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Abstract

The long‐chain, ω‐3 polyunsaturated fatty acids (PUFAs) (e.g., eicosapentaenoic acid

[EPA] and docosahexaenoic acid [DHA]), are essential for humans and animals, in-

cluding marine fish species. Presently, the primary source of these PUFAs is fish oils. As

the global production of fish oils appears to be reaching its limits, alternative sources of

high‐quality ω‐3 PUFAs is paramount to support the growing aquaculture industry.

Thraustochytrids are a group of heterotrophic protists with the capability to synthesize

and accrue large amounts of DHA. Thus, the thraustochytrids are prime candidates to

solve the increasing demand for ω‐3 PUFAs using microbial cell factories. However, a

systems‐level understanding of their metabolic shift from cellular growth into lipid

accumulation is, to a large extent, unclear. Here, we reconstructed a high‐quality
genome‐scale metabolic model of the thraustochytrid Aurantiochytrium sp. T66 termed

iVS1191. Through iterative rounds of model refinement and extensive manual curation,

we significantly enhanced the metabolic scope and coverage of the reconstruction from

that of previously published models, making considerable improvements with stoi-

chiometric consistency, metabolic connectivity, and model annotations. We show that

iVS1191 is highly consistent with experimental growth data, reproducing in vivo

growth phenotypes as well as specific growth rates on minimal carbon media. The

availability of iVS1191 provides a solid framework for further developing our under-

standing of T66's metabolic properties, as well as exploring metabolic engineering and

process‐optimization strategies in silico for increased ω‐3 PUFA production.
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1 | INTRODUCTION

The health benefits from the consumption of marine seafood are well

documented (Bloomer et al., 2009; Bouwens et al., 2009; Coletta

et al., 2010; Hosomi et al., 2012; Lauritzen et al., 2016). The high

content of ω‐3 polyunsaturated fatty acids (PUFAs), such as

docosahexaenoic acid (DHA), is considered one of the major con-

tributors to this effect (Hosomi et al., 2012; Swanson et al., 2012).

Although rich in ω‐3 fatty acids, oily fish such as salmon do not

synthesize these de novo, instead acquiring them by feeding on lipid‐
rich plankton and microalgae (Hosomi et al., 2012). The rising global

aquaculture industry has consequently led to an increasing need for
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novel sources of these fatty acids (Food and Agriculture Organiza-

tion of the United Nations, 2018), the current source of which is

mainly fish oil. These PUFA‐containing lipids, however, also contain

elevated levels of toxic contaminants, such as polychlorinated bi-

phenyls and heavy metals (El‐Moselhy et al., 2014; Rawn

et al., 2006). A need for alternative, clean, high‐quality sources of ω‐3
PUFAs is therefore of utmost importance. Cultivation and strain

engineering of lipid‐producing microorganisms is regarded as a pro-

mising strategy to cater to this demand. These oleaginous organisms

are able to accumulate substantial amounts of lipids and has proven

to be a cost‐effective alternative to agricultural oil production

(Ratledge, 2004). Thraustochytrids are heterotrophic protists found

globally in marine and estuarine environments (Leyland et al., 2017).

They accrue large quantities of ω‐3‐rich triacylglycerols (TAGs) that

may constitute 50%–80% of the total cell mass (Huang et al., 2012;

Leyland et al., 2017; Li et al., 2015). In most PUFA‐producing mi-

croorganisms, the fatty acids are produced by elongating and desa-

turating the end products of the type I fatty acid synthase (FAS)

enzymatic machinery (Beld et al., 2015). However, thraustochytrids

predominately synthesize their PUFAs using a competing polyketide

synthase‐like (PKS) system (Metz et al., 2001). Here, the acyl inter-

mediates may retain their unsaturated bonds during the biosynthetic

process, thus lowering the molar requirement for reducing power

compared with the conventional elongation/desaturation scheme.

This capability to accumulate large amounts of ω‐3 PUFAs, as well as

the decreased biosynthetic requirement for reducing power, has

made thraustochytrids particularly promising candidates as efficient

lipid‐producing cell factories (Ratledge, 2004).

To elucidate the biological mechanisms underpinning the fatty

acid biosynthesis and lipid accumulation in thraustochytrids, knowl-

edge of their global metabolic organization and functionality is vital.

Metabolic modeling is a pivotal methodology to simulate and predict

metabolic phenotypes in silico, thereby generating hypotheses and

guide experimental efforts (O'Brien et al., 2015). Specifically,

genome‐scale metabolic models (GSMs) have become one of the

main approaches to model metabolism within the field of systems

biology (Gu et al., 2019). Whereas some modeling approaches re-

quire extensive parametrization, constraint‐based modeling using

GSMs in their most fundamental form merely calls for an annotated

genome sequence (Thiele & Palsson, 2010). GSMs contain the

genotype–phenotype relationships for genes and biochemical reac-

tions, enabling the computational simulations of metabolic flux dis-

tributions under various environmental and genetic perturbations

(O'Brien et al., 2015).

GSMs have been constructed for a wide variety of oleaginous

microorganisms, providing novel insight into their metabolic

capabilities and behavior (Castañeda et al., 2018; Kim et al., 2019;

Levering et al., 2015; Loira et al., 2012; Mishra et al., 2016; Tiukova

et al., 2019; Vongsangnak et al., 2013). Many of these GSMs have

also been used to propose strategies to enhance both the total lipid

content, as well as increasing the fractional PUFA‐content (Kim

et al., 2019; Levering et al., 2015; Tibocha‐Bonilla et al., 2018). These

models, however, have predominately focused on oleaginous yeast

and lipid‐producing phototrophic microalgae. Presently, only two

thraustochytrid GSMs have been reconstructed. The first re-

construction, iCY1170_DHA, is of one of the more studied thraus-

tochytrid strains Schizochytrium limacinum SR21 (Ye, Qiao,

et al., 2015). Ye, Qiao, et al. (2015) built the GSM using three existing

models, refining the reconstruction by predicting its subcellular

compartmentalization and performing appropriate model curations.

