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Abstract
Social media and digital platforms have contributed to more people using their freedom
of expression than ever. As a consequence, online debates are becoming increasingly
polarized, which has an excluding effect on many. Removing abusive content has
become crucial for social media platforms and is often assisted using automatic detection
algorithms, a field that has multiplied in interest over the past years.

The recent introduction of Transformer-based approaches pre-trained on general lan-
guage understanding has revolutionized models’ ability to understand interdependencies
in language. Models based upon the Transformer mechanism have shown promising
results for nearly all language tasks so far, including abusive language detection. However,
limited research has been conducted in this field for the Norwegian language due to the
lack of available datasets and technologies. The recent introduction of Transformer-based
models pre-trained on Norwegian corpora makes it possible to explore the successful
approach also for Norwegian abusive language detection.

This thesis is focused on detecting Norwegian hateful and offensive social media lan-
guage using Transformer-based models. Following a literature review, three experiments
explore and compare five deep learning architectures based on the Bidirectional Encoder
Representations from Transformers (BERT) model. All models are optimized through an
extensive hyperparameter search, and several dataset manipulation techniques are tested.

The best model, NB-BERT, significantly outperformed the only existing solutions for
offensive and hateful language detection, emphasizing the power of Transformer-based
models also for the Norwegian language. However, the results indicate that this model
also confused hate speech with offensive language and offensive with neutral language.
The ambiguity between the hateful, offensive, and neutral categories originates from the
dataset, which generally had a low inter-annotator agreement, a recurring problem of
abusive language datasets. The findings further reveal a bias towards classifying Islam-
related content as hate speech, which also propagated from the dataset used. Furthermore,
an analysis of the model predictions reveals that the model struggled to understand
non-standard languages such as typos, grammar mistakes, slang, and dialects, which is
different from the corpus on which the model is pre-trained. The results motivate further
research on developing better Norwegian abusive language datasets and using models
transferring general language understanding to Norwegian abusive language detection.
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Sammendrag
Fremveksten av sosiale medier og digitale plattformer har bidratt til at flere bruker
ytringsfriheten sin enn tidligere. Dette har medført en økning i polariserte debatter på
nett, som har en ekskluderende effekt på mange. Plattformene har derfor sett et økt
behov for å moderere og fjerne uønsket innhold, en jobb som ofte gjøres ved bruk av
automatiske detekteringsalgoritmer. Forskningen på slike algoritmer har økt betraktelig
de siste årene, og flere gode metoder har blitt utviklet.

Introduksjonen av Transformer-baserte metoder har revolusjonert hvordan modeller
forstår sammenhenger i språk, og har vist lovende resultater for nesten alle språkoppgaver.
Modellene brukes til å overføre kunnskap fra generell språkforståelse til spesifikke oppgaver
som å detektere uønsket innhold på nett. Forskningen innenfor dette feltet på norsk har
derimot vært svært begrenset på grunn av mangelen på datasett og teknologier inntil
nylig. Introduksjonen av flere Transformer-baserte modeller trent på norsk språkforståelse
gjør det mulig å utforske effekten av slike modeller også for norsk.

Denne masteroppgaven fokuserer på detektering av krenkende og hatefulle ytringer
i norske sosiale medier ved bruk av Transformer-baserte modeller. En litteraturstudie
er gjennomført for å forstå forskningsfeltet og bruken av Transformer-baserte metoder,
etterfulgt av tre eksperimenter. Eksperimentene tester og sammenligner fem arkitekturer
basert på modellen Bidirectional Encoder Representations from Transformer (BERT).
Alle modellene optimaliseres gjennom et systematisk søk og flere teknikker for datasett-
manipulering er testet for å forsøke å håndtere utfordringer med datasettet.

Resultatene viser at den beste modellen, NB-BERT, signifikant utkonkurrerte de
eksisterende metodene for deteksjon av krenkende og hatefulle ytringer, som understreker
verdien av Transformer-baserte metoder også for norsk. På tross av det indikerer resultate-
ne at modellen blander krenkende og hatefulle ytringer, og nøytrale og krenkende ytringer.
Tvetydignheten for hva som skiller hatefult, krenkende og nøytralt språk stammer fra en
lav enighet blant annoterere for hva som skiller de ulike klassene fra hverandre. Funnene
indikerer også at modellen overgeneraliserte ved at den ofte detekterte islamrelaterte
ytringer som hatefulle, et problem som også har forplantet seg fra datasettet. Videre
viser funnene at modellen slet med å forstå ustandardisert språk som skrivefeil, slang og
dialekter, som er ulikt fra det den er forhåndstrent på. Funnene motiverer videre arbeid
for å utvikle bedre datasett for detektering av hatefulle og krenkende ytringer og bruk av
Transformer-baserte modeller for detektering av slikt innhold i norsk språk.
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1 Introduction

The emergence of social media and digital platforms has revolutionized people’s ability
to connect across social, political, and geographic divides. Previously, access to mass
media platforms was mitigated and had to be negotiated, whereas today, anyone can
share content and instantly reach millions of people. Social media allow people to
use their freedom of expression to participate in public discourse, which bears great
opportunities for democratic participation. However, unmonitored online debates are
becoming increasingly polarized and contain more abusive content than ever. Abusive
content such as hate speech creates fear and may jeopardize people’s ability to express
themselves in public debates and, in the worst case, lead to violence towards targeted
groups (Likestillings- og diskrimineringsombudet, 2018; Eggebø and Stubberud, 2016).
This is one of the reasons why social media platforms have increased efforts to monitor
user-generated content.

The monitoring of vast amounts of user-generated content requires extensive work
and resources, which over the past years have been reduced using automatic detection
algorithms. For example, during the period July to December in 2019, Twitter, an
American microblogging and social networking platform, took action in 2.9 million cases
of content violating their guidelines and more than 970,000 cases that contained hateful
conduct (Twitter inc., 2020). Additionally, the COVID-19 pandemic has catalyzed changes
in the technology sector, and the importance of automatic detection algorithms has
correspondingly increased. Several companies have, for instance, reduced in-office staffing
resulting in increased dependence on technology for hate speech detection (Google LLC,
2020). The sheer amount of data that needs to be monitored is so large that exhaustive
and manual detection of abusive content is not feasible. For that reason, automatic
detection algorithms are crucial in managing abusive content on digital platforms.

Nevertheless, automatic detection of abusive content has proven to be a challenging
task. Several social media platforms state that they still rely on humans to review content
in certain areas due to the challenge of interpreting nuances in natural human language
(Rosen, 2020; Google LLC, 2020). However, the recent introduction of transfer learning
and Transformer-based approaches for Natural Language Processing (NLP) has given
promising results for abusive language detection in several languages (Zampieri et al.,
2020). By considering the context, the more recent models provide better separability
of abusive language types, which is one of the main challenges in the field. This thesis
will focus on detecting offensive and hateful social media language for Norwegian using
Transformer-based models pre-trained on general Norwegian language understanding.
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1 Introduction

1.1 Background and Motivation

In Norway, freedom of expression is seen as a matter of course. Despite this, there has been
an ongoing debate over the past years discussing the trade-off between hate speech and the
limits of freedom of expression. Although there is no standard national or international
definition of what statements are considered hate, there is a general agreement that
hate speech is a societal problem (Likestillings- og diskrimineringsombudet, 2018). Hate
speech creates fear in affected groups and has a detrimental effect on the individual. It
also weakens democracy as people tend to withdraw from public debates due to hatred
contributions. Likestillings- og diskrimineringsombudet (2018) found that more than half
in their study of 1,006 Norwegian users of the social media platform Facebook choose to
refrain from debating due to the negative and harsh tone. The work against hate speech
in general and in social media platforms is, based on this, an essential contribution to
equality and democratic participation in society.

Pressure to combat the harmful effects of hate speech has emerged from regulations
and shareholders worldwide. Several countries, including Norway, have created laws
prohibiting expressions spreading hate towards individuals or groups (Kulturdeperta-
mentet, 2019). Digital platforms have, therefore, increased responsibility to monitor
their content. Traditionally, the platforms relied on users to detect and report content,
which was later reviewed by system moderators. However, manual moderation does not
scale proportionally to the rapid increase in user-generated content online. Additionally,
disturbing material can cause mental distress in people reviewing it (Roberts, 2019).
Automatic detection algorithms are both scalable and can remove harmful content before
it reaches the public.

Nevertheless, detecting hateful content has shown to be a nontrivial task for people
and algorithms. There is no formal definition of hate speech due to the lack of an objective
view of what separates it from other offensive languages (Nobata et al., 2016; Davidson
et al., 2017). Pamungkas et al. (2019) stated that the degree of abusiveness of swear
words is contextual, and not all expressions containing offensive terms are intended to
be abusive. Likewise, there are expressions intended to be hurtful, without any explicit,
offensive terms (Caselli et al., 2020). Despite the lack of a standard definition, most
hate speech definitions typically concern insults targeting group characteristics such as
religion, ethnicity, sexual orientation, gender, or other identity factors (Davidson et al.,
2017; Founta et al., 2018; Zampieri et al., 2019b). In contrast, offensive language is more
general and often includes profanities and curse words that do not necessarily have a
harmful intention. Several studies, including this thesis, categorize hate speech as a
subgroup of offensive language, whereas abusive language embraces all language types
with an underlying harmful intention (Nobata et al., 2016; Swamy et al., 2019; Zampieri
et al., 2019b).

The introduction of Transformer-based models in NLP has revolutionized how auto-
matic detection algorithms learn languages. The transformer builds upon the attention
mechanism, which enables it to weigh words in a sentence differently, and this way, it
represents context to a greater extent than before. Devlin et al. (2019) developed the
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Transformer-based model BERT which stands for Bidirectional Encoder Representations
from Transformers. The model is pre-trained on general language understanding and
transfers this knowledge to particular downstream tasks. BERT has proven successful for
several NLP tasks, including abusive language detection in several languages (Zampieri
et al., 2019a).

However, until recently, Norwegian has been considered a low resource language,
meaning that it is a language with a small number of technologies and datasets relative to
its international importance (Cieri et al., 2016). The state-of-the-art models available for
languages such as English have therefore not been available for Norwegian until recently.
Kummervold et al. (2021) and Kutuzov et al. (2021) newly developed two BERT models
trained on general language understanding for the Norwegian language. This thesis
investigates how the Norwegian BERT models can detect offensive and hateful language
for Norwegian social media data. Additionally, it tests several dataset manipulation
techniques to cope with challenges related to the Norwegian abusive language dataset.

1.2 Goals and Research Questions

Goal Investigate how to accurately detect and distinguish neutral, offensive, and hateful
Norwegian language in social media.

This research aims to improve automatic abusive language detection in social media
by separating hateful, offensive, and neutral language for Norwegian. The reason for
detecting both offensive and hateful language is to separate the two to preserve freedom
of expression in the models at the same time as moderating unintended content. The
following research questions define steps toward achieving this goal.

Research question 1 How well does the Bidirectional Encoder Representations from
Transformers (BERT) – pre-trained on a large Norwegian corpus – detect offensive
and hateful Norwegian language in social media?

BERT and other similar Transformer-based approaches have achieved state-of-the-art
results in many NLP tasks, including abusive language detection in several languages. The
recent introduction of Norwegian BERT models enables testing the model for Norwegian
abusive language detection, which will be done in the study of this thesis.

The Norwegian BERT models will be trained to detect offensive and hateful social
media language in two separate tasks, to improve the current state-of-the-art results for
Norwegian abusive language detection. The models include the multilingual BERT model
(mBERT), and the two monolingual Norwegian BERT models: the Nasjonalbiblioteket
BERT (NB-BERT) and the Norwegian BERT (NorBERT) model. The mBERT model
is trained on more than a hundred different languages (including Norwegian), whereas
the others are trained on large Norwegian corpora solely to understand the Norwegian
language. The experiments will investigate how well the models distinguish between
neutral and offensive Norwegian language and between offensive and hateful Norwegian
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language. Additionally, the results will be compared to more traditional non-Transformer-
based approaches evaluated on the same dataset.

Research question 2 How do the different BERT models pre-trained on the Norwegian
language compare when applied to detecting offensive and hateful social media
language?

The purpose of the second research question is to decide what model to proceed with
for the remaining experiments to further improve the detection of offensive and hateful
social media language.

Research question 3 What are the effects of applying different data manipulation tech-
niques to the Norwegian dataset when detecting offensive and hateful social media
language?

In the specialization project (Arntzen, 2020) which served as a preface to this thesis,
a lack of Norwegian abusive language datasets was discovered. The dataset by Svanes
and Gunstad (2020) and Jensen (2020) is currently the only Norwegian abusive language
dataset available. This dataset is highly unbalanced with few abusive instances, which
has proven to negatively affect models’ ability to detect abusive language (Svanes and
Gunstad, 2020; Jensen, 2020).

The third research question aims to test two data manipulation techniques to possibly
cope with these challenges. The first technique is undersampling which investigates
the effect of removing instances from the majority class to balance the uneven class
distribution. The second technique tests the effect of expanding the Norwegian dataset
with instances from a Danish abusive language dataset, found to be the most similar
dataset regarding language and class labels. The raw Danish data will be tested,
additionally to several translated versions, to investigate what format increases the
ability of the BERT model to detect abusive language. Based on this, the third research
question will also investigate how the BERT model can generalize from the Danish
abusive language dataset to the Norwegian.

1.3 Research Method
The methodology used to address the goal of this thesis combines an exploratory and
experimental approach. As part of a preliminary project (Arntzen, 2020), secondary
research was conducted to gain insight into abusive language detection and address gaps
in research to be filled for further progression in the field. This research was based on a
structured literature search protocol described in detail in Section 4.1. The search was
extended with literature to address this thesis’s research questions.

The experiments were carried out with a similar approach to the literature from the
secondary research, with the addition of testing recently introduced models that had not
yet been evaluated on the task of detecting Norwegian abusive language. The models
were assessed on an existing dataset to produce evaluation baselines and verify the new
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manipulated datasets’ integrity resulting from undersampling and aggregating Danish
and Norwegian data. The implementation and setup is further described in Section 6.3.

1.4 Contributions
1. A thorough literature review of previous work within abusive language detection

and Transformer-based approaches supporting the Norwegian language.

2. A qualitative and quantitative analysis of the Norwegian abusive language dataset by
Svanes and Gunstad (2020) and Jensen (2020). A new label scheme is additionally
proposed to reduce the ambiguity found in the dataset.

3. An overview of how to implement the Norwegian Transformer-based BERT models
to the downstream task of detecting offensive and hateful Norwegian language, with
corresponding open-source code.

4. An overview of how to optimize the Transformer-based models with precautions to
variance in the fine-tuning process, with corresponding open-source code.

5. A list of optimized hyperparameters for each Norwegian BERT model fine-tuned
on the Norwegian abusive language dataset.

6. Experiments with the systems mentioned above on the Norwegian abusive language
dataset.

Corresponding code for the above systems can be found in the following GitHub
repository: https://github.com/vildera/abusive_language_detection.

1.5 Thesis Structure
This thesis contains a total of nine chapters. The following list presents the chapters and
their primary purpose.

1. Introduction: Gives the reader an introduction to the field of abusive language
detection and the problems this thesis aims to address.

2. Background Theory: Describes preliminary knowledge and theory needed to
understand the methods and results presented in the remaining chapters.

3. Datasets: Presents common challenges with abusive language datasets and two
relevant Norwegian and Danish datasets used for the task of detecting hate speech
and offensive language in the experiments of this thesis.

4. Related Work: Presents a literature review on abusive language detection. The
approach used for selecting literature is described, followed by related literature in
abusive language detection and Transformer-based approaches.
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5. Data Analysis: Investigates quantitative and qualitative aspects of the datasets
used. Based on these analyses, a new representation of the dataset is proposed,
which is used in the experiments of the next chapters. A brief content analysis is
first presented investigating word occurrences in the classes of the Norwegian and
Danish datasets. This is followed by an annotator agreement analysis of a subset
of the Norwegian dataset presenting inter-annotator agreement calculations and
qualitative observations from the process.

6. Architecture and Experimental Setup: Describes a detailed overview of the
system architectures of the BERT models and the experimental setup used to
perform the experiments of Chapter 7. This includes every step from data and
model setup and implementation to the hardware setup used to run the experiments.

7. Experiments and Results: Presents the experimental plan designed to achieve
the goal and research questions of this thesis, and the results from running these
experiments.

8. Evaluation and Discussion: Contains an evaluation of the experimental setup
and results with regards to the goal and research questions, followed by a discussion
of the research questions and goal.

9. Conclusion and Future Work: Summarizes the project and the essential findings
and contributions, and proposes ideas to motivate future work in the field of
Norwegian abusive language detection.
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2 Background Theory
This chapter covers the background knowledge required to understand the field of
Transformer-based abusive language detection applied to the Norwegian language. First,
some fundamentals of the Norwegian language and textual pre-processing will be de-
scribed, followed by machine learning concepts for text classification, deep learning, and
Transformers. This chapter covers the concepts needed to understand the study and can
be used to reference concepts and terms that are not assumed to be known by the reader.
However, the background theory assumes that the reader is familiar with basic machine
learning, linear algebra, and statistics. Section 2.2 is adopted from Section 2.1.1 and
certain parts of Section 2.4 is adopted from Section 2.2.3 of the specialization project
(Arntzen, 2020).

2.1 Fundamentals of the Norwegian Language

Understanding the fundamentals of the Norwegian language and its peculiarities is
necessary to recognize what features an abusive language detection algorithm must
interpret to detect abusive content and what challenges may arise during this process
related to the Norwegian language.

The Norwegian language is a Germanic language mainly spoken in Norway and is
closely related to the two other Scandinavian languages, Danish and Swedish. Additionally
to the 26 letters of the English alphabet, Norwegian incorporates the three letters æ, ø
and å not supported by standard ASCII encoding. In order to represent Norwegian text
including these letters, UTF-8 encoding is often used, also in the models of this thesis’s
experiments (Kutuzov et al., 2021; Kummervold et al., 2021).

Norwegian has two formal written standards called Bokmål and Nynorsk. Bokmål is
the main variety used by close to 90% of the Norwegian population, while roughly 10%
of the Norwegian population use Nynorsk (Vikør, 2015). The two standards are mutually
intelligible and so similar that they may be regarded as written dialects. However,
lexically there are some differences between the two, as illustrated in Figure 2.1 which
shows an example sentence written in Nynorsk, Bokmål, and English. Although the
Bokmål and Nynorsk sentences have many similarities, only two out of nine terms are
identical across the sentences. The two varieties differ to some degree in vocabulary
and morphosyntactic rules, the internal structure of terms, and syntax. Despite the
differences, it has been proven that training a model on both varieties combined yields
better results than achieved for models trained on each one of them in isolation (Velldal
et al., 2017).

In addition to having two formal written languages, Norwegian also incorporates local
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Figure 2.1: Example sentence in Nynorsk (top row) and Bokmål (second row) with
corresponding English glossary. The example is reprinted from Velldal et al.
(2017) with permission from Erik Velldal.

oral dialects. In informal settings such as online debates or social media - as covered by
this thesis - variations of written dialects are present because people write closer to how
they speak. As with other types of social media language, such as slang, dialects cause
further variations and noise in the dataset. The problem of handling dialects is generally
more challenging than handling the standard language varieties. Nynorsk and Bokmål
have their own written standards reflected in newspapers, books, and other corpora
available for training. As opposed to these varieties, dialects have no standard and are
more diverse in their forms.

As mentioned earlier, Norwegian is very similar to Danish and Swedish, and the
three languages are all mutually intelligible. Norwegian and Danish are most similar
in terms of vocabulary due to Norway being in union with Denmark between 1537 and
1814 (Weidling and Njåstad, 2020). Danish was, in fact, the only written language in
Norway from roughly 1500 to 1850, even after the union was dissolved and a new union
was entered with Sweden. Danish laid the foundation for Norwegian Bokmål, whereas
Norwegian Nynorsk is somewhat closer to many oral dialects. The main difference
between Norwegian and Danish today lies in the spelling of and the pronunciation of
terms. In comparison, the Swedish vocabulary contains more terms that differ from both
the Norwegian and Danish vocabularies.

Both Norwegian, Danish, and Swedish are agglutinative languages partly composed
of compound terms, meaning sequences of terms acting as a single semantic construct.
A compound’s meaning is composed of the meanings of the individual constituents and
how they are semantically related. The occurrence of out-of-vocabulary terms that are
not found in the dictionary, can be observed and still be perfectly valid. This creates an
almost infinite number of term combinations, which may pose challenges for machine
learning models, if not broken down into separate pieces present in models’ learned
vocabulary. An example of a compound term for Norwegian is Bussjåførstreik which is
composed of three separate terms translated to bus driver strike in English.

2.2 Textual Pre-processing
When working with textual data, some pre-processing is often performed before the
analysis to convert the text into a predictable and analyzable form. Pre-processing is
often performed before extracting features in the data to remove noise or otherwise
emphasize discriminative features.

Three common steps for text pre-processing are tokenization, normalization, and
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noise removal. Tokenization divides the text into smaller chunks called tokens and, in
many cases, removes special characters and punctuations. A token consists of a sequence
of characters grouped as a useful semantic unit often referred to as terms. Further
processing is often done after tokenization. Normalization refers to the task of converting
text into common representations, so that text of similar content can be easily analyzed.
Stemming and lemmatization are two common normalization techniques. Stemming is
the simpler approach that eliminates affixes from a term resulting in the term stem or
root, such as the example below.

running −→ run

For stemming, the term stem does not need to correspond to the dictionary-based
morphological root but is rather rule-based. Lemmatization, on the other hand, is more
complex and refers to the process of grouping inflected forms of terms together so they can
be analyzed as a single item, called the term’s lemma or dictionary form. Lemmatization
is exemplified below.

better −→ good

Both stemming and lemmatization aim to reduce terms’ inflectional and derivationally
related forms to standard base forms. However, the two differ in the approach taken.
Stemming typically removes the ending characters of a term and hopes to achieve a rep-
resentative subterm, whereas lemmatization considers the vocabulary and morphological
meaning of terms. Using pre-processing techniques such as stemming and lemmatization
must be carefully considered, as some of the original information or meaning in the text
can be lost in the process. An example of this is performing stemming on the terms
business and busy which may end up with the same stem, bus, although the terms have
very different meanings.

Other common normalization steps include converting characters to the same case
(often lower case), removing numbers or converting them into their textual representation,
and removing stopwords. Stopwords contribute little to the overall meaning of a text, given
that they are the most common terms used overall in the document corpus. Stopwords
often include terms such as the and and but may also depend on the domain used. For
instance, not, which in some contexts is considered a stopword, may be necessary for
particular domains, such as in sentiment analysis where the phrase not good will change
the meaning if the term not is removed. Although some stopwords contribute to little
meaning in itself, it is worth mentioning that it contributes to binding the text together
and understanding the context of the language.

Finally, noise removal of the data refers to removing characters, digits, and pieces of
text that interfere with the analysis. As opposed to tokenization and normalization, noise
removal is highly domain-dependent. For social media platforms, noise removal often
include removing whitespaces and converting URLs to a common term. For other web
pages, it may also include the removal of noise such as HTML tags. Other characteristics
with social media data to consider when pre-processing include users repeating characters
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to express feelings. A common way to handle such terms is to convert the term into
its common form or to reduce the number of repeated characters to two (Brody and
Diakopoulos, 2011). An example of this is given below.

niiiiiiiiiiice −→ nice

As social media text often holds a different format than many other text documents,
it is essential to handle pre-processing with care to avoid losing important information
from the text. For instance, hashtags and user tags have another meaning in social
media posts and might be helpful for feature extraction. In some cases, noise such as
misspellings of terms can also say something about the user writing it and may also be
considered a basis for feature extraction. Therefore, the steps taken to pre-process the
text should always be considered concerning the problem’s domain.

2.3 Machine Learning for Text Classification
The task of detecting abusive language is often solved using machine learning. Machine
learning is a field within artificial intelligence concerning the construction of computer
algorithms that automatically improve with experience (Mitchell, 1997). The goal of
machine learning algorithms is to generalize patterns in the data to predict future, unseen
data samples. For text classification, the instance to be predicted is usually referred to
as a document representing several types of texts, such as books, social media comments,
or shorter sentences. Machine learning algorithms are often divided into supervised and
unsupervised learning algorithms, although other approaches do exist. The primary focus
of this thesis will be on supervised algorithms, as most research on abusive language
detection is performed using supervised classification approaches. The following sections
describe some central topics in machine learning for text classification, ranging from
data handling and feature representations to the Support Vector Machine and evaluation
measures. Section 2.3.6 is adopted with some modifications from Section 2.1.1 of the
specialization project (Arntzen, 2020).

2.3.1 Supervised Classification

Supervised machine learning algorithms learn a function that maps input data to an
output label based on pre-labeled training examples. For classification tasks, this label is
categorical so that samples belong to a category, not continuous quantities. For instance,
if the task is to predict whether a document contains hate speech or not, the supervised
classification algorithm requires that each document in the dataset is labeled as hate or
not hate speech. The model is trained to learn hate speech detection based on this data
but needs a different set to be evaluated. Therefore, the available data is usually divided
into three sets: a training set, a development set, and a test set. The development set is
often also called the validation set.

The training set is usually the largest and contains the samples that are used to train
the model. The training set size can vary depending on the specific task but is typically
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70-90% of the available labeled data. The development set is mainly used to optimize
model hyperparameters, which define the parameters whose value is used to control the
learning process when developing the model, hence development. This set is used to
evaluate the model during training. Finally, the test dataset is used to evaluate the final
model and is typically represented by 10-30% of the available samples. The test dataset
is completely unseen until final model evaluation to simulate how the model performs
on new, unseen data. The three datasets should roughly have a similar probability
distribution, as it makes it more likely for the model to fit both the training and test
data well. A better fitting to the training dataset than the test dataset usually points to
overfitting, meaning that the model is too customized to the training data and does not
generalize well to the test data.

2.3.2 Inter-annotator Agreement: Fleiss’ Kappa

When creating a dataset for classification, it is common to use several annotators to decide
what labels each instance should have. A way to assess the quality of the annotations is
to calculate the inter-annotation agreement between annotators. A high inter-annotator
agreement means that there is consistency in what separates the classes across the dataset.
Fleiss’ kappa, κ, is a statistical measure to assess the inter-annotator agreement between
a fixed number of annotators when assigning categorical labels to a number of instances.
Artstein (2017) defines Fleiss’ kappa as follows.

Let c be the number of annotators, and nik the number of annotators annotating
instance i with class label k. For each instance i with label k there are

(nik
2
)
pairs of

annotators who agree on label k. Summing over all labels, there are ∑k

(nik
2
)
pairs who

agree on the label, for instance, i, and the agreement on instance i is the number of
agreeing pairs divided by the total number of annotator pairs. The overall observed
agreement is then defined as the mean agreement per instance, that is, the sum of the
observed agreement for each instance i divided by the number of items i.

κ = 1
ic(c− 1)

∑
i

∑
k

nik(nik − 1)

The values of κ range between -1 and 1, where 1 means perfect agreement and κ ≤ 0
means no agreement between the annotators other than what is expected by chance.
Despite the lack of formal guidelines on how to interpret κ, Landis and Koch (1977)
suggested the classifications displayed in Table 2.1.

2.3.3 Stratified Sampling

Machine learning algorithms often require data to be divided into subsets used for
training, development, and testing, of which the Stratified sampling technique is often
used. Stratified sampling is a sampling technique where the sampled instances are selected
in the same proportion as they appear in the population (Särndal et al., 2003). This is
achieved by dividing the population into strata, subpopulations, based on a common
characteristic. For classification, this characteristic is often the class distribution, and
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Value of κ Strength of Agreement
κ < 0.20 Poor
0.21− 0.40 Fair
0.41− 0.60 Moderate
0.61− 0.68 Good
0.81− 1.00 Very good

Table 2.1: Suggested classifications of Fleiss’ kappa by Landis and Koch (1977).

the stratified sampling aims at splitting the dataset such that each split is similar to
this distribution. The instances are sampled using random sampling from each of the
subgroups.

Consider the classification task of classifying emails into spam and non-spam emails,
whereas only 20% of the emails are spam and the remaining 80% are non-spam. If we
want to use stratified sampling to sample a subset of the data with equal distributions,
the dataset would be divided into two subgroups of spam emails and non-spam emails.
The resulting training sample is created by sampling 80% of the instances from the
non-spam and 20% from the spam emails, using random sampling. Figure 2.3.3 illustrates
the example, whereas the dark gray instances correspond to spam emails and the white
instances correspond to non-spam emails. One can observe from the figure that the
resulting sample also has a distribution of 20% spam emails and 80% non-spam emails.

