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Abstract

Gastric intestinal metaplasia (GIM) is an irreversible condition that carries an increased

cancer risk. The development of GIM is generally unhindered due to a lack of clinical

symptoms. Currently, there is no treatment for GIM, except for surveillance before GIM

advances into dysplasia or cancer. The aim of this thesis was to discover biomarkers of

GIM for early detection of gastric cancer by the means of bioinformatics.

The bioinformatic dataset used in this thesis included microarray data of 16 patients

from whom surgical biopsies exhibited both GIM and gastric carcinoma in each patient

(at St. Olavs Hospital) and single-cell RNA data of 13 patients from whom endoscopic

biopsies showed wild superficial gastritis (3 patients), chronic atrophic gastritis (3 pa-

tients), GIM (6 patients), and early gastric carcinoma (1 patient)(at NCBI GEO under

accession number GSE134520). The bioinformatic methods applied in this thesis in-

cluded normalization with housekeeping genes, DESeq2, and Limma, data visualization

with R, differential equations, and ingenuity pathway analysis.

The result showed that potential biomarkers of GIM encompassed signaling pathways

(i.e., xenobiotic metabolism CAR signaling pathway, xenobiotic metabolism PXR sig-

naling pathway, and sucrose degradation V), transcription factors (HNF1A, HNF4A,

CDX2, PPARGGC1A, and GATA4) endogenous chemicals (elaidic acid and d-glucose),

and the growth factor EGF.

In conclusion, the methodology applied in this thesis and the bioinformatic biomarkers

of GIM found in this thesis may be useful for early detection of gastric cancer.
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Graphical summary of four categories of biomarkers for gastric intestinal metaplasia for
early detection of gastric cancer.
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Samandrag

Gastrisk tarmmetaplasi er ein irreversibel tilstand som innehar ein auka kreftrisiko.

Utviklinga av gastrisk tarmmetaplasi g̊ar generelt uhindra føre seg grunna mangelen p̊a

kliniske symptom. Der er foreløpig ingen behandling for gastrisk tarmmetaplasi, forutan

overvaking før den utviklar seg til dysplasi eller kreft. Målet med denne avhandlinga var

å finne biomarkørar for gastrisk tarmmetaplasi for tidleg oppdagelse av magekreft ved

bruk av bioinformatiske metodar.

Det bioinformatiske datasettet som blei brukt inkluderte mikroarraydata fr̊a 16 pasien-

tar gjennomg̊att kirurgiske biopsiar med b̊ade gastrisk tarmmetaplasi og magekreft i

kvar pasient (ved St. Olavs Hospital) og enkeltcelle RNA data fr̊a 13 pasientar etter en-

doskopisk biopsiar med ”wild” overfladisk gastritt (3 pasientar), kronisk atropisk gastritt

(3 pasientar), gastrisk tarmmetaplasi (6 pasientar) og tidleg magekreft (1 pasient)(ved

NCBI GEO under tilgangsnummer GSE134520). Dei bioinformatiske metodane brukt

var normalisering med husholdningsgen, DESeq2 og Limma, data visualisering med R,

differensial likning og ingenuity pathway analysis.

Resultatet viser at potensielle biomarkørar for gastrisk tarmmetaplasi inneber signalis-

eringsvegane: xenobiotisk metabolisme CAR signalveg, xenobiotisk metabolisme PXR

signalveg og sukrosenedbrytning V; transkripsjonsfaktorane HNF1A, HNF4A, CDX2,

PPARGGC1A og GATA4; endogene kjemikaliane elaidinsyre og d-glukose; og vekstfak-

toren EGF.

Konklusivt viser avhandlinga at metoden og dei bioinformatiske markørane kan vere

nyttige for tideleg funn av magekreft.

VII



VIII



Contents

Acknowledgements I

Abbreviations III

Abstract V

Samandrag VII

1 Introduction 1
1.1 Tumorigenesis of gastric cancer . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Metaplasia in general . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Gastric Intestinal Metaplasia: molecular and cellular characteristics 4

1.2 Transcriptomics of gastric cancer and metaplasia . . . . . . . . . . . . . . 5
1.3 Computational methods and challenges in transcriptomics . . . . . . . . 6

1.3.1 Background Correction . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.3 Data visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.4 Ingenuity Pathway Analysis (IPA) . . . . . . . . . . . . . . . . . . 9

2 Aims of thesis 10
2.1 Principal objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Secondary objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Method 11
3.1 Sampling of patients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Sample data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Normalization with housekeeping genes . . . . . . . . . . . . . . . . . . . 14
3.4 DESeq2 and Limma normalization . . . . . . . . . . . . . . . . . . . . . 16
3.5 Data visualization with R . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.7 Ingenuity pathway analysis (IPA) . . . . . . . . . . . . . . . . . . . . . . 18

4 Results 20
4.1 Normalization using housekeeping genes . . . . . . . . . . . . . . . . . . 20
4.2 Datasample analysis with R . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 SCT filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.2 Dimensional reduction . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.3 Cellular heatmap . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Ingenuity pathway analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.1 Significant Pathways . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.2 Upstream analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 49

IX



5 Discussion 50
5.1 Normalization methods and outcomes . . . . . . . . . . . . . . . . . . . . 50

5.1.1 Housekeeping genes . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.1.2 Comparison of outcomes using different normalization methods . . 51

5.2 Visualization through dimensional reduction and heatmap . . . . . . . . 52
5.2.1 Dimensional reduction of tissue . . . . . . . . . . . . . . . . . . . 52
5.2.2 Dimensional reduction of cell-related genes . . . . . . . . . . . . . 52
5.2.3 Heatmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Perspective of sample visualization . . . . . . . . . . . . . . . . . . . . . 54
5.4 IPA results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.4.1 Signaling pathways . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4.2 Upstream regulators . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Conclusions 62

Appendix I
A Relative expression of housekeeping gene from gene mean . . . . . . . . . II
B Dimensional reduction of tissue transcriptome . . . . . . . . . . . . . . . III
C Dimensional reduction of enterocyte genes . . . . . . . . . . . . . . . . . IV
D Dimensional reduction of goblet cell genes . . . . . . . . . . . . . . . . . . V
E Dimensional reduction of chief cell genes . . . . . . . . . . . . . . . . . . VI
F Dimensional reduction of cancer cell genes . . . . . . . . . . . . . . . . . . VII
G Classification of gastric samples . . . . . . . . . . . . . . . . . . . . . . . VIII
H Heatmaps normalized through housekeeping genes . . . . . . . . . . . . . IX

X



1 Introduction

Cancers originating in the stomach are the sixth most common type of cancer and the

second leading cause of cancer-related deaths worldwide [1]. In Norway, gastric cancer

(GC) is the seventeenth most common cancer and the twelfth leading cause of cancer-

related deaths [2].

Apart from surgical removal of the tumor, there are no curative means of treating gastric

cancer. Retrospective evidence indicates that a resection margin of 2–6 cm decreases

the likelihood of remaining cancer cells [3].

1.1 Tumorigenesis of gastric cancer

Several genetic and environmental risk factors induce the development of GC. The de-

velopment from normal epithelia to chronic gastritis is most commonly due to infection

of H. pylori. Additional risk factors includes high salt consumption, smoking, gene poly-

morphisms, and immune responses. The risk factors increases the genetic instability and

mutation rate, causing the condition to develop into GC (Figure 1.1) [4].

Figure 1.1: Tumorgenesis from normal epithelial tissue to adenocarcinoma of stomach.
Note: environmental factors, host factors and acquired molecular events [4].
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While H. pylori is the most investigated cause of GC [5, 6], estimated to contribute

to 89.0 % of all non-cardia gastric carcinomas (NCGCs) [6], gastritis itself is likely the

mechanism responsible for tumorigenesis [7]. Gastritis from hypergastrinemia from the

long-term usage of proton pump inhibitors (PPIs), a commonly prescribed medication,

is thus an additional risk factor that needs to be investigated [7, 8]. Since GC usually

takes several decades to develop, it has been stipulated that the development of cancer

can only be caused by stem cells and their niche [9]. Long-lived DCLK1+ tuft cells [10],

some self-replicating enterochroffamin-like cells, and probably other neuroendocrine cells

can form cancer. Waldum et al. [7, 11] have suggested how enterochroffamin-like and

stem cells can be responsible for diffuse-type and intestinal-type carcinoma respectively

(Figure 1.2).

Figure 1.2: Cells potentially responsible for different types of GC through hypergastrine-
mia [7, 11].

Intestinal-type GC generally stems from long-term chronic inflammation. The diffuse-

type GC seems to side-step the neoplastic progression, which the intestinal-type GC

undergoes [12]. The diffuse-type GC consists of scattered solitary cells or small clusters.

The appearance of diffuse-type GC is thus diffuse, small, and contains indistinct shapes.

Any clusters diffuse-type GC creates appear more loosely attached. The intestinal-type

GC consists of a more distinct and usually large glandular structure accompanied by
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papillary fold formation and solid components [13].

The difference between these cancers indicates different epidemiology, as they do not

transform into the other type [7]. About 15 % of carcinomas contain overlapping traits,

making some cancers difficult to differentiate [13]. Note that numerous GC types have

been discovered that do not fit the Lauren classification. Despite this, Lauren classifica-

tion is still the most commonly used classification to date [14]. Trends in abnormal DNA

aids in subdividing cancers, but no cancer biomarker can be used to categorize cancers

without error [15]. Histological features in the tumor microenvironment are considered

important for the prognosis and prediction of survival [14].

1.1.1 Metaplasia in general

Metaplasia is an act of transdifferentiation from one cell type to another [16]. Metapla-

sia in the stomach is classified as either gastric intestinal metaplasia (GIM), because its

new cellular composition is composed of intestine-like gland structures, or pseudopyloric

metaplasia/spasmolytic polypeptide-expressing metaplasia (SPEM), because of its ex-

pressed spasmolytic polypeptides. GIM can be divided into two subtypes, complete and

incomplete [17]. The GIM subtypes are also known as small intestine metaplasia and

colonic metaplasia, respectively. Incomplete metaplasia is the closest stage to dysplasia

and GC [17, 18, 19].

While metaplasia in the stomach is undeniably associated with GC development, even

after H. pylori eradication [20, 21, 22], there is no direct experimental evidence tying

metaplasia to GC [9, 23]. SPEM is a fairly stable condition of metaplasia [23, 9] and

are reversed in acute short-term injuries [23, 24]. SPEM appears closer to the stem

cell zones in the stomach than GIM and is thought to be a fairly stable lesion due to

TFF2, an anti-inflammatory and tumor suppressor gene. However, SPEM is potentially

a precursor to GIM [9] as GIM often arises in pre-existing atrophic SPEM [24]. While

GIM does not necessarily develop into GC [20, 21, 22], adjacent GIM to gastric dysplasia

and GC does share a clonal origin [9]. Therefore, the presence of metaplasia can be a
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useful biomarker for GC risk stratification [23], especially with compounding risk factors

such as the severity and location of the metaplasia [20, 21, 22]. GIM has been shown to

not be as reversible, even with the eradication of H. pylori. Thus, when the only curative

treatment is surgical resection [25] it makes an interesting subject of investigation.

Currently, the American Gastroenterological Association (AGA) and the European So-

ciety of Gastrointestinal Endoscopy (ESGE) recommend no further action against GIM,

except for the eradication of H. pylori. Routine surveillance (3-, 5-year interval) is only

done in incomplete metaplasia or if there are any additional risk factors, like family

history and increased GIM-affected area. There is still very little evidence to support

the positive effects compared of longitudinal surveillance [26, 27].

1.1.2 Gastric Intestinal Metaplasia: molecular and cellular

characteristics

Complete GIM shows a fairly stable expression, with paneth cells, well-defined goblet

cells, crypt base columnar cells, enterocytes with brush borders, and villus organization

mirroring the small intestine. Incomplete GIM, dubbed the colonic metaplasia, is more

disorganized, harboring immature goblet cells, irregular mucin droplets, or glands with

hybrid gastric/intestinal morphologies (Figure 1.3) [17, 24].

