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Summary

To examine if the NTNU UAVlabs navigation system toolbox for offline inertial navigation could
yield a better run time performance for cases with large measurement vectors, we tested three
variations of the Error-State Kalman Filter. The performance metrics measured were run time,
state root square mean error and state covariance.

The three implementations we tested were a batch wise implementation of the error-state Kalman
filter which were used as the reference filter. The second variation were the sequential Kalman
filter where the measurement update is done sequentially to avoid a matrix inversion when
computing the Kalman gain. Lastly, a third filter variation which uses a strategy involving
UDU-factorization of the covariance matrix in both the time-update and measurement-update
step were chosen as a factorized filter variation.

To test the hypothesis we use a 16 state simulation model with simulated IMU- and aiding
measurements, where m generic ranges were generated between beacons spread around the
simulated trajectory and the simulated vessel. Each filter variation were separated into three
timing categories: total-, time update- and measurement update run time. The timing were
performed by running the simulation n = 200 times for a set of simulation durations before the
average of the n measured run times were used to compare the variations. This experiment were
done with m = 15 and 30 measurement separately.

This thesis showed that the sequential filter strategy yielded a improvement in measurement
update run time with a speed up increase of 4.25% for m= 15 measurements and 81.65% for m
= 30. Additionally, the reference measurement update run time increased at a near cubic rate
when increasing m from 15 to 30. The UD-factorized variation were 137% slower in the time
update and 1161% slower in the measurement update relative to the reference for m = 15, and
146% and 200% for m = 30 in the respective update modules.

The sequential variation displayed a numerical identical accuracy and performance in terms of
RMSE and final estimated covariance for the longest simulation duration in this experiment.
The UD-variation displayed a similar RMSE as the reference, and a small improvement in terms
of magnitude in the final covariance estimation compared to the reference.
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Sammendrag

For å undersøke om NTNU UAVlabs navigasjonssystemsprogramvare for simulering av treghetsnavigasjon
kunne forbedres i tilfeller der det er mange målinger, utførte vi et eksperiment der vi sammenlignet
tre variasjoner av et error-state Kalman filter. I denne testen sammenlignet vi kjøretid, feiltilstandens
kvadratisk gjennomsnittsfeil og den akkumulerte tilstandsvariansen ved endt simulering.

De tre filterimplementasjonene som ble testet var den vanlige implementasjonen av filteret som
oftest blir presentert i lærebøker, og som er basert på matriseinvertering under beregningen
av Kalman-forsterkingen. Denne variasjonen av filteret ble også brukt som referansegrunnlag
for å sammenligne de to andre. Den andre variasjonen var det sekvensielle Kalman-filteret der
måleoppdateringen blir utført sekvensielt for å unngå matriseinverteringen under beregningen
av Kalman-forsterkningen. Det siste og tredje filteret var en faktorisert variant av filteret basert
på en strategi der kovariansmatrisen blir faktorisert gjennom UDU-faktorisering i både tids- og
måleoppdateringen.

For å teste hvilket av de tre filterene som var best i forhold til testparameterene, implementerte
vi en 16 tilstanders simuleringsmodell med simulerte bevegelses- og hjelpemålinger. Her ble
m antall simulerte sendetårn spredd rundt den simulerte banen til fartøyet i modellen. Hver
filtervariasjon ble oppdelt i tre tidskategorier separert i total kjøretid, kjøretid som tidsoppdateringen
bruker av total kjøretid, samt kjøretid som måleoppdateringen bruker av total kjøretid. Tidsmålingen
ble utført ved å kjøre simuleringen N = 200 ganger for et gitt sett med simuleringskjøretid. Av
de 200 målte dataene, ble det beregnet en gjennomsnittlig kjøretid for de tre kategoriene som ble
brukt for å sammenligne de tre variasjonene. I tillegg ble filterenes kvadratiske gjennomsnittsfeil
og varians målt og sammenlignet mot hverandre. Dette eksperimentet ble gjort med henholdsvis
m = 15 og 30 hjelpemålinger hver for seg.

Denne oppgaven resulterte i at den sekvensielle filterstrategien gav en forbedring i kjøretid for
måleoppdateringen med en relativ forbedring til referansen på 4.25% for m = 15 hjelpemålinger,
og 81.65% forbedring for m = 30. I tillegg så økte referansens kjøretid med en nær kvadratisk
rate for denne økningen av m. Den UD-faktoriserte variasjonen viste en 137% nedgang i relativ
kjøretid for tidsoppdateringen og 1161% nedgang i måleoppdateringen relativ til referansen for
m = 15, samt en 146% og 200% nedgang for m = 30 i de respektive modulene.

Den sekvensielle variasjonen viste en numerisk identisk presisjon og ytelse når det kommer
til den kvadratiske gjennomsnittsfeilen og den endelige estimerte kovariansen for den lengste
simuleringstiden utført i dette eksperimentet. UD-variasjonen viste en lignende kvadratisk
gjennomsnittsfeil relativt til referansen og en liten forbedring i størrelsen til kovariansen.
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Preface

The work on this thesis was done in the fall of 2021 at the Department of Engineering Cybernetics
at the Norwegian University of Science and Technology. The work amounts to 30 study credits,
and is a continuation of my project thesis done in the spring of 2021 [1].

The master thesis builds on the simulation model and the standard error-state Kalman filter
implemented in the project thesis. The thesis also patches and re-implements the sequential
variation into a properly working variation after uncovering a couple of errors in the former
implementation. In addition to the standard error-state Kalman Filter, and the variation with
sequential measurement update, this thesis implements and investigates a variation where the
covariance matrix is factorized in to a UDU-shape in the time- and measurement update called
the UD-factorized variation. The standard variation of the filter is used as a reference filter for
which the sequential and UD-factorized variation were compared to. The simulation model and
the filter implementations in this thesis were all implemented and run with Python 3.9.

In this thesis I compare the three variations in regards of run time, root mean square error
of the error state and final estimated covariance for a given set of simulation duration on the
same simulation model with m = 15 and m = 30 measurements. The comparison test were
standardized to be as reproducible as possible.

I would like to thank my supervisor Torleiv H. Bryne for the advice given throughout this
semester as well as the prior semester, and a special thanks for the feedback given throughout
both theses.

Andreas Haugland,
Trondheim, Januar 2022
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Chapter 1

Introduction

1.1 Problem background

The NTNU UAVlab has developed a navigation systems toolbox to run inertial navigations
offline used for experimentation, development and validation. The toolbox has proven to be
useful, but further developments are beneficial to increase performance, utility and robustness.

An item for examination is the choice of error-state Kalman filter strategy to use in the toolbox.
Depending on the INS design, the environment of operation, and the platform architecture, there
are multiple considerations to be made regarding the time update and measurement update
design optimization.

Groves [2] (p. 75) states that the processing load for Kalman filter implementations depend on
the number of components in the state vector, measurement vector and system noise vector. If
the number of states n are large, the covariance propagation step becomes increasingly more
computationally demanding, while if the size of the measurement vector with m measurements
increases, then the load increase becomes more significant in the Kalman gain computation in the
measurement update. This establishes two important sub-problems for the filtering optimization,
the time update steps and the measurement update steps.

The computational load in the measurement update comes largely from the required matrix
inversion when computing the Kalman gain. The gain matrix K𝑘 is given by the equation
K𝑘 = P −𝑘−1H

𝑇
𝑘 S
−1
𝑘 , where the size of S𝑘 is ∈ ℝ𝑚×𝑚, where m is the number of measurements

in the measurement vector. The inversion of this matrix have the computational complexity
O(𝑚3) when the inversion is performed with Gauss-Jordan elimination. This means that the
computational load from scaling the measurement vector up from the minimum required to
compute a 3D user position ramps up fast. How to improve on the measurement update then
becomes a question of either finding a new way to optimize the inversion function, or to find
another variation of the measurement update. Dan Simon [3] (p. 150) suggests the sequential
Kalman filtering as a alternative filter strategy for larger number of measurements to ease the
computational load in the Kalman filter algorithm. Instead of handling the aiding measurements
all at once in a batch-wise manner such as is common in the default filter variation, the sequential
handles the measurements one at the time. This results in a measurement update step where
the computation of the Kalman gain depend on scalar multiplications if each of the aiding
measurement are scalar. If the measurements have higher dimensions the maximum matrix
inversion will the same size as the largest dimension vector measurement. In addition to this,
by removing the need of a matrix inversion in the update, one also opens up for using this filter
variation on architectures that does not have a matrix library with matrix inversion functions

3



4 CHAPTER 1. INTRODUCTION

built in. The sequential measurement update is also needed as a basis for the measurement
update in the UD-factorized variation discussed below.

In NASAs Navigation filter best practices [4] (p. 63), D’Souza repeats Groves claim about the
increasing computational load with increasing state space, and adds to it that for the usual
Kalman filter, an enlargement of the state-space will also augment the nonlinear effects leading
to filter divergence and non-positive definiteness of the covariance matrix. To fix this issue,
D’Souza suggests a factorization method first discussed by Thornton in "Triangular Covariance
Factorization for Kalman Filtering" [5]. Here she suggests factorizing the covariance matrix P
into the combination UDU𝑇 where U is a upper-triangular matrix, and D is a diagonal matrix.
In this dissertation, she states that the U-D filter algorithm she derived both "combines the
numerical precision of square root filtering techniques with an efficiency comparable to that of
Kalman’s original formula", and that "the method involves no more computer storage than the
Kalman algorithm" [5] (p. i). Simon adds to this and states that in addition to bettering the
numerical properties of the covariance matrix, that the U-D filtering should be some middle
point between the faster sequential implementation, and the more numerically stable square
root filtering methods [3] (p. 162 p.174). Regarding additional computational considerations,
Salzmann suggests the U-D covariance factorization filter if "reduction of computational burden
is of utmost importance" [6] (p. 77-78) as well as the benefit of not needing any explicit square
root computations as seen in square root filter types [6] (p. 34). The issue of computational load
versus accuracy and robustness becomes a delicate balancing problem when designing Kalman
filter algorithms. Should the design be fast on the cost of numerical stability and accuracy, slow
but robust, or somewhere in the middle. What is needed depends heavily on the application
of the filter. A system with fast dynamics such as a UAV may demand both. Based on these
statements, I have chosen to investigated three Error State Kalman Filter implementations.
The first is the standard ESKF-implementation, presented by Solà [7] (Ch. 5), The second
filter variation is the sequential variation presented by Simon [3] (p.150) which changes the
measurement update to handle the update one measurement at the time. The third variation
is the UDU-factorized variation as presented by D’Souza and Simon, based on Thornton [5]
and "Factorization Methods for Discrete Sequential Estimation" by Bierman [8]. Here, the UD-
variation is chosen over other alternatives such as the QR and LU factorized variation due to
the advantages mentioned in the literature such as it being similar in accuracy and numerical
stability as the computational demanding square root filters, while being more similar to the
standard error-state Kalman filter in terms of computational load.

The end goal is to evaluate run time and to compare the accuracy of the three implementations,
where both combined run time for time-update and measurement-update will be compared with
individual run time for time-update and measurement update. Furthermore, the number of
arithmetic operations mentioned by D’Souza will not be investigated here, but rather I will use
this claim to see if the the supposedly fewer operations will result in a faster run time when
performing simulations.

Due to this focus, we decided on implementing a simulation model that is able to estimate the
trajectory and attitude of a simulated vessel, and to limit the states to as few as possible. An
inertial measurement unit consisting of a 3-axis accelerometer and a 3-axis rate-gyro with all
axis are perfectly aligned were chosen. We also assume that the dynamic and static IMU-biases
can be combined into a total bias. This removes the need to add a 6 misalignment vectors
for the IMU and 6 additional biases in the state space. This yields a state space consisting of
n = 15 states in our model. The states are positions, velocities, attitudes, accelerometer bias
and gyro rate bias. Furthermore, We’ve chosen to generate the aiding measurement through
a generic range between the, i.e our simulated vessel, and a constellation of beacons scattered
around the trajectory of the vessel. This aiding measurement could be obtained through a array
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of alternatives, such as ultra wide band, Bluetooth, or more typically a GNSS measurement,
but the beacon constellation were chosen due to how easy one may scale up the measurement
vector by adding or removing beacons to the constellation. In addition it also removes the need
to estimate states such as GNSS clock error as a state and to model atmospheric noises for a
high fidelity GNSS signal.

Since the matrix inversion has the complexity of O(𝑚3), whereas adding an iteration to a for-
loop should have complexity O(𝑚), the run time increase should be squared or even cubed when
increasing the measurement vector. From this, I believe there is reason to to state that the
sequential update will run faster than the batch-wise update. In addition to this, I believe
the difference between the elapsed run times between the variations will increase as the size of
the measurement vector increases. Furthermore, I want to examine if the benefit of a faster
measurement update comes with a cost of system accuracy, which I will measure with the state
root mean square-error (RMSE), and a examine if the covariance matrices are larger in one of
the filter variations. Both the batch-wise and sequential variations should be similar in total
time update run time since they share the code base.

The design for the UD-factorized variation presented in the literature requires changes to both
the time update and the measurement update through multiple factorization functions. These
factorization functions adds to the computational load by adding multiple for-loops and matrix
multiplications, which are listed in Section 5.4.3. The time update gets two additional nested
for-loops for each time step, while the measurement update adds two nested for loop for each
measurement. Thus I believe the total time update run time should be slower than time update
shared between the two other variations, while the measurement update should be significant
slower than the sequential variation. Comparing the UD-measurement update to the standard
update, I believe these should be somewhat comparable in run time. The final point I want to
examine is if we obtain a better covariance and a smaller RMSE between the UD-variation and
the two other. Based on Thorntons argument that the UD-variation should result in similar
results as the standard variation, I believe that the UD-factorized variation should be at least
as good as the standard variation, possible better in terms of accuracy performance.
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1.2 Main contributions
This master thesis uses the majority of the simulation model created in my own project thesis,
"Efficient and accurate implementation of inertial navigation systems"[1], thus some of the
contributions have their origin from there.

Following is a list of main contributions for the master thesis

• Review and validation of the results from my project thesis.

• Re-implementation of the simplified 16 state motion simulator and inertial measurement
units and beacon range simulator created in my project thesis to fit the scope of this thesis
and to patch errors from the prior experiment.

• Re-implementation of a standard Error-State Kalman Filter and recreate the true states
from the simulation data through the ESKF estimation algorithm to patch out errors.

• Implementation of a sequential inertial navigation system aiding strategy for the ESKF.

• Implementation of a factorized inertial navigation system aiding strategy for the ESKF.

• Scripting a standardized method of bench marking and measure the filter variations.

• Evaluate performance and run time of the three aided inertial navigation system strategies.

