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Abstract
Grid size has a significant influence on the computation efficiency and accuracy of
finite-difference seismic modeling and can change the workload of reverse time migration
(RTM) remarkably. This paper proposes a non-orthogonal analytical coordinate system, beam
coordinate system (BCS), for the solution of seismic wave propagation and RTM. Starting with
an optical Gaussian beam width equation, we expand the representation on vertically variable
velocity media, which is the most common scenario in seismic exploration. The BCS based on
this representation can be used to implement an irregular-grid increment finite-difference that
improves the efficiency of RTM. Based on the Laplacian expression in Riemannian space, we
derive the wave equation in the BCS. The new coordinate system can generate an irregular grid
with increment increasing vertically along depth. Through paraxial ray tracing, it can be extended
to non-analytical beam coordinate system (NBCS). Experiments for the RTM on theMarmousi
model with the BCS demonstrate that the proposed method improves the efficiency about 52%
while maintaining good image quality.

Keywords: beam coordinate system (BCS), reverse time migration (RTM), non-orthogonal
coordinate system, Riemannian spaces

1. Introduction

Reverse time migration (RTM) is a popular method for creating accurate images in complex media and was initiated in the
early 1980s (Baysal et al. 1983; McMechan 1983; Whitmore 1983). Numerical seismic modeling is the backbone of RTM
since it can give an accurate representation of the wavefield in subsurfacemedia for forward extrapolation of the source wave-
field and back propagation of recorded wavefield. The finite-difference method is an important numerical seismic modeling
tool for RTM (Baysal et al. 1983), and its mesh spacing affects the computation cost as well as the accuracy of the RTM
method. Thus, increasing mesh spacing must be considered for improving the efficiency of RTM. There are several ways to
achieve this. Most researchers (Holberg 1987; Igel et al. 1995; Yang et al. 2002; Etgen & O’Brien 2007; Liu 2013; Zhang &
Yao 2013) introduce optimization differential operators to reduce the numerical dispersion and then use a largemesh spacing
for finite differencing, but the uniformmesh spacing does not accordwith the general velocity variationwith depth in seismic
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media. Some researchers (Moczo 1989; Jastram&Behle 1992; Jastram&Tessmer 1994;Wang et al. 2001; Chen&Xu 2012;
Gao et al. 2018) have designed variable or irregular velocity model grids to reduce the overall sample points, which are more
flexible for the real media and save much computation time for wave propagation modeling.

Irregular-grid finite differencing can be approached from different perspectives. Sava & Fomel (2004) proposed one-
way wavefield extrapolation to semi-orthogonal distorted coordinate systems based on the theory in Riemannian spaces,
which are general curvilinear coordinates. Shragge & Guojian (2008) thought Riemannian wavefield extrapolation could
not be efficiently applied in pre-stack shot-profile migration algorithms because of coordinate systems continuously
changing with sources and receivers. They proposed an analytical elliptical coordinate system. In seismic modeling,
efficiency is among the priorities and the analytical irregular coordinate transformation is useful. Chen & Xu (2012) de-
veloped a numerical scheme based on a pyramid-shaped grid for elastic wave propagation for the pseudo-spectral implemen-
tation, the grid meshes are trapezoids in the 2D spaces, and the grid increment could change with depth. Their analytical
irregular coordinate transformation can be related to Riemannian space, and the corresponding wave equations can be built
easily. Gao et al. (2018) gave a detailed derivation of the second order acoustic wave equation in a trapezoid coordinate and
solved the new equation with finite differences. Wu et al. (2018) derived the trapezoid coordinate acoustic wave equation
with a CPML boundary condition. In this paper, we present a new non-orthogonal and analytical coordinate system, the
beam coordinate system (BCS), which is similar to the pyramid-shaped or trapezoid coordinate system and can change grid
incrementwith depth.Although the beamcoordinate transformation is analytic, its implementation canbe extended to a con-
tinuously changing velocity background like the ray coordinate system (Sava& Fomel 2004) because it is similar toGaussian
beam propagation and can be represented by paraxial rays.

This paper is organized as follows. First, with the introduction of the basic equation of optical Gaussian beam, the re-
lationship between the new and the old coordinates is constructed according to the transformation equation. The exten-
sion of the coordinate transformation to a vertically variable velocity model is also achieved. Second, we build the wave
equation in the BCS. Third, RTM is introduced into the BCS and the effectiveness of our equations for RTM is verified
by the application of Marmousi synthetic data. Finally, the conclusions from this method and its implementation are put
forward.

