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Preface
The present thesis is submitted to the Norwegian University of Science and Technology

(NTNU) for partial fulfilment of the requirements for the degree of Doctor of

Philosophy (Ph.D.).

This doctoral work has been conducted at the Department of Civil and Environmental

Engineering, NTNU, Trondheim, with professor Knut Alfredsen as the main supervisor

and Torbjørn Forseth at NINA, Trondheim, as co-supervisor.

In accordance with the requirements of the Faculty of Engineering Science and

Technology at NTNU, the thesis comprises an introduction to the research work and

four scientific papers.
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Abstract
River management decisions must be based on the best knowledge available. But

acquiring information on river conditions and translating it into sufficient mitigation

measures can be both time- and resource demanding. Remote sensing data can be an

important source of information on the current state of rivers, and may also be used in

scenario assessments of future river conditions. This PhD-study has focused on the use

of remote sensing data as a source of information on bathymetry, seasonal mesohabitats

for fish, scenarios of mitigation measures, and strategies on environmental eDNA

sampling. Each of these four information elements are often central parts in river

assessments. The results from the PhD-study are presented in four scientific papers and

include remote sensing data from green and red LIDAR, multispectral satellite imagery

and aerial photos collected and applied in four Norwegian rivers.

For the assessment of seasonal mesohabitats for fish, two remote sensing technologies

were used: LIDAR and aerial photos. The LIDAR data enabled a 10x10 cm resolution

bathymetry used as input to a 2D hydraulic model for the simulation of hydraulic

heterogeneity. The aerial photos were used as both a source of calibration data and for

assessing spatial heterogeneity along the river banks. The results show that both spatial

heterogeneity and hydraulic heterogeneity are significant mesoscale habitat

characteristics for European Grayling during its spawning period. No significant

relationships were found on spatial and hydraulic heterogeneity for brown trout,

emphasising the need for species-specific assessments in terms of mesoscale habitat

characteristics.

While LIDAR data may be a source of high-resolution bathymetry, collecting and

processing LIDAR data can be costly and time consuming. An alternative remote

sensing data source for river assessments is multispectral imagery or (the previously

mentioned) aerial photos. The application of multispectral imagery from two satellite

platforms and aerial photos for mapping of bathymetry by linear models was tested in

four rivers within the same geographical region. LIDAR and SONAR data was used in

the study for establishing linear image-to-depth models and for verifying the modelled

bathymetry. Platform-specific regional models were then established and tested by

combining intercept and slope coefficients from the linear models in the four rivers.
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The results showed that while the final quality of platform-specific regional model

bathymetry did not fully match the quality of LIDAR-based bathymetry, overall model

performance was adequate for depth calculations. For Worldview-2 images and aerial

photos, coefficients of determination (R2) were in the 0.52-0.82 and 0.73-0.91 range,

respectively. By adjusting the regional models with estimated local depth and a

brightness factor, results on depth calculations improved slightly when compared to the

LIDAR-based bathymetry, with coefficients of determination in the 0.47-0.84 and 0.71-

0.91 range, respectively. 

Point cloud format LIDAR data can easily be modified e.g., for use in assessment of

different mitigation measure scenarios. Modified LIDAR data was tested in a public

preference study on scenarios for mitigation measures related to weir adjustments and

changes in flow-dependent water covered areas in weir basins. The study was

conducted in a bypass section (i.e., a river section with water withdrawal) with a 65-

70% reduction in yearly discharge due to hydropower production. Findings from the

study show that LIDAR data are highly useful for scenario-based adjustments and

modelling of weirs. As the potential dry/wet interface at or around the weirs can be

hydraulically complex, these locations may require high-density mapping using a

combination of red and green LIDAR. Results from the study also include a structured

and standardized framework for public preference assessments in rivers which includes

the potential use of remote sensing data as input to mitigation measure scenarios. 

A successful green LIDAR scan depends on a range of factors e.g., the technology

applied in the scan process, signal pathway length and disturbances, river conditions

and post-processing capabilities. Failure to address each of these factors when applying

LIDAR may result in inadequate point cloud classification or coverage. In a study of

strategic environmental eDNA sampling for biomonitoring in a river dominated by

weirs and flow alteration, a regional adjusted image-to-depth model was applied on

remote sensing imagery for river sections where two consecutive LIDAR scans returned

inadequate coverage of bathymetry. Results on simulated depths and velocities

adequately matched corresponding in-situ measurements of the same variables. Results

from generalized mixed models testing the effect of spatial and abiotic variables on

sample eDNA concentrations showed that sample location habitat type and season

significantly affected eDNA concentrations of brown trout and minnow. Furthermore,
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weirs were found to be barriers for the dispersion of eDNA during autumn, while no

significant effects of weirs were found during spring.
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Chapter 1
INTRODUCTION

Throughout history, humans have used rivers for different applications including

agricultural and urban water diversion, transport, log drifting, mills, and hydropower

production (Baron et al. 2002). Many of these interventions have had major impacts on

riverine systems through modifications like water abstraction, barrier construction and

channelization (Grill et al. 2019, Nilsson et al. 2005, Brittain et al. 1993).

Conservation and restoration of rivers are important elements in water management, as

human population growth and climate change continue to put pressure on water

resources globally (Thompson et al. 2021, EC 2003). Within the river science

community working with mitigation efforts, the field of “ecohydraulics”, i.e., the 

interdisciplinary group of river engineers, ecologists and water resource managers has

emerged as a discipline (Maddock et al. 2013). As restoration of rivers often is a

complex task, interdisciplinarity is key for the proposal of relevant mitigation measures

(Richter et al. 1997).

Historically, river impact assessments focused mainly on hydrology and hydraulics,

with basic techniques for measuring riverbed topography and the application of simple

instream models (Bovee et al. 1998). More recent advances in technology and computer

processing have provided more effective ways of mapping and modelling the physical

instream environment using remote sensing technology (Entwistle et al. 2018,

Mandlburger et al. 2009). In a recent study, Legleiter and Harrison (2019) tested and

evaluated a range of different remote sensing technologies for bathymetry mapping.

While they found that most of the technologies provided adequate input for mapping

depth, certain limitations applied in river sections deeper than two meters. The

inadequacy of remote sensing technologies to map parts of rivers was addressed in

another study by Legleiter (2015). Results showed that further information on local

discharge and channel aspect ratios (width/depth) could potentially improve models for

bathymetry retrieval from multispectral imagery. In an even earlier study by Fonstad

and Marcus (2005), open-channel flow principles combining discharge and hydraulic

resistance expressed by Mannings n were applied for improving image-derived

bathymetry. In a more recent study by Juarez et al. (2019), the application of airborne
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LIDAR in River Storåne in Hallingdal, Norway, successfully mapped bathymetry

below depths of two meters.

The successful mapping of bathymetry using remote sensing can provide a solid

foundation for a wide range of assessments (Pfeifer et al. 2014). Combining remotely

sensed bathymetry with high-resolution hydrodynamic models can facilitate analysis

on extensive spatial and temporal scales (Fleischmann et al. 2019). Addressing the

spatial scale element of modelling, Stoleriu et al. (2019) used LIDAR data to upgrade

historical large-scale digital terrain models for flood risk management, improving the

accuracy of hydrological hazard maps. Correspondingly, Petroselli et al. 2012 used the

same approach to enhance modelling of basin hydrogeomorphic behaviour. In a study

addressing both temporal and spatial changes in a river, Mandlburger et al. (2015) used

repeat measurements by airborne LIDAR to assess how floods affected fluvial

topography and to simulate mesoscale hydro-morphological units, based on conceptual

mesohabitat studies by Hauer et al. (2009).

While most habitat-related models historically have been applied on limited spatial

scales due to the high costs of extensive surveys of riverbed conditions, recent studies

have emphasized the efficiency of remote sensing in improving both spatial coverage

and resolution of river research (Wegscheider et al. 2020, Hugue et al. 2016).

Wegscheider et al. (2020) also reflects on the potential use of remote sensing

technologies in future assessments on mesoscale habitats for river biota. A most recent

example of such an application can be found in O’Sullivan et al. (2021) where a

hydraulic model based on high-resolution bathymetry from images was applied on

catchment-scale levels for establishing habitat maps for Atlantic Salmon (Salmo salar

Linnaeus, 1758) and Brook Trout (Salvelinus fontinalis L.).

While habitats for riverine biota have been central in ecohydraulics for decades, few

studies have so far applied hydrodynamic models for assessing environmental DNA

(eDNA) dynamics in rivers. In water-related studies, eDNA is defined as DNA-traces

(i.e., genetic material) in environmental samples shed to the water by local aquatic or

terrestrial organisms through e.g., scales, skin and feces (Carraro et al. 2020, Mächler

et al. 2019, Mize et al. 2019). After the extraction of water samples, the detection of

eDNA is done by processing and analyzing the sampled water using designated

laboratory equipment and methods like metabarcoding and quantitative real-time
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polymerase chain reaction (qPCR) (Langlois et al. 2021). The use of eDNA for aquatic

biodiversity monitoring and assessment is now considered a cost-efficient alternative

to more conventional methods like electrofishing or nets (Jerde 2021, Valentini et al.

2016). While most studies on eDNA in rivers focus on taxonomic richness or species

occurrence (Carraro et al. 2021, Erickson et al. 2019), studies on the effect of local or

regional abiotic factors on individual species’ eDNA concentrations are still scarce 

(Fukaya et al. 2021).

Modern remote sensing technologies now provide a rapidly growing amount of data on

large spatial and temporal scales. And as hydrodynamic modelling becomes less

hindered by the limits of computational power, new possibilities for assessing river

conditions and aquatic ecosystems are emerging.

LIDAR

LIDAR (“Light Detection and Ranging” or “Laser Imaging, Detection, and Ranging”) 

may also be referred to as airborne laser scanning (Entwistle et al. 2018, Hilldale et al.

2008). LIDAR is a remote sensing method using beams of light to map the earth surface

by land or air. 

Light is electromagnetic radiation spanning a range of wavelengths (i.e., λ or

“Lambda”) with their associated frequencies and photon energies. This range of

wavelengths is often called the electromagnetic spectrum (or light spectrum). The

electromagnetic spectrum spans from Gamma rays in the lower end (λ ≈ 1 picometer)

to radio waves in the upper end (λ > 10 kilometres). Within the electromagnetic

spectrum visible light (or visible spectrum) ranges from approximately 380 to 750

nanometres. While the visible spectrum is continuous, different colours are associated

with certain bands (i.e., wavelength ranges) within the visible spectrum. The colour of

blue is found in the 450-485 nanometre range, while the colour of red is found in the

625-750 nanometre range. Just outside the upper end of the visible spectrum we find

near infrared light (λ ≈ 1 micrometre).
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Figure 1. LIDAR point cloud data for a 250-meter section of River Surna, Norway. The 

background image shows the thinned density and distribution of points from dry land (green 

and brown) and the instream section of the river (blue). The blue on black image in the 

foreground displays the three-dimensional point cloud for the instream section. The direction 

of streamflow is from right towards left in both images.

When using LIDAR, a pulse of light of a certain wavelength range (or band) is emitted 

from the sensor towards a surface. As it hits the surface it is reflected, and the beam 

returns to the sensor. As the beam’s velocity is known, the time it takes to return to the 

sensor can be translated into distance. And if the three-dimensional position of the 

sensor is known, the distance can be used to calculate the three-dimensional position of 

the surface reflection point. Often, the aircraft used for LIDAR scanning is using a local 

spatial reference system for positioning. Ground control points within the scan area are
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then used for georeferencing the LIDAR point cloud into a global spatial reference

system. 

Surface types can reflect or absorb light, dependent on the wavelength. While light in

the “red” band will reflect of a water surface, the “green” band will penetrate water to

reach the bed of the water body under certain conditions. Dependent on these

conditions, light that enters a water body will either be absorbed by or reflected off (or

scattered by) particles in the water column or find its way to the bottom. As a water

body gets deeper, less light is likely to reach the bottom. “Green” LIDARs or Airborne 

LIDAR Bathymetry (“ALB”) uses the green band (500-565 nanometres) to map

bathymetry in water bodies. An increasing number of private companies now offer to

map water bodies using the green LIDAR, and in Norway several rivers have been

mapped by national authorities and made available for the public through

www.hoydedata.no.

Satellite imagery

Many satellites orbit the globe continuously. The purposes of these satellites span a

wide range of applications, including cartography, meteorology, and environmental

monitoring. Most satellites have image capture and collection as their main operation. 

Satellite images, or spaceborne photography, have five types of resolution that define

the basic characteristics: spatial, spectral, temporal, radiometric and geometric

(Campbell and Wynne, 2011). The spatial resolution is defined by the pixel size, i.e.,

the minimum land surface area that can be registered. The spectral resolution is the

wavelength range (Δλ) or the number of bands the satellite is covering, e.g., blue, green

and red. The temporal resolution is the time a satellite uses to appear over the same

location during orbit. The radiometric resolution is the satellite’s brightness range, i.e., 

its ability to cover different levels of brightness in the same spot. It is often expressed

as the number of bits available. The geometric resolution, often referred to as the ground

sample distance or GSD, is defined by the satellites effectiveness (when there are

system disturbances) in imagining the land surface type and composition within one

single pixel. Other factors that may influence the quality of satellite images include

orbital altitude, atmospheric disturbances, weather, and the instruments themselves.
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Figure 2. The final part of the Yukon delta running into the Bering Sea on the west coast of 

Alaska. The image is taken on the 29th of August 2017 by the Sentinel-2 satellite. Source: ESA, 

CC BY-SA 3.0 IGO.

