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Abstract: Viruses are the major causes of acute and chronic infectious diseases in the world.
According to the World Health Organization, there is an urgent need for better control of viral diseases.
Repurposing existing antiviral agents from one viral disease to another could play a pivotal role in
this process. Here, we identified novel activities of obatoclax and emetine against herpes simplex
virus type 2 (HSV-2), echovirus 1 (EV1), human metapneumovirus (HMPV) and Rift Valley fever virus
(RVFV) in cell cultures. Moreover, we demonstrated novel activities of emetine against influenza
A virus (FLUAV), niclosamide against HSV-2, brequinar against human immunodeficiency virus 1
(HIV-1), and homoharringtonine against EV1. Our findings may expand the spectrum of indications
of these safe-in-man agents and reinforce the arsenal of available antiviral therapeutics pending the
results of further in vitro and in vivo tests.
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1. Introduction

Every year, emerging and re-emerging viruses, such as Ebola virus (EBOV), Marburg virus
(MARV), and Rift Valley fever virus (RVFV), surface from natural reservoirs and kill people [1,2].
In addition, influenza A virus (FLUAV), human immunodeficiency (HIV-1), herpes simplex (HSV),
and other viruses regularly infect human population and represent substantial public health and
economic burden [3,4]. The World Health Organization (WHO) and the United Nations (UN)
have called for better control of viral diseases (https://www.who.int/blueprint/priority-diseases/en/;
https://sustainabledevelopment.un.org/). Developing novel virus-specific vaccines and antiviral drugs
can be time-consuming and costly [5,6]. In order to overcome these time and cost issues, academic
institutions and pharmaceutical companies have focused on the repositioning of existing antivirals
from one viral disease to another, considering that many viruses utilize the same host factors and
pathways to replicate inside a cell [6–15].
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Broad-spectrum antiviral agents (BSAAs) are small-molecules that inhibit a wide range of human
viruses. We have recently reviewed approved, investigational and experimental antiviral compounds
and identified 108 BSAAs, whose pharmacokinetics (PK) and toxicity had been studied in clinical
trials [16]. We tested 40 of these BSAAs against human metapneumovirus (HMPV), hepatitis C virus
(HCV), cytomegalovirus (CMV), and hepatitis B virus (HBV). We demonstrated novel antiviral effects of
azacytidine, itraconazole, lopinavir, nitazoxanide, and oritavancin against HMPV, as well as cidofovir,
dibucaine, azithromycin, gefitinib, minocycline, oritavancin, and pirlindole against HCV [17]. We also
tested 55 BSAAs, including these 40, against FLUAV, RVFV, echovirus 1 (EV1), ZIKV, CHIKV, RRV,
HIV-1 and HSV-1. We identified novel activities for dalbavancin against EV1, ezetimibe against HIV-1
and ZIKV, and azacytidine, cyclosporine, minocycline, oritavancin and ritonavir against RVFV [18].

Here, we evaluated the efficacy of 43 BSAAs, which do not overlap with 55 agents we tested
before. We identified novel in vitro activities of obatoclax and emetine against HSV-2, EV1, HMPV
and RVFV. Moreover, we demonstrated novel antiviral effects of emetine against FLUAV, niclosamide
against HSV-2, brequinar against HIV-1, and homoharringtonine against EV1 in vitro.

2. Materials and Methods

2.1. Compounds

To identify potential BSAAs, we have reviewed approved and investigational safe-in-man
antiviral agents using drug bank and clinical trials websites, respectively. In addition, we reviewed
investigational and approved safe-in-man antibacterial, antifungal, antiprotozoal, antiemetic, etc.
agents, for which antiviral activities have been reported in PubMed. By excluding vaccines and
interferons, we identified 108 molecules that inhibit the replication of several viruses in man [16].
Most recently, novel antiviral activities have been reported for some of these agents [17]. Forty-three
compounds were used in this study, and their suppliers and catalogue numbers are summarized in
Table S1. To obtain 10 mM stock solutions compounds were dissolved in dimethyl sulfoxide (DMSO,
Sigma-Aldrich, Steinheim, Germany) or milli-Q water. The solutions were stored at −80 ◦C until use.