They also proposed multiple cultivation and strain engineering

strategies for increasing the DHA productivity. The second model

was of Oblongichytrium sp. RT2316‐13, reconstructed by modifying

iCY1170_DHA to reflect the metabolism of RT2316‐13 (Shene

et al., 2020). This GSM was used in combination with an auxiliary

mathematical model to simulate the fermentation profile of batch

cultures, showing satisfactory agreements with experimental data.

The model was further able to predict the effects of oxygen avail-

ability on the rate of lipid synthesis.

The process of GSM reconstruction is a labor‐intensive endeavor

that is based on the prediction of putative metabolic functions of

protein‐encoding sequences using the aforementioned genome an-

notation (Mendoza et al., 2019). Once collected, this repository of

biochemical reactions and metabolites are converted into the

mathematical framework of a stoichiometric matrix, enabling the

simulation of metabolic phenotypes using flux balance analysis (FBA)

and related approaches (Bordbar et al., 2014). Although consecutive

in order, these stages are organized in an iterative manner in which

additional model curation is performed to ensure that the predic-

tions progressively match the expected biochemical phenotype

(Thiele & Palsson, 2010). While manual curation is an integral part of

achieving a high‐quality GSM (Mendoza et al., 2019), many of the

steps are included in fully automated software producing ready‐to‐
use metabolic reconstructions (Agren et al., 2013; Dias et al., 2015;

Henry et al., 2010; Karp et al., 2016; Machado et al., 2018; Pitkänen

et al., 2014).

Herein, we present iVS1191, the reconstruction of a high‐quality
GSM of the thraustochytrid Aurantiochytrium sp. strain T66

(Jakobsen et al., 2007). By comprehensively refining and curating the

reconstruction, we significantly improved the metabolic scope and

coverage from that of a template model. We further utilized

experimental growth data, proving the model able to accurately re-

produce in vivo metabolic growth phenotypes. Currently, iVS1191

represents the most comprehensive knowledge‐base of any thraus-

tochytrid, and we strongly believe that the reconstructed model has

the potential to play a key role in understanding the oleaginous

metabolism of thraustochytrids for future biotechnological

applications.

2 | MATERIALS AND METHODS

2.1 | Model simulations

We use FBA to predict cellular phenotypes of the GSM. The general

FBA problem can be stated as the following linear program:
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where cj is the objective function coefficient of reaction flux vj de-

fining the objective function z as a linear combination of the reaction

fluxes. Equation (2) represents the homogeneous system of linear

equations, while Equation (3) specifies the upper (vj
ub) and lower (vj

lb)

bounds on the flux variables (Orth et al., 2010). Unless otherwise

stated, all FBA simulations took the form as seen in Equations (1)–(3)

where the flux of the biomass pseudoreaction was selected as the

objective. Simulations were performed on a Macbook Pro 2018 with

Matlab 2019b (MATLAB, 2019) using the The COnstraint‐Based
Reconstruction and Analysis toolbox (Heirendt et al., 2019) and the

proprietary solver Gurobi version 8.1.1 (Gurobi Optimization, 2020).

2.2 | Initial draft reconstruction

We used the already published GSM iCY1170_DHA (Ye, Qiao,

et al., 2015) of the closely related thraustochytrid S. limacinum SR21 as

a starting template. As our next step, we performed a reciprocal

protein Basic Local Alignment Search Tool (BLASTp) (Altschul

et al., 1990) analysis using the RAVEN Toolbox (Agren et al., 2013)

with the predicted protein sequences of the template and target or-

ganisms as input. The predicted protein sequences of T66 were ac-

cessed from Gene Expression Omnibus (GEO; Edgar et al., 2002), GEO

Series accession number GSE134374, while the protein sequences of

S. limacinum were obtained from the Joint Genome Institute Database

(Institute, 2017). The resulting sequence similarities were subse-

quently used to infer putative homologs by bidirectional best hits

using the following parameters: alignment length of at least 200, an

E‐value < 10−30, and a minimum identity of 40%. We also performed

additional identification of candidate homologs of proteins that were

unable to satisfy these similarity criteria due to short sequence

lengths. All reactions from the template model associated with the

identified set of putative homologs were extracted to form the initial

draft reconstruction. In addition, reactions annotated as spontaneous

in the template model were also included in the draft model.

The semi‐automatic gap‐filling approach was carried out as

follows: Using the biomass reactions from the template model; for

every biomass precursor incapable of being produced using a carbon‐
limited defined medium (see Table S1), we studied the anabolic

pathways responsible for their production in the Kyoto Encyclopedia

of Genes and Genomes (KEGG) (Kanehisa & Goto, 2000) and

MetaCyc (Kothari et al., 2013) databases to identify putative gap‐
filling candidates. We also utilized the software ModelExplorer

(Martyushenko & Almaas, 2019) for visual and algorithmic inspection

of the metabolic network to identify metabolic gaps and incon-

sistencies. Finally, we filled the remaining gaps by adding a minimal

subset of all unincorporated template model reactions necessary for

the model to generate biomass.

2.3 | Draft reconstruction improvement based
on KEGG

We reconstructed a secondary draft model using the KEGG func-

tionality of the RAVEN Toolbox (Agren et al., 2013). This method

makes use of profile hidden Markov models (HMM) pre‐trained on

KEGG Orthologies (KO) in the KEGG database and attempts to as-

sign these identifiers to significantly homologous genes from or-

ganism of interest. The associated KO reactions are collected and

used to generate a draft reconstruction. We obtained the secondary

draft model by querying the predicted protein sequences of T66

against a pre‐trained profile HMM (Eukaryota, Identity: 100%) from

Ref. (ToolBox, 2017).

2.4 | Manual curation of reconstructed network

We performed a manual gene re‐annotation of all metabolic genes

present in the two draft reconstructions by individually inspecting

and evaluating their presumptive metabolic functionality. We further

verified these by BLASTp searches against the KEGG (Kanehisa &

Goto, 2000) and UniProtKB/Swiss‐Prot (Apweiler et al., 2004) da-

tabases. Associated reactions were collected and compared to those

present in the draft reconstruction. These reactions were either di-

rectly found in the databases or, when available, from appropriate

genome‐scale reconstructions in the BiGG database (King

et al., 2015). Any discrepancies were resolved through the addition

or removal of reactions and/or associated genes.