Figure 2.2: Illustration of stratified sampling using strata to sample a subset with equal
class distribution to the full dataset. The dark gray and white instances
illustrate instances belonging to two different classes, and the arrows illustrate
one combination of random samples.

2.3.4 Features and Feature Space

For a classification model to learn separable patterns in the data, individual measurable
properties or characteristics, also called features, are often extracted. Features can
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represent different aspects of a task, but informative and discriminative features are
preferred to help the classifier to separate between instances of different classes. Consider
a method that classifies price ranges for housing. Features that can be used to separate
houses in different price ranges can, for instance, include house size in square meters and
if there is a pool or not.

Most algorithms require a numerical representation of inputs as these facilitate stat-
istical analysis. Therefore, features are usually represented numerically as n-dimensional
vectors called feature vectors as shown below.

x =


x1
x2
...
xn


Each position in the vector will usually represent a different feature, with n being the

total number of features. Consider the example with housing price ranges, a house of 200
square meters and without a pool could be represented as the following feature vector.

x =
[
200
0

]

For textual documents, features can represent properties such as term occurrences
or term presence. The collection of features represented by the n-dimensional feature
vector spans an n-dimensional vector space called the feature space. This vector space
represents the range of possible values for a chosen set of features in the selected data.

2.3.5 Word Embeddings

Word embeddings are forms of feature representations representing terms as dense numer-
ical vectors mapped from a multi-dimensional space to a lower dimension. The values
(or features) of the vector (embedding) capture information about the term’s syntax and
semantic meaning. This builds upon the assumption that terms of similar meanings tend
to occur in a similar context. For instance, the features of a word embedding vector may
be the underlying features of a term, i.e., terms occurring in similar contexts. Consider
the two vector representations as follows.

Father = [parent : 1,man : 1,woman : 0]

Mother = [parent : 1,man : 0,woman : 1]

Mathematical operators can be used on the word embeddings to illustrate one applic-
ation of such representations.

Father−Man + Woman = Mother
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Traditionally, terms were represented as numbers often based on ordering and term
frequency. A limitation of such approaches, along with the inability to capture context,
is the increasing representation size as the vocabulary increases. This results in a sparse
representation with vast amounts of zeros requiring more memory and computational
resources, a problem commonly known as the curse of dimensionality. Word embeddings
were initially founded by Bengio et al. (2003) who trained a neural language model on
the distributed representation of terms to overcome this problem. However, the concept
was first brought to the fore by Mikolov et al. (2013) who created the word2vec model, a
toolkit enabling training and use of pre-trained embeddings.

Pennington et al. (2014) later introduced the competitive method GloVe. Word2vec
and GloVe are fundamentally similar in that they both allow dense and expressive
representations of terms based on contextual similarity. However, there are some dif-
ferences. Word2vec embeddings are based on training a shallow feed-forward neural
network capturing local term-to-term co-occurrence statistics. That is, the semantics
learned for a given term are only affected by the surrounding terms. In contrast, GloVe
embeddings are learned based on matrix factorization techniques that also capture global
term-to-term co-occurrence statistics leveraging the entire corpus. The latter can be
computationally expensive when trained on a large corpus but only needs to be trained
once.

Word embeddings have played a critical role in the realization of transfer learning,
the concept of transferring knowledge from one task used to solve a different task. For
instance, word embeddings can be trained on general language understanding corpora
and further used to represent documents in downstream tasks such as abusive language
detection.

2.3.6 Support Vector Machine

A Support Vector Machine (SVM) is a supervised learning model that can be used
for classification tasks. Given a set of training instances with corresponding labels, an
SVM aims to build a line, hyperplane, or set of hyperplanes that separate the data into
distinct classes. The idea is to find the "extreme" values in both classes and create a
hyperplane that best explains the class boundary. The training instances are represented
with coordinates in an n-dimensional space, in which n represents the number of features.
The dimension of the hyperplane is given by n− 1 to separate the features, as visualized
in Figure 2.3. The values closest to the hyperplane are called support vectors, and their
distance to the hyperplane is called the margin. The model aims to maximize the average
distance from the support vectors to the hyperplane to separate the classes. A kernel
function is used to maximize the distance from the support vectors to the hyperplane. The
kernel function is a mathematical function that calculates the similarity of two vectors.
For linear SVMs, the kernel function corresponds to the vectors’ inner product, which
returns a scalar representing the similarity between the two vectors. Kernel functions
can also hold different shapes, for instance, non-linear or polynomial, which maps the
feature space into spaces of higher dimensions.

Suppose the data cannot be linearly separated with a hyperplane as in Figure 2.3. In

14



2.3 Machine Learning for Text Classification

that case, the data points are mapped into a higher dimension using a kernel function
that transforms lower-dimensional spaces into spaces of higher dimensions. The idea
is that the data will continue to be mapped into higher dimensions until it is linearly
separable. SVMs are effective in high dimensional spaces in a memory-efficient way and
have proven successful in many classification tasks.

Figure 2.3: Visualization of an SMV hyperplane separatig datasets from two classes

2.3.7 Model Evaluation

Evaluation measures are used to evaluate how well machine learning models perform
on a particular task and are an essential step toward selecting the best model and
reporting its results. Several evaluation measures can be used to evaluate and assess
the performance of classification models. The evaluation measures used to evaluate
classification performance in this thesis includes accuracy, precision, recall, and F1 score
which will be described subsequently in this section. The descriptions of the measures
are adopted from Section 2.3 of the specialization project (Arntzen, 2020) with some
adjustments. At the end of this section, the k-fold cross-validation technique used in
combination with these measures to evaluate models will be described.

The formulas are based on the following terms, with reference to Table 2.2. True
positives (tp) is the number of correctly classified positive instances, true negatives (tn)
is the number of correctly classified negative instances, false positives (fp) is the number
of incorrectly classified positive instances, and false negatives (fn) is the number of
incorrectly classified negative instances.
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Predicted Label
Negative Positive

True Label Negative tn fp
Positive fn tp

Table 2.2: A confusion matrix representing the possible predicted values for a binary
classification problem.

When calculating precision, recall and, f1 score, there are two commonly used calcu-
lation methods, namely micro- and macro-averaging. Micro-averaging is calculated by
aggregating all class contributions and then averaging, while macro-averaging computes
the metric independently for every class and then averages. As opposed to micro-average,
macro-average penalizes poor performance in the minority class for unbalanced datasets.
This is because the performance of the minority class will receive the same weighting as
the majority class. Therefore, macro-average is suitable when the minority class of an
unbalanced dataset is of high interest, such as for abusive language detection for datasets
following a natural unbalanced distribution.

Accuracy

Accuracy is a simple and intuitive metric that quantifies correctly classified instances
among the total instances. The resulting value lies between 0 and 1, whereas 1 means
that all instances are correctly classified. The formula is given as follows.

Accuracy = tp+ tn

tp+ fp+ fn+ tn

Although accuracy is a simple and effective metric to measure overall model perform-
ance, it can be misleading for imbalanced datasets. With an imbalanced dataset, a model
classifying all instances into the majority class can achieve high accuracy. For instance,
if 95% of the dataset belongs to the majority class, classifying all instances into this class
will achieve an almost perfect accuracy score of 0.95. However, if the goal is to predict
the minority class, the model is far from reaching the goal. Therefore, accuracy is often
used in combination with other measures to assess model performance.

Precision and Recall

Precision and recall are two highly correlated measures used in machine learning to
evaluate classification models. The two metrics are defined as follows.

Precision quantifies the proportion of correct positive classifications or the proportion
of relevant instances among the total retrieved instances. Precision is a good metric to
measure a model’s ability to label instances correctly. The formula is given as:

Precision = tp

tp+ fp
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On the other hand, recall quantifies the proportion of correct positive predictions
made out of all positive predictions that could have been made. That is the fraction of
relevant predicted instances among all relevant instances. Recall is good at measuring
the ability of models to find relevant samples. The formula is given as:

Recall = tp

tp+ fn

Precision and recall are usually compared at a fixed level or combined into a single
measure, as demonstrated in the next section.

F1 Score

The F1 score is the harmonic mean of the precision and recall values and conveys the
trade-off between them. The value of the F1 score ranges between 0 and 1, whereas 1 is
the best possible value and corresponds to both precision and recall being equal to 1. F1
score tends to be closer to the lower of precision and recall, and its formula is given as:

F1 = 2 · precision · recall
precision+ recall

To demonstrate the usefulness of combining the precision and recall metrics, consider
a search engine that aims to collect relevant documents. In this case, the positives will
correspond to relevant documents, whereas the negatives will correspond to irrelevant
documents. Recall can then be maximized by collecting all documents available. However,
a large portion of the collected documents may be irrelevant. In order to handle this
problem, precision can be used to measure the proportion of retrieved documents that
are relevant. Using macro F1 score in combination with accuracy will enable measuring
the model’s performance across all classes also for cases with unbalanced datasets.

Stratified K-Fold Cross-validation

K-fold cross-validation is a model validation technique that assesses how the results of a
model generalize to independent datasets. As described in Section 2.3.1 a model is often
provided a training and a test dataset, whereas only the test dataset is used to evaluate
model performance. K-fold cross-validation aims to test how the model predicts unseen
new data to reduce problems such as overfitting or selection bias. A model suffers from
overfitting to a dataset when its production is too close or the same as a particular dataset
(usually the training set). Therefore, it fails to predict new unseen instances reliably. On
the other hand, selection bias is the bias introduced by the selection of instances so that
the dataset obtained is not representative of the data intended to predict.

The cross-validation technique is based on splitting the dataset into k groups, where
each instance in the dataset is assigned to only one group. It is common to use the stratified
sampling technique previously described in Section 2.3.7 to ensure equal distribution for
each group. This ensures that the cross-validation result is a closer approximation of the
generalized value.
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For each unique fold, as displayed in Figure 2.4, one group is held out and used for
validation, whereas the k-1 remaining groups are used for training. The model is fitted
to the training data and evaluated on the validation data for each fold. In the end,
the average scores are reported, and the model has summarized been evaluated on the
complete dataset.

A common way to use cross-validation is to combine the training and development
dataset for k-fold cross-validation during model selection and selecting the best model
from the averaged result. Finally, the model’s results are reported on the test set, which
was never seen during cross-validation. The reason for not including the test set during
cross-validation is that it would result in a biased score. The test dataset is held out for
final evaluation such that the best model from cross-validation can be evaluated on an
unseen dataset. Cross-validation score, therefore, refers to the score averaged over each
fold. The technique is displayed in Figure 2.4 with k equal to five.

Figure 2.4: Illustrating five-fold cross-validation where the training dataset is divided
into five groups and the model is evaluated on one group and trained on the
other four groups for each fold.

When using the k-fold cross-validation technique, a crucial step is to select a good
k-value to represent the model’s skills to predict instances correctly. There is a trade-off
between bias and variance when choosing this value. A larger k-value increases variance,
whereas the bias of the technique decreases when k is smaller (Kuhn and Johnson, 2013).
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The value of k is chosen such that each of the k groups is statistically representative of
the dataset used. Although there is no standard rule when selecting k, a rule of thumb
is that k’s value often ranges between 5 and 10 depending on the dataset used (James
et al., 2013).

2.4 Deep Learning
Deep learning is a subcategory of machine learning based on Artificial Neural Networks,
which uses multiple layers to extract higher-level features from raw input data, such
as text. The input data propagates through a weighted network of neurons, called
perceptrons or nodes, and automatically learns new data representations. Deep learning
is an essential part of the Transformer-based models used in this thesis, both for the
attention mechanism they build upon and the classification layer used to classify the
input documents. This section covers the basic theory behind deep learning and the
attention mechanism, followed by the advanced Transformer-based architectures used to
predict abusive language in this thesis. Sections 2.4.1, 2.4.6, and 2.4.7 are built upon
Section 2.2.3 of the specialization project (Arntzen, 2020).

2.4.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) vary in shape and structure depending on the task to
be solved. Common for all of them is that they seek to approximate the unknown function
represented by the input data. ANNs are inspired by how information is processed in
biological systems and the concept of communication neurons at an abstract level. A
neural network is therefore composed of neurons and the connections between them.
Increasing the number of neurons or connections increases the network parameters and
provides a more flexible system that can learn more complex patterns, with the trade-off
of requiring more computational effort.

The simplest form of an ANN is a Feed-forward Neural Network (FNN). As the name
says, the network’s information only moves in one direction, forward, from the input layer
through the hidden layers (if any) to the output layer. A commonly used feed-forward
neural network is the Multilayer Perceptron which will be described in the next section,
followed by a section describing the training process of such networks. Subsequently, the
Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN) models will
be described.

Multilayer Perceptrons

A Multilayer Perceptron consists of an input and output layer with one or more hidden
layers in between (Haykin, 2009). The input and output layers work as network gates
to the outside world. In contrast, the hidden layers perform some non-linear functional
transformation to the input data, extracting higher-level features. The hidden layers
consist of hidden neurons, whereas the hidden term refers to the fact that the neurons
are not accessible from the external world. Figure 2.5 illustrates a multilayer perceptron
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with one hidden layer. The network illustrated is fully connected which means that for
each layer, every neuron in the network is connected to every neuron in the subsequent
layer.

Figure 2.5: The left figure illustrates a feed-forward neural network with one hidden layer.
The figure at the right illustrates the non-linear transformation of the input
to a hidden neuron.

The process starts with passing the input vector (represented as described in Section
2.3.4) to the network, where each value of the vector enters a different input neuron. The
input values are then passed through the network of hidden layers, where each input is
multiplied by the output weight of that layer. The weighted outputs are passed as inputs
to the next layer’s neurons which repeats the process. The hidden neurons function as
interventions between the input and output layers, where each output vj of neuron j can
be formalized as follows.

vj = σ(
∑
j′

wjj′ · vj′)

Where σ is the non-linear transformation function, also called the activation function,
and wjj′ is the weight from neuron j′ to neuron j (Lipton, 2015). The same process is
performed for each hidden neuron in the network.

The main goal of a neural network used for classification is to predict the label of
a given input instance. This is done by approximating a target function f∗(x) = y,
where x is the input vector and y is the predicted label. f∗ denotes the chained function
fk(fk−1(...(f1(x))...), where k is the depth of the network corresponding to the number
of layers. That means that each layer i has its own applied function as defined below.

f i(x;W, b) = W Tx+ b

Where x is the input vector of the previous layer, W T is the transpose of the weights,
and b is the linear bias. The bias is an additional parameter in the network used to adjust
the output and the weighted sum of the inputs to the neurons. As with an intercept in a
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linear equation, the bias allows shifting the output value. For the transformation to be
non-linear, one or more non-linear activation functions are applied to the chain’s output
which transforms the input to a defined output, inspired by how information is processed
in biological neurons of the human brain. This enables the network to learn non-linear
mappings of the data.

An activation function used in most of the Transformer-based models (described
later in this chapter) is the Gaussian Error Linear Unit (GELU), which was defined by
Hendrycks and Gimpel (2016) as follows.

GELU(x) = 0.5x(1 + tanh(
√

2
π

(x+ 0.044715x3)))

GELU is a combination of functions (e.g., the hyperbolic tangent) and approximated
numbers. When x is greater than zero, the output will be x, except when x ranges
between 0 and 1, the transformation is slightly smaller. That is, inputs have a greater
probability of being dropped as x decreases, such that the transformation is stochastic
yet depends upon the input (Hendrycks and Gimpel, 2016).

Back Propagation and Batch Learning

A commonly used approach to train feed-forward neural networks is back propagation
which proceeds in two phases; the forward and backward phase (Haykin, 2009). In the
forward phase, the network’s weights are fixed, and the input propagates through each
layer of the network, confining the changes to the transformations performed by the
network’s neurons. A loss or error is calculated in the backward phase by comparing
the output with the desired value. The loss is then propagated backward through the
network’s layers, adjusting the neuron weights. The weights are adjusted proportionally
to the neuron’s contribution to the loss. This is done using an optimization method such
as gradient descent (Lipton, 2015) that aims to minimize a calculated loss function. This
will be further described in Section 2.4.5.

The training process of the network is commonly performed using batch learning
which adjusts the network weights after all instances in the batch are passed through the
network (Haykin, 2009). The loss function that is minimized calculates the average loss
contributions of all neurons after each batch. The training dataset can be divided into
one or more batches, whereas the passing of all batches through the network constitutes
one epoch of training. Training in batches reduces the computational effort required,
however, often at the cost of a less accurate estimation of the loss when optimizing. This
is due to less data being available at a time to generalize from. As the optimization
process is iterative, it is common to perform several training epochs to minimize the loss.
It is important to note that performing too many training epochs may lead to overfitting
the model, meaning it does not generalize well to new data.

There is no formal approach to selecting the values for batch size or the number
of epochs, which is dependent on how diverse the data is. However, some numbers
have performed empirically better than others across several tasks for certain model
architectures (Devlin et al., 2019).
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Recurrent Neural Networks

Recurrent Neural Networks (RNNs) (Rumelhart et al., 1988) is another class of ANNs
derived from feed-forward neural networks but differs in the fact that they allow a type
of memory storage. This lets the network exhibit temporal dynamic behavior using an
internal state to process variable-length sequences. The storage mechanism is called
feedback and lets the output of a neuron influence the input applied to the particular
neuron, producing closed paths for information transmission (Haykin, 2009). There is no
formal structure of RNNs, as essentially every neural network with at least one feedback
loop allowing memory storage can be considered an RNN. An example of an RNN is a
standard multilayer perceptron, except for adding at least one feedback loop.

As RNN’s future outputs are dependent on past and previous decisions, time is taken
into context, ranging from 1 to τ . The input sequences of RNNs contain vectors at
different time steps, denoted as x(t). The information transmission can be expressed in
the following recursive manner.

h(t) = f(h(t−1), x(t); θ)

Where h(k) is the hidden state vector at time k, and θ is the model parameters. Each
step of this procedure handles the computation and calculates the output and the loss,
which depends on the particular network structure. The output can be used to produce
a final classification of the sequenced input, and the network can be trained using an
adjusted version of backpropagation, taking time into account. This is done by unrolling
the network creating copies of the feedback connections. For instance, a single neuron x1
with a connection to itself x1 −→ x1 could be represented as two neurons x1 −→ x2 making
the graph acyclic and this way similar to a feed-forward neural network graph.

Although RNNs can handle sequenced inputs, their memory capacity is insufficient
for handling long-term dependencies, requiring storing more than the previous state in
memory. In the case of textual data, long-term dependencies include longer sentences
and paragraphs.

Convolutional Neural Networks

An alternative to the RNNs is Convolutional Neural Networks (CNNs) (LeCun, 1989),
which are regularized versions of Multilayer Perceptrons. CNNs take advantage of
hierarchical patterns in the data such that more complex patterns can be learned using
smaller and simpler patterns. The pattern between the nodes is inspired by the visual
cortex of the brain. This works so that individual receptive fields of neurons overlap
partially and combined cover the whole visual field. CNNs consist of an input layer,
multiple hidden layers, and an output layer. The hidden layer typically incorporates a
series of convolutional and pooling layers, fully connected to an ANN.

Convolution is the application of a filter to the input data, which results in activation.
When a convolution is repeated, the input results in a map of activations indicating
the locations and strengths of the input features. The convolutional layers perform the
convolutions, linear transformations, of the input. As CNNs originally were developed
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for two-dimensional input, this transformation involves a multiplication between an array
of input data and a two-dimensional array of weights, called the filter. The same filter is
systematically applied across the input to detect specific features. Once the feature map
is created, each value is passed to an activation function, much like what is done for a
fully connected layer.

The pooling layers reduce the dimensions of the data by combining the outputs of
neuron clusters to a single neuron in the next level. Max pooling uses the maximum value
from the cluster of neurons at the prior layer, while average pooling uses the average value.
In addition to reducing the dimensions of the data, this works as a form of regularization
that helps prevent overfitting. The layers capture more local information, such as terms
of a sentence or pixels of an image.

2.4.2 The Softmax and Argmax Functions

The produced output of the neural network is called logits and holds the prediction score
of the model. A softmax function is often applied to the logits mapping each value into a
probability between 0 and 1, normalizing the values to a more interpretable format. This
is often performed during training before feeding the output values of a neural network
to a loss function that is being optimized. The softmax function is defined as follows.

σ(z)i = ezi∑K
j=1 e

zi

Where z is a K-dimensional input vector, the resulting output is a value in the interval
(0,1) which is normalized such that the summation of the output values is equal to 1.
When the model is used for inference, an argmax layer typically replaces the softmax
layer or is added on top to produce a discrete class label instead of a probability. The
argmax function returns the arguments for the target function that returns the maximum
value from the target function. Consider the function g(x) where g(1) = 13 = 1 and
g(2) = 23 = 8 and x is limited to the value 1 or 2. In this case, the argmax of g(x) is
equal to 2. Note that the argmax is not the maximum value returned which would be 8,
and it is also not the maximum value of the arguments, although in this case, they are
the same. The armax function returns 2 because 2 is the function’s argument when 8 is
the produced output.

2.4.3 Regularization with Dropout Layers

Regularization techniques can be applied to machine learning classifiers to prevent model
overfitting. A commonly used technique for regularizing neural networks is dropout
layers which refer to the ignoring of certain neurons (along with their connections) in
the network during training (Srivastava et al., 2014). In practice, this means that the
dropped neurons are not considered in a backward or forward process, preventing them
from co-adapting too much. The choice of what neurons to drop at each iteration is
randomly selected with a probability p, also called the dropout probability. Applying
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dropout layers to a neural network has improved neural network performance in various
application domains, including text classification tasks.

2.4.4 Cross-entropy Loss

When working with classification models, the loss function is used to optimize the
model during training and estimates how far an estimated value is from the true value.
Cross-entropy loss is a commonly used loss function for both binary and multiclass
classification. Given two probability distributions, p, the true distribution, and q, the
estimated distribution, the cross-entropy loss, L(p, q) for a binary classification problem
is given as follows.

L(p, q) = −p log2 (q) + (1− p) log2 (1− q)

The same formula is used for multiclass classification problems by summing each of
the separate classes together. The cross-entropy loss increases as the predicted probability
diverge from the true label, where predictions that are confident and wrong are penalized
stronger. If all labels are correctly classified, the cross-entropy loss is equal to 0.

The function was initially designed to measure the loss of models with outputs ranging
from 0 to 1, also called probability values. However, the produced output values holding
the prediction scores of a neural network, logits, ranges below 0 and beyond 1. Although
these values are not normalized, they still represent a probability distribution and can
therefore be interpreted as probabilities. Because of this, the formula for cross-entropy
loss can be used not only on normalized values but also directly on logits.

2.4.5 Optimizers and Learning Rate

As previously described in Section 2.4.1, neural networks are trained using an optimization
method such as gradient descent, minimizing some empirical loss function L on the training
data. The gradient descent algorithm depends on the first-order derivative of an objective
loss function, also called the gradient, and calculates how to adjust the network weights
to minimize this function (Haykin, 2009). The gradient is calculated at each training
step for each weight and is altered in the opposite direction of the current gradient to
approximate the minima. The gradient of the function f is denoted as ∇f and will
point to the direction where the function increases most rapidly. Based on this, the new
weights θ′ can be calculated using the current weights θ as follows.

θ′ = θ − η∇L

Where η is a small constant called the learning rate, which decides how much of the
gradient vector will be used to adjust the current weights. A lower learning rate will lead
to slower convergence but can help navigate the ravines in the search surface of the loss.
In contrast, a larger learning rate may lead to larger steps that overshoot the minima
with a non-convergent behavior. The learning rate can be selected in different manners.
A common and straightforward way is to set the learning rate equal to a constant, but
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it is also possible to use a learning rate function that reduces the value over time. The
latter reduces loss more quickly initially but avoids the unstable behavior when the value
converges towards a solution. Gradient descent can guarantee convergence towards a
local minima but requires a convex loss function to guarantee convergence to a global
minima.

However, there are some challenges related to using gradient-based optimizers. Two
problems may arise during training of a deep neural network, namely the exploding gradient
and vanishing gradient problems. The exploding and vanishing gradient problems create
unstable networks that cannot learn from the training data (Hochreiter and Schmidhuber,
1997). In the process of finding the gradient, i.e., partial derivatives of each layer, deeper
layers go through continuous matrix multiplications to compute the derivatives. The
problem of exploding gradients arises when the multiplication of numbers increases
exponentially as the derivative propagates through the network. The vanishing gradient
problem is essentially the opposite, where the numbers decrease converging to zero. Both
problems create states in the network that update the weights to extreme values making
the network incapable of learning from an overflow or vanishing gradient.

The ADAM Optimizer

The adaptive moment estimator, ADAM, is similar to gradient descent but works with
momentums of first and second-order (Kingma and Ba, 2014). The algorithm uses
squared gradients to scale the learning rate and the moving average of the gradients to
take advantage of the momentum. The nth moment of a random variable x is defined
as the expected value of the variable to the power of n, E[xn]. As the gradient of a
loss function, L usually is calculated with regards to a random batch of data; it can be
considered a random variable. Adam updates the exponential moving average of the
gradient, mt, and the squared gradient vt as follows.

mt = β1mt−1 + (1− β1)∇Lt

vt = β2vt−1 + (1− β2)∇L2
t

Where ∇Lt is the gradient vector of the loss function, and β1 and β2 are hyperpara-
meters for the exponential decay rates of the moment estimates, with recommended
default values of 0.9 and 0.999, respectively. At the first iteration, the moving averages
are initialized at zero. For the moment vectors not to be biased towards zero, they are
corrected regarding this bias as follows.

m̂t = mt

1− β1

v̂t = vt

1− β2

Based on these values, the model weights denoted as θ are updated using the following
formula of the ADAM optimizer.
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θt+1 = θt − η
m̂t√
v̂t + ε

Where ε is a small constant typically equal to 10−6.

The LAMB Optimizer

The Layerwise Adaptive Moments optimizer for Batch training (LAMB) (You et al., 2020)
uses the ADAM optimizer from the previous section as a base algorithm in combination
with the Layerwise Adaptive Rate Scaling (LARS) optimizer. The learning rate of LARS,
and thereby also the LAMB optimizer, is adapted for each layer. This is performed by
normalizing the gradients to decouple the magnitude of update from the magnitude of
the gradient. The ratio of the weight norm to the gradient norm is called the trust ratio
for each layer and allows the layers with larger weight norms to use a higher learning
rate that converges faster without a performance loss.

The adaptivity of LAMB is two-fold: (1) per dimension normalization regarding the
second moment’s square root from ADAM, and (2) layerwise normalization obtained due
to the layerwise adaptivity (You et al., 2020). Based on this, the LAMB optimizer forms
an update of the model weights, θ(i)

t , where i is the layer at time step t as follows.

θ
(i)
t+1 = θ

(i)
t − ηt

φ

∥∥∥∥θ(i)
t

∥∥∥∥∥∥∥∥r(i)
t + λθ

(i)
t

∥∥∥∥(r(i)
t + λθ

(i)
t )

Whereas rt = m̂t from the ADAM optimizer, and λ is the weight decay rate with
a default value of 0.01. ηt is the layerwise learning rate deciding how much the layer
changes the model weights in one update, and φ which is the scaling term that scales
the norm of the update into the same order as the model weight. You et al. found that
φ typically ensures faster convergence and that a simple min-max function works well.
The LAMB optimizer has proven to be more effective than the ADAM optimizer when
training on larger batch sizes (You et al., 2020; Kummervold et al., 2021), although You
et al. noted that the optimizer generally also works well for smaller batch sizes.

2.4.6 The Encoder-decoder Architecture

The encoder-decoder architecture is an architecture designed to handle inputs and outputs
of variable-length sequences (Wu et al., 2016). The architecture has proven to be useful
for machine translation and otherwise general sequence-to-sequence prediction tasks.

The architecture consists of two major components, the encoder, and the decoder.
The encoder takes an input sequence of variable length, which it encodes into a state
with a fixed shape. The decoder maps the encoded state of fixed shape into a sequence
of variable length. This is often done using RNNs where both encoder and decoder are
stacks of RNN units. In machine translation, a vector representing the input sequence is
passed to the RNN encoder, which generates a list of vectors with one vector for every
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input token. The list of vectors is passed to the decoder RNN which produces one output
token at a time until an end-of-sentence token is produced.