2. Beam coordinate system

2.1. The BCS

Gaussianbeamoptics is the studyof the propagationofGaussianbeams through anoptical system.For aGaussianbeamprop-
agating in free space, the beam half width, w, defined as the distance away from the center axis of the beam, has a relationship
with a distance z along the depth as

w2

w2
0

− z2

z2R
= 1, (1)

where the initial half width of beam w0 is known as the beam waist, and the Rayleigh range zR defined as the distance over
which the beam width spreads by a factor of

√
2 is given by

zR =
𝜋w2

0

𝜆
, (2)

where 𝜆 is the wavelength; the beam width wwill be replaced by the variable x in the following sections.
The beam profile in the 2D space (figure 1a) shows that the width of beam increases with the depth, and it meets the

expectation of grid increment changes with the depth. Following the idea of the pyramid-shaped grid (Chen & Xu 2012),
which is a trapezoid shape in the 2D space, we define a new non-orthogonal coordinate system(𝜉1, 𝜉3), i.e. BCS, to denote
(w0, z) through equations (1) and (2). If the original coordinate is set to(x, z), the new coordinate 𝜉1 is defined as a function
of z and x: ⎧⎪⎨⎪⎩

𝜉1 =
x−a√
1+𝛾z23

𝜉3 = z
, (3)
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Figure1. OpticalGaussianbeamprofiles: (a) 2Dand(b)3D.The initial beamhalfwidth w0, called thebeamwaist of anopticalGaussianbeam, increases
with the depth direction along the z-axis, denoted by a variable w. The horizontal directions in the 3D coordinate system include the x- and y-axes.

Figure 2. (a) The regular grid in the 2D BCS and (b) the corresponding irregular grid in the 2D CCS. The constant a is equal to 7500 m and
zR = 8000 m.

where the new coordinate 𝜉1 is initiated from the beam width w0, the constant a is a reference coordinate in the w-axis and
the parameter 𝛾 is

𝛾 = 1
z2R

= 𝜆2

𝜋2w4
0

. (4)

The regular grid (figure 2a) in the BCS of equation (3) has amapping relationship with the irregular grid (figure 2b) in the
Cartesian coordinate system (CCS). The variable 𝛾 is approximately equivalent to the square of the 𝛾 in the paper by Chen
& Xu (2012).

The coordinate system (𝜉1, 𝜉3) can be directly extended to the 3D spaces as the following equations:

⎧⎪⎪⎨⎪⎪⎩

𝜉1 =
x−a√
1+𝛾z23

𝜉2 =
y−b√
1+𝛾z23

𝜉3 = z

, (5)

where the original Cartesian 3D coordinate system is defined as (x, y, z), the constants a and b are respective reference coor-
dinates on the x- and y-axes. The corresponding Gaussian beam profile in the 3D space (x, y, z) is shown in figure 1b. Equa-
tion (5) is very similar to equation by Chen & Xu (2012) and can also be extended to the vertically variable velocity model
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Figure 3. Central and paraxial rays in a ray-centered coordinate system (𝜎, q) for a Gaussian beam. The variables (𝜎, q) and p are the positions and
slowness along the ray trajectory; 𝛿q and 𝛿p are perturbations of the position and slowness.

c(z) as

⎧⎪⎪⎨⎪⎪⎩

𝜉1 =
x−a√
1+𝛾z23

𝜉2 =
y−b√
1+𝛾z23

𝜉3 = ∫ z
0

c0
c(z)

dz

. (6)

Here, we set c0 = c(z = 0), which is the reference velocity model for generating the irregular coordinates. Similar to the
ray coordinate system for an incident plane wave at the surface (Sava & Fomel 2004), our BCS is also not physical beam
coordinates like those in the ray-centered coordinate system, and its coordinates (𝜉1, 𝜉2) are related to the initial width size
of beam, w2

0 = 𝜉21 + 𝜉22 . Different from the ray coordinates, the coordinates (𝜉1, 𝜉2) are not orthogonal to the propagation
𝜉3 axis, but the axes of 𝜉1and 𝜉2 are mutually orthogonal. In this paper, we only examine the proposed method by using the
2D example, so it is a non-orthogonal coordinate system.