The code used in the master thesis can be found in this GitHub repository [9]. The code for the
project thesis can be found in this repository [10].

https://github.com/aHaugl/TTK4900-Master
https://github.com/aHaugl/TTK4550
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1.3 Thesis organization
In addition to the introduction and problem background the thesis is structured into the following
chapters and parts:

• Mathematical preliminaries: A brief presentation of mathematical preliminaries used
throughout this thesis.

• Inertial Navigation System preliminaries: Contains a presentation of the Inertial
Measurement Units (IMU) and the measurement equations used in the Inertial Navigation
System (INS). This section also contains the IMU process noise and bias design and how
this noise design were used to tune the error-state Kalman filter. Lastly, this chapter
contains the system dynamics equations and the system and derives the relation between
the measurement units, true kinematics, nominal kinematics and the error-state kinematics
as well as the discretization used for these equations in the simulation model.

• Simulation model: In this chapter I present how the simulation model and how the
simulated measurement data were generated. This chapter is largely kept the same as
in the project thesis. Some changes have been done regarding data-generation and the
placement of the beacons, but the model is otherwise kept similar in terms of the equations
used.

• Error State Kalman & Aided INS designs: Contains the equations used in the time
and measurement updates for the batch-wise reference ESKF, the sequential ESKF and
the UD-factorized ESKF. Section 5.4 contains the algorithm variations and displays the
flow in the filter variations.

• Results: Chapter 6 the results and the evaluation of the results for m = 15 and m = 30
respectively. The filter variation and module run times are here presented in scatter plot
and table form, and the relative speed difference between the variations can be seen in
table form for the chosen set of simulation durations. The corresponding root mean square
errors for the error states as well as the final estimated covariance is also found here.

• Conclusion and further work: Contains the summarized conclusion from the findings
and the discussion as well as a suggestion for further work.

Some chapters in this thesis report is based on the theory used in the project thesis and are thus
similar in content. Following is a list of the chapters that share the most similarities between
the two thesis’. Other sections may have similarities, but are not listed here as they largely have
been rewritten.

• Parts of the Inertial Navigation System preliminaries in Chapter 3.

• The derivation of the equations of the system dynamics and the equations for the reference
Error-State Kalman Filter in chapter Section 3.3 and Section 5.1.

• The design of the reference error-state Kalman filter.

• The derivation of the equations used in the simulation model in Chapter 4





Chapter 2

Mathematical preliminaries

This section contains some of the general mathematical preliminaries making it easier to follow
the equations written in the upcoming sections.

2.1 Rotation matrix
The rotation matrix between two frames a and b is denoted as R𝑎

𝑏. The rotation matrix is an
element in SO(3) and has the properties of that special orthogonal group of order 3 for which

SO(3) =
{
R|R ∈ ℝ3×3,RR𝑇 = R𝑇R = I3

}
(2.1.1a)

det(R) = 1 (2.1.1b)

In this report, we adapt the following notation

v𝑡𝑜 = R𝑡𝑜
𝑓 𝑟𝑜𝑚v

𝑓 𝑟𝑜𝑚 (2.1.2)
Here, the subscript denotes which frame we rotate from, and the superscript denotes which
frame we rotate to for the rotation matrix. For the vectors, the superscript denotes which frame
the corresponding vector or variable is in.

The euler angle transformation is given as

R𝑛
𝑏 = R(Θ𝑛𝑏) (2.1.3)

where
𝚯 =

[
𝜙 𝜃 𝜓

]𝑇 (2.1.4)

The one-axis rotations are given by

R𝑥,𝜙 =


1 0 0
0 𝑐𝜙 −𝑠𝜙
0 𝑠𝜙 𝑐𝜙

 ,R𝑦, 𝜃 =


𝑐𝜃 0 𝑠𝜃
0 1 0
−𝑠𝜃 0 𝑐𝜃

 ,R𝑧,𝜓 =


𝑐𝜓 −𝑠𝜓 0
𝑠𝜓 𝑐𝜓 0
0 0 1

 (2.1.5)

where s( · ) = sin( · ) and c( · ) = cos( · ). The combined, full rotation from the body frame
to NED frame is given by multiplying these three one-axis rotations as seen in Equation (2.1.6)

R𝑛
𝑏 = R𝑧,𝜓R𝑦, 𝜃R𝑥,𝜙 =


𝑐𝜓𝑐𝜃 −𝑠𝜓𝑐𝜓 + 𝑐𝜓𝑠𝜃𝑠𝜙 𝑠𝜓𝑠𝜙 + 𝑐𝜓𝑐𝜙𝑠𝜃
𝑠𝜓𝑐𝜃 𝑐𝜓𝑐𝜙 + 𝑠𝜙𝑠𝜃𝑠𝜓 −𝑐𝜓𝑠𝜙 + 𝑠𝜃𝑠𝜓𝜙
−𝑠𝜃 𝑐𝜃𝑠𝜙 𝑐𝜃𝑐𝜙

 (2.1.6)

9
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2.2 Skew symmetric matrix
The skew symmetric matrix S is a matrix of order n which holds the property

S = −S𝑇

and is defined as

S (λ) = −S𝑇 (λ) =


0 −𝜆3 𝜆2
𝜆3 0 −𝜆1
−𝜆2 𝜆1 0

 (2.2.1)

where
λ =

[
𝜆1 𝜆2 𝜆3

]𝑇
2.3 Quaternions
An alternative attitude representation to the Euler angle representation is the quaternion representation.
A unit quaternion is defined as a complex number with one real part 𝜂, and three imaginary
parts }𝑚 and is given by

q =
[
𝜂 𝜖1 𝜖2 𝜖3

]𝑇 (2.3.1)

The unit quaternion satisfies q𝑇q = 1.

The product of two quaternions is defined as

q1 ⊗ q2 =

[
𝜂1𝜂2 − 𝜖𝑇1 𝜖2

𝜂1𝜖2 + 𝜂21 + S (𝜖1)𝜖2

]
(2.3.2)

Unit quaternion rotation matrix

The unit quaternion rotation matrix from BODY to NED is given by

R(q𝑛
𝑏) = I3 + 2𝜂S (𝜖) + 2S2(𝜖)

=


1 − 2(𝜖2

2 + 𝜖2
3 ) 2(𝜖1𝜖2 − 𝜖3𝜂) 2(𝜖1𝜖3 + 𝜖2𝜂)

2(𝜖1𝜖2 + 𝜖3𝜂) 1 − 2(𝜖2
1 + 𝜖2

3 ) 2(𝜖2𝜖3 − 𝜖1𝜂)
2(𝜖1𝜖3 − 𝜖2𝜂) 2(𝜖2𝜖3 + 𝜖1𝜂) 1 − 2(𝜖2

1 + 𝜖2
2 )


(2.3.3)

2.4 Euclidian norm
The euclidian norm is defined as

| |x| |2 =
√
𝑥2

1 + 𝑥2
2 + · · · + 𝑥2

𝑛 (2.4.1)

2.5 Noise processes
In both the following subsections b denotes the bias state, p denotes a static component, and w
denotes a dynamic noise component.
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2.5.1 Gauss-Markov

A Gauss-Markov model is given by the equation

¤𝑏 = −𝑝𝑏 + 𝑤 (2.5.1)

where

𝑤 ∼ N(0,σ2δt− τ )

2.5.2 Wiener

A wiener process is given by
¤𝑏 = 𝑤 (2.5.2)

where

𝑤 ∼ N(0,σ2δt− τ )





Chapter 3

INS preliminaries

The inertial navigation system is a system consisting of an inertial measurement unit (IMU) and
a computational unit. The IMU is typically made up of a 3-axis accelerometer, a 3-axis gyroscope
and in some cases further augmented with a 3-axis magnetometer. Both the accelerometer and
the gyroscope are mounted orthogonally to each other, and allows the user to obtain specific
forces and angular rates in six degrees of freedom (6-DOF).

In the following sections, I will use the notation (.)𝑚 to denote the measured signal, (.)𝑡 is the
true signal, (.)𝑛 as the measurement noise signal, and (.)𝑏𝑡 is the bias term. This notation is
adapted from Solà[2] and Brekke [11], with the addition of frame notation superscipts (.)𝑏 or
(.)𝑛 denoting if the object at hand is written in the NED-frame or the BODY-frame. In addition
to this, the rotation R𝑛

𝑏 (q
𝑛
𝑏) signifies a rotation from frame b to frame n, similar to what is

presented in (2.1.2).

3.1 Accelerometer and rate gyro sensor

In a general case, the rate sensor can be defined in any measurement frame, and the accelerometer
can be defined in any arbitrary frame, measuring the specific force, i.e the acceleration relative
to the gravitational acceleration. In this thesis, both the accelerometer and rate sensor are
modeled in the body-frame.

The measurement equations for the IMU accelerometer and gyro rate sensor is given by Fossen in
[12] (p. 420). The accelerometer measures three-axis specific force, which is a non-gravitational
force per unit mass m, and is denoted as

f𝑏
𝑎𝑐𝑐 = f𝑏

𝑛𝑚𝐼
(3.1.1)

where g𝑏 is the body fixed gravitational force, and f𝑏
𝑛𝑚𝐼

is the total force. Subtracting the
gravitational forces, we’re left with the formula for specific force

f𝑏
𝑎𝑐𝑐 = a𝑏

𝑛𝑚𝐼
− g𝑏 (3.1.2)

From (3.1.2) we get the measurement equation for a three axis accelerometer with the corresponding
measurement bias equation given as

13
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a𝑏
𝑚 = R𝑏

𝑛 (q𝑛
𝑏) (a

𝑛
𝑡 − g𝑛

𝑡 ) + a𝑏
𝑏𝑡 + a

𝑏
𝑛 (3.1.3a)

a𝑏
𝑏𝑡 = −𝑝abI𝑎

𝑏
𝑏𝑡 + 𝑎

𝑏
𝑤 (3.1.3b)

From Fossen we also obtain three axis rate gyro sensor measurement equation with the corresponding
measurement bias equation given as

ω𝑏
𝑚 = ω𝑏

𝑡 + ω𝑏
𝑏𝑡 + ω

𝑏
𝑛 (3.1.4a)

¤ω𝑏
𝑏𝑡 = −𝑝ω𝑏Iω

𝑏
𝑏𝑡 + ω

𝑏
𝑤 (3.1.4b)

Here, both IMU measurement bias equations differ from Fossen where we model the biases a𝑏
𝑏𝑡

and ¤𝜔𝑏
𝑏𝑡 as slowly varying Gauss-Markov biases processes instead of Wiener processes. The

biases will continue to grow during operation, thus it is necessary to estimate them for feedback
purposes, which is done in the ESKF.

In addition to this, Fossen states that the gyro rate sensor equation given in (3.1.4) is only valid
for "low-speed applications such as a marine craft moving on the surface of the Earth since it
assumes that {𝑛} is nonrotating, that is ω𝑏

𝑖𝑏 ≈ ω𝑏
𝑛𝑏. For terrestrial navigation, the Earth rotation

will affect the results and it is necessary to use the inertial frame {𝑖} instead of the approximate
frame {𝑛}.". Thus, this thesis uses the assumption that application we are modeling is a low-
speed application.

3.2 IMU process noise
This section introduces the process noise vector n which will be more closely derived in (3.3.10).
It consists of the continuous-time represented IMU input noises a𝑏

𝑛 and ω𝑏
𝑛 , and the driving

noises of the bias processes a𝑏
𝑤 and ω𝑏

𝑤. Their continuous-time spectral density matrices are
denoted Ṽ , 𝚯̃, W̃ and 𝛀̃, all assumed to be white processes:

n ∼ N(012𝑥1, Q̃), Q̃ = blkdiag(Ṽ , 𝚯̃, W̃ , 𝛀̃) (3.2.1)

Solà states that the noise process are different in nature, which in turn affects how their
covariance should be tuned. Here, we base the velocity and attitude prediction equations of
a numerical integration of the discrete measurements equations from the IMU, derived from
(3.1.3) and (3.1.4). This also comes with a integration of the IMU measurement noise. Thus, by
knowing the noise characteristics of the discrete time IMU measurements, we can say something
about the power spectral density of the continuous-time IMU measurement noises a𝑏

𝑛 and ω𝑏
𝑛 ,

or as Solà states noise levels in the control signals. The IMU measurement noises a𝑏
𝑛 and ω𝑏

𝑛 are
modeled as additive white noise processes assumed Gaussian. Their continuous time covariances
are denoted by V and 𝚯 and are given in (3.2.2).

a𝑏
𝑛 ∼ N(0,V δt− τ ) (3.2.2a)

ω𝑏
𝑛 ∼ N(0,𝚯δt− τ ) (3.2.2b)

The STIM300 were the IMU of choice for this simulation model. This IMU were chosen to
design both the noise in the IMU data generated in the simulation model, as well as the the
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parameters for the tuning of the ESKF. The IMU specifications seen in Table 3.2.1 contains the
bias instability and random walk parameters for the Sensonor STIM300 [13]. The units in this
table is ◦ = degrees, h = hour, m/s = meter per second, g = gravitational acceleration.

Table 3.2.1: Data sheet parameters from STIM300 [13]

Gyro angle random walk (ARW) 0.15
[
◦/
√

h
]

Gyro bias instability 0.3 [◦/h]
Accelerometer velocity random walk (VRW) 0.07

[
m/s√

h

]
Accelerometer bias instability 0.05

[
𝑔 · 10−3]

(3.2.3) - (3.2.6) displays the derivation for finding the standard deviation of the gyro random
walk. (3.2.7) and (3.2.8) displays the conversion to SI-units and values used in the tuning of the
Kalman filter, and the spectral densities of the bias driving IMU noises can be seen in (3.2.9).
The equations used are from [14].