One challenge with the encoder-decoder architecture is that it often degrades as the
length of the input sequence increases, a problem commonly known as the long-term
dependency problem. One way to encounter this problem is by applying the attention
mechanism described in the next section.

2.4.7 The Attention Mechanism

The attention mechanism initially proposed by Bahdanau et al. (2015) and Luong et al.
(2015) introduced an improvement to the encoder-decoder architecture by considering
the relative importance of terms of an input vector. There are two types of attention
mechanisms: one that manages and quantifies the interdependence between input and
output elements, called general attention, and one that quantifies the interdependence
within input elements, called self-attention. Additionally, Vaswani et al. (2017) developed
a mechanism called multi-head attention that will be described subsequently to general
attention and self-attention.

General Attention

The general attention mechanism works by first passing all of the encoder’s hidden
states to the decoder and thereby making all information available simultaneously. The
attention is then applied as a weighted average function that weights the importance
of each term. The weight decides how the decoder should attend to each of the input
terms, which relieves it from having to encode the entire input sequence to a fixed-length
vector (Bahdanau et al., 2015). The decoder typically learns the weights using a feed-
forward neural network where the sum of the weighted hidden states forms a context
vector. Finally, the context vector can be passed through a feed-forward neural network
producing the first output token, which again is passed to the network to produce a new
hidden state, repeating the process until the final end-of-sequence token is produced.
The mechanism resolves the long-term dependency problem, as the weights spread the
information throughout the sequence of terms that can be selectively retrieved by the
decoder (Bahdanau et al., 2015).

Self-attention

The self-attention mechanism fundamentally shares the same concepts as general attention
but concerns how the terms of the input sentence correlate. The encoder can use this
functionality to produce more meaningful representations of term sequences (Vaswani
et al., 2017). Considering the sentence "The student did not study, because he was tired,"
the self-attention mechanism will capture that term he refers to the student. This is more
difficult with simpler RNNs suffering from short-term memory loss as the sentence length
increases.
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More formally, the self-attention function maps every query and a set of key-value
pairs to an output (Vaswani et al., 2017). This is obtained by initially representing the
query, key, and value as three weight matrices learned during the training process. The
three matrices are multiplied with the input word embedding vectors to obtain a vector
for the query, key, and value for every input. The second step obtains the attention
score for each term by multiplying the query of the current attending input with the key
vectors from other inputs. These scores are then normalized using the softmax function
and multiplied by the corresponding value vector. The sum of the final vectors represents
the attention-encoded representation of the corresponding input sequence. The calculated
self-attention scores obtain a higher value for terms of higher relevance that the model
should "pay attention to" and a lower score for less relevant terms.

Multi-head Attention

Multi-head attention is simply a stack of self-attention that allows models to jointly attend
to information from several representations at different sequence positions (Vaswani et al.,
2017). This is obtained by running through the self-attention multiplication function
h times in parallel. The independent attention "head" outputs are concatenated and
linearly transformed into the desired dimensions. The formula for multi-head attention is
given below, whereas Q, K, and V represent the query, key, and value matrices for the
self-attentions.

MultiHead(Q,K, V ) = Concat(head1, ...,headh)WO

headi = Attention(QWQ
i ,KW

K
i , V W V

i )

The above W s are learnable parameter matrices. The idea of the multi-head attention
stack is that each attention head represents one property of the sentence, such as the
nouns, whereas the others represent other property types such as pronouns, which
combined produces a better representation of information of an input sequence.

2.4.8 Transformers

Whereas the attention mechanism described so far has been used to augment existing
neural networks, the Transformer architecture proposed by Vaswani et al. (2017) is
solely based on the self-attention mechanism in the format of multi-head attention to
representing inputs and outputs. This approach has proven to achieve state-of-the-art
results for most language tasks and is more efficient than the previous neural approaches
for input and output representations (Vaswani et al., 2017). The improvement in efficiency
is due to the absence of recurrence and convolutions, which lets the Transformer perform
most of the calculations in parallel as opposed to previous approaches augmenting existing
neural networks.

As illustrated in Figure 2.4.8, the Transformer architecture is composed of a stack of N
identical encoder and decoder layers divided into two separate main modules. Each of the
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Figure 2.6: The attention-based architecture of a Transformer composed of an encoder
(left) and a decoder (right). The figure is adopted from Vaswani et al. (2017)
and reprinted with permission from Lion Jones.

encoder stack’s layers has two sublayers: the first is a multi-head attention mechanism
based on self-attention to encode input sequences, and the second is a simple feed-forward
neural network. For each encoder layer, a residual layer is applied to aggregate the
encoded and original input sequences by taking the sum of the two. This is followed by
applying a normalization function to the aggregated sequence, which is finally passed to
the feed-forward neural network. The two steps are noted as "Add & Norm" blocks in
Figure 2.4.8. The output of the first encoder is passed to the second and so on until it
has been passed through the N encoder layers and further to the decoder.

The decoder layers incorporate an additional layer performing multi-head attention to
the output embeddings of the encoder stack. The outputs of the multi-head attention layer
are aggregated similarly to the encoders and are also followed by layer normalization.
The multi-head attention layer in the decoder is modified to prevent positions from
attending to previous positions. The output embedding is offset by one position making it
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impossible for the predictions to depend on positions beyond their own. The decoder is in
this way masked which means that it can only attend to words that are already produced.
The term positions are obtained from the positional encoding, which gives every term a
relative position in the sequence and is added to the embedded representation.

Another difference of the decoder layers is that the second multi-head attention layer
takes both the aggregated and normalized output of the first masked multi-head attention
layer and the encoder stack’s output as inputs. Therefore, the encoded input sequence is
used as input to all decoders at the same time as the output sequence is processed.

Finally, the output of the decoder is passed as input to a linear layer that produces
an output vector of specified size, which for sequence classification tasks correspond to
the number of classes. The predicted output corresponds to a probability distribution
that can easily be converted to classes using the argmax function.

The attention function, when performed on matrices as described in Section 2.4.7,
can be condensed into the following function proposed by Vaswani et al.

Attention(Q,K, V ) = softmax(QK
T

√
dk

)V

The denominator,
√
dk, is the square root of the hidden dimension in the Transformer

and works as a scaling factor. This factor was introduced by Vaswani et al. to prevent
the softmax function from reaching regions with extremely small gradients, a problem
previously described in Section 2.4.5.

The Transformer has been applied to several NLP tasks achieving state-of-the-art
performance. One of the tasks is Neural Machine Translation (NMT), an approach to
machine translation that uses artificial neural networks to predict the likelihood of a
sequence of terms. The encoder of the Transformer takes the source language as input
tokens and finds what output tokens of the target language correspond best to the source
language. In cases with multiple target languages, that is, a model that can translate
directly between several different languages, a special token can be added in the encoder
indicating the source language and a special token in the decoder indicating the target
language (Fan et al., 2020). The following section describes several other NLP tasks
solved using Transformer-based architectures.

2.4.9 Bidirectional Encoder Representations from Transformers

The Bidirectional Encoder Representations from Transformers (BERT) developed by
Devlin et al. (2019) is the first unsupervised, deep bidirectional model pre-trained
on general language understanding. BERT is built to produce contextual sentence
representations that can be used for several NLP tasks such as text classification and
question answering. Devlin et al. trained the model on two separate learning objectives:
masked language modeling and next sentence prediction. Masked language modeling
randomly masks 15% of the input tokens. BERT is trained to predict the missing tokens
based on the context it occurs. The second task of next sentence prediction is to predict
whether a sentence is the following sentence of another. This allows BERT to understand
better how sentences relate, which is essential knowledge in most NLP tasks.
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Since the introduction of BERT, several models building upon the same principles
have emerged. There are now multiple state-of-the-art Transformer-based models with
different sizes and configurations of the standard BERT models, as will be mentioned
in Chapter 4. As most of these models are not yet available trained on the Norwegian
language, only the general BERT model will be described in this section. Furthermore,
as this thesis concerns sentence classification tasks, this section will focus on how BERT
is applied to classify sentences. Firstly, the model architecture will be described in detail,
followed by a description of the particular tokenization and encoding techniques used to
represent input documents. Finally, the process from model input to predicted output
will be described.

BERT Model Architecture

The BERT model architecture used for text classification is mainly composed of a pre-
trained Transformer-based architecture with an output layer on top used to fine-tune it
for a particular downstream task (Devlin et al., 2019). The structure of attentions and
Transformers are previously described in Sections 2.4.7 and 2.4.8.

To build a classification model, the BERT model goes through a pre-training and a
fine-tuning stage. During the pre-training stage, the model is trained on a large corpus
of various unlabeled data. The purpose is to learn the meanings of the terms and the
contexts they occur in, that can later be used as transferred knowledge to a downstream
task. The model is initialized with the pre-trained parameters for the fine-tuning stage,
which are later adjusted with the labeled data for the specified task. The purpose of the
fine-tuning stage is for the model to learn what language separates the different classes,
for instance, neutral and offensive speech. The model already knows the meaning of most
terms from the pre-training stage but is trained on what specific data represents each
class. The pre-training process is computationally expensive and is a one-time procedure,
as opposed to the fine-tuning stage, which has to be done individually on top of the
pre-trained model for each downstream task.

Devlin et al. released the following two BERT model architectures, both of which are
used in the experiments of this thesis.

• BERT base: 12-layer, 768-hidden, 12-heads, 110M parameters

• BERT large: 24-layer, 1024-hidden, 16-heads, 340M parameters

The base and large keywords denote the number of encoder layers in the model,
determining the model’s size. As the number of layers increases, so do the number of
parameters (weights) and the number of attention heads in the model. BERTbase has 12
encoder layers with 768 hidden units and twelve attention heads, whereas the BERTlarge

model consists of 24 encoder layers with 1024 hidden units and 16 attention heads. Devlin
et al. trained BERT using the GELU activation function, previously described in Section
2.4.1.

Furthermore, the model is either cased or uncased which determines what text format
on which the model is trained. The cased keyword denotes that the model is trained

31



2 Background Theory

on case-sensitive text, text combining upper- and lowercase letters, with accent markers
preserved. Cased models have separate vocabulary entries for differently cased terms
(e.g., the terms Student and student will be represented by different tokens, although
they have the same meaning). In contrast, the uncased model is trained on lowercase
text without accent markers. The cased model is often used for tasks where the case or
accent markers have a predictive value; otherwise, the uncased model is used. However,
not all models are available in both versions.

BERT Tokenization

For the model to understand the input documents, they have to hold an interpretable
format, where the first step to achieve this is tokenization. The same pre-processing steps
must be followed for the fine-tuning stage as for the pre-training stage. Therefore, the
tokenizer used is also dependent on whether the model is cased or uncased, a configuration
described in the previous section.

BERT tokenization is performed in two steps; general tokenization and WordPiece
tokenization which does the following operations on the data.

• General tokenization: Performs normalization by converting all whitespace
characters to spaces, followed by punctuation splitting, which is done by adding
whitespace on each side of any punctuation character1. For uncased models, this
step also converts all text into lowercase characters and removes accent markers.

• WordPiece tokenization: Produces meaningful context-independent token rep-
resentations of terms. Each term is first split on whitespaces into separate tokens,
which are then passed to the WordPiece algorithm, further described below.

The general tokenization makes it possible for the model to recognize terms without
learning all combinations of them with different punctuation marks. The WordPiece
algorithm is a technique to segment terms into subterms based on the principle that
frequently used terms should stand as they are, while less frequently used terms are
decomposed into meaningful subterms. For instance, the term herrefotball (translates to
men’s soccer in English) may be considered a less frequently used term that could be
broken down into the tokens herre and ##fotball. The double hashtags mark that the
token is subsequent to the previous one2. The WordPiece representation allows the model
to process previously unseen terms out-of-vocabulary (OOV) by breaking them down
into subterms. This way, some of the original term’s contextual meaning will be retained
without representing it using a standard OOV token. This technique is particularly
beneficial for agglutinative languages such as Norwegian, which has a vast number of
different compound terms that the WordPiece algorithm handles.

1In this case punctuation characters include all characters that are not letters, numbers or spaces, such
as $, which is technically not a punctuation character.

2Note that the WordPiece algorithm splits terms based on the vocabulary the model is pre-trained on,
which may vary between different models. The examples given of WordPiece tokenization in this
thesis are therefore illustrative and may not represent the same splits produced by the models used in
this thesis.
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BERT Encoding

Following the tokenization process, tokenized documents are encoded into a particular
format interpretable for the BERT model. The BERT model takes specific length
sequences as input, such as the encoders of the Transformer. The input representing the
sequence of each document consists of the terms of the sentence, and the three additional
tokens [CLS], [SEP] and [PAD], which represents the following meanings in the context
of text classification.

• [CLS]: The classification token is a special token added in front of every input
instance to mark the beginning of the document.

• [SEP]: The separation token is a special token that, in the case of classification
tasks, is added at the end of each input instance to mark the end of the document.

• [PAD]: The BERT model requires all input instances to be of fixed length, which is
set in the model configurations. For shorter lengths, the padding token adds extra
length at the end of the tokenized text.

Instances longer than the fixed sequence length are truncated into the same size and
format. Therefore, the tokens surpassing the length are removed, and some information
may be lost. An example of a tokenized sentence is given below. The maximum sequence
length of the sentence is set equal to nine for simplicity. The tokens represent the sentence
"Studenten går på universitetet," which directly translates to "The student attends the
university" in English.

[CLS] Student ##en går på universitet ##et [SEP] [PAD]

After the tokenization process is finished and the special tokens are added, all tokens
are converted into their corresponding IDs from the BERT model’s learned vocabulary.
This way, the tokens are interpretable for the model to predict.

BERT Model Input and Output

The BERT input is represented by the input IDs of term sequences as described in
the previous sections. These input IDs correspond to attention masks deciding what
tokens should be attended to and which should not, i.e., the padding tokens. Each
input representation is constructed by summing the corresponding token, segment, and
position embeddings of the input ID elementwise into a vector representation. The three
embeddings have the following functions for classification purposes.

• Token embeddings: Have the role of transforming the input tokens into a fixed-
length vector representation of size (n,768) for the BERTbase, and (n,1024) for the
BERTlarge, where n corresponds to the length of the input sequence.
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• Segment embeddings: Are originally used to distinguish between a pair of input
sentences. However, the segment embeddings do not influence classification tasks.
This layer is represented by a vector of zeros for classification tasks, not affecting
the final summation value.

• Position embeddings: Hold information about the order of the input sequence,
which is crucial for Transformer-based architectures. Without them, the repres-
entation corresponds to a simple bag-of-words model. The position embeddings
are represented as a lookup table of size (512, 768) for BERTbase and (512, 1024)
for BERTlarge, where 512 is the maximum length of BERT sequences. Each row
represents the term on the position in the input sequence corresponding to the row
index. The positional embeddings are similar for terms holding the same position
in the input sequence.

After the summation, the resulting input representation of size (n, 768) is passed into
BERT’s encoder stack. A visualization of this process is displayed in Figure 2.7.

Figure 2.7: The BERT model’s input representation. The figure is adopted from Devlin
et al. (2019) and reprinted with permission from Jacob Devlin.

Each token position of the input representation outputs a hidden vector of length 768
for BERTbase and 1024 for BERTlarge. In the case of classification, only the first position
is passed onto the next layer. This vector represents the contextual word embeddings
passed as input to the classification layer on top of the BERT model to predict the class
of the input sequence. The classification layer can be defined in several different ways.
Devlin et al. (2019) used a simple feed-forward neural network with one hidden layer and
a softmax layer on top. This fine-tuning process of classification tasks is illustrated in
Figure 2.8.

2.5 Tools and Libraries

Many available tools and open-source libraries can assist the implementation of the
approaches described in this chapter. This section describes some easily accessible tools
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Figure 2.8: An illustration of the fine-tuning of BERT for single sentence classification
tasks. The figure is adopted from Devlin et al. (2019) and reprinted with
permission from Jacob Devlin.

and libraries used in this thesis. All code for the experiments is written in Python due to
its extensive support for machine learning for text classification.

Poetry
Poetry (Poetry, 2018) is a tool for dependency management and packaging in Python.
It allows declaring the libraries a project depends on, and it manages installations and
updates in an activated virtual environment. Poetry supports reproducibility by obtaining
all libraries and their corresponding dependencies in a pyproject.toml file. When all
libraries and dependencies are installed, they are saved in a poetry.lock file, which
locks the project to those specific versions. Using the same poetry.lock on different
devices ensures that the project is built with the same dependencies and versions across
all devices.

Pandas
Pandas (McKinney, 2010) is an efficient, flexible, and easy-to-use open-source data
analysis and manipulation tool library for Python. The library enables easy manipulation
and visualization of datasets through data structures called data frames.

Natural Language Toolkit
The Natural Language Toolkit (NLTK) (Loper and Bird, 2002) is an open-source library
for handling natural human language data. The toolkit provides high-level functions for
tokenization, stemming, stopword removal, punctuation removal, and more.
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Hugging Face Transformers
Hugging Face (Hugging Face inc., 2021) is an NLP-focused startup with a large open-
source community for Transformer-based architectures. Hugging Face’s Transformer
library exposes an API to download many versions of the different state-of-the-art
Transformer-based approaches, such as BERT, for several languages and the tokenizers
corresponding to these models. The library has support for PyTorch integrations, making
it easy and efficient to use.

PyTorch
PyTorch (Paszke et al., 2019) is an open-source library that enables developing deep
learning approaches in Python. PyTorch provides high-level implementations of more
complex approaches and provides easy access to utilize available computational resources
(such as multiple GPUs) in parallel. This makes the library efficient and easy-to-use.
The Pytorch implementation of the BERT model has proven empirically to perform
comparably to the original BERT implementation by Devlin et al. (2019).

Scikit-learn
Scikit-learn (Sklearn)(Pedregosa et al., 2011) is an open-source library providing simple
and efficient tools for predictive data analysis. The library enables easy-to-use function-
ality for dataset handling, methods, and evaluation for machine learning.

Translatepy
Translatepy (Sekai and Roman, 2021) is an aggregation of multiple translation web APIs
in Python. The different incorporated machine translator systems include Microsoft
Bing Translator3, Google Translate4, Yandex Translate5, Reverso6, and DeepL7, that
support translation from Danish to Norwegian used in the experiments of this thesis. The
library is made available through the Python Package Index (PyPi) (Python Software
Foundation, 2021) which is an open-source repository for Python software.

EasyNMT
EasyNMT (Reimers, 2021) is a Python package providing state-of-the-art Transformer-
based neural machine translation approaches. Several pre-trained models can be down-
loaded and used in a high-level and simple manner to translate between more than
150 languages. Three of the available models provide support for Danish-Norwegian
translation and are used in the experiments of this thesis: OpusMT (Tiedemann and
Thottingal, 2020), and M2M_100 (Fan et al., 2020). The OpusMT is a collective name
for multiple models trained on translation for more than 150 pairs of languages based
on a collection of translated texts from the web. The M2M_100 is a many-to-many

3https://www.bing.com/translator
4https://translate.google.com/
5https://translate.yandex.com/
6https://www.reverso.net/text_translation.aspx
7https://www.deepl.com/translator
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multilingual machine translator system that translates directly between any pair of 100
languages. The model is trained on a dataset mined from CommonCrawl, an open repos-
itory of web crawled data, and is available trained with 418 million (M2M_100_418M)
and 1.2 billion (M2M_100_1.2M) network parameters.

Wordcloud
Wordcloud (Mueller, 2021) is an easy-to-use word cloud visualization library in Python
that enables visualization of high-frequency terms in texts.
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Creating an abusive language dataset requires an extensive amount of work and can pose
some challenges. Therefore, the work in this thesis will build upon existing datasets. This
chapter will cover some of the challenges of working with abusive language datasets and
how they may cause unwanted effects to machine learning models. The chapter describes
two abusive language datasets, one Danish and one Norwegian. Section 3.1 builds upon
Section 3.1, and Section 3.2 builds upon Section 3.2.3 and 3.2.4 from the specialization
project (Arntzen, 2020).

3.1 General Challenges with Abusive Language Datasets

Supervised classification tasks require labeled data to learn classifications. Collecting
and annotating such data can pose some challenges. Section 3.1.1 describes challenges
regarding the annotation process and how people’s subjective perception of hate speech
affect this task, while Section 3.1.2 looks into how the distribution of abusive language
datasets are affected by the available documents online and how public media choose to
moderate their content.

3.1.1 The Perceptions of Abusive Language Types

Annotating abusive language data is everything but trivial and requires a procedure and
guidelines for the annotation process. It is common to use human annotators to label
data, which can be done using expert annotators or amateurs. However, one significant
challenge when annotating the data is that there is no formal definition of hate speech, as
presented in Chapter 1. Hate speech is somewhat subjective and tends to be obfuscated
with other abusive languages. The obfuscation of abusive language types has made it
hard to set a boundary between them and for annotators to objectively comprehend
them, leading to noise and bias in the datasets that further propagate to the models.

Ross et al. (2017) found a low agreement between annotators on what classifies as
hate speech. Their research on how to reliably annotate a Twitter dataset surveyed two
groups on tweets’ abusiveness. They asked them whether a tweet is hateful if it should
be filtered from Twitter and its degree of offensiveness. The degree of offensiveness was
defined as a number from one to six, with an increasing degree of offensiveness. Only
one group was given Twitter’s definition of hateful conduct. Their result indicated that
providing users with a definition led to them partially aligning their subjective views
with the definition. It did not improve reliability, which was overall low. Their conclusion
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yields that hate speech is a vague concept and that it requires better definitions and
guidelines for reliable annotations.

To further understand what cases make annotators disagree, Caselli et al. (2020)
recently tested inter-annotator agreement on hate speech and found several areas with a
substantial amount of disagreement. One area with disagreement concerns cases with
specific characteristics of offensive messages, particularly messages with a subjective
nature of sensitivity to the audiences. They noted that the distinction between negative
stance and implicit expressions of abuse often is mistaken and gave an example of a tweet,
as seen in the below example.

Example
@USER @USER I believe gun control should consist of guarding your
firearms from thivery and kids.

The tweet contains a negative stance towards gun control, misinterpreted as implicit
hate by annotators in the English OLID dataset by Zampieri et al. (2019b).

The second substantial amount of disagreement Caselli et al. found came from people’s
different perception of expressions in the borderline of swear words, such as the word
weirdo. They noted that the degree of abusiveness is dependent on the context, and
how annotators perceive it may depend on their background. The final area reported by
Caselli et al. is annotators’ understanding of implicit languages such as irony and sarcasm.
In order to understand such cases, it may also be needed to have an understanding of the
contextual circumstances. They noted that the lack of context might lead to mistakes in
the annotation process, which propagate into noise in the dataset. Therefore, considering
the context of occurrence is necessary to reduce biases in the data, particularly with
jargons or dialects accepted within a community (Caselli et al., 2020).

Furthermore, Waseem (2016) found that expert annotations yield better results than
amateur annotations, as amateurs are more likely to annotate a sample as hate speech
than experts due to aligning their subjective idea of what hate speech is when annotating.
However, Waseem also showed that using several amateurs having full agreement can
achieve better results than expert annotators alone. Therefore, a method of reducing the
expert annotators’ workload is to use crowdsourcing for all documents and send the ones
with disagreement to the expert annotator for review. Crowdsourcing is a process of
obtaining labels from a large, relatively open group of people often considered amateurs.
However, for the Norwegian language, finding platforms to outsource annotation jobs can
be challenging. In contrast to English, there are fewer Norwegian native speakers, and
the language is considered a minority language unknown to most annotators at global
crowdsourcing platforms. Additionally, the average salary in Norway is high, making
manual annotation of datasets costly.

The different perceptions of abusive language types also affect models’ ability to
generalize across datasets. As datasets use various definitions, models adapt to different
boundaries when trained on separate datasets. Related literature shows that models
trained on one dataset tend to perform well only when tested on the same dataset
(Gröndahl et al., 2018; Swamy et al., 2019; Bulukin, 2021). Fortuna and Nunes (2018)
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argued that although models perform better on the data they are trained on, performance
can be slightly improved by extending the training dataset with other social media data.
Furthermore, Swamy et al. (2019) claimed that a model’s performance on the dataset it
is trained on is not indicative of how well it performs in real-world problems. Based on
this, they suggested that the quality of an abusive language dataset should be assessed
by measuring how it represents abusive language as a whole to increase generalizability.

3.1.2 The Unbalanced Nature of Abusive Language Datasets

As opposed to many text classification tasks, abusive language detection often suffers from
a severe class imbalance issue. This not only originates in the complicated annotation
process discussed in the previous section but is also due to the challenges of collecting the
data. Abusive language, such as hate speech, occurs naturally less often in social media
contexts than neutral speech. The estimated maximum number of derogatory documents
on the social media platform Twitter is 3% according to Founta et al. (2018). This makes
the identification and collection of such documents challenging, which leads to unbalanced
classes in many cases. Classification using unbalanced datasets pose challenges as most
machine learning algorithms assume an equal number of instances of each class. In
many cases, the models tend to be biased towards the majority class, leading to poorer
predictions for the minority class. In the case of abusive language, this is a problem as
the minority classes, such as hate speech, are the most concerned classes.

Another challenge of collecting abusive language datasets is that social media platforms
and public media sites remove abusive content violating their rules. This removal
affects the availability of abusive content online, causing the number of available abusive
documents to be even less than what naturally occurs. For instance, Twitter report taking
action on hateful content violating their rules, such as targeted abuse and harassment
(Twitter inc., 2021). When collecting abusive language datasets online, one can assume
that some content has been removed beforehand, affecting the class distribution in the
dataset.

Additionally, moderation affects the representative abusive documents online. One
may assume that some abusive documents are immediately removed when posted, which
puts some restrictions on the available data that can be collected. Such documents may
include undoubtedly hateful documents that the public media platforms’ algorithms
detect before even being seen or reported by users of the platform. Therefore, the
representative documents in abusive language datasets are limited to the documents
that have not been filtered beforehand to the collection process, also limiting the scope
of research to these documents. One may assume that without such moderation, more
documents having a higher degree of abusive content would have been available for
research.
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3.2 Selected Abusive Language Datasets

This section describes the selected datasets used for abusive language detection in the
experiments of this thesis, the collection process, structure, and statistics. The dataset
by Svanes and Gunstad (2020) and Jensen (2020) described in Section 3.2.1, was chosen
as it is the only available Norwegian dataset for abusive language detection at the time
of writing. The dataset by Sigurbergsson and Derczynski (2020) described in the Section
3.2.2, was chosen due to being the most similar dataset to the Norwegian dataset when
considering the labeling and the language similarities discussed in Section 2.1. The
dataset is used in one of the experiments to extend the Norwegian dataset to increase
the number of offensive and hateful documents.

3.2.1 A Norwegian Abusive Language Dataset

Svanes and Gunstad (2020) and Jensen (2020) collected the first available Norwegian
abusive language dataset. The dataset consists of 41,145 documents from the social
media platforms Twitter and Facebook and the uncensored Norwegian newspaper, Resett.
Although Svanes, Gunstad, and Jensen produced the dataset, the statistics and descrip-
tions in this thesis are based on the thesis by Svanes and Gunstad as their experiments
and measures are closely related to the experiments of this thesis. The labels follow a
mutual exclusive annotation scheme with the following categories according to Svanes
and Gunstad:

• Neutral: Utterances that do not meet the criteria of other categories belong to this
class. A neutral utterance contains neutral language and is a factual contribution
to the debate.

• Provocative: Utterances that contain aggressive language to express an opinion
or can be perceived as inappropriate. This includes the use of profane words,
patronizing language, or the use of irony and sarcasm to lower the credibility of an
opponent.

• Offensive: Utterances that contain hurtful, derogatory, or obscene language, either
directed towards an individual or a group.

• Moderately hateful: Utterances that are partly or fully motivated by hate
or negative attitude towards groups or individuals based on ethnicity, religion,
sexuality, gender, age, political views, social status, or disabilities. The utterances
do not call to action but still violates the integrity and disparages a group or
individual’s dignity.