Thenewnon-orthogonal coordinate systems (3), (5) and(6) are analytical andchangeuniformly fromtheoriginalCCS to
thenew irregular coordinate system, so the source and receiverwavefields can share a commongeometry,while non-analytical
generalized curvilinear coordinate systems such as ray coordinate systems (Sava & Fomel 2004) have some problems, one
of which is that the source and receiver wavefields do not share a common geometry (Shragge & Guojian 2008), which
affects the computational efficiency.However, the forward andbackwardwavefields can propagate at angles relatively near the
extrapolation in non-analytical generalized curvilinear coordinate systems and this improves the global accuracy of wavefield
extrapolation (Shragge &Guojian 2008). Compared to the pyramid-shaped grids (Chen &Xu 2012) or trapezoid grids, our
BCS can also be implemented in smoothed variable velocity by paraxial ray tracing (figure 3) and produces the non-analytical
beam coordinate system (NBCS). The grid position and slowness of NBCS is written as(

𝛿q
𝛿p

)
(𝜎) = Π (𝜎, 𝜎0)

(
𝛿q0
𝛿p0

)
, (7)

where the variables (𝜎, q) and p are the positions and slowness along the ray trajectory in the ray-centered coordinate system;
𝛿q and 𝛿p are perturbations of the position and slowness; thematrixΠ(𝜎, 𝜎0) is the propagatormatrix in dynamic ray tracing
(Červený & Pšenčík 1983, 2010). So the NBCS (𝜉1, 𝜉3) is equal to (q0, 𝜎) and q0 should be a vector (q10, q20) in the 3D
space.

This NBCS is only one aspect of the extendibility of our irregular coordinate system, and also shows that the new coordi-
nates have strict physical meaning for seismic wave propagation. The application of the NBCS will be further studied in the
future. This paper focuses on the analytical BCS for RTM.
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2.2. Wave equation in the beam coordinate system

In 3D Riemannian spaces, the Laplacian operator of the acoustic wave equation (Sava & Fomel 2004) has the form

∇2u =
3∑
i=1

1√||g||
𝜕

𝜕𝜉i

(
3∑
j=1

gij
√||g|| 𝜕u𝜕𝜉j

)
, (8)

where u is the wavefield of the acoustic wave equation, 𝜉i are the beam coordinates, gij are elements of the inverse of metric
tensor, i.e.

[
gij
]
=
[
gij
]−1 , (9)

and |g| = |det(gij)| is absolute value of its determinant. The elements of the metric tensor are defined as

gij =
𝜕xk
𝜕𝜉i

𝜕xk
𝜕𝜉j

=
[
JTJ
]
ij , (10)

where xk are the Cartesian coordinates. Equation (10) is the metric tensor for the coordinate xk. J is the Jacobian matrix for
𝜉i → xi.

From equation (6), the Jacobian matrix of equation (10) can be attained as

[
Jij
]
=

⎡⎢⎢⎢⎢⎢⎣

√
1 + 𝛾z2 0 c(𝜉3)

c0

𝛾𝜉1z√
1+𝛾z2

0
√
1 + 𝛾z2 c(𝜉3)

c0

𝛾𝜉2z√
1+𝛾z2

0 0 c(𝜉3)
c0

⎤⎥⎥⎥⎥⎥⎦
, (11)

where the depth z in the original coordinate system is a function z(𝜉3) of 𝜉3, which can be inverted from 𝜉3 = ∫ z
0

c0
c(z)

dz and
model c(z). Inserting equation (11) into (10) and inverting the metric tensor [gij], to give its determinant

|g| = c2 (𝜉3)
c20

(
1 + 𝛾z2

)2 (12)

and its inverse

[
gij
]
=

⎡⎢⎢⎢⎢⎢⎢⎣

(1+ 𝛾z2)+ 𝛾2z2𝜉21
(1+ 𝛾z2)2

z2𝛾2𝜉1𝜉2
(1+ 𝛾z2)2

− c0
c(𝜉3)

𝛾𝜉1z
1+ 𝛾z2

z2𝛾2𝜉1𝜉2
(1+ 𝛾z2)2

(1+ 𝛾z2)+ 𝛾2z2𝜉22
(1+ 𝛾z2)2

− c0
c(𝜉3)

𝛾𝜉2z
1+ 𝛾z2

− c0
c(𝜉3)

