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A B S T R A C T

Scale-related assessment strategies are important contributions to successful ecosystem management. With
varying impact of environmental drivers from local to regional scales, a focal task is to understand scale-de-
pendent responses when assessing the state of an ecosystem. In this study we use large-scale monitoring data,
spanning 40 years and including four aquatic bioindicator groups (phytoplankton, zooplankton, periphyton,
zoobenthos) to expose the long-term changes of water quality across Russia. We include four hierarchical spatial
scales (region, basin, waterbody and observation point) to identify the relative importance of different spatio-
temporal scales for the variation of each bioindicator and patterns of co-variation among the bioindicators at
different hierarchical levels. We analysed the data with Hierarchical Modelling of Species Communities (HMSC),
an approach that belongs to the framework of joint species distribution models. We performed a cross validation
to reveal the predictive power of modelled bioindicator variation, partitioned explained variance among the
fixed effects (waterbody type, and influence of human population density) and the random effects (spatial and
spatio-temporal variation at the four hierarchical scales), and examined the co-variation among bioindicators at
each spatio-temporal scale. We detected generally decreasing water quality across Russian freshwaters, yet with
region and bioindicator specific trends. For all bioindicators, the dominating part of the variation was attributed
the largest (region) and smallest (observation point) hierarchical scales, the region particularly important for
benthic and the observation point for pelagic bioindicators. All bioindicators captured the same spatial variation
in water quality at the smallest scale of observation point, with phytoplankton, zooplankton and periphyton
being associated positively to each other and negatively to zoobenthos. However, at larger spatial scales and at
spatio-temporal scales, the associations among the bioindicators became more complex, with phytoplankton and
zooplankton showing opposite trends over time. Our study reveals the sensitivity of bioindicators to spatial and
temporal scales. While delivering unidirectional robust water quality assessments at the local scale, bioindicator
co-variation is more complex over larger geographic scales and over time.

1. Introduction

Safeguarding good environmental status of aquatic ecosystems is
one of the global ecological challenges. Ever-increasing human impacts
such as eutrophication, artificial land- and seascapes modifications,
pollution and contamination, in combination with the continuous su-
perimposed effects of a changing climate, alter the ecological integrity
and biodiversity of rivers, lakes and coastal systems (e.g. Sala et al.,

2000; Dudgeon et al., 2006; Halpern et al., 2007). The gained goods
and services from aquatic ecosystems are pervasive and fundamental
for human wellbeing (Covich et al., 2004). For effective management
and conservation, scale-related assessment strategies are needed, from
local waterbodies to broad geographic regions, which comprise a col-
lective of connected and individual ecosystems and encompass en-
vironmental variation (Frissell and Bayles, 1996; European Comission,
2000; UNEP, 2002). National and international strategies to protect and
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manage the integrity of aquatic systems, such as the U.S. Clean Water
Act or the European Water Framework Directive (WFD), are based on
the concept that the state of biological communities reflects the water
quality and the impacts they are exposed to (European Comission,
2000; Fore, 2003). The utilisation of such bioindicators is well estab-
lished and their integration in ecological studies and management tools
has tremendously increased in the past decades (Siddig et al., 2016).
The principle behind their application is stemming from the assumption
that species communities reflect the cumulative effects of environ-
mental changes, both over short and long-term periods of exposure, and
hence are represented in community attributes such as species richness,
diversity, composition, abundance or biomass (Burger, 2006). Aquatic
communities are rapidly responding to physical and chemical dis-
turbance by human impacts, making them highly suitable for ecological
monitoring (Ector and Rimet, 2005).

While abiotic measures such as chemical pollution only provide
momentary quantitative data on specific substances, present organisms
are exposed to the entirety of pressures and substances and reflect
immediate as well as long-term cumulative and synergistic effects in
real world situations (De Pauw and Vanhooren, 1983). Depending on
the group of included bioindicators, it is possible to target different
aspects and timeframes of ecosystem health. Phytoplankton commu-
nities, on the one hand, are the first to be affected by eutrophication
pressures and excess nutrients, showing fast responses due to their short
generation times. On the other hand, the mainly stationary and longer-
lived zoobenthos is permanently exposed to its surrounding conditions
and the most frequently used bioindicator group, including diverse taxa
with a wide range of tolerances, providing good indications for the
current state and longer-term ecosystem changes affecting the benthos.
It depends not only on direct effects like eutrophication but also on
secondary consequences of organic enrichment such as oxygen deple-
tion (Pearson and Rosenberg, 1978; Cairns and Pratt, 1993; Solimini
et al., 2006). However, most of the work comprising bioindicators
generally include only one taxonomic group with an increasing trend of
using single bioindicator species to determine the overall ecosystem
state (Siddig et al., 2016). Considering the complexity of the total en-
vironment, there is no single species which is able to provide an overall
environmental state (Lindenmayer and Likens, 2011). For most accu-
rate determination of aquatic ecosystem health through bioindicators,
the integration of several taxa including different life history strategies
over varying times scales is necessary (Carignan and Villard, 2002;
Ector and Rimet, 2005). In the present study we include four multi-
metric bioindicators across phyla and trophic levels, from autotrophic
phytoplankton and periphyton to zooplankton and zoobenthos, cov-
ering benthic and pelagic realms, to expose the broad trend in changing
water quality across Russia since the 1970s.