• Hateful: Utterances that are partly or wholly motivated by hate or negative
attitude towards groups or individuals based on ethnicity, religion, sexuality, gender,
age, political views, social status, or disabilities and which encourage violent actions
based on this.
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The documents were collected in three steps, whereas the Resett documents were
collected using web scraping on the 1,000 most recent articles, mainly discussions on
controversial topics such as immigration, environment, and politics (Svanes and Gunstad,
2020). Svanes and Gunstad found that most of the abusive documents were related
to immigration and Muslims and noted that their models struggled to detect abusive
documents on other topics. Therefore, they extended the dataset with documents from
Twitter and Facebook. The tweets were collected through Twitter’s search API with a
keyword search on common Norwegian inflamed terms to gather Norwegian tweets with a
substantial amount belonging to the abusive classes. Lastly, the Facebook documents were
collected manually from 65 different posts on public pages such as Norwegian newspapers
and public persons. Most of the sources were also related to immigrant critical pages, due
to this being a common subject in Norwegian hatred debates. All names in the dataset
were anonymized. The documents originating from Twitter were anonymized with the
@USER tag, whereas the remaining documents were anonymized using the Navn tag.

The documents were annotated by Svanes, Gunstad and Jensen and 20 external
annotators, following the pre-defined annotator guidelines (presented in Appendix 2).
Firstly, 2,500 documents were annotated by the three creators using the majority vote,
and inter-annotator agreement was calculated, a process further described in the next
paragraph. Svanes and Gunstad describes that during the annotation of the first 2,500
documents, they modified the annotation guidelines based on their discussions. Doing
modifications to the annotator guidelines during the annotation process violates the prin-
ciple of ensuring consistent research additionally to preventing reproducibility. However,
for the remaining documents annotated by one annotator each (including the external
annotators), the same annotator guidelines were discussed beforehand and used. The
distribution of labels for each class is displayed in Table 3.1.

# Category # documents % of all

1 Neutral 34,085 82.8
2 Provocative 4,737 11.5
3 Offensive 1,563 3.8
4 Moderately hateful 510 1.2
5 Hateful 250 0.6

1-5 ALL 41,145 100

Table 3.1: The distribution of labels in the Norwegian abusive language dataset by Svanes
and Gunstad (2020).

Annotation agreement of the 2,500 first documents were calculated using Fleiss’
kappa score, described in Section 2.3.2, and percentage agreement. The calculations
are displayed in Table 3.2. Although they report a fear overall agreement with a Fleiss’
Kappa score of 0.3869, the agreements amongst the abusive classes are not as coherent
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as for the neutral class. One can observe from Table 3.2 that the agreement is influenced
by the high agreement for the neutral class, but that the annotators found it difficult
to agree on which documents belong to the abusive categories, lowering the weighted
score. Although this makes the abusive categories very interesting from a qualitative
perspective, a poor inter-annotator agreement can make it difficult to distinguish between
them in a quantitative valorization of the data.

Neutral Prov. Offensive Mod. Hateful Hateful Total

Full agreement 91% 3% 9% 13% 28% 89%

Majority vote 97% 26% 35% 9 % 39% 99.1%

Table 3.2: The annotation agreement of the Norwegian dataset. The table is adopted
from Svanes and Gunstad (2020) and reprinted with permission from Marie
Andreassen Svanes.

Although only one annotator annotated each of the remaining documents, the doc-
uments labeled within the abusive categories (2-5) were verified by one of the creators
and relabeled in cases of disagreement. In cases of uncertainty, they involved the other
creators and discussed and agreed upon the label to increase the labels’ reliability1.

3.2.2 The Offensive Language Identification Dataset

The first Offensive Language Identification Dataset (OLID) was created by Zampieri et al.
(2019b) to target several aggressive content types hierarchically for the English language.
The dataset has been used as the official dataset for the shared tasks OffensEval 2019 and
2020, which concerned identifying and categorizing offensive languages in social media
(Zampieri et al., 2019a, 2020). For OffensEval 2020, datasets in several languages following
the same annotation scheme and tasks were collected. This section first describes the
OLID annotation scheme, followed by a description of the Danish OLID dataset used in
the experiments of this thesis, collected and annotated by Sigurbergsson and Derczynski
(2020).

The OLID Annotation Scheme

The OLID annotation scheme consists of three layers of annotations in which each layer
corresponds to a specific task in OffensEval, as displayed in Figure 3.1. Each group’s
labels are mutually exclusive, such that a document cannot belong to multiple groups
within one level. The labels within each level are defined by Zampieri et al. as follows.

• Level A - Offensive language identification: The first layer discriminates on
whether the message is offensive (OFF) or not (NOT), in which an offensive message

1The source of this information is personal communication with Marie Andreassen Svanes, which clarified
parts of the annotation process not explained in Svanes and Gunstad (2020).
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is any message that includes insults and threats as well as any untargeted profanity,
such as swear words.

• Level B - Automatic categorization of offensive language types: The
second layer discriminates on whether an offensive message is targeted or not. A
targeted offensive message (TIN) contains insults and threats to an individual,
group, or others. An untargeted (UNT) offensive message contains general profanity,
not targeting anyone.

• Level C - Offensive language target identification: The third layer discrim-
inates on whether the targeted insult is targeted towards an individual (IND),
group (GRP), or other (OTH). An individual is defined as a person that is a
part of the conversation, while a group is defined as an entity of people based
on ethnicity, gender or sexual orientation, political affiliation, religious belief, or
other characteristics. The other category is the collection of documents that do not
belong to the group or individual categories.

Figure 3.1: The hierarchical annotation scheme of the OLID dataset created by Zampieri
et al. (2019b).

The annotation scheme builds upon the assumption that the target of offensive
messages is essential in discriminating between types of abusive messages. According to
Zampieri et al. insults and threats targeted at a group correspond to what is commonly
understood as hate speech. In contrast, they report that insults and threats targeted at
individuals are often defined as cyberbullying. Zampieri et al. does not exclude other
types of abusive messages in these understandings as the OLID scheme’s distinctions
are on whether the documents are offensive and targeted and not whether they are hate
speech or other forms of specified abusive language. However, if the goal is to detect
specific subgroups of abusive language, the OLID scheme may present some challenges.
For example, a threat targeted towards an individual based on identity factors such
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as religion or ethnicity will be labeled as GRP, although it targets an individual and
therefore also belongs to IND, by definition. Although such statements will qualify as
both IND and GRP, the groups are mutually exclusive, and the document will, therefore,
receive only one label, introducing some vagueness to the dataset. With regards to this,
Swamy et al. (2019) chose to report the number of hate speech examples as not applicable
for this dataset.

The Danish OLID Dataset

The Danish version of the OLID dataset by Sigurbergsson and Derczynski (2020) consists
of 3,600 documents collected from Facebook and Reddit and annotated using the OLID
scheme. Facebook and Reddit were chosen as the sources by Sigurbergsson and Derczynski
as Twitter, which was used by Zampieri et al. (2019b) in the original OLID dataset, has
limited usage in Denmark. They, therefore, concluded that collecting data from Twitter
would have resulted in low-quality data with many groups of interest being unrepresented.
This is the first and currently only available Danish abusive language dataset. The label
distribution of the dataset is displayed in Table 3.3.

Level A Level B Level C # documents % of all
OFF TIN IND 95 2.6
OFF TIN OTH 36 1.0
OFF TIN GRP 121 3.4
OFF UNT 189 5.2
NOT 3,159 87.8
ALL 3,600 100

Table 3.3: The distribution of labels in the Danish OLID dataset by Sigurbergsson and
Derczynski (2020).

Sigurbergsson and Derczynski manually collected 800 documents from the public
Facebook page Ekstra Bladet, a Danish media company that, through an initial analysis,
showed a high degree of variation in documents. They collected 2,800 documents using
web scraping of two general Danish Reddit forums, in which a keyword search based
on a crowdsourced lexicon compilation was performed at the end to obtain a sufficient
proportion of offensive documents. The keyword was limited to half of the gathered data
to ensure adequate data diversity. All user mentions were anonymized and replaced with
the @USER tag, and documents containing any sensitive information2 were removed.

The first hundred samples were annotated and evaluated by both authors to assess the
similarity of their annotations. They calculated similarity using the percentage agreement

2Sigurbergsson and Derczynski (2020) define sensitive information as any information that can be used
to uniquely identify someone by the following characteristics; racial or ethnic origin, political opinions,
religious or philosophical beliefs, trade union membership, genetic data, and biometric data.
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for all three levels corresponding to 41.9% for level A, 39.1% for level B, and 42.8% for
level C. The scores show that there were agreement for less than half of the annotations
for all three levels, which indicates that the annotators found it challenging to agree on
which documents belonged to what classes.

Sigurbergsson and Derczynski state that they discussed the cases of disagreement
and found that most cases concerned documents that lacked context or documents using
profanities, challenges presented in Section 3.1.1. They denoted that the annotation
guidelines were refined to handle cases of disagreement. Following the refined guidelines,
the remaining 3,500 were annotated only by the main author alone. As mentioned for the
Norwegian dataset in Section 3.2.1, refining annotator guidelines during the annotation
process is not good practice and prevent consistency and reproducibility. However, as
this only included 100 comments for this dataset, the effect is likely negligible.
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This chapter covers related research in the field of abusive language detection and
Transformer-based approaches. A structured literature search protocol is first described,
followed by a presentation of related work to give an overview of the field of abusive
language detection and clarify what gaps of research need to be filled.

4.1 Literature Review
This chapter’s literature review aims to cover sufficient knowledge within the field of
abusive language detection for the Norwegian language. This includes exploring high-
performing models with the potential to achieve state-of-the-art results for abusive
language detection in Norwegian. The literature review presented was initially guided by
findings made in the specialization project (Arntzen, 2020) which surveyed several aspects
of abusive language detection from traditional methods to more recent Transformer-
based approaches in the field. This thesis will be concentrated around the more recent
Transformer-based methods holding state-of-the-art results for abusive language detection
tasks in several languages. To begin the specified study of this thesis, a structured
literature search protocol is defined in Section 4.1.1, followed by some selection criteria
defined in Section 4.1.2. The approach is adapted from Kofod-Petersen (2018). However,
some adjustments specified in Section 4.1.2 were made to the process, as a folder of
relevant research was provided by the supervisor of this thesis, Björn Gambäck.

4.1.1 Structure Literature Search Protocol

As a starting point Google Scholar1 was selected as the search domain. Google Scholar
is a freely accessible web search engine for scholarly literature across many publishing
formats and disciplines. The literature is ranked based on the author’s ranking, the
number of references linked to the document and its relevance to other scholarly literature,
and the publication’s ranking of which the journal appears.

A set of search terms closely related to the specialization project’s (Arntzen, 2020)
research questions were defined to initiate the search. As the goal of this project was to
give an overview of the state-of-the-art in hate speech detection and define future work
for a following Master’s thesis, the terms were general and covered more topics than
what is included in the review of this thesis. The selected terms are defined in Table
4.1. They were defined to retrieve literature within the field for English and Norwegian,
Swedish, and Danish. Swedish and Danish were selected due to limited research in the

1https://scholar.google.com/
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area for Norwegian, as the three languages are mutually intelligible and have many similar
characteristics, as previously described in Section 2.1.

Group 1 Group 2 Group 3 Group 4
Main topic Data domain Specialized topic Languages

Term 1 Hate speech Twitter Machine learning English
Term 2 Offensive language Facebook Classification Norwegian
Term 3 Harmful speech Instagram Prediction Swedish
Term 4 Reddit Detection Danish

Table 4.1: Terms used to define the search query of the literature review.

The groups and search query were defined as follows to retrieve relevant literature
in the intersection of the groups, where n corresponds to the number of terms, and m
corresponds to the number of groups.

Groupi = Term1 ∨ Term2 ∨ ... ∨ Termn

Query = Group1 ∧Group2 ∧ ... ∧Groupm

(hate speech OR offensive language OR harmful speech) AND

(twitter OR facebook OR instagram OR reddit) AND

(machine learning OR classification OR prediction OR detection) AND

(english OR norwegian OR swedish OR danish)

Table 4.2: Resulting query used in the structured literature search.

The query displayed in Table 4.2 resulted in a total of 29,000 papers in which the
first 40 were collected for review. The gap between the amount of research targeting
English abusive language detection versus the amount of research targeting Norwegian
and otherwise Scandinavian abusive language detection, was as expected, large. Therefore,
three additional searches were performed, which isolated the query for the Scandinavian
languages Norwegian, Swedish and Danish, respectively, to ensure that no research got
lost in the vast amount of English papers.

4.1.2 Quality and Selection Assessment

All papers were checked for the following criteria to maintain only relevant research in
the review. The removal criteria were applied to filter papers out before verifying the
inclusion criteria defining the requirements to be included in the review.
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RC1 The article is a duplicate of another (keep the highest ranking)

RC2 The same study is published in different sources (keep the highest ranking)

IC1 The study’s main concern is automatic classification of abusive language

IC2 The study is a primary study presenting empirical results

IC3 The study focuses on social media data from Twitter, Facebook, Instagram or Reddit

IC4 The study describes an implementation of a classification model

IC5 The study focuses on abusive language detection of the English, Danish, Swedish or
Norwegian language

Following the above criteria resulted in a total of 22 papers. A comparison of these
papers to the initially provided folder showed that 75% of the resulting papers matched.
This confirmed that the folder contained relevant research. The structured search,
therefore, initiated the literature review, which was supplemented with papers from the
provided folder and the snowball sampling method, a method in which existing study
subjects recruit future subjects among their acquaintances. As relevant research of high
quality often refers to other relevant publications, this resulted in a good overview of
abusive language detection.

4.1.3 Result

The specialization project (Arntzen, 2020) provided an overview of different aspects
of abusive language methods from traditional to recent Transformer-based approaches
currently holding state-of-the-art results. The work revealed that research within abusive
language detection had grown rapidly over the past few years, leading to research beyond
individual tasks. Several shared tasks on abusive language detection have been invented,
providing a solid basis to compare models on equal terms resulting in an overview of
current state-of-the-art models. The shared tasks OffensEval 2019 (Zampieri et al., 2019a)
and OffensEval 2020 (Zampieri et al., 2020) are two examples of such tasks which laid
much of the basis of the literature review in this chapter and the experiments in the
remaining of this thesis.

4.2 Abusive Language Detection

This section presents relevant research in the field of abusive language detection, including
a brief overview of state-of-the-art approaches in the field and an overview of available
approaches for the Norwegian language. The research from the shared task, OffensEval
will be presented first, followed by some research on domain-specific models. Finally,
research on abusive language detection for the Norwegian language will be presented.
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4.2.1 The Shared Task OffensEval

OffensEval is a shared subtask of SemEval, an ongoing series of evaluations of systems
working on sentiment analysis problems (Zampieri et al., 2019a). The evaluations gather
groups of researchers working on shared tasks using benchmark datasets, enabling easier
comparisons of models. For OffensEval, the task concerns detecting different types of
offensive languages based on the OLID dataset, previously described in Section 3.2.2.
OffensEval was first organized in 2019 as the field over the past years has gained significant
attention, evidenced in the rapid growth of research publications (Arntzen, 2020). The
three tasks of OffensEval are closely related to the OLID dataset’s hierarchical annotation
scheme and are defined as follows.

• Subtask A: Offensive language identification. Classify instances as offensive or
not offensive language.

• Subtask B: Automatic categorization of offense types. Classify offensive language
as targeted or untargeted.

• Subtask C: Offense target identification. Classify targeted instances as targeted
towards an individual, group, or other.

OffensEval 2019 concerned these tasks for the English language, whereas the most
recent OffensEval 2020 expanded the task to include Subtask A for Arabic, Danish,
Greek, and Turkish. As English is a high-resource language, the research represents
several state-of-the-art approaches for abusive language detection. Danish is relevant to
Norwegian abusive language detection due to the language similarities. Based on this,
this section first describes OffensEval 2019, followed by the English and Danish track of
OffensEval 2020.

OffensEval 2019

For OffensEval 2019, 800 teams signed up, whereas 115 submitted reports (Zampieri et al.,
2019a). Zampieri et al. (2019b) created several baselines, with a CNN model holding
the best results. The best baseline was surpassed with only 2.9 macro F1 points by the
best performing model on Subtask A (Zampieri et al., 2020). The majority of the teams
used deep learning approaches for this subtask, whereas 8% used the recently developed,
Transformer-based BERT model (Devlin et al., 2019). The top five submissions for the
same subtask used BERT models, demonstrating the power of introducing Transformer-
based models to offensive language detection. The different approaches using BERT
models mainly varied in pre-processing techniques and model configurations.

In contrast to Subtask A, where BERT models dominated, the top models for Subtask
B were mainly ensembles. Several top teams used approaches to combine deep learning
models, including BERT, with other non-neural models. Seganti et al. (2019) achieved
the overall best macro F1 score across all subtasks with their ensemble model, which
also included a model based on the Transformer, called Open AI GPT (Radford et al.,
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2019), and other traditional machine learners such as the SVM. They tested different
data manipulation techniques to change the distribution of the dataset. In contrast, the
traditional approaches performed better on the original unbalanced distribution, but the
Transformer-based model performed better when trained on under- and oversampled
data, balancing out the distributions.

The English Track of OffensEval 2020

OffensEval proved to still be popular the year after, with 528 teams signing up, 145
submitting their results, and 70 system papers created (Zampieri et al., 2020). Based on
the promising results of Transformers in OffensEval 2019, such models gained even more
attraction in OffensEval 2020.

The most popular models of OffensEval 2020 were all Transformer-based, with BERT
and multilingual BERT (mBERT) among the most popular models. The mBERT will be
further described in Section 4.3.1. Several of the other models used, such as ALBERT
(Lan et al., 2019), ERNIE 2.0 (Sun et al., 2019), RoBERTa and XLM-RoBERTa (Conneau
et al., 2019), are versions or extensions of the BERT model with different pre-processing,
configurations, and sizes. The XLM-RoBERTa model is multilingual and trained on 100
different languages (including Arabic, Danish, Greek, and Turkish)2. Additionally to
the emergence of several Transformer-based models, an extension of the OLID dataset,
called SOLID, short for Semi-Supervised Offensive Language Identification Dataset, was
also made available for the English track to improve model performance. The dataset
contains over nine million English tweets labeled using the same annotation scheme as
OLID, but in an unsupervised manner using machines (Rosenthal et al., 2020).

The top 20 submissions for Subtask A had less than one macro F1 point separating
them, where the best team used an ALBERT ensemble model (Wiedemann et al., 2020).
The top team for Subtask B and C, which also were second for Subtask A, used an
ensemble of the XLM-RoBERTa base and large models for Subtask A. Furthermore, they
used an ensemble of ALBERT and ERNIE 2.0 for Subtask B and C (Wang et al., 2020).
Their models outperformed the second-best model for Subtask B with one macro F1
point and four macro F1 points for Subtask C. The results show that a wide range of
Transformer-based models for the English language has been utilized to detect abusive
languages and seems to have outperformed the more traditional approaches, which were
more present among the top results for OffensEval 2019.

The Danish Track of OffensEval 2020

As described in Section 3.2.2, Sigurbergsson and Derczynski (2020) collected the first
available Danish abusive language dataset, which was used in the Danish track of
OffensEval 2020 working on Subtask A, offensive language identification. Sigurbergsson
and Derczynski tested several different approaches on the dataset and achieved a macro
F1 score of 0.699 using a non-neural linear approach for offensive language detection.

2The details of these architectures are left out as they are not yet available for the Norwegian language,
which is the main focus of this thesis.
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This result was later surpassed by a majority of the teams participating in OffensEval
2020.

A total of 72 teams registered to participate in this track, whereas 39 made official
submissions (Zampieri et al., 2020). The best team for the Danish track detecting
offensive language used the Nordic BERT model, which implements the standard BERT
architecture customized for several Nordic languages. They used the version customized for
Danish (Pàmies et al., 2020). After experimenting with different pre-processing techniques
and finding that the BERT model performed well with almost no pre-processing, Pàmies
et al. did little pre-processing except for reducing the orthographic lengthening to a
maximum of two repeated characters and removing irrelevant punctuation marks. Their
results surpassed the second-best team with one macro F1 point resulting in a macro
F1 score of 0.812. The second-best team was the same as held the top results for
Subtask B and C, and second-best results for Subtask A, for the English track, using the
XLM-RoBERTa ensemble, as described in the previous section. This demonstrates how
a successful approach for one language can transfer to others.

4.2.2 Domain-specific Abusive Language BERT Models

The advantage of using Transformer-based approaches pre-trained on large corpora, such
as BERT, is that the model knows the meaning of terms and what context they occur in
before the fine-tuning process (Devlin et al., 2019). Unlike traditional neural approaches,
the model does not have to learn language during the fine-tuning process thoroughly, but
only what separates the classes to be predicted. However, in cases where the fine-tuning
dataset is represented by "non-standard" language, language different from what the
BERT model is pre-trained on, problems may arise. An example is social media platforms
with many domain-specific expressions used explicitly on these platforms. The meaning of
such expressions may therefore be unknown for BERT models trained on general language
understanding. Another challenge is grammar, as the BERT model is mainly pre-trained
on pre-processed text such as what appears in books and newspapers. When classifying
unprocessed user-generated data, jargon, grammar mistakes, and typos may appear. As
input sequences of terms are represented as numerical word embeddings, terms with
almost the same syntax will hold entirely different values. Therefore, the model may not
be able to associate wrongly spelled terms with their correct representation unless it has
been trained to do so.

Several different pre-processing techniques have traditionally been used to clean text,
requiring extensive work. Another option to reduce the pre-processing needs is to continue
the model’s pre-training phase on domain-specific data, such as social media data. Caselli
et al. (2020) introduced HateBERT, which is a BERT model pre-trained for abusive
language detection for English. The corpus on which HateBERT is pre-trained is called
RAL-E: Reddit Abusive Language English dataset. RAL-E is composed of 71.1 million
tokens of user-created posts from communities at the social media platform Reddit
that were banned due to being offensive, abusive, or hateful (Caselli et al., 2020). The
model is customized for understanding social media data and the polarity and language
jargon present in abusive languages. Caselli et al. showed that HateBERT outperformed
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BERT for three benchmark abusive language datasets, including the OLID dataset used
for OffensEval. However, the performance improvement was limited to around one to
two F1 points for most tasks, which is not a large rise when considering the extensive
work required to create HateBERT. Furthermore, re-training a model on domain-specific
corpora requires a vast amount of domain-specific data and is computationally expensive
(Devlin et al., 2019; Kummervold et al., 2021; Kutuzov et al., 2021).

Moreover, the technique has not always proven to be successful. Isaksen (2019) further
pre-trained the general BERT model on unlabelled domain-specific data from several
abusive language datasets, resulting in a file of nearly 170,000 lines (Isaksen, 2019). The
further pre-trained model did not reflect any notable improvement to the general BERT
model. Isaksen noted a flaw in a portion of the pre-training corpus composed of single
sentences, which might have affected how the model learns language as BERT is trained
on next sentence prediction. However, another reason may be that the pre-training
corpora was too small for the model to learn high-quality representations of abusive
language.

4.2.3 Norwegian Abusive Language Detection

The research available on Norwegian abusive language detection is currently limited to
the research performed by Svanes and Gunstad (2020) and Jensen (2020). Their work
collecting a Norwegian abusive language dataset was previously described in Section
3.2.1. Besides their work, there are other theses working on related topics in a parallel
effort to the current thesis.

Mathias Wahl and Sondre Sjåstad at the Norwegian University of Science and Tech-
nology (NTNU) are writing a Master’s thesis on detecting hateful utterances for the
Norwegian language using an anomaly detection approach on the dataset by Svanes,
Gunstad and Jensen. Furthermore, Jonas Nordhaug Myhre and Joakim Warholm at
the Arctic University of Norway (UiT) are leading an initiative collecting a dataset on
unhealthy conversations, where one of the attributes denoted is whether the language is
hostile or not. Based on this dataset, Warholm is writing a Master’s thesis on detecting
unhealthy conversations using Transformer-based approaches. However, due to the results
of these initiatives not being published yet, this section only describes the currently
available research limited to Svanes and Gunstad (2020) and Jensen (2020) and the
approaches they used to detect abusive Norwegian language.

Svanes and Gunstad trained various traditional linear and deep learning models to
classify the five classes in their dataset ranging from neutral to hateful with different
degrees of abusiveness. Additionally, the authors considered testing the Nordic BERT
model, the same model as mentioned in Section 4.2.1 but customized for Norwegian. How-
ever, they had problems implementing the model for the Norwegian language and noted
that several others had reported similar issues, resulting in them not proceeding forward
with it. Moreover, Svanes and Gunstad used two different classification approaches for all
models, where the first approach trained the models to classify all five classes in one step.
The second approach divided the classification into two steps. The first step classified all
instances as neutral or non-neutral, and the second step classified the correctly predicted
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non-neutral instances as the four categories within that group. All models struggled to
discriminate between the different classes and were biased towards the neutral class due
to the highly imbalanced dataset.

Svanes and Gunstad used accuracy score as the main measure to report model
performance. They reported a top accuracy of 0.833 using the one-step approach and
accuracies of 0.796 and 0.568 of the first and second steps using the two-step approach,
respectively. Based on these measures, Svanes and Gunstad reported a Logistic Regression
model as their best approach in the one-step approach and the Support Vector Machine
for the two-step approach. A problem with their reported results is that the accuracy
measure is biased towards the majority class of neutral instances. When examining their
confusion matrices, it is evident that the Logistic Regression model cannot detect hateful
and offensive instances. The model did not detect any hateful instances, whereas only
one moderately hateful instance was detected. The scores were also deficient for the other
abusive categories. When considering the classwise results of their confusion matrices, a
Support Vector Machine outperformed the other models in both approaches3.

As opposed to Svanes and Gunstad, Jensen tested an anomaly detection approach
using a CNN model with word embeddings using the same dataset. The hateful and
moderately hateful classes were merged into one class, resulting in a hate speech detection
problem. Likewise to Svanes and Gunstad the results showed that the model struggled
to detect the hateful instances and that it was biased towards neutral class. The best-
reported accuracy was 0.93, whereas the best macro F1 score achieved was 0.515 based
on their presented classwise F1 scores. Although the accuracy is high, the value is biased
towards the neutral class, as Jensen reports that only 0.8% of the instances classified as
hateful were correctly classified, yielding a severe low precision score. Furthermore, only
41% of the true hateful instances were detected as hateful, using the anomaly detection
approach. Jensen ’s overall results are only slightly above the majority class baseline,
i.e., what can be achieved by labeling all instances as neutral.

4.3 The Transformer-based BERT Model

The emergence of Transformer-based models such as BERT has revolutionized models’
ability to learn contextual representations in language. As Norwegian is transferring
from a lower to a higher resource language, several state-of-the-art models previously
only available for English and other languages have also recently been developed for
the Norwegian language. Section 4.3.1 describes the available Norwegian BERT models,
whereas Section 4.3.2 describes some challenges with the fine-tuning phase of these models.
The concept of Transformers and BERT are previously described in Section 2.4.

3As accuracy is considered an inappropriate measure when evaluating model performance on a highly
unbalanced dataset, the results by Svanes and Gunstad (2020) are re-calculated based on more
representative measures in Chapter 7 for compatibility to the reported results from the experiments
of this thesis.
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4.3.1 Transformer-based BERT Models for Norwegian

The first Transformer-based model providing support for the Norwegian language is the
multilingual BERT (mBERT) model. The mBERT was developed as an extension of the
original BERT model (Devlin et al., 2019) trained on the entire Wikipedia4 dump for
each of the top 100 languages with the largest Wikipedia sites. This includes Norwegian
Bokmål, Norwegian Nynorsk, Danish and Swedish. The Norwegian Bokmål version
of this corpus corresponds to about 0.9 GB of data, whereas the Norwegian Nynorsk
corresponds to about 0.2 GB (Kummervold et al., 2021).

Furthermore, the mBERT model has the same model configurations as BERTbase,
and both the cased and uncased versions of the models were initially released. However,
the uncased version has normalization issues for non-Latin alphabets, which include the
Norwegian alphabet. During the normalization process, the tokenizer handles accent
markers in the same step as it converts characters to lowercase, resulting in removing
characters with a critical role in several languages. For instance, it converts letters such
as å into a which in many cases will change a term’s meaning. The word mål (translates
to goal in English) will, for example, convert to mal (translates to template in English).
The cased model does not have the same problems and is therefore recommended for
use. Another limitation of mBERT is that the corpus is mainly objective and descriptive,
lacking subjective and informal language, such as what is typically found in social media
forums.

Besides the multilingual BERT model, the Danish company, BotXO, developed several
monolingual BERT models for the Nordic languages, with the common name Nordic
BERT (BotXO Ltd., 2021). The Norwegian version of this model is trained on 4.5
GB Norwegian text. Unfortunately, several researchers state that they were unable to
reproduce this model for the Norwegian language due to a broken model vocabulary
making the model unavailable for use (Svanes and Gunstad, 2020; Kutuzov et al., 2021;
Kummervold et al., 2021).