𝛾𝜉1z
1+ 𝛾z2

− c0
c(𝜉3)

𝛾𝜉2z
1+ 𝛾z2

c20
c2(𝜉3)

⎤⎥⎥⎥⎥⎥⎥⎦
. (13)

According to equations (8), (12) and (13), the 3D wave equation in the BCS is written as follows,

1
v2

𝜕2u
𝜕t2

=
3𝛾2z2𝜉1 −

c0
c(𝜉3)

𝛾𝜉1 (1 + 𝛾z2)

(1 + 𝛾z2)2
𝜕u
𝜕𝜉1

+
(1 + 𝛾z2) + 𝛾2z2𝜉21

(1 + 𝛾z2)2
𝜕2u
𝜕𝜉21

+
3z2𝛾2𝜉2 −

c0
c(𝜉3)

𝛾𝜉2 (1 + 𝛾z2)

(1 + 𝛾z2)2
𝜕u
𝜕𝜉2

+
2z2𝛾2𝜉1𝜉2
(1 + 𝛾z2)2

𝜕2u
𝜕𝜉1𝜕𝜉2

−
c0

c (𝜉3)
2𝛾𝜉1z

(1 + 𝛾z2)
𝜕2u

𝜕𝜉1𝜕𝜉3
+

(1 + 𝛾z2) + 𝛾2z2𝜉22
(1 + 𝛾z2)2

𝜕2u
𝜕𝜉22

−
c0

c (𝜉3)
2𝛾𝜉2z

(1 + 𝛾z2)
𝜕2u

𝜕𝜉2𝜕𝜉3

−
c20

c2 (𝜉3)
𝜕c (𝜉3)
𝜕𝜉3

𝜕u
𝜕𝜉3

+
c20

c2 (𝜉3)
𝜕2u
𝜕𝜉23

. (14)
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Simplifying equation (14) to 2D spaces, gives

1
v2

𝜕2u
𝜕t2

=
3𝛾2z2𝜉1 −

c0
c(𝜉3)

𝛾𝜉1 (1 + 𝛾z2)

(1 + 𝛾z2)2
𝜕u
𝜕𝜉1

+
(1 + 𝛾z2) + 𝛾2z2𝜉21

(1 + 𝛾z2)2
𝜕2u
𝜕𝜉21

−
c0

c (𝜉3)
2𝛾𝜉1z

(1 + 𝛾z2)
𝜕2u

𝜕𝜉1𝜕𝜉3

+
c20

c2 (𝜉3)

[
𝜕2u
𝜕𝜉23

−
𝜕c (𝜉3)
𝜕𝜉3

𝜕u
𝜕𝜉3

]
. (15)

Equation (15) includes the reference velocity model c(z) or c(𝜉3) that generates the coordinates in the BCS for the wave
equation. We need to switch this model between the CCS and BCS through interpolation method while implementing the
program for wave propagation, which produces some errors in the depth position and the spatial derivative of velocity. The
new coordinate systems do not need to be created with the same velocitymodel as the one used formigration (Sava& Fomel
2004). So it makes the above equations simpler to use with a constant gradient reference velocity model:

c (z) = c0 + 𝛽z, (16)

where the constant 𝛽 is velocity gradient. Equation (16) is put into equation (6) to give

𝜉3 = ln
(
1 + 𝛽z

c0

)
. (17)

Further, we obtain the function

z =
c0
𝛽

(
e𝜉3 − 1

)
. (18)

Thus,

𝜕c (𝜉3)
𝜕𝜉3

= c0 e
𝜉3 . (19)

The constant gradient reference velocity model for generating the irregular coordinates satisfies the desired objective that
makes the finite-difference grid increment increase with depth.

2.3. Reverse time migration

Compared with one-way wave equation migration, RTM uses the exact two-way wave equation, including all seismic wave-
field types, and theoretically can offer by far the most accurate imaging results for complex media among all the seismic
migration methods. RTM requires the several key steps: the forward extrapolation of the source wavefield, back propaga-
tion of the recorded wavefield and imaging by using an imaging condition. Here a standard explicit finite-difference method
is implemented for wavefield forward or backward propagation in the BCS. In equation (13) or (14), the finite-difference
approximation for the first and second space partial derivative of wavefield can be written as⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕u
𝜕𝜉1