As with iCY1170_DHA, the draft model accounted for three cell

compartments: the extracellular space, the cytoplasm, and the mi-

tochondria. Subcellular predictions were therefore made for all pu-

tative proteins using HECTAR (Gschloessl et al., 2008) and DeepLoc

(Almagro Armenteros et al., 2017). In cases of differing predictions,

HECTAR took precedence over DeepLoc as it is specifically tailored

to predicting the subcellular targeting of proteins from the eu-

karyotic clade of heterokonts (Gschloessl et al., 2008; Leyland

et al., 2017). We also performed qualitative evaluations in cases of

conflicting predictions or when subcellular localization could be es-

tablished from high‐quality biochemical information. When sub-

cellular localization of existing genes in the model was changed,

appropriate transport reactions were added if subsections of the

associated metabolic pathways now appeared in different compart-

ments. We either found candidate transporter proteins directly from

the genome annotation or by BLAST searches against the afore-

mentioned databases, as well as in the Transporter Classification

Database (TCDB) (Saier et al., 2016).

2.5 | Detection and removal of energy‐generating
cycles (EGCs)

To identify the presence of energy‐generating cycles (EGCs), we

added a set of energy dissipation reactions ξ and tested whether
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these were able to carry a non‐zero flux in a closed model (a listing is

available in Table S2). Each dissipation reaction el∈ξ was iteratively

added to the reconstruction and subsequently selected as the ob-

jective function to be maximized in a closed model (i.e., all exchange

reactions constrained to zero). This approached is described by the

following linear program

emax l (4)
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j

n
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where M is the set of metabolites, and I and E are the sets of internal

and exchange reactions, respectively. In the case of a non‐zero ob-

jective value, a reaction‐deletion strategy was subsequently pro-

posed in which a minimal subset of reactions to be deleted from

these flux‐carrying reactions was identified. A similar test was per-

formed with only the uptake of the carbon source constrained to

zero to account for alternative EGCs in which extracellular protons

are taken up and used to drive the charging of energy carriers.

2.6 | Biomass reformulation

The biomass composition was adapted from the neutral lipid‐free
biomass (Shene et al., 2020). Splitting the biomass into preceding

precursor reactions, we formulated unique biomass reactions of the

following categories: proteins, carbohydrates, DNA, RNA, un-

saponifiable matter, polar lipids, and free fatty acids. The relative

molar content of each amino acid in proteins was assumed to be the

same as that of S. limacinum SR21 (Ye, Qiao, et al., 2015). We also

swapped each amino acid for their corresponding aminoacyl‐tRNA

and added additional energy carriers required for the process of

translation. The total carbohydrate content was obtained from pre-

vious work (Shene et al., 2020), while the weight fractions was as-

sumed to be the same as that of S. limacinum (Ye, Qiao, et al., 2015).

To estimate the energy requirements for the polymerization of these

monomeric carbohydrates, we employed their corresponding

nucleotide sugars. As with the amino acids, we assumed that the

molar abundance of each (deoxy)nucleotide in DNA and RNA was

similar to that of S. limacinum (Ye, Qiao, et al., 2015). We also sub-

stituted the monomeric precursors with corresponding (deoxy)nu-

cleoside triphosphates, simulating the energetic cost of replication

and transcription, respectively. We used previously determined le-

vels of unsaponifiable matter, polar lipids, and free fatty acids (Shene

et al., 2020), while updating the fatty acyl distribution to that of T66

cells sampled during exponential growth. Lacking detailed experi-

mental data on the quantitative levels of specific lipids of particular

chain configurations, we further assumed that all lipid classes would

have the same fractional acyl chain composition. We stoichiome-

trically weighted the components of each of the precursor reactions

using appropriate correction factors and further scaled the

precursors in the final biomass reaction using experimentally de-

termined weight fractions (i.e., g component gDW−1) (Shene

et al., 2020).

2.7 | Phenotypic growth predictions

To compare in vivo and model‐predicted in silico growth rates, we

performed two growth experiments separately using glucose and

glycerol as the carbon sources, together with ammonium as a ni-

trogen source in both experiments. Cells were cultivated in 100ml

medium in 500ml shaking flasks at 28°C and 250 rpm. Four samples

of 10ml were extracted during the exponential growth phase and

subsequently centrifuged at 3200×g for 10min. The supernatant was

frozen to quantify the amount of the carbon source and ammonium.

The pellet was washed once in 0.9% NaCl, and the resulting super-

natant was carefully removed before drying at 105°C for 16–20 h to

enable dry weight quantification. Glucose and glycerol were quan-

tified by high‐performance liquid chromatography (HPLC). Samples

were centrifuged and filtered through 0.2 µm syringe filters before

analyzed using an Aminex HPX‐87‐H column (BioRad Laboratories)

at 45°C, and refractive index detection (RID‐6A, Shimadzu). Five

mmol H2SO4 was used as mobile phase at 0.6 ml/min. Ammonium

quantities were determined using an enzymatic kit according to the

manufacturer's instructions (Megazyme K‐AMIAR). Quantified levels

of the carbon source and ammonium were subsequently used to

estimate the specific substrate uptake rates.

3 | RESULTS

3.1 | Initial draft reconstruction

We initialized the reconstruction of the metabolic model by per-

forming genome‐wide bidirectional BLAST searches for orthologs

between the template model proteins of S. limacinum SR21 and the

predicted protein sequences of T66. In total, 995 candidate homo-

logs were identified, which along with 1344 associated reactions and

1515 metabolites formed the basis of the draft reconstruction. In

addition, 87 putative homologs were found using reciprocal protein‐
BLAST searches with less stringent alignment length cutoffs. We

subsequently used the remaining set of template genes with no

significant hits in tBLASTn searches against the genomic nucleotide

sequence of T66 (available at GenBank; (Clark et al., 2016) under the

accession number LNGJ00000000) to circumvent any insufficient

genome coverage of the predicted protein sequences. A total of

30 additional candidate orthologs were identified, which along with

the previous set of 87 proteins added 88 new metabolic reactions to

the draft reconstruction. We also added all the unincorporated non‐
gene‐associated transport and exchange reactions of the template

model to the draft reconstruction. This was done to prevent their

exclusion from impeding the ability of the model to generate ne-

cessary biomass precursors. At a later stage, we evaluated each of
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these reactions individually and removed those that were un-

necessary for a functional model.