In terms of spectral resolution, most satellite images are multispectral, i.e., able to cover 

a range of bands of different wavelength ranges. The Worldview-2 satellite has 8 bands 

including the standard blue, green, red and near-infrared (NIR). The Sentinel-2 satellite 

has 13 bands including the standard bands in addition to other bands like coastal 

aerosol, red edge, water vapour and SWIR. As wavelength determines how the light 

reacts when hitting a specific surface type, different satellite bands can have different 

spectral abilities. Legleiter et al. (2004) summarizes how light or spectral radiance 

moving from the remote sensing platform sensor via the water body to the substrate and 

back to the sensor is influenced by external factors in the following equation:்ܮ = ஻ܮ + ஼ܮ + ௌܮ + ௉ܮ
Where ்ܮ is the total returning spectral radiance at the sensor, ܮ஻ is the portion of ்ܮ
that has gone through the water body and back via the substrate and through the 

atmosphere to the sensor, ܮ஼ is the radiance scattered upwards in the water column 

before reaching the bottom, ܮௌ is the radiance reflected of the water surface, and ܮ௉ is 

the path radiance from the atmosphere itself. Legleiter states that of the four 

components of the equation, only ܮ஻ is directly related to the water depth (and substrate 
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type). As the other components may be constant throughout an area in an image, 

simplified calculations focus on ܮ஻ while ignoring the other variables.

Several depth calculation methods have been applied using different versions of the 

spectral radiance pathways from the sensor and back. Lyzenga (1978) introduced the 

linear transform method where an image-derived pixel quantity ܺ was related to depth 

in a water body: ܺ = ln(ܮ஽ − (ௐܮ
where ܮ஽ represented the radiance at sensor and ܮௐ the radiance from the water 

column. The natural logarithm was used to compensate for the exponential attenuation 

of light through water. Later studies introduced the use of a ratio-based technique where 

the depth-related ܺ was the natural logarithm of the ratio between two different 

radiance bands, ்ܮଵ and ்ܮଶ (Philpot 1989, Legleiter 2009):

ܺ = ݈݊ ൤்ܮଵ்ܮଶ൨
The main principle behind the ratio-based technique is the difference between bands 

(e.g., ்ܮଵ and ்ܮଶ) in their ability to return radiance from the water body to the sensor. 

Thus, the ratio is related to the water column “length”, namely the depth. Several studies 

have tested the optimal combinations of bands for depth calculations, and Legleiter 

(2009) introduced the Optimal Band Ratio Analysis (OBRA) concept, where 

hyperspectral images were analysed to reveal the optimal combination of bands for 

depth retrieval. In general, analysis of band combinations shows that certain bands are 

more fitted in the numerator or the denominator, but that local characteristics of a water 

body may influence the results. The most common use is to have a band with shorter 

wavelength in the numerator (e.g., blue, or green) and a band with longer wavelength 

in the denominator (e.g., red). When the optimal band combination is found the 

relationship between ܺ and depth can be calculated by using local depth measurements 

in a regression analysis. The most used method is linear regression of ݀ and ܺ:݀ =  ܾ଴ + ܾଵ ∗ ܺ
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where ݀ is the water body depth, ܾ଴ and ܾଵ are the linear coefficients, and ܺ is the 

image-derived pixel quantity. Once the coefficients are known from a training data set, 

the equation can be applied to other relevant areas of the image.

When analysing a satellite image for depth retrieval, the image-derived pixel quantity ܺ is calculated by using the raster band values, where the bands represent the radiance 

in a certain spectral range. Satellite images may be supplied with either raw digital 

numbers, radiance, or reflectance in each pixel. Even though raw digital numbers can 

be used in the ratio calculation, transformation to radiance or reflectance might be 

necessary to remove image “noise” caused by e.g., atmospheric or surface disturbances. 

Thus, such transformation may reduce the level of error when calculating depth from 

the images.

Aerial photography

Figure 3. Aerial photo of a 500 m river section in river Gudbrandsdalslågen, Norway. ©

Kartverket / Geovekst

Aerial photography, or airborne imagery, is a common method for mapping and 

creating overviews in geographical areas. Photos are taken from an aircraft and 

orthorectified during post-processing. Modern aerial photos have the advantage of high 

spatial resolution, often surpassing the resolutions of e.g., satellite images. As with 

satellite images, an aerial photo consists of bands, most often a combination of blue, 
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green and red. Photos may also have information on near-infrared radiance in a fourth 

band. When analysing photos for depth retrieval the same methods are applied as 

described in the introduction section on satellite image analysis.
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AIMS AND OBJECTIVES

Remotely sensed data acquired through modern technologies like LIDAR and 

multispectral imagery can facilitate large-scale assessments of rivers in both space and 

time. Rivers impacted by hydropower regulation or other anthropogenic pressures are 

the focus of several ongoing processes both nationally (e.g., revision of terms of 

hydropower production, flood management, river conservation) and internationally 

(e.g., the European Green Deal, increasing renewable energy production, UN 

sustainability goals, The EU Water Framework Directive). These processes require 

river managers to make decisions based on multidisciplinary up-to-date knowledge on

both the current and future state of rivers.

In this PhD study, a multidisciplinary approach has been used to develop remote 

sensing-based methods for assessing river impacts and proposing mitigation measures 

on different spatial and temporal scales by focusing on i) how remote sensing can be 

applied for extensive mapping of bathymetry and ii) how remote sensing bathymetry 

can be applied in multidisciplinary assessments of river conditions. More specifically, 

the following key questions were addressed:

How can high-resolution LiDAR data and aerial imagery be used in the

assessment of habitats for inland fish?

Can we map bathymetry from satellite and aerial imagery across spatial and

temporal scales, and how can this be utilized in areas with sparse depth

measurements?

How can we utilize remote sensing derived bathymetry in impact assessment

studies in regulated rivers?
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Chapter 2
MATERIALS AND METHODS

Study areas

The first study was carried out in the River Gudbrandsdalslågen (hereafter Lågen) and

the River Otta (61.8°N, 9.5°E, Figure 1). The study area was restricted to 25 km of

Lågen and 5 km of Otta, adding up to a 30 km study reach in total. The study area was

defined by the boundaries of the available green LIDAR and SONAR data set,
nddownloaded at www.hoydedata.no (accessed on the 22 of October 2021). In the

3upstream boundaries of the study area, mean annual flows are 32.7 m /s and 111.0 m3/s

for River Lågen and River Otta, respectively. The corresponding drainage basin areas
2are 1828 km and 4150 km2. The study area was specifically chosen based on the

available LIDAR data and a three-year fish tracking data set on radio-tagged European

Grayling and brown trout. As each fish in the data set during tracking was allocated to

longitudinal river sections of 500 m length, the respective rivers were split into zones

of corresponding length to be analysed. 

In the second study four Norwegian rivers were selected as case studies: Gaula, Surna,

Nea and Lågen. The four rivers were selected to represent the central region of Norway

(61.8 to 63.2°N, 9.0 to 11.1°E, Figure 1). Table 1 summarizes coordinates, mean annual

flow, and catchment size for each of the four rivers.

Table 1. Location, mean annual flow and catchment area size for the four rivers used in the

PhD-study.

River Location Mean annual flow Catchment area

3(Latitude, Longitude) (m /s) (km2)

Gaula 63.2°N, 10.3°E 96.6 3660

Surna 63.0°N, 9.0°E 8.2* 1828

Nea 63.1°N, 11.1°E 5.3* 1519

Lågen 61.8°N, 9.5°E 32.7 1199

* On the bypass section
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Figure 4. Geographical locations of case study rivers in central Norway. The aerial images

show river sections used in Paper II for depth retrieval from imagery in (a) Gaula, (b) Surna,

(c) Nea, and (d) Gudbrandsdalslågen. © Kartverket / Geovekst 

With the exception of River Gaula, the case study rivers are directly impacted by

hydropower regulation. In each of the four rivers we selected two separate river

sections: one for training data and one for testing and validation. Section length ranged

(a)

(c) (d)

(b)
Surna

Gudbrandsdalslågen

Gaula

Nea
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from 230 m to 443 m. Aerial images for the four training data sections are shown in

Figure 1a-d. When applying to the European Space Agency (ESA) for access to high-

resolution, free-to-use satellite imagery, limitations applied to both the availability and

spatial extent of images. These limitations dictated the study area boundaries in each of

the four rivers. 

The third and fourth studies were carried out in the River Nea (63.1°N, 11.1°E, Figure

1). River Nea is part of the Nidelv catchment which has a total drainage basin area of

3118 km2. River Nea is regulated by several hydropower plants. The study area for both

studies was defined by a bypass section between the Hegsetdammen dam in the

upstream end and the location of the Nedre Nea hydropower plant outlet in the

downstream end. The total length of the bypass section is 24.3 km. The mean annual

flow in the upper part of the study area is 5.3 m3/s, including a minimum flow release

of 1.5 m3/s from the Hegsetdammen dam from May through September. The mean

annual flow in the lower part of study area upstream of the power plant outlet is 18.9
3m /s. Prior to the hydropower regulation, the mean annual flows were 67.8 m3/s and

75.4 m3/s, respectively. To compensate for reduced water-covered area due to the

regulation, 34 weirs has been introduced to the bypass section. In the third study, as

presented in paper III, three of the 34 weirs were subject to scenario-based adjustments

and analysis. In the fourth study, as presented in paper IV, all weirs were included in

the analysis of eDNA and hydraulics.
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Figure 5. A typical weir on the bypass section in River Nea, Norway. The picture was taken

looking upstream across the weir towards a pool habitat section. Photo: Håkon Sundt

Figure 6. Calibration data on depths and velocities in River Nea was measured using a

catamaran-type boat carrying an M9 RiverSurveyor from SonTek. Photo: Håkon Sundt

LIDAR and SONAR

Four LIDAR datasets were used in the PhD-study, one for each of the four rivers
th thincluded. River Gaula was scanned in the period 26 of September 2016 to the 11 of
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October 2016. River Lågen was scanned on the 20 and 21 of September 2015. Both

datasets were based on measurements using a Optech Titan snr 349 LIDAR platform

and had a point density of approximately 4 points per m2 on average. Both datasets also

included supplemental SONAR data in certain areas of the rivers. River Nea was
th th

th st

scanned on two separate occasions: 27 of July 2018 and 18 of April 2019. On both

occasions an Optech Titan snr 349 platform was used. The two LIDAR datasets in river

Nea had low coverage in river sections with depths above 0,5-1,0 m. River Surna was
th thscanned between the 20 and 26 of August 2016 using a RIEGL VQ-880 G LIDAR

platform. The dataset in river Surna had an average point density of approximately one

point per m2. All LIDAR datasets were accessed as a three-dimensional point cloud and

subsequently rasterized to obtain the river specific terrain models. During the river Nea

study additional data on depth and velocity was measured in a river section using a

SONTEK RiverSurveyor M9 platform.

In the first study, LIDAR data was used to create the bathymetry of River Lågen and

River Otta. The final bathymetry was used as input to a 2D hydrodynamic model for

the simulation of hydraulic conditions. In the second study, LIDAR derived bathymetry

was used to establish empirical relationships between image-derived pixel quantities

and depth. In the third and fourth studies LIDAR data was used to create (and modify)

terrain data related to weirs in River Nea, and also as input to hydrodynamic modelling

in combination with image-derived data on bathymetry.

Satellite imagery

Two satellite platforms were used in the studies: Worldview-2 and Sentinel-2. The

Worldview-2 satellite was launched in 2009 by DigitalGlobe and collects panchromatic

and multispectral imagery in 8 bands with a spatial resolution of < 2 m. Access to

images used in the studies were obtained by application to the European Space Agency

(ESA). The Sentinel-2 satellite was launched in 2015 by ESA and collects multispectral

data in 13 bands with a spatial resolution of 10 m. Access to images used in the studies

was provided for free through the Copernicus Open Access Hub

(scihub.copernicus.eu).

A total of 8 Worldview-2 images and 11 Sentinel-2 images were used during the PhD-

study. In the second study, the platform-specific images were applied along with the

LIDAR for establishing empirical relationships between image-derived pixel quantities
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and depth. In the fourth study, satellite images were used for creating maps of 

bathymetry in river sections where LIDAR coverage was lacking or missing. The final 

bathymetry combining LIDAR and satellite image-derived data were used as input to a 

2D hydrodynamic model for River Nea.

Aerial photos

All four studies included using aerial images for analysis and overview. All aerial 

images, except for a dataset collected by the LIDAR data provider in river Nea, were 

acquired using institutional access at the Norwegian mapping authority repository

(www.norgeibilder.no).

Additional data

Fish telemetry data on adult European grayling and brown trout

The first study used telemetry data on adult European grayling and brown trout as a 

basis for assessment of mesoscale habitat characteristics. During an environmental 

impact assessment in river Lågen adult fish were radio-tagged and tracked over the 

course of three years (2008-2010). The dataset was collected and supplied for use by 

the Norwegian Institute for Nature Research (NINA) and included data on 25 adult 

grayling and 59 adult trout (Junge et al. 2014, Van Leeuwen et al. 2016).

Expert opinion input on weir adjustment setup

In the third study outlines and adjustment scenarios of weirs were based on output from 

on-site discussions by an expert group. The group composition included experts on fish 

migration, fish ladders, general fish biology, river hydraulics, and recreational services.

Water/e-DNA samples

For the fourth study, eDNA concentration from water samples collected by NINA in

the spring and autumn season in 2018 and 2019 was used. The eDNA sampling 

campaigns were part of a biodiversity and genetics assessment in River Nea (Sundt-

Hansen et al. 2021). After water sample analysis in the NINA laboratory, results on 

eDNA were provided for the analysis of eDNA concentrations versus local hydraulics

and other variables in River Nea in the fourth study of this PhD.
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Chapter 3
STRUCTURE OF THE SCIENTIFIC WORK

Given the urgent need for river restoration and conservation efforts in light of 

population growth, climate change and increased renewable energy production, studies 

on how to assess and mitigate such pressures at large scales in space and time are

important in order to make the best possible decisions on how to move forward. The 

PhD-study addresses how remotely sensed data acquired through modern technologies 

like LIDAR and multispectral imagery can provide vital information for large-scale,

multidisciplinary assessments of rivers in both space and time. The first study used the 

access to spatially extensive, high-quality LIDAR data and aerial images to establish 

significant relationships between hydraulic and spatial variables and fish habitat on 

mesoscale levels for large parts of a river system (paper I). As comprehensive LIDAR 

datasets are still scarce in many rivers in Norway, the second study assessed the use of 

multispectral imagery and aerial photos as an alternative for mapping bathymetry in 

rivers (paper II). This study was carried out in four different rivers using three separate 

technology platforms (i.e., satellites WorldView-2 and Sentinel-2, aerial photography) 

in order to evaluate how instream conditions and remote sensing platform affected the 

calculation of bathymetry. In the third study, modifications of LIDAR data were used 

to set up scenarios of weir adjustments as a mitigation measure in a regulated river 

(paper III). This study applied a multidisciplinary approach in two parts by i) using 

expert knowledge on fish migration, fish ladders and hydraulics to propose scenarios 

of weir adjustments, and ii) using hydrodynamic modelling of weir adjustments as input 

to a social science-based public preference study. In the final study, LIDAR data and 

image-to-depth methods from the study in paper II were combined in an assessment on 

instream sampling strategies for environmental DNA, and how hydraulic and spatial 

conditions might influence the amount of eDNA found through water sampling (paper 

IV). The study analysed the seasonal effects of discharge, flow-related hydraulics and 

presence of weirs on the concentration and dispersion of eDNA.