Figure 1.3: An example of the change in cellular composition from a normal tissue to
intestinal metaplasia tissue due to the infection of H. pylori. Edited from Yeoh et al.
[28].

General identifiers for GIM are the histological characteristics of intestine-like gland

structures and intestine-specific cell lineages along with cell markers CDX1, CDX2,
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MUC2, TFF3, and Villin. Sialic acid and/or sulfate residues can be detected by Alcian

blue staining at pH 2.5. Specific markers for each condition are loss of gastric mucins

MUC1, MUC5AC, and MUC6 for complete GIM and Brown staining by high iron di-

amine (HID) for incomplete GIM. HID detects sulfomucins containing sulfate residues

but not sialic acid residues which are predominantly found in complete GIM [17].

1.2 Transcriptomics of gastric cancer and metaplasia

The transcriptomics encompasses the RNA sequences, structures, transcription, trans-

lation, and functions [29]. The field of transcriptomics allows an in-depth investigation

on the upregulation and downregulation in tissue and cells for pathological identifica-

tion and discovery of novel targets [30]. There are currently two leading techniques

within transcriptomics, microarray, which can quantify a determined set of sequences;

and RNA-sequencing (RNA-seq), which uses high-throughput sequencing to capture all

the sequences [31]. Microarray was mainly used before 2015 and is usually replaced by

RNA-seq in recent studies [32]. RNA-seq is a rapidly expanding field, with single-cell

RNA-seq (scRNA-seq) becoming a common form of RNA-seq [33].

scRNA-seq can separate cell populations and highlight specific cell population biomark-

ers. A quantification through scRNA-seq found a significant increase in enterocytes,

gland mucous cells (GMCs), and proliferative cells, and a decrease in enteroendocrine

cells, when comparing GIM with non-atropic gastritis. Individual cells can be used for

a biomarkers for GIM before any morphological distinguishable change has been made.

The most notable example for biomarker for GIM is HES6 which is expressed specifically

in early goblet cells [34]. However, not all GIM develop into GC [35], the previously

mentioned genes CDX1, CDX2, and MUC2, which are general biomarkers for GIM [17],

were differentially upregulated in GIM which didn’t progress to GC in a study with 75 %

negative H. pylori samples [35]. The genes KLF5, GATA4, and GATA6 are recurrently

expressed (∼ 30 %) where only one was expressed simultaneously. The common tran-

scription regulator HNF4α downstream of all of these genes decreases cell proliferation
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when inhibited [36]. Rare cancer variants can be discovered using scRNA-seq detecting

cell subgroups. A chief cell subgroup expressing e.g. LIPF and PGC along with RNF43

with the Wnt/β-catenin signaling pathway are activated consistently with the fundic

gland-type gastric adenocarcinoma [37].

1.3 Computational methods and challenges in

transcriptomics

1.3.1 Background Correction

Background correction is used to remove noise, and hence strengthen or discover hidden

expression differences between samples [38, 39]. However, a background correction is

not without fault as it increases the rate of false positives [40, 41]. To avoid an increase

in the false discovery rate some investigators refrain from using background correction,

stating that the noise reduction is not sufficient reason to justify potential errors [42, 43].

1.3.2 Normalization

Normalization is the reduction of noise between samples and sample groups [44]. Cur-

rently, there is no standard for normalization within the scientific community in biology

[45, 46, 47]. Reference genes used for normalization are constantly being scrutinized

[47, 48, 49], and more sophisticated methods are continuously being developed and re-

fined [50, 51, 52]. The constant development in the field led many investigators to use

methods or genes that have been proven ineffective or sub-optimal compared to their

newer counterparts. The downstream result of different normalization methods can di-

verge substantially [45, 46, 53]. However, no single method can be proven optimal and

to be considered the gold standard today. Each normalization method has its strong

points and drawbacks [53, 54, 55].

The normalization techniques can be separated into three main categories: 1) Samples

normalized based on the entire sample, also known as global normalization [53]; 2) two
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or more housekeeping genes being used as a basis of normalization [45]; and 3) a single

housekeeping gene being used to normalize the samples [47]. Note that outputs within

these main categories may differ greatly [45, 53].

Global normalization methods have become more prominent recently, with articles com-

paring the different methods [53, 54]. The more recent methods are shown to be more

efficient and sophisticated than older methods. However, many older methods are still

in use today [53]. Results from using the different versions of the same program diverge,

displaying the sophistication and rapid developmental progress [54].

Multiple housekeeping gene normalization has been recommended compared to single

housekeeping gene normalization. Several housekeeping genes should increase stability

and reproducibility. However, an increase of housekeeping genes will not cover for badly

selected genes [45, 56]. Multiple housekeeping gene normalization has been a benchmark

when comparing the efficacy of global normalization methods [51, 53]. There are several

ways of normalization using multiple housekeeping genes, from taking the average of the

genes [57] to using Box-Cox [58].

A common method of normalization is single housekeeping gene normalization, where all

results are based on the assumption of one constant gene. Unfortunately, the assumption

that a housekeeping gene is constant and will not diverge based on biological differences

is generally false and will give inaccurate numbers [59, 60]. Currently, there exists several

traditional housekeeping genes used for normalization. Many of these genes are still in

use today [45], but are disputed as non-ideal normalization factors when comparing them

across tissues or tissue conditions [45, 56, 61, 62]. The general recommendation is to

use multiple housekeeping genes to reduce the impact of a single gene [45, 56]. The

verification of traditional genes and investigation after novel genes is still an ongoing

research area [48, 63, 64]. Even though there has been no gold standard for housekeeping

genes used as a reference across multiple tissues, it has been shown that some genes are

more stable than others between certain tissue comparisons [65, 66].

Neither global normalization nor normalization based on reference genes should be ac-
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cepted based on prior assumptions without validating the method for the specific sample

[46, 67]. Housekeeping genes for normalization has been used when comparing GC and

normal gastric tissue (Table 1.1) [64, 65, 66]. Several computational methods have been

developed for this purpose. One of these programs is geNorm, which automatically

calculates the gene stability measure (M) for all genes in a given set of samples [56].

Table 1.1: A list of stably expressed genes when comparing
normal stomach tissue vs. GC tissue

Kwon et al.[64] Rubie et al.[65] Rho et al.[66]
CTBP1 OAZ1 AGPAT1 RPL29
CUL1 PAPOLA B2M RPL29-B2M

DIMT1L SPG21 CAPN2 B2M
FBXW2 TRIM27 CYCC (CCNC) B2M-GAPDH
GPBP1 UBQLN1 PMM1
LUC7L2 ZNF207 SDHA

1.3.3 Data visualization

A method for visual analysis is dimensional reduction. Dimensional reduction gives

highly dimensional data a visual representation, while still preserving relevant infor-

mation [68]. Dimensional reduction is commonly used by single-cell RNA sequencing

studies [69, 70, 71, 72]. Whole tissue samples are investigated, [73], but no studies have

been found performing whole tissue analysis with dimensional reduction in GIM or GC.

One of the initial methods available for dimensional reduction was principal component

analysis (PCA) that compares the differences between objects [74, 75]. However, sev-

eral methods have been developed since, such as Multidimensional scaling (MDS) that

detects the similarity between objects [76]. The more recent powerful methods are t-

distributed stochastic neighbor embedding (tSNE) and uniform manifold approximation

and projection (UMAP) [77]. A common computational tool using tSNE and UMAP

is Seurat in R. Seurat can be used for many pre-processing steps and visualization pur-

poses. Seurat uses a weighted nearest neighbor procedure and focuses on preserving the

spatial information [72]. UMAP is generally considered to be outperforming tSNE but
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it is currently disputed [78], suggesting the need to test both.

A method for data visualization without dimensional reduction is heatmaps. A gene

expression heatmap uses a selected set of genes and plots them toward the selected

samples [79]. Clustering of the samples and genes are done with different correlation

methods [80] and/or manually based on pre-evalueted factors [81].

1.3.4 Ingenuity Pathway Analysis (IPA)

IPA (Qiagen) is a web-based software application for the analysis of omics data. The

database consists of a large repository of curated biological interactions [82]. The anal-

ysis uses a sophisticated prediction model for upstream and downstream biological in-

teractions based on differentially expressed data. This prediction model gives specific

pathways a p-value and a z-score and can suggest novel pathways based on correlated

genes. The p-value is the statistical chance the pathway is significant and the z-score

indicates how strongly the pathway is inhibited or activated [83]. RNA studies have

previously been conducted on tissue samples with IPA investigating GC [84] and GIM

[35]. A follow-up DNA study has investigated SNPs in GIM for potential targets [85].
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2 Aims of thesis

2.1 Principal objective

Most current GC studies are focused on the identification and validation of cancer

biomarkers from the tumor tissues that are usually not specific for the early stages

but being detected in advanced stages of GC, and therefore cannot be used for early GC

detection. The principal objective was to discover the early stage biomarkers for GC.

2.2 Secondary objectives

• To investigate the different methods of data preparation and their usefulness towards

statistical differentiation and interpretation of the data.

• To find the potential biomarkers for GIM. Thus, two different methods of analysis was

proposed:

o visualize the data with different computational techniques to see how well different

developmental stages from GIM to GC can be differentiated;

o use Ingenuity Pathway Analysis (IPA) to data-mine, visualize and find potential

biomarkers.
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3 Method

3.1 Sampling of patients

The samples were surgically taken from 16 cancer patients during gastrectomy at St.

Olav’s hospital (REK 2012-1029). Each patient had 4 samples taken from them, except

for patient no. 7 and 9. Patient no. 7 had 3 samples and patient no. 9 had 8 samples.

The last 4 samples from patient no. 9 were taken at a later date and had an unknown

origin as the patient originally underwent a total gastrectomy, therefore the last 4 sam-

ples were not analyzed further. The samples from patient no. 6 did not go through

pathological evaluation and were not analysed further. The 4 sample locations were the

curvatura minor, curvatura major, antrum, and cardia/corpus ventriculi. One or more

of the sample sites in each patient contained cancer, the remaining contained control

sites of normal tissue or GIM outside the cancers influence. The samples were evaluated

twice through biopsy and pathology, and analyzed with Illumina microarray chips. The

gene expression results were extracted as an excel document, while the control data

results were extracted in in a txt format.

3.2 Sample data preparation

Data wrangling was performed using R version 4.1.1 [86] with the tidyverse package

version 1.3.1 [87]. R code 3.1 shows how the gene expression data was imported and

filtered by removing redundant samples using the sample vector list containing patient

samples that were not used for further analysis. The dataframe was then saved as a text

file to be imported into lumi [88]. The control data was similarly imported from a text

file to the dataframe df control before it was filtered and saved as a text file.
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R code 3.1: Data importing and preparation for lumi

1 df <- read_xlsx ("path/data.xlsx", skip = 7)

df <- df %>% select(-contains(sample_vector ))

3 write.table(df, path/data.txt , sep = "\t")

Lumi version 2.44.0 [88] was then used to filter the unexpressed genes from the data.

Genes with a lower detection threshold than 1 % in 10 or less samples were removed.

R code 3.2: Gene filtering with lumi

1 lumiObject <- lumiR ("path/data.txt",

sep = "\t",

3 lib.mapping = "lumiHumanIDMapping",

columnNameGrepPattern = list(

5 exprs=" AVG_SIGNAL", detection =" Detection "),

annotationColumn=c(" TargetID", "ProbeID "))

7 presentCount <- detectionCall(lumiObject , Th = 0.01)

lumiMatrix <- lumiObject[presentCount >= 11,]

The lumi object’s expression values were saved in a new dataframe and new gene anno-

tations were added. The sample names were also renamed to remove redundant sample

set numerals.