Recently, two different initiatives have been working on monolingual Norwegian
Transformer-based models. The Language Technology Group at the University of Oslo
organized the Norwegian Large-scale Language Models (NorLM) initiative, introducing
the Norwegian BERT (NorBERT) model, along with a viable alternative to Transformer-
based models, namely the pre-trained neural architecture, NorELMo (Kutuzov et al.,
2021). Kutuzov et al. showed that NorBERT outperformed NorELMo for all their
NLP tasks but notes that the computational resources required to adapt NorELMo to a
downstream task can be an order of magnitude less. However, as this thesis is concerned
with BERT models, only NorBERT will be described here. NorBERT is trained on the
corpus displayed in Table 4.3 which incorporates the Bokmål and Nynorsk Wikipedias
and Norsk aviskorpus (Språkbanken, 2019) which is an extensive collection of Norwegian
news texts, producing a greater foundation to understand the Norwegian language in
several different contexts. The model has the same configurations as the BERTbase,cased.

Simultaneously to the development of NorBERT, the AI Lab of the National Library

4www.wikipedia.org is a free online encyclopedia, created and edited by volunteers.
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Sources Period Million words

Bokmål Wikipedia 1998-2019 160

Norsk aviskorpus (Norwegian newspapers) 1998-2019 1,700

Nynorsk Wikipedia 2001-2019 40

Total 1,900

Table 4.3: The corpus of which NorBERT is pre-trained on (Kutuzov et al., 2021).

of Norway introduced the Nasjonabiblioteket BERT (NB-BERT) (Kummervold et al.,
2021) (translates to National Library BERT), which is the largest available Norwegian
Transformer-based model in terms of pre-training corpus. The model is available following
both the BERTbase,cased and the BERTlarge,uncased configurations, whereas the latter was
released April 29th, 2021, concurrently with this work. The model is pre-trained on the
Colossal Norwegian Corpus displayed in Table 4.4 which is about ten times larger than
the corpus of NorBERT (Kummervold et al., 2021; Kutuzov et al., 2021). The sources
are essentially pre-processed texts published in Norwegian books, newspapers, Wikipedia,
and other formal legal and government reports, representing the Norwegian language
historically and socially over the past 200 years (Kummervold et al., 2021).

As opposed to the corpora of mBERT and NorBERT, this corpus is also composed
of some web crawled data, namely the Common Crawl OSCAR, that to some extent
contains user-generated data crawled from the web. This type of data is more similar to
what can be found in social media platforms, which may help the model learn language
closer to the datasets used in the experiments of this thesis. However, some cleaning
was initially performed on this part of the corpus, which includes removing all pages
containing any term from the List of Dirty, Naughty, Obscene, and Otherwise Bad Words
(Austegard, 2019). The removal of pages containing offensive terms is unfortunate for
abusive language detection and may have removed some relevant data. Nevertheless, the
list contains only forty terms and represents a smaller subset of bad terms used in social
media contexts. Moreover, most of the sources from The Colossal Norwegian Corpus are
collected using Optical Character Recognition (OCR)5, which may have introduced some
noise to the corpus. Kummervold et al. estimate that the resulting pre-training corpus is
composed of 83% Norwegian bokmål, 12% Nynorsk, 4% English, and the remaining 1%
is a combination of Danish, Swedish, and Sami and some traces from other languages.

Kummervold et al. and Kutuzov et al. reported the results of mBERT, NorBERT
and NB-BERT for several NLP tasks. The results showed that NB-BERT significantly
outperformed the other models for most tasks, with NorBERT being the second-best
model. Kummervold et al. also showed that NB-BERT outperformed mBERT and
NorBERT for tasks across Danish, Swedish, and English, demonstrating a decent mul-
tilingual understanding. Although mBERT has proven to perform well across several

5OCR uses technology to read and separate printed or handwritten text characters inside digital images
of physical documents.
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Sources Period Million words Text (GB)

Books (OCR) 1814-2020 11,820 69.0

Newspapers Scans (OCR) 2015-2020 3,350 20.0

Parliament Documentsa (OCR) 1814-2014 809 0.2

Common Crawl OSCAR 1991-2020 799 0.3

Online Bokmål Newspapers 1998-2019 678 0.6

Periodicals (OCR) 2010-2020 317 4.9

Newspapers Microfilms (OCR) 1961,1971,1981,1998-2007 292 5.1

Bokmål Wikipedia 1998-2019 140 1.8

Public Reportsb (OCR) 1814-2020 91 4.0

Legal Collectionsc 1814-2004 63 1.9

Online Nynorsk Newspapers 1998-2019 47 0.4

Nynorsk Wikipedia 2001-2019 32 0.9

Total 18,438 109.1
a Stortingsforhandlingen. b Evalueringsrapporter. c Lovdata CD/DVD

Table 4.4: The composition of the Colossal Norwegian Corpus on which the NB-BERT
model is pre-trained. The table is adapted from Kummervold et al. (2021)
with permission from Per Egil Kummervold.

NLP tasks for multiple languages, the results from testing the model on NLP tasks for
Norwegian Nynorsk and Bokmål indicates that the amount of Norwegian data may be
inadequate for the model to learn more complex Norwegian representations (Pires et al.,
2019; Kummervold et al., 2021; Kutuzov et al., 2021).

4.3.2 Training Instability of Fine-tuned Transformer-based Models

As previously described in Sections 4.2, Transformer-based models have showed a solid
empirical performance surpassing traditional neural methods for several NLP tasks.
However, fine-tuned Transformer-based approaches have proven to exhibit a significant
training instability; when fine-tuning the model multiple times on the same dataset with
random restarts, the standard deviation of the fine-tuning accuracy is large (Devlin et al.,
2019; Li et al., 2020; Dodge et al., 2020; Liu et al., 2020; Mosbach et al., 2021).

As the Transformer-based architectures are more complex than traditional approaches,
the origin of the instability is not apparent, and several different hypotheses have emerged.
Devlin et al. (2019) claimed that the instability occurred when using smaller datasets.
Based on this, they choose to run several random restarts and selected the best model
on the development set. Devlin et al. also decided to report their results for several
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NLP tasks over five random restarts to get more representative results, less biased by the
instability of each training. The same approach has also been adopted by other literature
when reporting results of BERT models (Kutuzov et al., 2021).

Dodge et al. (2020) identified two factors causing instability when examining training
and validation scores of BERT over 2,100 runs on four benchmark datasets. The two
factors were influenced by choice of random restart state: weight initialization and
training data order. Correspondingly to Devlin et al., Dodge et al. suggested small
datasets to be a potential reason for the observed instability. In contrast, Lee et al.
(2020) suggested catastrophic forgetting, which is the tendency of an artificial neural
network to completely and abruptly forget previously learned information upon learning
new information. However, Mosbach et al. (2021) showed that both hypotheses fail to
explain the observed instability.

Mosbach et al. suggested that the instability originates from optimization difficulties
leading to vanishing gradients, a problem previously described in Section 2.4.1, addi-
tionally to the occurrence of generalization differences later in training. The differences
in generalization is illustrated in Figure 4.1, where Figure 4.1a shows the development
accuracy for 10 successful runs on 20 epochs, and Figure 4.1b shows the development
accuracy versus training loss for 450 models using different hyperparameters.
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Figure 4.1: Development set accuracy of BERT for multiple fine-tuning runs. Figure (a)
shows the models trained with 10 different random states, whereas Figure (b)
shows the models at the end of training using different random states and
hyperparameters. The figures are are adopted from Mosbach et al. (2021)
and reprinted with permission from Marius Mosbach.

Based on this, Mosbach et al. proposed a simple strategy of using lower learning rates
to avoid vanishing gradients early in training and increasing the number of iterations
considerably to reach almost zero training loss, particularly for smaller datasets. They
noted that this increases stability requiring less fine-tuning runs for reliable results.
Furthermore, Mosbach et al. reported that the increasing number of iterations did not
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lead to a loss due to overfitting in their experiments and that the approach outperformed
previous work.
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5 Data Analysis
When using supervised learning to detect abusive languages, one of the main tasks is
to find the boundaries separating the different classes. Previous literature has shown
that several different features in the dataset can represent this boundary to some extent,
ranging from word and hashtag co-occurrences to more contextual features such as
word embeddings (Davidson et al., 2017; Zampieri et al., 2019a, 2020). This chapter is
dedicated to building a better understanding of the datasets used in this thesis, identifying
what separates the neutral class from other abusive classes, and exploring similarities
and differences across the datasets that may affect how a model generalizes across them.

The Norwegian dataset previously described in Section 3.2.1 is the main dataset of
this thesis and will also be the main focus of this chapter. In one of the experiments
of the following chapters, the Danish dataset, described in Section 3.2.2 is used as an
extension to the Norwegian dataset. For the model to generalize across different abusive
language datasets, the boundary separating the classes should generalize across both
datasets (as previously described in Section 3.1.1). Based on this, Section 5.1 describes a
content analysis of the classes in the Norwegian dataset and how this compares to the
classes of the Danish dataset.

Furthermore, Section 5.2 describes a quantitative and qualitative annotation analysis
of a subset of the Norwegian dataset. This analysis aims to understand better the
strengths and weaknesses of the Norwegian dataset in light of the challenges of abusive
language datasets described in Section 3.1. Finally, Section 5.3 presents a refinement of
the dataset’s class generalization based on the findings from this analysis, which is used
in the experiments of the following chapters.

5.1 Content Analysis

A term occurrence analysis is performed to understand the datasets’ content and how it
differs across classes. Figure 5.1 and Figure 5.2 visualize word clouds of the neutral and
abusive document classes in the Norwegian dataset, respectively. A word cloud is a cluster
of terms where larger and bolder terms appear more frequently in the documents. For
all word clouds in this thesis, stop words are removed to obtain the more discriminative
terms for each class.

The apparent first observation when comparing the neutral document class in Figure
5.1 to the abusive document classes in Figure 5.2, is that as the abusiveness of the
documents increases, so does the occurrence of Islam-related topics. This indicates that
the documents within the abusive categories have more topics related to Islam than the
less abusive categories. Considering the definitions used by Svanes and Gunstad (2020)
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Figure 5.1: Wordcloud visualizing high frequent terms in the neutral class of the Nor-
wegian dataset after removing stop words. Larger words represent words
occurring more often.

and Jensen (2020) when annotating the dataset, it makes sense that the hateful classes
contain more material directed at groups or individuals based on religion. However, the
provocative and offensive documents also have a higher frequency of terms related to
Islam than the neutral class, indicating that this is a central topic of discussion across
the data collection sources.

Furthermore, one can observe that the terms in the neutral word cloud in Figure 5.1
have more diverse topics than the other classes, ranging from climate and children to
gender and meat. In contrast, the provocative class (Figure 5.2a) seems to have a higher
frequency of political-related terms such as FrP, Høyre, and MDG, which are Norwegian
political parties, and Erna, the name of the prime minister of Norway. At the same
time, the provocative class has fewer offensive terms than the more abusive classes, which
correspond well to the definitions in Section 3.2.1. The offensive class seems to have the
highest frequency of offensive terms, although there is also a frequent occurrence in the
moderately hateful and hateful classes.

When considering the unbalanced nature of the Norwegian dataset and the few abusive
instances, it would have been desirable to collect more documents. However, because
of the extensive amount of work to collect and annotate documents, it was decided to
extend the Norwegian dataset with another abusive language dataset, the Danish dataset
by Sigurbergsson and Derczynski (2020). As described in Section 3.2.2 the dataset was
chosen as the most similar available dataset to the Norwegian dataset. The word clouds
representing the non-offensive, offensive, and targeted offensive documents are displayed
in Figure 5.3.

The instant observation from the Danish word clouds in Figure 5.3 is that they are
quite different from the Norwegian ones, both in terms of language and content. For
instance, Islam and political parties that were central subjects in the Norwegian dataset
do not seem to be frequent subjects of this dataset. Furthermore, the Danish dataset

64



5.1 Content Analysis

(a) Provocative (b) Offensive

(c) Moderately Hateful (d) Hateful

Figure 5.2: Word clouds visualizing high frequent terms in each of the five categories of
the Norwegian dataset after removing stop words. Larger words represent
words occurring more often.

contains more English terms and web-related terms such as http and com, which represent
web links.

These differences may be due to the datasets being collected from different sources.
The Norwegian dataset is collected mainly from immigrant-critical news, Twitter, and
Facebook pages, while the Danish dataset is collected from more general Reddit pages.
These sources may contain discussions of different topics by different people affecting the
specific language used. Additionally, the culture affects how people express themselves,
both when it comes to heated subjects and the selected terms and how English terms are
incorporated into the language. Despite the syntactic similarities discussed in Section
2.1, it may be that the cultural differences between Norwegian and Danish affect how
the abusive languages are expressed, leading to differences between the datasets.
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(a) Non-offensive (b) Offensive

(c) Targeted insults

Figure 5.3: Word clouds visualizing high frequent terms in the non-offensive, offensive and
targeted offensive documents of the Danish dataset. Larger words represent
words occurring more often.

Besides the observed differences, there are also similarities between the word clouds
of the two languages. For instance, there is an increasing occurrence of abusive and
curse terms as the abusiveness of the document classes increases for both word clouds.
Furthermore, one can observe that the frequencies of the abusive terms within the
offensive group in Figure 5.3b are lower than for the Norwegian offensive class in Figure
5.2b. This is likely because the Danish offensive class includes profanities that are more
similar to the provocative Norwegian class by definition. The Danish offensive class in
Figure 5.3b also seems to correspond better to the provocative Norwegian class in Figure
5.2a.

Furthermore, Danmark (translating to Denmark) is consistently mentioned across
the Danish documents, whereas Norge (translating to Norway) is consistently mentioned
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across the Norwegian documents. This indicates that many of the documents concern
the country of origin of the pages they are collected. All Danish and Norwegian word
clouds also mention the navn tag, which represents user mentions, a common feature in
social media posts.

Although this analysis has shown considerable differences between the term occurrences
of the two datasets, it is worth remembering that languages are composed of more than
word occurrences. For instance, the context in which terms occur that the Transformer-
based models previously discussed can help capture.

5.2 Annotation Analysis

A subset of the Norwegian dataset was annotated and analyzed to get an idea of
the dataset’s quality and otherwise possible ambiguity across classes beyond what is
described in Section 3.2.1. The annotations were conducted in collaboration with the
two other Master’s students, Mathias Wahl and Sondre Grav Skjåstad, also working on
abusive language detection with the same dataset. Section 5.2.1 describes the annotation
experiment and the resulting inter-annotation agreements calculated from two subsets of
the Norwegian dataset, followed by a description of some observations done during the
process, in Section 5.2.2.

5.2.1 Quantitative Analysis of the Annotator Agreement

Due to the unbalanced class distributions of the dataset, the annotation experiment was
divided into two separate steps annotating the following subsets.

1. Representative subset: Consists of 200 documents sampled using stratified
sampling (as described in Section 2.3.3) to ensure a similar distribution to the
original dataset with regards to the five classes.

2. Abusive subset: Consists of 100 documents with 25 random sampled documents
from each of the four abusive categories.

It was selected to sample 200 instances for the representative subset as it was within our
time constraints to annotate and considered representative of the dataset’s distribution.
The purpose of this subset was to represent a subset with similar distribution to the
original dataset. However, as the number of instances from the abusive categories was
small and not necessarily representative of each class, it was decided to sample the second
subset of 100 documents from the four abusive categories, named the abusive subset.
The abusive subset ensured that all categories were represented in the analysis.

Following Svanes and Gunstad, all annotators were familiarized with the guidelines
(found in Appendix 2), and some discussion around the definitions and guidelines were
done prior to the annotation process. Each annotator annotated all documents in the two
subsets individually without discussing the annotations with others. Finally, the inter-
annotator agreement was calculated for each subset using Fleiss’ kappa and percentage
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agreement to measure the general agreement across classes and the separate agreement
for each class, respectively. The approach and calculations follow Svanes and Gunstad
(2020) which makes comparisons of results easier. The annotation agreement of the three
annotators for the representative subset is displayed in Table 5.1.

Neutral Prov. Offensive Mod. Hateful Hateful Total

Full agreement 72% 15% 0% 0% 0% 74%

Majority vote 88% 51% 25% 0% 0% 99%

Table 5.1: The annotation agreement of three annotators when annotating 200 samples
from the Norwegian dataset sampled using stratified sampling for the five
categories.

The agreement is highest for the neutral class, although when comparing to the results
of Svanes and Gunstad (2020) as previously displayed in Table 3.2 in Section 3.2.1, the
agreement is significantly lower. This is also reflected in the total agreement, which is
15% lower than Svanes and Gunstad when considering the full agreement. Two reasons
for this may be that the sample contains other variations in the documents than the
subset annotated by Svanes and Gunstad, or that the annotators in this experiment
agreed less on the documents due to aligning their subjective view when annotating.

Furthermore, the agreement of several of the abusive document classes is equal to zero,
which indicates disagreement for these classes. However, as the sample sizes of the abusive
document classes in this subset are small, this agreement is likely, not representative of
the dataset but gives an idea of existing ambiguity in the dataset. The general agreement
across classes for the representative subset using Fleiss’ kappa was equal to 0.3591, slightly
lower than Svanes and Gunstad, but still reflects a fair agreement.

The same calculations were performed on the abusive subset to investigate the abusive
classes further. The annotation agreement of three annotators on the abusive subset is
displayed in Table 5.1.

Neutral Prov. Offensive Mod. Hateful Hateful Total

Full agreement 0% 12% 9% 22% 13% 13%

Majority vote 22% 43% 42% 47% 52% 84%

Table 5.2: The annotation agreement of three annotators when annotating 100 samples
from the Norwegian dataset sampling 25 random samples from each of the
four abusive categories.

As can be observed from the table, the agreement is generally low for all classes,
particularly for the neutral class, which is because the abusive subset was sampled from
the abusive labeled classes of the original dataset. The majority vote for the neutral
class of 22%, therefore, reflects that some documents were labeled neutral in the abusive

68



5.2 Annotation Analysis

subsample although none of them were originally labeled as neutral by Svanes and
Gunstad and Jensen. The Fleiss’ kappa score for the abusive subset was calculated to
0.2694, corresponding to the lower range of fair agreement. The value reflects that the
annotators found it difficult to agree upon the class labels of the abusive categories.

Furthermore, there were some particularly repetitive patterns observed during the
annotation process. When comparing the annotations of this experiment to the original
labels, the provocative and offensive categories were often confused, and likewise between
the hateful and moderately hateful groups. This experiment’s annotations also annotated
documents less abusive than what appeared in the original labels. This is likely due
to the discussions of the definitions and guidelines beforehand affecting the subjective
perceptions of the annotators. Despite the standard guidelines, discussions between
annotators will affect how annotators perceive the definitions. The observations are
interesting when considering a refinement of the class generalizations, which will be
further described in Section 5.3.

Overall, the observations from this experiment confirm that annotating abusive lan-
guages, in particular, is a challenging task with a substantial amount of disagreement
between annotators. Furthermore, using a fine-grained annotation scheme when annot-
ating abusive language may introduce more vagueness to the dataset, as seen in the
analysis of the inter-annotator agreement in the dataset.

5.2.2 Qualitative Analysis of Annotations

Besides the inter-annotator calculations performed in the previous section, an analysis
of the documents with substantial disagreement in the dataset was performed to get
an idea of what documents are more challenging to categorize. Some of the difficulties
encountered during annotation were observed to correspond well to the general problems
for abusive language datasets as previously described in Section 3.1.1.

The first example document listed below was annotated as neutral by two of the three
annotators and as offensive by the last one.

Norwegian er du dyselektiker?
English are you dyselexic?

As the annotations range between two different classification levels, there is a conflict.
A lack of context to emphasize the intention of the message explained the neutral
label. However, when analyzing the document and the misspelling of the term dyslexic,
the misspelling can be perceived as a technique to amplify an offensive message with
a condescending tone. In this case, both neutral and offensive may seem reasonable
depending on the subjective interpretation of whether the misspelled word signals a
message in itself or just an innocent grammar mistake. The example demonstrates
some of the difficulties encountered when annotating documents with the lack of further
context and substantiates that more context is necessary for reliable labels, as previously
emphasized as a general problem for abusive language datasets in Section 3.1.1.
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Another example listed below demonstrates challenges with lack of context and
annotators aligning their perceptions into annotations. The document was labeled as
provocative, offensive, and moderately hateful by the three annotators, whereas the
original label by Svanes and Gunstad and Jensen was moderately hateful.

Norwegian

Navn Navn Navn Du mener så at Syria skal ta seg av norske
terrorister. Det gidder de selvfølgelig ikke, på samme måte
som vi sender utenlandske kriminelle hjem til der de
kommer fra

English

Name Name Name So you mean that Syria should take care of
Norwegian terrorists. Of course, they do not bother, in
the same way that we send foreign criminals home to
where they come from ?

The annotators agreed upon the aggressive undertone but disagreed on the message’s
meaning. The aggressive undertone substantiated the provocative label. In contrast,
the moderately hateful label was built upon the fact that Syria is compared to Norway
in a way that does not consider that Syria is in a completely different situation than
Norway. The annotator classified the comment as whataboutism, which is a common
technique to suppress other people’s concerns or opinions. It is often used to perpetuate
racist attitudes in society. This was strengthened by the expression "home to where they
come from," which according to the annotator is a well-known condescending and racist
expression in several languages.

Other annotators argued that the negative attitude is directed at the handling of
criminals and not towards an individual or group based on the characteristics defined
in Section 3.2.1. On the other side, it was discussed that the fact that the criminals
are foreign and that the country Syria is mentioned makes the message targeted at a
particular group based on ethnicity. This demonstrates complex cases of annotating
language where the perception of the annotators is central in the resulting label.

Several cases had a substantial disagreement, whereas the main causes seemed to
be a lack of context, which led annotators to align their perceptions and assumptions
when deciding on labels. It was also observed that the hateful documents with offensive
terms had a higher agreement than the hateful documents without such terms. These
observations are consistent with the challenges previously described in Section 3.1.
Moreover, a majority of the hateful and moderately hateful instances concerned Islam-
related topics, which may indicate a bias in the dataset that should be further analyzed in
the predictions of the models. The following section uses the findings from these analyses
to propose a new class scheme for the dataset.
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5.3 Final Dataset Representations

Based on this chapter’s previous analyses and the fact that the Norwegian dataset is
highly unbalanced with few abusive instances, this section proposes some changes to the
dataset used in the experiments of this thesis. The new representations aim to reduce
the vagueness in the dataset and increase the number of instances within one class. First,
the changes made to the Norwegian dataset will be presented in Section 5.3.1, followed
by a description in Section 5.3.2 of how the Danish dataset was converted into the same
format.

5.3.1 The Norwegian Dataset Representation

As a result of a low inter-annotator agreement within the abusive categories and the
observations done when annotating, it was decided to reduce the number of categories
into three levels, namely neutral, offensive and hateful. The three levels include the
following categories.

• Neutral: Includes the neutral documents from the Norwegian dataset, which are
all documents that do not belong to any of the other categories. The neutral
category is, therefore, unchanged from the original dataset.

• Offensive: Includes all documents except those belonging to the neutral class. A
document is offensive if it originally belonged to the Norwegian dataset’s provocative,
offensive, moderately hateful, or hateful classes.

• Hateful: Includes the moderately hateful and hateful documents of the original
dataset.

Note that the neutral class is mutually exclusive to the other classes. Still, a notable
change to the labels is that the offensive class includes all documents that are not
neutral, including the hateful documents. The choices of generalization were made based
on what classes were considered the most similar based on definition, which was also
confirmed by the inter-annotator agreement calculated in Section 5.2.1. Additionally,
this generalization makes it possible to see abusive language detection as a two-step
classification problem of first classifying documents into the groups neutral or offensive
and then classifying them further into offensive or hateful, as further explained in the
next chapter. The resulting distribution of the new categories is displayed in Table 5.3.

5.3.2 The Danish Dataset Representation

The classes of the Danish dataset were converted to the same levels as the Norwegian
dataset to construct compatible datasets that can be combined later in the experiments.
The following generalizations were made to convert the classes.

• Neutral: Includes the non-offensive group (NOT) from the Danish dataset.
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# Category # documents % of all

1 Neutral 34,085 82.8
2 Offensive 7,060 17.2
3 Hateful 760 1.9

1-3 ALL 41,145 100

Table 5.3: The distribution of labels after converting the five categories of the Norwegian
dataset into the three categories neutral, offensive, and hateful.

• Offensive: Includes all documents that belong to the offensive group (OFF) of
the Danish dataset.

• Hateful: Includes all documents that belong to the insults targeted at groups
(GRP) or individuals (IND) in the Danish dataset.

The offensive definition used for the Danish dataset includes any form of untargeted
profanities. This corresponds well to the generalization done for the Norwegian dataset,
as the offensive category incorporates the provocative category. A significant distinction
from the work of Zampieri et al. is that the hate speech definition of this generalization
includes insults targeted at individuals, as opposed to the suggestion by Zampieri et al.
which only includes insults targeted at a group. This generalization was made based
on the definitions of the Norwegian dataset presented in Section 3.2.1 as Svanes and
Gunstad includes hateful messages targeted at individuals and groups in their definition.
Additionally, the generalization avoids the problems of overlapping groups previously
described in Section 3.2.2 as the IND and GRP are merged. The distribution of labels of
the Danish dataset after generalization is displayed in Table 5.4.

# Category # documents % of all

1 Neutral 3,159 87.8
2 Offensive 441 12.3
3 Hateful 216 6

1-3 ALL 3,600 100

Table 5.4: The distribution of labels after converting the three levels of categories into
the three categories neutral, offensive, and hateful.

72



6 Architecture and Experimental
Setup

This chapter describes the architecture and experimental setup of the systems used to
predict offensive and hateful language in the experiments of the next chapter. The same
overall system structure is used, with some variations to the BERT model architecture
and dataset combinations used to solve two abusive language detection problems defined
in the next chapter. The first section presents some remarks throughout the literature
review in Chapter 4 which motivates the choices of architecture and experimental setup
described subsequently. Section 6.2 describes the BERT model architectures selected for
the experiments of this thesis, followed by Section 6.3 which describes the experimental
setup, ranging from data and pre-processing to model configurations.

6.1 Motivation

Based on the material covered in Sections 4.2 and 4.3, this section is dedicated to giving
a brief overview of remarks and motivation for the following choices of architecture and
experimental setup. Section 6.1.1 describes some takeaways from the literature review on
approaches used for abusive language detection, whereas Section 6.1.2 identifies possible
improvements for Norwegian abusive language detection.

6.1.1 State-of-the-art Transformer-based Architectures

The most recent state-of-the-art models in abusive language detection include implement-
ations of Transformer-based approaches, such as BERT. An advantage of such models
is that they have proven to require less textual pre-processing than other traditional
approaches (Pàmies et al., 2020). However, the models’ complexity is evident based on
the large pre-training corpora and number of layers, creating vast network parameters.
Due to this complexity, the models require extensive computational resources and take
longer to train than traditional approaches (Devlin et al., 2019; Kummervold et al., 2021;
Kutuzov et al., 2021).

Furthermore, Section 4.3.2 showed how the network complexity of such models poses
some challenges with variance in the fine-tuning process. Previous literature (Devlin
et al., 2019; Kutuzov et al., 2021; Mosbach et al., 2021) have dealt with these challenges
by averaging results over several runs and adjusting hyperparameters to obtain a more
stable training. Mosbach et al. proposed increasing the number of iterations significantly
and shrinking the learning rate. Both these adjustments will increase the training time of
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the model significantly due to how these hyperparameters influence the training process
(as described in Section 2.4). The technique will be tested to the best-performing models
in an extensive hyperparameter search, including larger numbers of epochs and lower
learning rates.

Caselli et al. (2020) showed how training a BERT model on domain-specific abusive
language data can help improve model performance for this particular task. However,
the improvement in results was only slight. Additionally, Isaksen (2019) tried a similar
approach by continuing the pre-training of a BERT model, which did not significantly
improve performance. Adopting these approaches would require doing the process from
scratch for Norwegian data, including collecting an abusive language corpus for Norwegian,
as the available datasets for this task are limited. One option could be to further train
a model on general social media data, to cope with the grammar challenges of general
BERT models, and otherwise social media jargons, described in Section 4.2.2. However, a
vast corpus is needed for BERT models to learn complex language representations, which,
combined with the computational resources necessary for training, requires extensive
work. Considering the scope of this task and without a strong foundation of it leading to
significantly increased model performance, it was selected not to prioritize this task in
the experiments of this thesis.