The main findings from each paper are summarized in the following paragraphs.
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RESULTS OF THE PAPERS IN SUMMARY

Paper 1: Combining green LiDAR bathymetry, aerial images and telemetry data 

to derive mesoscale habitat characteristics for European grayling and brown 

trout in a Norwegian river

In Norway, studies on the impact of hydropower regulation on habitats for key fish 

species have been dominated by Atlantic salmon (Salmo Salar L.) and brown trout 

(Salmo Trutta L.) and focused mainly on microscale habitats (i.e., river sections with a 

length less than the width). Less is known about the habitat use of European grayling 

(Thymallus Thymallus L.) in Norwegian inland rivers, especially mesoscale habitat use 

of adult grayling during different temporal periods.

In river Gudbrandsdalslågen (Lågen) the two dominant fish species are European 

Grayling and brown trout. During a three-year period 25 adult Grayling and 59 adult 

trout were radio-tagged, tracked, and allocated to 500m river sections in a 30km reach 

in river Lågen once or several times a week on average.

By using densely gridded green LIDAR data, supplied by sonar in deeper parts of the 

river, along with high-resolution aerial images as a basis for bathymetry, we set-up and 

calibrated a 2D hydraulic model in the study area. The model was calibrated adjusting 

Mannings n to match observed (from images) and simulated water covered area outlines 

on two separate flows. Using flows observed during fish tracking we simulated a 

Froude number-based index in each of the 500m river sections. Next, we used the high-

resolution aerial images to calculate riverbank sinuosity (i.e., how straight or 

longitudinally varied the riverbank was). In the 500m river sections, the Froude 

number-based index represented hydraulic heterogeneity (see Figure 7 for the Froude 

variable), while riverbank sinuosity represented spatial heterogeneity.
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Figure 7. Froude number interval classes in river section 6 on 100 m3 s-1. Froude diversity 

was calculated by summing all Froude number interval class zones with more than 10% of the 

total wetted area within the river section. Flow direction is towards right. Background photo 

© Statkart, Geovekst

To assess periodic mesoscale habitat-use of grayling and brown trout, we tested for 

temporal correlations between the two heterogeneity variables and accumulated fish 

count in each of the 500m river sections. We used mixed model analysis to test for 

correlation (Table 2). We also tested for temporal correlations between average depth 

and velocity and fish count in the sections. Results show that grayling prefers higher

levels of hydraulic and spatial heterogeneity during spawning, and less for other periods 

of the year. Local observations of grayling during spawning in Lågen confirms the 

results. 

Table 2. Log-linear mixed models for European grayling during spawning and the rest of the 

year period. Models were tested on a α=0.05 significance level. Findex and Sinuosity represent 

hydraulic and spatial heterogeneity, respectively.
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For brown trout, no significant correlations were found between hydraulic and spatial 

heterogeneity and fish count. In the assessment of mesoscale depth and velocity, the

most significant correlations were found for grayling during spawning (low depth and 

velocity preference, Figure 8) and winter (low velocity preference). Significant 

correlations were also found for brown trout during winter (low velocity preference).

All significant results from the study are presented as mathematical models that can be 

used in future assessments of mesoscale habitat use.

Figure 8. Boxplots on depth and velocity distributions for occurrence levels (high, low, no 

occurrence) for European grayling during spawning in river Gudbrandsdalslågen.

By using remote sensing, we were able to effectively calculate two relevant variables 

for fish: LIDAR derived hydraulic heterogeneity and aerial image based spatial 

heterogeneity. We found significant correlations for both variables. While LIDAR data 

are costly to collect, aerial images are in many cases readily available. Thus, the 

methodology presented in this study is both flexible in terms of data input and 

application.

Paper 2: Regionalized Linear Models for River Depth Retrieval Using 3-Band 

Multispectral Imagery and Green LIDAR Data

Using remote sensing imagery for depth retrieval is emerging as a viable source for 

bathymetry and multispectral satellite imagery and aerial photos are available from a 

range of public and private databases. The baseline technique for depth retrieval from 

multispectral imagery is based on the relationship between image pixel values and 
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depth. A multispectral image consists of several bands, each band representing a certain 

wavelength range in the visible spectrum of light. Each band have their own 

characteristic property when emitted towards a water surface. E.g., some wavelength 

ranges are more able to penetrate the water surface than others. Studies have found that 

certain combinations of band pixel values are more related to water depth. The 

relationship between combined band pixel values and depth can be both linear (based 

on model coefficients intercept and slope) and non-linear.

The quality of the image pixel to depth relationship depends on a range of factors. The 

quality can be obscured by lack of transparency due to turbulence, sediment or nutrient 

loads and macrophyte growth on the riverbed. Other quality reducing sources are 

shadows from riverbank vegetation or adjacent terrain, low image resolution and 

atmospheric disturbances.

In the study, bathymetry from green LIDAR and sonar data was used as predictor 

variables in the regression analysis. The response variables were multispectral image 

pixel quantities extracted from three specific remote sensing platforms: The 

Worldview-2 satellite, the Sentinel-2 satellite, and local aerial images. The pixel

resolutions were 2m, 10m and <1m for the platforms, respectively (Figure 9). The 

regression analysis was repeated in four rivers in the predefined region of central 

Norway: Gaula, Gudbrandsdalslågen, Nea and Surna.

Figure 9. Depth map (a) and multispectral imagery on three spatial resolutions in river Lågen: 

(b) Worldview-2 (2m resolution), (c) Sentinel-2 (10m resolution), and d) aerial image (0.5m 

resolution)

In the first part of the study results showed that higher spatial resolution resulted in the 

multispectral images generally resulted in better models. Furthermore, a ratio using a 

39



combination of bands red and blue provided the best overall fit with depth, when 

compared to bands red and green. 

In the second part of the study, we developed regionalized linear models for depth 

retrieval by averaging the platform specific vector coefficients of the linear models in 

the four rivers. While the basic regional models performed less or equal to the local 

models, introducing factors “brightness” and estimated depth into the models increased 

model quality (Figure 10). The brightness factor was introduced to reduce potential 

image distortions due to atmospheric disturbances causing darker or brighter “spots” in 

certain areas. The estimated depth factor was introduced to increase the linear models’ 

ability to map deeper areas of the river where low visibility obscured the riverbed 

contours.

Figure 10. Regionalized linear models for platforms Worldview-2, Sentinel-2 and aerial image 

used in cross-sections in river Gaula. Orange lines are depth calculated using basic regional 

models, while green lines are depth calculated using an adjusted regional model incorporating

“brightness” and estimated depth.

Results on regionalized linear models were promising in terms of use in rivers with low 

density of depth measurements for local regression. The regionalized model for aerial 

image was tested in a 30km section of river Nea, using the brightness and estimated 

depth factors for adjustment. The bathymetry was supplied with LIDAR-data in the dry 

or semi-dry sections of the river.
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Figure 11. Bathymetry in River Nea, created by combining LIDAR data in the weir sections 

(dotted outlines) and dry areas with image-derived bathymetry in the deeper mid-river sections.

Paper 3: Assessing Visual Preferences of the Local Public for Environmental 

Mitigation Measures of Hydropower Impacts—Does Point-of-View Location 

Make a Difference?

Incorporating visual preferences of the public in plans of mitigation measures in 

regulated rivers are increasingly relevant, e.g., in public hearings during revision and 

renewal of environmental terms for hydropower operation. In Norway, weirs have 

historically been introduced to obtain a certain amount of water covered area in rivers 

sections with reduced flows. While potentially improving visual aesthetics, weirs were 

found to be fish migration barriers, especially in combination with low flows. Weirs 

were also found to create unfavourable habitats for native fish species preferring more 

heterogenous stream conditions (e.g., Atlantic salmon and brown trout). Full removal 

of weirs might not be a relevant mitigation measure if the existing flow regime remains 

unaltered. A valid option may be to make weir adjustments to facilitate improvements 

on local physical or ecological conditions. Remote sensing data like LIDAR can be 

useful in assessments on weir adjustments. As LIDAR data can be accessed as 

modifiable three-dimensional point clouds, they can be useful for hydrodynamic 

simulations of weir adjustment scenarios.

Three of the 35 weirs in river Nea were selected for the visual preferences study. For 

each of the three weirs, three “states” were set up: unchanged, adjusted or removed. For 

the adjusted state, the modifications were based on the input of experts on fish

migration, fish ladders and hydraulics. Two adjustment configurations were set up: 

excavated channel across the weir or interconnected cell-shaped pools across the weir.
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The former configuration was applied on the two downstream weirs, while the latter

configuration was applied on the most upstream weir. By applying modifications to the

LIDAR point cloud, we were able to create scenarios of weir adjustments and removal.

The scenarios were used as input to a hydrodynamic model and the resulting water

covered areas around the weirs were used in a photo manipulation process as part of

the visual preference study.

While two consecutive LIDAR

scans returned low coverage in the

deeper parts of the river, the

LIDAR point cloud data adequately

covered the bathymetry and

topography of the weir locations.

This provided a sufficient basis for

simulating weir hydraulics, more

specifically water covered area on

different flows and weir

configurations. An example of

water covered area outlines from

the hydrodynamic model for the

downstream weir is given in Figure

12. In the example two weir states

are simulated: adjustment by

excavated channel across the weir

(purple, 3 m3/s discharge) and full

removal (green, 6 m3/s discharge).

Full removal was simulated by

doubling the discharge to test the

compensating effect of increased

flow on the weir removal state.

Results on the LIDAR-derived

hydrodynamic simulations were

found to provide adequate input for

3 m3/s – weir adjustment
6 m3/s – weir removal

Figure 12. Simulated water covered areas for weir

adjustment and weir removal scenarios.

Figure 13. Simulated water covered areas for weir

adjustment scenarios at two different flows.

3 m3/s – weir adjustment
6 m3/s – weir adjustment

42



weir adjustment scenarios at different flows. More specifically, the introduction of

channels or weir-shaped pools across weirs did not lead to major changes in water

covered areas around the weirs. While simulations of full removal of the weirs at

existing environmental flows resulted in larger reductions in water covered area to a

larger degree, the effect of weir adjustments could be compensated by increasing the

flow (Figure 13).

The methods and results of the study can be useful as tools for assessing the potential

of weir adjustments in river restoration projects in terms of local hydraulics, ecological

conditions and public preference. More specifically, the application of a remote sensing

based hydrodynamic model for weir scenarios can provide vital information of use in

weir assessments. 

Paper 4: Using hydrodynamic models for guiding eDNA sampling in a river

dominated by weirs and hydropower flow regulation

Environmental DNA sampling and analysis is now considered an important element in

biomonitoring campaigns in rivers. By extracting eDNA from water samples on regular

intervals throughout a catchment taxonomic richness and species occurrence can be

assessed. Local instream conditions may influence the amount of detectable eDNA in

water samples thus providing a certain bias in terms of representativeness. In rivers

dominated by seasonal reduction of flows and weir presence, these local instream

conditions may be different than in natural rivers, and require specific strategies for

representative sampling of eDNA. The application of 2D hydrodynamic models in

eDNA studies are so far lacking, possibly as a result of the need for extensive

bathymetry. As new methods using remote sensing data can provide large-scale

bathymetry maps, assessments on eDNA can now more easily incorporate

hydrodynamic modelling.
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In the first part of the study, bathymetry

for the hydrodynamic simulations of

instream conditions was set up by

combining image-to-depth methods and

LIDAR data from the previous studies in

the PhD. More specifically, the LIDAR

data was used for weir topography while

a regional adjusted model was applied on

aerial photos for the deeper parts of the

river. Aerial photos were also used for

model calibration along with local

measurements of depth and velocity using

a M9 RiverSurveyor. Figure 14 shows

observed versus simulated water covered

area for a river section between two

consecutive weirs in river Nea. As no

local gauging station were available, streamflow during the eDNA sampling campaigns

were simulated based on hydrological scaling using a neighbour catchment with active

gauging stations. In the second part of the study, effects of seasonal instream conditions

and weir presence were tested using generalized mixed effects models. Covariate

categories included habitat, weir height and proximity, water covered area, hydraulics.

Seasonal covariate values were extracted from the hydrodynamic model and used as

predictor variables for local eDNA concentrations of brown trout and minnow, the two

dominant fish species in river Nea.

Figure 14. Observed and simulated water

covered area in river Nea

Results on bathymetry showed that using a combination of regional adjusted image-to-

depth models and LIDAR data provided a sufficient basis for hydrodynamic modelling

of instream conditions on reach scale, even with the presence of weirs complicating

local hydraulic conditions. Model verification using M9 RiverSurveyor velocity and

depth data on a 3 km river section resulted in deviances of 0.01±0.14 m/s and -

0.07±0.29 m, respectively. Low/high flow simulations of water covered areas resulted

in single reach deviances of 101%±7% and 93%±9%, respectively. The amount of

eDNA concentrations in the water samples were significantly affected by habitat type

and the presence of weirs, but the results depended on season and fish species. During
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autumn sampled brown trout eDNA concentrations were significantly higher in pool 

type habitats than in rapid type habitats, while the opposite was apparent during spring. 

For sampled minnow eDNA concentrations the effect of habitat type and season was 

not significant (Table 3). Weir presence was found to have an effect on sampled eDNA 

concentrations of both brown trout and minnow during autumn, while no effect was 

found during spring.