During the 1950s to the 1970s the anthropogenic footprint on
aquatic ecosystems was strong with many of Russia’s largest rivers, such
as the Volga or the Yenisei, being managed and transformed into cas-
cades of reservoirs to provide irrigation and hydroelectric power.
Taming the natural flow regime and creating reservoirs increased the
susceptibility to higher organic deposition, more stagnant waters and
accumulation of pollutants. With the dissolution of the Soviet Union in
1991, the anthropogenic impact on aquatic ecosystems weakened due
to the decreased economic and industrial performance, but did not lead
to a significant improvement during the following years (Kimstach
et al., 1998). Despite decreasing chemical pollution through orga-
nochloride pesticides (Zhulidov et al., 2000), the previously existing
water quality problems from ecotoxic substances such as inorganic and
organic metal compounds (Moiseenko et al., 2008; Qdais et al., 2018)
as well as the increasing nutrient inputs from growing population,
agriculture, and industry, causing eutrophication, remain and are for
the latter still growing (Kimstach et al., 1998; Timoshkin et al., 2018).
Hence, in this study we hypothesise an overall decreasing trend of
Russian water quality with all included bioindicator groups. In parti-
cular in areas with modified flow regimes and high population

densities, we expect to find signals of increasing eutrophication, low-
ering the water quality.

We take advantage of a large-scale and long-term sampling network,
spanning a geographic region of more than 7000 km over a 40-year
time period, and including community monitoring data across Russia’s
freshwater systems, both in natural and urban environments. Using a
hierarchical joint species distribution modelling approach, applied on
bioindicator data, we test the hypothesis of a directional change in
ecological quality of aquatic systems over the past four decades. We
further examine patterns of co-variation among the different bioindi-
cator groups at the included hierarchical levels, both related to per-
manent spatial variation, as well as to spatio-temporal variation.
Considering four hierarchical spatial scales, namely region, water basin,
waterbody, and observation point, enables us to disentangle scale-re-
lated variation of aquatic ecosystem health over a multi-decadal time
frame and add to the understanding of spatial and temporal de-
pendencies among bioindicators.

2. Material and methods

2.1. Sampling scheme

The data sampling scheme followed a hierarchical structure. The
largest spatial unit represents the hydrological region, classified as (1)
the Azovskiy Sea basin (hereafter Azovskiy region), (2) the White and
Barenz Sea basin (hereafter Barenz region), (3) the Caspian Sea basin
(hereafter Caspian region), (4) the Karskiy Sea basin (hereafter Karskiy
region), (5) the Pacific Ocean basin (hereafter Pacific region) (Fig. 1a).
Each hydrological region includes several river basins with each basin
containing several waterbodies (e.g. river or lake) (Fig. 1b). From each
waterbody, samples were obtained from one or more observation points
(Fig. 1b).

All data were obtained from the Russian surface water quality
monitoring network of the Russian Federation (until 1991 of the USSR).
The national network of surface water monitoring of the Federal Service
for Hydrometeorology and Environmental Monitoring of Russia
(Roshydromet) carries out annual observations of surface water quality
and the status of aquatic ecosystems on bioindicators from 1974 to the
present (Buyvolov et al., 2016). Scientific and methodological support
as well as control and data quality assurance is provided by the Institute
of Global Climate and Ecology of Roshydromet and the Russian
Academy of Sciences. The annual report of surface water ecosystems of
Russia and their status is presented on the website of the Institute
(Khromov, 2016).