6.1.2 Identifying Potential Improvements for Norwegian Abusive
Language Detection

When comparing the limited work on abusive language detection for Norwegian to English
and Danish abusive language detection, it is evident that there is much potential for
improvements. The classification approach taken by Svanes and Gunstad (2020) predicted
more abusive instances than what was achieved with the anomaly detection approach
by Jensen (2020). Therefore, the approach taken in this thesis is more similar to the
approach by Svanes and Gunstad. An apparent challenge encountered by both Svanes
and Gunstad and Jensen is the highly unbalanced dataset with very few abusive instances.
Neither experimented with dataset manipulation techniques such as undersampling or
expanding the dataset to change the class distribution, which, as previously discussed,
improved the performance of the Transformer-based approaches in OffensEval 2019.

Furthermore, the recent introduction of Transformer-based models for Norwegian has
made it possible to experiment with state-of-the-art approaches for abusive language
detection. Additionally to taking context into account, BERT models also handle out-of-
vocabulary terms, which is particularly beneficial for agglutinative languages, such as the
Norwegian language. The general language understanding of these models should help
improve abusive language detection for Norwegian, based on related literature (Zampieri
et al., 2019a, 2020; Pàmies et al., 2020), and will lay the basis together with the other
research mentioned on choices in the following sections.
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6.2 The BERT Model Architecture

All models used in this thesis are versions of the BERT model, previously described in
Section 2.4.9. BERT is composed of a pre-trained architecture with a linear classification
layer on top. Whereas the pre-trained BERT models can be downloaded and used directly,
the linear classification layer must be fine-tuned for each downstream task. The versions
of the BERT models used in this thesis are listed below, all supporting the Norwegian
language.

• mBERT: Multilingual BERT (Devlin et al., 2019)

• NorBERT: Norwegian BERT (Kutuzov et al., 2021)

• NB-BERT: Nasjonalbiblioteket BERT (Kummervold et al., 2021)

All the above models and their corresponding pre-training corpora are previously
described in Section 4.3.1. The models included in this thesis experiments are
mBERTbase,cased, mBERTbase,uncased, NorBERTbase,cased, NB-BERTbase,cased, and NB-
BERTlarge,uncased. The overall architectures of these models are the same as for the
general BERT model, and the overall system architecture implemented for each of the sep-
arate models is illustrated in Figure 6.1. The linear classification layer on top corresponds
to a feed-forward neural network with one hidden layer.

This paragraph describes the process for one BERT model, which is standard for all
the various BERT models mentioned. The BERT model is first fine-tuned jointly with
the linear classification layer on the training dataset to learn how to predict offensive
and hateful language. Then, for each input document, the encoded sequence is passed
into the model, and the produced hidden output of the first position (that received the
special [CLS]-token) is fed into the linear classification layer. The input size of the
linear classification layer is the same as BERT’s hidden output, whereas the output size
corresponds to the number of classes to predict, which is two for both offensive and
hateful language detection in this thesis. Finally, the logits from the classification layer
are passed through the np.argmax function, which calculates the final labels.

A dropout layer is added between the output of the BERT model and the linear
classification layer to prevent overfitting to the training set. The dropout probability
is 0.1 and functions by randomly dropping 10% of the connections between nodes in
the network by setting them equal to zero. The classification error is calculated using
cross-entropy loss during training, which is minimized using an optimizer algorithm. For
mBERT, the optimizer selected is ADAM, whereas both NB-BERT and NorBERT use
the LAMB optimizer, both described in Sections 2.4.5 and 2.4.5, respectively.

6.3 Experimental Setup

This section describes the technical setup of the systems which is needed to reproduce
the experiments of the next chapter. The overall system structure is illustrated in Figure
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Figure 6.1: High level architecture of BERT with a linear classification layer on top used
for single sequence classification tasks. K is the number of encoder-decoder
blocks which is 12 for BERT base and 24 for BERT large.

6.2, and the different components will be described subsequently in the following sections.
First, the data setup will be described, followed by pre-processing, model configurations,
and optimization. Finally, the computational resources used to run experiments will be
presented. The tools and libraries used are previously described in Section 2.5.

6.3.1 Datasets

The Norwegian dataset was provided upon request by Marie Andreassen Svanes as Comma-
Separated Values (CSV) files, with document IDs, text, source, and corresponding labels.
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Figure 6.2: The overall system architecture used to detect offensive and hateful language
in the experiments of this thesis.

The Danish dataset was openly available as an OpenDocument Spreadsheet (ODS) file1

with document IDs and corresponding text, source, and labels for all categories. Some
initial changes to the class labels are done to both datasets, as previously described in
Section 5.3.

The Norwegian dataset was split using stratified sampling (described in Section 2.3.3)
into a training and a test dataset with equal class distributions with regards to the five
original classes described in Section 3.2.1. The training dataset constituted 70% of the
complete dataset, whereas the remaining 30% was set aside for testing. The proportions
were selected based on the highly unbalanced dataset to ensure that both test and training
sets were representative of the original dataset variations and patterns. Additionally, the
selected proportions correspond to Svanes and Gunstad (2020) which makes the results

1https://figshare.com/articles/dataset/Danish_Hate_Speech_Abusive_Language_data/
12220805

77



6 Architecture and Experimental Setup

more comparable. The splitting was performed using Sklearn’s train_test_split2

function with a random state of 200 for reproducibility.
The test dataset is consistent across all experiments, whereas some of the experiments

modify the training dataset, further described in the next chapter’s experimental plan.
However, if not stated otherwise, the selected split and label distribution displayed in
Table 6.1 is used for training and evaluation. Note that the hateful comments are also
incorporated in the offensive comments.

Dataset # documents % of all # of offensive # of hateful

Train dataset 28,801 30 4,984 553
Test dataset 12,344 70 2,076 207

ALL 41,145 100 7,060 760

Table 6.1: The distribution of documents in the training and test datasets used in this
thesis experiments, and the corresponding number of instances belonging to
the offensive and hateful classes for each dataset.

6.3.2 Pre-processing

The process of pre-processing transformed the document texts into interpretable and
predictable forms. The advantage of using the BERT model is that it has proven to
perform well with less textual pre-processing compared to other traditional approaches
that are more dependent on term occurrences (Zampieri et al., 2020; Pàmies et al., 2020).
Therefore, the textual pre-processing in this thesis was limited to a few general steps
to reduce noise typically present in social media texts while at the same time retaining
context. Finally, a specific tokenization and encoding process for BERT models was also
performed.

As there is currently no research available on Norwegian abusive language detection
with Transformer-based models, the textual pre-processing steps were mainly based on
Pàmies et al. which hold state-of-the-art results for Danish abusive language detection.
This choice was based on the underlying assumption that considering the language
similarities discussed in Section 2.1, successful pre-processing steps for the Danish
language transfer to the Norwegian language.

As noted in Section 3.2.1, one portion of the Norwegian documents was anonymized
by Svanes and Gunstad (2020) using the @USER tag, whereas the others were anonymized
using the Navn tag. The term navn translates to name in English, which is also used in
other contexts than for user mentions. Using this term may confuse the model to some
extent, as the term ends up representing both the term’s meaning and the marking of user
mentions. Changing Navn tags to a more representative term, such as the Norwegian term

2https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_
split.html
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for username or user, could not be done automatically due to the possibility of changing
the term in contexts not representing user mentions. Due to time constraints, it was
not an option to manually configure all user mentions present in the 41,145 documents
to a common representation. Therefore, it was decided to convert all @USER tags into
the common Navn representation using Python’s library for regular expressions, re3, for
both the Norwegian and Danish datasets.

Furthermore, the orthographic lengthening was reduced to a maximum of two repeated
characters, and irrelevant punctuation marks were removed using the string4 library in
Python. Other textual pre-processing steps such as stopword removal, stemming, and
lemmatization, as described in Section 2.2, could have been applied. However, as the
BERT model takes sentences as input, the pre-processing steps were centered on retaining
as much context as possible and creating complete sentences. It was also decided not
to remove emojis or emoticons as one of the models used, namely NB-BERT, is partly
trained on web-collected data and may understand such content to some extent.

For the Danish data exclusively, the translatepy5 and EasyNMT6 libraries were applied
to translate the Danish text into Norwegian. The machine translator systems were selected
as the only free, publicly available automatic systems that could be implemented for
Danish-Norwegian translations in Python. Google Translate’s Python API7 was not used
due to limited expenses, but several unofficial Python libraries implementing the Google
Translate web API8 were tested. This included googletrans9, pygoogletranslation10,
and pyGoogleTranslate11. However, a change to the Google Translate API seemed to
have caused exceptions with open issues on GitHub12 making these libraries unavailable
for use. Four different versions of the translated Danish text using the functional machine
translation systems were obtained to be tested for detection of offensive and hateful
language additionally to the raw Danish text in the experiments of Chapter 7.

The subsequent pre-processing steps included tokenizing and encoding all docu-
ments using BERT’s specialized tokenizer. A tokenizer corresponding to the particular
model, and therefore also based on the same vocabulary, was downloaded using the
BertTokenizer13 from Hugging Face’s library. The tokenizer performed general and
WordPiece tokenization of the input, followed by encoding the tokenized documents into
corresponding input IDs, as described in Section 2.4.9.

3https://docs.python.org/3/library/re.html
4https://docs.python.org/3/library/string.html
5https://pypi.org/project/translatepy/
6https://github.com/UKPLab/EasyNMT
7https://cloud.google.com/translate/docs/reference/libraries/v3/python
8https://translate.google.com/
9https://pypi.org/project/googletrans/

10https://pypi.org/project/pygoogletranslation/
11https://pypi.org/project/pyGoogleTranslate/
12https://github.com/ssut/py-googletrans/issues/234
13https://huggingface.co/transformers/model_doc/bert.html#berttokenizer
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6.3.3 Model Implementation

The same model implementation was used across all experiments. The code used to
fine-tune and evaluate the BERT models was adopted from Kummervold et al. (2021)
and is publicly available on GitHub14. The code was re-structured from notebook files
to Python files with minor changes to customize it for running on the IDUN clusters
(Själander et al., 2019) as will be further described in Section 6.3.6. The changes included
turning off statistics reportings to other platforms such as Weights & Biases (wandb)15,
which required obtaining an open API connection to display training statistics that slowed
down the training process. All model configurations were also re-structured in separate
JavaScript Object Notation (JSON) files to allow different setups and hyperparameters for
different models. The code is publicly available on GitHub16 with incorporated comments
in all places that adopt code from Kummervold et al. with any changes to the code or
configurations denoted and described. All BERT models were downloaded using the
Hugging Face inference API and implemented using the PyTorch17 implementation.

The evaluation metrics and confusion matrices used to evaluate the models were imple-
mented using Sklearn’s library for model evaluation18. All reported results were similar
to Devlin et al. (2019) averaged over five fine-tuning sessions to ensure representative
reported values. This required five times the computational effort than training once for
each experiment. Nevertheless, considering the general variance in training for BERT
models as discussed in Section 4.3.2, it was considered a necessary step to ensure reliable
result reporting. Based on this, the results reported are less prone to outlier training
sessions with a drop or rise in performance.

6.3.4 Selected Hyperparameters

The model hyperparameters refer to any parameter that is set before the learning process
takes place. The different hyperparameters and their functions are described in Section
2.4.1. Table 6.2 displays the selected hyperparameter values and ranges used in this
thesis, which are based on a set of values defined by Devlin et al. (2019) to work well
across several NLP tasks. Devlin et al. defined set values for the maximum sequence
length and warmup proportion but stated that the other values depend on the task.

The warmup proportion, which defines the proportion of steps of which the linear
decay from the learning rate to zero is performed, was set equal to 10%, similar to Devlin
et al. and Vaswani et al. (2017). An initial analysis of the dataset was performed to select
the maximum sequence length. The analysis showed that all the Norwegian documents
were within a 256 token limit, whereas 0.1% of the documents from the Danish dataset
exceeded 512, which is the BERT models’ maximum sequence length. Therefore, it was
initially decided to set the maximum sequence length to 512 for all models to retain as
14https://github.com/NBAiLab/notram
15https://wandb.ai/site
16https://github.com/vildera/abusive_language_detection
17https://pytorch.org/
18https://scikit-learn.org/stable/modules/model_evaluation.html
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much information as possible and obtain simplicity across all experiments. However, due
to memory limitations encountered during the second experiment using both datasets, the
maximum sequence length was reduced to 256 for the remaining experiments (including
Experiments 2 and 3). The reduction did not affect the Norwegian documents, but 0.7%
of the Danish dataset had to be truncated, and some information was lost. Nevertheless,
this is considered a small amount that should not have significantly impacted the results.

Hyperparameter Values
Batch size 16, 32
Learning rate 2e-5, 3e-5, 5e-5
Number of epochs 2, 3, 4
Maximum sequence length 256, 512
Warmup proportion 10%

Table 6.2: The hyperparameter values used in the models of the next chapter’s experi-
ments.

For the remaining hyperparameter values, batch size, learning rate, and the number
of epochs, a range of different values were searched for each model to find the best
combination for each dataset. The values in Table 6.2 were used as base values for the
hyperparameter optimization described in the next section unless stated otherwise.

6.3.5 Hyperparameter Optimization

All models were optimized through an exhaustive search over the batch size, learning rate,
and the number of epochs defined in Table 6.2 unless stated otherwise. The approach was
adopted from Devlin et al., where five random restarts of the fine-tuning were performed
for each parameter combination, and the average macro F1 score was calculated and
reported from 5-fold cross-validation.

Stratified cross-validation was used to split the training set into five different data
splits, ensuring that the validation block for each fold was different and that each dataset
had a representative distribution, as described in Section 2.3.7. Note that the optimization
process is a part of model selection and that only the training set is used in this process
(as previously illustrated in Figure 2.4). The stratified sampling was done based on
the original five categories from Svanes and Gunstad (2020) to ensure a variation of
documents in each set beyond the two categories used for classification. The splitting was
performed using Sklearn’s StratifiedKFold19 function with a specified random state of
200 for reproducibility. A random data shuffling was performed for each round, and the
best hyperparameters combination averaged over the five splits was chosen.

The process of optimizing Transformer-based models is more complex than for simpler
neural networks and linear approaches due to the instability in the fine-tuning process.
19https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.

StratifiedKFold.html
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As previously described, several random restarts are necessary due to the variance in
different fine-tuning runs of the BERT model, a process that requires vast amounts of
computational resources running over several days. The instability is due to the models
being more complex than general approaches. The first steps in the fine-tuning process
significantly affect the final solution, a process that is described in more detail in Section
4.3.2. However, when considering context, one may speculate that this is due to the
language having many different "solutions" in this level of interpretation.

Despite the extensive computational resources required, the optimization of hyperpara-
meters was considered profitable. This thesis aims to accurately detect and distinguish
neutral, offensive, and hateful language, which optimized models can significantly help
improve. A summary of the selected optimized hyperparameters for the models used in
the experiments of the following chapter is displayed in Table 6.3. The corresponding
hyperparameter optimization tables for the five BERT architectures fine-tuned on the
Norwegian dataset can be found in Appendix 1.

Offensive Language Detection
Model Experiment Batch Size Learning rate # Epochs
mBERTbased,cased 1 16 2e-05 3
mBERTbased,uncased 1 32 5e-05 3
NorBERTbased,cased 1 32 5e-05 3
NB-BERTbased,cased 1 16 3e-05 2
NB-BERTlarge,uncased 1 32 3e-05 3
NB-BERTlarge,uncased 2a 32 3e-05 3
NB-BERTlarge,uncased 2b 1) 32 3e-05 2
NB-BERTlarge,uncased 2b 2) 32 3e-05 2

Hate Speech Detection
Model Experiment Batch Size Learning rate # Epochs
mBERTbased,cased 1 32 5e-05 3
mBERTbased,uncased 1 16 5e-05 3
NorBERTbased,cased 1 16 5e-05 4
NB-BERTbased,cased 1 16 2e-05 3
NB-BERTlarge,uncased 1 32 3e-05 3
NB-BERTlarge,uncased 2a 16 3e-05 3
NB-BERTlarge,uncased 2b 1) 32 2e-05 4
NB-BERTlarge,uncased 2b 2) 32 2e-05 4

Table 6.3: The resulting hyperparameters from the hyperparameter search of the best
models for experiments 1 and 2.
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6.3.6 Computational Resources and Setup

All model experiments required extensive hardware resources due to their high complexity
and were run on the NTNU IDUN High-performance Computer Cluster (Själander et al.,
2019). The steps taken to connect to the IDUN clusters and set up scheduled jobs followed
the instructions available on their web page20. The implemented libraries described in
the previous section have automatic support for multi-GPU use. When several GPUs
are detected, the batches are automatically split over the available GPUs without any
further specifications in the code. The BERTlarge model took about 40 minutes to run on
the complete Norwegian dataset for offensive language detection and about 10 minutes
to run on the offensive part of the dataset for hate speech detection when utilizing two
Nvidia P100 GPUs using the optimized hyperparameters. The translation process of
the Danish dataset into Norwegian using the Transformer-based EasyNMT machine
translator system took about 40 minutes to run on the same resources. For the merged
experiment, the 32GB RAM Nvidia V100 GPUs had to be used for sufficient memory
capacity. It took about 1.5 hours for offensive language detection and 15 minutes for hate
speech detection. When adjusting the hyperparameters, particularly for larger numbers
of epochs and lower learning rates, the fine-tuning process significantly increased, about
two to three times the initial training time. The data pre-processing and results analysis
were performed using a personal computer. All hardware resources used to run the
experiments can be found in Table 6.4.

Server / Type Processors # Cores Memory GPUs

Dell PE730
2x
Intel Xeon
E5-2650 v4

24 128 GB
2x
Nvidia Tesla P100
16 GB VRAM

Dell PE740
2x
Intel Xeon
Gold 6132

28 768 GB
2x
Nvidia Tesla V100
32 GB VRAM

Personal Computer
1x
Intel i9
2300K

8 16 GB None

Table 6.4: The hardware resources used to run the experiments in Chapter 7.

20https://www.hpc.ntnu.no/idun
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The research conducted in this thesis is partly carried out through experiments imple-
menting the systems described in the previous chapter. These experiments are carried
out following the experimental plan described in Section 7.1 which is mainly guided
by the research questions with the aim to achieve the goal of this thesis. Finally, the
experimental results will be presented in Section 7.2 following the same structure as the
experimental plan.

7.1 Experimental Plan
The experimental plan is primarily guided by the thesis’s goal: "Investigate how to
accurately detect and distinguish neutral, offensive, and hateful Norwegian language in
social media." The two binary classification problems defined below are used to detect
abusive language for all experiments in this thesis to achieve this goal.

• Offensive language detection: The task of separating offensive language from
neutral language. A document is either offensive or neutral.

• Hate speech detection: The task of separating hateful language from the other
offensive language types. A document is either hateful or (only) offensive. The
neutral documents are excluded from this task.

This means that all of the following experiments are performed for both offensive
language detection and hate speech detection, requiring training and evaluation for all
models on two separate subsets of the data. The models are trained and evaluated for
offensive language detection on neutral and offensive documents (corresponding to the
complete datasets). In contrast, for hate speech detection, the models are trained and
evaluated only on the offensive documents (including the hateful documents). All models
are also optimized through an exhaustive search described in Section 6.3.5 to possibly
improve performance further. The following steps of the experimental plan are guided by
the research questions designed to achieve the goal of this thesis.

7.1.1 Experiment 1 - Norwegian BERT Models

The first experiment aims to answer the first and second research questions concerning how
well the Norwegian BERT models can detect offensive and hateful Norwegian language
and how their performance compares to one another in these tasks. The models follow
the architectures summarized below, as described in Chapter 6, and are trained and
evaluated on the Norwegian dataset.
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• mBERT base, cased: pre-trained on the 100 largest Wikipedia sites.

• mBERT base, uncased: pre-trained on the 100 largest Wikipedia sites.

• NorBERT base, cased: pre-trained on the Norwegian Wikipedia and Norsk
Aviskorpus.

• NB-BERT base, cased: pre-trained on Norwegian books, newspapers, Wikipedia,
and other formal reports.

• NB-BERT large, uncased: pre-trained on Norwegian books, newspapers, Wiki-
pedia, and other formal reports.

The results will be used to evaluate the effect of transferring knowledge from pre-
trained Norwegian language models to the downstream tasks of detecting offensive and
hateful language for Norwegian. The different versions of the BERT models will be
compared, and the optimized model with the best performance will be used in the
following experiments.

7.1.2 Experiment 2 - Dataset Manipulation Techniques

The second experiment aims to answer the third research question: "What are the effects
of applying different data manipulation techniques to the Norwegian dataset when detecting
offensive and hateful social media language?". The best-evaluated model architecture
from Experiment 1 will be trained on different variations of the Norwegian and Danish
datasets. First, the undersampling technique will be tested as described in Experiment
2a, followed by testing the effect of concatenating the Danish and Norwegian datasets as
described in Experiment 2b.

Experiment 2a - Undersampling

This sub experiment investigates whether undersampling, i.e., removing instances, from
the majority class when detecting offensive and hateful language can help improve model
performance. This is performed by creating a training dataset with 67% samples from
the majority class and 33% from the minority class using random sampling. That is, all
instances from the minority class are obtained, whereas the majority class is undersampled.
The proportions were selected to reduce the majority class bias and simultaneously retain
a skewed distribution. This is necessary because, in addition to learning the language,
the models learn the class distribution, which will affect their label choice in cases of
uncertainty.

Experiment 2b - Expanding the Norwegian Dataset

This sub experiment consists of two steps. The first step tests the different versions of
the Danish dataset previously described in Section 6.3.2, and the second step tests the
effect of training the model on the concatenated Norwegian and Danish datasets, and
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the Danish dataset only. The four versions of the Danish documents listed below will be
used for training the model, followed by evaluating it on the Norwegian test dataset.

• No machine translation: The pre-processed document texts without any machine
translation performed.

• Translatepy: The document texts translated using the translatepy library based
on several known web machine translator systems described in Section 2.5.

• EasyNMT: The document texts translated using the three versions OpusMT,
M2M_100_1.2B and M2M_100_418M of the Transformer-based machine transla-
tion system, EasyNMT, also described in Section 2.5.

For this step, the best-performing model from the previous experiment is used along
with the optimized hyperparameters. In order to select the best version of the Danish
dataset, the model is fine-tuned on the Norwegian dataset concatenated with the listed
versions of the Danish dataset. Note that the evaluations of the Danish dataset version
will indicate what version is better for this particular task when training a model on
offensive and hateful language detection tasks and not whether the actual machine
translations are better, which would have to be evaluated differently. Therefore, the
selected machine translator system is solely based on which system creates a better
representation of the Danish dataset for offensive and hateful language detection. The
best representation selected from the above list will be used in the remaining part of the
experiment.

For the second step of this experiment, the following data combinations will be used
for fine-tuning the model for offensive and hateful language detection.

1. Full Danish and Norwegian datasets: The training dataset will be extended
with all instances from the danish dataset.

2. Full Danish dataset: Only the full Danish dataset will be used to train the
model, meaning that the Norwegian training instances will not be used in this step.

The steps will investigate the generalizability from the Danish to the Norwegian
dataset and whether the two datasets generally and in terms of language have enough
similarities to help the model learn patterns distinguishing between the different classes.
The first step investigates if the Danish and Norwegian datasets can be combined to
better learn abusive language types, and the second step investigates the ability of the
model to generalize from the Danish to the Norwegian dataset, which may say something
about the similarities of the two datasets. The best-performing model will be compared
to the models from the previous section, and the best model across both experiments
will be used in the final experiment.

7.1.3 Experiment 3 - Final Model Optimization

Guided by the goal of this thesis, the final experiment aims to optimize the best models for
offensive language detection and hate speech detection across the previous experiments.
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This includes an extensive hyperparameter search in the same manner as performed
for all previous models (described in Section 6.3.5), but with a larger hyperparameter
space requiring more computational power and time. The selected hyperparameter space
searched is listed in Table 7.1. The selected values expand the general optimization
search for all models (described in Section 6.3.5) with a higher number of epochs and
lower learning rate. These values are selected based on the research by Mosbach et al.
(2021) which proposed this as an approach to stabilize the training instability of BERT
models and possibly avoid bad training sessions, as described in Section 4.3.2.

Hyperparameter Values

Batch size 8, 16, 32

Learning rate 1e-5, 2e-5, 3e-5, 5e-5

Number of epochs 2, 3, 4, 5, 10, 15, 20

Maximum sequence length 512

Warmup proportion 10%

Table 7.1: The hyperparameters used in the final optimization of the best models across
all experiments.

7.2 Experimental Results

This section presents the results from each experiment described in Section 7.1. All
results are presented for the offensive language detection and hate speech detection tasks
presented in Section 7.1. The metrics described in Section 2.3.7 which includes F1 score
(F1), precision (P), and recall (R), are used to evaluate models. Note that for binary
classification, the micro F1 score is equal to the accuracy score. Furthermore, the macro
F1 score is used for model selections due to the unbalanced nature of the datasets used.
The experimental results follow the same structure as the experimental plan, presenting
the results of the first, second, and third experiments subsequently.

7.2.1 Experiment 1 - Norwegian BERT Models Results

The overall results for offensive and hateful language detection using the Norwegian BERT
models are presented in Table 7.2. As the experiments in this thesis solely explore the
Transformer-based BERT models, the top results from Svanes and Gunstad (2020) using
more traditional non-transformer approaches (previously described in Section 4.2.3), are
added to the tables for comparisons. The results representing Svanes and Gunstad were
calculated with reference to their confusion matrices to get the same class generalizations
and metrics representations used in this thesis. Svanes and Gunstad reported accuracy
as their main measure for model selection, which in this thesis was considered unsuitable
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based on the highly unbalanced data as previously discussed. A re-evaluation of their
results was therefore performed with regards to the macro F1 score. The reported results
are based on their SVM model, which achieved the best results for both offensive and
hateful language detection in terms of macro F1 score. The majority class baseline is
also added to the overall results in Table 7.2 for comparison.

Neutral/Offensive Offensive/Hateful
Model Macro F1 Micro F1 Macro F1 Micro F1
mBERTbase,cased 0.698 0.850 0.630 0.876
mBERTbase,uncased 0.694 0.846 0.614 0.886
NorBERTbase,cased 0.720 0.857 0.626 0.880
NB-BERTbase,cased 0.738 0.867 0.664 0.887
NB-BERTlarge,uncased 0.754 0.866 0.680 0.896
Majority Class Baseline 0.454 0.832 0.474 0.900
Svanes and Gunstad (2020) 0.657 0.796 0.622∗ 0.806∗

∗The denoted results are calculated from a two step classification approach where the instances classified
firstly were correctly classified as offensive.

Table 7.2: Reported overall results for all models tested in Experiment 1 for offensive
and hateful language detection. The best results are marked in bold.

The table shows that the NB-BERTlarge,uncased outperforms the other models for
both tasks with a Macro F1 score of 0.754 for offensive language detection and 0.680
for hate speech detection. These results are in line with Devlin et al. (2019) which
showed that the BERTlarge architecture outperformed the BERTbase architecture for
all their experiments for different downstream NLP tasks, which was also confirmed
by Kummervold et al. (2021) for the Norwegian BERT models for several downstream
tasks1. NB-BERTbase,cased is the second-best model and nearly reaches the results of
NB-BERTlarge,uncased, while the other three models are a few steps behind. For offensive
language detection, all BERT models exceeded Svanes and Gunstad, whereas for hate
speech detection, all models except mBERTbase,uncased exceeded Svanes and Gunstad.
Considering the problems with the tokenizer corresponding to the model as described in
Section 4.3.1, these results were not unexpected.

Nevertheless, as described in Section 4.2.3, the approach by Svanes and Gunstad
is based on a two-step approach predicting only the 979 correctly predicted offensive
instances, compared to the more representative test set of 2076 instances used in the
experiments of this thesis. The results are therefore not fully comparable, as one can
assume that several of the more challenging documents to classify did not proceed to
the second step in Svanes and Gunstad’s approach. One may, therefore, assume that
it is more challenging to improve the results on the test dataset used for hate speech

1This information is based on personal communication with Per Egil Kummervold, one of the creators
of NB-BERT.
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detection in this thesis than the subset used by Svanes and Gunstad in their two-step
approach. Based on this, it is evident that the Transformer-based models in this thesis
have significantly improved the results of Svanes and Gunstad for both offensive and
hateful language detection.

