-N
acetylhexosaminidase [51]. CS utilization in drugs is extremely varied. However, tissue engineering
(TE) and wound dressing (WD) tend to be its two primary applications [53–67]. It was exhibited [68]
that CS might be employed to hinder fibroplasia in wound healing and to enhance cell growth and
attachment. Fibers manufactured from chitin and CS are generally valuable as biodegradable sutures
and wound dressing components.

4. Chitosan-Based 3D Printed Construct for Hard Tissues Application

CS naturally has inadequate mechanical property. So, it is usually employed for hard tissue
reproduction if its mechanical characteristic might be enhanced with inclusion of biomaterials including
hydroxyapatite (HA), bioactive glass ceramic (BGC), etc. [69] or carbon-based additives including
graphene [70], graphene oxide [71], and carbon nano-tube [72]. Occasionally, besides the reinforcement
agent, inorganic compounds are utilized to generate a greater interaction between CS and the
reinforcement agent, for example the 3D printed Maleic anhydride-grafted polylactide (PLA-g-MA)
and CS composites in the Sano study [73]. In this research, regardless of the fact that all CS incorporated
specimens with and without maleic anhydride portrayed appropriate cell response and antimicrobial
performance, the PLA-g-MA/CS materials displayed greater mechanical characteristic in comparison
to the PLA/CS composites. This influence was associated with a higher compatibility between the
grafted polyester and CS.

4.1. Bone Regeneration

Bone tissue engineering (BTE) is an interesting area of tissue engineering (TE) which has attracted
the attention of scientists and clinicians to create natural human bone (HB) by means of artificial
devices. Bone, a key component of the HB, is a firm, tough, extremely specialized, arranged and
compacted connective tissue [74–76]. It has several essential functions and is made from cells, organic
and inorganic matrix. Similar to any other TE process, BTE involves a scaffold matrix with/without
cells and biological cues for an effective result, i.e., bone reproduction. The biomaterials employed for
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building a bone scaffold matrix consist of polymers (natural or synthetic), natural-synthetic polymeric
blends, and ceramics or polymer-ceramic composites [77–80]. One of the most broadly utilized
polymers for bone reproduction is CS. Its cationic character is essential for BTE fields as CS might form
polyelectrolyte complexes with anionic biological macromolecules [77–80]. Particularly, anionic GAGs
including heparin and heparan sulfate modulate the action of numerous cytokines and growth factors
crucial to bone reproduction. Therefore, CS treatment with GAGs or CS incorporated with GAGs
in vivo might play a vital role in making use of growth factors to assist in bone creation [50,77–80].
A crucial characteristic of CS regarding TE is the simplicity with which it is usually functionalized.
Reactive main amines and secondary hydroxyl groups existing on CS permit for the incorporation
of the side groups, peptides or amino acids, most of which are usually critical for enhancing CS
characteristic for BTE applications [50]. CS degradation in vivo takes place through the action of
lysozyme leading to CS oligosaccharides which tend to be subsequently embedded into GAG or
glycoprotein pathways, metabolic pathways or excreted. Despite the fact that CS matrices provide
numerous positive aspects, they present poor mechanical characteristic and are unstable. Therefore,
typically pure CS cannot be employed for bone repair. CS polymeric blends have evolved as greater
options to improve the mechanical characteristic of the scaffold matrix and work as osteoconductive
matrices [77]. Numerous researches can be found that have made use of blending of different natural
polymers and ceramics including CS/Gel/HA printed scaffolds created with appropriate mechanical
characteristics, osteoblast cell adhesion, viability, and growth [81]. Furthermore, in most of the
reports on bone healing according to 3D printed CS structures, ceramics were incorporated into the
composite [82–84]. In this regard, HA is one of the most common ceramics which is used for this
application [82]. Likewise, in numerous researches CS is incorporated into the synthetic-based polymer,
including PCL, PLLA [85–91], or synthetic polymers and ceramics are incorporated at the same
time [92–95]. Even though synthetic polymers offer positive characteristics including cytocompatibility
and sufficient mechanical performance, their hydrophobicity and the absence of particular cell
recognition sites restrict their functional application. Thus, blending hybridized, synthetic, and natural
polymers provides molecularly structured, bioactive characteristic and tunable mechanical property.
By way of example, in a study by Dong et al. [85], in order to enhance the cell seeding productivity and
osteoinductivity, an injectable thermo-sensitive CSG was embedded into a 3D-printed PCL scaffold by
impregnating the PCL scaffold manufactured by FDM method, the first SFF in the pre-cooled CS/GP
solution [85].

In addition, rabbit BMMSCs and BMP-2 were embedded into CS hydrogel (CSG). The key
specifications of a perfect bone tissue scaffold should consist of macro-porosity and micro-porosity
of around >100 µm and <20 µm respectively, interconnected open pores for cell migration, adequate
mechanical performance, and suitable in vivo degradation duration to fit the healing rate of tissue
in-growth [85]. According to the research, the average pore size of PCL scaffolds was around 325.2 µm
and the pores of hybrid scaffold were successfully coated with CS hydrogel and reached to 62.4% which
seemed to be in the appropriate range. The compression modulus of PCL scaffold was almost similar
to that of the hybrid scaffold while the CM of the hybrid scaffold was considerably higher compared
with pure CS gel [85]. The compressive strength of PCL and hybrid scaffold was around 6.7 MPa
(comparable to cancellous bone tissue) and is significantly greater in comparison with other polymeric
scaffolds fabricated from PCL. However, the results of in vitro degradation study by Dong et al. [85]
pointed out a low degradation ratio for the PCL scaffolds, which happens to be a barrier for the
formation of fresh bone. Then again, roughly 60% of CSG is degraded right after three weeks of soaking
in PBS. Ultimately, the weight loss ratio of the hybrid scaffold amplifies steadily and is lower compared
with CSG as a result of the presence of PCL. The fast degradation of CSG in the hybrid scaffolds
permits fresh tissue creation and the constant release of incorporated bioactive molecules even though
the remaining PCL is prepared to offer extra mechanical aid for the neo-tissue. A constant release of
rhBMP-2 from CSG was noticed about 144 h throughout in vitro soaking. This verified the possibilities
of CSG as osteogenic scaffold components. Likewise, several cells in gels and gel-embedded scaffolds
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were higher compared to the pure PCL scaffold. The ALP level of MSCs in CSG and hybrid groups was
considerably greater compared with the PCL group at seven days, and the ALP levels preserved up to
the point of 14 days. These results indicate that CS embedded into PCL scaffolds improved osteogenesis
of BMMSCs for seven days, as opposed to pure PCL scaffolds. Keeping that in mind, at 14 days, CS
and CS-embedded PCL constructs portrayed incredibly higher levels of (Alkaline phosphatase) ALP,
(osteocalcin) OCN, and (collagen) COL1 compared with pure PCL scaffolds [85,92–95].