R code 3.3: Sample annotation preparation

df_lumi <- as.data.frame(exprs(lumiMatrix ))

2 IDs <- as.data.frame(nuID2IlluminaID(lumiMatrix ))

df_lumi <- cbind(IDs[c(2,5)], df_lumi)

4 df.colnames <- colnames(df_lumi)

df.colnames <- c(df.colnames[c(1,2)],

6 paste0 ("S", str_sub(df.colnames[-c(1,2)], -5, -1), sep= ""))

colnames(df_lumi) <- df.colnames

The sample histology was imported as p df and filtered to be used as a design matrix

shown in R code 3.4. The samples in sample vector were removed before the samples

were filtered and categorized as GC, metaplasia or normal as p df c/m/n respectively.

Samples were categorized as GC if they had a pathological evaluation as cancer or a

biopsy classification of 1 or 2 out of 5. Samples were categorized as GIM if they did not

classify as GC and they contained a scoring that indicated GIM. Samples were catego-
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rized as normal if they were classified as neither GC or GIM. After the categorization

a new column concerning the sample histology was made. The dataframes were then

merged and arranged by SampleID.

R code 3.4: Patient histology data wrangling

1 p_df <- read_xslx ("path/Patient_Histology.xlsx", skip = 1)

p_df <- p_df %>% filter (! Sample_ID %in%

3 sample_vector)

p_df_c <- p_df %>% filter(Cancer == "yes" | Tumor_sample <=2)

5 p_df_m <- p_df %>% filter(Intestinal_metaplasia &

(is.na(Cancer) & Tumor_sample > 2))

7 p_df_n <- p_df %>% filter(Intestinal_metaplasia == 0 &

(Tumor_sample > 2 | is.na(Tumor_sample )) & is.na(Cancer ))

9 p_df_c$Histology <- "C"

p_df_m$Histology <- "IM"

11 p_df_n$Histology <- "N"

p_df <- rbind(rbind(p_df_c , p_df_m), p_df_n)

13 p_df <- p_df %>% arrange(SampleID)

A single-cell transcriptome (SCT) atlas for premalignant lesions and early gastric cancer

[34] were modified for data visualization shown in R code 3.5. All genes that had an

adjusted p-value above 5 % and were present in more than one cell type were removed

from the dataset. Genes without a match in the sample dataframe was cross-referenced

with the UniProt knowledgebase [89]. The genes from the single cell transcriptome were

then changed to coincide with the microarray data.

R code 3.5: Preparing the single cell transciptome

1 sca_df <- read_xlsx ("path.xlsx", skip = 1)

sca_df <- sca_df %>% filter(p_val_adj < 0.05)

3 duplicate_counts <- data.frame(table(sca_df$"marker genes "))

duplicates <- duplicates[duplicates$Freq >1,][1]

5 sca_df <- sca_df %>% filter(

!duplicates$"marker genes" %in% duplicates$Var1)
7 exc_genes <- setdiff(sca_df$"marker genes", df$TargetID)

sca_df$"marker genes "[which(sca_df$"marker genes" ==

9 "Old_gene_name ")] <- "New_gene_name"

The data from the SCT [34] was also used to confirm the findings from the tissue
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data by using two different datasets. It was first uploaded into Seurat version 4.0.4

[72], and filtered identically to the original paper. I.e. cells expressing less than 400

genes, more than 7000 genes or cells containing more than 20% genes correlated with

the mitochondria were filtered out. The data was extracted from Seurat and were

kept as aggregated and non-aggregated dataframes. The aggregated data was kept for

DESeq2 normalization for heatmap visualization and the non-aggregated data was kept

for DESeq2 normalization and the differential expression equation.

R code 3.6: Preparing the single cell transcriptome data

1 SingleSeurat_df <- CreateSeuratObject(df, project = "filtering ")

SingleSeurat_df [[" percent.mt]] <-

3 PercentageFeatureSet(SingleSeurat_df , pattern ="^MT -")

Feat <- subset(SingleSeurat_df , subset=nFeature_RNA > 400 &

5 nfeature_RNA < 7000 & percent.mt < 20)

sampleDF <- as.data.frame(t(FetchData(Feat , vars =

7 temp@assays [[" RNA "]] @counts@Dimnames [[1]])))

sampleDF_A <- rowMeans(sampleDF)

3.3 Normalization with housekeeping genes

The housekeeping genes from table 1.1 were extracted with the hk gene list and made

into a new dataframe. The gene names were made unique for differentiation at a later

stage.

R code 3.7: Creation of the housekeeping gene dataframe

hk_df <- df_lumi %>% filter(ILMN_Gene %in% hk_gene_list)

2 hk_df$ILMN_Gene <- make.unique(hk_df$ILMN_Gene)

The computational method geNorm, from ctrlGene version 1.0.1 [90], was used to check

for gene stability. R code 3.8 shows the function applied to the hk df from R code 3.7.

All genes were inserted as rownames. The geNorm function ran using the transposed

version of the matrix as the geNorm function uses the cols as its gene input and the

rows as the sample input. geNorm was not performed on the whole dataset as this would
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significantly increase the computational time.

R code 3.8: geNorm code for the most stably expressed genes

row.names(hk_df) <- hk_df[,1]

2 geNorm(t(hkg_df[-c(1,2)]), ctVal=FALSE)

A visual judgment was performed by creating graphs, shown in R code 3.9. An average

for each gene row were calculated and divided upon. The new dataframe was plotted

in ggplot and was visually judged for disparity. Different subsets of the housekeeping

genes were created to confirm gene selection.

R code 3.9: Graph visualization of housekeeping genes stability

gene_avg_vector <- rowMeans(hk_df[-c(1 ,2)])

2 hk_df[-c(1 ,2)] <- hk_df[-c(1 ,2)] / gene_avg_vector

hk_df %>%

4 pivot_longer(cols = 3:ncol(.),

names_to = "samples", values_to = "values ") %>%

6 ggplot(data = . , aes(x = samples , y = values ,

color = ILMN_Gene , group = ILMN_Gene )) +

8 theme_light () +

theme(axis.text.x=element_text(angle =90)) +

10 geom_line ()

A new hk df dataframe was made with a subset of the hk gene list called sub hk gene list.

sub hk gene list consisted of the bottom 17 probes with a low geNorm value and an in-

tensity beneath 1000. A mean of each sample from the subset in hk df was calculated

and divided upon each sample in the original dataframe. The normalized result was

extracted in a dataframe called norm df.

R code 3.10: Normalization of the dataset with housekeeping genes

hk_df <- filter(df_lumi$ILMN_Gene %in% sub_hk_gene_list)

2 sample_avg_vector <- colMeans(hk_df)

norm_df <- t(t(df[-1]) / sample_avg_vector)
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3.4 DESeq2 and Limma normalization

The data was normalized with other methods for data visualization and differential

expressions for later analysis. DESeq2 version 1.32.0 [91] was used for normalization

through geometric mean, shown in R code 3.11. DESeq2 is a method made for RNA-seq

and takes only count data. The microarray data underwent data wrangling for DESeq2

by multiplying and rounding it to make it indistinguishable from count data.

R code 3.11: Normalization through DESeq2

1 dds <- DESeqDataSetFromMatrix(countData = round(df_lumi *100) ,

colData= p_df , design = ~Histology)

3 dds <- estimateSizeFactors(dds)

DESeq2_norm_df <- as.data.frame(counts(dds , normalized = T))

Limma version 3.48.3 [92] is a specialized program for microarray data, thus the lumi-

filtered data was inputted directly. R code 3.12 shows how the data was exported from

R and imported into the limma. normalizeBetweenArrays was used without background

correction. neqc was used for Normexp background correction. The control data, for

background correction, was prepared similarly to R code 3.3.

R code 3.12: Normalization through limma

write.table(df_lumi , "path/lumi.txt", sep = "\t",

2 row.names=F, quote=F)

df_limma <- read.ilmn(files = "path/lumi.txt",

4 ctrlfiles = "path/lumi_ctrl.txt",

sep = "\t", annotation =" ILMN_Gene",

6 expr = "S")

limma_norm_df <- normalizeBetweenArrays(df_limma)

8 limma_norm_df <- neqc(df_limma)

3.5 Data visualization with R

Limma was used to dimentionally reduce the normalized data and create MDS plots.

The MDS plot code is shown in R code 3.13.
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R code 3.13: Creation of MDS plots

df_MDS <- plotMDS(df_norm , labels = notation)

2 toplot <- data.frame(Dim1 = plot$x , Dim2 = plot$y ,
histology = factor(p_df$Histology ))

4 plot <- ggplot(toplot , aes(Dim1 , Dim2 , colour = Histology ))+

scale_colour_manual(values =

6 c("# FF6666", "# FF9933", "#3399 FF")) +

geom_point () + theme_minimal () +

8 theme(legend.background=element_rect(

fill=" gray95", size=.3, linetype = "solid ")) +

10 ggtitle (" Plottitle ") +

labs(x = "Leading logFC Dim1", y = "Leading logFC Dim2")

Seurat version 4.0.4 [72] was used to perform the dimensional reduction with tSNE

and UMAP. Normalized data from the patients was inputted into Seurat, scaled, clus-

tered, and plotted through Seurat functions: CreateSeuratObject, ScaleData, FindVari-

ableFeatures, RunPCA, FindNeighbors, FindClusters, RunUMAP, and RunTSNE. The

clustering methods performed were UMAP and tSNE. Specific parameters were used for

plotting with tSNE and UMAP: 1) selection.method = vst, 2) nfeatures = 5000, 3) dims

= 1:10 and 4) perplexity = 10. Additional plots were made with fewer genes, filtered

with the SCT atlas dataframe sca df, excluding potential noise from unrelated cells. The

samples were annotated based on sample location and histology.

ComplexHeatmap version 2.8.0 [93] was used to create heatmaps. The normalized data

was filtered based on the SCT from R code 3.5. A top annotation concerning the sample

location and histology, and a row annotation separating the cell types were constructed.

R code 3.14 shows how the annotation for the sample’s histology were constructed.

R code 3.14: Heatmap annotation creation for histology

1 Histology = HeatmapAnnotation(Histology = p_df$Histology ,
col = list(Histology = c(

3 "Cancer" = "# FF0000",

"Intestinal Metaplasia" = "# FF9933",

5 "Normal" = "#0000 FF")

))

17



3.6 Differential equations

The differential equations were made with both DESeq2 and limma. The SCT was only

tested in DESeq2. The gastric tissue samples were used in both DESeq2 and limma. R

code 3.15 shows how the imported data from R code 3.11 were computed and readied in

the dataframe res, before the final results were extracted to a separate excel document

with writexl version 1.4.0 [94].

R code 3.15: DESeq2 differential equation

dds <- DESeq2(dds)

2 res <- results(dds , contrast = c(" histology", "IM", "N"))

res <- res %>% arrange(padj)

4 res <- cbind(rownames(res), res)

colnames(res )[1] <- "Genes"

6 write_xlsx(res , "path/DESeq2_results.xlsx")

R code 3.16 shows how the design matrix to contrast the samples was created, and how

limma inputs the results before they were extracted in a separate document with writexl.

R code 3.16: Limma differential equation

temp <- factor(all_patientNo6$Histology)
2 design <- model.matrix (~0+ temp)

fit <- lmFit(df_norm , design)

4 fit <- ebayes(fit)

contrast <- makeContrasts(C-IM, N-C, N-IM, levels = design)

6 fit2 <- contrasts.fit(fit , contrasts)

fit2 <- eBayes(fit2)

8 res <- topTable(fit2 , coef = 3, n = Inf)

res <- cbind(rownames(res), res)

10 colnames(res )[1] <- "genes"

write_xlsx(res , "path/limma_results.xlsx")

3.7 Ingenuity pathway analysis (IPA)

An individual identifier was given to each probe in the microarray data through Lumi in

R [88, 95] using the lumiHumanIDMapping [96]. The R code 3.17 shows the conversion
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of the xlsx file into an txt file. Lumi will only accept txt files. Afterwards lumi interprets

and assigns an unique ILMN ID to each unique Probe ID. The new ILMN ID was then

bound to the original dataframe.