In each sampling location, we utilize data on four bioindicator
groups, namely phytoplankton, zooplankton, periphyton and zoo-
benthos. Phytoplankton and zooplankton were collected by water and
net sampling respectively, while periphyton and zoobenthos were col-
lected by scrape and grab samples. The sampling methods follow the
techniques in Rukovodstvo po gidrobiologicheskomu monitoring pre-
snovodnykh ehkosistem (1992). Each of the bioindicators is derived
from community data of the respective group. Out of these, the Trent
Index (Biotic Index) (Woodiwiss, 1964) was calculated for zoobenthos,
and it correlates positively with water quality. The Saprobic Index
(Sládeček, 1973) was used for the remaining three groups, and it cor-
relates negatively with water quality.

Several measurements (typically 1–6) were taken from each sam-
pling location (observation point) each year. Out of these, the minimum
and maximum values of the bioindicators were stored. The sampling
interval for the sites depended on the grade of pollution. Areas with
very little pollution, located far away from urban centres, were mainly
sampled only once per year. In this case, the sampling was conducted
during the vegetation peak in the summer, and thus the measured in-
dices were registered as maximum values, the minimal values being
considered as missing. For areas known to be affected by pollution, and
located close to industrial centres, the sampling interval was at least
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every two months. The minimum values, if recorded, show how much
water quality indices improve (or deteriorate for zoobenthos) during
the transition seasons, when community change slows down. The dif-
ferences between the maximum and minimum values of bioindicators
show the contrast of the conditions for the formation and maintenance
of communities and, as a rule, are associated with the seasonal condi-
tions and the level of varying water pollution. Unfortunately, it was not
possible to reconstruct the number of samples taken behind each
minimal or maximal value.

To reduce the unevenness of data availability over space and time as
well as between the bioindicators, we included only those observation
points, which have been sampled both before and after the year 2000,
ensuring the robustness of our analysis. The total number of selected
data points was n=4219 (Fig. 1b, c). Overall, 92% of these data ori-
ginates from rivers or streams and 8% from lakes. The number of bio-
logical parameters recorded varied among the bioindicators. The pro-
portion of data points that include the measurement is 58% for
phytoplankton min, 72% for phytoplankton max, 55% for zooplankton min,
67% for zooplankton max, 19% for periphyton min, 24% for periphyton
max, 48% for zoobenthos min and 78% for zoobenthos max.

2.2. Statistical analyses

We analysed the data with Hierarchical Modelling of Species
Communities (HMSC; Ovaskainen et al., 2017), an approach that be-
longs to the class of joint species distribution models (JSDM; Warton

et al., 2015). As fixed factors we included (1) the five hydrological
regions, (2) the interactions between the regions and the linear effect of
the year, (3) the population sum (CIESIN and CIAT, 2005) within a
5 km radius around the observation point, serving as proxy for human
impact, and (4) a classification of the study sites to lakes and rivers. As
community-level random effects, we included the basin, the waterbody,
the observation point, and the interaction effect of the respective
random terms with year. Prior to the analysis, we standardized the
value of each index to zero mean and unit variance over all data. As a
response variable, we used the vector of the eight standardized bioin-
dicator values, i.e. the min and max values for each of the four bioin-
dicators. We assumed that the error variance was normally distributed.
To explore the predictive power of the model, we performed a two-fold
cross validation. We followed Ovaskainen et al. (2017) to partition the
explained variation among the fixed and random effects. Further fol-
lowing Ovaskainen et al. (2017), we examined patterns of co-variation
among the response of bioindicators at the levels where the random
effects were set, i.e. river basin, waterbody, observation point, and their
respective interaction with year.

3. Results

3.1. Variance partitioning

Averaged over the eight bioindicators, the explanatory power of the
model was 0.93 and the cross-validation – based predictive power was

Fig. 1. a) Study region and geographic distribution of sampling in Russia. Shown are colour coded observation points grouped into five hydrological regions:
Azovskiy (red), Barenz (orange), Caspian (yellow), Karskiy (green), and Pacific (blue). b) Number of basins, waterbodies, observations points and observations
included in each of the five regions. c) Variation in the number of observations included in the analysis for each region over the years.
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0.79 (Table 1). While the difference between these two suggests that the
complexity (in terms of the inclusion of several hierarchical levels) of
the model resulted to some level of overfitting, the model had a high
power to predict also independent data, suggesting a high signal in the
data and robustness of the analyses. The proportion of variance within
each bioindicator group (including responses of minimum and max-
imum values) was similar but differed markedly between groups
(phytoplankton, zooplankton, periphyton, zoobenthos). Out of the ex-
plained variance, variation attributed to region was 20% (on average
over the eight bioindicators) with highest importance for the zoo-
benthos bioindicator (Fig. 2). The human population density in the
vicinity of the sampling site accounted on average for 5.6% of the ex-
plained variance and had the highest impact on periphyton. Among the
random effects, the observation point was most important, accounting
on average for 36% of the explained variance and being most pro-
nounced for the planktonic bioindicators (Fig. 2). Thus, the dominating
part of the permanent spatial variation among the bioindicators was
expressed at the largest and smallest hierarchical spatial scales of hy-
drological region and observation point respectively (Fig. 2). While
most variation at these levels was spatial rather than spatio-temporal,
much of the variation at the intermediate scales of basin and waterbody
was of spatio-temporal nature (Fig. 2). In particular, spatio-temporal
variation at the basin level explained 11% of the variation, and thus
almost four times as much as the permanent spatial effect at the basin
level (2.9%).