The gene expression levels were comparable for both hybrid and CS gel specimens, indicating that
CS is the primary component causing the improved osteogenesis and the PCL scaffold could not have
an effect on in vitro osteogenesis. Nevertheless, the outcome could possibly vary when the hybrid
scaffold is employed in vivo in which mechanical characteristic has a crucial role in the regulation of
cell differentiation. By implantation of scaffolds in mice, ARS revealed just disperse calcium deposition
in the CSG specimen and restricted calcium deposition on the PCL scaffold fibers. On the other
hand, more substantial area of ARS was formed in the pores and fibers of hybrid scaffolds [85,92–95].
Furthermore, it was exhibited that the pore sizes >300 µm are generally helpful for improved fresh
bone generation and the creation of capillaries. Small pores preferred hypoxic circumstances and
would probably stimulate chondrogenesis in contrast to larger pores that result in greater angiogenesis
and direct osteogenesis [85]. Hence, the FDM method was employed to selectively construct the PCL
scaffolds of 300 µm pore sizes to fulfill the aforementioned qualification of bone scaffolds [85]. In a
comparable examination, CS was blended with a synthetic polymer to repair the bone tissue (BT).
The pure PLLA scaffolds had been printed through an FDM method and soaked into the CS solution and
eventually the frozen scaffolds were removed and dried to attain the PLLA/CS scaffolds. Consequently,
the PLLA/CS scaffolds loaded with Quercetin (C15H10O7, Qu) and dopamine (D) with the aim of
enhancement of mechanical property and drug loading ability were obtained. The fabricated scaffold
(PLLA/CS-D/Qu) presented great bone generation, antioxidant and anti-inflammatory characteristics,
and compressive strength (15.06 MPa) (Figure 5) [86]. According to Dong et al. [85], the high
compressive strength of the PCL/CS scaffold is attributed to the formation of a great hydrogen bond
between the -C=O of PLLA and -NH2 of CS [86]. Taken together, the results illustrated the significant
effect of CS in the enhancement of osteogenesis level, whereas poor mechanical properties limited the
application of the CS polymer for 3D printing. However, after incorporation of HA [83,96], calcium
phosphate (Ca-P) [84], laponite [93], and bioglass (BG) [97] into the natural polymers, the ability of
CS scaffolds for 3D printing for bone repair was remarkably escalated. In addition to the mechanical
properties, incorporating various types of materials into each other helps to achieve optimal rheology,
the parameter which can influence the printability of the compounds used as the slurry for constructs
made by 3D printing. As an illustration, the inks contained suspensions of Ca-P particles in CS acidic
aqueous solution were employed by Caballero et al. [84] who implemented the robo-casting approach
for preparing CS/Ca-P scaffolds. Their outcomes portrayed that the ink rheological properties might
be tuned via alerting ink composition; specifically, more printable inks were attained with greater
CS amounts (0.19 mol·L−1). In a similar study conducted by Chavanne et al. [83], 3D printed CS/HA
scaffolds were manufactured with appealing mechanical properties, including high compressive
strength in the range of 16.32 MPa. Some binders such as lactic acid (LA) with a concentration of
40 wt % were employed to provide more suitable viscosity, greater wettability, and shorter solidification
period [83]. Despite the fact that bioactive HA and degradable polymers are generally appealing
biomaterials, mechanical characteristic of 3D printing-based composite structures still remains a main
problem. The expected mechanical characteristic could hardly be attained through high temperature
sintering approaches, since CS would likely decompose over 220 ◦C. Among the primary complications
revealed in their study is the insolubility of the prepared specimens which requires to be additionally
enhanced to guarantee long-lasting mechanical stability in SBF [83]. Similar studies revealed the
same results regarding the enhancement of 3D printed CS mechanical characteristic through the
incorporation of HA into the combination [82,96]. Bioglass as a bioactive reinforcement agent was
embedded into 3D printed CS bases by Dorj et al. [97]. Their results displayed that CS/10 wt% nBG
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scaffolds prepared via robo-casting presented a bimodal structure containing macro- and micrometers
structures. In this method, the composite solution is quickly solidified when the specimens are soaked
in a dry-ice cooled tank. Their fabricated scaffold (CS/10 wt % nBG) presented great bioactivity, good
cells attachment and proliferation owing to the existence of nBG which caused the CS-based printed
scaffolds helpful for BTE. Despite the suitable combination for apatite formation which is momentous
for bone regeneration, and the appropriate results of cellular assay, this study lacked an evaluation of
mechanical properties, which is a significant feature for bone tissue engineering [97]. Hence, it seems
that further studies are needed to confirm the worth of CS/nBG for bone reconstruction.
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4.2. Cartilage Regeneration

Cartilage degeneration takes place because of genetic abnormalities, trauma or disorder which
could in turn need to have operative intervention, mainly replacement surgical procedures. Despite
the fact that temporary relief might be accomplished, in long duration, different issues including
pain and loss of extremity features persist [77,98]. Cartilage tissue engineering (CTE) is designed
for making an entirely recovered, functional and scarless tissue that might transcend the presently
accessible therapy modalities for cartilage deterioration. GAGs offer stimulate surroundings in cartilage
reproduction [77,98–106]. CS has a structural resemblance with GAGs, and the hyaluronic acid (HA)
existing in particular cartilages induces chondrogenesis and is used for CTE 3D polymeric containing
IPFP-ASCs and TGFb3 and BMP6 which offered a base of stem cells to engineer 3D tissues for cartilage
restoration in a study by Ye et al. [107]. In this context, it appears that, rather than traditional
cubic scaffolds, it is considerably better to print the preferred combination in much more complex
shapes including ears and noses. In this regard, ear-shaped hybrid scaffolds (CS and PEGDA) were
manufactured through a stereolithographic approach utilizing a 405 nm laser by Morris et al. [108].
Mw of CS (50–190 kDa), feed-ratios, and photo-initiator were the crucial factors to determine the
mechanical performance, cell response, and printability of the final 3D print specimen. Cell response
of CS with mechanical robustness of PEG in scaffolds made these combinations appropriate for
restoration of complex tissue geometries [108], including the ones from the human ear. In another
study, Reed et al. [109] revealed extremely porous, hydrophilic CS-AL scaffolds manufactured in
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3DP molds intended to produce articular cartilage and subchondral bone. In this relation, 3D printed
constructs may possibly enhance aqueous solution uptake, blood uptake, and cell distribution. Due to
the fact that clinical purposes of cell-based approaches are restricted as a result of the expense of
keeping cellular constructs on the shelf, possible immune reaction to allogeneic cell lines, and scarce
tissue, these acellular scaffolds which may stimulate endogenous influx and uniform distribution of
native stem cells from bone marrow could be great candidate for cartilage reproduction [109]. In this
connection, chitosan based constructs have been used for soft tissue regeneration frequently [110–155]
which are further discussed in the following sections.