2.2. Cells

Madin–Darby canine kidney (MDCK, American Type Culture Collection (ATCC)) and African
green monkey kidney epithelial (Vero-E6, ATCC) cells were grown in Dulbecco’s Modified
Eagle’s medium (DMEM; Gibco, Paisley, Scotland) supplemented with 100 U/mL penicillin and
100 µg/mL streptomycin mixture (Pen/Strep; Lonza, Cologne, Germany), 2 mM l-glutamine, and 10%
heat-inactivated fetal bovine serum (FBS; Lonza, Cologne, Germany). Human telomerase reverse
transcriptase-immortalized retinal pigment epithelial (RPE, ATCC) cells were grown in DMEM-F12
medium supplemented with Pen/Strep, 2 mM l-glutamine, 10% FBS, and 0.25% sodium bicarbonate
(Sigma-Aldrich, St. Louis, USA). ACH-2 cells, which possess a single integrated copy of the provirus
HIV-1 strain LAI (NIH AIDS Reagent Program), were grown in RPMI-1640 medium supplemented
with 10% FBS and Pen/Strep. TZM-bl cells were grown in DMEM supplemented with 10% FBS and
Pen/Strep. Human lung adenocarcinoma epithelial A549 cells were cultured in DMEM medium
containing 10% FBS and Pen/Strep. A549-Npro cells (kindly provided by Prof. Steve Goodbourn,
University of London), which stably express BVDV Npro protein, which inhibits IFN production, were
cultured in DMEM containing 10% FBS, Pen/Strep, and 10 µg/mL puromycin. All cell lines were grown
in a humidified incubator at 37 ◦C in the presence of 5% CO2.

2.3. Viruses

HSV-2 strain G was from the ATCC. EV1 (Farouk strain; ATCC) was from Prof. Marjomäki
(University of of Jyväskylä) [19]. RVFV encoding the far-red fluorescent protein instead of non-structural
(NS) protein (RVFV-RFP) was from Profs. Hartmut Hengel and Friedemann Weber (University Medical
Center Freiburg) [20]. HMPV NL/1/00 strain, encoding green fluorescent protein (HMPV-GFP), was
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from ViroNovative and Erasmus MC [21]. The GFP-expressing influenza A/PR/8-NS116-GFP strain
(FLUAV-GFP) was generated by Drs. Andrej Egorov (Vienna) [22].

All the experiments with viruses were performed in compliance with the guidelines of the national
authorities using appropriate biosafety laboratories under appropriate ethical and safety approvals.
FLUAV-GFP was amplified in a monolayer of MDCK cells in DMEM containing Pen/Strep, 0.2%
bovine serum albumin, 2 mM l-glutamine, and 1 µg/mL l-1-tosylamido-2-phenylethyl chloromethyl
ketone-trypsin (TPCK)-trypsin (Sigma-Aldrich, St. Louis, USA). HMPV-GFP, RVFV-RFP and the
wild-type HSV-2 strain were amplified in a monolayer of Vero-E6 cells in the DMEM medium
containing Pen/Strep, 0.2% bovine serum albumin, 2 mM l-glutamine, and 1 µg/mL TPCK-trypsin.
EV1 was amplified in a monolayer of A549 cells in the DMEM media containing Pen/Strep, 0.2% bovine
serum albumin, and 2 mM l-glutamine.

For the production of HIV-1, 6 × 106 ACH-2 cells were seeded in 10 mL medium. Virus production
was induced by the addition of 100 nM phorbol-12-myristate-13-acetate. The cells were incubated
for 48 h. The HIV-1-containing medium was collected. The HIV-1 concentration was estimated by
measuring the concentration of HIV-1 p24 in the medium using anti-p24-ELISA, which was developed
in-house. Recombinant purified p24 protein was used as reference. The virus stocks were stored at
−80 ◦C.