R code 3.17: Applying ILMN ID to df through lumi

1 temp_df <- read_xlsx ("path.xlsx", skip = 7)

write.table(temp_df , "path.txt")

3 lumiObject <- lumiR ("path.txt", sep = " ",

lib.mapping = "lumiHumanIDMapping)

5 lumiObject <- nuID2IlluminaID(lumiObject)

df <- cbind(lumiObject [5], df[-1])

A core analysis ran on each dataset with the criteria of adjusted P value < 0.05 and

an absolute log2FoldChange of 1. Each dataset was investigated for their individual

signaling pathways. A comparison analysis was made between the tissue and the SCT

datasets for common signaling pathways and an upstream analysis.
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4 Results

4.1 Normalization using housekeeping genes

Gastric housekeeping genes have several probes detecting identical genes with varied de-

tected intensity (Table 4.1). The gene stability value (M) from geNorm showed increased

stability in genes with lower expression, while highly expressed genes were more unstable

(Figure 4.1). The genes with the lowest M were FBXW2-LUC7L2 with an M of 0,086.

RPL29, PMM1, GAPDH, and B2M showed an M ranging from 0,36 to 0,27. There were

18 probes over an M of 0,2 and 18 below with CCNC.2 (ILMN 1676423) and PAPOLA

being 0,192 and 0,185 respectively. OAZ1 was the only high intensity gene with a low M

of 0,16. Among the 17 remaining probes below 0,2 M did CCNC.2 and PAPOLA show

the greatest instability in the graphical plots before and after normalization, respectively

(Figure 4.2 and 4.3). For all housekeeping genes in a graphical visualization, both with

and without RPL29 that had the highest instability in geNorm, see appendix A.
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Table 4.1: Corresponding gene and illumina ID to their average measured intensity. Gene
ID is modified with a number from additional gene probes investigated

Gene Illumina ID Intensity Gene Illumina ID Intensity
AGPAT1 ILMN 1679520 180,1 GPBP1.1 ILMN 1711792 391,0

B2M ILMN 2148459 7494,8 LUC7L2 ILMN 1747099 114,3
B2M.1 ILMN 1725427 9268,6 OAZ1 ILMN 1773080 6112,2
CAPN2 ILMN 1716057 178,1 PAPOLA ILMN 1798354 632,4
CCNC ILMN 1798705 249,0 PMM1 ILMN 1780236 401,2

CCNC.1 ILMN 2409395 318,2 RPL29 ILMN 1737517 245,6
CCNC.2 ILMN 1676423 265,0 RPL29.1 ILMN 1771051 252,4
CTBP1 ILMN 2278235 110,5 SDHA ILMN 1744210 355,4

CTBP1.1 ILMN 2379734 105,6 SDHA.1 ILMN 2051232 592,8
CTBP1.2 ILMN 1719158 430,0 SPG21 ILMN 1653876 97,4

CUL1 ILMN 1749629 260,0 SPG21.1 ILMN 1733560 125,1
DIMT1L ILMN 1803312 422,0 SPG21.2 ILMN 1657423 209,5
FBXW2 ILMN 1775753 121,8 TRIM27 ILMN 1655482 123,4

FBXW2.1 ILMN 3251567 109,1 UBQLN1 ILMN 1798380 134,5
GAPDH ILMN 1802252 1053,8 UBQLN1.1 ILMN 2351611 193,7

GAPDH.1 ILMN 2038778 2629,0 UBQLN1.2 ILMN 1688622 588,3
GAPDH.2 ILMN 1343295 1493,6 ZNF207 ILMN 1670895 475,4

GPBP1 ILMN 2233493 164,3 ZNF207.1 ILMN 1778177 592,3

1.0

1.5

S
00

16
8

S
00

28
2

S
00

39
6

S
00

41
1

S
00

52
5

S
00

63
9

S
00

75
3

S
00

86
7

S
00

98
1

S
01

06
7

S
01

18
1

S
01

29
5

S
01

31
0

S
01

42
4

S
01

53
8

S
01

65
2

S
01

76
6

S
01

88
0

S
01

99
4

S
02

08
0

S
02

55
1

S
02

66
5

S
02

77
9

S
02

90
8

S
03

09
3

S
03

10
8

S
03

22
2

S
03

33
6

S
03

56
4

S
03

79
2

S
03

92
1

S
04

12
1

S
04

34
9

S
04

57
7

S
04

70
6

S
05

71
9

S
05

94
7

S
06

14
7

S
06

37
5

S
06

50
4

S
06

73
2

S
06

96
0

S
07

16
0

S
07

40
3

S
07

63
1

S
07

85
9

S
08

05
9

S
08

30
2

S
08

64
4

S
08

87
2

S
09

07
2

S
09

31
5

S
09

77
1

S
09

90
0

S
10

18
0

S
10

42
3

S
10

65
1

S
10

87
9

S
11

07
9

Samples

R
el

at
iv

e 
di

st
an

ce
 fr

om
 m

ea
n

Genes

CAPN2

CCNC.2

CTBP1

CTBP1.1

CTBP1.2

CUL1

FBXW2

FBXW2.1

GPBP1

GPBP1.1

LUC7L2

PAPOLA

SPG21

SPG21.1

TRIM27

UBQLN1

UBQLN1.2

Figure 4.2: Relative variance of housekeeping genes between samples. Containing
geNorm results with less than 0.2 M, excluding OAZ1.
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Figure 4.3: Relative variance of housekeeping genes after housekeeping gene normaliza-
tion between samples. Contaning geNorm results less than 0.2 M, exculding OAZ1.

The SCT went through global normalization with DESeq2, specialized for single cells.

The differential expression between the metaplastic and non-atropic gastitis revealed

that ACTB, B2M, GAPDH, OAZ1, RPL29, and SDHA were differentially expressed

with a log2 fold change of 1 or above. The genes AGPAT1, CAPN2, CCNC, CTBP1,

PAPOLA, PMM1, UBQLN1, and ZNF27 were significantly differentially expressed with

a log2 fold change between 0,164-0,729. The genes CUL1, FBXW2, GPBP1, SPG21,

TRIM27, and HPRT1 were not significantly differentially expressed. Expressions for

DIMT1L, LUC72L, and S18 rRNA were not found.

4.2 Datasample analysis with R

4.2.1 SCT filtering

The SCT had 1299 genes after excluding genes present in more than one cell cluster.

Comparing the tissue data to the SCT left 1625 genes which were reduced to 1158 after

aggregating duplicate genes. The unique genes per cell type ranged from 3 genes for
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neck-like cells to 179 for endothelial cells (Table 4.2).

Table 4.2: Number of identifiers corresponding to the SCT.

Cell type
Unique single cell

transcriptome genes [34]
IDs after

lumi filtering
Genes after

removal of duplicates
B cell 69 81 62

Cancer cell 29 38 27
Chief cell 13 20 12

Endothelial cell 197 254 179
Enterocyte 138 180 128

Enteroendocrine 72 75 60
Fibroblast 112 132 100

Antral basal gland mucous cell 12 10 9
Goblet cell 14 14 13

Macrophage 138 178 129
Mast cell 69 78 55

Metaplastic stem-like cell 33 49 31
Neck-like cell 3 5 3

Proliferative cells 50 73 47
Pit Mucous cell 107 146 100

Smooth muscle cell 121 142 102
T cell 122 150 101
Total 1299 1625 1158

4.2.2 Dimensional reduction

Data visualization of MDS plots created through Limma, which underwent log2 trans-

formation (Figure 4.4 B-D, F) displayed a uniform better spread than their non-log2

transformed counterpart (Figure 4.4 A, E). The differences between the log2 trans-

formed graphs are minor (Figure 4.4 B-D, F). While the log2 transformed MDS plots

exhibit some differentiation, they were unable to properly differentiate between cancer,

gastric intestinal metaplasia and normal samples.

tSNE and UMAP plots, using background correction and normalization from the limma

package, showed better separation than the MDS plots when using all genes. Some

separation was detected but no clear clustering of based on histology was observed

(Figure 4.5, A). The enterocyte genes gave two distinct clusters, however, both clusters

contained all histologies (Figure 4.5, B). The goblet cell genes showed similar clustering

as the enterocyte genes but to a lesser extent (Figure 4.5, C). The chief and cancer cell

23



genes showed similar clustering potential as using all genes, with chief cells showing a

little bit better separation (Figure 4.5, A, D-E). All subfigures showed some clustering of

antrum, cardia and corpus ventriculi samples (Figure 4.5). For different data preparation

methods, see appendix B-F.
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Figure 4.4: MDS plot of the patient samples. A) The data was normalized based on
housekeeping genes. B) The data was normalized based on housekeeping genes and
log2 transformed. C) The data was quantile normalized and log2 transformed through
limma. D) The data was normexp background corrected, quantile normalized and
log2 transformed through limma. E) The data was normalized with geometric mean
through DESeq2. F) The data was normalized with geometric mean through DESeq2
and log2 transformed.
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Figure 4.5: Dimensional reduction with tsne and umap using Seurat. Genes correspond-
ing to each cell type were extrapolated from the SCT from table 4.2.
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4.2.3 Cellular heatmap

The heatmaps from the tissue sample data processed through limma were manually clus-

tered by rows using cell types and separated by columns using either histology (Figure

4.6) or patient number (Figure 4.7). The remaining clustering was done computation-

ally. The sample location and GHAI score annotation were not clustered. For sample

classification, see appendix G.

All histological states contain samples whose genetic expression differ more within their

states than outside . The normal tissue was clustered in the middle of the two patho-

logical states, indicating that the cancer and metaplastic tissue was more similar to the

normal tissue than each other. The normal samples were separated into three groups.

Group no. 1 had an upregulated expression of pit mucous and proliferative cell related

genes. Group no. 2 had some genes related to enterocytes and all chief cells upregu-

lated. Group no. 3 had no single distinct group of upregulated genes. The GIM samples

were separated into two distinct groups and an outlier more similar to the normal broad

normal sample category. Group no. 1 had almost all enterocyte and goblet cell related

genes upregulated. Group no. 2 had a similar expression to the normal sample’s group

no. 2 where some enterocyte and all chief cell related genes were upregulated. The GC

samples were a lot more varied, with certain samples showing more similar expression

to the GIM samples. Cancer-related genes visibly upregulated in 8 samples coincided

with 7 out of 12 pathologically classified cancers and 7 of 22 biopsy-classified cancers,

see appendix G. Cancer-related genes were also upregulated in 3 normal samples and

2 metaplasia samples. Several other samples of all histological classifications had an

upregulation of cancer-related genes, but this upregulation was confined to a subset

of the cancer-related and was slightly visually distinct. GC samples with upregulated

cancer-related genes showed a general upregulation in neck-like cells, proliferative cells,

and macrophages. Non-cancer samples did not follow this general upregulation, except

for proliferative cells. Some GC samples showed similar expression to group no. 2 in the

normal and GIM samples with chief cell related genes being upregulated. All histolog-

ical classifications showed some tendency toward clustering based on sample site with
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more pathogenic tissue showing less clustering. The GHAI score showed some tendency

toward clustering. The sample sites with the most clustering were the antrum followed

by curvitura major and cardia (Figure 4.6).
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Figure 4.6: Heatmap of the tissue data using the SCT to separate the row by cell types.
The top annotations GHAI, location, and histology were made using appendix G.

Patient-based clustering revealed many similarities within each patient (Figure 4.7).