Furthermore, the classwise results for both offensive language detection and hate
speech detection are displayed in Table 7.3. The first apparent observation from the table
is that all models were able to classify the majority classes quite well, the neutral class
for offensive language detection and the offensive class for hate speech detection. The
NB-BERTlarge,uncased obtained the best results for the hateful class with precision, recall,
and F1 scores of 0.474, 0.371, and 0.416, respectively, and achieved the best recall and F1
score of 0.573 and 0.589, respectively, for the offensive class. The classwise results also
reflect that NB-BERTbase,cased almost approached the results to NB-BERTlarge,uncased,
whereas the other models are further behind.

Offensive Language Detection
Neutral Offensive

Model P R F1 P R F1
mBERTbase,cased 0.889 0.937 0.912 0.574 0.418 0.484
mBERTbase,uncased 0.888 0.931 0.909 0.554 0.422 0.479
NorBERTbase,cased 0.896 0.937 0.916 0.599 0.465 0.523
NB-BERTbase,cased 0.902 0.943 0.922 0.634 0.491 0.554
NB-BERTlarge,uncased 0.915 0.925 0.920 0.606 0.573 0.589
Svanes and Gunstad (2020) 0.889 0.863 0.875 0.411 0.470 0.438

Hate Speech Detection
Offensive Hateful

Model P R F1 P R F1
mBERTbase,cased 0.924 0.934 0.932 0.359 0.302 0.328
mBERTbase,uncased 0.919 0.958 0.938 0.384 0.236 0.279
NorBERTbase,cased 0.922 0.947 0.934 0.372 0.280 0.318
NB-BERTbase,cased 0.931 0.944 0.938 0.421 0.364 0.390
NB-BERTlarge,uncased 0.932 0.954 0.943 0.474 0.371 0.416
Svanes and Gunstad (2020) 0.891∗ 0.880∗ 0.886∗ 0.346∗. 0.370∗ 0.358∗

∗The

denoted results are calculated from a two step classification approach where the instances classified firstly
were correctly classified as offensive.

Table 7.3: Reported classwise results for all models tested in Experiment 1 for offensive
and hateful language detection. The best results are marked in bold.

For offensive language detection, 61% of the instances classified as offensive were
correctly classified, and 57% of the true offensive documents were labeled correctly. For
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hate speech detection, 47% of the instances classified as hateful were correctly classified,
while only 37% of the true hateful instances were labeled correctly, yielding a lower
recall for this task. The NB-BERTbase,cased and NB-BERTlarge,uncased developed by
Kummervold et al. (2021) outperformed the other models with a significant gap in macro
F1 scores to the other models for the tasks of detecting offensive and hateful language.
Considering the fact that these models are pre-trained on a much larger Norwegian
corpus, the results correspond to the expectations.

7.2.2 Experiment 2 - Dataset Manipulation Results

The results from training NB-BERTlarge,cased on the manipulated datasets in Experiments
2a and 2b are displayed in Tables 7.4 and 7.5 presenting overall and classwise results,
respectively.

Neutral/Offensive Offensive/Hateful
Dataset Macro F1 Micro F1 Macro F1 Micro F1
Undersampling 0.747 0.836 0.648 0.824
Danish & Norwegian 0.758 0.868 0.662 0.892
Danish 0.566 0.840 0.395 0.489

Table 7.4: Reported overall results for all models tested in Experiment 2 for offensive
and hateful language detection. The best results are marked in bold.

Considering the overall results from testing undersampling, the model detecting
offensive language achieved almost the same results as the best model from Experiment
1 in terms of macro F1 score. In contrast, the performance for hate speech detection
dropped slightly with 3.2 macro F1 points compared to the best results from Experiment
1. The more significant change in the performance of hate speech detection is not
surprising, considering the fact that the distribution change for the dataset used for this
task was more drastic than for offensive language detection, resulting in a larger effect
on performance.

From Table 7.5 one can observe the classwise results for the same experiments, which
compared to the results from Experiment 1 shows a significant change in the classwise
performance when using the undersampling technique. More specifically, there is a
large rise in recall and a drop in precision for offensive and hateful language detection,
demonstrating the trade-off between the two measures. For offensive language detection,
undersampling led to 51% of the instances classified as offensive being correctly classified
and 72% of the true offensive instances being classified correctly. Only 30% of the
instances classified as hateful were correctly classified for hate speech detection, but 59%
of the true hateful instances were classified correctly. These results show that as the
model increases the number of instances detected, these detections become less precise.

For experiment 2b, the results from training NB-BERTlarge,cased with the optimized
hyperparameters from Experiment 1 on the concatenated Norwegian and Danish dataset
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Offensive Language Detection
Neutral Offensive

Dataset P R F1 P R F1
Undersampling 0.938 0.860 0.897 0.509 0.718 0.596
Danish & Norwegian 0.916 0.927 0.921 0.614 0.578 0.595
Danish 0.850 0.981 0.911 0.600 0.144 0.222

Hate Speech Detection
Offensive Hateful

Dataset P R F1 P R F1
Undersampling 0.949 0.850 0.897 0.304 0.587 0.400
Danish & Norwegian 0.928 0.954 0.941 0.446 0.335 0.382
Danish 0.907 0.483 0.616 0.106 0.549 0.174

Table 7.5: Reported classwise results for all models tested in Experiment 2 for offensive
and hateful language detection. The best results are marked in bold.

versions were used as the basis to select the version of the Danish dataset to proceed
with. As previously described in Section 6.3.4, the expansion of the dataset led to
out-of-memory issues on the available devices. Due to this, the initial sequence length
was reduced from 512 to 256, and the GPUs with 32 GB RAM had to be used for all
experiments. This ultimately led to the experimental plan being significantly delayed.

The results are presented in Table 7.6 and show that the variations in the performance
of the machine translation systems were only slight. The use of no machine translation
outperformed the other versions for hate speech detection and performed equally well
to the OpusMT machine translation system for offensive language detection in terms of
macro F1 score. The results match the fact that the NB-BERT models are trained on
old Norwegian and some Danish text and seem to understand raw Danish better than
machine-translated Norwegian text. Based on these results, the Danish text without any
machine translation was used in the remaining parts of Experiment 2b.

The results from Experiments 2b in Tables 7.4 and 7.5, show that expanding the
Norwegian dataset with the Danish data had no significant effect for offensive language
detection and resulted in a slight performance drop of two F1 macro points for hate
speech detection. When considering the sizes of the Norwegian training datasets for both
tasks, the Danish dataset makes up a much larger proportion when training for hate
speech detection than for offensive language detection, explaining the different effects
on performance for the two tasks. Furthermore, the results from training on only the
Danish dataset show that the models were not able to generalize from the Danish to the
Norwegian data for offensive and hateful language detection.
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Neutral/Offensive Offensive/Hateful
Machine Translator Macro F1 Micro F1 Macro F1 Micro F1
No machine translation 0.757 0.866 0.642 0.897
OpusMT 0.757 0.867 0.612 0.896
M2M_100_1.2B 0.754 0.865 0.635 0.893
M2M_100_418M 0.754 0.866 0.635 0.896
Translatepy 0.751 0.865 0.623 0.890

Table 7.6: Reported overall results for the NB-BERTlarge,uncased model with the same
parameters as in Experiment 1 trained on the Norwegian dataset merged with
the different versions of the Danish dataset.

7.2.3 Experiment 3 - Final Model Optimization Results

The best model across both experiments corresponded to the NB-BERTlarge,uncased for
offensive and hateful language detection. The resulting optimal hyperparameters from
the broader hyperparameter search for both tasks using this model are displayed in Table
7.7. Furthermore, Tables 7.9 and 7.10 present the average macro F1 scores from 5-fold
cross-validation for all hyperparameter combinations for offensive and hateful language
detection, respectively. The results reported in these tables are, as described in Section
6.3.5, averaged over each fold of the training set, which is completely separated from the
test set to ensure an unbiased selection of hyperparameters.

Task Batch size Learning rate #Epochs

Neutral/Offensive 16 5e-5 3
Offensive/Hateful 32 3e-5 3

Table 7.7: The resulting optimal hyperparameters from the final optimization of the best
models across the previous experiments.

For offensive language detection, the resulting hyperparameters differed from the
narrower search in Experiment 1 but were within the same ranges. The shift in selected
hyperparameters is not surprising when considering the small variations between various
hyperparameter combinations in Table 7.9 combined with the instability in fine-tuning for
BERT models (described in Section 4.3.2). When evaluating NB-BERTlarge,uncased using
the optimal hyperparameter combination from Table 7.7 for offensive language detection,
the resulting macro and micro F1 scores were 0.753 and 0.866, which is approximately
equal to the results achieved for the same model in Experiment 1. For hate speech
detection, the resulting optimal hyperparameters correspond to those selected in the
narrower search in Experiment 1, and the evaluated results are, therefore, the same as
presented in Section 7.2.1. Overall, the final hyperparameter search did not improve
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model performance.
The fact that the optimal hyperparameters for offensive and hateful language detection

were within the ranges defined for the narrower search in Table 7.10 conform with Devlin
et al. (2019) which found that these ranges are optimal for several general NLP tasks.
At the same time, this indicates that increasing the number of epochs and lowering the
learning rate, proposed by Mosbach et al. (2021), did not improve model performance on
the Norwegian dataset for offensive or hateful language detection. Considering the size
of the dataset used for hate speech detection, the results for this model were unexpected
as Mosbach et al. proposed the approach, particularly for smaller datasets.

Furthermore, the results from Tables 7.9 and 7.10 show that for all batch sizes, the
optimal number of epochs were equal or less than four. The learning rates were typically
also within the values defined by Devlin et al., except when using a smaller batch size
of eight, which resulted in lower optimal learning rates (1e-5 for offensive language
detection and 2e-5 for hate speech detection). When observing the variations in macro
F1 cross-validation scores from the two tables, one can see that the values for offensive
language detection vary with about three macro F1 points, whereas the values for hate
speech detection vary with about 20 macro F1 points. This reflects that hyperparameter
choice for the offensive language detection model had less impact on the results than it
had for the hate speech detection model. This is consistent with the fact that the latter
is trained on a much smaller dataset and that Devlin et al. found the BERTlarge model
to sometimes be unstable on small datasets.

The overall best results from all three experiments after evaluating the optimized
models on the test dataset are presented in Table 7.8 for offensive and hateful language
detection. The best model for both tasks corresponded to NB-BERTlarge,cased and
the results reported were achieved in Experiment 1 from optimizing this model on the
Norwegian dataset for the respective tasks searching the hyperparameters previously
presented in Table 6.2, i.e., using the narrower hyperparameter search.

Task Model Macro F1 Micro F1
Neutral/Offensive NB-BERTlarge,cased 0.754 0.866
Offensive/Hateful NB-BERTlarge,cased 0.680 0.896

Table 7.8: The best overall results across all experiments for offensive and hateful language
detection.
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Batch Size: 32

# Epochs / Learn. Rate 5e-5 3e-5 2e-5 1e-5

20 0.740 0.742 0.744 0.739
15 0.745 0.742 0.745 0.740
10 0.743 0.745 0.743 0.745
5 0.746 0.749 0.750 0.754
4 0.755 0.759 0.757 0.757
3 0.750 0.753 0.757 0.756
2 0.753 0.752 0.756 0.742

Batch Size: 16

# Epochs / Learn. Rate 5e-5 3e-5 2e-5 1e-5

20 0.738 0.740 0.747 0.744
15 0.744 0.742 0.746 0.743
10 0.737 0.744 0.743 0.745
5 0.750 0.747 0.746 0.751
4 0.748 0.752 0.755 0.760
3 0.762 0.758 0.759 0.757
2 0.749 0.755 0.758 0.750

Batch Size: 8

# Epochs / Learn. Rate 5e-5 3e-5 2e-5 1e-5

20 0.737 0.738 0.744 0.745
15 0.741 0.744 0.744 0.744
10 0.738 0.742 0.743 0.745
5 0.745 0.746 0.747 0.750
4 0.752 0.752 0.750 0.755
3 0.752 0.755 0.755 0.760
2 0.750 0.750 0.758 0.753

Table 7.9: Results from final hyperparameter optimization of the best offensive language
detection model. The values are macro F1 scores averaged over 5-fold cross-
validation. The best values for each batch size are marked in bold, and the
best overall value is marked with an underline.

95



7 Experiments and Results

Batch Size: 32
# Epochs / Learn. Rate 5e-5 3e-5 2e-5 1e-5

20 0.657 0.666 0.662 0.665
15 0.652 0.671 0.655 0.658
10 0.662 0.674 0.671 0.665
5 0.655 0.657 0.659 0.625
4 0.676 0.673 0.671 0.549
3 0.676 0.693 0.683 0.543
2 0.603 0.514 0.508 0.471

Batch Size: 16
# Epochs / Learn. Rate 5e-5 3e-5 2e-5 1e-5

20 0.658 0.655 0.663 0.661
15 0.644 0.646 0.649 0.667
10 0.652 0.661 0.649 0.667
5 0.651 0.663 0.661 0.652
4 0.659 0.680 0.678 0.650
3 0.682 0.677 0.677 0.629
2 0.638 0.645 0.574 0.470

Batch Size: 8
# Epochs / Learn. Rate 5e-5 3e-5 2e-5 1e-5

20 0.586 0.657 0.650 0.658
15 0.605 0.657 0.658 0.663
10 0.574 0.613 0.653 0.670
5 0.580 0.670 0.670 0.663
4 0.663 0.684 0.681 0.675
3 0.604 0.670 0.687 0.665
2 0.624 0.668 0.655 0.520

Table 7.10: Results from the final hyperparameter optimization of the best hate speech
detection model. The values are macro F1 scores averaged over 5-fold cross-
validation. The best values for each batch size are marked in bold, and the
best overall value is marked with an underline.
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8 Evaluation and Discussion
The experiments and results of the previous chapter left several outstanding questions to
be settled. Section 8.1 evaluates the previous chapter’s experiments, whereas Section 8.2
discusses the findings with regards to the research goal and questions defined in Section
1.2.

8.1 Evaluation

The experiments of this thesis were carried out following the experimental plan described
in Section 7.1. The plan was composed of three separate experiments testing various
BERT architectures, data manipulation techniques, and hyperparameter optimization
searches, for the tasks of offensive and hateful language detection. This section evaluates
the use of the Transformer-based BERT models and discusses the dataset and how its
characteristics affect the predictions. Finally, an error analysis is presented investigating
what types of instances are successfully predicted by the best models, and what types
are not.

8.1.1 Model Selection and Comparison to State-of-the-art

From the results of the experiments presented in the previous chapter, it is evident that
the introduction of Transformer-based models had a positive effect on detecting Norwegian
offensive and hateful language. The models outperformed the Svanes and Gunstad (2020)
significantly, which besides Jensen (2020) is the only research available detecting abusive
languages for Norwegian. The best performing model for offensive language detection
outperformed Svanes and Gunstad with ten macro F1 points. Additionally, the best
model for hate speech detection outperformed their model with six macro F1 points. The
latter is also a large rise in performance, considering that Svanes and Gunstad evaluated
their model on already correctly classified non-neutral instances. This likely makes the
test dataset easier to classify, as several incorrectly predicted instances were withdrawn
before the evaluation.

Although the BERT models generally outperformed Svanes and Gunstad, the per-
formance of the different BERT models varied largely. The range in performance of the
models aligned well to what was experienced by Kummervold et al. (2021) and Kutuzov
et al. (2021). NB-BERT achieved the best results, followed by NorBERT, and mBERT
with the poorest performance among the three. The ranking of the models corresponds
to the increasing sizes of their pre-training corpora. Lastly, the NB-BERT model is the
only model pre-trained on data crawled from the web, which is more similar to social
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media data and, therefore, may have contributed to a better language understanding of
such content.

The large version of NB-BERT outperformed the base version for offensive and hateful
language detection. This also corresponds to the results reported in the original BERT
paper, Devlin et al. (2019), and the creators of NB-BERT1, which both showed that the
large BERT version outperforms the base versions for most NLP tasks. The increased
performance when using the large NB-BERT model compared to the base model is likely
due to the increased number of parameters in the model, allowing for more complex
pattern representations of the language.

The increased performance comes at the cost of increased model complexity, as
previously described in Chapter 6. The large model complexity of BERT models requires
extensive computational resources. The experiments of this thesis heavily relied on
the IDUN HPC Cluster (Själander et al., 2019) and could not have been performed
without available GPU resources with sufficient memory capacity. Moreover, the BERT
models showed a large variance when trained to detect offensive and hateful language,
particularly hateful, constituting a smaller dataset. The instability in fine-tuning is
consistent with Devlin et al. and the other relevant literature described in Section 4.3.2.
Based on Devlin et al., the instability was coped with by averaging five fine-tuning runs
for each reported result, increasing the computational effort extensively. This led to more
work than initially assumed; however, the increased computational effort was considered
necessary to report reliable and representative results.

All reported results were based on optimized hyperparameters unless stated otherwise.
The optimization procedure, previously described in Section 6.3.5, was an extensive pro-
cedure that ran over several days to weeks depending on the hyperparameters searched
and the model used. Despite the dedicated computational effort to the extensive search
in Experiment 3, the search did not lead to increased performance. This was slightly un-
expected for hate speech detection, particularly, when considering the proposed approach
by Mosbach et al. (2021) of using lower learning rates and increased number of epochs for
more stable results and increased performance on smaller datasets. The results showed
that the narrower search based on the proposed hyperparameters by Devlin et al. was
sufficient and resulted in the best overall performance. Based on this, the extensive search
in Experiment 3 was unnecessary regarding model performance which is an interesting
result in itself when considering how to prioritize the computational effort in future work.

When considering the instability observed during fine-tuning of the models, the
reliability of the hyperparameter searches can also be discussed. Although precautions
were taken by averaging the results over five runs using stratified cross-validation, the
instability could still have affected the outcome. One can observe from Tables 7.9 and
7.10 for offensive and hateful language detection, respectively, that the performance
for several hyperparameters are close in values. This is particularly emphasized for
offensive language detection as the performance of different combinations ranges with
a maximum of three macro F1 points across all combinations. One unstable run can
therefore easily affect the hyperparameter choice in the search, which is also likely why

1This information is based on a discussion with Per Egil Kummervold, one of the creators of NB-BERT.
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the final hyperparameter run for offensive language detection in Experiment 3 had a
different outcome than the narrower search within the same search space of Experiment
1. An approach to limit the variance is to increase the number of fine-tuning runs beyond
five until the performance converges towards a value. However, this requires extensive
computational resources and must therefore be weighed against the possible return in
results.

Based on the small differences in the choice of hyperparameters for offensive language
detection, and that the instability in fine-tuning on larger datasets is less prominent
according to Devlin et al. and Mosbach et al. (2021), such extensive searches might
not be advantageous for offensive language detection using the dataset by Svanes and
Gunstad and Jensen. For hate speech detection, which is based on a smaller dataset,
increasing the number of fine-tuning runs could decrease the instability and therefore
raise the reliability of such searches.

8.1.2 Datasets and Data Manipulation Techniques

As for other machine learning tasks, offensive and hateful language detection heavily
rely on the dataset used. The specialization project (Arntzen, 2020) revealed a lack of
Norwegian abusive language datasets, which led to using the only available dataset by
Svanes and Gunstad (2020) and Jensen (2020) in the experiments of this thesis. As
previously discussed in Sections 3.2.1 and 4.2.3, this dataset is highly unbalanced with
few instances in the abusive categories, which has negatively affected the ability of models
to detect abusive languages in previous work (Svanes and Gunstad, 2020; Jensen, 2020).

Two dataset manipulation techniques were tested in Experiment 2 to cope with the
biased predictions towards the neutral class. The results from undersampling demon-
strated the trade-off between precision and recall and reflected how undersampling could
significantly change the classwise performance for offensive and hateful language detection.
The detection for the positive classes (hate speech and offensive language) increased at
the cost of a drop in performance for the negative classes. This can be explained by
how the model obtains knowledge. Recall that the model’s objective is to learn how to
best separate between the positive and negative classes. During training, the classifier
obtains two types of knowledge: knowledge about the language and knowledge about
the distribution. Knowledge about language concerns what types of language typically
represent the positive class and what types of language represent the negative class. In
contrast, knowledge about the distribution tells how often instances from the different
classes occur. In cases of doubt, the distribution knowledge will influence the model’s
guess, reflected in the shift in class performance. What predictions are preferred depends
on the circumstances. When monitoring content, a higher degree of detected hateful
content and wrongly predicted non-hateful content would obtain a safer environment at
the cost of less freedom of expression. In order to maintain freedom of expression and
the overall best performance, undersampling was not considered beneficial and, therefore,
not further used in the experiments.

Experiment 2b expanded the Norwegian dataset with instances from a Danish dataset.
First, several different machine translator systems were tested to see if they could help the
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model learn patterns from the Danish dataset. The results showed that the translation
had a negative or no positive effect on the NB-BERT model’s ability to detect offensive
and hateful language. This might be because NB-BERT is pre-trained partly on Danish
text and on a large portion of old Norwegian text that almost corresponds to Danish, and
thereby has a decent understanding of the Danish language. This aligns well with the
results from Kummervold et al. (2021) which showed that NB-BERT performed relatively
well for the Danish language and outperformed mBERT in their Danish experiment.
Furthermore, when examining a subset of the translated Danish dataset, it was evident
that the machine translations were not accurate for a large proportion of documents. An
example of a translated sentence with multiple errors marked in bold is given below.

Danish
Minder mig om det 25 årige black army medlem jeg mødte på OBC for
nogle år tilbage, han var også stukket i låret, og samtidig på flugt fra politiet
på vej til Kbh. Det vildt det stadig foregår.

Norwegian
Miner meg om det 25 år gamle black army medlem jeg møtte på OBC for
noen år tilbake, var han også stuktet i lart, og samtidig på flukt fra politiet
på vei til Kbh. Det vil fortsatt skje.

English
Reminds me of the 25 years old black army member I met at OBC some
years back, he was also stabbed in the thigh, and at the same time on the
run from the police on the way to Kbh. It wild it’s still going on.

Table 8.1: Example of Danish Document translated to Norwegian using the OpusMT
machine translator system. The errors are marked in bold.

The first error is the translation of the Danish term Minder (Reminds in English), into
Miner (Mines in English), a type of explosives. The Danish term Minder is a common
term that the NB-BERT model most likely knows from the Danish or old Norwegian
parts of the pre-training corpus, making the translation unfortunate. The following two
errors are the translations of the terms stabbed and thigh, which originally are the same
in Norwegian and Danish, namely stukket and låret. However, the terms were translated
into two non-existing terms in the Norwegian vocabulary, demonstrating how the machine
translator system can introduce errors in places that initially were correct.

The last error in the above sentence is the translation of "It wild it’s still going on"
into "It will continue to happen," changing the complete meaning of the sentence. Note
that the sentence is missing an is before wild to bind together the sentence. This may
be one reason why the machine translator system changes the meaning of the text,
as the machine translator is also trained on general language understanding with the
lack of such errors. These errors in the machine translations affect the BERT model’s
ability to understand language and confuse it by changing the context and meaning of
the sentence. As previously discussed, BERT models pre-trained on general language
understanding are not robust towards grammar mistakes due to the numerical word
embeddings representing slightly different terms with entirely different numerical values.
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Using the machine translator system introduced several errors resulting in an overall
information loss for several of the documents in the corpus, which may explain the
performance loss using machine translator systems.

Moreover, the results from training NB-BERTlarge,cased on the concatenated Norwegian
and non-translated Danish dataset showed no significant effect for offensive language
detection and a slight drop in performance for hate speech detection. It was also evident
that the model could not generalize well from the Danish to the Norwegian dataset when
being trained on the Danish dataset solely. For hate speech detection, this could be
due to the limited number of instances in the training dataset (441 offensive instances
and only 216 hateful instances), which may be insufficient for the model to generalize
from. However, the fact that the model could not generalize well from one dataset
to another, combined with the fact that training on both datasets led to a drop in
performance for hate speech detection, may indicate that the Danish data added noise to
the Norwegian training data. Further pre-processing could have been applied to possibly
improve generalizability across the datasets. For instance, the analysis in Chapter 5
revealed that the Danish dataset contained more web links than the Norwegian dataset,
which could have been removed to get greater compatibility. However, based on the fact
that NB-BERT, as mentioned, has proven to perform well for Danish tasks generally,
a hypothesis is that the lack of ability to generalize goes beyond the general language
differences and lack of pre-processing.

The analysis in Chapter 5 reflected several differences between the two datasets.
For instance, the abusive classes of the Norwegian dataset seemed to be biased toward
immigrant- and Islam-related topics, which did not seem to be the case for the Danish
dataset, having entirely different term occurrences than the Norwegian. As mentioned
in Chapter 5, reasons for this may include the fact that the datasets were collected
from different social media platforms with different users and content, and that they
were annotated using different annotators and annotator guidelines. An influencing
factor may also be culture, affecting how abusive language is expressed across platforms
and countries and what is considered an abusive language by the annotators from the
respective countries. Although Norway and Denmark are geographically close and share
a common history, how abusive language is expressed in Denmark may not correspond
to how it is expressed in Norway. This includes subjects common in hatred debates and
how abusive language is linguistically expressed and perceived.

The annotators of the different datasets may have different perceptions of what should
be labeled as neutral, offensive, and hateful, based on what is culturally accepted. Addi-
tionally, the two datasets used different labeling schemes that might not generalize despite
being converted into common representations. Considering the challenges with abusive
languages and how there are no standard definitions or perceptions, the assumption that
a Danish dataset will generalize to a Norwegian dataset, may have been naive. Based
on these reflections and the increase in computational resources required to train on
both datasets (described in Section 7.2.2), the disadvantages outweigh the advantages.
Therefore, it was decided not to proceed with further pre-processing and testing with the
Danish dataset.
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Although the experiments with the Danish dataset did not significantly improve
model performance on the test dataset, it does not necessarily mean that the model is
less successful on real-world abusive language detection. The test dataset used for all
experiments is a subset of the Norwegian dataset. Therefore, it is not surprising that
expanding the dataset with documents from other datasets introduces noise. Recall
that Swamy et al. (2019) stated that a model’s performance on the same dataset it is
trained on is not indicative of how it performs in real-world problems. Furthermore,
they suggested that models should be evaluated on a test dataset representing abusive
language as a whole. It can be discussed whether this thesis’s test dataset represents
real-world abusive language detection problems, as its content is restricted to the sources
from which it was collected. Therefore, the experiments in this thesis are limited to reflect
how the models predict offensive and hateful language represented in the Norwegian
dataset. Evaluating the models’ ability to detect abusive language as a whole would
require collecting a broader test dataset that was not possible for this thesis due to
limited time and resources.

8.1.3 Error Analysis

In general, the results from the experiments indicate that distinguishing neutral, offensive
and hateful language is a challenging task, particularly for the abusive classes. The
predictions from the overall best performing models for offensive and hateful language
detection are presented in the confusion matrices of Tables 8.2 and 8.3, respectively. From
Table 8.3 one can observe that the hateful class has the overall most significant proportion
of misclassifications of 59%, indicating that the model confuses hateful and offensive
language to a large extent. In fact, the model wrongly classifies more of the hateful
instances as offensive language than it correctly detects as hate speech. The second-largest
misclassification can be observed in Table 8.2 for offensive language detection, where
40% of the offensive instances are wrongly classified as neutral. The misclassification for
offensive language is also significant. The large proportions of misclassifications in the
predictive classes underlines the difficulty of separating neutral, offensive, and hateful
language. For the majority classes, the performance is relatively good for both offensive
and hateful language detection.

Predicted Label
Negative Positive

True Label
Negative 9382 886
Positive 826 1250

Table 8.2: Confusion matrix for NB-BERTlarge,uncased trained to detect offensive language.
Positive corresponds to the offensive class, and negative corresponds to the
neutral class.

To better understand what types of language the best model, NB-BERTlarge,cased,
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Predicted Label
Negative Positive

True Label
Negative 1758 111
Positive 122 85

Table 8.3: Confusion matrix for NB-BERTlarge,uncased trained to detect hate speech.
Positive corresponds to the hateful class, and negative corresponds to the
offensive (but not hateful) class.

correctly predicts and what it struggles to predict, 85 instances were randomly sampled
from all the predictive groups and analyzed for offensive and hateful language detection.
The intention is that, as these instances are randomly sampled, they are representative
of the typical model predictions.