=

∑N
p=1 cp

(
uti+p,j,k − uti−p,j,k

)
Δ𝜉1

𝜕2u
𝜕𝜉21

=

∑N
p=1 dp

(
uti+p,j,k + uti−p,j,k − 2uti,j,k

)
(Δ𝜉1)

2

, (20)

where i, j, k are, respectively, the grid indices along the 𝜉1, 𝜉2, 𝜉3 axes. The variable cp and dp are, respectively, the optimized
finite-difference coefficients for the first and second derivatives. The time derivative of wavefield is replaced with a second
order finite difference and themixed derivative such as 𝜕2u

𝜕𝜉1𝜕𝜉3
can be changed to a combination of second order partial deriva-

tives (Guan et al. 2011).
After reconstructing the forward wavefield S(t; 𝜉1, 𝜉2, 𝜉3) from the source and back propagation wavefield

G(t; 𝜉1, 𝜉2, 𝜉3) extrapolated from the recorded data, the RTM image is constructed by using the cross-correlation imaging
condition,

I ( 𝜉1, 𝜉2, 𝜉3) = ∫ T
0 S (t; 𝜉1, 𝜉2, 𝜉3) G (t; 𝜉1, 𝜉2, 𝜉3) dt , (21)
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Figure 4. TheMarmousi model: the grid mesh is 461× 751, the intervals are, respectively, 20 m and 4 m in the x and z coordinates.

where I(𝜉1, 𝜉2, 𝜉3) is the image at the position (𝜉1, 𝜉2, 𝜉3) and T is the maximum time of propagation of the wavefield.
Through a sinc interpolation step, the final image in the CCS can be obtained from the image I( 𝜉1, 𝜉2, 𝜉3).

3. Numerical example

To demonstrate RTM in the BCS, a linear v(z)model and theMarmousi synthetic data are used to test ourmethod. The v(z)
model with v(z)= (1500+ 1550× z/3.0)m s−1 has the same dimensions and grid parameters with the followingMarmousi
model and is used to verify the accuracy of forward modeling through the wavefield snapshots. The Marmousi model and
geometry were created to produce complicated seismic data that require advanced processing techniques to obtain a cor-
rect earth image (Irons 2014). Figure 4 shows the Marmousi velocity model for the grid mesh 461 × 751 with the intervals
20 m and 4 m in the x and z coordinates, which will be interpolated to the finer interval in the x-axis for modeling. The data
contain 751 sample points in time at a time sampling of 4ms, 176 shots along the x-axis position 3000–7200mwith a source
sampling of 24m, and 261 receivers per shot along the x-axis 2000–7200mwith receiver sampling of 20m. Next, we run the
BCS RTM on this model and data to test the viability of the proposed coordinate system for improving the efficiency.

The BCS is global for the whole model, so the wavelength 𝜆 should have a large scale and is not dependent on the data
frequency or the model velocity. We only need to keep the increase of the grid spacing of the BCS with depth. According
to equation (5) or (6), the parameter 𝛾 can be obtained from:

Δx (zmax)
Δx (zmin)

=
√
1 + 𝛾z2max√
1 + 𝛾z2min

= 𝜇
vmin (zmax)
vmin (zmin)

, (22)

where𝜇 is a constant. Equation (22) indicates that the ratio of the beamcoordinate grid spacing between themaximumdepth
zmax and the minimum depth zmin in the CCS is proportional to the minimum velocity vmin ratio between the minimum and
the maximum depth. So,

𝛾 =

[
𝛽
vmin(zmax)
vmin(zmin)

]2
− 1

z2max −
[
𝛽
vmin(zmax)
vmin(zmin)

]2
z2min

=

[
𝛽
vmin(zmax)
vmin(zmin)

]2
− 1

z2max
. (23)

Using equations (4) and (23), the Rayleigh range can be expressed as

zR = 1√[
𝛽
vmin(zmax)
vmin(zmin)

]2
− 1

zmax. (24)

The constant velocity gradient for the new coordinate system is also constructed by using the minimum velocity vmin as

𝛽 =
vmin (zmax) − vmin (zmin)

zmax − zmin
. (25)
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Figure 5. The Marmousi model: (a) the beam grids overlay the model in the CCS for case 3; (b) the model in the BCS for case 3; (c) the beam grids
overlay the model in the CCS for case 4 and (d) the model in the BCS for the case 4.
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Figure 6. Wavefield snapshot comparisons the time 1.24 s in the v(z)model. (a) The wavefield snapshot in the CCS. (b) Case 1: the wavefield snapshot
in the BCS. (c) Case 2: the wavefield snapshot in the BCS. (d) the left is the wavefield snapshot interpolating (b) into the CCS and the right is the
difference in results between the left and (a). (e) The left is the wavefield snapshot interpolating (c) into the CCS and the right is the difference of results
between the left and (a).