3.2. Model-fitted temporal trends of bioindicators

We observed several region- and bioindicator-specific trends with a

high level of statistical support (Fig. 3, Table 2), generally suggesting
decreasing water quality in the Caspian, Karskiy and Pacific regions, as
indicated by trends in phytoplankton, periphyton and zoobenthos. The
minimal and maximal values of each bioindicator followed typically the
same trends within each region, suggesting the robustness of our re-
sults. Interestingly, the phytoplankton and zooplankton bioindicators
showed however opposing trends for the long-term changes in water
quality at the level of region (Table 2, Fig. 3).

3.3. Scale related co-variation among bioindicators

At the level of observation point, we observed positive associations
among those bioindicators for which the values increase with de-
creasing water quality (Fig. 4a; phytoplankton, zooplankton and per-
iphyton). Further, these three bioindicators showed negative associa-
tions with zoobenthos (Fig. 4a), for which the values increase with
increasing water quality. Thus, at the level of observation point, all
bioindicators yielded consistent results on water quality. However, at
the higher spatial scales of waterbody and basin, the clear directional
associations among the bioindicators vanished (Fig. 4b, c). All bioin-
dicators yielded a consistent assessment of water quality at the level of
observation point also regarding spatio-temporal variation, although
not with 95% statistical support for all pairs of bioindicators (Fig. 4d).
At the higher spatial scales of waterbody and basin, the spatio-temporal
associations among the bioindicators became more complex (Fig. 4e, f).
Interestingly, we found zooplankton and phytoplankton co-vary nega-
tively spatio-temporally not only at the region-level (Tab. 2, Fig. 3) but
also the basin level (Fig. 4f), thus yielding contrasting assessments of
variation in water quality. Hence, our results showed differing patterns
of covariation among the bioindicators depending on the spatio-tem-
poral scale examined.

4. Discussion

Bioindicators respond to multiple pressures ranging from local point
source impacts to larger scale regional effects, reflecting the environ-
mental conditions they are exposed to. Different species groups being
used as bioindicators are capable of mirroring different ecosystem
pressures, such as organic enrichments through eutrophication pro-
cesses or chemical pollution, and may respond at a different pace to
pressures depending on their life-history and longevity (Niemi and
McDonald, 2004). Hence, considering the abilities of the selected
bioindicators for detecting ecosystem change is important when plan-
ning or conducting bio-monitoring programs. Here we have taken the
advantage of a long-term and large-scale monitoring program involving
multiple trophic groups to examine how bioindicators with different
characteristics respond to environmental stress at different spatio-

Table 1
Explanatory and predictive powers of the fitted joint species distribution
models. Both explanatory and predictive power was measured by the R2 of the
linear mixed model, explanatory power being based on the model fitted to all
data and predictive power by the two-fold cross-validation. The codes for the
bioindicators, each sub-divided in min and max values, are F (phytoplankton),
Z (zooplankton), P (periphyton) and B (zoobenthos).

Bioindicator Explanatory power Predictive power

F (min) 0.91 0.79
F (max) 0.89 0.80

Z (min) 0.96 0.78
Z (max) 0.93 0.80

P (min) 0.95 0.83
P (max) 0.92 0.82

B (min) 0.92 0.75
B (max) 0.94 0.77

Fig. 2. Results on variance partitioning.
Variation in bioindicator values is partitioned
into responses to fixed and random effects. Fixed
effects include region, region x year, human
population density, and differentiation between
lake and river. Random effects include the spa-
tial scales of basin, waterbody and observation
point, as well as the interaction of the respective
spatial scales with year. The bar-plot shows
bioindicator-specific results whereas the legend
shows averages over all bioindicators. The codes
for the bioindicators, each sub-divided in min
and max values, are F (phytoplankton), Z (zoo-
plankton), P (periphyton) and B (zoobenthos).
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temporal scales.
The results from our variance partitioning reflect the expectation