To ensure that the model would be able to predict specific

growth rates, we initiated a semi‐automatic approach to identify and

fill in the metabolic gaps necessary for biomass production. Due to

insufficient knowledge of the particular biomass composition of T66,

the biomass reaction of the template model was employed during

these simulations (see “SuppInfo_Biomass_composition”). Although

the primary goal was to enable the synthesis of biomass, we also

introduced additional reactions to more accurately represent the

metabolic network of T66. In total, we added 131 reactions during

this procedure of which five were nonspontaneous gap‐filling reac-

tions with no identifiable candidate genes. Two additional gap‐filling
reactions were found as a minimal subset of reactions from

iCY1170_DHA necessary for the synthesis of the biomass precursor

L‐galactose. These reactions were GDP mannose phosphorylase

(EC:2.7.7.22) and GDP‐L‐galactose phosphorylase (EC:2.7.7.69).

Interestingly, both of these gap‐filling reactions had no associated

genes in the template model, suggesting that their responsible

enzymes might be elusive in thraustochytrids in general.

3.2 | Draft reconstruction from the KEGG
database

To increase the predictive capabilities of the newly reconstructed

model, we initiated comprehensive investigations of additional me-

tabolic functionalities. To facilitate this process and aid in the iden-

tification of novel reactions and genes, we generated a secondary

draft model from the KEGG database (Kanehisa & Goto, 2000) using

the RAVEN Toolbox (Agren et al., 2013). The contents of this model,

along with biochemical information available within the genome

annotation were then used to identify reactions and genes that

should be added to the draft reconstruction. We also identified

candidate metabolic reactions through the inspection of metabolic

dead‐ends and associated blocked reactions of the model. Candidate

genes for missing reactions were thereby identified and suitable

metabolic reactions were collected, forming a repository of novel

metabolic capability to be added to the draft reconstruction.

The secondary draft model harbored 1455 reactions, 1556 me-

tabolites, and 1090 associated genes. Of these genes, 340 were

unique to the KEGG model, while 404 genes where unique to the

initial draft model. This highlights quite a substantial difference in

genetic coverage between the two models and implies that the me-

tabolic potential of both reconstructions might be inadequate. A si-

milar discrepancy was found when studying the subsystem

distributions of the model reactions in Figure 1. Although the num-

ber of reactions associated with each subsystem appear to be

somewhat comparable, the sets of unique reactions make up a sig-

nificant amount of all model reactions. In total, the initial draft re-

construction and the KEGG model each include 54.6% and 55.1%

reactions that are not present in the other model. In the case of the

draft reconstruction, these reactions were predominately associated

with the transport and exchange subsystems. While the KEGG

database contains a comprehensive repository of high‐quality bio-

chemical information, it is not specifically tailored to assist in the

reconstruction of GSMs. This is partly reflected in the absence of

implemented transport reactions, which plays a key role in the

genesis of genome‐scale metabolic networks, particularly for the

compartmentalized metabolism of eukaryotes. Associated with this is

also information on the subcellular localization of proteins, which

altogether is lacking in the model generated from KEGG.

3.3 | Manual curation

Motivated by the large metabolic disparity of the two reconstruc-

tions, we began a comprehensive model consolidation process. Here,

the aim was to merge the two reconstructions while simultaneously

performing manual curation on all the included model components.

This entailed extensive gene re‐annotation to enhance the accuracy

of the gene‐reaction associations, as well as assuring quality‐control
of the newly identified genes and associated reactions. Although

highly laborious, the manual gene re‐annotation proved to be a

fruitful strategy. High‐quality annotations on all 1191 genes of the

final model were collected, strengthening the qualitative properties

of the GSM and reinforcing the confidence in the included reactions

compared with that of the automatically assembled draft re-

constructions. The repository contains information on the presumed

metabolic capabilities of all the metabolic genes, along with

predicted subcellular localizations, bibliomic references of similar

metabolic enzymes, and associated model reactions (see “SuppIn-

fo_iVS1191_model_components”, "A. Model genes"). When building

this repository, we updated the gene rules for a substantial set of the

model reactions. While, in many cases the associated reactions of a

given gene were accurate according to the available biochemical

information, the gene rules were frequently incorrect, often as a

result of the exclusion of auxiliary subunits of both regulatory and

catalytic activity. Their identification during the re‐annotation al-

lowed for more realistic gene‐reaction associations, which will

greatly increase the validity of future in silico analysis of gene

essentiality, as well as the identification of realistic genetic en-

gineering strategies.

We performed extensive validation of Enzyme Commission (EC)

numbers as many of those included from the template reconstruction

were either erroneous or originated from obsolete and/or outdated

database entries. By using the MetaCyc (Kothari et al., 2013) data-

base as a benchmark, we validated the metabolite formulas and

charges of all model metabolites, as well as the reaction stoichio-

metries, reversibilities, and co‐factor specificities. We further added

reaction identifiers from KEGG (Kanehisa & Goto, 2000), BiGG (King

et al., 2015), MetaCyc (Kothari et al., 2013), and MetaNetX (Ganter

et al., 2013). Similarly for metabolites, we incorporated identifiers

from the aforementioned database namespaces, as well as from

ModelSEED (Henry et al., 2010), International Chemical Identifier

(McNaught, 2008), Chemical Entities of Biological Interest
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(Degtyarenko et al., 2008), and Human Metabolome Database

(Wishart et al., 2007).

Stoichiometric models of genome‐scale metabolism may contain

thermodynamically infeasible cycles which are able to charge in-

tracellular energy carriers without any nutrient consumption

(Fritzemeier et al., 2017). These cycles are products of inaccurate

reversibilities of the constituent reactions, which often result from a

lack of thermodynamic constraints. Of particular relevance are

so‐called EGCs, a subset of type II extreme pathways where the cycle

drive the biochemical charging of metabolic energy carriers without

any input of energy (Fritzemeier et al., 2017; Price et al., 2002).