Figure 7. Synthetic data comparison of shot no. 65 in the Marmousi model: (a) the data in the CCS; (b) the synthetic data of forward-propagation of
RTM in the BCS for case 3 and (c) the synthetic data of forward-propagation of RTM in the BCS for case 4. The beam coordinates initiate from the same
surface positions with the Cartesian, so they should have the same record.

Thus, {
c0 = vmin (zmin)

c (z) = c0 + 𝛽z
. (26)

The tests on the v(z) model have the same parameters in equation (26) with the Marmousi model for the coordinate
system transformation in equation (5) or (6). Here, set a = 4600 m, 𝜉1 from−2600 to 2600 m and test four cases:

Case 1: the v(z) model with c = c0 and 𝜇 = 0.9;
Case 2: the v(z) model with c = c(z) in equation (26) and 𝜇 = 1.0.
Case 3: theMarmousi model with c = c0 and 𝜇 = 0.9;
Case 4: theMarmousi model with c = c(z) in equation (26) and 𝜇 = 1.0.

The constant 𝜇 is not an important point for the four tests. We get the beam coordinate grids (figure 5a) in the CCS for
case 1 or case 3, theMarmousi model in the BCS for case 3 (figure 5b), the beam coordinate grids (figure 5c) in the CCS for
case 2 or case 4, and the Marmousi model in the BCS with 517 points in depth for case 4 (figure 5d). The beam coordinate
grids shown in figure 5a and c overlap theMarmousi model. The v(z) models in the BCS for case 1 and case 2 have a similar
layout to theMarmousi model shown in figure 5b and d.
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Figure 8. Wavefield snapshot comparisons of shot no. 65 shot at the time 1.24 s in the Marmousi model. (a) The wavefield snapshot in the CCS; (b)
Case 3: the wavefield snapshot of forward-propagation for RTM in the BCS; (c) Case 3: the wavefield snapshot interpolating (b) into the CCS; (d) Case
4: the wavefield snapshot of forward-propagation for RTM in the BCS and (e) Case 4: the wavefield snapshot interpolating (d) into the CCS.

In the BCS, the forward extrapolation of the source wavefield and back propagation of the recordedwavefield are executed
through the finite-difference algorithm of the wave equation (15), and the final seismic image is constructed by correlating
the source and data wavefields and subsequently using post-processing, such as low-pass filtering. Before testing the wave
propagation and imaging in the Marmousi model, the comparison between wavefield snapshots of the v(z) velocity model
in the CCS (figure 6a) and in the BCS for case 1 (figure 6b) or for case 2 (figure 6c) is to show the reliability of the new
coordinate systems. The snapshot for case 1 (the left of figure 6d) interpolating from figure 6b and its difference (the right
of figure 6d) from figure 6a shows the same display parameters, and the difference can obviously be ignored. So, the BCS
for case 1 only introduces small errors relative to the CCS. For case 2, the left of figure 6e is the snapshot interpolating from
figure 6c and the right of figure 6e is the difference between the left and figure 6a. The amplitude of difference in figure 6e is
a little stronger than the right of figure 6d and vertical transformation especially introduces more interpolation errors, but it
is still very weak.
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Figure 9. TheMarmousi imaging results: (a) RTM in the CCS; (b) Case 3: RTM in the BCS; (c) Case 3: the result interpolating the result of (b) into
the CCS; (d) Case 4: RTM in the BCS and (e) Case 4: the result interpolating the result of (d) into the CCS.