First we define the angular random walk as ARW = δ𝚯, and

δ ¤𝚯 = ω𝑏
𝑛 (3.2.3a)

𝔼
[
ω𝑏

𝑛 (𝑡)ω𝑏
𝑛
𝑇 (𝜏)

]
= Qδ(𝑡 − 𝜏) (3.2.3b)

The next step is to compute the variance 𝔼
[
𝚯(𝑡)𝚯𝑇 (𝜏)

]
𝔼
[
𝚯(𝑡)𝚯𝑇 (𝜏)

]
= 𝔼

[∫ 𝑡

0
ω𝑏

𝑛 (𝛽)𝑑𝛽
∫ 𝑡

0
ω𝑏

𝑛
𝑇 (𝜏)𝑑𝜏

]
=
∫ 𝑡

0

∫ 𝑡

0
𝔼
[
ω𝑏

𝑛 (𝛽)ω𝑏
𝑛
𝑇 (𝜏)

]
𝑑𝛽𝑑𝜏

=
∫ 𝑡

0

∫ 𝑡

0
Q𝛿(𝛽 − 𝜏)𝑑𝛽𝑑𝜏

=
∫ 𝑡

0
Q𝑑𝜏

= 𝑡 ·Q

(3.2.4)

From here, we can obtain the standard deviation by taking the square root of the variance

σ𝛿𝚯 =
√
𝔼
[
𝚯(𝑡)𝚯𝑇 (𝜏)

]
=
√
𝑡 ·

√
Q (3.2.5)

where we have the standard deviation for the gyro measurement noise as

σ𝜔𝑏
𝑛
=
√
Q =

σ𝛿𝚯√
𝑡

=
σARW√

𝑡

(3.2.6)



16 CHAPTER 3. INS PRELIMINARIES

The next step is to convert this sigma-value to SI-units before we can use them to tune our
error-state Kalman filter. By inserting the angular random walk from Table 3.2.1, and letting t
= h = 3600 seconds, and converting to radians from degrees, we obtain σω𝑏

𝑛
as

σω𝑏
𝑛
= 0.15

[
◦
√

h

]
= 0.15

[
◦

√
3600s

]
=

0.15
60

[
◦
√

s

]
=

0.15𝜋
60 · 180

[
rad
√

s

]
(3.2.7)

In a similar way we obtain the standard deviation of the accelerometer measurement noise, σa𝑏
𝑛

as

σa𝑏
𝑛
= σVRW/

√
𝑡 = 0.07

[
m/s
√

h

]
= 0.07

[
m/s
√

3600s

]
=

0.07
60

[
m/s
√

s

] (3.2.8)

The spectral density of the bias driving IMU noises a𝑏
𝑤 and ω𝑏

𝑤 were designed to match the
standard deviation of the simulated bias noise, which can be seen in section Chapter 4 and were
set to

W̃ = 0.0042 𝑚

𝑠2 (3.2.9a)

𝛀̃ = 0.000052 rad
𝑠

(3.2.9b)

Where the respective standard deviations can be found by taking the square root of (3.2.9).

3.3 System dynamics

The variables and their definitions used in the strapdown equations and in the ESKF are defined
by Before moving on to the system equations, Joan Solà[2] can be seen in Table 3.3.1.

The equations for the ESKF are separated into continuous time equations seen in Section 3.3.2
and the discretized equations in section Section 3.3.3.

3.3.1 Continuous time system kinematics

The continuous time system kinematics are divided into true-state, nominal state and error-state
kinematics and are shown in the following sections.
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Table 3.3.1: Elements in Solà’s ESKF formulation

Magnitude True Nominal Error Composition Measured Noise
Position p𝑡 p δp𝑡 pt = p + δp
Velocity v𝑡 v δv𝑡 vt = v + δv
Orientation q𝑡 q δq𝑡 qt = q ⊗ δq

3 DOF attitude error δθ δq ≈
[

1
δθ
2

]
Accelerometer bias a𝑏𝑡 a𝑏 δa𝑏 a𝒃𝒕 = a𝑏 + δa𝑏 a𝑤

Gyro bias ω𝑏𝑡 ω𝑏 δω𝑏 ω𝒃𝒕 = ω𝑏 + δω𝑏 ω𝑤

Acceleration a𝑡 a𝑚 a𝑛

Angular rate ω𝑡 ω𝑚 ω𝑛

3.3.2 True-state kinematics

The true kinematic equations containing the model terms are given by Solà and Brekke as seen
in (3.3.1).

¤p𝑛
𝑡 = v𝑛

𝑡 (3.3.1a)
¤v𝑛
𝑡 = a𝑛

𝑡 (3.3.1b)

¤q𝑛
𝑡,𝑏 =

1
2
q𝑛
𝑡,𝑏 ⊗ ω𝑏

𝑡 (3.3.1c)

¤a𝑏
𝑏𝑡 = −𝑝𝑎𝑏Ia

𝑏
𝑏𝑡 + a

𝑏
𝑤 (3.3.1d)

¤ω𝑏
𝑏𝑡 = −𝑝𝜔𝑏Iω

𝑏
𝑏𝑡 + ω

𝑏
𝑤 (3.3.1e)

The true IMU biases are modeled as first order Gauss Markov processes with 𝑝𝑎𝑏 and 𝑝𝜔𝑏,
being the inverse time constants.

By substituting the true terms in the velocity and attitude equations with the IMU measurements
given by (3.1.3) and (3.1.4), we rewrite (3.3.1) to (3.3.2):

¤p𝑛
𝑡 = v𝑛

𝑡 (3.3.2a)
¤v𝑛
𝑡 = R𝑛

𝑡,𝑏 (q
𝑛
𝑡,𝑏) (a

𝑏
𝑚 − a𝑏

𝑏𝑡 − a
𝑏
𝑛) + g𝑛

𝑡 (3.3.2b)

¤q𝑛
𝑡,𝑏 =

1
2
q𝑛
𝑡,𝑏 ⊗ (ω

𝑏
𝑚 − ω𝑏

𝑏𝑡 − ω
𝑏
𝑛 ) (3.3.2c)

¤a𝑏
𝑏𝑡 = −𝑝𝑎𝑏Ia

𝑏
𝑏𝑡 + a

𝑏
𝑤 (3.3.2d)

¤ω𝑏
𝑏𝑡 = −𝑝𝜔𝑏Iω

𝑏
𝑏𝑡 + ω

𝑏
𝑤 (3.3.2e)

Which can be be written as the system ¤x𝑡 = 𝑓𝑡 (x,u,w). The system with states, are driven by
input u and white Gaussian noise w are listed in (3.3.3).

x𝑡 =


p𝑡

v𝑡
q𝑡
a𝑏𝑡

ω𝑏𝑡


, u =

[
a𝑚 − a𝑛

ω𝑚 − ω𝑛

]
, w =

[
a𝑤

ω𝑤

]
(3.3.3)
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Nominal-state kinematics

The nominal-state kinematics corresponds to the modeled system without noises or perturbations,
and is given as:

¤p𝑛 = v𝑛 (3.3.4a)
¤v𝑛 = R𝑛

𝑏 (q
𝑛
𝑏)(a

𝑏
𝑚 − a𝑏

𝑏) + g
𝑛 (3.3.4b)

¤q𝑛
𝑏 =

1
2
q𝑛
𝑏 ⊗ (ω

𝑏
𝑚 − ω𝑏

𝑏 ) (3.3.4c)

¤a𝑏
𝑏𝑡 = −𝑝𝑎𝑏Ia

𝑏
𝑏𝑡 (3.3.4d)

¤ω𝑏
𝑏𝑡 = −𝑝𝜔𝑏Iω

𝑏
𝑏𝑡 (3.3.4e)

Error-state kinematics

Since the underlying system for the error-state kinematics are nonlinear, it is required to
approximate the system to obtain a linear error state model. In (3.3.5), Brekke presents the
approximation used by Solà by means of the first-order approximation expressed as follows.

¤𝛿p𝑛 = 𝛿v𝑛
𝑡 (3.3.5a)

¤𝛿v𝑛 = −R𝑛
𝑏 (q

𝑛
𝑏)𝑆(a

𝑏
𝑚 − a𝑏

𝑏)𝛿θ −R
𝑛
𝑏 (q

𝑛
𝑏)𝛿a

𝑏
𝑏 −R

𝑛
𝑏 (q

𝑛
𝑏)a

𝑏
𝑛 (3.3.5b)

¤𝛿θ𝑏
= −𝑆(ω𝑏

𝑚 − ω𝑏
𝑏 )𝛿θ − 𝛿ω

𝑏
𝑏 − ω

𝑏
𝑛 (3.3.5c)

¤𝛿a𝑏
𝑏 = −𝑝𝑎𝑏I𝛿a𝑏

𝑏𝑡 + a
𝑏
𝑤 (3.3.5d)

¤𝛿ω𝑏
𝑏 = −𝑝𝜔𝑏I𝛿ω

𝑏
𝑏𝑡 + ω

𝑏
𝑤 (3.3.5e)

(3.3.5f)

The proofs for linear velocity error and orientation error are mentioned in chapter 5.3.3 (page
55-57) in Solà [2], and in Brekke [11] (page 180-181).

3.3.3 Discrete time system equations

The continuous time differential equations given prior needs to be discretized to be put to use.
The only predicted state vector is the nominal states, while the error state is used for prediction
of the covariance.

The nominal state kinematics

Integration of the nominal state kinematics are done through integration based on Taylor
expansion, zero-order-hold and Euler integration, and yields the equations listed in (3.3.6).

In addition to the subscripts seen in table 3.3.1, and frame-superscripts (.)𝑏/𝑛, we now introduce
the discrete time step notation (.)𝑥𝑥,𝑘 , where [k] denotes the state at time step k, and x denotes
the subscript and frame superscript as formerly described in 3.3.1.
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p𝑛
𝑘+1 = p𝑛

𝑘 + v
𝑛
𝑘Δ𝑡 +

1
2
(R𝑛

𝑏 (q
𝑛
𝑏,𝑘) (a

𝑏
𝑚,𝑘 − a

𝑏
𝑏,𝑘) + g

𝑛)Δ𝑡2 (3.3.6a)

v𝑛
𝑘+1 = v𝑛

𝑘 + (R
𝑛
𝑏 (q

𝑛
𝑏,𝑘)(a

𝑏
𝑚,𝑘 − a

𝑏
𝑏,𝑘) + g

𝑛)Δ𝑡 (3.3.6b)
q𝑛
𝑏,𝑘+1 = q𝑛

𝑏,𝑘 ⊗ q𝑘{(ω𝑏
𝑚,𝑘 − ω

𝑏
𝑏,𝑘)Δ𝑡 = q𝑛

𝑏,𝑘 ⊗ Δq𝑘 (3.3.6c)
a𝑏
𝑏,𝑘+1 = (1 − Δ𝑡 𝑝𝑎𝑏I)a𝑏

𝑏𝑡,𝑘 (3.3.6d)
ω𝑏

𝑏,𝑘+1 = (1 − Δ𝑡 𝑝𝜔𝑏I)ω𝑏
𝑏𝑡,𝑘 (3.3.6e)

The right hand term in the discretized quaternion (3.3.6d), is defined as

Δ𝑞∗ =
[

cos( ΔΘ̄2 )
sin( ΔΘ̄2 )

ΔΘ̄
Δ𝚯

]
(3.3.7)

For the case where 𝜔 goes toward zero, or close to numerical zero for the compiler, then the
imaginary part of Δq∗ goes towards the unit quaternion.

The predicted quaternion q𝑛
𝑏 = q𝑛

𝑏 ⊗ Δq𝑛
𝑏 is then normalized by dividing on the 2 norm of the

predicted quaternion

q̄𝑛
𝑏 =

q𝑛
𝑏

| |q𝑛
𝑏 | |2

(3.3.8)

The discrete nominal state x𝑘 is propagated as

x−𝑘 = 𝚽𝑘−1x
+
𝑘−1 (3.3.9)

.

All-though, the state propagation is not necessary since the x+ is always zero in a error-state
filter since the states are propagated outside the ESKF.

The error-state kinematics

Similar to the true state system given in (3.3.3), we can write the nominal and error state system
on compact form as

x =


p
v
q
a𝑏

ω𝑏


, δx =


δp
δv
δθ
δa𝑏

δω𝑏


, u𝑚 =

[
a𝑚

ω𝑚

]
, n =


a𝑏
𝑛

ω𝑏
𝑛

a𝑏
𝑤

ω𝑏
𝑤

 (3.3.10)

The error state kinematics given in (3.3.5) are approximated to a linear time-varying (LTV)
system. Brekke explains this due to the 𝛿-terms always occurring as a vector in a matrix-vector
product, where the matrices depend on the nominal state vector through q and ω𝑏

𝑏 . This gives
us the error state system on the form seen in (3.3.11), where denotes the error state transition
matrix, and 𝑮 denotes the system error input matrix.

𝛿x← 𝑓 (x, 𝛿x,u𝑚,n)
= F (x,u𝑚)𝛿x + 𝑮 (x)n

(3.3.11)
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Thus (3.3.5) can be rewritten as the continuous LTV system given in (3.3.12)

δ ¤x = F (x)δx + 𝑮 (x)𝑛

=


0 I 0 0 0
0 0 −R𝑛

𝑏 (q
𝑛
𝑏)𝑆(a

𝑏
𝑚 − a𝑏

𝑏) −R
𝑛
𝑏 (q

𝑛
𝑏) 0

0 0 −𝑆(ω𝑏
𝑚 − ω𝑏

𝑏 ) 0 −I
0 0 0 −𝑝𝑎𝑏I 0
0 0 0 0 −𝑝𝜔𝑏I


δx +


0 0 0 0

−R𝑛
𝑏 (q

𝑛
𝑏) 0 0 0

0 −I 0 0
0 0 I 0
0 0 0 I


n

(3.3.12)



Chapter 4

Simulation model

I made a simulation model to test and verify the two implementations of the Error-State Kalman
Filter. The model contains a set of simulated true states, simulated IMU measurements with
bias and noise, simulated GNSS measurements and beacon location over a given set of time.

4.1 Simulation model design

1. True path, velocity, acceleration and beacon locations
Both to ensure that the accelerometer input was a rich enough signal, and to verify that
the filter were able to handle various manouvers, a path starting with a straight line, before
entering into an eight-figure was designed through the parameterization given in (4.1.1)


𝑥𝑛

𝑦𝑛

𝑧𝑛

 =

10
2𝑡
1

 for t ≤ 20𝑠, and =


𝑟 cos(𝜔𝑡)

1
10𝑟

2 sin(2𝜔𝑡) + 40
𝑟𝜔 cos(𝜔𝑡)

 for t > 20𝑠 (4.1.1a)


𝑢𝑛

𝑣𝑛

𝑤𝑛

 =

0
2
0

 for t ≤ 20𝑠, and =


−𝑟𝜔 sin(𝜔𝑡)

1
5𝑟

2𝜔 cos(2𝜔𝑡)
−𝑟𝜔2 sin(𝜔𝑡)

 for t > 20𝑠 (4.1.1b)


¤𝑢𝑛
¤𝑣𝑛
¤𝑤𝑛

 =

0
0
0

 for t ≤ 20𝑠, and =


−𝑟𝜔2 cos(𝜔𝑡)

2
5𝑟

2𝜔2 sin(2𝜔𝑡)
𝑟𝜔3 cos(𝜔𝑡)

 for t > 20𝑠 (4.1.1c)

The acceleration in (4.1.1c), is the two times time differentiated true trajector. This
acceleration is fed into the accelerometer as the term 𝑎𝑡 in (3.1.3) and (3.1.4).

Fifteen beacons were also scattered around the trajectory of the vessel. This design choice
were made to ensure a desirable geometry at all time, where the beacons always have a
wide angle relative to at least some of the beacons. If the vessel were to move outside
the beacon configuration, would worsen this accuracy and lead to a increasingly worse
geometry as the vessels distance increases from the beacon constellation, due to the angle
between the beacon configuration and vessel becomes more narrow. An additional 15
beacons were added to increase the measurement vector to obtain the results in section 6.2
where the timing experiment were performed with m = 30 measurements.