Following the iterative addition and subsequent maximization of the

set of energy‐dissipation reactions, it was revealed that the re-

constructed model was able to charge all of the energy carriers

without any input of reduced carbon. These thermodynamically in-

feasible cycles concertedly operated by taking up extracellular pro-

tons by means of a flux coupling between a proton‐driven transport

of a given metabolite and a reversible uniport reaction of the same

compound. The set of reactions utilized this flow of protons to drive

a continuous generation of cytosolic reducing power, which

subsequently was used to drive the biochemical charging of the other

energy carriers. By inspecting the flux‐carrying reactions, we dis-

rupted all EGCs by performing appropriate reaction deletions.

3.4 | Resolving the biosynthetic pathway of
PUFAs

In thraustochytrids, the biosynthesis of PUFAs primarily occurs by

the action of a PKS enzymatic complex. Here, the acyl chains are

covalently attached to the acyl‐carrier protein (ACP) domain of the

enzyme complex, which directs the moiety to the various catalytic

domains during successive rounds of chain elongation

(Ratledge, 2004). The PKS pathway from the template model fol-

lowed a more simplistic mechanism where the associated biosyn-

thetic steps were merged into generic reactions involving erroneous

metabolic intermediates. In addition, the acyl moieties were present

as acyl‐CoA intermediates, thus omitting the final hydrolysis of the

fatty acid from the ACP and subsequent condensation with CoA. We

therefore implemented a more accurate representation of the PKS

F IGURE 1 Subsystem distributions of the shared and unique reactions in the initial draft reconstruction of T66 and the KEGG model. The
dissimilar number of shared reactions in each subsystem is a consequence of certain reactions of the draft reconstruction occurring in
multiple compartments, or that a shared reaction are annotated to different subsystems in the two models. KEGG, Kyoto Encyclopedia of Genes
and Genomes [Color figure can be viewed at wileyonlinelibrary.com]
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pathway in which the acyl‐CoA intermediates were replaced by acyl‐
ACPs. We added every single catalytic step as unique reactions to

depict the presumed biochemical reaction mechanism occurring in

vivo (Ratledge, 2004). We also implemented the final hydrolysis of

the acyl chain in order for the model to predict more realistic energy

demands due to the ensuing ATP‐driven condensation with CoA. The

updated PKS pathway contained a total of 81 unique metabolic re-

actions, with 75 associated acyl‐ACP intermediates. The biosynthetic

pathway was able to synthesize all of the PUFAs that T66 accumu-

lates during lipid accumulation (Jakobsen et al., 2008). These consist

of the two ω‐3 fatty acids EPA (c20:5(n‐3)) and DHA (c22:6(n‐3)), and
the ω‐6 fatty acid docosapentaenoic acid (DPA, c22:5(n‐6)). The re-

sulting pathway thus diverges early on in the biosynthetic process by

either retaining the unsaturated π‐bond at the n‐3 position, gen-

erating EPA and DHA, or reducing it, eventually producing DPA.

In iCY1170_DHA, 15 separate genes were present in the asso-

ciated gene rules of the PKS pathway. However, upon further in-

spection it was revealed that many of these enzymes contained

rather generic PKS domains, which did not seem to constitute either

of the three catalytic subunits of the PKS complex. Through the

process of manual gene re‐annotation, we found three candidate

genes in the genome of T66 which showed highly significant se-

quence similarity with the functionally characterized PUFA PKS

subunits of Thraustochytrium sp. 26185 (Table 1) (Meesapyodsuk &

Qiu, 2016). Along with an additional gene encoding the auxilliary

phosphopantetheinyl transferase (acpT) subunit not present in

iCY1170_DHA, we used these four genes to replace the previous set

of 15 genes.

3.5 | Addition of a peroxisomal compartment

Due to its central role in lipid metabolism, it is necessary to in-

corporate a peroxisomal compartment to achieve a high‐fidelity re-

constructed network. Following extensive literature reviews and

identification of proteins that were hypothesized to be localized in

the peroxisome, we added a peroxisomal compartment to the re-

construction. This compartment harbors 135 unique reactions,

consisting of 92 internal and 43 transport reactions, respectively. Its

metabolic capabilities are mainly associated with that of β‐oxidation
of fatty acids, along with the associated glyxoylate shunt, allowing for

the gluconeogenic biosynthesis of carbohydrates from the acetyl‐
products of the β‐oxidation pathway. The constituent reactions of

the latter anaplerotic cycle were predicted to be localized to the

peroxisome, as well as the cytosol and mitochondria, suggesting a

rather complex interexchange of the metabolic intermediates be-

tween these compartments.

While the reactions associated with the glyoxylate shunt were

present in iCY1170_DHA, thus allowing for growth on two‐carbon
compounds such as acetate, the model was unable to grow on any of

its implemented fatty acids. This was caused by insufficient in-

corporation of necessary transport reactions and the erroneous

subcellular localization of the mitochondrial electron‐transferring‐
flavoprotein dehydrogenase (EC:1.5.5.1) to the cytosol, consequently

preventing the mitochondrial degradation of these acyl chains. In

addition, indispensable enzymatic steps required for the oxidation of

unsaturated fatty acids, such as Δ3‐Δ2‐enoyl‐CoA isomerase

(EC:5.3.3.8) and 2,4‐dienoyl‐CoA reductase (EC:1.3.1.34), were also

not implemented, thus preventing the metabolic network from being

able to degrade the collection of fatty acids that it is able to syn-

thesize. When the required reactions were added along with the

peroxisomal compartment, the model was able to grow on all im-

plemented fatty acids, as well as a set of volatile fatty acids reported

to support growth of T66 cultures (Tables 2 and 3) (Jakobsen

et al., 2007; Patel et al., 2020).

Based on available genomic data, the β‐oxidation of fatty acids in

T66 is situated in both the peroxisomal and mitochondrial com-

partment. However, the chain‐length specificities of these two en-

zymatic machineries remain to be elucidated. We therefore made the

TABLE 1 Candidate genes encoding the enzymatic subunits of
the PKS complex responsible for the biosynthesis of PUFAs in T66

PKS

subunit Gene

Homologous

gene

Sequence

identity (%)

A T66011701 KX651612.1 99.96

B T66005413.1 KX651613.1 100

C T66011702 KX651614.1 100

acpT T66011703 KX651615.1 99.31

Note: The homologous genes are GenBank accession numbers of

functionally characterized proteins of Thraustochytrium sp. 26185

(Meesapyodsuk & Qiu, 2016).