The analysis builds upon the findings from Chapter 5, which left several outstanding
questions about the dataset, its content, and possible biases. Five groups of characteristics
were defined, and each instance from the predictive classes was analyzed to investigate
if it could be categorized within one or multiple groups. The first group is whether an
instance contains typos or grammar mistakes, whereas the second is whether it contains
dialect or slang beyond Norwegian Bokmål or Nynorsk. One initial hypothesis was that
people writing hateful and offensive content are less concerned about their writing form
and have more non-standard language, such as grammar mistakes and typos, incorporated
into their language. Additionally, as general BERT models are not robust against non-
standard language, it is interesting to investigate if any of the predictive groups features
such language and whether it affects the predictions.

The following two classes are content-based, with regards to the frequently occurring
words from the analysis of Section 5.1. The third class examines whether the instances
contain any offensive terms, and the fourth and fifth classes investigate whether the
instances are related to Muslims/Islam and immigration, respectively. This is interesting
in order to further understand what features categorize the different predictions and how
the model can generalize across these patterns. The analysis is also helpful to understand
possible biases in the model. Figure 8.1 illustrates the number of instances within the
true positives (tp), false positives (fp), true negatives (tn), and false negatives (fn) for
offensive and hateful language detection for each category.

The first obvious observation from Figure 8.1 is that a large portion of the predicted
hateful instances, in Figure 8.1b, contains topics related to Islam. The fact that the
true hateful instances contain such topics is not surprising considering the analysis in
Chapter 5 which revealed that this is a common topic of the hateful classes of the
Norwegian dataset. However, more than 60% of the 85 instances that were wrongly
predicted as being hateful contained Islam-related topics. When considering this degree
of misclassifications combined with the findings from the analysis in Chapter 5, it cannot
be disregarded that there is a bias from the Norwegian abusive language dataset built
into the model towards classifying instances related to Islam as hateful. This observation
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(a) Offensive Language Detection

(b) Hate Speech Detection

Figure 8.1: Different characteristics of predicted instances for offensive (a) and hateful
(b) language detection. The red bars illustrate instances predicted as positive
classes, whereas the gray are negative predictions. The darker contrasts are
predictions that originally belong to the positive class, whereas the lighter
tones are predictions that originally belong to the negative class.
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is further supported by the fact that almost none of the correctly predicted non-hateful
instances are related to Islam.

Only 553 hateful instances were present in the training dataset, which may have
represented hateful instances towards Muslims to a greater extent than hateful instances
as a whole. In that case, the dataset is insufficient for the model to generalize what
categorizes hate speech and other offensive language in general. This is a problem
originating from the dataset and not the model in itself. The model’s behavior of learning
these patterns is, in fact, "correct" as it picks up on characteristics in the dataset. However,
the bias is rather a problem of the dataset as it does not represent a true pattern of
all hateful language. Although such biases can increase detected hateful instances in
some cases, they are problematic as they discriminate on what topics are accepted in the
public debate and can, therefore, limit the freedom of expression.

Another reason for the confusion between the different classes is the lack of clear
separations between hate speech, offensive and neutral language. An analysis of predic-
tions showed that 52% of the originally provocative labeled instances were mistaken as
neutral. In contrast, only about 20% of each of the other classes were mistaken as neutral
for offensive language detection. This conforms with the observations in the analysis of
Chapter 5, where a large portion of the provocative instances also was mistaken as neutral,
substantiating some of the vagueness of this class. As the misclassification concerns half
of this class, a change in class generalization, i.e., excluding the provocative class from
the offensive class, would likely also result in a large number of misclassifications.

For hate speech detection, as much as 65% of the originally moderately hateful
instances and 47% of the hateful instances were wrongly predicted as offensive (and not
hateful). This emphasizes the confusion between the abusive classes, which was also
observed in practice during the qualitative investigation of the predictions. An example
is shown below, exemplifying the Norwegian and English versions of an instance which
was labeled as offensive by the annotator and incorrectly labeled as hate by the model.

Norwegian
Min mening er jo at mesteparten av danskene burde være enige i at
muslimene absolutt burde sendes hjem.

English
My opinion is that most of the Danes should agree that
Muslims should definitely be sent home.

The author of the sentence wants to send people out of the country based on their
religious beliefs. Similar expressions have been considered hate by annotators of the same
dataset, such as the below example which holds a very similar message but was originally
labeled as hateful by the annotator and the model.

Norwegian Muslimer hører ikke hjemme her.
English Muslims do not belong here.

The lack of a clear distinction in annotations makes it hard for the model to learn
patterns in the data. This is consistent with the low inter-annotator agreement in the
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abusive classes found by Svanes and Gunstad (2020), and the analysis described in
Section 5.2.1 which confirmed these results. One may ask how a model can separate well
between abusive languages if not even human annotators can separate them well. A way
to possibly handle this problem could have been to re-annotate the dataset using expert
annotators or crowd-sourcing with full agreement, which accordingly to Waseem (2016)
yield better results than using amateurs. However, due to restricted funds and time, this
was not prioritized in the work of this thesis.

An observation that is not as prominent but seems to discriminate the predicted
categories is the use of offensive terms. Figure 8.1b shows that more of the correctly
predicted hateful instances contain offensive terms than the other groups, which may
indicate that it is easier to detect hateful language containing offensive slurs than hateful
language that do not. This is consistent with Caselli et al. (2020) which emphasized
the difficulty of separating implicit abusive language types compared to more explicit
offensive slurs.

The same trend is seen to a smaller extent for offensive language detection in Figure
8.1a, which reveals that the true offensive instances contains more offensive terms
and that they contain more topics related to immigration and Islam than the other
predictions. This makes sense when considering the word clouds presented in Section 5.1
which showed an increased occurrence of immigration- and Islam-related topics as the
abusiveness of the documents increased. One can also observe a substantial amount of
false negatives for offensive language detection with offensive terms. As most offensive
terms would be defined as provocative or offensive by Svanes and Gunstad and Jensen,
these observations typically concerns terms in the borderline of swear words such as idiot
or weirdo, which during the investigations of the comments were considered as offensive
terms. As previously described in Section 3.1.1, Caselli et al. (2020) noted this as one of
the aspects making separation of hate speech and offensive language difficult due to how
such terms are perceived differently by annotators. Another example of implicit offensive
language that the model was not able to predict is given below.

Norwegian
Navn Navn Ville kanskje vurdert å sterilisere meg snart, om jeg var deg!
Men det er jeg jo ikke

English
Name Name Would probably consider sterilizing myself soon, if I were you!
But I’m not

Although the sentence at first glimpse has a positive tone, there is an underlying
offensive message. The model has likely not understood that the term sterilizing in this
context is associated with something negative or offensive.

Another interesting observation from Figure 8.1a is that the true offensive instances
have a higher occurrence of typos and grammar mistakes, which means that these are
more typical features in offensive language than neutral language. This does, to some
extent, confirm the initial hypothesis that people writing offensive expressions online have
more incorporated errors in their language. Likewise, one can see that the true neutral
instances have a higher occurrence of dialect and slang than the true offensive instances.
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This was slightly unexpected as the initial thought was that most non-standard language
was present in the offensive class, and not a typical feature of neutral language. These
observations are useful to understand what features separate the different classes. Despite
these observations, the model does not seem to have learned these features, as there are
almost as many true as false predictions within these categories. This might indicate
that the model is less prone to predict non-standard language correctly, which makes
sense considering the fact that the model is pre-trained mainly on standard language.
Other types of social media language the model was not able to predict correctly include
instances that manipulated words to a non-standard representation such as writing
Muslim as a mouse emoji + lim at the end, or exchanging letters in offensive terms
with other symbols such as "f!!**ck", which is non-standard forms that the pre-trained
language understanding does not assist detecting.

This error analysis reveals that several of the problems noted by Svanes and Gunstad
and Jensen regarding the dataset are still present, despite the introduction of Transformer-
based approaches. This includes the confusion between neutral and offensive and offensive
and hateful language and the biased predictions towards the neutral class and towards
Islam-related topics. Moreover, the analysis confirms with the research by Caselli et al.
which showed that explicit abusive language is easier to predict than implicit. Additionally,
several interesting observations were made regarding the use of non-standard language
and how grammar mistakes and typos seem to be a feature of documents containing
offensive and hateful language, and how dialects and slang were more typical features
of neutral language. Despite this, the NB-BERT model struggled to detect this feature
based on its pre-trained corpus, motivating further investigations on this topic.

8.2 Discussion

In the beginning of this thesis, Section 1.2 formulated an overall research goal and three
research questions designed to approach the goal. The three research questions are
discussed below, followed by an evaluation of the goal of this thesis.

Research question 1 How well does the Bidirectional Encoder Representations from
Transformers (BERT) – pre-trained on a large Norwegian corpus – detect offensive
and hateful Norwegian language in social media?

The first research question laid the basis for the experiments of this thesis as essentially
all experiments conducted used a BERT model pre-trained on a large Norwegian corpus.
Experiment 1 trained five different BERT models on the tasks of separating between
neutral and offensive language and hateful and other offensive language. The top results
achieved from using the Transformer-based BERT models significantly outperformed
existing approaches for both offensive and hateful language detection. The results indicate
that the general language understanding obtained during pre-training of BERT models
helps the model recognizing more offensive and hateful instances than the traditional
neural and non-neural methods.
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Despite the increased performance compared to previous approaches on the dataset,
the results for the predictive classes revealed that the model still tends to confuse offensive
and hateful language and, in several cases, offensive and neutral language. For the best
overall system, the recall for the hateful class was poor and showed that only 37% of the
true hateful instances were detected, a recurring problem for abusive language detection.
However, based on the analyses conducted, this seems to be a problem originating from
the dataset rather than model.

Furthermore, the error analysis in Section 8.1.3 revealed that the model seemed to be
biased towards classifying instances related to Islam as more abusive. This also originates
from a bias of the Norwegian abusive dataset and ambiguity of what separates hate
from other offensive language. Such biases pose problems when applying the model in
real-world abusive language detection, as it will filter out content that is not necessarily
unintended which does not preserve the freedom of expression.

Research question 2 How do the different BERT models pre-trained on the Norwegian
language compare when applied to detecting offensive and hateful social media
language?

The second research question was defined to select the model to proceed with for
the remaining research of this thesis. The results from Experiment 1 showed that the
NB-BERTlarge,cased model, without doubt, outperformed the other models for both
offensive and hateful language detection. This is likely because of its large pre-training
corpora compared to the other models and the larger number of network parameters,
allowing it to learn more complex patterns in the data. The second-best model proved to
be NorBERT, followed by mBERT, which is consistent with the decreasing size of their
pre-training corpora. The model ranking is the same as what was overall achieved by
both Kummervold et al. (2021) and Kutuzov et al. (2021) for several other NLP tasks.

Research question 3 What are the effects of applying different data manipulation tech-
niques to the Norwegian dataset when detecting offensive and hateful social media
language?

To cope with the unbalanced nature and the few abusive instances of the Norwegian
dataset, two data manipulating techniques were tested for both offensive and hateful
language detection. The first technique tested undersampling the dataset by reducing
the number of instances in the majority class to change the dataset’s class distribution.
Undersampling significantly increased the performance of the predictive classes at the
cost of a drop in overall system performance. The second technique tested expanding the
Norwegian dataset with instances from the Danish dataset, which showed no significant
increase in performance for offensive language detection and a drop in performance for
hate speech detection. The error analysis combined with previous observations of the
dataset revealed several differences between the Norwegian and Danish datasets, which
was likely why the model did not generalize well across them.

Based on the three research questions and the research conducted to answer them,
the research goal can finally be addressed.
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Goal Investigate how to accurately detect and distinguish neutral, offensive, and hateful
Norwegian language in social media.

A literature review was conducted to get a broad perspective on the field of abusive
language detection generally and for Norwegian. Based on successful existing English and
Danish abusive language detection approaches and the recent introduction of Norwegian
Transformer-based models, multiple BERT models were fine-tuned to detect Norwegian
offensive and hateful language. As a result, the NB-BERT model significantly outper-
formed the existing systems on the Norwegian dataset with ten macro F1 points for
offensive language detection and more than six macro F1 points for hate speech detection,
which demonstrates an overall successful approach considering the quality of the dataset
used.

Although the approach outperformed existing approaches, there was still a large
portion of misclassification, particularly within the offensive and hateful categories
for offensive and hateful language detection, respectively. The approach can thus not
be said to detect and distinguish neutral, offensive, and hateful Norwegian language
accurately, as was the goal of this thesis. Nevertheless, the research conducted in this
thesis significantly improved upon existing approaches and identified areas with potential
improvement, which motivates further research on Norwegian abusive language detection
using Transformer-based approaches.
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9 Conclusion and Future Work
This chapter concludes upon the work conducted in this thesis and presents the main
contributions and their significance to the field of abusive language detection. The final
section presents ideas to motivate further research in the field and possible improvements
to the work conducted in this thesis.

9.1 Conclusion

As social media platforms have grown in terms of user-generated content, there is a rising
need to develop automatic systems that can assist the monitoring of hateful content.
This thesis aimed to investigate how neutral, offensive, and hateful Norwegian language
can be accurately detected and distinguished. The literature review conducted show
that the interest in abusive language detection has multiplied over the past years. The
introduction of Transformer-based models has improved the language understanding
of models and thereby their ability to detect and distinguish abusive language types.
However, due to the lack of available datasets and technologies, little research has been
conducted to detect abusive Norwegian language. Only one abusive language dataset is
currently available for Norwegian. This dataset is highly unbalanced, with few abusive
instances. Based on this dataset, previous research by Svanes and Gunstad (2020) and
Jensen (2020) showed to be biased towards the neutral class and struggled to detect
abusive instances partly due to the skewed distribution and the few abusive instances of
their dataset.

Based on successful Danish and English abusive language detection approaches, this
thesis developed a system to detect offensive and hateful Norwegian language using
the recently introduced Transformer-based BERT models. The results show that the
NB-BERTlarge,cased model with the most extensive pre-training corpus and network
parameters significantly outperformed the other BERT models, and the only existing
solutions by Svanes and Gunstad and Jensen with more than ten macro F1 points for
offensive language detection and six macro F1 points for hate speech detection.

Despite the improved performance, the error analysis conducted in Chapter 8 shows
that the approach struggled to detect and distinguish offensive and hateful language. The
most pressing issues seem to be related to the dataset, which has a low inter-annotator
agreement and is biased towards Islam-related topics, particularly for the hateful instances
– leading to biased predictions. Based on the ambiguity between the abusive language
types, one may question how it can be expected for computational models to distinguish
between abusive language types if human annotators have difficulties doing the same.
Moreover, the error analysis emphasize several challenges of social media language,
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making it difficult to separate the categories, including implicit abusive language and
non-standard language such as typos, grammar mistakes, and abbreviations. Although
introducing Transformer-based models to Norwegian abusive language detection is a step
in the right direction, the performance is insufficient to bring the system into practical
use. It is evident from the experiments that there is still a way to go before the neutral,
offensive, and hateful Norwegian language is accurately distinguished using computational
approaches to detect hate speech.

9.2 Contributions

This section presents the most significant contributions of this thesis and builds upon
the list that can be found in Section 1.4.

Quantitative and Qualitative Dataset Analysis
The dataset analysis of Chapter 5 presented several characteristics of the Norwegian and
Danish datasets used in this thesis to outline features and challenges of the datasets. An
annotation experiment performed on a subset of the Norwegian dataset, revealed high
disagreement between the three participating annotators. The analysis substantiated
the need for a higher-quality Norwegian abusive language dataset with more abusive
instances and a more apparent separation between the abusive classes. A new label
scheme was proposed based on the analysis to cope with the vagueness of the dataset.

Optimized BERT Models for Norwegian Abusive Language Detection
An architecture overview and implementation of the Norwegian BERT models were
presented with a corresponding ranking and comparison. This is the first implementation
of BERT models for Norwegian offensive and hateful language detection. The best
model, NB-BERTlarge,cased outperformed previous approaches significantly. Based on the
literature review and the observation of variance in the models, all results were averaged
over five fine-tuning sessions. This increases reliability and substantiates reproducibility of
the results for future research. Additionally, all models were optimized using an extensive
search, where all optimized hyperparameters were presented and can be used in future
work. A broader hyperparameter search was also performed for offensive and hateful
language detection, which confirmed that searching a broader hyperparameter space
outside the values proposed by Devlin et al. (2019) was unnecessary for the Norwegian
dataset.

Prediction and Error Analysis
The discussion of Chapter 8 presented a throughout prediction error analysis of the
NB-BERTlarge,cased model for offensive and hateful language detection. The analysis
revealed biases propagating from the dataset to the model used and what features
categorized the different predictions and dataset classes. This corresponded to the initial
qualitative and quantitative analysis findings and further substantiated challenges with
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the dataset. Additionally, the analysis contributed to understanding what types of content
the NB-BERT model struggled to predict and what types were easily predictable.

9.3 Future Work
The final section of this thesis proposes future work to possibly improve upon the work
conducted in this thesis. The work is based on the literature review, experiments, and
analyses conducted and concern the improvement of the dataset and models used in this
thesis.

9.3.1 Improving the Norwegian Abusive Language Dataset

Previous work (Svanes and Gunstad, 2020; Jensen, 2020) and analyses conducted in this
thesis revealed several challenges with the Norwegian abusive language dataset by Svanes
and Gunstad and Jensen (2020). The main challenges can be summarized as 1) few
abusive instances, particularly for the hateful class, 2) abusive instances are biased towards
Islam-related topics, and 3) low inter-annotator agreement for the abusive categories
resulting in confusion among them. The first problem can be solved by expanding the
dataset by collecting more instances (including abusive). As discussed in Section 8.1.2
changing the class distribution of the training set will affect how the model predicts
instances and should therefore be considered carefully. Maintaining a natural distribution
equal to what typically occurs in social media is often preferred for the model to do a
more educated guess in cases of uncertainty.

The second challenge requires ensuring that Islam-related topics are present in all
classes. That is, as Islam is not a direct indicator that a message contains hate, more
discussions around Islam with a neutral tone should be added to the dataset. This can
be done by collecting data from a more diverse specter of sources that not only concerns
immigrant- and Islam-critical debates. Moreover, for the model to better recognize other
hateful content than what is related to Islam, hateful content within other topics will likely
also be collected when considering diverse sources. Finally, the confusion between different
classes is a common problem as described in Section 3.1.1. Therefore, the annotation
process should be done from scratch optimally by expert annotators or multiple amateurs
with full agreement, according to Waseem (2016). This can, for instance, be done by
hiring crowdsource workers or a student group with multiple annotators for each instance.

9.3.2 Further Pre-training NB-BERT on Social Media Data

The prediction and error analysis of Chapter 8 revealed that the best NB-BERT model
struggled to understand certain types of non-standard social media content. The analysis
showed that offensive content had more typos and grammar mistakes than neutral content
and that neutral content used more dialects and slang than offensive content. However,
the model did not learn these features, which is likely due to the lack of understanding of
non-standard content, meaning content on which the model is not pre-trained. To extend
the language understanding of NB-BERT it could be beneficial to further pre-train it
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on social media data consisting of more typos, grammar mistakes, slang, and dialects.
As described in Chapter 4, Caselli et al. (2020) showed that this could be beneficial
when training on enough data. Training the model on general social media data and not
abusive language data exclusively also increases the model’s application beyond abusive
language detection to other NLP tasks concerning social media data.

9.3.3 Multi-Genre Natural Language Inference with NB-BERT

Multi-Genre Natural Language Inference (MNLI) is the task of predicting whether
a premise entails or contradicts a hypothesis (Wang et al., 2018). In certain cases,
predicting whether a document belongs to an exact class can be difficult and sometimes
even impossible. Therefore, an alternative is to reformulate the classification question into
an MNLI hypothesis, a method proposed by Yin et al. (2019). The creators of NB-BERT
(Kummervold et al., 2021) recently developed an NB-BERTbase model fine-tuned on
Norwegian machine-translated MNLI, which could be interesting to investigate for the
case of detecting Norwegian abusive language. One approach is to formulate MNLI
Hypotheses that feature some of the characteristics of abusive language, such as "this
text contains offensive terms," if yes, then the text is offensive, and so on. The model is
available through Hugging Face’s inference API1.

9.3.4 Implementing Other Transfer-learned Approaches and Ensemble
Models

This thesis focused solely on BERT models with support for the Norwegian language.
As mentioned in Section 4.3.1, another pre-trained neural architecture, NorELMo, was
recently released by Kutuzov et al. (2021) and could be interesting to test for Norwegian
abusive language detection. Kutuzov et al. (2021) reported that the model achieved state-
of-the-art results for several NLP tasks with the advantage of using an order of magnitude
less computational resources. There is no doubt that the experiments performed in this
thesis required extensive computational resources and that reducing this requirement can
increase the resources available for work on other aspects of detecting abusive language
detection.

Moreover, the literature review presented several successful Transformer-based ap-
proaches which have outperformed the BERT model for several NLP tasks for English
and other languages, such as ALBERT, ERNIE, and Open AI GPT. Possible future work
is to implement these models pre-trained on a Norwegian corpus to investigate if they
can outperform BERT also for Norwegian abusive language detection.

Another suggestion is to combine the BERT models used in this thesis into an ensemble
model. Research from the shared tasks OffensEval 2019 and 2020 (Zampieri et al., 2019a,
2020) showed that ensembles of Transformer-based approaches, including BERT, were
successful for offensive language detection and target identification. Combining the
strength of several different models can produce superior predictions with less bias and
variance by combining the patterns learned from each model.

1https://huggingface.co/NbAiLab/nb-bert-base-mnli
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Appendices
Appendix 1 presents the results from the hyperparameter searches performed in this
thesis, whereas Appendix 2 presents the annotator guidelines created by Svanes and
Gunstad (2020) and Jensen (2020). The annotator guidelines were used to annotate
the Norwegian dataset in this thesis. The guidelines are adopted and reprinted with
permission from Maria Hilmo Jensen.

1 Hyperparameter Optimization Tables
The following tables show the results for each hyperparameter combination for the
different BERT models trained on the Norwegian abusive language dataset. Firstly, all
tables for offensive language detection are presented, followed by the tables for hate
speech detection. The values are macro F1 scores averaged over 5-fold cross-validation.
The results reported in these tables are, as described in Section 6.3.5, averaged over each
fold of the training set, which is completely separated from the test dataset to ensure an
unbiased selection of hyperparameters. The best values for each batch size are marked in
bold, and the best overall value is marked with an underline.

Batch Size: 32
# Epochs / Learn. Rate 5e-5 3e-5 2e-5

4 0.678 0.685 0.689
3 0.691 0.693 0.688
2 0.686 0.668 0.675

Batch Size: 16
# Epochs / Learn. Rate 5e-5 3e-5 2e-5

4 0.682 0.685 0.686
3 0.687 0.691 0.696
2 0.683 0.691 0.685

Table 1: Offensive language detection - hyperparameter search mBERTbase,cased.
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Batch Size: 32
# Epochs / Learn. Rate 5e-5 3e-5 2e-5

4 0.691 0.685 0.696
3 0.700 0.696 0.694
2 0.690 0.688 0.682

Batch Size: 16
# Epochs / Learn. Rate 5e-5 3e-5 2e-5

4 0.687 0.695 0.692
3 0.697 0.697 0.698
2 0.693 0.693 0.692

Table 2: Offensive language detection - hyperparameter search mBERTbase,uncased.

Batch Size: 32
# Epochs / Learn. Rate 5e-5 3e-5 2e-5

4 0.709 0.718 0.716
3 0.719 0.716 0.712
2 0.708 0.704 0.694

Batch Size: 16
# Epochs / Learn. Rate 5e-5 3e-5 2e-5

4 0.709 0.711 0.718
3 0.710 0.718 0.716
2 0.699 0.703 0.702

Table 3: Offensive language detection - hyperparameter search NorBERTbase,cased.
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Batch Size: 32
# Epochs / Learn. Rate 5e-5 3e-5 2e-5

4 0.730 0.736 0.737
3 0.731 0.735 0.737
2 0.735 0.736 0.731

Batch Size: 16
# Epochs / Learn. Rate 5e-5 3e-5 2e-5

4 0.726 0.733 0.734
3 0.730 0.736 0.741
2 0.737 0.742 0.740

Table 4: Offensive language detection - hyperparameter search NB-BERTbase,cased.

Batch Size: 32
# Epochs / Learn. Rate 5e-5 3e-5 2e-5

4 0.748 0.755 0.751
3 0.753 0.761 0.757
2 0.748 0.754 0.759

Batch Size: 16
# Epochs / Learn. Rate 5e-5 3e-5 2e-5

4 0.744 0.746 0.754
3 0.748 0.692 0.756
2 0.751 0.754 0.755

Table 5: Offensive language detection - hyperparameter search NB-BERTlarge,uncased.
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Batch Size: 32
# Epochs / Learn. Rate 5e-5 3e-5 2e-5

4 0.612 0.620 0.597
3 0.624 0.620 0.604
2 0.577 0.544 0.513

Batch Size: 16
# Epochs / Learn. Rate 5e-5 3e-5 2e-5

4 0.599 0.610 0.621
3 0.556 0.624 0.614
2 0.479 0.546 0.569

Table 6: Hate speech detection - hyperparameter search mBERTbase,cased.

Batch Size: 32
# Epochs / Learn. Rate 5e-5 3e-5 2e-5

4 0.629 0.627 0.638
3 0.593 0.620 0.555
2 0.531 0.533 0.499

Batch Size: 16
# Epochs / Learn. Rate 5e-5 3e-5 2e-5

4 0.624 0.624 0.633
3 0.645 0.628 0.644
2 0.488 0.571 0.571

Table 7: Hate speech detection - hyperparameter search mBERTbase,uncased.
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Batch size: 32
# Epochs / Learn. Rate 5e-5 3e-5 2e-5

4 0.644 0.596 0.562
3 0.627 0.585 0.566
2 0.563 0.522 0.471

Batch Size: 16
# Epochs / Learn. Rate 5e-5 3e-5 2e-5

4 0.648 0.617 0.618
3 0.639 0.632 0.610
2 0.614 0.590 0.544

Table 8: Hate speech detection - hyperparameter search NorBERTbase,cased.

Batch size: 32
# Epochs / Learn. Rate 5e-5 3e-5 2e-5

4 0.634 0.643 0.646
3 0.616 0.653 0.654
2 0.502 0.484 0.501

Batch Size: 16
# Epochs / Learn. Rate 5e-5 3e-5 2e-5

4 0.608 0.640 0.654
3 0.645 0.655 0.656
2 0.604 0.578 0.610

Table 9: Hate speech detection - hyperparameter search NB-BERTbase,cased.
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Batch size: 32
# Epochs / Learn. Rate 5e-5 3e-5 2e-5

4 0.667 0.685 0.645
3 0.674 0.692 0.681
2 0.642 0.553 0.513

Batch Size: 16
# Epochs / Learn. Rate 5e-5 3e-5 2e-5

4 0.670 0.678 0.674
3 0.675 0.679 0.677
2 0.649 0.642 0.620

Table 10: Hate speech detection - hyperparameter search NB-BERTlarge,uncased.
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2 Annotation Guidelines
This appendix presents the guidelines provided to the outside annotators as a part of the
user-based annotation of the Norwegian dataset. The guidelines are written in Norwegian,
but a brief English version is given in Svanes and Gunstad (2020) and Jensen (2020).

Retningslinjer for klassifisering

Du skal nå lese gjennom en og en kommentar og avgjøre hvilken kategori den tilhører på
en skala fra 1-5. Oppdater kolonnen “category” med tallet. Ikke nøl med å ta kontakt
dersom du har noen spørsmål.

NB! Dersom noe skal fjernes, marker med x. Dette er typisk kommentarer på et
annet språk enn norsk
NB2! Det er viktig med ytringsfrihet i Norge, og alt som er knyttet til ytringer rundt
politikk osv har høyere terskel for å oppfattes som ikke-nøytrale i en debatt. Det er helt
lov å være sterkt imot ulike politiske saker, men det blir regnet som ikke-nøytralt når det
bikker over i definisjonene vi har nedenfor.

Tips! Se for deg at du er en varslingsrobot. Hadde du reagert og ville sagt ifra til
brukeren at de burde tenke over hva de har skrevet en gang til før de publiserer denne
kommentaren?
Tips! Bruk de vedlagte eksemplene og følg retningslinjene, men om du fortsatt er i tvil
anbefales det å gå for den mildeste klassifiseringen, altså lavere tall.
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