The path plot and 3D-path with beacons can be seen in figure Figure 4.1.1 and Figure 4.1.2

21
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Figure 4.1.1: True vs estimated 3D trajectory with beacon location and position measurements
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Figure 4.1.2: True vs estimated 3D trajectory with beacon location and generic position measurements

2. Generic position measurements:
The generic position measurements were generated similar to (4.1.1b), but sampled at
1Hz.

3. IMU measurements:
The accelerometer and gyroscope measurements were generated according to equation
(3.1.3) and (3.1.4). The standard deviation of the measurement noise was based on the
standard deviation found in section Section 3.2.

4. Attitude:
The simulated gyro readings are not designed to match the kinematics of any kind of a
vessel, but rather designed to verify that the filter is able to reproduce the "true" attitude
given by the euler angle approximation from the differential equation represented by (4.1.2)
through the equations given in section Section 3.3.

¤𝚯 = T (𝚯𝒏𝒃)ω𝑏
𝑛𝑏, where T (𝚯𝒏𝒃) =


1 sin(𝜙) tan(𝜃) cos(𝜙) tan(𝜃)
0 cos(𝜙) − sin(𝜙)
0 sin(𝜙)

cos(𝜃)
cos(𝜙)
cos(𝜃)

 (4.1.2)

The attitude given by (4.1.2) was compared to the discretized quaternion attitude described
in (3.3.6) - (3.3.8)

Due to the nature of error propagation in the Kalman filter, which can be seen in matrix
A in (3.3.12), we note that the attitude error will start to drift if the measured signal
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is not rich enough. Figure Figure 4.1.3 displays the drift caused by the gyro readings
not being rich enough signal after t = 300s, where the gyro measurements were set to
be zero. Instead, a sine gyro reading were set to oscillate after t = 300s. The resulting
measurement and attitude estimation can be seen in figure Figure 4.1.4, and Figure 4.1.5
where the simulation time is set to 1 hour.

Figure 4.1.3: Attitude estimation with steady state gyro readings

Figure 4.1.4: Simulated gyro readings for t = 1 hour
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Figure 4.1.5: Estimated attitude from (4.1.2) vs ESKF estimation

5. Accelerometer and gyro biases:
The accelerometer and gyro biases simulation data were modeled as a first-order Gauss
Markov process given by (4.1.3). The same bias model can be seen in (3.3.2).[

¤𝑎𝑏𝑏𝑡
¤ω𝑏
𝑏𝑡

]
=

[
− 1

T a𝑏
𝑏 + a

𝑏
𝑤

− 1
T ω𝑏

𝑏 + ω
𝑏
𝑤

]
(4.1.3)

The driving noises a𝑏
𝑤 and ω𝑏

𝑤 are white Gaussian noises with standard deviations set to
have a standard deviation in milli-gs for the accelerometer and in a order of magnitude
smaller for the gyroscope bias noise standard deviation.





Part II

Error State Kalman Filter Updates
& Aided INS Designs

27





Chapter 5

The Error State Kalman Filter

This chapter presents the derivation of the discrete time equations in the update steps based
on the system dynamics in Section 3.3. The derivation is based of the Error-State Kalman
Filter from Solà [7], which Brekke [11] presents in chapter 10 of Fundamentals of Sensor Fusion.
In Section 5.2 and Section 5.3, the sequential and UD-factorized filter variations presented by
Simon [3], D’Souza [4], Thornton [5] and Bierman [8] are presented, with the following variation
algorithm flow presented in Section 5.4.1 - Section 5.4.3.

Both the sequential and the UD-filtered variation of the ESKF shares the same kinematics and
model as the batch-wise ESKF derived in Section 5.1. The sequential variation differ only in
the measurement update, while the UDU-factorized variation differ in both the time-update and
the measurement update.

5.1 The standard batch-wise ESKF
The error-state Kalman filter derived in this section is the filter variation we later also call the
"Batch-wise filter variation", or the standard text-book version of the filter. This variation of
the filter is the one used to benchmark the other two filter variations. A special requirement
in this variation requires is a built in matrix library for matrix multiplication and the matrix
inversion in the Kalman gain computation in the measurement update.

5.1.1 Discretization of covariance and covariance propagation in the time
update

A reasonable approximation of the covariance prediction can be achieved by using a standard
method for discretizing the LTV system with the same frequency as the IMU measurement,
where we in this implementation use Van Loans formula to discretize the transition matrix
𝚽(x) and the continuous time covariance matrix Q(x). Van Loan’s formula [15] as defined
in theorem 4.5.2 by Brekke [11] (p. 65), and are given in (5.1.1) - (5.1.4). An alternative
discretization method is to evaluate the transition matrix corresponding to 𝚽(x) through a
Taylor series truncation, suggested by Sola.

To discretize the matrices we first define the Van Loan matrix V :

V =

[
−𝚽 GQG𝑇

0 𝚽𝑇

]
(5.1.1)

where G is the continous time error state noise input matrix defined as

29
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F =


0 I 0 0 0
0 0 −R𝑛

𝑏 (q
𝑛
𝑏)𝑆(a

𝑏
𝑚 − a𝑏

𝑏) −R
𝑛
𝑏 (q

𝑛
𝑏) 0

0 0 −𝑆(ω𝑏
𝑚 − ω𝑏

𝑏 ) 0 −I
0 0 0 −𝑝𝑎𝑏I 0
0 0 0 0 −𝑝𝜔𝑏I


, 𝐺 =


0 0 0 0

−R𝑛
𝑏 (q

𝑛
𝑏) 0 0 0

0 −I 0 0
0 0 I 0
0 0 0 I


(5.1.2)

Then take the matrix exponential of this, which yields

expV Δ𝑡 =

[
× V2

0 V1

]
(5.1.3)

The discretized transition matrix 𝚽k is then the lower right matrix V1, and the discrete
covariance matrix Q𝑘 , is the discretized transmition matrix multiplied by the upper right matrix
V2, as shown in (5.1.4). The subscript (.)𝑘 denotes the object at time step k.

𝚽k = V 𝑇
1 (5.1.4a)

Q𝑘 = V T
1 V2 (5.1.4b)

From this, the covariance propagation P −𝑘 is given as

P −𝑘 = 𝚽𝑘P
+
𝑘−1𝚽

𝑇
𝑘 +Q𝑘 (5.1.5)

5.1.2 Measurement update in the ESKF

A general approach to generating the measurement jacobian for the measurement update in the
ESKF is given by Brekke as seen in (5.1.8).

Aiding measurements can be related to the state vector using models of the form

z = h(xt) +w,w ∼ N(0,R)
⇒ z = h(x⊗ δx) +w,w ∼ N(0,R)

(5.1.6)

When linearizing around δx = 0, equation (5.1.6) yields

z ≈ h(x) +Hδx +w (5.1.7)

The Jacobian H can be expresesd as a product of the Jacobians of h. and x⊗ δx.

H =
𝜕

𝜕xt
h|xt=x · 𝜕

𝜕δx
xtHxX𝜹𝒙 (5.1.8)

and H𝜹𝒙 is defined by Brekke as:
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X𝜹𝒙 =


I6 0 0
0 Q𝜹𝜽 0
0 0 I6

 , where

Q𝜹𝜽 ≈
𝜕

𝜕δθ
(q ⊗ δq) |𝑞 =

𝜕

𝜕δ
(q ⊗ δq) |𝑞

𝜕

𝜕δθ
(δq) | 𝛿𝜃=0

=
1
2


−ϵ1 −ϵ2 −ϵ3
η −ϵ3 ϵ2
ϵ3 η −ϵ1
−ϵ2 ϵ1 η


(5.1.9)

The matrix Hx depends on the measurement model, and were chosen as [I3 03×12] when
verifying the correction part of the filter with generic ranges during development.

As an example, if the measurement model would have been based on GNSS measurements as
the aiding measurement range equation would have been modeled as

ρ = 𝜌𝛼,𝑠 + 𝑐(𝛿𝑡𝛼 − 𝛿𝑡𝑠) + 𝐼𝛼,𝑠 + 𝑇𝛼,𝑠 + 𝜖𝑝 (5.1.10)

where 𝜌 is the measured pseudorange, 𝛿𝑡𝛼 and 𝛿𝑡𝑠 are receiver and satellite (in this case beacon)
errors, and 𝐼𝛼,𝑠 and 𝑇𝛼,𝑠 are ionospheric and tropospheric delays. 𝜖𝑝 is the remaining noise and
unmodelled errors. By choosing GNSS for the aiding measurement, we would in other words be
required to include the sender and receiver clock errors as a state in our state space

Instead we simplify the measurement model by making a few assumptions which will lead to
the beacon range measurement update this model is based on. The first assumption is that true
ranges are generated between beacons and the user receivers instead of originating from a GNSS
constellation. This assumption neglects the receiver clock error and error contributions from
the ionosphere and troposphere. As a consequence, the pseudorange given in (5.1.10) reduces
to the geometric range plus noise and errors given in (5.1.11).

𝜌 ≈ 𝜌𝛼,𝑠 = ‖p𝒖 − p𝒊 ‖2 + 𝜖𝑝 (5.1.11)

Where the Euclidean norm is given by (2.4.1). This leads to the matrix Hx changing to (5.1.15).
In addition, the receivers position is assumed to be located in the center of mass of the point
mass simulating the vessel in this model. In the case where the receivers are not located in
the center of mass, it would be necessary to compensate with a lever arm term to accurately
compensate for the difference between vessel location and signal receiver location.

To determine the receiver position from the ranges we generate the design matrix that connects
the measurements to the beacons, the residual range measurement and the measurement matrix
H. This design matrix contains the user-to-satellite-, or in this case user-to-beacon Line of Sight
(LOS) vectors, which are defined in (5.1.13).

1. The estimated residual range measurement, or innovation vector, is defined as

𝜈 = z − ẑ (5.1.12)

where 𝑧 = | |𝑝𝑢 − 𝑝 (𝑖) | | and ẑ = | |𝑝𝑢 − 𝑝 (𝑖) | |

2. The user-to-satellite Line Of Sight (LOS) vector is defined as
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h(𝒊) =
pu − p(𝒊)

∥pu − pi∥
(5.1.13)

where p(𝑖) is beacon number {i} location, and p̂𝑢 is the estimated user position, while p𝑢,
which is also denoted as y𝑚𝑒𝑎𝑠, or y𝑚𝑘 in later sections, is the measured user position.

3. The geometry matrix connecting measurements to the beacons are given by (5.1.14)

D =


(h(1)

(h(2)

...
(h(𝒊)


∈ ℝ𝑖𝑥3 (5.1.14)

4. The measurement matrix H are then designed as

H =
[
D 0𝒊×12

]
∈ ℝ𝑖𝑥15 (5.1.15)

The ESKF measurement update steps are done by the ESKF measurement equations given in
(5.1.16).

Covariance of innovation: S𝑘 = H𝑘P
−
𝑘−1H

𝑇
𝑘 + 𝑅𝑘 (5.1.16a)

Kalman gain: K𝑘 = P −𝑘−1H
𝑇
𝑘 S
−1
𝑘 (5.1.16b)

Innovation vector: ν𝑘 = (z𝑘 − h(xk)) = z𝑘 − ẑ𝑘 (5.1.16c)
Posterior state estimate: δx̂𝑘 = K𝑘 ·ν𝑘 (5.1.16d)

Posterior covariance: P +𝑘 = (I −K𝑘H𝑘)P −𝑘−1(I −K𝑘H𝑘)𝑇 +K𝑘R𝑘K
𝑇
𝑘 (5.1.16e)

In (5.1.16e), the Joseph form variant of the time update step is used to strengthen the numerical
stability of the covariance update computation.

5.1.3 Injection and reset

After obtaining an estimate δx̂ of the error state, the nominal state gets updated with the
observed error state. This is denoted as the injection step, and is given in (5.1.17), where ⊗
means sum or quaternion product.

x̂+𝑘 = x−𝑘 ⊗ δx̂+𝑘 (5.1.17)

After this step is done, all the information contained in δx̂ is moved to the nominal state,
ensuring the expectation of the error state to become zero until the next measurement update
occurs.

The nominal orientation q changes due to the injection, so the covariance of δθ must be modified
through the ESKF covariance reset [11] (p.185). The covariance reset can be seen in (5.1.18).

P𝑘,𝑖𝑛 𝑗 = GP +𝑘 G
𝑇 (5.1.18a)

where G =


I6 0 0

0 I − 𝑆( 12δθ̂) 0
0 0 I6

 (5.1.18b)
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5.2 Sequential ESKF
As stated in the introduction of this section, the sequential variation shares the time update
step and the kinematics of the standard batch-wise implementation. The difference between
the models is how the measurements are handled in the measurement update, which requires
certain conditions to be met. The first is regarding how the measurements are handled. Here,
the measurement are handled one by one to avoid the matrix inversion when computing the
Kalman gain. This requires that if we obtain multiple measurements at the same time such
as the measurement vector y𝑘 , we need to separate them into individual measurements 𝑦𝑘 (𝑚),
where m denotes the measurement number. The second requirement is that the measurement
covariance matrix R𝑘 is either a diagonal matrix, or a constant covariance factor R.

From here we define

R𝑘 =


𝑅1𝑘 . . . 0
...

. . .
...

0 . . . 𝑅𝑚𝑘

 (5.2.1)

We also define 𝐻𝑚𝑘 as the mth row of H𝑘 and let

𝑦𝑚𝑘 = 𝐻𝑚𝑘x𝑘 + 𝑣𝑚𝑘 (5.2.2a)
𝑣𝑚𝑘 = (0, 𝑅𝑚𝑘) (5.2.2b)

Before we begin the measurement update, we need to initialize the partial posterior state and
covariance. Here the left hand sides denotes the variables before any measurements have been
handled and are equal to the a priori estimate.

x̂0𝑘
+ = x̂−𝑘 (5.2.3a)

P +0𝑘 = P −𝑘 (5.2.3b)

To not loose any information during this step, we have to ensure that the information from
the other partual measurement iterations are not lost throughout the loop. This is done
by accumulating both the prior partial error state into both ẑ and δx̂𝑘,𝑚+1, and the partial
covariance computation into the next partial covariance computation as seen in (5.2.4).

H𝑚𝑘 =
[
(𝑝𝑢 − 𝑝 (𝑚) )/ẑ𝑟 , 012

]
(5.2.4a)

S𝑚𝑘 = H𝑚𝑘P
+
𝑚𝑘H

𝑇
𝑚𝑘 +R𝑚𝑘 (5.2.4b)

K𝑚𝑘 =
P +𝑚H

𝑇
𝑚𝑘

S𝑚𝑘
(5.2.4c)

δx̂𝑚𝑘+1 = δx̂𝑚𝑘 +K𝑚𝑘 · (z − ẑ) (5.2.4d)
P +𝑚+1𝑘 = (I −K𝑚𝑘H𝑚𝑘)P +𝑚𝑘 (I −K𝑚𝑘H𝑚𝑘)𝑇 (5.2.4e)

The same equations can be seen in the sequential algorithm described in Section 5.4.2.