Intestinal metaplasia is present within 6 patients with intestinal metaplasia clustered

together as 2 (patient no. 8 and 11) or 4 (patient no. 9, 13, 14, and 15). Patient no. 2,

which had all 4 samples classified as cancer through biopsy and one through pathology,

showed no increased expression in cancer-related genes compared to the normal samples.

For heatmaps normalized with housekeeping genes, see appendix H.

The aggregated data from the SCT shows a separation of all pathological states without

the use of manual clustering. The wild intestinal metaplasia (IMW) showed an increased

expression in several cell types, but it differed between the two samples. The severe
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intestinal metaplasia (IMS) showed a clear increase in enterocyte and goblet cell related

genes. The enterocyte and goblet cells were not among the increased cell-related genes

in IMW. Chronic atrophic gastritis (CAG) separated IMW and IMS, showing a more

similar expression to IMW and NAG. The wild superficial gastritis (NAG) samples used

as controls showed an increase in either pit mucous cell or enteroendocrine cell related

genes (Figure 4.8).
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Figure 4.7: Heatmap of the tissue data using the SCT to separate the row by cell types.
The top annotations GHAI, location, histology, and patient number were made using
appendix G.
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4.3 Ingenuity pathway analysis

4.3.1 Significant Pathways

The tissue data comparing GIM to normal tissue samples was interpreted and made

into differential expressions through 5 different methods. The significant value for the

signaling pathways was a p-value below 0.05 and an absolute z-score above 2. DESeq2

normalized data calculated for differential expressed genes through limma resulted in 5

significant canonical pathways. Housekeeping gene normalized data calculated for dif-

ferential expressed genes through limma gave 9 significant canonical pathways. Limma

normalization without background correction and differential expression calculation re-

sulted in 10 significant canonical pathways akin to DESeq2 normalization and differen-

tial expression calculation. The dataset LimmaFC was background corrected, normal-

ized, and calculated through Limma with 19 significant canonical pathways. The three
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common significantly activated and expressed signaling pathways were the Xenobiotix

metabolism PXR signaling pathway, Xenobiotix metabolism CAR signaling pathway

and the LXR/RXR activation. 4 out of 5 methods had serotonin degradation, super-

pathway of melatonin degradation and xenobiotic metabolism general signaling pathway

significantly expressed and activated (Figure 4.9).

Figure 4.9: Top pathways for all normalization methods with DEGs calculation of meta-
plasia vs normal tissue. Orange and blue means activation or inhibition respectively.
A dot indicates a Z-score below 2. Pathways with a Z-score below 2 were removed.

The top pathways from the tissue data (LimmaFC) were serotonin degradation, thyroid

hormone Metabolism II, melatonin degradation, superpathway of melatonin degrada-

tion, and FXR/RXR activation, sorted after p-value (Table 4.3). Serotonin degradation

consist of 5 enzymes responsible for breaking down serotonin. The tissue dataset upreg-

ulated three enzymes and estimated an activation of the pathway (Figure 4.10). Thyroid

hormone metabolism II consisted of 3 enzymes where 2 of them are upregulated, pre-

dicting an upregulation. Both of the upregulated enzymes were identical to serotonin

degradation (Figure 4.11). Melatonin degradation consisted of 3 enzymes where all

of them contained upregulated genes. Two of the enzymes overlapped with serotonin

degradation (Figure 4.12). Superpathway of melatonin degradation added two addi-

tional pathways of melatonin degradation but they were not activated (Figure 4.13).

FXR/RXR activation consisted of separate cascades that jointly predicted an increased
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cholesterol activity, the total prediction were neither up- nor downregulated (Figure

4.14).

The top pathways of the SCT dataset were oxidative phosphorylation, mitochondrial

dysfunction, sirtuin signaling pathway, EIF2 signaling, and glucocorticoid receptor sig-

naling sorted after p-value (Table 4.4). Oxidative phosphorylation (OXPHOS) consisted

of 5 complexes and were predicted upregulated with all complexes containing upregu-

lated genes (Figure 4.15). Mitochondrial dysfunction encompasses OXPHOS but was not

predicted up- or downregulated (Figure 4.16). Sirtuin signaling pathway was predicted

downregulated, but the SIRT genes were not predicted (Figure 4.17). EIF2 signaling was

predicted upregulated leading to effects such as increased endoplasmic reticulum (ER)

stress, amino-acid transport/biosynthesis, and vascularization (Figure 4.18). Glucocor-

ticoid receptor signaling consisted of separate cascades that jointly predicted a decrease

in an inflammatory response, the total prediction were neither an up- nor downregulation

(Figure 4.19).

Table 4.3: Top 5 canonical pathways from the LimmaFC tissue data sorted by P-value.
An absolute Z-score of two indicates significant significant activation or inhibition.

Top Pathways P-value Z-score Overlapp
Serotonin Degradation 5,76E-12 3,162 10/57 (17,5%)

Thyroid Hormone Metabolism II 5,03E-11 2,828 8/33 (24,2%)
Melatonin degradation 1,1E-10 3,000 9/54 (16,7%)

Superpathway of Melatonin Degradation 2,56E-10 3,000 9/59 (15,3%)
FXR/RXR Activation 1,07E-9 NaN 11/125 (8,8%)

Table 4.4: Top 5 canonical pathways from the SCT sorted by P-value. An absolute
Z-score of two indicates significant significant activation or inhibition.

Top Pathways P-value Z-score Overlapp
Oxidative Phosphorylation 1,52E-84 8,485 72/111 (64,9%)
Mitochondrial Dysfunction 2,35E-77 NaN 81/165 (49,1%)
Sirtuin Signaling pathway 7,92E-44 -2,949 69/292 (23,6%)

EIF2 Signaling 2,47E-39 5,014 58/224 (25,9%)
Glucocorticoid Receptor Signaling 1,85E-26 NaN 73/540 (13,5%)
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Figure 4.10: Serotonin degradation pathway overlayed with the LimmaFC gene expres-
sion with the Molecule Activity Predictor (MAP) activated. Red molecules are known
as upregulated genes from the dataset. Orange components are predicted upregulated
components based on the known expression. Gray components are present, but in-
significantly differentially expressed, and excludes a prediction. White components
not present and exclude a prediction. Mixed colors indicate a complex with compo-
nents containing differing information.
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Figure 4.11: Thyroid hormone metabolism II overlayed with the LimmaFC gene expres-
sion with the Molecule Activity Predictor (MAP) activated. Red molecules are known
as upregulated genes from the dataset. Orange components are predicted upregulated
components based on the known expression. Gray components are present, but in-
significantly differentially expressed, and excludes a prediction. White components
not present and exclude a prediction. Mixed colors indicate a complex with compo-
nents containing differing information.
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Figure 4.12: Melatonin degradation overlayed with the LimmaFC gene expression with
the Molecule Activity Predictor (MAP) activated. Red molecules are known as up-
regulated genes from the dataset. Orange components are predicted upregulated
components based on the known expression. Gray components are present, but in-
significantly differentially expressed, and excludes a prediction. White components
not present and exclude a prediction. Mixed colors indicate a complex with compo-
nents containing differing information.
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Figure 4.13: Superpathway of melatonin degradation overlayed with the LimmaFC gene
expression with the Molecule Activity Predictor (MAP) activated. Red molecules are
known as upregulated genes from the dataset. Orange components are predicted up-
regulated components based on the known expression. Gray components are present,
but insignificantly differentially expressed, and excludes a prediction. White compo-
nents not present and exclude a prediction. Mixed colors indicate a complex with
components containing differing information.
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Figure 4.14: FXR/RXR activation overlayed with the LimmaFC gene expression with
the Molecule Activity Predictor (MAP) activated. Red molecules are known as up-
regulated genes from the dataset. Orange components are predicted upregulated
components based on the known expression. Blue components are predicted inhib-
ited based on the known expression. Gray components are present, but insignificantly
differentially expressed, and excludes a prediction. White components not present and
exclude a prediction. Mixed colors indicate a complex with components containing
differing information.
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Figure 4.15: Oxidative phosphorylation pathway overlayed with the SCT gene expression
with the Molecule Activity Predictor (MAP) activated. Red molecules are known as
upregulated genes from the dataset. Orange components are predicted upregulated
components based on the known expression. Gray components are present, but in-
significantly differentially expressed, and excludes a prediction. White components
not present and exclude a prediction.
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Figure 4.16: Mitochondrial dysfunction overlayed with the SCT gene expression with the
Molecule Activity Predictor (MAP) activated. Red molecules are known as upreg-
ulated genes from the dataset. Orange components are predicted upregulated com-
ponents based on the known expression. Blue components are predicted inhibited
based on the known expression. Gray components are present, but insignificantly
differentially expressed, and excludes a prediction. White components not present
and exclude a prediction.
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Figure 4.17: Sirtuin signaling pathway overlayed with the SCT gene expression with
the Molecule Activity Predictor (MAP) activated. Red molecules are known as up-
regulated genes from the dataset. Orange components are predicted upregulated
components based on the known expression. Green molecules are known as down-
regulated genes from the dataset. Blue components are predicted inhibited based on
the known expression. Gray components are present, but insignificantly differentially
expressed, and excludes a prediction. White components not present and exclude a
prediction.

39



Figure 4.18: EIF2 signaling overlayed with the SCT gene expression with the Molecule
Activity Predictor (MAP) activated. Red molecules are known as upregulated genes
from the dataset. Orange components are predicted upregulated components based on
the known expression. Blue components are predicted inhibited based on the known
expression. Gray components are present, but insignificantly differentially expressed,
and excludes a prediction. White components not present and exclude a prediction.
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Figure 4.19: Glucocorticoid receptor signaling overlayed with the SCT gene expression
with the Molecule Activity Predictor (MAP) activated. Red molecules are known as
upregulated genes from the dataset. Orange components are predicted upregulated
components based on the known expression. Green molecules are known as down-
regulated genes from the dataset. Blue components are predicted inhibited based on
the known expression. Gray components are present, but insignificantly differentially
expressed, and excludes a prediction. White components not present and exclude a
prediction.
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The two datasets shared 4 pathways of significance in terms of p-value and z-score. The

xenobiotic metabolism CAR signaling pathway was activated in both datasets. The

xenobiotic metabolism PXR signaling pathway fell short in terms of z-score in the SCT

data, but was included due to its proximity. Sucrose degradation V was activated in

both datasets, but only in the LimmaFC dataset for the tissue data that was used

for the IPA prediction. The sirtuin signaling pathway showed contradictory results

from the two datasets. The tissue data and the SCT had 5 and 69 matching molecules

respectively. The xenobiotic metabolism CAR signaling pathway, xenobiotic metabolism

PXR signaling pathway, sucrose degradation V, and sirtuin signaling pathway were

ranked 7, 6, 8, and 50, respectively of 52 pathways in the tissue data and 45, 48, 20, and

3, respectively of 98 pathways in the SCT (Table 4.5). The pathways were only filtered

and sorted based on p-values.

Table 4.5: Common canonical pathways between the tissue data and the SCT. An ab-
solute Z-score of two indicates significant activation or inhibition.

Top Pathways Z-score (Tissue) Z-score (SCT) Predicted activation
Xenobiotic Metabolism CAR Signaling Pathway 3,317 2,496 Activated
Xenobiotic Metabolism PXR Signaling Pathway 3,464 1,941 (Mixed)

Sucrose Degradation V (Mammalian) 2 2,236 Activated
Sirtuin signaling pathway 2,236 -2,949 Contradictory

The xenobiotic metabolism CAR and PXR signaling pathways have an identical outcome

but differ in the cascade leading up to the biological functions metabolism of xenobi-

otics, drug transport and inflammatory response. The cascades ended in cell survival

after metabolism of xenobiotics and drug transport. The cell survival was unpredicted in

all datasets, but IPA included no associative relationship between cell survival and the

upstream cascade (Figure 4.20-4.23). The xenobiotic metabolism CAR signaling path-

way encompassed 172 genes and contained 11 and 13 DEGs for the tissue data and SCT

data respectively. The xenobiotic metabolism PXR signaling pathway encompassed 176

genes and contained 12 and 13 DEGs for the tissue data and SCT data respectively.