Table 3. Seasonal mixed models for brown trout and minnow eDNA concentrations in different 

habitat types in river Nea. Model performance is given (in the final column) as improvement 

upon the null-model (intercept only) using anova, 2 and p-value on α=0.05 significance level.

By introducing hydrodynamic modelling in an eDNA assessment we were able to test 

the effect of instream conditions on eDNA concentrations. The application of remote 

sensing data enabled the assessment to be carried out throughout the spatially extensive 

study area.

When sampling for eDNA in rivers where reduced flows and weirs are dominating 

instream conditions, the selection of sample locations should be guided by considering 

how habitat type and the proximity of weirs could affect sampled eDNA concentrations. 

especially during autumn field campaigns. The application of mixed effects models 

may also be useful in the post-processing of eDNA samples for the calculation of local 

eDNA concentrations outside of the sampling locations.

Fish species Season Fixed effects Estimate Std. error z value p-value 2

Brown trout Autumn Pool (intercept) 
Artificial river 
Rapids 

4.243 
-0.160 
-0.197 

0.146 
0.078 
0.078 

29.044 
-2.052 
-2.536 

<0.0010 
0.0402 
0.0112 

5.3875, 
p=0.0676 

Spring Pool (intercept) 
Artificial river 
Rapids 

3.475 
-0.150 
0.069 

0.043 
0.021 
0.017 

81.13 
-7.02 
3.99 

<0.0010 
<0.0010 
<0.0010 

11.863, 
p=0.0027 

Minnow Autumn Pool (intercept) 
Artificial river 
Rapids 

4.121 
-0.251 
-0.063 

0.188 
0.097 
0.097 

21.863 
-2.575 
-0.652 

<0.0010 
0.0100 
0.5140   

9.5132, 
p=0.0086 

Spring Pool (intercept) 
Artificial river 
Rapids 

4.576 
-0.043 
0.045 

0.115 
0.165 
0.158   

39.75 
-0.26 
0.28 

<0.0010 
0.7970 
0.7770   

0.1076, 
p=0.9476 
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Chapter 4
DISCUSSION AND CONCLUSIONS

Up-to-date knowledge on river conditions on multiple spatial and temporal scales is 

vital for the proposal of relevant mitigation measures. The objective of this PhD has 

been to study how remote sensing data can be used for extensive mapping of

bathymetry and as input to multidisciplinary river assessments.

Based on the aims presented in chapter 1, the main conclusions are summarized and 

discussed in the following paragraphs.

High-resolution LiDAR data and aerial imagery be used in the assessment of 

habitats for inland fish.

In the first paper, to assess seasonal habitat use for adult European grayling and brown 

trout, we introduced two remote sensing derived variables to represent mesoscale 

habitat characteristics: hydraulic heterogeneity and spatial heterogeneity. Hydraulic 

heterogeneity was calculated using hydrodynamic simulations based on high-density 

bathymetry from LIDAR data, while spatial heterogeneity was extracted from aerial 

pictures. We found that both heterogeneity variables had significant effect on adult 

European grayling occurrence during spawning, thus concluding on the relevance of 

the variables in habitat assessments. While conclusions on European grayling during 

spawning were significant, no corresponding significance was found for brown trout. 

This might be related to individual species having different preferences on local 

instream conditions.

Certain limitations did apply in the study. In terms of spatial extent, the LIDAR dataset 

covered 30 km of river Lågen (and river Otta), while the telemetry dataset included fish 

individuals that were temporally located outside of these limits. Although fish

movement was central for setting up the habitat models in terms of seasonal choice of 

location, instream conditions at fish observation locations outside the limits of the 

hydrodynamic model were not included. Another element of uncertainty is the lack of 

model verification, as the final habitat models are yet to be tested outside of the study 

area. We also acknowledge that the habitat models do not include biotic and territorial 

factors like (inter- or intra-) species interaction and competition, access to food and 
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water temperature which might affect choice of locations. But despite the limiting 

factors, we believe the results may be viewed as a first step in assessing how mesoscale 

heterogenic instream variables may influence seasonal habitat use, and that the results 

might prove useful in the planning of mitigation measures related to flow alteration, 

channelization and habitat fragmentation.

Can we map bathymetry from satellite and aerial imagery across spatial and 

temporal scales, and how can this be utilized in areas with sparse depth 

measurements?

In the second paper we studied the application of remotely sensed multispectral imagery

for mapping bathymetry. The main emphasis behind the study was to propose methods

for obtaining bathymetry where e.g., LIDAR data or other sources of bathymetry is 

lacking or missing. Results showed that image-to-depth models could produce adequate 

maps of bathymetry, but that model performance were platform-dependent also relying 

on a certain image quality (e.g., spatial resolution, atmospheric conditions, water 

visibility). Additionally, certain variations in model coefficients were apparent across 

the four rivers included in the study. The introduction of estimated depth and a 

brightness factor to the platform-specific models improved model performance on the 

regional models (i.e., applicable across rivers).

Former studies on bathymetry from spectral information in images have found that 

certain combinations of bands (i.e., wavelength intervals) can be used to calculate depth 

(Legleiter et al. 2009). Optimally, models for image-to-depth calculations are based on 

hyperspectral data where all wavelengths are available for assessing empirical 

relationships (Marcus et al. 2003). But as the majority of satellite platforms collect 

multispectral images (with a limited number of bands), this is the most common source 

of remote sensing imagery available for the public.

Other limitations may also apply in the application of satellite imagery. Bathymetry 

based on multispectral imagery will effectively have the same spatial resolution as the 

original image. This implies that satellites like Sentinel-2 with a ground resolution of 

10x10 m may be of limited use in smaller rivers. Satellite imagery with higher ground 

resolution, like the WorldView-2 satellite, while acquisition may come at a certain cost 
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to private users or companies, might still provide more cost-effective mapping of 

bathymetry than LIDAR scans.

Another issue potentially limiting the use of imagery is the dependency on certain levels 

of water quality. Low visibility in water bodies due to suspended sediment loads or 

other reflecting elements in the water column may reduce the potential for significant 

empirical image-to-depth relationships. This issue will be most apparent in river 

sections with depths above approximately two meters, making image-to-depth 

methodology most applicant in shallow water bodies. The proposition of implementing

estimated depth and brightness in image-to-depth relationships as presented in paper II

can be seen as input to the discussion on how to enhance the creation of bathymetry 

from remote sensing imagery.

To our knowledge, the study in paper II is the first major application of multispectral 

imagery for extensive mapping of bathymetry in Norwegian rivers. Results show that 

methods on image-to-depth might be a useful tool for extensive mapping of rivers. 

While LIDAR data can provide high-resolution bathymetry, such data can be quickly 

be outdated in highly morphodynamic river systems where events like floods, 

sedimentation or ice break-up are frequent. As multispectral imagery is repeatedly 

collected by satellites, the image-to-depth approach can be a sensible alternative for 

both spatial and temporal mapping of bathymetry. Furthermore, the application of 

regional models on image-to-depth, while not tested outside of the four rivers in this 

PhD-study, might prove valuable in the mapping of rivers in areas where local depth 

measurements are lacking or missing.

How can we utilize remote sensing derived bathymetry in impact assessment 

studies in regulated rivers?

In the PhD-study, bathymetry based on remotely sensed data was applied in three 

multidisciplinary impact assessments in regulated rivers: 1) flow-dependent, seasonal

mesoscale habitats for European grayling and brown trout (paper I), 2) public 

perceptions of weir adjustment scenarios and water covered area (paper III), and 3) the 

influence of weirs and reduced flows on eDNA concentrations in a regulated river

(paper IV).
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Remote sensing technologies can provide cost-efficient, high-resolution data on large 

spatial scales. The application of publicly available, spatially extensive LIDAR data

enabled detailed two-dimensional simulations of local flow-dependent hydraulics by

providing high-resolution bathymetry. From the simulations we could extract the

spatial distribution of depth, velocity and hydraulic variables for the assessment of 

hydraulic heterogeneity. Furthermore, we found that riverbank outlines extracted from 

high-resolution aerial images were useful as input to assessments on the effect of spatial 

heterogeneity on local fish species. Similarly, publicly available, spatially extensive 

imagery enabled the assessment of the effect of weirs and reduced flow on sampled 

eDNA concentrations in a 24 km bypass section, when supplied with high-resolution 

LIDAR data around weirs.

While the bathymetry provided vital input to large-scale assessments on hydraulics, the 

establishment of relationships with ecological and recreational elements during this 

study were enabled by working together with experts on biology and social sciences.

Indeed, this multidisciplinary approach is key to solve many of the challenges related 

to mitigating impacts in rivers.

The application of methods developed in this PhD-study might require users to possess

certain levels of knowledge on how to extract and apply remotely sensed data for 

creating bathymetry. LIDAR data might be the easiest source to handle as there are only 

a few steps from the acquisition of a point cloud to the creation of the bathymetry (e.g., 

as a raster). A conceptual flow chart of the process is shown in Figure 15. LIDAR data 

is also highly suitable for mitigation effort scenarios as spatial adjustments easily can 

be implemented in the process.

Figure 15. The process of creating bathymetry from LIDAR data.

The application of remote sensing imagery for creating bathymetry requires additional

GIS operations when compared to LIDAR. A conceptual flow chart for image-to-

bathymetry is shown in Figure 16. Based on the PhD-study, two pathways are proposed: 

1) using depth measurements to create a local model, and 2) using existing platform-

specific coefficients to set up a regional model. The transfer from depth to bathymetry
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(i.e., riverbed elevation) is done using data on local water surface elevation from e.g., 

local measurements or public databases (levelling data from NVE Atlas, or water 

surface elevation from hoydedata.no).

Figure 16. Creating bathymetry from remote sensing imagery.

This PhD was done as a part of the project on environmental design in HydroCen, the

Norwegian Research Centre for Hydropower Technology. The main objectives of the 

project are to expand current environmental design concepts in terms of species

inclusion, ecosystem components, user interests in addition to energy and flood 

protection services. By addressing the implementation of remote sensing technologies 

in impact assessments and scenarios on mitigation measures, we have contributed to 

more knowledge on how to utilize this source of data in new, effective ways. More 

specifically, we have demonstrated the use of bathymetry in studies on fish habitats, 

weir adjustments, and as an important supplement to biomonitoring through eDNA in 

regulated rivers. Furthermore, we have tested and evaluated the use of remote sensing 

imagery for cost-efficient mapping of bathymetry in rivers where extensive data on 

riverbed conditions are lacking, thus providing means for implementing the

environmental design concept where this has not been applied before.
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RECOMMENDATIONS AND FURTHER WORK

Remote sensing data are recognized as an importance source of information in river

systems. But work remains on how to optimize the use of this information in river

assessments and management processes. Multidisciplinary is key for addressing current

and future impacts on the physical, ecological or recreational environment in rivers.

But while decisions on how to sustainably manage our rivers should be based on the

best possible knowledge of river systems, the collection of this knowledge might be

resource demanding. Remote sensing data can provide cost-efficient means of data

collection related to both physical and ecological aspects of rivers. 

Based on the knowledge acquired throughout the studies of this PhD the following

recommendations and future work are suggested:

(1) LIDAR data are highly useful as input to assessments on geomorphological,

hydrodynamic and ecological conditions in rivers. Currently, few Norwegian

rivers have been mapped with green LIDAR. While work is currently in place

to add more rivers to the list, expanding the national database on green LIDAR

to cover different geographical regions and types of rivers can provide both

river managers and research communities with highly valuable and applicable

data. 

(2) In this PhD, multispectral imagery from three platforms were used to set up

empirical relationships with depth in four rivers in a geographical region of

Norway. While the relationships were significant for certain platforms and

rivers, the application of the models were not tested outside of this geographical

region. It is recommended to both test the regional methods and to continue the

work on establishing empirical relationships in other regions of Norway where

different river conditions might apply. This could provide a useful and cost-

effective supplement to riverbed mapping in cases where LIDAR data are

lacking due to limited resources and potential costs, or where LIDAR data have

become outdated due to hydromorphological events altering the riverbed

conditions. 

(3) While methods for extensive mapping of riverbed conditions using remote

sensing technologies have become more available, work remains on

complementing such data with extensive data on e.g., ecology, recreational use,
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ecosystem and energy services. By combining extensive multidisciplinary

knowledge in projects with active user and stakeholder involvement, outcomes

of such studies can be highly beneficial for both decision makers, water

managers and research communities.
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Abstract While many studies provide microscale

relationships between fish and habitat characteristics,

studies covering longer river reaches are scarce.

Modern remote sensing techniques may enable new

and effective ways of mapping and assessing mesos-

cale habitat characteristics. Using green LIDAR-

derived bathymetry and hydraulic modelling, we

tested how mesoscale depth and velocity were related

to fish counts of adult European grayling (Thymallus

thymallus L.) and brown trout (Salmo trutta L.) in

500 m river sections in three separate periods during

the year. Using riverbank sinuosity from aerial images

and a Froude number-based index from the hydraulic

model as proxies for mesoscale spatial and hydraulic

heterogeneity, we tested for temporal correlations

with river section fish counts of adult European

grayling and brown trout. Results showed that

mesoscale mean depth and velocity were correlated

to period fish counts of adult European grayling. Using

mixed model analysis we found that riverbank sinu-

osity and the Froude number-based index were

significantly correlated with river section occurrence

of adult European grayling during spawning. The

results can be used to assess how flow-induced

changes and channel adjustments at the mesoscale

level can influence access to and use of relevant

habitats in rivers occupied by European grayling and

brown trout.

Keywords Spatial variation � Hydraulic modelling �
Fish observation � Seasonal preferences � Mixed-

model analysis � Remote sensing

Introduction

River regulation can affect relevant habitats for

aquatic biota through factors like fragmentation,

channelization, and flow modification (Warren et al.,

2015; Van Leeuwen et al., 2018; Hellström et al.,

2019). Dams, weirs, embankments, and seasonal flow

alteration can influence both habitat accessibility and

availability (Hall et al., 2011). As habitat requirements

in many cases are seasonal or life stage dependent
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(e.g., for salmonid fish), mitigation efforts in regulated

rivers should, if possible, be based on ecological and

physical elements across spatial and temporal scales.