After all measurements have been handled, we set the updated state error and covariance as
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δx̂+𝑘 = δx̂+𝑘𝑚 (5.2.5a)
P +𝑘 = P +𝑚𝑘 (5.2.5b)

5.3 UDU-factorized ESKF
As stated in the introduction, the UD-factorized variation differs from the standard variation
in both the time- and measurement update. In Section 5.3.1 I will present the factorization
functions created, Section 5.3.2 and Section 5.3.3 will present the structures and the most
important equations used, while Section 5.4.3 will display the equations and algorithm flow in
its completeness. The implementations are made based on D’Souzas summary of the UDU-
factorization in [4] (Ch. 7), and Simons chapter about U-D filtering in [3]. Both D’Souza
and Simons notes are largely based on Bierman and Thorntons "IEEE conference on Decision
and control" (1975), "JPL Tehcnical Memorandum" (1976), as well as Biermans "Factorization
Methods for Discrete Sequential Estimation" [8]".

The filter variation is another way to increase the numerical precision of the Kalman Filter at
the cost of an increased computational load when comparing it to the standard and sequential
variations. The algorithm factorizes a n by n, symmetric, positive matrix P , and factorizes to
a upper triangular n by n matrix U , as well as a diagonal n by n matrix D. By factorizing the
covariance into a upper triangular matrix factor and a diagonal factor one may easily investigate
the positive definiteness of the covariance matrix through the diagonal factor D by examining
the matrix.

5.3.1 Factorization Code

As stated, we need a n by n, symmetric positive matrix to make this work. The following
code snippet displays the function "𝑈𝐷𝑈_ 𝑓 𝑎𝑐𝑡𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛(P )", which takes the covariance matrix
as input argument, and returns the upper triangular U and diagonal D. In addition to
"𝑈𝐷𝑈_ 𝑓 𝑎𝑐𝑡𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛(P )", we also need a code which solves the ladder problem of the time
update in [4] (p. 66-67), the Modified Gram-Schmidt Algorithm, here named as "𝑚𝑜𝑑_𝑔𝑟𝑎𝑚_𝑁𝐴𝑆𝐴(Y , D̃),
which completes the covariance propagation through the structure Y seen in (5.3.2),

In [4], D’Souza uses the notation P̄ to denote the propagated covariance, which we have written
as P −𝑘 , and I’ll continue to do so with the exception of the code snippet for modified gram
Schmidt in this section.
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1 def UDU_factorization (P: np. ndarray ):
2 """
3 Args:
4 -----------
5 P (np. ndarray ): The covariance matrix . Must be symmetric and positive

semidefinite , shape ((15 ,15))
6

7 Returns :
8 -----------
9 U, D np. ndarray : The upper triangular matrix U, and Diagonal matrix D

10 """
11

12 n = len(P)
13 U = np.zeros ((n,n))
14 d = np.zeros (n)
15

16 U[:,-1] = P[:,-1] / P[-1,-1]
17 d[-1] = P[-1, -1]
18

19 for j in range (n-2,-1,-1):
20 d[j] = P[j,j] - np.sum(d[j+1:n] * (U[j,j+1:n]) **2)
21

22 U[j,j] = 1.0
23

24 for i in range (j-1,-1,-1):
25

26 U[i,j] = (P[i,j] - np.sum(d[j+1:n] * (U[i,j+1:n]) * (U[j,j+1:n]))) /
d[j]

27

28 D = np.diag(d)
29

30 return U, D

Listing 5.1: UDU-factorization algorithm

1 def mod_gram_NASA (Y, D_tilde ):
2

3 (n, m) = np. shape(Y)
4 b = np.zeros ((n, m))
5 f = np.zeros ((n, m))
6

7 D_bar = np.zeros ((n,n))
8 U_bar = np.zeros ((n,n))
9

10 for k in range (n-1, -1,-1):
11 #Copy the row Y[k] into b[k]. This can be done more efficient and does

not need to be its own loop
12 b[k ,:] = Y[k ,:]
13

14 for j in range (n-1, 0,-1):
15

16 U_bar[j,j] = 1
17

18 f[j ,:] = D_tilde @ b[j ,:]
19

20 D_bar[j,j] = b[j ,:].T @ f[j ,:]
21

22 f[j ,:] = f[j ,:] / D_bar[j,j]
23

24 for i in range (0, j):
25

26 U_bar[i,j] = b[i ,:].T @ f[j ,:]
27 b[i ,:] = b[i ,:] - U_bar[i,j] * b[j ,:]
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28

29 U_bar [0 ,0] = 1
30 f[0 ,:] = D_tilde @ b[0 ,:]
31 D_bar [0 ,0] = b[0 ,:] @ f[0 ,:]
32 return U_bar , D_bar

Listing 5.2: Modified Gram-Schmidt algorithm

5.3.2 The time update problem of the UDU variation

First, we start with the propagation of the covariance P −𝑘 , which we want to find based on the
prior observation P +𝑘−1, the discrete transition matrix 𝚽𝑘 and the covariance of the process noise
matrixQ𝑘 .

P +𝑘−1 is sent through the aforementioned factorization script which returns the covariance factors
U+𝑘−1 and D+𝑘−1.

U−𝑘 D
−
𝑘U
−𝑇
𝑘 = 𝚽𝑘U

+
𝑘−1D

+
𝑘−1U

+
𝑘−1𝚽

𝑇
𝑘 +Q𝑘

=
[
𝚽𝑘U

+
𝑘−1 I

] [D+𝑘−1 0
0 Q𝑘

] [
𝚽𝑘U

+
𝑘−1 I

]𝑇 (5.3.1)

From here we define Y𝑘 as
Y𝑘 =

[
𝚽𝑘U

+
𝑘−1 I

]
(5.3.2)

and D̃𝑘 as

D̃𝑘 =

[
D+𝑘−1 0
0 Q𝑘

]
(5.3.3)

To complete the covariance propagation we now seek a matrix T𝑘 which renders

Y𝑘T
−1
𝑘 =

[
U𝑘 0

]
(5.3.4)

To do this, we need the Gram Schmidt function which takes Y𝑘 and D̃𝑘 as arguments, and
returns U−𝑘 and D−𝑘 , from which we can compute P −𝑘 from through

P −𝑘 = U−𝑘 D
−
𝑘U
−𝑇
𝑘 (5.3.5)

5.3.3 Measurement update of the UDU-variation

The same requirements for the sequential measurement still holds for the UDU measurement
update. We are required to handling the measurements one at the time, and the measurement
covariance being either a diagonal matrix or a scalar factor. We will also be needing to initialize
the measurement update in a similar fashion as the sequential measurement update.

Thus we have

R𝑘 =


𝑅1𝑘 . . . 0
...

. . .
...

0 . . . 𝑅𝑚𝑘

 (5.3.6)

𝐻𝑚𝑘 is defined as the m-th row of H𝑘 and
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𝑦𝑚𝑘 = 𝐻𝑚𝑘x𝑘 + 𝑣𝑚𝑘 (5.3.7a)
𝑣𝑚𝑘 = (0, 𝑅𝑚𝑘) (5.3.7b)

The partial posterior error state and covariance are initialized as

δx̂0𝑘
+ = δx̂−𝑘 (5.3.8a)

P +0𝑘 = P −𝑘 (5.3.8b)

The equations for ẑ𝑟 , H𝑚𝑘 and S𝑚𝑘 can be seen in both the algorithm for sequential and UD-
variations in Section 5.4.2 and Section 5.4.3. As for P +𝑘 , we need to take a detour through some
partial computations.

When handling the measurements, the first step is to factorize the partial covariance P +𝑚𝑘 to get
the initial partial covariance factors U−𝑚𝑘 and D−𝑚𝑘 . Next we define P̃𝑚𝑘 as

P̃𝑚𝑘 = D−𝑚𝑘 −
1

S𝑚𝑘
(D−𝑚𝑘U

−𝑇
𝑚𝑘H

−𝑇
𝑚𝑘) (D−𝑚𝑘U

−𝑇
𝑚𝑘H

−𝑇
𝑚𝑘)𝑇 (5.3.9)

Then we factorize P̃𝑚𝑘 through the factorization function to get Ũ𝑚𝑘 and D̃𝑚𝑘 , and define the
partial covariance factors U+𝑚𝑘 and D+𝑚𝑘 as

U+𝑚𝑘 = U−𝑚𝑘Ũ𝑚𝑘 (5.3.10a)
D+𝑚𝑘 = D̃𝑚𝑘 (5.3.10b)

From here we can obtain the Kalman gain through

K𝑚𝑘 =
U+𝑚𝑘D

+
𝑚𝑘U

+𝑇
𝑚𝑘H

𝑇
𝑚𝑘

S𝑚𝑘
(5.3.11)

And finally the partial covariance computation with Joseph form as P
𝑚+1𝑘

as

P +𝑚+1𝑘 = (I −K𝑚𝑘H𝑚𝑘)U+𝑚𝑘D
+
𝑚𝑘U

𝑇+
𝑚𝑘 (I −K𝑚𝑘H𝑚𝑘)𝑇 +K𝑚𝑘R𝑚𝑘K

𝑇
𝑚𝑘 (5.3.12)

which the posterior covariance P +𝑘 is set to be equal to when all the measurements have been
handled i.e

P +𝑘 = P +𝑚𝑘 (5.3.13)

The error state is computed similar as before with the exception of using the new Kalman gain
displayed in (5.3.11).
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5.4 Filter algorithms
As stated in the introduction, the aim of this thesis is to compare the runtime and performance of
the selected variations of the Error-State Kalman Filter. In the following sections the algorithms
are divided into the time update step and a measurement update step. The algorithms listed
in Section 5.4.1, Section 5.4.2 and section 5.4.3 are supported by the flowcharts given by
Figure 5.4.1, Figure 5.4.2 and Figure 5.4.3. The equations presented in the prior sections about
the standard, sequential and UDU-factorized ESKF variations are written out in the respective
time update- and measurement update steps.

The following list offers a refreshment of variable notation for sub- and superscripts:

• n = number of states in the state space

• m = number of measurements in measurement vector

• When m is used as subscripts, such as (.)𝑚𝑘 , it denotes a iteration variable indicating that
we’re working with measurement number m for time step k.

• When m is used as superscript, such as (ℝ)𝑚×𝑚, it denotes the number of measurements
in the measurement vector.

5.4.1 Batch-wise algorithm

The batch wise algorithm follows the text book implementation of the update steps, where the
all measurements are processed at once. The Kalman gain computation is based on a matrix
inversion of the matrix S𝑘 ∈ ℝ𝑚×𝑚.

Time update: For each time step k, do:

1. Nominal state prediction/priori state estimation

x̂−𝑘 ← 𝑓 (x̂𝑘−1, 𝑢,Δ𝑡) (5.4.1)

If no new measurements are recieved from the generic beacon measurement: Set the
posteriori state estimate to be equal to the priori prediction x̂+𝑘 = x̂−𝑘 .

2. Compute the discretized, linearized transition matrix 𝚽𝑘 and noise coviariance matrix Q𝑘

through Van Loan as described in section (3.3.12)

3. Compute the priori covariance

P −𝑘 = 𝚽𝑘P
+
𝑘−1𝚽

𝑇
𝑘 +Q𝑘 (5.4.2)

4. Average P −𝑘

P −𝑘 =
(P −𝑘 + P −𝑇𝑘 )

2
(5.4.3)

Measurement update: For each time step k when a new measurement is available, do:

1. Compute the measured and estimated ranges z𝑘 and ẑ𝑘

2. Compute ν𝑘

ν𝑘 = (z𝑘 − h(x̂−𝑘 )) = (z𝑘 − ẑ𝑘) (5.4.4)

3. Compute the measurement jacobian H ∈ ℝ𝑚×𝑛 from equations (5.1.13) - (5.1.15) in section
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4. Compute S𝑘

S𝑘 = H𝑘P
−
𝑘−1H

𝑇
𝑘 +R𝑘 ∈ ℝ𝑚×𝑚 (5.4.5)

5. Compute the kalman gain
K𝑘 = P −𝑘−1H

𝑇
𝑘 S
−1
𝑘 ∈ ℝ𝑚×𝑚 (5.4.6)

6. Compute the estimated error 𝛿𝑥 through the innovation

δx̂+𝑘 = W𝑘 ·ν𝑘 ∈ ℝ𝑛×1 (5.4.7)

7. Correct the covariance with the Joseph form of the measurement update.

P +𝑘 = (I −K𝑘H𝑘)P −𝑘−1(I −K𝑘H𝑘)𝑇 ∈ ℝ𝑛×𝑛 (5.4.8)

8. Inject the estimated error in the nominal state and correct the covariance through (5.1.18)

x̂+𝑘 = x̂−𝑘 ⊗ δx̂+𝑘 (5.4.9)
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Figure 5.4.1: Flowchart for the batchwise ESKF algorithm
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5.4.2 Sequential algorithm

Time update: The sequential algorithm time update are identical to the time update for the
batch-wise variation.

Measurement update: For each time step k when a new measurement is available, do:

1. Error state and measurement matrix H is set to zero and the "partial", or "initial"
covariance matrix P +0𝑘 = P −𝑘

δx̂0𝑘 = 0 (5.4.10)

P +0𝑘 = P −𝑘 (5.4.11)

2. for m in range(number of measurements):

(a) Compute the estimated user-beacon range for this beacon

ẑ𝑟 = | |𝑝𝑢 − 𝑝 (𝑚) | | (5.4.12)

(b) Compute H𝑚𝑘 :
H𝑚𝑘 ∈ ℝ1𝑥𝑛 =

[
(𝑝𝑢 − 𝑝 (𝑚) )/ẑ𝑟 , 012

]
(5.4.13)

(c) Compute ẑ for this beacon

ẑ = | |𝑝𝑢 − 𝑝 (𝑚) | | +H𝑚𝑘δx
𝑚𝑘(5.4.14)

(d) Compute z for this beacon
z = | |y𝑚𝑒𝑎𝑠 − 𝑝 (𝑚) | | (5.4.15)

(e) Compute S𝑚𝑘

S𝑚𝑘 = H𝑚𝑘P
+
𝑚𝑘H

𝑇
𝑚𝑘 +R𝑚𝑘 ∈ ℝ1 (5.4.16)

(f) Compute the kalman gain

K𝑚𝑘 =
P +𝑚𝑘H

𝑇
𝑚𝑘

S𝑚𝑘
∈ ℝ𝑛×1 (5.4.17)

(g) Compute the estimated error δx̂𝑘+1,𝑚 through the innovation of this one beacon and
accumulate it

δx̂𝑚𝑘+1 = δx̂𝑚𝑘 +K𝑚𝑘 · (z − ẑ) ∈ ℝ𝑛×1 (5.4.18)

(h) Compute the next partial covariance with the Joseph form of the measurement update
from this beacon and accumulate it with the other

P +𝑚+1𝑘 = (I −K𝑚𝑘H𝑚𝑘)P +𝑚𝑘 (I −K𝑚𝑘H𝑚𝑘)𝑇 ∈ ℝ𝑛×𝑛 (5.4.19)

3. When all measurements have been handled, compute the final covariance and error state

δx̂+𝑘 = δx̂+𝑚𝑘 (5.4.20)

P +𝑘 = P𝑚 (5.4.21)

4. Inject the estimated error in the nominal state and correct the covariance through (5.1.18)

x̂+𝑘 = x̂−𝑘 ⊗ δx̂+𝑘
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Figure 5.4.2: Flowchart for the sequential ESKF algorithm
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5.4.3 UDU-factorized algorithm

Time update: The UD-filtered algorithm follows the same steps as the sequential and standard
algorithm for state propagation, but differs in covariance propagation and measurement update.
The discretization of the transition matrix and noise covariance matrix is done through Van
Loans method, similar to the two other variations of the filter.