Abbreviations: PKS, polyketide synthase; PUFAs, polyunsaturated fatty

acids.

TABLE 2 Qualitative assessment of growth using the draft
model, iVS1191, and iCY1170_DHA on various long to very‐long
chain fatty acids

Carbon source

Draft

modela iVS1191 iCY1170_DHA

Myristic acid, c14:0 − + −

Palmitic acid, c16:0 − + −

Palmitoleic acid, c16:1(n‐7) − + −

Stearic acid, c18:0 + + −

cis‐Vaccenic acid, c18:1(n‐7) − + −

EPA, c20:5(n‐3) − + −

DPA, c22:5(n‐6) − + −

DHA, c22:6(n‐3) − + −

Note: Uptake rates of the carbon sources were arbitrarily set to 10mmol

gDW−1 h−1. Growth and nongrowth are denoted by + and −, respectively.

Abbreviations: DHA, docosahexaenoic acid; DPA, docosapentaenoic acid;

EPA, eicosapentaenoic acid.
aDraft model following the initial gap filling to enable biomass production.
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decision, similar to that of the GSM of Phaeodactylum tricornutum

iLB1027 lipid (Levering et al., 2016), in which acyl chains of length 20

and more were assumed to initially be degraded solely in the per-

oxisomal compartment. The presumed end product octanoyl‐CoA is

then exported out of the peroxisome for further degradation in the

mitochondrial β‐oxidation pathway due to the presence of a perox-

isomal carnitine O‐octanoyltransferase (EC:2.3.1.137). The genuine

substrate specificities of the two β‐oxidation pathways are most

likely overlapping. However, barring solid biochemical evidence of

their acyl‐chain preferences, we deem this differentiation the most

probable based on the available genomic information.

3.6 | Cellular biomass reformulation

The biomass objective function is an abstract reaction in a GSM

which contains the necessary biomolecular components to generate

a unit of cellular dry weight (Feist & Palsson, 2010). By performing

appropriate stoichiometric scaling of each biomass component, the

flux through this reaction directly corresponds to the specific growth

rate (h−1) of the organism (Chan et al., 2017). Capturing the accurate

macromolecular composition within the biomass reaction is there-

fore essential to correctly predict growth rates using a reconstructed

GSM (Feist & Palsson, 2010). During the initial stages of the draft

model construction and refinement, we used the biomass reaction of

the template model iCY1170_DHA. However, the large content of

lipids (43%, mainly TAGs) and carbohydrates (32%), and low content

of proteins (12%), suggests a biomass deprived of nitrogenous

compounds, presumably being closer to that of lipid accumulation

rather than exponentially growing cells. In strain T66, the lipid con-

tent of exponentially growing cells is merely 13%, not reaching the

abovementioned levels until late in the lipid accumulation phase

(Jakobsen et al., 2008). In addition, the most prevalent or only lipid

class found in exponentially growing thraustochytrids with excess

nitrogen are polar lipids (Aasen et al., 2016).

Consequently, we found it prudent to reformulate the biomass

composition reaction using parts of the macromolecular composi-

tion data from a recently published GSM of the thraustochytrid

strain Oblongichytrium sp. RT2316‐13 (Shene et al., 2020). This

biomass reaction is specifically tailored for exponentially growing

cells where the lipid proportion is free of neutral lipids such as TAG,

and predominately contains the polar lipids phosphatidylcholine

and phosphatidylethanolamine. Additionally, the protein content

has a more biologically realistic value of approximately 49%. Using

an approach similar to that of previous studies (Levering

et al., 2016), we added biomass‐precursor reactions, each contain-

ing sets of molecules belonging to one of the particular categories:

proteins, carbohydrates, DNA, RNA, unsaponifiable matter, polar

lipids, and free fatty acids. We implicitly added growth‐associated
maintenance (GAM) requirements by choosing alternative biomass

precursor metabolites and by adding associated polymerization

costs (e.g., nucleoside triphosphates for RNA synthesis). We also

constrained the non‐growth associated maintenance (NGAM) re-

action to 9.9 mmol gDW−1 h−1, assuming a linear relationship be-

tween the cultivation temperature and maintenance requirements

using model‐fitted values previously published (Shene et al., 2020).

The biomass composition and detailed calculations are available in

“SuppInfo_Biomass_composition.”

3.7 | Final model reconstruction

The final model reconstruction iVS1191 contained a total of 1657

metabolites, 2095 reactions (1449 metabolic reactions, 415 trans-

port reactions, and 232 exchange reactions), and 1191 associated

genes. Each of these reactions are associated with 82 unique sub-

systems, which are subdivided into five individual compartments, one

external extracellular compartment, as well as four internal com-

partments: the cytoplasm, the peroxisome, the mitochondria, and the

mitochondrial intermembrane space. One of the most prominent

changes from the template model iCY1170_DHA is the additional

number of reactions, where the number of transport reactions shows

the largest increase. The modest increase in the number of genes can

be explained by the process of manual curation. Here, 233 genes

from the draft model with subpar hits against enzymes of known

functionalities was removed during the process. At the same time,

270 genes were added, either to replace those that were discarded,

or as associated genes of novel metabolic reactions absent in

iCY1170_DHA. Consequently, although the difference might seem

insignificant, considerable alterations have been performed so as to

more accurately reflect genuine biological organization with these

gene‐reaction associations.

TABLE 3 Verification of growth predictions using the draft
model and iVS1191 on a set of volatile fatty acids and a defined
minimal glycerol/glutamate medium demonstrated to support
growth of T66 in vivo (Jakobsen et al., 2007; Patel et al., 2020)

Carbon source Draft modela iVS1191 T66 in vivo

Formate, c1:0 − + +

Acetate, c2:0 + + +

Propanoate, c3:0 − + +

Butyrate, c4:0 − + +

Pentanoate, c5:0 − + +

Hexanoate, c6:0 − + +

Glycerol/glutamateb + + +

Note: Uptake rates of the carbon sources were arbitrarily set to 10mmol

gDW−1 h−1. Growth and nongrowth are denoted by + and −, respectively.