The combined use of ecological and physical data

have been at the heart of flow mitigation efforts in

regulated rivers for decades (Richter et al., 1997;

Bovee et al., 1998). However, to propose relevant

mitigation and conservation efforts in rivers one must

conclude with a certain level of confidence on how the

physical environment influences the ecological status

of local key species. Although some studies have

observed significant connections between physical

instream characteristics and ecological elements

(Maddock et al., 2013), Petts et al. (2006) argued for

an increased integration of hydraulics and ecology in

conservation and mitigation management settings.

Hardy (1998) addressed the need to develop a range of

model tools, in close collaboration between biologist,

engineers and resource managers.

While physical instream habitat models have been

used for decades, they have occasionally been criti-

cized for simplifying biotic-abiotic relationships

(Railsback, 2016; see also comments by Beecher

(2017) and Stalnaker et al. (2017)). One criticism

focuses on the spatial and temporal scales used in

habitat assessments (Heggenes et al., 1999).While fish

may relate to depth and velocity at the local level

(Greenberg et al., 1996; Höjesjö et al., 2007), this

localized focus may ignore factors such as migration

and interaction, which may be more apparent at larger

spatial scales (Armstrong et al., 2003).

In environmental design studies of flow alteration

in regulated rivers, hydraulic models are often used to

describe and assess physical instream characteristics

across spatial and temporal scales (Bustos et al., 2017).

However, the hydraulic results depend on the quality

of the bathymetric input. Modern techniques of terrain

mapping such as remote sensing by green LIDAR can

replace more traditional methods (e.g., GPS, sonar).

LIDARs (‘‘light detection and ranging’’ or ‘‘laser

imaging, detection, and ranging’’) use concentrated

light in different wavelengths to map a surface. The

green prefix is related to the ‘‘green’’ wavelength

(500–565 nm) which can penetrate water surfaces.

Compared to standard bathymetric datasets, the use of

green LIDAR can enhance the spatial resolution by

several orders of magnitude and provide extensive

datasets across large parts of river systems (Mandl-

burger et al., 2015). Combined with high-resolution

aerial images, LIDAR data might provide highly

relevant data for the analysis of physical instream

characteristics (Juarez et al., 2019).

The salmonids brown trout Salmo trutta Linnaeus,

1758. and European grayling Thymallus thymallus L.

coexist in many European inland rivers (Junge et al.,

2014). Brown trout and European grayling differ in

life history and morphology, and spawn during

autumn and spring, respectively (Northcote, 1995;

Jonsson & Jonsson, 2011). Both species are rheophilic

and have relatively wider range of swimming abilities

compared to many other inland fish species (Ovidio

et al., 2007). Although their habitat uses often overlap,

European grayling are known to prefer slower flowing

parts of rivers than brown trout, which has given rise to

the terms ‘‘grayling zone’’ and ‘‘trout zone’’ in river

classification (Huet, 1959). Hence, their differences

are important to consider when assessing the conse-

quences of altered physical conditions and flow in

environmental design studies related to mitigating

anthropogenic pressures in rivers. Such pressures may

be hydropower development, flood protection or water

removal.

Hellstrøm et al. (2019) stated that increased habitat

heterogeneity could be beneficial for grayling popu-

lations and increase available territories for protection

and feeding for trout. Vehanen et al. (2003) reported

that adult grayling showed more flexibility in habitat

requirements and preferred to stay in the vicinity of

islands and reefs in a restored river section. The reason

for fish choosing river sections with a higher degree of

heterogeneity may be complex. Nilsson et al. (2005)

hypothesized that increased variation in available

physical habitat could lead to increase in land-water

interactions, retention capacity of water, sediment,

organic matter, and nutrients, and potentially increase

the production of macroinvertebrates and fish. Boa-

vida (2010) argues that increased physical variation in

stream characteristics may increase biodiversity

levels. Marsh et al. (2019) found for juvenile

salmonids (Atlantic salmon Salmo salar L. and brown

trout) that velocity heterogeneity was linked to habitat

use and highlighted the consideration of this factor in

future studies. Stream characteristics may also be also

linked to the dimensionless Froude number. Wadeson

(1994) and Jowett (1993) found the Froude number to

be significant in distinguishing between different

biotopes like pool and riffle sections (see also Hauer

et al., 2011). Lamouroux & Souchon (2002) addressed
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the use of dimensionless physical variables like the

Froude number as a common denominator for habitat

use in rivers located in different regions.

The mesoscale level (e.g., river sections longer than

the local river width) can be relevant for conservation

and mitigation management (Horne et al., 2017).

Newson and Newson (2000) provide comments and

overview of definitions for mesoscale units in relation

to ecological research. Wegscheider et al. (2020)

provides an extensive summary of mesohabitat mod-

elling, also discussing the ecological relevance of such

models. Criticism includes the lack of behavioural and

biotic elements and the application for fish species

more sensitive to microscale habitat changes. While a

range of tools for habitat modelling exist today, they

often relate to more prominent fish species like the

Atlantic salmon. Also, field mesoscale mapping can be

time-consuming, especially when covering large spa-

tial and temporal ranges. With these issues in mind,

there is still a need for further information on: (1) how

to map and assess mesoscale habitat characteristics;

and (2) determine the relevance of mesoscale habitat

characteristics for European grayling and brown trout.

In the present study, we addressed the above-men-

tioned points as described below.

(1) We mapped mesoscale habitat characteristics in

two large-scale Norwegian rivers with European

grayling and brown trout populations using

publicly available green LIDAR data (at www.

hoydedata.no) and high-resolution aerial images

(at www.norgeibilder.no). We used the LIDAR

data to set up a 10 9 10 cm riverbed terrain grid

and ran a 2D hydraulic model. From the model

results we assessed depth, velocity, Froude

number and wetted width in 500 m river sec-

tions. We then used high-resolution aerial ima-

ges to calculate riverbank sinuosity and map

substrate diversity in river sections.

(2) We assessed the relevance of the mesoscale

habitat characteristics derived from the LIDAR

data and the aerial images using telemetry data

for European grayling and brown trout. First, we

tested for seasonal correlations between fish

occurrence and mean values of depth and

velocity. Secondly, we tested for seasonal

correlations between the number of fish present

and spatial and hydraulic heterogeneity. We

used riverbank sinuosity as a parameter for

spatial variation and an interactive index with

Froude number diversity, wetted width, and

substrate diversity as a parameter for describing

hydraulic heterogeneity.

Materials and methods

Study area

The study was conducted in the River Gudbrands-

dalslågen (hereafter Lågen) and River Otta (hereafter

Otta). The study area was spatially confined by the

boundaries of the publicly available green LIDAR

dataset which included 25 km of Lågen and 5 km of

Otta. The study area was defined by three river reaches

with reference to the confluence of Lågen and Otta:

Lågen upstream of the confluence, Lågen downstream

of the confluence and Otta (Fig. 1). Upper Lågen and

Otta have average yearly flows of 32.7m3s-1 and

111m3s-1, respectively. The drainage basins are
21828 km and 4150 km2, respectively. During a

telemetry study conducted between 2008 and 2010,

observations of individual radio-tagged European

grayling and brown trout were allocated to specific

500 m river sections. The study area was thus spatially

split into river sections of 500 m in length corre-

sponding to the telemetry study river sections

(n = 55). The uppermost river section in Otta was

only partly covered by the green LIDAR dataset and

was excluded from the analysis.

Upper Lågen is regulated for hydropower by the

Rosten power plant, which has been in operation since

2018. The Rosten plant is a run-of-the river hydro-

power plant (HPP) with no storage capacity. The

Rosten HPP has an installed capacity of 80 MW,

average yearly production of 192 GWh and a head of

103.5 m. The outlet of Rosten HPP is in Upper Lågen

1.5 km upstream of the study area, and results in

negligible changes in flow due to hydropower pro-

duction. The bypass section between the intake and the

outlet is 5.3 km and runs mostly through cascade/pool

river sections with natural migratory barriers for

grayling and trout. Otta is regulated for hydropower

by the Eidefossen plant which is a run-of-the-river

hydropower system that has been in operation since

1983. The Eidefossen HPP is located 15 km upstream

of the confluence with Lågen (10 km upstream the
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study area boundary) and has an installed capacity of

13.2 MW and average yearly production of 13 GWh.

The power plant has a head of 18.9 m.

Telemetry data

In an environmental impact assessment (EIA) address-

ing the hydropower development plan for Otta and

Lågen, adult European Grayling (hereafter grayling)

and brown trout (hereafter trout) were radio-tagged

and subsequently tracked and positioned for a three-

year period from 2008 to 2010. One of the goals of the

telemetry study was to study migration patterns and

identify spawning locations in relation to the hydro-

power development plan. All fish were caught by rod

fishery, kept in keep-nets in the river until radio-

tagged (within three days of capture). Radio-tagging

was conducted according to the Norwegian National

Animal Research Authority protocols. Tags from

Advanced Telemetry Systems were used (ATS,

https://atstrack.com/index.html). All fish were

anaesthetized, and the radio transmitters were either

fixed externally right below the dorsal fin (models

F1960 and F1970) or surgically inserted in the fish

abdominal cavity (models F1170, F1580 or F1830).

Transmitter weights varied from 2.2 to 11 g with an

estimated life expectancy of 6 to 12 months. All

transmitters made up less than 2% of the fish body

weight. Full details on the radio-tagging can be found

in Junge et al. (2014) and Van Leeuwen et al. (2016).

From the telemetry dataset we selected fish which

repeatedly occupied the study area during all three

periods. This included 25 adult grayling (mean

length ± SD: 40.2 ± 3.9 cm; range: 35–46 cm) and

59 adult trout (mean length ± SD: 43.7 ± 3.9 cm;

range: 32–53 cm).

During the telemetry study fish were tracked and

allocated to predefined 500 m river sections once per

week, and on some occasions several times per week.

The period of spawning was determined by assessing

the gonad status of both species. We defined three

specific temporal periods for grayling and trout—their

Upper Lågen

Lower Lågen

Otta

Norway

Confluence

Fig. 1 Map of the study

area with 500 m fish

observation river sections

(n = 55) and three river

reaches: Upper Lågen, Otta

and Lower Lågen. The

confluence of River Lågen

and Otta is in the mid-

section of the study area.

Black lines along the river

corridor are defined by the

green LIDAR dataset

boundaries. Black dotted

lines indicate downstream

flow direction for the

respective river reach
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spawning season, winter and the rest of the year—

based on migration patterns observed throughout the

telemetry study (Table 1). The rest of the year period

comprised two separate periods for grayling (3rd of

April through 23rd of May and 17th of June through

29th of September) and one continuous period for

trout (2nd of April through 15th of September). These

periods are included in the analysis for reference, but

do not represent a specific life stage for either fish

species.

River bathymetry and calculation of hydraulic

and spatial variables

We accessed a publicly available green LIDAR and

echo sounder terrain dataset through www.hoydedata.

no and downloaded it as a three-dimensional point

cloud within the study area boundaries. Using LAS-

tools (LAStools, rapidlasso GmbH, rapidlasso.com),

all compressed LAZ-files were decompressed to LAS

and joined in nine individual, adjacent LASD-files due

to size and computational restrictions. Using ArcGIS

(ESRI Inc., 2020), we built statistics for all LAS

datasets and filtered the files for ground and bathy-

metric data. We rasterized all LASD-files into nine

corresponding raster files using triangulation with

natural neighbour interpolation and window size point

thinning of mean point cloud z-values in 50 9 50 cm

cells. Each of the nine rasters were then combined into

a final raster covering the entire study site.

We set up a 2D hydraulic model (HEC-RAS 5.0.7.,

https://www.hec.usace.army.mil/software/hec-ras/)

using the combined raster as input. We built an

unstructured 2D computational mesh using

10 9 10 m cells. The underlying 50 9 50 cm terrain

was still the computational basis for all simulations of

depth, velocity, and Froude number. Additional break

lines were included in river sections with higher

complexity of wet/dry conditions, i.e., around islands,

embankments, and tributary confluences. Break lines

help in the computation of areas with more complex

patterns of stream flows. Flow hydrographs were set

up as upstream boundary conditions, representing

inflows to the River Lågen and River Otta. We used

normal depth as a downstream boundary condition.

We calibrated the model using the Mannings n coeffi-

cient with water covered area as a target variable. The

water covered area was derived from aerial images

(picture resolution from 10 cm to 50 cm) with known

dates of capture and thereby known discharge. River

Lågen upstream of the confluence with River Otta had

m3 -1aerial images acquired at discharges of 34 s and
3 -1105 m s , River Otta upstream of the confluence

with River Lågen had aerial images at discharges of
3 -1 3 -158 m s and 183 m s while River Lågen down-

stream of the confluence with the Otta had aerial
3 -1 3 -1images at discharges of 92 m s and 211 m s , all

which formed the basis for the calibration. We cal-

culated and summarized average deviation in water

covered area in all 55 river sections for all calibration

flows. The coefficients of determination (R2) for the

correlation between simulated and observed water

covered areas in river sections were 0.99, 0.93 and

0.99 for Upper Lågen, Otta and Lower Lågen,

respectively. Based on the range of flows occurring

during the telemetry registrations, we set a total flow

range to use for the simulations. We then simulated

flows at regular intervals between the minimum and

maximum flows. The resulting distributions of

hydraulic variables were exported in 10 9 10 m cells

for each river section and river reach occurring flow.

In River Lågen, grayling have been observed using

backwater eddies during the period of spawning. To

test and quantify this observation, we hypothesized

that backwater eddies are more likely to occur in river

sections with higher levels of spatial and hydraulic

heterogeneity (as described in Fig. 2). We used

riverbank sinuosity as a predictor variable to represent

the spatial heterogeneity. Sinuosity was calculated in

ArcGIS using a polyline approach where actual
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Table 1 Defined temporal periods for all years included in the telemetry study (2008-2010) for grayling and trout

Temporal periods Spawning Winter Rest of the year

Start date End date Start date End date

Grayling 24th of May 16th of June 30th of September 2nd of April All other dates

Trout 16th of September 30th of October 31st of October 1st of April
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riverbank length was divided by the lengths of straight

lines in the same river section. The straight lines were

adjusted slightly for river bends to avoid overrepre-

sentation of sinuosity in some river sections. As a

proxy for hydraulic heterogeneity we defined an

interactive predictor index, F , as the product ofindex

input variables relative width, Froude diversity and

substrate diversity for each river section (Eqs. 1 and

2). Relative width is the average wetted width of the

river section divided by the total average wetted width

in all 55 river sections during the season. Relative

width represents the flow dependent areal input

variable in F . Froude diversity is the zonalindex

heterogeneity level (range 1–5) of the dimensionless

Froude number within each river section and repre-

sents the flow dependent hydraulic input variable in

F (Eq. 3). The Froude number was extracted fromindex

the hydraulic model in nodes. The Froude number

represents the ratio of inertial forces to gravitational

forces. Subcritical flows (Fr\ 1) indicate lower

velocities and an area dominated by gravitational

forces, while supercritical flows (Fr[ 1) indicate

higher velocities and inertial forces domination.