5. Chitosan-Based 3D Printed Construct for Soft Tissue Application

5.1. Nerve Regeneration

Chitin and CS are effectively examined for nerve reproduction applications because of
physico-chemical and biological characteristics including biodegradability and biocompatibility.
The adhesion of neuronal cells on the CS membranes accelerates the healing rate of the nervous system.
In a similar examination, CS fibers exhibited a superior attachment and migration of Schwann cells
(SCs) which reconstructed axons to the Bungner bands in the nervous system [77,110–117]. On the flip
side, SCI is a disaster that may result in severe motor, sensory, and functional disorders. Implanting
biomaterials are actually considered as optimistic approaches to recover neurological functionality [118].
As Bardakova et al. [119] exhibited, there are recognized works in which lyophilized CS scaffolds
were effectively examined as applicants for spinal cord reproduction. As it was previously mentioned,
such fabricated scaffolds including freeze drying offer one major disadvantage: an inadequate rigidity of
the fabricated scaffold and the impossibility to significantly improve mechanical performance. Therefore,
in their examination the two-photon-induced microstereolithography technique was employed to
create 3D scaffolds from a photosensitive composition according to CS-g-oligo (L,L-lactide) copolymer.
This copolymer was employed as the primary material of a photosensitive composition for creating
hydrogel scaffolds [119]. The fabricated CS-g-oligo (L,L-lactide) was dissolved in 3 vol % acetic acid for
a specific duration with additional treatment to attain 4.9 wt % of copolymer solution. Subsequently,
PEGDA and biocompatible Irgacure 2959 were incorporated into the solution as the cross-linking agent
and photoinitiator, respectively. Eventually, a 3D model was fabricated for the treatment of spinal cord
accidental injuries [119].

Axon guidance is a vital aspect to consider for the fabrication of tissue scaffolds employed to
increase nerve reproduction. In this regard, Zhu et al. [120] developed CS 2D grid designs implementing
a DBRP approach for the manufacturing of scaffolds intended for escalating axon guidance in adult
DRG neurons. Mixing of laminin–CS solutions was conducted under starrier condition at 2000 rpm for a
short duration (10 min) in order to synthesize uniform 2D surfaces. In vitro examination demonstrated
that DRG neurites on these patterns effectively expanded upon and followed the laminin-mixed CS
pathways. In this context, incorporation of laminin could possibly enhance the affinity of neurons
and neurites for a CS substrate and enhance, or even guide, neurite growth. Despite the fact that
laminin combined with CS at low amounts (CSLN3 and CSLN0) might enhance neuron survival and
adhesion, Zhu et al. [120] presented a fairly different result regarding of neuron cultures on smooth
surfaces. In their study, minimal difference was observed in terms of neurite length when incubated
on CSLN0 and CSLN3 specimens, whereas substantial difference was found regarding the CSLN6
specimens with higher amounts of laminin. This suggests that neuron cell body adhesion and neurite
elongation could be dependent on the amount of laminin. The primary obstacle to the utilization of CS
for axon guidance in nerve reproduction is that CS fails to have any particular bioactivity to interact
with neurons. This issue is generally solved via material treatment approaches similar to what had
been carried out in the study by Zhu et al. [120]. In another work, Col/CS scaffolds were prepared
via two different methods including freeze-drying and 3D printing and subsequently implanted into
the lesion made in rats. Compared with the Col/CS scaffolds (freeze-drying), 3D printed scaffold
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escalated the locomotor function. Diminished dormancy and amplified plenitude were both noticed in
motor-evoked potential, which verifies the enhancement of neurological restoration. On the whole,
3D printed scaffold exhibited considerable therapeutic effects on the spinal cord of the rat model.
Their in-vivo result provides a confirmation for the remarkable effect of fabrication strategy on product
effectiveness for tissue regeneration [118].

Direct-write printing of the stem cells (SCs) inside biomaterials provides a possibility for TE with
reference to in vitro modeling. An initial illustration of creating neural tissue through printing hNSC
which well differentiated promoting neuroglia can be found in a study by Gu et al. [121]. In their
examination, various amounts of agarose (Ag) solution from 0.5 to 2.5% w/v were prepared in PBS
and then AL was incorporated into the solution under stirrer condition for a short duration (30 min).
Consequently, CMC was incorporated into the prepared solutions which were eventually cooled
down to RT, prepared for mixing with hNSC and direct-write printing (Figure 6a) [121]. Porosity and
permeability of gels were adjusted by CMC and the main role of CMC was to retain hNSC survival
and this indicated the excellent cell-friendly behavior of CMC. In this context, the strength of AL/CMC
gel was according to the range requirement for the human brain tissue (0.5–14 kPa).
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hNSCc-laden AL-CMC-Ag bioink printing for nerve regeneration application, (b) Chitosan-gelatin
preparation and cross-link process, (c) CS and PEC interactions to achieve wound dressing with a
capacity of lidocaine delivery and (d) Starfish and leaf printed using chitosan ink referring to printability
of chitosan ink at room temperature [121,123,138,155].