2.4. Microscopy

Approximately 4 × 104 RPE cells were seeded per well in 96-well plates. The cells were grown
for 24 h in DMEM-F12 medium supplemented with 10% FBS, and Pen/Strep. The medium was
replaced with DMEM-F12 medium containing 0.2% bovine serum albumin, 2 mM l-glutamine, and
1 µg/mL TPSK-trypsin. The compounds were added to the cells in 3-fold dilutions at seven different
concentrations starting from 10 or 30 µM. Saliphenylhalamide, ABT-263 and DMSO were added to the
control wells. Saliphenylhalamide is an inhibitor of cellular vacuolar ATPase, which protects cells from
virus-mediated death, whereas ABT-263 is an inhibitor of anti-apoptotic Bcl-2 proteins, which facilitates
death of cells with viral nucleic acids [23–28]. RPE cells were infected with HSV-2, FLUAV-GFP,
HMPV-GFP or RVFV-RFP viruses at multiplicity of infections (moi) of 0.1, 0.5, 0.1 and 1, respectively.
HSV-2-infected RPE cells were imaged after 72 h in the phase-contrast mode. RVFV-mediated RFP
expression and FLUAV-mediated GFP expression were visualized after 24 h, whereas HMPV-mediated
GFP expression was recorded after 96 h using fluorescent microscopy (Zeiss Observer Z1, Zaventem,
Belgium). Image J software (v.IJ 1.46r, NIH) was used to determine fluorescent intensities.

2.5. Cell Viability and Toxicity Assays

RPE cells were treated with BSAAs or control compounds as described above and infected with
HSV-2, EV1, FLUAV-GFP, HMPV-GFP or RVFV-RFP viruses at multiplicity of infections (moi) of 0.1,
0.1, 0.5, 0.1 and 1, respectively. After 48 h of infection, the medium was removed from the cells. The
viability of mock- and virus-infected cells were measured using Cell Titer Glow assay (CTG; Promega,
Madison, USA). The luminescence/fluorescence were read with a PHERAstar FS plate reader (BMG
Labtech, Ortenberg, Germany).

For testing compound toxicity and efficacy against HIV-1, approximately 4 × 104 TZM-bl cells
were seeded in each well of a 96-well plate. TZM-bl cells express firefly luciferase under control of
HIV-1 long terminal repeat (LTR) promoter allowing quantitation of the viral infection (tat-protein
expression by integrated HIV-1 provirus) using firefly luciferase assay. The cells were grown for 24 h
in cell growth medium. Compounds were added to the cells in three-fold dilutions at seven different
concentrations starting from 30 µM. No compounds were added to the control wells. The cells were
infected with HIV-1 (corresponding to 300 ng/mL of HIV-1 p24) or mock. At 48 hpi, the media was
removed from the cells, the cells were lysed, and firefly luciferase activity was measured using the
Luciferase Assay System (Promega, Madison, WI, USA) and PHERAstar FS plate reader. In a parallel
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experiment, Cell Tox Green reagent (CTxG; Promega, Madison, WI, USA) was added to the cells and
fluorescence was measured with a plate reader.

The half-maximal cytotoxic concentration (CC50) for each compound was calculated based on
viability/death curves obtained on mock-infected cells after non-linear regression analysis with a
variable slope using GraphPad Prism software version 7.0a. The half-maximal effective concentrations
(EC50) were calculated based on the analysis of reporter protein expression or the viability/death of
infected cells by fitting drug dose–response curves using four-parameter (4PL) logistic function f (x):

f (x) = Amin +
Amax −Amin

1 +
(

x
m

)λ ,

where f (x) is a response value at dose x, Amin and Amax are the upper and lower asymptotes (minimal
and maximal drug effects), m is the dose that produces the half-maximal effect (EC50 or CC50), and λ is
the steepness (slope) of the curve. A relative effectiveness of the drug was defined as selectivity index
(SI = CC50/EC50). The threshold of SI used to differentiate between active and inactive compounds
was 3.

2.6. Drug Combination Experiment

RPE cells were treated with combinations of increasing concentrations of obatoclax and emetine.
The cells were infected with FLUAV-GFP at moi 0.5. After 24 h, GFP fluorescence was recorded using
fluorescent microscopy. In a parallel experiment, the viability of infected cells was measured using the
CTG assay. To test whether the drug combinations act synergistically, the observed responses were
compared with expected combination responses. The expected response of the emetine-obatoclax
drug combination on the viability of FLUAV- and mock-infected RPE cells was calculated using Bliss
reference model [29].

2.7. Virus Titration

For testing the production of HSV-2 and EV1 viruses in compound-treated and non-treated RPE
cells, the media from the cells were serially (10-fold) diluted, starting from 10−3 to 10−8 in serum-free
growth media containing 0.2% bovine serum albumin, and applied to a monolayer of A549-Npro cells in
12-well plates. After one hour, cells were overlaid with growth medium containing 1% carboxymethyl
cellulose and 1% FBS and incubated for 72 h. The cells were fixed and stained with crystal violet dye.
The plaques were calculated in each well. The titers were expressed as plaque-forming units per mL
(PFU/mL).