Froude diversity was extracted from the hydraulic

model in intervals of 0.1, and by summing the number

of distinct intervals with more than 10% of the wetted

area present in each river section (see Fig. 3 for an

example). Level 1 implies that one dominant Froude

number interval zone was present in the river

section. Level 5 (i.e., the maximum observed across

all river sections) implies that five available Froude

number interval zones were present. Substrate diver-

sity represents flow independent local hydromorpho-

logical conditions and was classified based on visual

observation of river section bed substrate in high-

resolution aerial images, using a scale ranging from 1

(low diversity/single substrate size) to 6 (high diver-

sity/large range of substrate sizes). We hypothesised

that substrate diversity contributed to the hydraulic

complexity within a river section, thus affecting the

hydraulic heterogeneity. Table 2 gives an overview

over averages and ranges for variables F , relativeindex

width, Froude diversity and substrate diversity.

Findex ¼ RW � Frdiv � Sdiv ð1Þ
where: F = hydraulic heterogeneity index,index

RW = relative width, Frdiv = Froude diversity,

Sdiv = substrate diversity

RW ¼ Wrs=Wall ð2Þ
where, RW = relative width, Wrs = average wetted

Hydrobiologia

Fig. 2 Velocity zones and vectors (m s ) and hydraulic-1

heterogeneity in river section 36 on 200 m s . White framed3 -1

picture in upper left corner shows velocity tracking in an area

with high riverbank sinuosity. The colour scale shows simulated

velocity in m s . Background picture: copyright Statkart,-1

Geovekst
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width of the river section, Wall = total average wetted

width in all 55 river sections during the season

v
Fr ¼ �

ffiffiffiffiffiffiffiffiffi

gHD

where Fr = Froude number, v

p ð3Þ

� = Average velocity,

g = gravitational acceleration, HD = hydraulic depth

Data analysis—depth, velocity and fish occurrence

levels in river sections

To explore relationships between mean depth and

velocity in the mesoscale river sections and fish

observations we defined three levels of fish

occurrence: (1) more than 10 repeat visits of fish

during the temporal period (high occurrence), (2)

between 1 and 10 visits during the temporal period

(low occurrence), and (3) no visits during the temporal

period (no occurrence). We included repeat visits on

separate dates of the same fish individual in the

analysis. The maximum recurrence was 5% in all

datasets. One single fish individual tracked and

registered in a river section on a specific date equalled

one fish count (i.e., a single river section visit). A

summary of the statistics for individual fish occur-

rences and river section visits are given in Table 3.

We repeated the tests for each of the three defined

temporal periods for grayling and trout: spawning,

Fig. 3 Froude number interval classes in river section 6 on
3 -1100 m s . Froude diversity was calculated by summing all

Froude number interval class zones with more than 10% of the

total wetted area within the river section. Flow direction is

towards right. Background picture: copyright Statkart, Geovekst

Table 2 Variable average, minimum and maximum for Findex, relative width, Froude diversity and substrate diversity

Variable Grayling Brown trout

Average ± SD Min Max Average ± SD Min Max

Findex 6.28 ± 8.51 0.70 65.86 6.51 ± 8.70 0.57 67.99

Relative width, RW 1.00 ± 0.86 0.10 5.04 1.00 ± 0.83 0.10 4.09

Froude diversity, Frdiv 2.30 ± 1.04 1.00 5.00 2.37 ± 1.20 1.00 5.00

Substrate diversity, Sdiv 2.78 ± 1.49 1.00 6.00 2.78 ± 1.49 1.00 6.00

Variable statistics are calculated from each single fish observation across all three temporal periods and for all years included in the

study. As each single fish observation has its specific flow and subsequent variable value in the dataset, the statistics may differ for

grayling and brown trout
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winter and the rest of the year. Based on observations

during the telemetry study, we expected to find that

fish concentrated in specific river sections, dependent

on the temporal period, and that these river sections

could be separated based on the mean depth and

velocity.We sorted the individual river sections within

the study area into the three fish occurrence levels. As

the study area had three specific reaches, we accessed

hydraulic model results using mean depth and velocity

in each river section for an average temporal period

flow for the given river reach. A Kruskal–Wallis test

was used to assess the differences in mean depth and

velocity among the fish occurrence levels, a suit-

able test for comparing two or more samples when the

sample size differs, and normality cannot be assumed.

Data analysis: spatial and hydraulic heterogeneity

and fish counts in river sections

We used a Generalized Linear Mixed Model (GLMM)

approach to explore the relationship between the total

temporal period fish counts (i.e., total number of

visits) per river section and the predictor variables

sinuosity and F (Table 4). Models were estab-index

lished for grayling and trout for each of the three

temporal periods. To control for and assess the

variation between river sections and river reaches

(n = 3) in the study area, variables river section and

reach were entered as crossed random effects with

random intercepts. Due to the non-normal probability

distribution of the response variable within each

season, we used Poisson and negative binomial

probability distributions for our models. For these

distributions, a logarithmic model setup was used, and

the final models were then transformed back to obtain

actual intercept and slope values. All models were

compared to a baseline null model (intercept only, no

predictor), given in Eq. 4. Random effects are given in

parenthesis. The predictor variable model setup is

given in Eq. 5. Equation 6 shows the final model setup

after transformation.

Log Fish countð Þ� 1þ river reachð Þ þ river sectionð Þ
þ e

ð4Þ

Log Fish countð Þ� predictorþ river reachð Þ
þ river sectionð Þ þ e ð5Þ

Fish count� exp predictorþ river reachð ð Þ
þ river sectionð Þ þ eÞ ð6Þ

Model coefficients (intercept and slope) were

reported by log-transformation for Poisson and neg-

ative binomial distributions. For Poisson and negative

binomial distributions, the fixed effect model coeffi-

cients are slope rates rather than linear slope values.

The slope rates thus represent a percentage change in

fish count per unit of the predictor. Slope rate values

above 1 indicate an increase in fish count per unit

increase in the predictor, while slope rate values below

1 indicate a decrease in fish count per unit increase in

the predictor. To run and test the models we used R (R

Core Team, 2020) and glmmTMB (Brooks et al.,

Hydrobiologia

Table 3 Number of repeat visits on separate dates in river sections by individual fish for three temporal periods

Grayling Brown trout

Spawning Winter Rest of year Spawning Winter Rest of year

No. of individuals in the dataset 25 25 25 59 59 59

No. of total visits in all river sections 63 256 464 447 469 1196

Repeat visits by individual fish

Median 3 10 21 7 8 21

Maximum 3 13 23 9 9 30

Maximum recurrence* 5% 5% 5% 2% 2% 3%

Single river section visits**

Median 6 20 18 21 27 44

Maximum 19 34 83 63 79 202

*Maximum recurrence = Maximum repeat visits by individual fish / Total number of visits in dataset

**Corresponds to response variable fish count

123

72



2017). For each season and fish species we compared

model performances using the Akaike’s Information

Criterion (AIC) as the general summary statistic.

Model improvement was indicated by a lowering of

the AIC value compared to the null model.

Results

Depth, velocity and fish occurrence levels in river

sections

European grayling

For grayling during spawning, high occurrence river

sections had lower mean depth than low- or no

occurrence river sections (Fig. 4). Mean depths were

significantly different between fish occurrence classes

none and low, and none and high. Mean velocity was

significantly lower in river sections with higher

occurrence. During winter mean depth in low

occurrence river sections were significantly larger

than the depths at both high and no occurrence river

sections. Mean velocity was significantly different

among all three levels of occurrence, with the highest

velocity in the no occurrence river sections. For the

rest of the year period, there were no significant

differences between the levels for mean depth, while

mean velocity in high occurrence river sections was

significantly lower than in low- and no occurrence

river sections.

Brown trout

Brown trout occurrence levels were generally less

related to mean depth and velocity compared to

European grayling (Fig. 4 Boxplots showing depth

and velocity distributions for the three fish occurrence

levels for European grayling. The horizontal lines

display the compared levels along with the Kruskal–

Wallis test p-value. Level ‘‘high’’ is for river sections

with more than 10 repeat visits of fish during the

Table 4 Variables and elements in the Generalized Linear Mixed Models used to test relationships between fish count and hydraulic

variables

Variable Model element Description

Fish count Response (integer) Total number of fish visits registered in each river section in each period. One fish count

equals one single visit to the river section on a specific date. Repeat visits on separate

dates by the same individual were included. See Table 3 for more detail on fish

recurrence

River ‘‘Subject’’ Individual river section of 500 m length. In the study area there are a total of 55 river

section sections: 28 in upper La?

Random effect / Control

River reach Random effect / Control The analysed area has three reaches: upper La

˚gen, 18 in lower Lågen and 9 in Otta

˚gen, lower Lågen and Otta.

Sinuosity Predictor (continuous) Level of sinuosity in a river section, calculated using a polyline approach where actual

river edge was divided by straight edge lines in the same river section. The straight lines

were adjusted slightly for river bends to avoid overrepresentation of sinuosity in some

river sections

River section index multiplying variables relative width, Froude diversity and substrateFindex Predictor (interactive,

continuous) diversity

Relative Average wetted width of a river section divided by the total average wetted width in all 55Input variable to Findex

width (continuous) river sections during the period of study. Flow dependent

Froude Zonal heterogeneity level (1 to 5) in Froude number within each river section. CalculatedInput variable to Findex

diversity (factor, 1-5) by sorting Froude numbers in all nodes in a river section into specific 0.1-intervals from

0 to 0.7, and then summing the number of intervals present with more than 10% of the

wetted area in the river section. Level 1 represents only one dominant Froude number

interval in the river section, while level 5 represents five available Froude number zones

that each cover more than 10% of the river section wetted area. Flow dependent

Substrate Observed diversity level (1 to 6) in river section bed substrate, obtained from high-Input variable to Findex

diversity (factor, 1–6) resolution aerial images. Ranged from 1 (low diversity/single substrate size) to 6 (high

diversity/large variation in substrate size). Flow independent
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temporal period, level ‘‘low’’ for river sections with

between 1 and 10 visits during the temporal period and

‘‘none’’ for river sections with no visits. Median values

are shown as a black line inside each box. Outliers are

shown as black dots outside of the error bars. Mean

values, standard deviation and median values are

given below each boxplot Fig. 5). During spawning,

mean depth in high occurrence river sections was

significantly smaller than in low occurrence river

sections, but not different from no occurrence river

sections. Mean velocity in no occurrence river sections

were significantly higher than in low and high

occurrence river sections. During winter depth differ-

ences among the occurrence levels were small and

insignificant, whereas velocity was significantly

higher in no occurrence river sections than both low

and high occurrence river sections. For the rest of the

year period, the only significant difference was for

mean depth between the high and low occurrence river

sections.

Spatial and hydraulic heterogeneity and fish counts

in river sections

European grayling

The best model for estimating grayling occurrence in

river sections during spawning used a combination of

predictors sinuosity and F to calculate fish countindex

(Eq. 7, Table 5). Using predictors sinuosity and Findex

in separate models also provided significant estimates

of grayling occurrence during spawning (Eqs. 8 and

9). All three models (Table 7) improved (p\ 0.001)

on the null model (intercept only, no predictor).

The best model for grayling occurrence in river

sections during the rest of the year period used single

predictor sinuosity to calculate fish count (Eq. 10,

Table 6). The sinuosity model improved (p\ 0.01)

the null model. While using F as a predictor forindex

grayling occurrence during the rest of the year period

provided a significant model (Equation 11, p\ 0.01),

only the slope coefficient was significant (p\ 0.01).

Overall model performance was best for the

spawning period (AIC\ 189.1, Table 7). No signif-

icant relationships between predictors sinuosity and

F and grayling occurrence was found duringindex

winter. During the rest of the year overall model

performance was lower than during spawning (AIC[
351.7). For both the spawning and the rest of the year

periods, sinuosity was the only predictor that provided

a p\ 0.001 significance level for both intercept and

slope values.

Brown trout

Predictors sinuosity and F explained brown troutindex

occurrence in river sections during the rest of the year
thperiod (2nd of April through 15 of September). No

significant relationships between both predictors and

fish count were found for the spawning and winter

periods. For the rest of the year period both predictors

improved (p\ 0.01) the null model, but overall model

performance and improvement were low (AIC =-null

461.9, DAIC of - 4.3 and - 3.9 for sinuosity and

F , respectively). For both predictor models, bothindex

intercept and slope coefficients were significant

(p\ 0.01). Overall model performance for brown

trout in the rest of the year period was lower than for

grayling in the same period.

Discussion

Our study of spatial and hydraulic heterogeneity in the

rivers Lågen and Otta was enabled by access to

publicly available high-density green LIDAR data and

high-resolution aerial images. In a free-for-all data-

base (www.hoydedata.no), both point clouds and

digital terrain models can be downloaded. While most

rivers in the database are covered by red LIDAR data

and thus only returns the river surface elevation, sev-

eral major rivers have been mapped using a water

penetrating green LIDAR. Using the extensive

LIDAR dataset to set up high-resolution bathymetric

maps (50 cm cell size) we were able to obtain detailed

maps of Froude number distribution and wetted width

bFig. 4 Boxplots showing depth and velocity distributions for

the three fish occurrence levels for European grayling. The

horizontal lines display the compared levels along with the

Kruskal–Wallis test p-value. Level ‘‘high’’ is for river sections
with more than 10 repeat visits of fish during the temporal

period, level ‘‘low’’ for river sections with between 1 and 10

visits during the temporal period and ‘‘none’’ for river sections

with no visits. Median values are shown as a black line inside

each box. Outliers are shown as black dots outside of the error

bars. Mean values, standard deviation and median values are

given below each boxplot
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through hydraulic modelling at flows registered during

the telemetry study sessions. The high-resolution

aerial images were accessed at www.norgeibilder.no.