5.2. Skin Regeneration

Skin traumas are typical clinical problems experienced by an incredible number of patients around
the world and might lead to morbidity, impairment together with feasible death, with accompanying
unfavorable side effects on the patients’ social and financial lives [122]. The recovery of skin integrity
subsequent to an injury continues to be a crucial concern in medical practice such as settings including
significant operations and incident and unexpected emergency wards [122]. Previously, the primary
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issue of wound treatment was to maintain the wound bed dry to prevent infection; nevertheless,
the major purpose in the current wound administrations is the preservation of a balanced moist
wound setting that permits the wound to heal in a regular fashion. The concept is that a moisture-rich
environment assists to enhance the migration of keratinocytes by means of the augmentation of
cell movements that will eventually facilitate the wound healing rate [122]. In recent decades,
several natural and synthetic polymers have been used for wound healing such as CS [122,123],
gelatin [124,125], hyaluronic acid [126], and poly vinyl alcohol [127]. Among these polymers, CSs are
extensively being employed as skin regeneration components in dermal TE because of the property of
hemostasis which improves tissue reproduction and induces collagen formation of fibroblasts and
antibacterial activity [128–136]. CS in the shape of cotton fiber could improve wound healing by
escalating the penetration rate of polymorphonuclear (PMN) cells at the wound site. In this regard,
bFGF embedded CS demonstrated outstanding wound healing [77,137]. Likewise, CS-Gel blend is
one of the combinations which are frequently used for skin regeneration [137,138]. In the examination
conducted by Ng et al. [138] regarding 3D bioprinting, the negatively charged gel solution was added
to the positively charged CS gel and subsequently various amounts of PGC in the range of 2.5%–7.5%
were added to the final solution (Figure 6b) [123]. Polyelectrolyte Gel-CS was continued to be in a
robust gel-state to enhance cellular adhesion and proliferation, along with other great characteristics
including excellent printability [138]. Then, the polyelectrolyte Gel-CS bio-ink was incorporated into
a sterile printing cartridge along with performing extrusion-based process. The outcomes revealed
substantial shape fidelity and high fibroblast skin cells viability for the 3D printed specimens [137].
Intini et al. [139] utilized the freeze-gelation method coupled with modified CS solution containing
raffinose fabricated FDM-3D printing approach. In their examination, two various 3D scaffolds with or
without the CS-based layer were fabricated. After co-incubation of fibroblast and keratinocyte cells on
the 3D scaffolds, it was found that all the 3D scaffolds containing CS presented greater performance
including higher cell viability, cell attachment, and growth due to the presence of the CS film in the
3D printed scaffolds [139]. Furthermore, in vivo tests on the rat models of diabetes revealed that
the employment of CS scaffolds to deal with wounds increases the reproduction of a tissue with an
enhanced performance compared to the wounds healed with the commercial gauze, indicating the
effectiveness of the CS scaffolds for the therapy of chronic dermal wounds. Typically, 3D printed CS
scaffolds enhance the level of quality of the repaired tissue in comparison to the commercial gauze
and spontaneous healing [139]. In the current scientific studies, genipin (GE) has typically substituted
cross-linkers including glutaraldehyde to fabricate cross-linked CS for biomedical purposes because
of the positive aspects including cytocompatibility, great chemistry and remaining less cytotoxic
in comparison with glutaraldehyde, and pharmacological action, such as anti-inflammatory and
antibacterial performance [122,140,141].

Hafezi et al. [122] fabricated 3D-printed films consisted of CS as film former and GE with GLY
as cross-linker and PEG as plasticizer for wound dressing application. Their results revealed that
the incorporation of GE into the CS matrix leads to the generation of hydrogel formation with a long
term network structure, because of the creation of permanent chemical links which slowdown fast
erosion through disintegration and ensure sluggish drug release as a consequence of slower rate
of penetration via the structured matrix. Despite the similarity of film combination, the method of
fabricating and the material used to model the drug release in Hafezi et al.’s [122] study (3D printing
and fluorescein sodium) and Liu’s (cast in petri dish and dried in vacuum, Rhodamine B) were
different. Nevertheless, the reason for less control over the drug release in Hafezi wt al.’s [122] study
compared to the examination conducted by Liu [142] is the difference in the type of substance used to
model the drug. In Hafezi et al.’s [122] examination, they applied an extremely soluble fluorescent
dye which dissolves and penetrate quickly through the swollen dressing matrix and, consequently,
more composition modification will probably be needed in the upcoming active components with
moderate to low solubility, which is going to be supposed to manage more controlled drug release.
Hence, there is no report for 3D printing method to have a negative effect on sustained drug delivery.
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5.3. Vascular Regeneration

Cardiovascular diseases are essentially the most crucial reason of deaths. You can find a large
amount of consumption of autologous bypass grafts for the remedying of the coronary artery problem.
Nevertheless, the usages of these are restricted because of their particular hazardous features. Hence,
this procedure (artificial grafts) is a required alternate choice for conquering vascular problems [143].
One of the suggested cure strategies is tissue engineering. Regardless of the development in TE,
a number of concerns would certainly be required to be tackled for organ printing. The most essential
concern is the incorporation of a vascular network, which is an issue experienced by the greater
part of TE technologies [144]. CS is among the components which might be employed as the carrier
of growth factor for the reproduction of tissue. CS stimulates fibroblasts to generate interleukin-8,
which is included in the migration and spread of the cells [12,145–147]. In a study by Zhang et al. [144],
a new bio-printing manufacturing method is established, in which vessel-like microfluidic channels
are directly printed in complicated shapes without any requirement of pre/post procedures utilizing
CS and AL. Biomaterial and its cross-linker agents had been individually incorporated straight into the
coaxial nozzle system, where the solutions were linked, crosslinking was initiated, and subsequently
the gel was created with a hollow channel. Afterward, the hydrogels containing 2%, 2.5%, 3%, and 4%
CS were synthesized to print microfluidic channels [144]. Their results exhibited that the type and
concentration of the hydrogel solution had significant effects on printability and mechanical integrity
of the product. On the other hand, microfluidic channels supported cell viability and showed a
potential for vascular networks developing. In a number of studies, in order to increase the bioactive
properties, hydrogels have been incorporated into the polymeric matrix. Commonly, by addition of
hydrogel, the construct elastic modulusand cell attachment and survival will be enhanced. In this
regard, the study by Ulag and co-workers [143] can be referred to. In their study, PCL and CS with low
Mw and hydrogels (H) were incorporated for preparing the constructs for the enhancement of cells
adhesion and spreading owing to the hydrophilic characteristic of hydrogel. Their results showed that
by escalating the hydrogel content, the elastic modulus of the constructs (PCL/7CS/5H) amplified and
reached to 174 MPa. In this study, PCL/7CS containing the highest amount of hydrogel demonstrated
the highest degradation rate which was due to the higher swelling ratio. Also, the best cell attachment
and viability belonged to the PCL/7CS specimen in the presence of the highest hydrogel content
(5 wt%). Hence, it seems that the PCL/7CS/5hydrogel is often implemented as a biomaterial for vascular
TE [143].