that the efficiency of bioindicators may vary among spatial scales
(Stemberger et al., 2001). We found the pelagic bioindicators (phyto-
plankton and zooplankton) to display high explained variance at the
level of observation point, suggesting that they are best in reflecting
local conditions. However, in moving waters such as rivers and streams,
plankton bioindicators may also be indicative of conditions upstream,
and may therefore also reflect geographically broader scale conditions
(Stevenson et al., 2010). Our spatio-temporal results are in line with
this expectation, especially for phytoplankton at the regional level

(Fig. 2). For the benthic bioindicators (periphyton and zoobenthos), we
found substantial spatial and spatio-temporal variation at larger spatial
scales, which can be attributed to their longevity and the accumulative
effects of environmental conditions over multiple years compared to
short-term local conditions. The effect of region was greatest for zoo-
benthos, reflecting large-scale processes such as climatic drivers or in-
creasing organic matter through nutrient inputs from entire drainage
basins.

The consistency in the direction of change among the minimum and
maximum values of each bioindicator (Fig. 3, Table 2), as well as their
similar explanatory power (Table 1) and partitioned variance (Fig. 2)
supports the robustness of our results. Furthermore, considering trends
of minimum and maximum values separately provides more detailed
information about the changes at the respective ends of the water
quality spectrum. This helps to distinguish the deterioration or im-
provement at the lower and upper limits of the recorded water quality.
Minimum values significantly increasing for a Saprobic Index group, as
shown for phytoplankton in Table 2, suggest that the baseline of the
relatively highest water quality (min) is overall shifting to relatively
poorer water quality conditions. If an increase in minimum values co-
incides with a simultaneous significant increase in maximum values, it
implies a general shift to deteriorating water quality at both ends.
However, with a non-significant increase in maximum values, as given
for phytoplankton in the Azovskiy, Karskiy and Pacific region (Table 2),
the results indicate that the shift towards poorer water quality is
stronger at the preferable water quality end and can be associated with
a deteriorating baseline, where seasonal recovery and improving con-
ditions become worst. Despite some maximum values not showing
significantly increasing trends over time, the direction of change re-
mained the same as in the minimum values (Fig. 3, Table 2) supporting
our results.

Our study illustrates that Russian freshwater systems follow a
mostly declining trend in water quality over the past four decades
(Fig. 3, Table 2). Particularly the long-term responses of the autotrophic
bioindicators, phytoplankton and periphyton, suggest increasing im-
pacts of eutrophication. These primary producers are directly affected
by nutrient concentrations in the waters pushing the community

Fig. 3. Model-fitted trends observed in the four bioindicators including their subdivision in min and max values in the five study regions. The lines show the posterior
mean predictions, different line types corresponding to different regions. The spans of time covered by the lines vary slightly according to the availability of data from
each region. Note that an increase in bioindicator values for phytoplankton, zooplankton and periphyton corresponds to poorer water quality, following the Saprobic
index, while an increase in values for zoobenthos corresponds to better water quality, following the Trent index.

Table 2
Trends observed in different bioindicators in different study regions. Cases
shown by 1 correspond to such increasing trend and -1 to such decreasing
trends for which the level of statistical support was at least 95% posterior
probability. Colours highlight the decrease and increase in water quality to
associated bioindicator, with red indicating deterioration of the bioindicator
and green indicating improvement. The trends are illustrated in Fig. 3. The
codes for the bioindicators, each sub-divided in min and max values, are F
(phytoplankton), Z (zooplankton), P (periphyton) and B (zoobenthos).
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composition towards fast growing, short lived generalists. However,
these results are region-specific, the declining trend of water quality
being particularly clear for the Caspian and Karskiy regions but also
evident for the Pacific and Azovsky regions. Periphyton is not only
reflecting the direct effects of eutrophication by filamentous epibionts
and fast-growing short-lived algae for example, but also secondary ef-
fects of shading when there is a strong increase in phytoplankton pro-
duction, lowering the euphotic depth and with that autotrophic pro-
cesses. Most of the measurements in the Azovsky, Karskiy and Caspian
region were carried out at the respective major water bodies (e.g. the
Yenisei (with the Angara), the Don, the Kuban and the Volga Rivers), as
well as in their tributaries. These rivers have a common feature, namely
they have all been regulated for water management purposes and lar-
gely transformed into cascades of reservoirs during the period of
1951–1970 (UNEP, 1999). In artificially modified rivers where cascades
of reservoirs have been created, the stagnant lake-like water in this area
favours deposition of minerals and organic matter and contributes to
fast warming of the surface water layer. These factors lead to higher
primary production compared to unmanaged rivers with natural flow
regimes (Kimstach et al., 1998, Mineeva et al., 2008), a phenomenon
that has also been observed in other geographical systems (Chapman,
1992). In the Barenz region, where the major rivers are free of re-
servoirs, we observed an opposite pattern from the other regions, with a
negative trend of saprobic phytoplankton max values and increasing
zooplankton values (Table 2).