3. Results

3.1. Forty-Three BSAAs Target 52 Viruses

Forty-three safe-in-man BSAAs used in this study reached different stages of drug development
process (Figure 1, Tables S2 and S3). Altogether, these BSAAs inhibit the replication of 52 viruses
belonging to (−) single-stranded (ss)RNA, (+)ssRNA, ssRNA-reverse transcriptase (RT), ssDNA,
double-stranded (ds)DNA, or dsDNA-RT virus groups.
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Figure 1. Forty-three safe-in-man broad-spectrum antiviral agents (BSAAs) and viruses that they
inhibit. Viruses are clustered by virus groups. BSAAs are ranged from the highest to lowest number
of targeted viruses. Different shadings indicate the different development status of BSAAs. Gray
shading indicates that the antiviral activity has not been either studied or reported. Abbreviations: ds,
double-stranded; RT, reverse transcriptase; ss, single-stranded.

3.2. Obatoclax, Emetine, Niclosamide and Ganciclovir Inhibit HSV-2 Replication in RPE Cells

We tested 43 BSAAs against wild-type HSV-2 in RPE cells. Seven different concentrations of the
compounds were added to virus- or mock-infected cells. Cell viability was monitored by microscopy
and the CTG assay. After the initial screening, we identified four compounds (obatoclax, emetine,
niclosamide and ganciclovir) that at none-cytotoxic concentrations rescued cells from virus-mediated
death (Figure 2A). To determine the efficiency and toxicity of these HSV-2 inhibitors, we measured
the viability of mock- and virus-infected cells after 72 h using the CTG assay (Figure 2B). The Sis
for obatoclax, emetine, niclosamide and ganciclovir were 12, 37, 3 and >750, respectively (Table S4).
We titrated HSV-2 produced from drug-treated and non-treated cells in A540-Npro cells (Figure 2C).
The experiment revealed that 0.12 µM obatoclax, 0.04 µM emetine, 0.37 µM niclosamide and 0.37 µM
ganciclovir lowered the production of HSV-2 in RPE cells. Thus, we identified novel anti-HSV-2 activities
of obatoclax, emetine and niclosamide and confirmed the known anti-HSV-2 activity of ganciclovir.
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Figure 2. Effect of obatoclax, emetine, niclosamide and ganciclovir on the viability of mock- and herpes
simplex virus type 2 (HSV-2)-infected retinal pigment epithelial (RPE) cells and the production of
infectious virus particles in these cells. (A) RPE cells were treated with increasing concentrations of
a compound and infected with HSV-2 (moi, 0.1). Cells were imaged after 72 h in the phase-contrast
mode. (B) RPE cells were treated with increasing concentrations of a compound and infected with
mock- or HSV-2 (moi, 0.1). The viability of the cells was determined to be 72 hpi with the CTG assay.
Mean ± standard deviation (SD); n = 3 (experimental replicates). (C) HSV-2 production in RPE cells
treated with obatoclax (0.12 µM), emetine (0.04 µM), niclosamide (0.37 µM), ganciclovir (3.33 µM) or
DMSO-treated as measured by plaque assay using A549-Npro cells (Mean ± SD; n = 3).

3.3. Obatoclax, Emetine, and Homoharringtonin Inhibit EV1 Replication in RPE Cells

Similarly, we examined 43 BSAAs against wild-type EV1 in RPE cells. We monitored the viability
of mock- and virus-infected cells by microscopy and the CTG assay. After the initial screening, we
identified three compounds (obatoclax, emetine, and homoharringtonine), which rescued cells from
virus-mediated death at none-cytotoxic concentrations. To determine the efficiency and toxicity of
novel EV1 inhibitors, we measured the viability of mock- and virus-infected cells after 48 h using the
CTG assay (Figure 3A). The Sis for obatoclax, emetine, and homoharringtonine were 25, >300, and
>300, respectively (Table S4). We titrated EV1 produced from drug-treated and non-treated cells in
A549-Npro cells (Figure 3B). The experiment revealed that all three compounds lowered the production
of EV1, confirming novel antiviral activities of obatoclax, emetine, and homoharringtonine.
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Figure 3. Effect of obatoclax, emetine and homoharringtonine on the viability of mock- and echovirus 1
(EV1)-infected RPE cells and the production of infectious viral particles in these cells. (A) RPE cells were
treated with increasing concentrations of a compound and infected with EV1 (moi, 0.1). The viability of
the cells was determined to be 48 hpi with the CTG assay. (Mean ± SD; n = 3). (B) EV1 production
in RPE cells treated with obatoclax (0.37 µM), emetine (0.12 µM), homoharringtonine (0.12 µM) or
dimethyl sulfoxide (DMSO) as measured by plaque assay using A549-Npro cells (Mean ± SD; n = 3).