For each time step k, do:

1. Obtain U−𝑘−1 and D−𝑘−1 through UDU_factorization(P +𝑘−1)

2. Define Yk and D̃𝑘

Y𝑘 =
[
𝚽𝑘U

+
𝑘−1 I

]
(5.4.22)

D̃𝑘 =

[
D+𝑘−1 0
0 Q𝑘

]
(5.4.23)

3. Obtain U−𝑘 and D−𝑘 from mod_gram_NASA(Y𝑘 , D̃𝑘)

4. Compute P −𝑘
P −𝑘 = U−𝑘 D

−
𝑘U
−𝑇
𝑘 (5.4.24)

Measurement update: For each time step k when a new measurement is available, do:

1. Error state and measurement matrix H is set to zero and the "partial", or "initial"
covariance matrix P +0𝑘 = P −𝑘

δx̂0𝑘 = 0 (5.4.25)

P +0𝑘 = P −𝑘 (5.4.26)

2. for m in range(number of beacons:)

(a) Compute the estimated user-beacon range for this beacon

ẑ𝑟 = | |𝑝𝑢 − 𝑝 (𝑚) | | (5.4.27)

(b) Compute H𝑚𝑘 :
H𝑚𝑘 ∈ ℝ1𝑥15 =

[
(𝑝𝑢 − 𝑝 (𝑚) )/ẑ𝑟 , 012

]
(5.4.28)

(c) Compute ẑ for beacon m

ẑ = | |𝑝𝑢 − 𝑝 (𝑚) | | +H𝑚𝑘δx
𝑚𝑘(5.4.29)

(d) Compute z for beacon m
z = | |y𝑚𝑒𝑎𝑠 − 𝑝 (𝑚) | | (5.4.30)

(e) Compute S𝑚𝑘

S𝑚𝑘 = H𝑚𝑘P
+
𝑚𝑘H

𝑇
𝑚𝑘 +R𝑚𝑘 ∈ ℝ1 (5.4.31)

(f) Factorize the partial covariance P +𝑚𝑘 through UDU_factorization(P +𝑚𝑘) to obtain U−𝑚𝑘
and D−𝑚𝑘
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(g) Compute P̃𝑚

P̃𝑚 = D−𝑚𝑘 −
1

S𝑚𝑘
(D−𝑚𝑘U

−𝑇
𝑚𝑘H

−𝑇
𝑚𝑘)(D−𝑚𝑘U

−𝑇
𝑚𝑘H

−𝑇
𝑚𝑘)𝑇 (5.4.32)

(h) Factorize P̃𝑚 through UDU_factorization(P̃𝑚) to obtain Ũ𝑚 and D̃𝑚

(i) Compute U+𝑚𝑘 and D+𝑚𝑘

U+𝑚𝑘 = U−𝑘 Ũ𝑚 (5.4.33a)
D+𝑚𝑘 = D̃𝑚 (5.4.33b)

(j) Compute the kalman gain

K𝑚𝑘 =
U+𝑚𝑘D

+
𝑚𝑘U

+𝑇
𝑚𝑘H

𝑇
𝑚𝑘

S𝑚𝑘
∈ ℝ1𝑥15 (5.4.34)

(k) Compute the estimated error δx̂𝑚𝑘+1 through the innovation of the given beacon and
accumulate it to the estimated state error

δx̂𝑚𝑘+1 = δx̂𝑚𝑘 +K𝑚𝑘 · (z − ẑ) ∈ ℝ15×1 (5.4.35)

(l) Compute the next partial covariance with the Joseph form of the measurement update
from this beacon and accumulate it with the other

P +𝑚+1𝑘 = (I −K𝑚𝑘H𝑚𝑘)U+𝑚𝑘D
+
𝑚𝑘U

+𝑇
𝑚𝑘 (I −K𝑚𝑘H𝑚𝑘)𝑇 +K𝑚𝑘R𝑚𝑘K

𝑇
𝑚𝑘 (5.4.36)

3. When all measurements have been handled, compute the final covariance and error state

δx̂+𝑘 = δx̂+𝑚𝑘 (5.4.37)

P +𝑘 = P +𝑚𝑘 (5.4.38)

4. Inject the estimated error in the nominal state and correct the covariance through (5.1.18)

x̂+𝑘 = x̂−𝑘 ⊗ δx̂+𝑘
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Figure 5.4.3: Flowchart for the UD-factorized ESKF algorithm
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Chapter 6

Evaluation

The run time evaluation and bench marking relative to the batch-wise measurement aiding
strategy was performed using the python library timeit [16] to time the duration of the total
simulation, the time-update steps and the measurement update steps. Other steps and modules
such as initialization and returning of variables were not timed. The simulations run to evaluate
the performance of the filters were run on a work station with the following relevant hardware:

Table 6.0.1: Computer hardware

CPU: Intel i7-8700, 3.20GHz
RAM: 32.00 GB

Different hardware may result in a different run time result.

To remove discrepancies caused by the CPU being used by anything else, a minimum of background
software were run at the same time as the simulation were performed. In addition to this, the
number of samples to perform a proper time series analysis needs to be large enough that outliers
will not dominate the outcome. Salzmann suggests in his experiments [6] (p.75) that the number
of samples can be chosen with consideration of time constraints caused by hardware limitations
and a rich enough sample size to perform the analysis on. With access of a work station with
hardware as seen in Table 6.0.1, I decided on performing N = 200 simulations for the simulations
durations seen below. For N lower than 100, variations caused by a small sample size started to
show show.

The simulation durations chosen were

• 10 seconds

• 100 seconds

• 600 seconds

• 1000 seconds

The durations were chosen with consideration of the following factors. I wanted to see if shorter
durations had any start up cost contributions which made the variations slower when comparing
to the scaled up simulations. 100s were chosen as a duration close to when the model completes
one loop around the eight-figure. 600s were chosen as a mid-range number illustrating a short
10 minute flight, and 1000s were chosen as a scale up comparison of 10 and 100s. 1000s were
also chosen as the maximum due to the required time to perform the simulations and time them,
which added up to roughly 25 real time hours for all three filters when using 200 simulations.

47
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Each configuration were run on the hardware listed in Table 6.0.1. The final results for m = 15
and m = 30 measurements are presented in Section 6.1 and Section 6.2. All run times can be
found in the text file "runtimes.txt" available in the GitHub repository.
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6.1 Results for m = 15 measurements
The following figures displays the distribution of the results illustrated by scatter plot of the
runs with some jitter and a overlaying box-plot on top for m = 15 measurements.

6.1.1 Distribution of run times

Figure 6.1.1 illustrates the respective timing of the various duration for the three filter variations;
the total run time, time-update run time and measurement-update run time. Figure 6.1.2
presents the results from the two most similar filter variations.

Each row of subfigures represents one duration with the plots in the order of total run time,
time-update run time and measurement-update run time. The number n in the subplots titles
represents number of simulations done and in turn the number of data points in each scatter and
box plot for each filter variation. The number m represents the number of aiding measurements
in the measurement vector. The legend displays the average for that module, computed with a
two point decimal rounding.

The figures shows that the simulation durations are directly related to the elapsed run time
for all modules in all variations. Both the time update run time and measurement update run
time occupies a similar portion of the total elapsed run time for each duration. This portion is
roughly 98% for the prediction module in the batch wise and sequential variation, 95% for the
time update module in the UDU-variation, and 1% for the measurement update in the batch
wise and sequential variation and roughly 5% for the UDU-measurement update. Figure 6.1.1
shows that the UDU-variation are slower in all three measured timings, while the batch wise
and sequential variations are similar in all three measured timings. Examining Figure 6.1.2, we
observe a more nuanced difference between the batch wise and the sequential variation. Both
are similar in total run time and the elapsed run time for the time update, the ladder which
they share the same equations for. While for the measurement update there is a decrease in
average elapsed run time for the sequential variation.

Table 6.1.1 displays the average time elapsed for the specified duration the average percent that
the time step module occupies when the simulation is run, and the average percent that the
measurement step module occupies of the n simulations performed.

The simulation durations presented are the scaled duration 10, 100, 600 and 1000 seconds.
From Table 6.1.1 we observe the same trend as in Figure 6.1.1 and Figure 6.1.2, where the
elapsed simulation run times are directly proportional to the simulation run time. Increasing
the simulation duration with a factor of 10 yields a run time increased with a factor of 10.

From Table 6.1.1 we observe a similar average elapsed run time for the batch wise and sequential
variation in total run time and time update run time. From the same table, we also see that
measurement update run time for the sequential variation is faster than the run time for the
batch wise update by roughly 3.5%.
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(a) 10s total distribution (b) 10s time update distribution (c) 10s measurement distribution

(d) 100s total distribution (e) 100s time update distribution (f) 100s measurement distribution

(g) 600s total distribution (h) 600s time update distribution (i) 600s measurement distribution

(j) 1000s total distribution (k) 1000s time update distribution (l) 1000s measurement distribution

Figure 6.1.1: Comparison of batch, sequential and UDU-variation run time distribution
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(a) 10s total distribution (b) 10s time update distribution (c) 10s measurement distribution

(d) 100s total distribution (e) 100s time update distribution (f) 100s measurement distribution

(g) 600s total distribution (h) 600s time update distribution (i) 600s measurement distribution

(j) 1000s total distribution (k) 1000s time update distribution (l) 1000s measurement distribution

Figure 6.1.2: Comparison of batch and sequential run time distribution
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Table 6.1.1: Timing results for simulation of batch-wise and sequential computation using 15 beacons with
varying duration.

Duration [s] Avg time [s] Time upd [s] Meas upd [s]
10 1.51 1.46 0.014
100 14.36 14.14 0.14

Batch 600 81.99 80.70 0.82
1000 142.09 139.94 1.42
10 1.49 1.445 0.014
100 14.42 14.21 0.14

Seq 600 81.95 80.69 0.79
1000 141.43 139.37 1.34
10 3.69 3.47 0.18
100 35.28 33.34 1.86

UDU 600 209.12 197.70 10.99
1000 350.82 332.01 17.94
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6.1.2 Numerical evaluation

This section contains the numerical run-time evaluation in table form for the case with m = 15
measurements.

Table 6.1.2 displays the relative speedup in percentage between the filter variations. As reflected
in Figure 6.1.1, we observe that the batch wise and sequential variation share a similar run time,
while the UDU-variation is 145 to 155 % slower than the other two variations. Examining
Table 6.1.3, which displays the relative speed up of the average elapsed run time for the time
update, we again see the same similarity reflected in the subfigures representing the time update
in Figure 6.1.1. Here the sequential variation is very close to the batch-wise reference, while
the UDU-variation is about 1.4 times slower relative to the reference. Table 6.1.4 displays the
relative speedup in percentage of the time update module and measurement update respectively.
This module displays the largest spread between the variations. The UDU-variation is roughly
1250% slower than the batch wise and sequential variation. The sequential measurement update
is similar for the 10 second duration, which is caused by rounding errors due to the number of
decimals used when computing the average elapsed run time, causing the longer durations to
be more representative. The longer durations display up to a 4.25% relative speed up for the
sequential variation, meaning that the sequential measurement update is faster than the batch
wise measurement update with a measurement vector consisting of 15 aiding measurements.

Table 6.1.2: Relative speedup comparison between the three variations given in percentage [%]. Negative value
signifies that the left hand method is faster than the cross-listed variation on top.

Duration [s] Batch [%] Sequential[%] UDU [%]
10 0.997 -145.50
100 -0.40 -145.61
600 Batch N/A 0.043 -144.64
1000 0.46 -146.90
10 -0.997 -147.92
100 0.4 -144.64
600 Sequential 0.043 N/A -155.17
1000 -0.46 -148.04
10 145.50 147.92
100 145.61 144.64
600 UDU 144.64 155.17 N/A
1000 146.90 148.04
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Table 6.1.3: Relative speedup comparison between the time update modules of the three variations given in
percentage [%]. Negative value signifies that the left hand method is faster than the cross-listed variation on top.

Duration [s] Batch [%] Sequential[%] UDU [%]
10 1.03 -137.95
100 -0.43 -135.72
600 Batch N/A 0.012 -145.00
1000 -0.078 -137.26
10 -1.03 -140.42
100 0.43 -134.71
600 Sequential -0.012 N/A -145.03
1000 0.078 -138.22
10 137.95 140.42
100 135.72 134.71
600 UDU 145.00 145.03 N/A
1000 137.26 138.22

Table 6.1.4: Relative speedup comparison between the measurement update modules of the three variations
given in percentage [%]. Negative value signifies that the left hand method is faster than the cross-listed variation
on top.

Duration [s] Batch [%] Sequential[%] UDU [%]
10 0.0 -1214.29
100 3.57 -1229.29
600 Batch N/A 3.29 -1238.86
1000 4.25 -1160.79
10 0.0 -1214.29
100 -3.57 -1278.52
600 Sequential -3.29 N/A -1284.38
1000 -4.25 -1242.89
10 1214.29 1214.29
100 1229.29 1278.52
600 UDU 1238.86 1284.38 N/A
1000 1160.79 1242.89
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6.1.3 Filter variation performance and accuracy for m = 15

This section displays the performance and accuracy of the Kalman filter variations for m =
15. All three subsections shares the same setup with plots displaying their paths, and plots
displaying the state error of the 15 states in the model. The following have been made with the
results after running one simulation with the duration of 1000 seconds for m = 15 measurements.
In Section 6.1.3, Table 6.1.5 the RMSE comparison for the 15 states in the three variations can
be seen, together with a comparison of the covariance in Table 6.1.6. In the trajectory figures, all
beacons are plotted, but only the 15 closest were toggled to give the position aiding measurement.
The relative comparison r, seen in Table 6.1.6, is computed with (6.1.1) with a 3 point float
rounding.