SULT1A1 is the only overlapping gene between the two datasets (Table 4.6).

The sucrose V (Mammalian) had upregulated sucrose alpha-glucosidase, ketohexoki-
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nase and trikinase and had upregulated components in fructose-biophosphatase aldolase

(Figure 4.24).

Table 4.6: Differentially expressed molecules in the xenobiotic metabolism CAR signaling
pathway and the xenobiotic metabolism PXR signaling pathway using the LimmaFC
data and the SCT data.

CAR (LimmaFC) PXR (LimmaFC) CAR (SCT) PXR (SCT)
ABCC2 ABCC2 ALDH2 ALDH2
CHST5 CHST5 ALDH3A1 ALDH3A1

CYP3A4 CYP3A4 GSTA1 CES2
GSTA2 GSTA2 GSTK1 GSTA1

PPP1R14D GSTO1 GSTK1
SULT1A1 SULT1A1 HSP90B1 GSTO1
SULT1A2 SULT1A2 MAP3K HSP90B1

SULT1A3/SULT1A4 SULT1A3/SULT1A4 MGST2 MGST2
UGT1A1 UGT1A1 MGST3 MGST3
UGT2B7 UGT2B7 PP2R1A NCRO1
UGT2B11 UGT2B11 RACK1 PP1CA
UGT2B17 UGT2B17 SCAND1 SCAND1

SULT1A1 SULT1A1
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Figure 4.20: Xenobiotic metabolism CAR signaling pathway overlayed with the Lim-
maFC gene expression with the Molecule Activity Predictor (MAP) activated. Red
molecules are known as upregulated genes from the dataset. Orange components are
predicted upregulated based on the known expression. Gray components are present,
but insignificantly differentially expressed, and excludes a prediction. White compo-
nents not present and exclude a prediction. Mixed colors indicate a complex with
components containing differing information. The CAR antagonist is white and can’t
be activated or inhibited during prediction.
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Figure 4.21: Xenobiotic metabolism CAR signaling pathway overlayed with the SCT gene
expression with the Molecule Activity Predictor (MAP) activated. Red molecules are
known as upregulated genes from the dataset. Orange components are predicted
upregulated based on the known expression. Green molecules are known as down-
regulated genes from the dataset. Blue components are predicted inhibited based on
the known expression. Gray components are present, but insignificantly differentially
expressed, and excludes a prediction. White components not present and exclude a
prediction. Mixed colors indicate a complex with components containing differing
information. The CAR antagonis is white and can’t be activated or inhibited during
prediction.
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Figure 4.22: Xenobiotic metabolism PXR signaling pathway overlayed with the Lim-
maFC gene expression with the Molecule Activity Predictor (MAP) activated. Red
molecules are known as upregulated genes from the dataset. Orange components are
predicted upregulated based on the known expression. Gray components are present,
but insignificantly differentially expressed, and excludes a prediction. White compo-
nents not present and exclude a prediction. Mixed colors indicate a complex with
components containing differing information. The PXR ligand is white and can’t be
activated or inhibited during prediction.
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Figure 4.23: Xenobiotic metabolism PXR signaling pathway overlayed with the SCT gene
expression with the Molecule Activity Predictor (MAP) activated. Red molecules are
known as upregulated genes from the dataset. Orange components are predicted
upregulated based on the known expression. Green molecules are known as down-
regulated genes from the dataset. Blue components are predicted inhibited based on
the known expression. Gray components are present, but insignificantly differentially
expressed, and excludes a prediction. White components not present and exclude a
prediction. Mixed colors indicate a complex with components containing differing
information. The PXR ligand is white and can’t be activated or inhibited during
prediction.
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Figure 4.24: Sucrose V (mammalian) pathway overlayed with the LimmaFC gene ex-
pression with the Molecule Activity Predictor (MAP) activated. Red molecules are
known as upregulated genes from the dataset. Orange components are predicted up-
regulated components based on the known expression. Gray components are present,
but insignificantly differentially expressed, and excludes a prediction. White compo-
nents not present and exclude a prediction. Mixed colors indicate a complex with
components containing differing information.
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4.3.2 Upstream analysis

When comparing the tissue and SCT datasets through IPA, and their common upstream

regulators, HNF1A were the most prominent. HNF1A, elaidic acid, HNF4A, and CDX2

were indicated as activated in both datasets with Z-scores above 2. HNF4α dimer,

EGF, and D-glucose were only activated in a single datasets. PPARGC1A, GATA4,

and L-triiodothyronine had a positive, but statistically insignificant z-score. Most of the

upstream regulators were transcription regulators, but IPA also highlighted elaidic acid,

L-triiodothyronine, and D-glucose as significant endogenous chemicals (Table 4.7).

Table 4.7: Top 10 common upstream regulators between tissue sample and the SCT.
Exogenous chemical compounds removed from list.

Top Upstream Regulator P-value (Tissue) P-value (SCT) Predicted activation Molecule type
HNF1A 5,34E-15 1,07E-4 Activated Transcription regulator

elaidic acid 4,40E-4 7,19E-4 Activated chemical - endogeneous mammalian
HNF4A 1,81E-5 6,14E-15 Activated Transcription regulator
CDX2 3,72E-8 3,08E-2 Activated Transcription regulator

HNF4α dimer 2,14E-6 8,04E-5 Mixed Activated complex
PPARGC1A 9,14E-3 3,00E-3 (Insignificant) Transcription regulator

GATA4 2,48E-3 2,03E-2 (Insignificant) Transcription regulator
EGF 8,35E-3 1,27E-7 Mixed Activated Growth factor

L-triiodothyronine 1,79E-4 4,86E-2 (Insignificant) chemical - endogeneous mammalian
D-glucose 5,47E-3 3,71E-12 Mixed Activated chemical - endogeneous mammalian
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5 Discussion

5.1 Normalization methods and outcomes

This thesis presents several different normalization methods. The different methods were

used to investigate differences between potential results.

5.1.1 Housekeeping genes

The housekeeping genes were not uniformly expressed in each sample. Thus, using only

one housekeeping gene would have a large effect on the normalization outcome. The

usage of several housekeeping genes in normalization is needed to reduce biological noise

[45]. The genes with a lower expression were the most stable in geNorm and the visual

analysis. It is unknown how much the background noise sway the results with lowly

expressed genes. OAZ1 was removed to negate its impact on the normalization process,

because of its high expression. The common reference genes ACTB, HPRT1, and 18S

rRNA were disregarded in the analysis because of their suboptimal performance as single

reference genes [66]. However, they can be beneficial when using multiple housekeeping

genes and should not necessarily be disregarded in future studies.

The differentially expressed genes from the SCT dataset using DESeq2 global normaliza-

tion mostly coincided with the geNorm results for the tissue dataset, except for OAZ1.

The difference between stably expressed genes in the dataset can be based on biological

discrepancies, indicating the need to double-check individual datasets when normalizing

with housekeeping genes. Note that the SCT contained only antrum samples and the

differential expression analysis used GIM vs non-atrophic gastritis (NAG), while the tis-

sue dataset was composed of more biological diversity in its samples regarding sample

location and pathology.

The most unstable genes in the samples were RPL29, PMM1, GAPDH, and B2M that
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are, except for PMM1, widely known housekeeping genes [66, 97]. RPL29 and B2M gave

a varied expression throughout all the samples, while GAPDH spiked at some cancer

samples, indicating an increase in GAPDH in GC. Findings confirms that GAPDH are

dysregulated in cancer [61, 98] and that GAPDH is not a suitable normalization factor

for GC [64]. GAPDH is more recently being considered as a potential biomarker for GC

[99].

5.1.2 Comparison of outcomes using different normalization

methods

The differences in housekeeping gene normalization and between the different global nor-

malization methods can be seen when comparing the significant pathways with DEGs in

GIM vs normal tissue samples. The removal of background noise in Limma (LimmaFC)

gave the most significant pathways, but is more prone to false positives than uncorrected

data [100]. DESeq2 normalized data differed from limma normalized data (LimmaF)

when both went through the limma differential expression equation, but were quite simi-

lar when DESeq2 went through its pipeline which is originally meant for single-cell data.

The cause of this difference is unknown and could be an interesting subject to investigate

in the future. The housekeeping gene normalization had fewer pathways compared to the

limma pipeline, but the pathways it had coincided with the other methods, confirming

its efficacy.

While background correction increases the rate of false positives [100], it can be useful

for novel findings in data mining. Using multiple datasets will reduce the effect of

false positives, as identical false positives are less likely to happen in both datasets

simultaneously. Two datasets were therefore chosen to proceed with the tissue dataset

being background corrected.
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5.2 Visualization through dimensional reduction and

heatmap

5.2.1 Dimensional reduction of tissue

All dimensional reduction methods showed similar results. No clear clusters based on di-

agnosis were made with either MDS, tSNE, or UMAP plots using the whole gene set. The

tSNE and UMAP plots displayed better separation than the MDS plots. Some subclus-

ters with an identical diagnosis could be extrapolated but the borders were ambiguous.

These subclusters were predominantly clustered by sample location. The antrum and

cardia demonstrated, while imperfect, more desirable clustering than the normal, GIM,

and GC tissue separation. The sample location clustering is likely caused by the different

gastric cell compositions [101, 102, 103]. A random sample without annotation would

range from impossible to easy to place, making the usefulness inconsistent. However, the

noteworthy effect the sample location has on dimensional reduction indicates a need for

consideration for future research. MDS plotting was not considered for gene subgroup

visualization, but should not be neglected for its potential.

5.2.2 Dimensional reduction of cell-related genes

Cell-related genes, made with tSNE and UMAP, separated the samples more than us-

ing all genes, except for cancer-related genes. However, the samples separated only

into two distinct clusters. An ideal separation would illustrate three or more clusters

separating normal tissue, GIM, and GC, which would indicate separate conditions. Ad-

ditional clusters could include different stages of metaplasia or different types of GC,

i.e. intestinal-type and diffiuse-type GC. Both clusters contained every classification,

making them impossible to separate.

Neither tSNE nor UMAP was deemed superior to the other, but tSNE separated the

clusters to a larger extent. Both the goblet and chief cell related genes were unable to

separate properly using UMAP clustering. The enterocyte related genes were separated
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in both methods, but tSNE clustered the samples tighter together, making the separation

within the cluster harder. However, if the samples separated into distinct clusters based

on histology a tight cluster would not pose an issue. The chief cell related genes did

not separate the antrum samples, regardless of histology. This is likely because chief

cells are not typically present in the antrum [103]. While some variation can be seen

with the other normalization methods, the difference was negligible. However, the limma

background corrected and normalized data was deemed to have the best visually distinct

clusters by a small margin across most figures.

5.2.3 Heatmap

The heatmap coincided with the findings in the dimensional reduction. All three his-

tological states had samples that could be placed into subgroups, but the subgroups

within each histological state were more related to subgroups from other histological

states than each other. The sample location displayed some clustering within the differ-

ent histological states, but the GIM and GC samples did not substantially cluster.

The GIM samples were the most consistent and contained similar expressions in 7 of 11

samples. Note that GIM was the smallest sample pool. Within these 7 samples were

goblet and enterocyte related genes consistently upregulated, congruent with the SCT

report [34]. However, no downregulation was extrapolated from the enteroendocrine

cells.

The pathologically classified cancer samples overlapped with cancer-related genes in

most of its samples but not all. The biopsy samples classified as cancer had an over-

lap but contained several samples without a clear upregulation. The upregulation of

cancer-related genes was, however, not exclusive to cancer-classified samples. A small

distinction between non-cancer and cancer samples regarding genes related to neck-like

cells, proliferative cells, and macrophages were made, however, the cancer-related genes

were not uniformly upregulated in cancer samples, which can question the method or

the dataset.
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An overview of patient-separated clustering showed that many commonalities between

histologies were contained within a few patients. All patients were diagnosed with cancer,

but not all of them shared the same pattern between histological states. Some differences

are expected from the heterogeneity of cancer itself [104] and individual differences [105].