3.4. Brequinar and Suramin Inhibit HIV-1-Mediated Luciferase Expression in TZM-bl Cells

We also examined the toxicity and antiviral activity of 43 BSAAs against HIV-1-mediated firefly
luciferase expression. The firefly luciferase open reading frame is integrated into the genome of TZM-bl
cells under the HIV-1 LTR promoter. Our primary screen identified two compounds (brequinar and
suramin) that suppressed HIV-1-mediated firefly luciferase expression without detectable cytotoxicity.
We performed a validation experiment with anti-HIV-1 compounds and calculated selectivity. The SI
for brequinar was >750, whereas the SI for suramin was >375 (Figure 4; Table S4). Thus, we identified
novel activity of brequinar and confirmed known activity of suramin.

Figure 4. Effect of brequinar and suramin on human immunodeficiency (HIV-1)-mediated luciferase
expression and the viability of mock- and virus-infected TZM-bl cells. (A) TZM-bl cells were treated
with increasing concentrations of a compound and infected with mock or HIV-1 (300 ng/mL of HIV-1
p24). After 24 hpi, the medium was removed from the cells, the cells were lysed, and firefly luciferase
activity was measured using the Luciferase Assay System (Mean ± SD; n = 3). (B) In a parallel
experiment, Cell Tox Green reagent (CTxG) reagent was added to the cells and the fluorescence was
measured. The percentage of viable cells was calculated. Mean ± standard deviation (SD); n = 3
(experimental replicates).
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3.5. Obatoclax and Emetine Inhibit RVFV-Mediated RFP Expression in RPE Cells

In addition, we examined the toxicity and antiviral activity of 43 BSAAs against RFP-expressing
RVFV in RPE cells. Both fluorescent microscopy and the CTG assay showed that obatoclax and emetine
inhibited RVFV-mediated RFP expression at non-cytotoxic concentrations (Figure 5A–C). The SI for
obatoclax was >100, and the SI for emetine was >75 (Table S4).

Figure 5. Effect of obatoclax and emetine on Rift Valley fever virus (RVFV)-mediated red fluorescent
protein (RFP) expression and on the viability of mock- and virus-infected RPE cells. (A,B) RPE cells
were treated with increasing concentrations of a compound and infected with RVFV-RFP (moi, 1). After
24 h, the cells were imaged and fluorescence intensity was quantified (Mean ± SD; n = 3). (C) Cell
viability was determined using the CTG assay (Mean ± SD; n = 3).

3.6. Obatoclax and Emetine Inhibit HMPV-Mediated GFP Expression in RPE Cells

Next, we tested 43 BSAAs against GFP-expressing HMPV. HMPV-mediated GFP expression and
cell viability were measured after 72 h. After the initial screening, we identified two compounds,
obatoclax and emetine, which lowered GFP expression without detectable cytotoxicity. Replicate
experiments confirmed these hits (Figure 6A–C). The SI for obatoclax was six and for emetine was 10
(Table S4).
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Figure 6. Effect of obatoclax and emetine on metapneumovirus (HMPV)-mediated green fluorescent
protein (GFP) expression and on the viability of mock- and virus-infected RPE cells. (A,B) RPE cells
were treated with increasing concentrations of a compound and infected with HMPV-GFP (moi, 0.1).
After 96 h, the cells were imaged and fluorescence intensity was quantified (Mean ± SD; n = 3). (C) Cell
viability was determined with the CTG assay (Mean ± SD; n = 3).