In the glycerol/glutamate simulation, cofactors and coenzymes were

added to the biomass composition of the iVS1191 model to show that the

model is also capable of synthesizing these with the required

supplementation of thiamine and cobalamin as described in (Jakobsen

et al., 2007) (see “SuppInfo_Biomass_composition” for the biomass

compositions).
aDraft model following the initial gap filling to enable biomass production.
bGlutamate also serves as the N‐source.
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In addition to iCY1170_DHA, a revised GSM of S. limacinum,

herein referred to as iCS1079, was recently published to simulate

the growth and lipid phenotype of the closely related thraus-

tochytrid strain Oblongichytrium sp. RT2316‐13 using dynamic

FBA (Shene et al., 2020). Here, the authors modified

iCY1170_DHA by manually curating the model constituents and

adding 220 new reactions to the reconstruction associated with

amino acid, carbohydrate, and lipid metabolism. Using these

previously reconstructed models, we compared their model

components and properties with that of iVS1191. As presented in

Table 4, iVS1191 shows a significant increase in metabolic cov-

erage compared to both iCY1170_DHA and iCS1079. Specifically,

we accomplished a considerable reduction in the number of

blocked reactions and associated dead‐end and orphan metabo-

lites. In both iCY1170_DHA and iCS1079, a substantial subset of

the reactions was unable to carry a non‐zero flux under any

condition, constituting around 44% and 49% of all model reac-

tions, respectively. Similarly, around 38% and 35% of the meta-

bolites were categorized as metabolic orphans or dead‐ends,
either only being consumed or produced by the models. Even

with a substantial increase in the number of reactions in

iVS1191, only around 16% of the reactions were found to be

blocked, while merely 16% of the metabolites were classified as

metabolic orphans or dead‐ends. This demonstrates how

iVS1191 is able to utilize a greater subset of its metabolic cap-

ability, expectedly giving rise to more accurate phenotypic

predictions.

While the open reading frame (ORF) coverage of iVS1191 did

show a pronounced increase from that of iCY1170_DHA and

iCS1079 (Table 4), this is most likely an effect of a smaller genome,

and a corresponding reduction in the number of predicted ORFs.

Whereas the genome size of S. limacinum is 60.93 Mb, with 14,859

unique ORFs (Institute, 2017), the genome size of T66 is merely

43 Mb, with a corresponding set of 11,683 predicted ORFs (Liu

et al., 2016). Although this could imply a deficient genome cov-

erage, it is comparable with other high‐quality GSMs of the olea-

ginous species Mortierella alpina (Ye, Xu, et al., 2015) and Yarrowia

lipolytica (Pan & Hua, 2012), each possessing an ORF coverage of

9.5% and 9.6%, respectively (Ye, Qiao, et al., 2015).

We also benchmarked iVS1191 against the open‐source soft-

ware suit MEMOTE (Lieven et al., 2020), which provides a collection

of consensus model tests that evaluate key properties such as stoi-

chiometry, annotation, biomass, and formal correctness of the model.

When compared with the other thraustohcytrid GSMs, iVS1191

showed major improvements in all test categories, obtaining a final

score of 90% compared witho 28% and 39% for iCY1170_DHA and

iCS1079, respectively. Of particular importance was the consider-

able improvement in model consistency, which evaluates the extent

of stoichiometric inconsistency, metabolic connectivity, and mass

and charge balance. In this category, iVS1191 was awarded a score

of 96%, while iCY1170_DHA and iCS1079 obtained a score of 64%

and 87%, respectively.

3.8 | Phenotypic growth validation

A key part of the network evaluation stage is to compare model

predictions with experimental data. Uncovered disparities might

highlight deficiencies within the model reconstruction and further

guide the modeler in subsequent reformulations and updates to

close in on the gap between experimental and predicted pheno-

types (Thiele & Palsson, 2010). To assess the quality of the con-

structed model, we first compared the predicted specific rate of

biomass production against growth rates obtained from batch

cultures of T66 on aerobic, minimal carbon‐limited medium. We

incorporated measured specific substrate uptake rates as lower

bounds on the exchange reactions of the corresponding model

metabolites and optimized growth by maximizing the biomass

objective function using the standard FBA formulation of

Equations (1)–(3). As presented in Table 5, the model‐simulated

growth‐phenotypes were found to be highly consistent with the

growth rates determined experimentally on both glucose and

glycerol. The predicted growth on glucose showed a relative error

of merely −1.6%, while the relative error of the simulated growth

on glycerol was only 3.5%.

TABLE 4 Comparison of features of the final model
reconstruction iVS1191 and the two published thraustochytrid
GSMs iCY1170_DHA and iCS1079

Features iVS1191 iCY1170_DHA iCS1079

Compartments 5 3 4

Genes 1191 1170 1079

Metabolites 1657 1659 1454

Reactions 2095 1769 1610

Metabolic 1448 1385 1352

Transport 415 195 178

Exchange 232 189 80

Blocked reactions 332 775 789

Dead‐end/orphan
metabolites

265 628 512

ORF coverage (%)a 10.2 7.9 7.3

MEMOTE score (%) 90 28 39

Note: The blocked reactions were identified by having minimal and

maximal fluxes of zero when running flux variability analysis (FVA) on an

open model (i.e., all exchange reactions left unconstrained). Dead‐end and

orphan metabolites were identified as metabolites unable to either be

consumed or produced by the model. The ORF coverage was calculated

by finding the fraction of protein‐encoding genes in the model to the total

number of predicted ORFs of the organism.

Abbreviations: DHA, docosahexaenoic acid; GSMs, genome‐scale
metabolic models; ORFs, open reading frames.
aGenes found in the nucleotide genome sequence, but not as unique

ORFs, were also included to account for insufficient coverage of the

predicted protein sequences.
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4 | DISCUSSION

With this study, we present a successfully reconstructed high‐quality
GSM of the thraustochytrid strain Aurantiochytrium sp. T66 termed

iVS1191. By complementing the use of automatic tools for model

reconstruction with extensive and comprehensive manual curation,

we considerably expanded the metabolic scope and coverage from

that of the template reconstruction iCY1170_DHA. In doing so, the

connectivity of the metabolic network showed drastic improvements

when compared with this previously reconstructed GSM, as well as

the recently published thraustochytrid model iCS1079, significantly

reducing both the number of blocked reactions and associated dead‐
end and orphan metabolites. Model‐driven analysis of growth de-

monstrated that iVS1191 could grow on all the fatty acids that it

accumulates (Jakobsen et al., 2008), as well as a set of volatile fatty

acids shown to enable growth in vivo (Patel et al., 2020), which both

iCY1170_DHA and the draft reconstruction failed to utilize as single

carbon sources (Tables 2 and 3). Understanding the role of this de-

gradation of lipids and fatty acids during lipid accumulation is es-

sential when trying to discern the metabolic properties of lipid

production in thraustochytrids. The reconstructed model thus pro-

vides a highly valuable tool as a starting‐point for model‐driven
generation of genetic engineering and cultivation strategies for in-

creased DHA and lipid synthesis in T66.