However, the lack of a reliable pattern made it difficult to set a diagnosis by comparing

patient samples. For instance, patient no. 2 had all 4 samples classified as cancer but

showed no indication of upregulation in cancer-related genes. Patient no. 16 had 2

samples classified as cancer while only one of them showed an upregulation. Note that

the sample from patient no. 16 without an upregulation had a biopsy classification of 2

out of 5, not 1 out of 5, where 1 indicate certainly cancer.

The SCT dataset was automatically clustered based on its aggregated version. Clear

distinctions were made between normal samples and samples with an upregulation of

cancer-related genes, namely, severe intestinal metaplasia and early GC. The intestinal

metaplasia showed an upregulation in enterocytes and antral basal gland mucous cell

related genes, and downregulation in enteroendocrine cells. The goblet cell related genes

are naturally upregulated as they are not present in normal gastric tissue. These findings

coincided with the initial report [34]. However, a small upregulation in B-cell related

genes seemed to be present, but the significance is impossible to determine with the

heatmap visualization method. Similar results indicates that a heatmap with the SCT

genes can be a useful visual tool for cellular change in gastric tissue.

5.3 Perspective of sample visualization

Both visualization methods defined subgroups within the histological states but the

difference between these was greater than outside the histological states. The importance

of the sample location was highlighted in the dimensional reduction plots but was not

as clear in the heatmaps.

The lack of consistency with prior histological classification infers an error. The SCT

dataset had its results reproduced suggesting that the method works. However, the SCT
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dataset were a more ideal dataset to work with. The SCT dataset contained few samples,

which were only located in the antrum. A single sample site reduces the biological noise

from different cellular compositions in the stomach [101, 102, 103].

The concurrence of the cancer classification was poor, with 12 pathologically classified

cancer and 22 biopsy-classified cancers over 25 samples, showing a large discrepancy.

Disagreements between biopsy and pathology do occur [106]. A diagnosis of borderline

lesions or undifferentiated cancer was more likely to diverge, but later stages of cancer

had concurrence rates of 93,6 % and 98,6 % [107]. It is deemed highly unlikely that

GC would remain a misdiagnosis at the point of operation. The patients in this study

underwent extensive resection with either distal gastrectomy, subtotal gastrectomy, or

total gastrectomy during the period 2012–2013. Most patients had a poor survival rate

even after gastrectomy. A poor survival rate even after surgery is common due to late

diagnosis, presenting them with advanced-stage GC [108].

Due to sampling and biological diversity, an additional factor of error can be tissue

composition. Tissue composition is important when accounting for cancerous tissue

that interweave with normal tissue, especially diffuse-type GC. The pathological samples

used for microarray analysis might contain interweaved healthy tissue. Several patients

underwent chemotherapy before the surgery, which likely reduced the number of cancer

cells in the tissue before sampling. The survival rate of the patients indicated that

cancer in some may have relapsed, even after the extensive surgery encompassing the

estimated resection margin of 2-6 cm [3]. The cause of patient deaths was not available.

The relapse of cancer may indicate cancer cells in tissue previously evaluated as healthy.

Although the number of cancer cells should be small, they may have contributed to

upregulated cancer-related genes in some samples.
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5.4 IPA results

5.4.1 Signaling pathways

5.4.1.1 Tissue dataset

The top 5 common pathways in the tissue dataset were 4 metabolism pathways and 1

signaling pathway. The metabolism pathways share an upregulation of 4 sulfotransferase

1 (SULT1) family genes, UPD-Glycosyltransferase (UGT)1A1, and 4 UGT2 family genes

[109]. The SULT genes are generally known for their metabolism of xenobiotics and are

in focus today because of their potential as a drug target for personalized medicine

[110, 111]. UGT1 and UGT2 are considered to have a relatively minor contribution to

drug metabolism. UGT1A1 is central to the regulation of endogenous and exogenous

stimuli. UGT2 family genes are considered important in contributing to interindividual

differences in drug disposition. Polymorphisms in UGT related genes are common and

some are related to increased cancer risk [112].

The serotonin degradation pathway contained an upregulation of ADH4 and ADH6

compared to the other metabolic pathways. Serotonin is a potent neurotransmitter

known to affect the bone, brain [113], and skin [114]. Most circulating serotonin is

produced by specialized neuroendocrine enterochoffamine cells in the intestine [113].

Enterochoffamin cells are known to be lining the mucosa [115]. The upregulation of

serotonin degradation would decrease the homeostatic level of serotonin.

The thyroid hormone metabolism II did not contain any unique upregulated genes.

The main thyroid hormone is produced solely by the thyroid gland [116]. The thyroid

hormone receptors are located in the myocardium and vascular tissue [117]. It is unlikely

that the thyroid hormone metabolism II was significant in this dataset.

The melatonin degradation I and the superpathway of melatonin degradation contained

a unique upregulation of CYP3A4 and did not differ between themselves. Melatonin

mainly regulates the sleep/wake cycle and other seasonal rhythms while acting as a

cytoprotective agent [118]. While melatonin is related to the pineal gland, it is also
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produced in numerous extrapineal sites. The gut contains about 400–500 times more

melatonin than the pineal gland and is substantially unmetabolized in the intestinal

lumen [119]. The development of intestinal tissue in the stomach may be the reason for

upregulation of the melatonin degradation pathway.

The FXR/RXR activation had a significant upregulation of genes, including FXR (NR1H4)

itself, but IPA could not predict an up- or downregulation. FXR is a nuclear receptor

[120], which involves distinct functional profiles binding to various ligands by the selec-

tive use of transcriptional coregulators [121]. The heterocomplex with FXR and RXR is

known to be responsible for maintaining many metabolic pathways, including bile acid

regulation and glucose and lipid homeostasis [120].

5.4.1.2 Single-cell transcriptome (SCT) dataset

The SCT dataset provided more differentially expressed genes than the tissue dataset.

The additional DEGs produced lower p-values and different top pathways. Among the

top 5 pathways, with EIF2 signaling being the exception, were correlated with oxidative

phosphorylation (OXPHOS) containing several of the same gene families.

OXPHOS is responsible for ATP production in the mitochondria [122] and is highly

upregulated in the dataset. The upregulation of some OXPHOS complexes are corre-

lated to GC [123]. Mitochondrial dysfunction is tightly related to OXPHOS and has a

significant number of differentially expressed genes, but predicted neither an up- or down-

regulation. If the mitochondrial dysfunction affects the mitochondria it is through the

reactive oxygen species (ROS) superoxide. ROS should be at a low stable expression due

to continuous degradation, dysregulation would decrease ATP production and increase

ROS generation, leading to several pathological conditions [122]. While mitochondrial

dysfunction was not predicted as an up- or downregulation it had more differentially

expressed genes than oxidative phosphorylation. However, mitochondrial dysfunction

did contain more genes, making the overlap percentage smaller. OXPHOS was not up-

regulated in the tissue dataset but due to its significance and strong upregulation in the

SCT dataset it should be taken into consideration.

57



Sirtuin is essential to delay cellular senescence and extend the lifespan of a cell through

several mechanisms [124]. The effect of sirtuin regarding cancer is conflicting as it has

both carcinogenic and cancer inhibitory [125]. The sirtuin signaling pathway was down-

regulated, however, note that none of the SIRT family genes had a predicted differential

expression.

Eukaryotic initiation factor 2 (EIF2) is a family of protein kinase phosphorylates that

alleviate cellular injury or induce apoptosis caused by environmental stress [126]. The

EIF2 signaling pathway was upregulated and predicted a strong activation of the endo-

plasmic reticulum (ER) stress response. A state of persistent ER stress sensor activation

with its downstream signaling pathway has been correlated with key regulators for tumor

growth and metastasis [127].

Glucocorticoids are hormones that regulate inflammation, metabolism, and stress, which

are secreted by the adrenal cortex. The glucocorticoid receptor is a ligand-activated tran-

scription factor deriving different functions depending on the glucocorticoid [128]. How-

ever, the intestinal mucose epithelial layer has been demonstrated as an extra-adrenal

site for glucocorticoid synthesis and aids in immune homeostasis [129]. An increase in

expression in the glucocorticoids receptor signaling pathway could be explained by the

development of GIM. The up- or downregulation of the glucocorticoid receptor signaling

pathway was unpredicted in IPA.

5.4.1.3 Common signaling pathways

None of the top 5 results in either dataset was within the common signaling pathways,

except for the sirtuin signaling pathway. Both sucrose degradation V and the sirtuin

signaling pathway was not present without background correction in the tissue data.

However, the sirtuin signaling pathway will not be further discussed as the datasets

contradict each other and neither dataset included a differentially expressed or predicted

up- or downregulated SIRT family gene. The xenobiotic metabolism PXR signaling

pathway was insignificant in terms of z-score in the SCT dataset but was close enough

to be included. Several pathways had a significant p-value in both datasets but were
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disregarded without a significant z-score in one or both pathways.

The constitutive androstane receptor (CAR, NR1I3) and the pregnane X receptor (PXR,

NR1I2) are part of the nuclear receptor superfamily. Their functions are mainly asso-

ciated with the transcription xenobiotic enzymes and are involved in physiological and

pathological conditions [130, 131]. While CAR and PXR differ, they share several com-

mon features and overlap in both xenobiotic activators and target genes [132]. CAR

and PXR are mainly expressed in the liver but are also present in the small intestine,

colon, and blood cells. CAR has been detected in the duodenum and PXR has been

found in the stomach. The PXR expression in the stomach is 1/10 of the expression

in the small intestine [130]. Thus, the increase in the xenobiotic metabolism CAR and

PXR signaling pathways can be from the development of GIM. The signaling pathways

had similar predictions, even with just one shared upregulated gene, except for the up-

stream cascade in the xenobiotic metabolism PXR signaling pathway. The xenobiotic

metabolism PXR signaling pathway had an upregulation of NCOR1 and HSP90B1 in

the SCT dataset, predicting an inhibition, however, this inhibition did not affect the

downstream result. If the common gene, SULT1A1, was the only common gene by co-

incidence or if it was an important factor is unknown. SULTA1A is one of the primary

sulfotransferases responsible for sulfoconjugation of xenobiotics in phase II metabolism

[133, 134], as well as endogenous compounds [133]. The GC risk of SULT1A1 is in-

vestigated through its polymorphisms [135, 136, 137]. The SULT1A1 polymorphism

636G>A has been correlated to increased cancer risk in Caucasians [138]. However,

only one study differentiated between intestinal-type and diffuse-type GC, and found

an increased risk in diffuse-type but not intestinal-type GC [136]. The diffuse-type GC

develops independently from GIM [12].

Sucrose degradation V is a small pathway containing only 8 molecules. The entero-

cytes in the small intestine produce an abundance of the Na(+)-glucose cotransporter

isoform SGLT1 (SLC5A1) and the glucose transporter isoforms GLUT2 (SLC2A2) and

GLUT5 (SLC2A5) to facilitate the uptake of nutrients [139]. Subsequently, they have

produced several glycosidase types, including sucrase isomaltase [140]. Sucrase isomal-
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tase is part of sucrose alpha-glucosidase that is the initiating enzyme in the breakdown

of sucrose in sucrose degradation V. The increase of enterocytes through GIM has been

well-documented [17, 24, 34]. The increase of enterocytes could explain the upregulation

of sucrose degradation V.

5.4.2 Upstream regulators

The tissue and SCT contained mostly transcription factors and components that were

not screened for in the analysis. The upstream analysis crossreferences the downstream

molecules and makes a prediction [83]. The transcription factors can have a minor

upregulation, which is not detected in the differential expression analysis, even if it is

significant.