5.4. Hepatic Regeneration

TE for complicated organ including liver encounters more issues; apart from great biocompatibility
and biodegradability, the scaffold is required to maintain a variety of certain features including a stable
3-D spatial microenvironment to imitate the arranged structures of natural liver, and a pre-established
vascular bed for adequate nutritional requirements and oxygen delivery, as well as extremely porous
structures for organ reproduction [77]. Chitin and CS have found applications in liver tissue engineering
due to biological properties. The reason for choosing chitin and CS scaffolds for hepatic reproduction
is the existence of GAGs in chitin and CS structure, which are usually primary materials of the liver
ECM. CS and its components with GAGs have regulated the functions of vascular endothelial and
muscle cells [77].

In several studies, CS has been used in combination with poly caprolactone, collagen, gelatin,
and heparin by conventional manufacturing methods such as electro-spinning and lyophilization for
liver tissue engineering [148–151]. However, very few studies have been performed on CS constructs
using the 3D printing method for liver tissue engineering application. Hence, it seems that this field
needs further study. Jangkang et al. [152] fabricated CS–Gel hybrid scaffolds with well-oriented
and extremely porous structures through rapid prototyping coupled with micro-replication and
freeze-drying approaches. Their results demonstrated that the scaffolds have a high porosity (>90%)
and a pore size of 100 µm which will improve hepatocyte growth.
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6. Drug Delivery

Lately, CS is considered for pharmaceutical fields and drug delivery purposes in which
consideration continues to be concentrated on its absorption-boosting, sustained release,
and antibacterial performance toward specific bacteria [122,153]. In this context, for perfect wound
dressing loaded with drug, the long release of drug (24–48 h) is typically useful for the patient as
it eliminates the requirement to take out the dressing regularly. Even so, the number of the times
which a dressing requires changing is affected by some other parameters such as the kind, size and
depth of the wound [122]. Long and co-workers [123] examined the possibility of fabrication of
3D printed CS-PEC hydrogel loaded with various amounts of LDC drug from 2% to 10% w/w for
wound dressing applications. The solution was injected into 3D printing syringes to generate the gel
structure. Their results exhibited that the CS-PEC hydrogel loaded with 10% w/w LDC presented a
great amount of porosity along with small pores as well as a high swelling ratio, implying its capability
to taking in exudate and keeping moist for wound dressing (Figure 6c) [138]. Long et al. [123] also
suggested that the occurrence of H2 bonds among CS and PEC leads to the higher orientation of the
polymer chains, and freeze-drying approach effectively lessened the moisture amount in the CS-PEC
hydrogel. The drug release pattern exhibited that CS-PEC hydrogel loaded with various amounts of
LDC presented the release of LDC in a controlled fashion within 5 h, while rapid release in the initial
time may offer powerful pain relief [123].

7. Bio-Inks

Bio inks are generally the kind of materials employed for numerous purposes in 3D
printed-scaffolds. In this regard, printability, fidelity, viscoelasticity, expense, and cross-linking
duration are some of the crucial factors relevant to the choice of bio-inks. The presence of the cells
inside the ink to utilize a bio-ink provides the possibility to print 3D structures which are often
implanted into impaired bone tissue to enhance cell responses [82,154–161]. CS can be used as a bio
ink either in pure form or in combination with other materials, especially other polymers [154,155].
Wu et al. [155] prepared the 3D-ink printing of CSat room temperature where the CS inks were fabricated
via dissolving in acidic mixture prior to the 3D printing (Table 2). In this context, the prepared inks
were extruded under pressure and subsequently the 3D printed specimens with starfish shapes were
manufactured at ambient temperature (Figure 6d) [155]. The specimens presented high mechanical
strength (around 97 MPa) in dry condition and great strain (around 360%) in wet condition.

Col and CS are extensively utilized as biomaterials for 3D-printing. Nevertheless, the use of
Col/CS blends as bio-inks is yet hard to find. In an examination conducted by Heidenreich [154],
various hydrogels in the form of Col/CS were synthesized to print scaffolds (single-layered) for TE
applications owing to its appropriate viscosity, printability as well as concentration (Col/CS ratio).
The fabricated bio-inks were stable for 44 h in PBS and did not induce any toxicity to the NIH-3T3 cells.
The results also indicated that the concentration of Col in the Col/CS solution has a significant effect on
viscosity. In Heidenreich’s study, further incorporation of Col into the solution increases the viscosity,
enhances cell viability, cell attachment and alters the morphology of the cells [154]. According to Table 2,
in another study, a derivative of CS, carboxymethyl chitosan was used in combination with gelatin
and sodium alginate as bio-ink containing bone mesenchymal stem cells for 3D bio-printing [156].
The Gel/sodium alginate/CMCS hydrogel exhibited great equilibrium water content and suitable
mechanical properties and antimicrobial activity. Generally, CS and its derivatives are favorable choices
for drug and cell delivery; nevertheless, these are used in combination with other synthetic or natural
polymers and ceramics which makes them compatible with the target tissue features.
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Table 2. The utilized material, method and physical, mechanical and cellular characterizations in 3D printed chitosan based construct.