𝑟 =
Variation − Reference

Reference
· 100% (6.1.1)

Standard ESKF

Figure 6.1.3 displays the 2d and 3d path for the standard batch-wise ESKF, and Figure 6.1.4
displays the state estimation error with the states three times standard deviation plotted on
top.

Examining the trajectory plots we observe that the standard ESKF manages to estimate the
trajectory with close to 0 error. This is further supported by the RMSE in Figure 6.1.4, which
displays a 0.02m to 0.047m root mean square error for the NED position. All other state errors
are within the expected three times standard deviation of where the values should be, with the
exception of the gyro rate bias error.

(a) 2D path with beacons and measurement (b) 3D path with beacons and measurement

Figure 6.1.3: 2D and 3D path for standard ESKF
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(a) Position error (b) Velocity error (c) Attitude error

(d) Accelerometer bias error (e) Gyro rate bias error

Figure 6.1.4: State error plot with 3x sigma for standard ESKF
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Sequential variation

Figure 6.1.5 displays the 2d and 3d path for the sequential ESKF, and Figure 6.1.6 displays the
state estimation error with the states three times standard deviation plotted on top.

Examining the trajectory plots we observe that the standard ESKF manages to estimate the
trajectory with close to 0 error. This is further supported by the RMSE in Figure 6.1.6, which
displays a 0.02m to 0.047m root mean square error for the NED position. All other state errors
are within the expected three times standard deviation of where the values should be, with the
exception of the gyro rate bias error.

(a) 2D path with beacons and measurement (b) 3D path with beacons and measurement

Figure 6.1.5: 2D and 3D path for sequential ESKF

(a) Position error (b) Velocity error (c) Attitude error

(d) Accelerometer bias error (e) Gyro rate bias error

Figure 6.1.6: State error plot with 3x sigma for sequential ESKF
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UDU-factorized variation

Figure 6.1.7 displays the 2d and 3d path for the UDU-factorized ESKF, and Figure 6.1.8 displays
the state estimation error with the states three times standard deviation plotted on top.

Examining the trajectory plots we observe that the standard ESKF manages to estimate the
trajectory with close to 0 error.

This is further supported by the RMSE in Figure 6.1.8, which displays a 0.02m to 0.047m root
mean square error for the NED position. All other state errors are within the expected three
times standard deviation of where the values should be, with the exception of the gyro rate bias
error.

(a) 2D path with beacons and measurement (b) 3D path with beacons and measurement

Figure 6.1.7: 2D and 3D path for sequential ESKF

(a) Position error (b) Velocity error (c) Attitude error

(d) Accelerometer bias error (e) Gyro rate bias error

Figure 6.1.8: State error plot with 3x sigma for UD-factorized ESKF

Numerical performance comparison, m=15

Extracting the RMSE values from Figure 6.1.4, Figure 6.1.6 and Figure 6.1.8 we get the result
seen in Table 6.1.5 with a 3 point float rounding. Here, the sequential and UDU-variations
have been compared against the batch-wise state RMSEs to observe the difference between the
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variations. The sequential variation displayed a numerical identical result versus the batch vise
variation. The UDU-variation displayed a small difference with a magnitude of 10e-3 between
the state RMSEs. Seven states displayed a smaller state RMSE, three states displayed a larger
error, and fire displayed a numerical identical RMSE to versus the batch-wise variation.

The final covariance result in Table 6.1.6 shows that the sequential and batch-wise variations
also are identical in the final covariance diagonal after a simulation duration of 1000 seconds.
The UDU-factorized variation covariance is similar in magnitude to the batch-wise reference, but
displays a large improvement when comparing the difference between the reference in relative
difference given by (6.1.1). The 9 first states displays a improvement ranging from 0.05% to
89.63% percent between the UDU-variation and the reference.

Table 6.1.5: RMSE values for states in filter variations with m = 15 measurements

State number Batch Sequential Vs Batch UDU vs Batch [Unit]
1 0.020 0.020 0 0.016 0.004 [m]
2 0.023 0.023 0 0.020 0.003 [m]
3 0.047 0.047 0 0.052 -0.005 [m]
4 0.021 0.021 0 0.012 0.009 [m/s]
5 0.020 0.020 0 0.011 0.009 [m/s]
6 0.032 0.032 0 0.024 0.008 [m/s]
7 0.109 0.109 0 0.111 -0.002 [deg]
8 0.036 0.036 0 0.037 -0.001 [deg]
9 0.494 0.494 0 0.473 0.021 [deg]
10 0.030 0.030 0 0.029 0.001 [m/s2]
11 0.008 0.008 0 0.008 0 [[m/s2]
12 0.007 0.007 0 0.007 0 [[m/s2]
13 0.009 0.009 0 0.009 0 [deg/s]
14 0.001 0.001 0 0.001 0 [deg/s]
15 0.001 0.001 0 0.001 0 [deg/s]

The final covariance diagonal elements for the run with 15 measurements displayed similar
results.

Table 6.1.6: Final state variance values for states in filter variations with m = 15 measurements

Element number Batch Sequential Vs Batch UDU vs Batch %
1 2.285e-5 2.285e-5 0 1.205e-5 1.108e-2 -89.63
2 1.879e-5 1.879e-5 0 1.099e-5 7.8e-4 -70.97
3 1.762e-3 1.762e-3 0 9.872e-4 7.75e-3 -78.48
4 1.083e-3 1.083e-3 0 1.043e-3 4.0e-5 -3.69
5 1.076e-3 1.076e-3 0 1.045e-3 3.1e-5 -40.79
6 3.095e-3 3.095e-3 0 2.538e-3 0.557e-3 -18.00
7 1.621e-6 1.621e-6 0 1.619e-6 2e-9 -0.12
8 1.647e-6 1.647e-6 0 1.646e-6 1e-9 -0.06
9 2.012e-4 2.012e-4 0 2.011e-4 1e-7 -0.05
10 3.189e-3 3.189e-3 0 3.189e-3 0 0
11 3.070e-3 3.070e-3 0 3.070e-3 0 0
12 3.058e-3 3.058e-3 0 3.058e-3 0 0
13 4.456e-10 4.456e-10 0 4.456e-10 0 0
14 4.474e-10 4.47e-10 0 4.473e-10 0 0
15 1.59e-9 1.592e-9 0 1.592e-9 0 0
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6.2 Results for m = 30 measurements
The experiment were performed with n = 200 simlations for the simulation durations 100 and
1000 seconds. Figure 6.2.1 in Section 6.2.1 displays the distribution of the results illustrated
by scatter plot of the runs with jitter and a overlaying box-plot on top. The average run time
values are written in the sub-plot legend. Table 6.2.1 shows the module elapsed run times for
100 and 1000 second duration.

Table 6.2.2, Table 6.2.3 and Table 6.2.3 in Section 6.2.1 displays the relative speed difference
between the filter variations.

The diagonal covariance elements in Table 6.2.6 displays the estimated state variance from the
final time step in a 1000s simulation.

6.2.1 Distribution of run times

In Figure 6.2.1, the rows illustrates the following:

In row 1, Figure 6.2.1a, Figure 6.2.1b and Figure 6.2.1c displays the distribution of elapsed total-
, time update- and measurement update run time between all three variations of the ESKF for
a simulation duration of 100 seconds.

In row 2, Figure 6.2.1d, Figure 6.2.1e and Figure 6.2.1f displays the distribution of elapsed
total-, time update- and measurement update run time between the batch-wise and sequential
variations for a simulation duration of 100 seconds.

In row 3, Figure 6.2.1g, Figure 6.2.1h and Figure 6.2.1i displays the distribution of elapsed total-,
time update- and measurement update run time between all three variations of the ESKF for a
simulation duration of 1000 seconds.

In row 4, Figure 6.2.1j, Figure 6.2.1k and Figure 6.2.1l displays the distribution of elapsed total-,
time update- and measurement update run time between all filters for a simulation duration of
1000 seconds.

The simulation durations presented are the scaled duration 100 and 1000 seconds. From
Table 6.1.1 we observe the same trend as in Figure 6.2.1, where the elapsed simulation run
times are directly proportional to the simulation run time. Increasing the simulation duration
with a factor of 10 yields a run time roughly increased with a factor of 10.

From Table 6.2.1 we observe a similar average elapsed run time for the batch wise and sequential
variation in total run time and time update run time. The measurement update run time for
the sequential variation is faster than the run time for the batch wise update by roughly 4%.
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(a) 100s total distribution (b) 100s time update distribution (c) 100s meas. upd. distribution

(d) 100s total distribution (e) 100s time update distribution (f) 100s meas. upd. distribution

(g) 1000s total distribution (h) 1000s time update distribution (i) 1000s meas. upd. distribution

(j) 1000s total distribution (k) 1000s time update distribution (l) 1000s meas. upd. distribution

Figure 6.2.1: Comparison of batch, sequential and UDU-variation run time distribution for m = 30

Table 6.2.1: Timing results for simulation of batch-wise and sequential computation using 30 beacons.

Duration [s] Avg time [s] Time upd [s] Meas upd [s]
Batch 100 14.32 13.03 1.20

1000 144.64 131.87 12.01
Seq 100 14.15 13.84 0.22

1000 142.06 139.11 2.21
UDU 100 36.12 32.38 3.61

1000 362.03 324.81 36.00
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6.2.2 Numerical evaluation

This section contains the findings in table form for the case with m = 15 measurements.

Table 6.2.2 displays the relative speedup in percentage between the filter variations. As reflected
in Figure 6.2.1, we observe that the batch wise and sequential variation share a similar run time,
while the UDU-variation is 145 to 155 % slower than the other two variations. Examining
Table 6.2.3, which displays the relative speed up of the time update run time, we note the same
trend as for total run time.

Table 6.2.2: Relative speedup comparison between the three variations given in percentage [%]. Negative value
signifies that the left hand method is faster than the cross-listed variation on top.

Duration [s] Batch [%] Sequential[%] UDU [%]
100 Batch N/A 1.21 -152.21
1000 1.79 -150.28
100 Sequential -1.21 N/A -154.84
1000 -1.79 -155.27
100 UDU 152.21 155.30 N/A
1000 150.28 154.84

Table 6.2.4 displays the relative speedup in percentage of the time update module and measurement
update respectively. This module displays the largest spread between the variations. The UDU-
variation is roughly 1250% slower than the batch wise and sequential variation. The sequential
measurement update is similar for the 10 second duration, which is caused by rounding errors
due to the number of decimals used when computing the average elapsed run time. More
representative is the longer durations, illustrating a 3.5% relative speed up for the sequential
variation, meaning that the sequential measurement update is faster than the batch wise measurement
update.

Table 6.2.3: Relative speedup comparison between the time update modules of the three variations given in
percentage [%]. Negative value signifies that the left hand method is faster than the cross-listed variation on top.

Duration [s] Batch [%] Sequential[%] UDU [%]
100 Batch N/A -6.17 -148.50
1000 -5.49 -146.32
100 Sequential 6.17 N/A -134.06
1000 5.67 -133.50
100 UDU 148.50 134.06 N/A
1000 146.32 133.50

Table 6.2.4: Relative speedup comparison between the measurement update modules of the three variations
given in percentage [%]. Negative value signifies that the left hand method is faster than the cross-listed variation
on top.

Duration [s] Batch [%] Sequential[%] UDU [%]
100 Batch N/A 81.65 -200.50
1000 80.84 -201.96
100 Sequential -81.21 N/A -1532.13
1000 - 81.65 -1536.96
100 UDU 201.59 1532.13 N/A
1000 200.50 1536.96
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6.2.3 Filter variation accuracy for m = 30

Batch-wise ESKF

Figure 6.2.2 displays the 2d and 3d path for the standard batch-wise ESKF, and Figure 6.2.3
displays the state estimation error with the states three times standard deviation plotted on
top.

Examining the trajectory plots we observe that the standard ESKF manages to estimate the
trajectory with close to 0 error. This is further supported by the RMSE in Figure 6.1.4, which
displays a 0.02m to 0.047m root mean square error for the NED position. All other state errors
are within the expected three times standard deviation of where the values should be, with the
exception of the gyro rate bias error.

(a) 2D path with beacons and measurement (b) 3D path with beacons and measurement

Figure 6.2.2: 2D and 3D path for standard ESKF with 30 measurements in update

(a) Position error (b) Velocity error (c) Attitude error

(d) Accelerometer bias error (e) Gyro rate bias error

Figure 6.2.3: State error plot with 3x sigma for standard ESKF with 30 measurements in update
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Sequential variation

Figure 6.2.4 displays the 2d and 3d path for the sequential ESKF, and Figure 6.2.5 displays the
state estimation error with the states three times standard deviation plotted on top.

Examining the trajectory plots we observe that the standard ESKF manages to estimate the
trajectory with close to 0 error. This is further supported by the RMSE in Figure 6.2.5, which
displays a 0.02m to 0.047m root mean square error for the NED position. All other state errors
are within the expected three times standard deviation of where the values should be, with the
exception of the gyro rate bias error.

(a) 2D path with beacons and measurement (b) 3D path with beacons and measurement

Figure 6.2.4: 2D and 3D path for sequential ESKF with 30 measurements in update

(a) Position error (b) Velocity error (c) Attitude error

(d) Accelerometer bias error (e) Gyro rate bias error

Figure 6.2.5: State error plot with 3x sigma for sequential ESKF with 30 measurements in update

UDU-factorized variation

Figure 6.2.6 displays the 2d and 3d path for the UDU-factorized ESKF, and Figure 6.2.7 displays
the state estimation error with the states three times standard deviation plotted on top.

Examining the trajectory plots we observe that the standard ESKF manages to estimate the
trajectory with close to 0 error. This can be seen again by the RMSE in Figure 6.2.7, which
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displays a 0.015m to 0.041m root mean square error for the NED position. All other state errors
are within the expected three times standard deviation of where the values should be, with the
exception of the gyro rate bias error.

(a) 2D path with beacons and measurement (b) 3D path with beacons and measurement

Figure 6.2.6: 2D and 3D path for sequential ESKF

(a) Position error (b) Velocity error (c) Attitude error

(d) Accelerometer bias error (e) Gyro rate bias error

Figure 6.2.7: State error plot with 3x sigma for UD-factorized ESKF with 30 measurements in update

Numerical performance comparison, m=30

Extracting the RMSE values from Figure 6.2.3, Figure 6.2.5 and Figure 6.2.7 we get the result
seen in Table 6.2.5 with a 3 point float rounding. Here, the sequential and UDU-variations
have been compared against the batch-wise state RMSEs to observe the difference between the
variations. The sequential variation displayed a numerical identical result versus the batch vise
variation. The UDU-variation displayed a small difference with a magnitude of 10e-3 between
the state RMSEs. Seven states displayed a smaller state RMSE, 1 states displayed a larger
error, and nine displayed a numerical identical RMSE to versus the batch-wise variation. The
rest were identical.