3.7. Obatoclax and Emetine Inhibit FLUAV-Mediated GFP Expression in RPE Cells

Next, we tested 43 BSAAs against GFP-expressing FLUAV in RPE cells. After the initial screening,
we identified two compounds, obatoclax and emetine, which lowered GFP expression without
detectable cytotoxicity. We repeated the experiment with these compounds and confirmed initial hits
(Figure 7A–C). The SI for obatoclax was 31 and for emetine was >300 (Table S4). Thus, we identified
novel anti-FLUAV activity of emetine and confirmed known activity of obatoclax.

To test whether the obatoclax-emetine combinations act synergistically against FLUAV-mediated
GFP expression and rescue infected cells from death, the observed responses were compared with
expected combination responses. The deviations in observed and expected responses showed no
synergistic effect (Figure 7D,E; Figure S1). This result indicates that obatoclax and emetine target
distinct cellular pathways essential for virus infection.
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Figure 7. Effect of obatoclax, emetine and their combinations on influenza A virus (FLUAV)-mediated
GFP expression and the viability of mock- and virus-infected RPE cells. (A,B) RPE cells were treated
with increasing concentrations of a compound and infected with FLUAV-GFP (moi, 0.5). After 24 h,
the cells were imaged and fluorescence intensity was quantified (Mean ± SD; n = 3). (C) Cell viability
was determined with the CTG assay (Mean ± SD; n = 3). (D–E) The interaction landscapes of the
emetine-obatoclax drug combination on FLUAV-mediated GFP expression and the viability of FLUAV-
and mock-infected RPE cells, as measured with CTG assay.

4. Discussion

Here, we tested 43 safe-in-man BSAAs against (−)ssRNA, (+)ssRNA, RT-ssRNA and dsDNA
viruses and identified novel activities for five agents (Table 1, Figure S2). We identified novel activities
of niclosamide against HSV-2, brequinar against HIV-1, homoharringtonine against EV1, obatoclax
against HSV-2, EV1, HMPV and RVFV, and emetine against HSV-2, EV1, HMPV, RVF and FLUAV. We
also confirmed antiviral activities of ganciclovir against HSV-2, suramin against HIV-1, and obatoclax
against FLUAV [24,30,31]. Our results pointed out that an evasion mechanism observed in one
virus could be relevant for other viruses and that existing BSAAs could be re-positioned to other
viral infections.
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Table 1. The half-maximal cytotoxic concentration (CC50), the half-maximal effective concentration 1
(EC50-1) calculated using the CTG or CTxG assays, EC50-2 calculated using reporter protein expression,
and the minimal selectivity indexes (SIs = CC50/EC50) for selected broad-spectrum antivirals. The
measurements were repeated three times.

Compound Virus Cell Line Time (h) CC50
(mM)

EC50-1
(mM)

EC50-2
(mM) SI

Obatoclax HSV-2 RPE 72 1.23 ± 0.02 0.10 ± 0.02 12
Emetine HSV-2 RPE 72 1.12 ± 0.07 0.03 ± 0.01 37

Niclosamide HSV-2 RPE 72 1.31 ± 0.02 0.43 ± 0.04 3
Ganciclovir HSV-2 RPE 72 >30 0.04±0.01 >750

Obatoclax EV1 RPE 48 3.21 ± 0.04 0.12 ± 0.01 25
Emetine EV1 RPE 48 >30 0.12 ± 0.04 >300

Homoharringtonine EV1 RPE 48 >30 0.14 ± 0.03 >300

Brequinar HIV-1 TZM-bl 24 >30 0.04 ± 0.01 >750
Suramin HIV-1 TZM-bl 24 >30 0.08 ± 0.03 >375

Obatoclax RVFV RPE 24 >30 0.04 ± 0.01 0.32 ± 0.09 >100
Emetine RVFV RPE 24 >30 0.10 ± 0.02 0.43 ± 0.10 >75

Obatoclax HMPV RPE 96 0.60 ± 0.04 0.12 ± 0.02 6
Emetine HMPV RPE 96 1 0.14 ± 0.05 10

Obatoclax FLUAV RPE 24 3.11 ± 0.09 0.04 ± 0.01 0.10 ± 0.01 31
Emetine FLUAV RPE 24 >30 0.13 ± 0.05 0.12 ± 0.03 >300

Obatoclax was originally developed as an anticancer agent. Several Phase II clinical trials were
completed that investigated the use of obatoclax in the treatment of leukemia, lymphoma, myelofibrosis,
and mastocytosis. In addition, its antiviral activity was reported against FLUAV, ZIKV, WNV, YFV,
SINV, JUNV, LASV, and LCMV in vitro [24,26,32,33]. It was shown that obatoclax inhibited viral
endocytic uptake by targeting cellular induced myeloid leukemia cell differentiation protein Mcl-1 [24].
Given that obatoclax also inhibits RVFV, EV1, HMPV and HSV-2, it could be pursued as a potential
BSAA candidate.