Biobased-Material 3D Printing Method Solvent Printed
Structure

Porosity, Pore
Size Mechanical Properties Cellular Assay Cell Type Target Tissue Ref

CS, PCL-DA and
PEG-DA RDMAM system Benzene, acetone

and acetic acid.
Multi-layer
scaffolds

Pore size =
300 µm

PCL-DA/PEG-DA/CS 5%
tensile strength =
0.75 ± 0.05,
PCL-DA/PEG-DA/CS
10% tensile strength =
0.53 ± 0.04,
PCL-DA/PEG-DA/CS
15% tensile strength =
0.29 ± 0.09
Elastic Modulus =
14.97 ± 3.99 kPa

Well cell viability
and proliferation L929 cells TE [16]

CS (6% w/v) and CS
modified with
raffinose

FDM 2% acetic acid 3D scaffolds

Feret
diameter:
scaffold
without
raffinose
10 ± 20 µm;
scaffold with
raffinose
3.5 ± 3 µm

- Well cell adhesion
and proliferation Fibroblasts Soft tissue

engineering [51]

PLA, CS and Maleic
anhydride-grafted
PLA (PLA-g-MA)

An extruder (by heating
and melting) - (3D) printing

strips -
Tensile strength of
PLA-g-MA/CS (20 wt%)
≈ 52

Well cell viability
Human
foreskin
fibroblasts

Biomedical
material [73]

CS, Gel and HA FDM 2% acetic acid 3D scaffolds Pore size ≈
200–500 µm - Well cell viability

and proliferation
MC3T3-E1
cells BTE [81]

AL, AL-HA, CS,
CS-HA

The Fab@Home™ (The
Seraph Robotics) open
source RP platform
Model

PBS, 0.1 M acetic
acid

Scaffolds with
disc shape
(6 mm
diameter × 1
mm thickness)

Average pore
size of pure
CS ≈ 200 µm
and CS-HA ≈
100 µm

-

Well cell viability,
proliferation and
osteogenic
differentiation

MC3T3-E1
pre-osteoblast BTE [82]

CS, HA Z-Corp, Z-510
Solvent/dispensing

Lactic acid, citric
acid, acetic acid 3D scaffolds Porosity =

37.1%

Compressive strength =
16.32 ± 2.8 MPa
Elastic Modulus =
4.4 ± 2.1 GPa

- - BTE [83]
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Table 2. Cont.

Biobased-Material 3D Printing Method Solvent Printed
Structure

Porosity, Pore
Size Mechanical Properties Cellular Assay Cell Type Target Tissue Ref

CS, calcium
phosphate Robocasting Acetic acid 3D scaffolds Porosity =

22% - - - Filler for large
bone defects [84]

PCL, CS FDM 0.1 M acetic acid 3D scaffolds

PCL/CS
porosity =
62.4 ± 0.23%
The pore size
of PCL
scaffolds =
325.2± 26.3µm

Compressive strength ≈
6.7 MPa

Well Cell viability,
Proliferation and
expressions of
Osteogenic gene

Rabbit
BMMSCs BTE [85]

PLLA, CS and
bioactive Qu, PDA

3D printer (MakerBot
Replicator Z18) via a
FDM)

0.1% (v/v) acetic
acid aqueous
solution

Cylindrical
scaffolds -

Compressive strength of
PLLA/CS-D/Qu ≈ 15 MPa
and elastic modulus ≈
0.140 GPa (dry condition)

Well cell
attachment,
osteogenic
activity and good
anti-inflammatory
feature

MC3T3-E1 cell BTE [86]

CS, PVA and
various ratio of HA
(2.5, 5, 10,
and 15 wt %)
And BMP-2

Pushing of Hydrogel
from the syringe (by
computer controlling)
and spraying the
crosslinking agent

Acetic acid,
distilled water 3D scaffolds

Pore size =
800 to
1300 µm

Elastic modulus of
CS/PVA containing
15 wt% HA ≈ 91.14 MPa

Well cell viability
and adhesion hMSCs BTE [92]

MAG-Lp, MAC-Lp Robocast-assisted
deposition system Acetic acid 3D scaffolds

Average pore
size =
389 ± 58 µm
based on
horizontal,
385 ± 38 µm
based on
vertical for
MAC-Lp.

Compressive strength ≈
14–15 MPa for MAC-Lp

Enhanced
osteoblast growth
and biomineral
formation

MC3T3-E1 Osteoblast
growth [93]

PLA, CS and HA FDM 0.36% of acetic
acid 3D scaffolds

Very large
pore diameter
≈

960 ± 50 mm,
Porosity ≈
60%

PLA/CS-HA modulus =
16.4 ± 2.5 MPa

Well cell viability
and osteogenic
differentiation

hMSCs BTE [94]
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Table 2. Cont.

Biobased-Material 3D Printing Method Solvent Printed
Structure

Porosity, Pore
Size Mechanical Properties Cellular Assay Cell Type Target Tissue Ref

CS, HA
Robotic dispensing
System
Solvent/dispensing

Acetic acid/NaOH
ethanol 3D scaffolds

Macropore =
400–1000 µm
for CS
scaffolds,
macropore
size =
200–400 µm
for the CS–HA
scaffolds

- Well cell adhesion
and distribution Osteoblasts BTE [96]

CS, nBA Robocasting Acetic acid 3D scaffolds

Macro
structure
(hundreds of
micrometers)
and highly
micro-pore =
a few to 10 µm

- Well cell adhesion
and spread

MC3T3-E1
preosteoblastic
cells

BTE [97]

CS scaffolds +
IPFP-ASCs +
TGFb3 and BMP6

Extrusion printed onto a
glass slide, immersion in
bath of isopropyl alcohol.

Acetic acid Scaffolds - -

A shiny
cartilage-like
tissue ‘cap’,
positive staining
of collagen I, II
and cartilage
proteoglycans

IPFP-ASCs Osteochondral
graft [107]

Resin, CS and
PEGDA Stereolithography 1% acetic acid 3D printed ear

scaffold
Pore size ≈
50 µm

Elastic modulus ≈
400 kPa

Long term cell
viability and
spreading

hMSCs

Complex
tissue
geometries,
such as
human ear

[108]

CS, AL Uprint, Z402 Acetic acid 3D scaffolds Pore size ≈
100 µm pores -

Improvement of
cell suspension
uptake

Mouse bone
marrow
stromal cells

CTE [109]
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Table 2. Cont.