During the model reconstruction process, we subjected the model

to considerable manual curation and refinements. Particularly, we

performed a genome‐wide gene re‐annotation of all the metabolic

proteins of the two draft reconstructions. The motivation behind this

labor‐intensive re‐annotation and comprehensive manual curation was

threefold. First, during the manual gap filling procedure, as well as

throughout the identification of novel metabolic capabilities, the quality

of iCY1170_DHA was questioned due to the apparent scarcity of

manual curation of the model reactions and associated genes. Several

genes seemed to be annotated to erroneous sets of reactions, and the

subcellular localization of a large number of reactions seemed to be

based purely on automatic predictions. A telling example was the sub-

cellular localization of the electron‐transferring‐flavoprotein dehy-

drogenase (EC:1.5.5.1), which transfers electrons from multiple

mitochondrial flavoprotein dehydrogenases, thus coupling the de-

gradation of fatty acids and certain amino acids with oxidative phos-

phorylation (Watmough & Frerman, 2010). In iCY1170_DHA, this

reaction was localized to the cytosol, effectively preventing the model

from properly degrading these metabolites (see Table 2). Second, during

the comparison between the genes of the initial draft model and the

draft reconstruction from KEGG, considerable disparities in associated

reactions were found between the genes that were present in both

models. This was particularly true for proteins containing multiple cat-

alytic domains, where the KEGG functionality in RAVEN appeared to

have difficulties assigning appropriate KO IDs to these multifunctional

enzymes. The quality of the reconciled draft models was therefore

greatly assisted by this manual re‐annotation and consolidation process.

Last, inferring enzymatic activity from the genome annotation of T66

was in many cases rather challenging, primarily because of limited

biochemical information in the annotation, but also due to occurrences

of inaccurate assignments of database identifiers as well as associations

with deprecated database entries.

Owing to this extensive curation of the individual model com-

ponents, the stoichiometric consistency, metabolic connectivity, and

mass and charge balance of the reconstruction exhibited drastic

advancements. These curations allowed for the inclusion of a per-

oxisomal compartment, as well as a more realistic implementation of

the PUFA‐generating PKS pathway. Concurrent changes in the

subcellular localization of key proteins associated with the

β‐oxidation of fatty acids enabled the model to grow on all its en-

dogenously synthesized fatty acids, as well as multiple experimen-

tally verified carbon sources (Table 3). Comparison of quantitative in

vivo and in silico growth phenotypes also revealed the model able to

accurately predict specific growth rates on both minimal glucose and

glycerol media (Table 5), suggesting that the implemented biomass

composition and associated ATP maintenance requirements are

close to being representative of exponentially growing cells of T66.

However, the predicted in silico ammonium uptake rates did show a

larger deviance from the experimental values, particularly for growth

on minimal glucose media in which the relative error was found to be

−11.6% (Table 5). This indicates that the content of nitrogenous

compounds of the biomass composition is somewhat insufficient,

thus leading to a lower requirement for exogenously supplied am-

monium. These results highlight the necessity for strain‐specific and

condition‐dependent biomass compositions which in the future can

be implemented with the reconstructed GSM to improve its pre-

dictive capabilities.

5 | CONCLUSION

We have developed and constructed a high‐quality GSM of the

thraustochytrid Aurantiochytrium sp. T66 termed iVS1191. The pre-

sented model provides the most comprehensive biochemical

knowledgebase of any thraustochytrid to date, with a particular

emphasis on lipid metabolism. Subjecting the model to large‐scale
manual curation, we significantly improved the metabolic coverage

TABLE 5 Comparison of in vivo and in silico specific growth
rates (h−1) on aerobic carbon‐limited minimal media, using measured
carbon uptake fluxes (mmol gDW−1 h−1) to constrain the metabolic
model

Minimal glucose Minimal glycerol

Carbon uptake in vivo/in

silico

1.440 2.440

Growth in vivo 0.124 0.114

Growth in silico 0.122 0.118

Ammonium uptake in vivo 1.110 0.990

Ammonium uptake in silico 0.981 0.953

Note: Growth rates were predicted by optimizing for biomass production.
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and scope from that of previously published thraustochytrid GSMs.

With a reformulated biomass composition, the model was able to

accurately predict specific growth rates on minimal carbon media, as

well as qualitatively reproduce growth phenotypes on multiple ex-

perimentally tested nutrient sources. We strongly believe that the

reconstructed model will form a solid framework to explore and

understand the metabolic properties of strain T66 and aid in the in

silico generation of metabolic engineering and cultivation strategies

for improved lipid and ω−3‐PUFA productivities. In addition, the

model encompasses a quality‐controlled and quality‐assured scaffold

for future reconstructions of strain‐specific thraustochytrid GSMs of

great importance for biotechnological and industrial applications.

Although the lack of a growth‐coupled production of lipids in

thraustochytrids hinders the use of many established frameworks for

identifying genetic manipulation targets (Maia et al., 2016), other

alternatives exist which could be a promising next step in the ap-

plication of iVS1191 (Kim et al., 2019). Of particular interest is the

method proposed by Kim et al. (2019) which uses the principle of

minimization of metabolic adjustment to predict the flux distribution

of nongrowing, lipid‐accumulating cells, allowing for the discovery of

metabolic engineering targets in Y. lipolytica. Due to the similar

nature of lipid accumulation between thraustochytrids and oleagi-

nous yeast, we believe that the use of this approach could be a

fruitful first applications of the reconstruction.
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