Emetine is an anti-protozoal drug. It is also used to induce vomiting. In addition, it possesses
antiviral effects against ZIKV, EBOV, RABV, CMV, HCoV-OC43 and HIV-1 [34–38]. It was proposed
that emetine can directly inhibit viral polymerases, though it may have some other targets as well [39].
Given that emetine also inhibits FLUAV, RVFV, EV1, HMPV and HSV-2, it may represent a promising
BSAA candidate.

Niclosamide is an orally bioavailable anthelmintic drug and potential antineoplastic agent. In
addition, it inhibits the broadest range of viruses, including HSV-2, in vitro and, in some cases,
in vivo [40–49]. It was shown that niclosamide induces endosomal neutralization and prevents virus
entry into host cells. This supports the further development of niclosamide as a BSAA.

Homoharringtonine is an anticancer drug which is indicated for treatment of chronic myeloid
leukemia. It also possesses antiviral activities against HBV, MERS-CoV, HSV-1 and VZV [50–53].
Homoharringtonine binds to the 80S ribosome and inhibits viral protein synthesis by interfering with
chain elongation [51]. Given that homoharringtonine also inhibits EV1, it may represent a promising
BSAA candidate.

Brequinar is an investigational anticancer agent (phase I/II). Brequinar attenuates the replication
of DENV, WNV, YFV, LASV, JUNV, LCMV, VSV, HIV-1, and POWV (NCT03760666) [32,54]. It inhibits
dihydroorotate dehydrogenase, thereby blocking de novo pyrimidine biosynthesis, which is essential
for the transcription and replication of viral RNA. Given that brequinar also inhibits HIV-1, it may
represent a promising BSAA candidate.

The human non-malignant RPE cell line represents an excellent model system for studying the
infection of different viruses [17,18,24,26]. In addition, different viral strains expressing reporter proteins,
such as RVFV-RFP, HMPV-GFP and FLUAV-GFP, are excellent tools for drug screening [17,18,24,27].
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However, the number of novel and confirmed antiviral activities of BSAs could be higher if we had
used other cell lines and viral strains, different virus loads, different measurement endpoints, a different
time of compound addition, as well as a higher purity and concentration range of 43 BSAAs. Moreover,
antiviral properties of BSAAs detected in cell-line-based assays might not be reproduced in vivo
because systemic mechanisms may compensate the blocked target effect. Thus, follow-up studies are
needed to validate our initial hits.

Altogether, we expanded the spectrum of antiviral actions of niclosamide, brequinar,
homoharringtonine, obatoclax and emetine in vitro. Importantly, PK and safety studies have been
performed on these compounds in laboratory animals and humans. This information could be used to
initiate efficacy studies in vivo, saving time and resources. The most effective and tolerable BSAAs or
their combinations will have a global impact, improving the preparedness and protection of the general
population from emerging and re-emerging viral threats and the rapid management of drug-resistant
strains, as well as being used for first-line treatment or for prophylaxis of viral co-infections.

5. Conclusions

BSAAs could have a pivotal role in the battle against emerging and re-emerging viral diseases. The
development of novel BSAAs could save time and resources which are required for the development of
their alternatives—virus-specific drugs and vaccines. In future, BSAAs could have a global impact by
decreasing morbidity and mortality from viral and other diseases, maximizing the number of healthy
life years, improving the quality of life of infected patients, and decreasing the costs of patient care.
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with the CTG assay using the Bliss reference model; Figure S2: The interaction network between 43 BSAAs and 52
viruses. Yellow spheres represent antiviral agents and blue spheres represent viruses. The diameter of spheres
corresponds to the number of interactions between the drugs and the viruses. Novel interactions between BSAAs
and viruses are shown in red and known interactions are shown in grey.
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