Biobased-Material 3D Printing Method Solvent Printed
Structure

Porosity, Pore
Size Mechanical Properties Cellular Assay Cell Type Target Tissue Ref

Col, CS A 3D bioprinter 1% acetic acid 3D scaffolds
Porosity =
83.5% pore
size
60–200 µm

Compressive Implementing NSCs were
obtained from
embryonic
brains at day
14

SCI [118]

strength of 3D-Col/CS =
345.20, 29.60 KPa and
Compressive modulus =
3.82 ± 0.25 MPa

3D-C/C scaffold
enhanced the
number of biotin
dextran amine
fibers and led to
smaller cavity and
a more
linear-ordered
structure

CS-g-oligo
(L,L-lactide)
copolymer and
PEGDA as a cross
linker

Two-photon-induced
micro stereolithography 3 vol.% acetic acid

A truncated
cylinder
scaffolds

- -

A high survival
rate of cortical
neurons and the
formation of
neural networks

Dissociated
rat cortical
neurons

NTE [119]

CS, laminin DBRP Acetic acid
3D nerve
conduit
scaffolds

- -

Laminin
improves the
viability of
neurons grown
and the length of
neurite growth

Adult DRG
neurons NTE [120]

Al, CMC and
agarose

Direct write printing
(Extrusion-based-
3DBioplotter System)

PBS 3D scaffolds - -
Well hNSC
expansion and
differentiation

hNSC NTE [121]

CS, GE as a cross
linker, GLY and
PEG as plasticizer

A 3D printer with jet
dispenser

0.5% v/v acetic
acid Film - - Well cell viability Human skin

fibroblast cell

Chronic
wound
healing

[122]
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Table 2. Cont.

Biobased-Material 3D Printing Method Solvent Printed
Structure

Porosity, Pore
Size Mechanical Properties Cellular Assay Cell Type Target Tissue Ref

CS, PEC Extrusion-based 3D
printing 0.1M HCl A mesh

scaffold model -
Self-adhesion to skin with
bioadhesion strength in
the range of 86.5–126.9 g

- -
Wound
healing, local
LDC release

[123]

Polyelectrolyte Gel,
CS

A 3D bioprinter,
(extrusion-based
print-head)

Acetic acid, PBS
solution

A 3-layered
grid-like
patterns

- -

Well cell viability
and proliferation,
spindle-like
morphology

Fibroblast
skin cells
(HFF-1)

STE [137]

Polyelectrolyte CS,
Gel

A 3D bioprinter,
Biofactory

CS in acetic acid,
gelatin in PBS

Multi-layered
hydrogel
construct

- -

Well cell viability
and proliferation,
spindle-like
morphology,

Naonatal
human
foreskin
fibroblasts
(HFF-1)

STE [138]

CS FDM

Acetic acid 2%
(v/v) containing
D-(+) raffinose
pentahydrate

3D scaffolds
with grid of
orthogonal
filament

Pore size
ranges = from
4 to 9 µm

-

An early skin-like
layer consisting of
fibroblast and
keratinocyte

Human
fibroblast
(Nhdf) and
keratinocyte
(HaCaT)

STE [139]

PCL, CS Materials extrusion, (by
melting materials) - Vessel-like

scaffolds -
Elastic modulus for
PCL/7 wt%CS/5 wt%H =
174 MPa

Well cell viability
and growth HUVEC cell Cardiovascular

diseases [143]

Al, CS A single arm robotic
printing

Deionized water,
1.0 M acetic acid

Channels in
form of
hollow tubes

-

Maximum tensile stress =
5.65 ± 1.78 kPa and
Young’s modulus =
5.91 ± 1.12 kPa

Well cell viability CPCs Vascular
networks [144]

CS and Gel hybrid,
glutaraldehyde as a
cross linker

Combining rapid
prototyping,
microreplication and
freeze–drying

1 wt% acetic acid 3D scaffolds
Porosity =
90–95%, pore
size = 100 µm

Compressive strength ≈
264 ± 10.1 KPa

Well hepatocyte
attachment and
viability ≈ a bove
90% Well albumin
secretion and urea
synthesis

Hepatocytes HTE [152]
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Table 2. Cont.

Biobased-Material 3D Printing Method Solvent Printed
Structure

Porosity, Pore
Size Mechanical Properties Cellular Assay Cell Type Target Tissue Ref

Col, CS A bioprinter with two
syringes 0.10 M acetic acid Meshes

design

Square holes
of 4 mm on
each side

-

No cell
morphology
change,
Non-cellular
toxicity

NIH/3T3
fibroblasts
monolayers

TE [154]

CS Extrusion-based 3D
printing

Acidic mixture (40
vol% acetic acid,
20 vol% lactic
acid, 40 vol%
distilledwater

30-layer
scaffolds,
starfish, leaf,
and spider
shapes

Pore size ≈
220 µm

Maximum tensile
strength ≈ 97 MPa (dry
condition) and high
strain at break ~360% in
the wet condition

- -

Inks for 3D
Printing,
tissue
engineering,
drug delivery

[155]

BMSCs-laden Gel,
sodium alginate
and CMC

Micro extrusion-based
3D printer equipped with
z-axis-controlled ink
reservoirs

water 3D scaffolds - Young modulus ≈
120 MPa Well cell viability BMSCs TE [156]

CS

Direct printing of
chitosan ink in air
(Extrusion-based method)
and partial hardening via
solvent evaporation

Acidic mixture:
40 vol% acetic
acid, 10 vol%
lactic acid,
and 3 wt% citric
acid).

3D scaffolds

Microfiber
networks,
pore size ≈
220 µm

Tensile strength ≈
7.5 MPa

Well cell Survival
and proliferation

L929
fibroblasts

Biomedical
materialS [161]

AL: Alginate; BTE: Bone tissue engineering; BMSCs: Bone mesenchymal stem cells; BMP-2: Bone morphogenetic protein-2; CS: Chitosan; CMC: Carboxy methyl chitosan; CPCs: Cartilage
progenitor cells; CTE: Cartilage tissue engineering; Col: Collagen; DBRP: Dispensing-based rapid prototyping; DRG: Dorsal root ganglion; FDM: Fuse deposition manufacturing; GE:
genipin; Gel: Gelatin, GLY: Glycerol; HA: Hydroxyapatite; hMSCs: Human mesenchymal stem cells; hNSC: Human neural stem cells; IPFP-ASCs: Infrapatellar fat pad adipose stem cells;
MAC-Lp: methacrylated chitosan-laponite; MAG-Lp: methacrylated gelatin-laponite; nBA: Nano bioactive glass; NVE: Nerve tissue engineering; NSCs: Neural stem cells; PBS: Phosphate
buffer saline; PCL-DA: poly (ε-caprolactone) diacrylate; PDA: polydopamine; PEC: Pectin; PEG: Poly ethylene glycol; PEGDA: Polyethylene glycol diacrylate; PLA: Poly (lactide acid);
PLLA: poly (L-lactide); PVA: poly (vinyl alcohol); Qu: quercetin; RDMAM: Reflective dynamic mask additive manufacturing; RP: Rapid prototyping; SCI: Spinal cord injury.
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8. Benefits, Limitations, and Future Prospects

Three-dimensional bio printing is a new manufacturing approach for the accurate placing of
biological components, cells, and biomolecules in the scaffolds. Altering manufacturing parameters
makes it possible for stimulating natural tissues with tailored biological characteristics appropriate
for the recovery of tissues. The advantages of CS are actually broadly described; among the
major positive aspects of CS, one can mention the capability to modify properties such as the
degradation rate by altering the degree of deacetylation and it’s Mw [157–168]. Additive components
are regularly incorporated into CS in an effort to enhance its printability, fidelity, or to fabricate new
cell-laden matrices.