HNF1A, HNF4A, and HNF4α dimer are part of the hepatocyte nuclear factor (HNF)

family and were predicted to activate in both datasets, except for HNF4α dimer. HNF4α

dimer is a homodimer nuclear receptor composed HNF4A [141]. The HNFs were discov-

ered in hepatocytes in the liver [142], but they are expressed in various organs. HNF1A

and HNF4A are expressed in the intestine and HNF4A has been observed with a weak

expression in the stomach [143]. However, they have both been correlated with cancer

[144]. HNF1A has been discovered with significantly increased expression in stomach

adenocarcinoma [145]. HNF4A is suggested as a biomarker to differentiate GC from

other breast cancer [146] and its inhibition can decrease proliferative cells [36].

CDX2 is a known biomarker for GIM [17] and has been associated with HNF1A in

esophagus intestinal metaplasia [147]. However, CDX2 can transactivate itself in gas-

trointestinal human carcinoma cell lines and binds to its promoter in GIM, thus sug-

gested as a perpetrator in the inevitable progression to GC [148]. CDX2 and HNF4A

are tumor suppressors in intestinal cancer [149] but their presence in the stomach is

yet to be elucidated. CDX2, HNF4A, and GATA4 are important for the general devel-

opment of the intestine. CDX2 and HNF4A are considered paramount for developing

enterocytes [150]. HNF4A, together with SMAD4, has also been shown to be crucial to
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the differentiation and development of enterocytes with a reinforcing feed-forward loop

[151]. SMAD4 was slightly downregulated in both datasets, but not statistically. No

activation or inhibition prediction was made with SMAD4. GATA4 is necessary for the

proper development of the stomach [152], by repressing the forestomach development

during hindstomach development [153]. While GATA4 is present in 10% of cancers, it

is mainly correlated to the upregulation of HNF4A [36]. The prediction with GATA4

highlighted it as important, but it was not significantly upregulated. The differentiation

of enterocytes and increase in CDX2, HFN4A, and GATA4 during the creation of GIM

may cause a reinforcing feedback loop in the microbiome making the condition persist.

Elaicid acid is a major trans fatty acid that can induce apoptosis through ROS accumu-

lation and endoplasmic reticulum stress in neuroblastoma cell lines [154] and enhances

tumor growth in colorectal cancer [155]. PPARGC1A was not significantly upregu-

lated but is correlated with oxidative damage in epithelial cells [156]. Elaicid acid and

PPARGC1A are likely correlated to the mitochondrial dysfunction pathway in the SCT

dataset because of their causative relation with ROS [154, 156].

Epidermal growth factor (EGF) was predicted activated in the SCT dataset and is

important in the functional development of the stomach [157] and intestine [158] but

an overexpression of human epidermal growth factor receptor 2 (HER2) is considered a

strong biomarker for GC [159].

L-triiodothyronine was predicted activated in neither datasets and is related to the thy-

roid hormone degradation pathway. Its pathology is mainly correlated to hypothyroidism

[160, 161] and diabetes in relation to the stomach [161]. Due to its connection with the

thyroid hormone degradation pathway it is thought to be upregulated in the upstream

analysis by coincidence.

D-glucose was predicted activated in the tissue dataset and was likely activated due

to the increase in metabolism. Cancers have a high glucose consumption [162], and

2-deoxy-d-glucose is modified d-glucose that attempts to inhibit glycolysis [163].
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6 Conclusions

The results of this thesis suggested that the potential biomarkers of GIM encompassed

signaling pathways (i.e., xenobiotic metabolism CAR signaling pathway, xenobiotic

metabolism PXR signaling pathway, and sucrose degradation V), transcription factors

(HNF1A, HNF4A, CDX2, PPARGC1A, and GATA4), endogenous chemicals (elaidic

acid and d-glucose), and the growth factor EGF.

Different data preparation methods had negligible differences during visual analysis, but

discrepancies were clear during IPA analysis.

The visual analysis of the tissue data yielded figures difficult to interpret due to biological

noise. Gastric intestinal metaplasia gave the most distinct expression, while normal

and tissue expression interweaved more. The pathological classification of cancer was

more distinct from the normal samples and was more conservative in its classification,

compared to the biopsy classification.
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et al. Estimating the global cancer incidence and mortality in 2018:
GLOBOCAN sources and methods. Int J Cancer. 2019;144(8):1941-53.

[2] Larsen IK. Cancer in Norway 2019. Cancer Registry of Norway. 2019.

[3] Johnston FM, Beckman M. Updates on Management of Gastric Cancer. Curr
Oncol Rep. 2019;21(8):67.

[4] Tan P, Yeoh KG. Genetics and Molecular Pathogenesis of Gastric
Adenocarcinoma. Gastroenterology. 2015;149(5):1153-62.

[5] Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamaguchi S, Yamakido M,
et al. Helicobacter pylori infection and the development of gastric cancer. N Engl
J Med. 2001;345(11):784-9.

[6] Plummer M, Franceschi S, Vignat J, Forman D, de Martel C. Global burden of
gastric cancer attributable to Helicobacter pylori. Int J Cancer.
2015;136(2):487-90.

[7] Waldum HL, Sagatun L, Mjønes P. Gastrin and Gastric Cancer. Front
Endocrinol (Lausanne). 2017;8:1.

[8] Lee L, Ramos-Alvarez I, Ito T, Jensen RT. Insights into Effects/Risks of Chronic
Hypergastrinemia and Lifelong PPI Treatment in Man Based on Studies of
Patients with Zollinger-Ellison Syndrome. Int J Mol Sci. 2019;20(20).

[9] Hayakawa Y, Fox JG, Wang TC. The Origins of Gastric Cancer From Gastric
Stem Cells: Lessons From Mouse Models. Cell Mol Gastroenterol Hepatol.
2017;3(3):331-8.

[10] Westphalen CB, Asfaha S, Hayakawa Y, Takemoto Y, Lukin DJ, Nuber AH,
et al. Long-lived intestinal tuft cells serve as colon cancer-initiating cells. J Clin
Invest. 2014;124(3):1283-95.

[11] Waldum HL, Hauso Sørdal , Fossmark R. Gastrin May Mediate the
Carcinogenic Effect of Helicobacter pylori Infection of the Stomach. Dig Dis Sci.
2015;60(6):1522-7.

[12] McLean MH, El-Omar EM. Genetics of gastric cancer. Nature Reviews
Gastroenterology Hepatology. 2014;11:664-74.

63



[13] LAUREN P. THE TWO HISTOLOGICAL MAIN TYPES OF GASTRIC
CARCINOMA: DIFFUSE AND SO-CALLED INTESTINAL-TYPE
CARCINOMA. AN ATTEMPT AT A HISTO-CLINICAL CLASSIFICATION.
Acta Pathol Microbiol Scand. 1965;64:31-49.

[14] Smyth EC, Nilsson M, Grabsch HI, van Grieken NC, Lordick F. Gastric cancer.
Lancet. 2020;396(10251):635-48.

[15] Matsuoka T, Yashiro M. Biomarkers of gastric cancer: Current topics and future
perspective. World J Gastroenterol. 2018;24(26):2818-32.

[16] Slack JM, Tosh D. Transdifferentiation and metaplasia–switching cell types.
Curr Opin Genet Dev. 2001;11(5):581-6.

[17] Kinoshita H, Hayakawa Y, Koike K. Metaplasia in the Stomach-Precursor of
Gastric Cancer? Int J Mol Sci. 2017;18(10).

[18] Correa P. Human gastric carcinogenesis: a multistep and multifactorial
process–First American Cancer Society Award Lecture on Cancer Epidemiology
and Prevention. Cancer Res. 1992;52(24):6735-40.

[19] Correa P, Shiao YH. Phenotypic and genotypic events in gastric carcinogenesis.
Cancer Res. 1994;54(7 Suppl):1941s-1943s.

[20] Shichijo S, Hirata Y, Niikura R, Hayakawa Y, Yamada A, Ushiku T, et al.
Histologic intestinal metaplasia and endoscopic atrophy are predictors of gastric
cancer development after Helicobacter pylori eradication. Gastrointest Endosc.
2016;84(4):618-24.

[21] Shichijo S, Hirata Y, Sakitani K, Yamamoto S, Serizawa T, Niikura R, et al.
Distribution of intestinal metaplasia as a predictor of gastric cancer development.
J Gastroenterol Hepatol. 2015;30(8):1260-4.

[22] Sakitani K, Hirata Y, Watabe H, Yamada A, Sugimoto T, Yamaji Y, et al.
Gastric cancer risk according to the distribution of intestinal metaplasia and
neutrophil infiltration. J Gastroenterol Hepatol. 2011;26(10):1570-5.

[23] Graham DY, Zou WY. Guilt by association: intestinal metaplasia does not
progress to gastric cancer. Curr Opin Gastroenterol. 2018;34(6):458-64.

[24] Goldenring JR, Mills JC. Cellular Plasticity, Reprogramming, and Regeneration:
Metaplasia in the Stomach and Beyond. Gastroenterology. 2021.

[25] Lam SK, Lau G. Novel treatment for gastric intestinal metaplasia, a precursor to
cancer. JGH Open. 2020;4(4):569-73.

[26] Gupta S, Li D, El Serag HB, Davitkov P, Altayar O, Sultan S, et al. AGA
Clinical Practice Guidelines on Management of Gastric Intestinal Metaplasia.
Gastroenterology. 2020;158(3):693-702.

64



[27] Pimentel-Nunes P, Libânio D, Marcos-Pinto R, Areia M, Leja M, Esposito G,
et al. Management of epithelial precancerous conditions and lesions in the
stomach (MAPS II): European Society of Gastrointestinal Endoscopy (ESGE),
European Helicobacter and Microbiota Study Group (EHMSG), European
Society of Pathology (ESP), and Sociedade Portuguesa de Endoscopia Digestiva
(SPED) guideline update 2019. Endoscopy. 2019;51(4):365-88.

[28] Yeoh KG, Tan P. Mapping the genomic diaspora of gastric cancer. Nat Rev
Cancer. 2021.

[29] Milward EA, Shahandeh A, Heidari M, Johnstone DM, Daneshi N, Hondermarck
H. Transcriptomics. In: Bradshaw RA, Stahl PD, editors. Encyclopedia of Cell
Biology. Waltham: Academic Press; 2016. p. 160-5. Available from: https:
//www.sciencedirect.com/science/article/pii/B9780123944474400295.

[30] Supplitt S, Karpinski P, Sasiadek M, Laczmanska I. Current Achievements and
Applications of Transcriptomics in Personalized Cancer Medicine. Int J Mol Sci.
2021;22(3).

[31] Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T. Transcriptomics
technologies. PLoS Comput Biol. 2017;13(5):e1005457.

[32] Yong HEJ, Chan SY. Current approaches and developments in transcript
profiling of the human placenta. Hum Reprod Update. 2020;26(6):799-840.

[33] Chambers DC, Carew AM, Lukowski SW, Powell JE. Transcriptomics and
single-cell RNA-sequencing. Respirology. 2019;24(1):29-36.

[34] Zhang P, Yang M, Zhang Y, Xiao S, Lai X, Tan A, et al. Dissecting the
Single-Cell Transcriptome Network Underlying Gastric Premalignant Lesions
and Early Gastric Cancer. Cell Rep. 2019;27(6):1934-47.

[35] Companioni O, Sanz-Anquela JM, Pardo ML, Puigdecanet E, Nonell L, Garćıa
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Appendix

A Relative expression of housekeeping gene from gene mean

B Dimensional reduction of tissue transcriptome

C Dimensional reduction of enterocyte genes

D Dimensional reduction of goblet cell genes

E Dimensional reduction of goblet cell genes

F Dimensional reduction of cancer cell genes

G Classification of gastric samples

H Heatmaps normalized through housekeeping genes
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