To further validate the implementation of finite-difference forward modeling in the BCS, the record and wavefield snap-
shots of the Marmousi are compared with each other in two coordinate systems. Figure 7 shows the shot no. 65 data record
in the CCS and the synthetic data of forward-propagation for RTM in the BCS. The beam coordinates initiate from the same
surface positions as the CCS, so they should model the same data. Compared with the data in figure 7a, the synthetic record
in figure 7b only has more dispersion noise and does not handle the artificial bounding condition reflections well, which are
reasonable because of larger grid spacing. The wavefield snapshot for case 3 (figure 8b) in the BCS appearsmore narrow than
the one (figure 8a) in the CCS. The result for case 3 (figure 8b) interpolating from the former is almost the same as the one
(figure 8a) in theCCS. For the test in case 4, thewavefield snapshot (figure 8d) in theBCS is short in the depth because it only
has 517 sample points compared with 751 sample points in the CCS. The result (figure 8e) interpolating from the figure 8d
is almost the same as the one (figure 8a) in the CCS.

1081

D
ow

nloaded from
 https://academ

ic.oup.com
/jge/article/16/6/1071/5567248 by N

TN
U

 Library user on 27 April 2022



Journal of Geophysics and Engineering (2019) 16, 1071–1083 Zhu et al.

Figure 10. (a) TheMarmousi imaging result of RTM in the CCS, which is same as figure 9a; (b) the difference in results between figure 9c and figure 9a
and (c) the difference in results between figure 9e and a.

To check the RTMmethod in the BCS, it is very useful to make a comparison in quality and efficiency between the RTM
results in the CCS and those in the BCS. The final Marmousi imaging result (figure 9c) interpolating from the RTM result
(figure 9b) in the BCS for case 3 is comparable to that in the CCS in the quality, and only has differences on the fault facet
(figure 10b). For case 3, this meets expectations in terms of efficiency, and the algorithm based on the new coordinate system
saves about 35%of time consumptionbecauseof reducing gridnumberby43.5%while increasing the computation load in the
finite-difference items.We can also reduce the computation time through limiting the image range along the lateral direction
in the CCS, which is equivalent to decreasing the lateral grid number. For case 4, it reduces the grid number not only in the
lateral direction but also in the vertical direction. So it should bring more improvement in the efficiency of RTM, and one
shot migration only needs 52% computation time in the CCS. The final image (figure 9e) interpolating from the result in the
BCS (figure 9d) for the case 4 has comparable quality in the same way. From figure 9e and figure 10c, the amplitude of the
RTM result for case 4 in the depth is stronger than those of figure 9a and c. It shows that the BCS for case 4might bring better
illumination for imaging.

4. Discussion

The BCS is similar to the pyramid-shaped grids in 3D spaces (Chen & Xu 2012) and the trapezoid-shaped grids in the 2D
space (Gao et al. 2018). So far, the BCS only provides an alternative to the irregular-grid forward modeling for seismic imag-
ing. In fact, as mentioned in the introduction, the NBCS can be implemented through the paraxial ray tracing like the ray
coordinate system (Sava & Fomel 2004), which is an advantage of the BCS for further application. A further application
might be one-way wavefield extrapolation like the ray coordinate system (Sava & Fomel 2004), or Gaussian beam forward
modeling and imaging implementation and so on.

5. Conclusion

A new irregular coordinate system named BCS is introduced because its coordinates are related to the optical Gaussian beam
equation,which can alsobe extended to aheterogeneousbackgroundvelocity throughparaxial ray tracing.A successful imple-
mentation of RTM in the BCS is achieved. First, based on the Laplacian expression in theRiemannian spaces, wave equations
can be directly expressed in the BCS. Second, the conventional RTMsteps includes forward extrapolation of the sourcewave-
field; back propagation of the recorded wavefield and imaging are implemented in the BCS. Third, the final image is attained
by interpolating the above results to the CCS.

According to the numerical experiments for the synthetic data of the Marmousi model, we prove that RTM in the BCS
can reduce computation time through reasonably increasing the grid spacing with depth in finite differencing. The results for
cases 3 and 4 in this paper can, respectively, save about 35 and 52% of time for one shot forward modeling. The snapshot
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comparison of cases 1 and 2 in the v(z)model shows the BCS introduces some errors but they are still with reasonable range.
The forwardmodeling of theMarmousimodels in the BCS can be implemented by a finite-difference numericalmethod, but
obvious boundary reflections appear in the synthetic data or the wavefield snapshot, therefore a better absorbing boundary
algorithm, such as perfectly matched layer (Wu et al. 2018), should be combined in the above process. The BCS aims at
modeling on variable and large mesh spacing dependent on the variable velocity to reduce the computation time. When
applying in complex media, this might involve more numerical errors and result in loss of accuracy.
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