Although we had institutional access to download

images, all images are available for viewing at www.

norgeibilder.no, including historical images. With a

spatial resolution of 0.10 m the aerial images enabled

us to map riverbank sinuosity and assess the level of

substrate diversity in all river sections. An issue that

might occur using LIDAR data are the temporal dis-

tance between the date for the bathymetric mapping

and other interlinked studies in the same river. The

combination of different datasets into an assessment of

biotic-abiotic relations might require users to assess

the potential changes in bathymetry between dates,

due to hydromorphological changes because of floods,

ice break-up and other forces. We argue that

addressing biotic-abiotic relations on a mesoscale

reduces the issue of bathymetric discrepancies, as

hydromorphology is more likely to be stable at the

mesoscale level, than at the microscale level.

Each fish observation was confined to the nearest

500 m river section. In our study, we defined these

sections to be on the mesoscale, based on a longer-

than-river-width-principle. While average river width

across all seasons and flows were 109 ± 97 m, some

sections had an average width of more than 500 m

(maximum width was 648 m). Although we were not

able to test the sensitivity of river section length on the

model variables and results, we found significant

correlations between habitat characteristics and fish

occurrence on the scale chosen in this study.

To account for the mesoscale hydraulic hetero-

geneity in our study area, we combined Froude

number, wetted width and substrate diversity in the

. While other abiotic and spatial factors might beFindex

relevant, we assessed the specific use of wetted width,

Froude number and substrate diversity as variables

describing the hydraulic heterogeneity. The Froude

number incorporates both local depth, velocity and

gravitational acceleration, accounting for a mix of

hydraulically relevant variables. Wetted width adds a

spatial component to address river section size (actual

and relative) and substrate diversity that might account

for local hydromorphological conditions and access to

hydraulic shelters/refuges. In future studies an on-site

mapping may be helpful in reducing the influence of

subjectivity when assessing substrate diversity. As

both Froude number and wetted width are dependent

on flow, these factors will be influenced by altered

flow regimes. The F can be used to assess differentindex

flow regimes and how they will influence the hydraulic

heterogeneity and consequently the response on local

fish occurrences (more specifically adult European

grayling). To assess mesoscale spatial heterogeneity,

we hypothesized that this variation could be described

by riverbank sinuosity. Higher levels of sinuosity were

observed in areas with more islands and higher

longitudinal/latitudinal riverbank variation. These

parameters can be assessed on an aggregated level in

GIS operations, provided access to relevant high-

resolution aerial images or maps.

Testing for correlations between fish occurrence

and mean values of depth and velocity, we found that

grayling preferred relatively shallow and slow-flowing

river sections during the spawning season. River

sections with higher mean depths and velocity were

avoided during spawning. The result accords with

previous observations (Mouton et al., 2008) and

preference studies of grayling spawning habitats

(Nykänen & Huusko, 2002; Vehanen et al., 2003).

Grayling during non-spawning period, i.e., winter and

summer/autumn, were more likely to occupy slower

flowing river sections. The results are comparable to

velocity preferences found by Nykänen et al. (2004).

For trout, we found fewer overall differences between

fish occurrence levels in the three periods than for

grayling. Trout were generally found in river sections

with the lowest available mean depths in all periods.

Results for mean depths points to values slightly

higher than those reported by Armstrong et al. (2003)

for spawning habitats and Cunjak and Power (1986)

for winter habitats. Trout were more likely to occupy

slower flowing river sections during spawning and

winter, in line with observations reported by Cunjak

and Power (1986) and Heggenes et al. (1993).

bFig. 5 Boxplots showing depth and velocity distributions in

three fish occurrence levels for brown trout. The horizontal lines

display the compared levels along with the Kruskal-Wallis test

p-value. Level ‘‘high’’ is for river sections with more than 10

repeat visits of fish during the temporal period, level ‘‘low’’ for

river sections with between 1 and 10 visits during the temporal

period and ‘‘none’’ for river sections with no visits. Median

values are shown as a black line inside each box. Outliers are

shown as black dots outside of the error bars. Mean values,

standard deviation and median values are given below each

boxplot
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Testing for seasonal correlation between the

amount of fish present and spatial and hydraulic

heterogeneity using a mixed model approach, we

found that predictor variables sinuosity and Findex

were significantly correlated to the presence of

European grayling during spawning. Slope values

were positive for both predictor variables with sinu-

osity providing the largest slope value. Combining the

two predictor variables in an interactive model

provided the best model performance, when compared

to the null model, but reduced overall model element

significance. While no correlation was found between

both sinuosity and F and grayling presence duringindex

winter, we found that both variables improved the null

model for grayling during the rest of the year period

(3rd of April through 23rd of May and 17th of June

through 29th of September). We emphasise that model

results for the fragmented rest of the year period for

grayling were included only as a reference and do not

represent a specific life stage. For brown trout, we

found that the variables sinuosity and F wereindex

positively related to fish presence during the rest of the

year period (2nd of April through 15th of September),

but overall model performance was low and the model

was thus excluded from the results.

In our study area, grayling have historically been

observed to use river sections with a presence of

backwater eddies during spawning. While we did not

map backwater eddies (or note fish observations in

these), we assumed that backwater eddies were more

likely to occur in areas with higher levels of spatial and

hydraulic heterogeneity. Our results in 500 river

sections provide a significant and quantified relation-

ship between grayling occurrence and spatial and

hydraulic heterogeneity during spawning. We also

found that heterogeneity may influence grayling and

trout in the rest of the year period. Even though

heterogeneity is mentioned as a relevant factor in

determining the habitat use of salmonids in river

systems (Nilsson et al., 2005; Boavida, 2010; Hell-

strøm et al., 2019), there is still a lack of studies

quantifying this.

Greenberg et al. (1996) addressed the issue of

transferability of preferences between rivers by con-

cluding that while microscale depth and velocity

preferences of European grayling and brown trout may

be similar within regions, no universal habitat suit-

ability relations exist. This was based on factors such

as habitat availability, fish density, and food and biotic

interactions, which may vary between rivers. Arm-

strong et al. (2003) took a more general view by stating

that, while models often are adapted to single rivers or

streams, models incorporating local abiotic features

and catchment-scale variables might be more suit-

able for conservation and management purposes and

more applicable across river systems. Our findings

indicate that mesoscale depth and velocity preferences

may be adequate to address fish occurrence of

European grayling during spawning, while the results

are less clear for grayling during winter and the rest of

the year. We would argue that addressing depth and

velocity at a mesoscale level might provide adequate

input to conservation and mitigation efforts in rivers

and future studies on biotic–abiotic relationships,
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Table 5 Models for estimating European grayling occurrence during spawning (24th of May through 16th of June) using predictors

sinuosity and Findex interactively and separately

Season Predictor Log-transformed model

Spawning Sinuosity * Findex Fish count ¼ exp �2:29þ 1:61 � sinuosityþ 0:15 � Findex � 0:03 � sinuosity : Findexð Þ Eq. 7

Findex Fish count ¼ exp �0:92þ 0:10 � Findexð Þ Eq. 8

Sinuosity Fish count ¼ exp �1:47þ 0:89 � sinuosityð Þ Eq. 9

Table 6 Models for estimating European grayling occurrence during the rest of the year period (3rd of April through 23rd of May

and 17th of June through 29th of September) using predictors sinuosity and Findex separately

Season Predictor Log-transformed model

Rest of the year Sinuosity Fish count ¼ exp 1:56þ 0:40 � sinuosityð Þ Eq. 10

Findex Fish count ¼ exp 1:83þ 0:03 � Findexð Þ Eq. 11
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especially when combined with an assessment of

spatial and hydraulic heterogeneity at the same level.

Conclusion

As remote sensing technology advances and becomes

more accessible in terms of cost and availability,

LIDAR data might enable large-scale habitat assess-

ments across spatial scales. The availability of high-

resolution aerial images might also provide valuable

input to habitat assessments, including mapping of

substrate and spatial heterogeneity in rivers. As

hydraulic heterogeneity represented by F is flowindex

dependent, it might be relevant on a short-term basis

when addressing e.g., minimum flow requirements.

The flow independent spatial heterogeneity factor

sinuosity might be relevant in long-term assessments,

e.g., flood protection measures, riverbank protection

and conservational issues. While our results remain to

be validated through comparative studies in other

rivers, we believe our results on spatial and hydraulic

heterogeneity can provide a relevant model frame-

work for use in management processes and environ-

mental design studies in regulated rivers.
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Abstract: Bathymetry is of vital importance in river studies but obtaining full-scale riverbed maps
often requires considerable resources. Remote sensing imagery can be used for efficient depth
mapping in both space and time. Multispectral image depth retrieval requires imagery with a certain
level of quality and local in-situ depth observations for the calculation and verification of models.
To assess the potential of providing extensive depth maps in rivers lacking local bathymetry, we
tested the application of three platform-specific, regionalized linear models for depth retrieval across
four Norwegian rivers. We used imagery from satellite platforms Worldview-2 and Sentinel-2, along
with local aerial images to calculate the intercept and slope vectors. Bathymetric input was provided
using green Light Detection and Ranging (LIDAR) data augmented by sonar measurements. By
averaging platform-specific intercept and slope values, we calculated regionalized linear models and
tested model performance in each of the four rivers. While the performance of the basic regional
models was comparable to local river-specific models, regional models were improved by including
the estimated average depth and a brightness variable. Our results show that regionalized linear
models for depth retrieval can potentially be applied for extensive spatial and temporal mapping of
bathymetry in water bodies where local in-situ depth measurements are lacking.

Keywords: remote sensing; bathymetry; satellite imagery; LIDAR; river management

1. Introduction

Rivers provide a range of landscape functions and ecosystem services [1]. While
rivers have been supplying means of recreation, transportation, and electricity production,
the utilization of rivers has come at a certain cost, introducing physical, ecological, and
hydrological alterations. Proposing relevant mitigation measures requires the appropriate
analytical tools. This includes a solid bathymetric basis on which to build the assess-
ment strategy and the use of hydraulic, hydrological, sediment, physio-chemical, and
ecological models.

While remote sensing (RS) technologies have been available for many years [2,3],
recent developments suggest an increased interest in the analytical possibilities of RS [4,5].
RS has been applied for many different purposes in river studies and is rapidly becoming
more available for analytical use [6–9]. Examples of use include automated grain size map-
ping [10], fluvial patterns and sediment surface topography [11,12], and habitat mapping
for salmonids [13,14].

The basis for many river assessments is riverbed topography coupled with hydraulic
models [15,16]. Hydraulic models often depend on an adequately defined bathymetry [17,18]
and have historically been applied in relatively short river sections rather than large river
reaches due to lack of resources for extensive bathymetric mapping. There are many methods
to retrieve riverbed data ranging from manual methods using hand-held sticks and instruments
by wading or from boats to more semi-automated methods like sonars, acoustic doppler
current profilers (ADCP), Light Detection and Ranging (LIDAR), and optical instruments,
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mostly carried by remotely operated vehicles (ROV), boats, drones, helicopters, airplanes, and
satellites. Some of these methods still require intensive manual effort to collect data for large
river reaches, and they are not further discussed here.

Airborne devices such as LIDARs may provide users with extensive, high-resolution
bathymetric models [19], but the collection and processing of LIDAR data can potentially
be costly and time-consuming [20,21]. While the application of RS imagery may result in
lower-resolution models when compared to LIDAR-derived data, it can still be a sensible
alternative for the mapping of river bathymetry [22,23]. Often, RS imagery is collected
repeatedly in both space and time, adding spatial and temporal elements that can be
utilized in river assessments [24]. The main sources of RS imagery are satellites and aircraft-
based instruments [25]. While access to local aerial images may be restricted, satellite
imagery is often readily available at low- or no-costs from a range of global archives.

Lyzenga [26] introduced the use of RS image band combinations for water depth
extraction. Building on the Lyzenga image band combination concept, Legleiter et al. [27]
introduced OBRA (Optimal Band Ratio Analysis) for the identification of optimal band
combinations. Further development of the concept was done by Legleiter & Harrison [28]
by assessing different types of equations for the relation between image-derived quantities
and depth. Additional methods include MODPA (Multiple Optimal Depth Predictors
Analysis), where multiple predictors are included to enhance water depth extraction,
and SMART-SDB (Sample-specific multiple band ratio technique for satellite-derived
bathymetry), where local adjustments to band ratio models are applied [29,30].

In addition to being dependent on the platform-specific sensor technology, the rela-
tional quality between image-derived quantity and water depth also depends on factors
like ground pixel resolution, substrate color, water column characteristics, and water depth
itself [31]. While “clear” rivers are (seasonally) present in Norway, many rivers are semi-
or non-transparent due to suspended sediments, organic matter, and the presence of peri-
phyton reducing water column transparency and obscuring riverbed visibility, especially
in the deeper parts of the river.

While a small but increasing number of Norwegian rivers have been mapped using
green LIDAR, most rivers lack extensive bathymetric coverage. Occasional mapping of
rivers done many years ago may also not be used anymore, as the riverbed topography
may have changed due to sedimentation and erosion caused by flood events, ice scouring,
or other factors. This may emphasize the need for updating outdated bathymetric maps
while also providing access to bathymetry in previously unmapped rivers.

Increasing the availability of bathymetric maps on a regional or national scale could
provide a better foundation for river management. Norwegian river managers are currently
facing multiple challenges. The European Water Framework Directive (WFD) requires the
characterization and classification of all water bodies. So far, the methods and tools to
do this in a cost-effective way are missing. About 2/3 of the large rivers in Norway are
regulated for hydropower. Many of these will undergo a revision of terms in the coming
years, as they reach 30 years of operation [32]. Both the implementation of the WFD and
the revision of terms in hydropower regulated rivers would most likely require mitigation
measures to be carried out. These measures could be the release of environmental flows,
habitat improvements, and alterations of geomorphology. In addition, the increased
frequency and magnitude of intensive precipitation events due to climate change increase
the risk of damaging flood events in Norwegian rivers [33]. All these factors require
improved knowledge and data from rivers, highlighting the need for adequate and spatial
extensive river bathymetry data.