The final covariance result in Table 6.2.6 shows that the sequential and batch-wise variations
also are identical in the final covariance diagonal after a simulation duration of 1000 seconds.
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The UDU-factorized variation covariance is similar in magnitude to the batch-wise reference, but
displays a large improvement when comparing the difference between the reference in relative
difference given by (6.1.1). The 9 first states displays a improvement ranging from 49% to 100%
percent between the UDU-variation and the reference.

Table 6.2.5: RMSE values in for states in filter variations with m = 30 measurements

State number Batch Sequential Vs Batch UDU vs Batch [Unit]
1 0.019 0.019 0 0.015 0.004 [m]
2 0.024 0.024 0 0.020 0.004 [m]
3 0.050 0.050 0 0.041 0.009 [m]
4 0.020 0.020 0 0.014 0.006 [m/s]
5 0.022 0.022 0 0.012 0.010 [m/s]
6 0.037 0.037 0 0.025 0.012 [m/s]
7 0.110 0.110 0 0.111 -0.001 [deg]
8 0.037 0.037 0 0.036 0.001 [deg]
9 0.510 0.510 0 0.491 0.019 [deg]
10 0.031 0.031 0 0.030 0.001 [m/s2]
11 0.008 0.008 0 0.008 0 [[m/s2]]
12 0.007 0.007 0 0.007 0 [m/s2]
13 0.009 0.009 0 0.009 0 [deg/s]
14 0.001 0.001 0 0.001 0 [deg/s]
15 0.001 0.001 0 0.001 0 [deg/s]

Table 6.2.6: Final state variance values for states in filter variations with m = 30 measurements

Element number Batch Sequential Vs Batch UDU vs Batch % vs Batch
1 9.354e-6 9.354e-6 0 4.763e-6 4.591e-6 -49.08
2 1.088e-5 1.087e-5 0 5.935e-6 4.936e-6 -54.63
3 1.001e-3 1.001e-3 0 5.477e-4 4.532e-4 -54.73
4 1.034e-3 1.034e-3 0 1.015e-3 1.900e-5 -98.16
5 1.045e-3 1.045e-3 0 1.024e-3 2.100e-5 -97.99
6 2.558e-3 2.558e-3 0 2.091e-3 4.667e-4 -81.76
7 1.619e-6 1.619e-6 0 1.618e-6 1.000e-9 -99.94
8 1.646e-6 1.646e-6 0 1.645e-6 1.000e-9 -99.94
9 2.011e-4 2.011e-4 0 2.011e-4 0 0
10 3.189e-3 3.189e-3 0 3.189e-3 0 0
11 3.070e-3 3.070e-3 0 3.070e-3 0 0
12 3.058e-3 3.058e-3 0 3.058e-3 0 0
13 4.456e-10 4.456e-10 0 4.456-10 0 0
14 4.473e-10 4.473e-10 0 4.473e-10 0 0
15 1.592e-9 1.592e-9 0 1.592e-9 0 0
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6.3 Discussion

In this thesis I found that the sequential measurement update is faster than the batch-wise
measurement update for both cases where m = 15 and m = 30 measurements. In addition
to this, by comparing the batch-wise reference in Table 6.1.4 to Table 6.2.4 we have that for
a doubling of m measurements, the average elapsed time increased by 8.26 times, from 1.42
to 11.73 seconds, while the sequential variation increased with 1.66 times, from 1.34 to 2.22
seconds. This also suggests that the increased run time for the measurement update is reflected
in the computational complexity of a matrix inversion, O(𝑚3), where a doubling of m resulted
in 2×𝑚3 = 8 times longer run time. For the sequential variation, the increase of m is loosely
reflected in the complexity of the for-loop, O(𝑚), but not quite as large as resulting in doubling
in run time. This supports the starting hypothesis, where I stated that the not only would the
sequential variation be faster, but the difference between the batch-wise reference would also
increase with the enlargement of the measurement vector.

From Table 6.1.1 and Table 6.1.3 we observe that the time update comparison between the
batch-wise and sequential variations are similar in run time and have a close to 0% speed up
difference between the module. This is to be expected since they share the same equations
and steps in the module. Furthermore, from Table 6.1.1 we can observe that there is a linear
relation between the simulation duration and the elapsed average total run time, average run
time for time update and average run time for measurement update. The same scaling relation
is observed when increasing m from 15 to 30 measurements as well as seen in Table 6.2.1. But
even though the scaling factor is roughly directly proportional to the run time, there are signs
that the shorter durations are more affected by start up costs caused by starting the script than
the longer durations, making the longer durations being more representative for the final results
than the shorter durations. This may also suggest that more or even fewer differences between
the filter variations could have been revealed by repeating the experiment for an even longer
simulation duration. This were not done due to the required time a longer simulation duration
experiment would require to perform, but it can be performed by increasing the simulation
duration to the maximum of the generated simulation data set, or even generating a longer
simulation data set.

In the introduction I stated that I believed the UDU-variation would be comparable to the
reference for both m = 15 and m = 30, which was not the case here. The UDU-factorized
variation displayed a large increase in run time for all modules. Examining Figure 6.1.1 and
Figure 6.2.1 we observe that the samples are roughly 2.5 to almost 13 times larger than the
values for the respective modules from the batch-wise and sequential filter variations, the same
which is reflected in corresponding tables containing the numerical values and relative differences
in Table 6.1.1 Table 6.1.2, Table 6.1.3 and Table 6.1.4 for m = 15, and Table 6.2.1 Table 6.2.2,
Table 6.2.3 and Table 6.2.4 for m = 30. This increase is without doubt caused by UD-factorized
variations utilisation of the factorization functions in both the time update and the measurement
update.

In total, the UD-time update consists of two double for loops, where the outer loop has up to
15 iterations and the inner loop has up to 14 loops, where both the double loops are carried
out on every time step. In addition to this, there are also a double for loop carried out in each
iteration of the sequential measurement update of the same size as the one in the time update
step. This contributes to m times double for loops in the measurement update, where m is equal
to the measurements available. There are probably some run time % decrease to be gained by
optimizing the loops to be more efficient through methods such as loop jamming since the loops
are repeated and used in every time step. When doubling the number of measurements, we
observe a 10% increase in relative differences between the UDU-variation and the batch-wise
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reference in total run time and time update run time. What is worth noting is that for the
measurement update case with m = 30, the relative difference between the reference and the
UDU-variation is only a increase by 202% as opposed to the 1200% increase for m = 15. The
added for-loops that comes with the UDU-variation increases the elapsed measurement update
run time, but the relative difference between the reference decreases as m increases in size. It
could be interesting to see if there is a cut off where the batch-wise filter variation overtakes the
UDU-variation in measurement update run time by increasing m further.

When examining the numerical precision of the filters I chose to examine the RMSEs of the error
states in the three variations, and the diagonal of the final covariance matrix for the longest
simulation duration. The results shows that all three filter variations had state errors in a similar
magnitude and did not alone imply that one variation were better than the others. The figures
accompanying figures in Section 6.1.3 and Section 6.2.3also displays that the state errors were
inside a 3 times standard deviation for all states with the exception of the gyro rate bias error,
which lies outside the deviation with a magnitude of 0.0010 degrees. For the sequential variation
and the batch-wise reference variation, we note that the results are numerically identical. In
other words there are no performance losses measurable by those two metrics in this experiment,
and the faster sequential variation is equally as accurate for both cases. When examining the
UD-variation the results becomes somewhat suggestive in terms of forming a conclusion about
the results. The RMSE displayed similar levels of error for the states, while the covariance
were lower for the UD-variation with a magnitude ranging from 10e-4 to 10e-9 for m = 30,
and 10e-2 to 10e-9 for m = 15. Translating this to a relative difference we have that the UD-
variation displayed between a 0% to 100% lower covariance for some states in the filter. All
though this result is something that should be examined closer. Since the magnitudes of the
covariance already are so small, the relative difference becomes large in % even when the variance
value difference is only 0.00001. Simon states [3] (p.174) that the UD-variation increases the
computational cost of the filter when comparing it to the batch-wise and sequential filter, but
not as much as in other variations such as the square root filter. Even though it seems to be
the consensus that the UD-variation of the Kalman filter should be a good replacement and
not too costly when comparing it to the other two variations, this experiment suggests that the
UD-factorized variation should not be used instead of the standard of sequential variation in a
filter where real time computation is important in the operation.

When investigating why the state errors were so similar in magnitude, a couple of hypothesis
emerged. One of them being that both the measurement and system noises and biases could be
set too low, even for artificially low standards in the simulation model and thus are not large
enough to cause any drift that "challenges" the filters. Another factor could be the development
platform this thesis is based on. The model and filter implementation is written in Python, which
uses a 64-bit resolution for numerical operations using floats, and 32-bit resolution for integers
unless otherwise has been specified. This may have resulted in no significant numerical errors
caused by rounding and other floating point operation limitations. Combining this with the
artificially low noises, it can’t be determined if there are any differences regarding the numerical
stability of the variations based on state error and trajectory accuracy. A final option can be
that all three variations share a strong and robust performance and state estimation accuracy.

It is worth mentioning that these findings contradicts the findings in my project thesis [1],
where I found that sequential filter strategy were no faster than the standard filter strategy.
This could be due to the number of simulations performed to control deviations between the
runs and hardware limitations. Performing only 20 runs on the hardware that were used yielded
a large spread in the measured times, where some of the experiments gave results in favour of the
hypothesis stating that the sequential method were faster, and some in the opposite direction.
Increasing the number of simulations per run according to parameters set in Chapter 6, the
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sample size were big enough that we could perform a proper time analysis where the between
run variations and outliers were reduced in their significance and ability to influence the sample
set. Another reason for why the results were different is due to the separation of the time- and
measurement update module in the timing processes. Since the measurement update occurs at
a rate of 1Hz and occupies less than 1% of the total elapsed run time, the measurement update
speed up would be reflected in the total run time as a 0.005% difference. Another way this
difference might have been observed in the project thesis is if I had performed a simulation with
more than 15 measurements and compared those.

This argument of how little the measurement update contributes to the total run time brings
in a new angle in the discussion regarding error state Kalman filter optimization. If one desires
a faster Kalman filter strategy, there could be more to gain from optimizing the time update
module as it contributes to over 98% of the total run time in the standard- and sequential
variation, and 95% of the total run time for the UD-factorized variation. The Van Loan
discretization done in the time update module in all three variations is a safe discretization
option, but comes with the cost of being computationally expensive. A substitution for this may
improve the run time on cost of other performance metrics such as state error and accuracy.





Part IV

Conclusion and further work
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Chapter 7

Conclusion

The results of this thesis leads to the conclusion that the sequential measurement update is
faster than the standard error-state Kalman filter measurement update for cases with a large
measurement vector. Additionally, the difference between the sequential measurement update
and the reference measurement update increased at a close to cubic rate when increasing the
number of aiding measurements. The final improvement in run time for the measurement update
were a speed up increase of 4.25% for m = 15 measurements and 81.65% for m = 30. Increasing
the measurement vector from 15 to 30 yielded a 1.66 increased run time for the sequential
variation as opposed to a 8.26 times increase for the batch-wise reference. This suggests that
the increase in run time is proportional to the computational complexity of the matrix inversion
with O(𝑚3) where m corresponds to the number of measurements in the measurement vector,
implying that the run time increase is increasing at a cubic rate proportional to the number of
aiding measurements in the measurement vector.

Regarding performance, I found that the sequential variation is numerical identical to the
standard batch-wise variation used for reference in terms of root mean square error and covariance
estimation, meaning no accuracy or performance loss cane be observed between these two
variations from these metrics.

The UD-factorized variation were significantly slower in time-update run time and measurement
update run time compared to the batch-wise reference. For m = 15, the UD-variation were
137% slower in the time update and 1161% slower in the measurement update. For m = 30,
the difference were a 146% and 200% speed increase for the UD-variation. Comparing the UD-
variation to the sequential variation, the difference is larger. For m = 15, the relative speed up
difference is 1443% for m = 15 and 1537% for m = 30.

The RMSE of the UD-variation were similar in magnitude to the reference variation.

The covariance of the UD-variation were lower than for the reference variation with magnitude
difference between 1e-4 to 1-e9, yielding a relative difference varying between 0% to 100%. The
numerical improvements yielded by a UD-factorized filter strategy suggested by D’Souza can
not be determined to be present in this experiment due to the low magnitude values and high
relative improvement values.
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Chapter 8

Further work

To both contiue the study of efficient implementations of the error-state Kalman filter, there are
several options that could be examined when it comes to run time optimization. In addition to
this, the findings of this master thesis should be verified on other platforms in addition to the
python based platform used.

Some suggestions for further work are listed below

1. Increase system and measurement noises for verification of the covariance
estimation improvement for the UD variation: In this thesis I found that the UD-
variation yielded a up to 100% lower covariance for some states in the state estimation,
but this should be verified in a model where the system and measurement noise and biases
are more realistic. Since the values are so low in magnitude, but high in relative difference,
they might give a misleading result.

2. Optimization of time update step: In this implementation of the ESKF, the time
update occupied roughly 98% of the total elapsed run time for a simulation, which leads
to the idea of examining optimization possibilities for the time update. Using the Van
Loan method of discretizing the transition and system noise matrix is computationally
costly due to the matrix exponential used when solving "la.expm(V)" to obtain the Van
Loan matrix. Different strategies may result in a faster time update module, but it may
come at the cost of other things such as accuracy.

3. Micro-controller: To verify the results and to examine the state accuracy, a micro
controller with lower bit-resolution than Python could be used. By using a lower bit-
resolution one may also uncover larger numerical differences between the models.

4. Real life application: The model could be changed to use more realistic system- and
measurement noise, or tested on experimental data.

5. Composite Kalman implementations such as LDL, QR and LU: Examine if other
factorization based strategies such as the LDL, QR and LU composition of the covariance
matrix are faster than the UDU-factorization.

6. Optimize the UD-factorization loops: Timing and bench-marking the for loops in
the factorization variation to examine if the loops can be written more efficient through.
This could yield a decrease in run time for the UDU-variation

7. Batch-wise UDU-filtering: Compare the sequential UDU measurement update in the
UDU-variation to D’Souza and Zanettis paper on "Information Formulation of the UDU
Kalman filter" [17]. This paper suggests a vectorial measurement update which avoids the
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need for having a diagonal measurement noise matrix and to handle the measurements one
at the time. Since the sequential UD-variation requires so many additional for-loops when
handling the measurements one at a time, there is reason to believe that the vectorial and
sequential UD-variation should be similar in run time for large measurement vectors.

8. Increase the fidelity of the simulation model: Implement functionality that handles

• Clock error in pseudorange.

• Atmospheric disturbances such as ionospheric and tropospheric noise, multipath and
ephemeris error.

• Position sensors and recievers and compensate the system for the lever arms introduced.

• Add noise to both the GNSS and beacon measurements.

• More complex IMU error modeling.
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