However, it is worth noticing that CS decomposes at temperatures higher than 220 ◦C, thus the
co-materials employed in combination with CS ought to be sintered under this temperature in 3D
printing techniques. Moreover, pure CS is not going to really aid adequate cell adhesion; hence,
it is vital to determine the ideal material (Figure 7) [167]. Nevertheless, its limitations can be in a
wide range considering the type of different methods and their performance strategy. For instance,
selecting the best binder for 3D printing is considered to be one of the difficulties for the Binder Jetting
approach [11]. In general, selection of printing variables including dispensing pressure, dispensing
speed, and preliminary height of dispensing tend to be the major issues in AM. These types of
variables rely on the solution viscosity; hence, they are varied for every structure and concentration [96].
Occasionally, long cross-linking duration or gelation rate, shape instability, and poor mechanical
characteristics are actually noted as the drawbacks of 3D printed specimens [169]. Among the most
important issues of 3D printing is designing a purposeful organ full of vascular lumens in various
dimensions. Almost all kinds of cells require a network of vessels to gain access to nutrients and oxygen
and expel the unwanted products. For this reason, the formation of a complete complex vascularization
network in the printed specimens has remained a challenge [170]. Ultimately, the capability to
manufacture complex micro- or nanostructures through naturally derived hydrogels is important for
biomedical purposes which are in turn met by the 3D printing approach. Nevertheless, accurately
controlled architectures of soft hydrogels tend to be challenges to be overcome because of their restricted
mechanical properties [171].

3D printing has been revealed as an innovative technology, appealing to convert the traditional
products manufacturing. Nevertheless, restricted materials with appropriate printability, stability
of construct in SBF and mechanical characteristic continue to be the serious challenges that have to
be conquered prior to extensive designing for products manufacturing in biomedical fields. It is
worth noting that the electro-spinning approach has gained considerable attention from biomedical
experts all around the world for manufacturing various polymers, particularly CS-based polymer
scaffolds loaded with drugs for biomedical and wound dressing purposes [172–180]. Application of
CS-based biopolymers through 3D [181–196] printing for biomedical purposes especially as bio-ink in
an effort to fabricate complex tissues will probably be an upcoming pattern of 3D printing materials
progression. However, CS and CS/Col designed bio-printed skin tissue has not already obtained the
FDA approval, taking into account the similarity of constructed materials with some other permitted
materials. For this reason, it might be reasonably effortless to obtain regulatory approval in the long
term [197]. Multi-material 3D printing for the rapid and highly accurate generation of physical models
directly from volumetric data stacks, developed recently, is another promising method [198,199].
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Three-dimensional printing appears to be an advanced approach, appealing to convert the
traditional preparation of products. Nevertheless, restricted environmentally friendly printing
components along with the high level of quality of printing capabilities remain serious challenges
that should be conquered before it could be extensively modified for product preparation in various
fields. In this context, 3D printing of a CS-based biopolymer was reviewed and it was exhibited
that, regardless of the extensive studies, considerable issues continue to persist in the preparation of
hydrogels with ordered structures and sufficient mechanical strength and biological characteristics
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Abbreviations

LOM Laminated object manufacturing
MAC-Lp Methacrylated chitosan-laponite
MAG-Lp Methacrylated gelatin-laponite
MJM Material jetting multijet
nBA Nano bioactive glass
NVE Nerve tissue engineering
NSCs Neural stem cells
OCN Osteocalcin
PBS Phosphate buffer saline
PBF Powder Bed Fusion
PCL-DA Poly (ε-caprolactone) diacrylate
PDA Polydopamine
PEC Pectin
PEG Poly ethylene glycol
PEGDA Polyethylene glycol diacrylate
PLA Poly (lactide acid)
PLLA Poly (L-lactide)
PSL Projection based stereolithography
PVA Poly (vinyl alcohol)
Qu Quercetin
RDMAM Reflective dynamic mask additive manufacturing
RP Rapid prototyping
SAL Stereolithography
SCI Spinal cord injury
SCs Schwann cells
SLA Stereolithography
SLM Selective laser melting
SLS Selective laser sintering
SFF Solid free-form fabrication
SPSL Scanning-projection based stereolithography
SSL Scanning-based stereolithography
3D Three dimensional
2D Two dimensional
UAM Ultrasonic additive manufacturing
UV Ultraviolet
WD Wound dressing
AL Alginate
ALP Alkaline phosphatase
AM Additive manufacturing
ARS Alizarin Red Staining
BGC Bioactive glass ceramic
BJ Binder jetting
BMP-2 Bone morphogenetic protein-2
BMSCs Bone mesenchymal stem cells
BTE Bone tissue engineering
CAD Computer aided design
CMC Carboxy methyl chitosan



Materials 2020, 13, 2663 29 of 39

CNT Carbon nano tube
Col Collagen
CPCs Cartilage progenitor cells
CS Chitosan
CSG CS hydrogel
CT Computed tomography
CTE Cartilage tissue engineering
DA Deacetylation
DBRP Dispensing-based rapid prototyping
DED Direct energy deposition
DMD Digital micromirror device
DMLS Direct metal laser Sintering
DRG Dorsal root ganglion
EBM Electron beam melting
EBW Electron beam welding
FDM Fuse deposition manufacturing
FFF Fused filament fabrication
GAG Glycosaminoglycans
GE Genipin
Gel Gelatin
GLY Glycerol
HA Hydroxyapatite
hMSCs Human mesenchymal stem cells
hNSC Human neural stem cells
IPFP-ASCs Infrapatellar fat pad adipose stem cells
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