Our results demonstrate a clear unidirectional relationship between
bioindicators of different trophic levels for water quality assessments at
the local level of observation point. This finding supports the relevance
of their application in monitoring anthropogenic impact, as all bioin-
dicators follow the same trend of the quality assumptions of their re-
spective index (i.e. increasing phytoplankton, zooplankton and per-
iphyton values of the Saprobic index along with decreasing zoobenthos
values of the Trent index) (Fig. 4a), pointing toward decreasing water

quality (Woodiwiss, 1964; Sládeček, 1973). Although all bioindicators
provide uniform responses on local water quality, we found their co-
variation becomes more complex over larger geographic scales. This
could be explained by varying magnitudes and directions of change at
larger scales and in particular over time, considering changing hydro-
graphic conditions as well as different extents of anthropogenic pres-
sures in sub-regions.

An especially intriguing finding is the opposing trend of phyto-
plankton and zooplankton as bioindicators over time, apparent in all
but the Pacific region where zooplankton did not display any sub-
stantial change (Table 2), and at the spatio-temporal random effect at
the level of the basin (Fig. 4). One reason for the negative relationship
between zooplankton and phytoplankton over time could be because of
the strong coupling in their trophic relationship (McCauley and Kalff,
1981): With increasing saprobic values for phytoplankton, indicating
higher production of generalists and lower water quality, zooplankton
values decrease, hinting water quality improvement. This suggests a
possible enhanced suitability and availability of phytoplankton as a
food resource for zooplankton, leading to its improvement despite the
lower water quality indicated by phytoplankton. A second reason for
the negative relationship between zooplankton and phytoplankton over
time might be that they react to environmental perturbations at dif-
ferent time scales, with photoautotrophic phytoplankton responding
quickly to pressures such as nutrient inputs, while other bioindicators
having delayed effects. Thus, simultaneous sampling of all bioindicators
may lead to a mismatch in capturing the current water quality signal if
conditions are continuously changing. Jeppesen et al. (2011) provided
a well-defined argument for the usefulness of zooplankton as bioindi-
cator in lakes. However, our results suggest that the relatively simple
measure of the saprobic index of the zooplankton community may not
necessarily reflect the general elements of water quality over large
spatial scales in rivers. The central role of zooplankton in aquatic food
webs and the tight link to lower and higher trophic levels can lead to

Fig. 4. Residual association plots among the bioindicators at different spatial and spatio-temporal scales. The upper panels (abc) show the permanent spatial
associations and the lower panels (def) the spatio-temporal associations at the levels of ad) observations points, be) waterbody and cf) basin. Pairs of bioindicators
illustrated by red and blue colour show positive and negative associations, respectively, with statistical support of at least 95% posterior probability. The codes for the
bioindicators, each sub-divided in min and max values, are F (phytoplankton), Z (zooplankton), P (periphyton) and B (zoobenthos). Note that an increase in
bioindicator values for F, Z and P corresponds to poorer water quality, following the Saprobic index, while an increase in values for B corresponds to better water
quality, following the Trent index.
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cases where zooplankton is able to mask poor water quality values
through strong top-down control (García-Chicote et al., 2018).

While multimetric bioindicator indices are widely applied and va-
luable tools for classifying degraded areas from those of good ecological
status (Parmar et al., 2016), they alone cannot identify the pressures
that have led to the deterioration of water quality (Fore, 2003). Our
results provide support for the earlier suggestions that different bioin-
dicator groups differ in the spatio-temporal scales at which they in-
dicate the ecological status of a system (Dale and Beyeler, 2001), and
thus, the use of a single bioindicator can lead to an oversimplified as-
sessment of water quality. Considering the information on sensitivity to
spatial and temporal scales of the four major aquatic bioindicator
groups we included in this study can contribute to successful aquatic
ecosystem assessments in the future.
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