As satellite imagery often covers large parts of catchments, both spatially and tem-
porally, estimating depth from image data can be an essential tool for setting up a range
of river applications to meet these new challenges for river management. In addition to
the challenges mentioned above, extensive river bathymetry data are also important for
planning urban, industrial, and infrastructure development close to or across the riverscape.
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While a range of models for local depth retrieval has been tested and applied, there is
a lack of studies analyzing the potential transferability and application of platform-specific
models across rivers. The main goal of our study was to test the use of regionalized
linear models for depth retrieval in a Norwegian setting to provide a potential method
for extensive depth mapping in water bodies where local bathymetry is lacking. The
regionalized linear models were set up by calculating and averaging the platform-specific
depth to band ratio intercept and slope coefficients across four rivers located within the
same geographical region. Using local LIDAR and sonar bathymetry as depth input, we set
up linear models for three RS platforms: (1) high-resolution Worldview-2 satellite imagery,
(2) low-resolution Sentinel-2 satellite imagery, and (3) local high-resolution aerial imagery.
Our research objectives were:

(1) To test and assess depth retrieval using linear models for three different platforms
across four Norwegian rivers with slightly different characteristics.

(2) To develop and test the application and transferability of platform-specific, regional-
ized models for depth retrieval across the four study sites.

2. Materials and Methods

Four non-connected rivers located in Central Norway were used in the study: Gaula,
Gudbrandsdalslågen (hereafter Lågen), Nea, and Surna (Figure 1 and Table 1). River Gaula
is dominated by a sand and gravel substrate and runs through a relatively wide U-shaped
valley. While floods still affect the hydromorphology, embankments and historical gravel
outtakes have altered the geomorphology and reduced the dynamic movement of the
riverbed in parts of Gaula. River Lågen is dominated by silt/sand and gravel substrate
and runs through a wide valley bottom. River Nea is dominated by gravel and occasional
rocks and runs through a V-shaped valley in the upstream part and a u-shaped valley
in the lower part. River Surna is a gravel-bed-dominated river that runs through a U-
shaped valley. Rivers Nea and Surna are regulated by hydropower with an upstream
dam and reservoir, a bypass section, and an outlet in the lower part, while river Lågen is
regulated by a run-of-the-river hydropower plant. River Gaula is not directly affected by
hydropower regulation.

Gaula Lågen

(c)

Nea

(d)

200 m

Surna

(e)

Nea

Surna

Lågen

Gaula

50 km

Norway

N
Lat: 63.5653536
Lon: 12.1453696

Lat: 61.5149237
Lon: 8.2837359

(b)

(a)

Figure 1. Overview of the study areas: (a) regional locations of the four rivers in central Norway; (b–e) aerial images of
the river sections used as training data for cross-sectional image pixel and in-situ depth extraction. The scale for all river
sections is given in (d). Aerial images by © Kartverket and Geovekst.
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Table 1. River drainage area and training data river section mean annual flow, width, section length,
and channel aspect ratio, A. Channel aspect ratio is calculated as average width by depth in one of
the Worldview-2 images in the four river sections.

River
Drainage Area Mean Annual

(km ) Flow (m3s )2 −1

Average Width
(m)/Section
Length (m)

Channel Aspect
Ratio, A

Gaula 3660 96.6 85.3/293.5 90.7
Lågen 1 1828 32.7 72.9/443.6 58.3
Nea 2 1519 1.5 95.9/322.4 223.0

Surna 3 1199 8.2 39.1/230.9 56.6
1 2 3 −1Regulated by hydropower. Regulated by hydropower. 1.5 m s is the minimum flow release from May

3through September. Local runoff applies in addition. Regulated by hydropower. Mean flow in bypass
reach/downstream powerplant outlet.

2.1. Data
2.1.1. Riverbed Topography

We accessed a national public database for red and green LIDAR data, available at
www.hoydedata.no, acessed on 17 August 2021 [34]. Using polygons to define the area of
interest (AOI) in each of the four rivers, we included the specific river reaches in each of the
study areas in addition to a buffer zone of approximately 10 m of dry terrain on each bank.
For each AOI, we downloaded a 1 × 1 m orthorectified digital terrain model (DTM) based
on a nationwide red LIDAR mapping project. As all standard DTMs in the database were
based on a non-water penetrating red LIDAR point cloud, the wet parts of rivers were given
as a water surface, per classification from the point cloud. In the same database, a selection
of sections of rivers have bathymetry available based on green LIDAR point clouds, and
some of these point clouds also include supplementary local measurements of bathymetry
using multibeam sonar to complement missing data in deeper river sections. For rivers
Gaula and Lågen, we downloaded bathymetry point clouds for the respective AOIs. For
each of the two rivers, we used the point clouds to create riverbed topography raster files
using natural neighbor interpolation. In river Nea, we sampled riverbed topography using
boat mounted SonTek M9 ADCP. Approximately 12,000 points were collected on a 3 km
river stretch. We then used the points for natural neighbor interpolation to create a riverbed
topography raster file. For river Surna, we were given access to a green LIDAR bathymetric
dataset collected by the hydropower operator Statkraft [35], covering the study reach. A
summary of parameters for the underlying point clouds and terrain datasets is given in
Table 2.

Table 2. Equipment used for the acquisition of point clouds used to calculate the river-specific
terrain datasets.

River Platform Operator Date of Acquisition
Point Accuracy

Density (dz) (m)

Gaula TerraTec 4 pt/m2 0.002Optech Titan 26 September
snr 349 2016–11 October 2016

Optech Titan 20 September 2015–Lågen TerraTec 4 pt/m2 0.024snr 349 21 September 2015
SonTek

Nea RiverSurveyor NTNU 25 October 2019 0.06 pt/m2 -
M9 [36]

Surna RIEGL VQ-880 G AHM >1 pt/m2 -20 August
2016–26 August 2016

The bathymetric raster in each river was resampled and snapped to match the reso-
lution and borders of the cells (i.e., pixels) in the individual satellite and aerial imagery.
Thereby, each set of imagery had its georeferenced bathymetric map. To establish the
georeferenced water surface elevation along the river sections, we used local satellite
imagery in combination with the red LIDAR raster to set up polygons with the same
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water surface elevation. To obtain water surface maps, we used the Normalized Difference
Vegetation Index (NDVI) method on the satellite imagery, using a combination of the red
and near-infrared (NIR) bands [37]. In the resulting raster, negative values indicated water
surface, and positive values indicated dry land. We reclassified the raster by letting a value
of 1 indicate water, and a value of 0 indicate dry land, and, finally, created a polygon repre-
senting the water surface classification outline. Using the red LIDAR raster as input, we
extracted the water surface elevation using the classification polygon file. In addition, we
set up a new water surface polygon file based on areas with the same elevation to inspect
and extract local water surface slope. Based on the extracted water surface elevations,
we created depth raster files by subtracting the bathymetric raster from the local water
surface elevation. Further adjustment of local water surface elevations due to different
flows during image acquisition was done during the subsequent analysis.

2.1.2. Platform Imagery

Three sources of imagery were used for analysis: (1) four-band red, green, blue,
and near-infrared high-resolution Worldview-2 satellite images; (2) four-band red, green,
blue, and near-infrared Sentinel-2 satellite images; and (3) three-band high-resolution
aerial images (Table 3). Worldview-2 images (© TPMO (2020)) were provided by the
European Space Agency [38]. We did a manual conversion to obtain top-of-atmosphere
(ToA) reflectance pixel values. ToA reflectance Sentinel-2 images were downloaded via
the Copernicus Open Access Hub [39], while aerial images were acquired through the
Norwegian mapping authority aerial image repository at www.norgeibilder.no, acessed on
17 August 2021. The aerial images were analyzed using raw digital numbers (DN) without
any atmospheric correction.

Table 3. Platform image information summary.

River Image Source Image No. Acquisition Date Discharge
Resolution

(m)

Gaula Worldview-2 1 2.04 9 May 2017 -
2 2.07 27 August 2019 50 1

Sentinel-2 1 10 19 August 2016 50 1

2 10 26 April 2019 -

Aerial image 1 0.5 6 June 2016 75 1

Lågen Worldview-2 1 2.05 7 September 2019 63
2 2.05 8 September 2019 58

Sentinel-2 1 10 30 June 2018 35
2 10 3 July 2018 28
3 10 4 August 2019 49

Aerial image 1 0.5 9 September 2015 42

Nea Worldview-2 1 1.65 17 May 2018 20 1

2 2.06 16 May 2019 30 1

Sentinel-2 1 10 28 July 2019 10 1

2 10 4 August 2019 10 1

3 10 26 September 2019 10 1

Aerial image 1 0.2 2 June 2017 40 1

2 0.2 27 July 2018 5 1

Surna Worldview-2 1 2.02 5 August 2019 14 1

2 2.05 20 October 2019 12 1

Sentinel-2 1 10 26 April 2019 96 1

2 10 28 July 2019 8 1

3 10 26 September 2019 4 1

Aerial image 1 0.1 30 June 2018 6 1

1 Discharge is estimated based on expert knowledge.
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All satellite images were orthorectified using the red-LIDAR-based terrain raster
datasets. In addition, minor adjustments were done by shifting images in the x-y-plane
to match the local high-resolution aerial images, used as georeferencing baseline. No
smoothing was done on any of the images.

2.2. Data Analysis
2.2.1. Selecting Band Combinations

After a preliminary evaluation of both linear and polynomial methods, we decided to
base the work on Legleiter et al. [28] and analyzed the linear relationship between depth
and image pixel values as given in Equation (1).

d = b0 + b X (1)1

where d is depth, X is an image pixel-derived quantity, and b0 and b are the intercept and1
slope of the linear relationship. b and b form the coefficient vector b = [b0 b1]. X from0 1
Equation (1) was defined as two different band combinations in our study:

( )
Xg = ln pg/pr (2)

Xb = ln(pb/pr) (3)

where p is the respective band image pixel value (with subscripts b, g, and r representing
blue, green, or red bands, respectively). For the Worldview-2 and Sentinel-2 images, p
represented top-of-atmosphere reflectance values, while for the local aerial images, p
represented raw digital number values (DN). Band combinations were selected based on
previous studies by Legleiter et al. [23] and Shintani and Fonstad [40], where analysis
indicated that bands with the highest spectral values (i.e., red available in our case) as the
denominator in many cases provided the best results. The blue and green bands were both
subsequently chosen as the numerators. A pre-study assessment in our rivers confirmed
the choice of band combinations.

2.2.2. The Study Framework

The data analysis was done using two sets of data: (1) cross-sectional training data
and (2) polygon validation data (as given by the corresponding numbers in Figure 2). The
training data was used for setting up local and regional linear models for depth retrieval
for each platform (Worldview-2, Sentinel-2, and aerial images). The validation data was
used for assessing the quality of the linear models when applied in each of the four rivers.
The separate steps of data analysis apply to each of the four rivers and are summarized in
short below (as given by the corresponding lettering in Figure 2) and described in full in
the following chapters.

[A] We sampled image pixel quantities for the bands red, green, and blue along with in-
situ depth in 17 cross-sections for platforms Worldview-2, Sentinel-2, and aerial images.

[B] Using linear regression, we calculated coefficients b and b for the relationship0,dir 1,dir
between Xg, X , and depth, as given in Equations (1)–(3).b

[C] By assessing the coefficient of determination (R2) for each cross-section, we removed
all cross-sections with an R2 less than 0.60 to obtain coefficients b and0,corr b1,corr

[D] Based on the remaining cross-section, we averaged coefficients b and b for0,corr 1,corr
each platform across the four rivers to obtain a regional set of coefficients b0,reg
and b1,reg.

[E] We assessed and tested the relationship between the model coefficients b and0,dir b1,dir
and variables average depth and image brightness.

[F] Using the relationships from [E], we calculated a corrected set of regional coefficients
b and b for each river.0,reg_dbr 1,reg_dbr

[G] In a separate validation polygon in each of the four rivers, we applied the models
from [B], [D], and [F] to test and assess the model quality.
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Relationship between
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sampling
in cross-sections

Removing cross-sections
with R2 < 0.60
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Figure 2. The study framework. Starting with the top box (0) displaying the study input data, the data analysis takes two
pathways: (1) using RGB pixel values in river cross-sections to set up the different relationships between depth and image
pixel quantities in steps A through F, and (2) testing and validating former relationships in a validation polygon in step G.

2.2.3. Cross-Sectional Training Data Sampling

A single river section (in the range of 232–443 m) was selected as training data input
in each of the four rivers. Sections were specifically chosen in areas with a low potential for
temporal bed elevation changes due to floods and a minimum of image distortion factors
like riverbank shadows, surface sun reflection, and turbulence. An example of a river
section is shown in Figure 3 for river Lågen.

(a) (b) (c) (d)

0 - 0.5

0.5 - 1

1 - 1.5

1.5 - 2

2 - 2.5

2.5 - 3

3 - 3.5

3.5 - 4

Depth (m)

Figure 3. Example of training polygon depth and imagery for river Lågen. (a) Depth map, (b) Worldview-2 RGB ToA
image (2 m resolution, © TPMO), (c) Sentinel-2 RGB ToA image (10 m resolution), (d) RGB aerial image (0.5 m resolution, ©
Kartverket and Geovekst).

In each polygon, we defined a longitudinal, mid-river centerline and added 17 equally
spaced latitudinal lines along the centerline reaching from the left to the right riverbank.
Each latitudinal line was transformed into cross-sectional points with fixed 2 m intervals.
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The cross-section point files were used as input for calculations of intercepts and slopes
([A], Figure 2).

2.2.4. Coefficient Vector Calculations

Four methods were used for calculating coefficient vectors from the image quantity
X to depth relationship in cross-sections: (1) a direct linear relationship = b ; (2) a directdir
linear relationship for cross-sections with R2 above 0.60 = bcorr; (3) basic regional average
= breg; and (4) adjusted regional average = breg_dbr
following section and summarized in Table 4.

. All four methods are described in the

Table 4. Summary of the four methods for depth retrieval using 17 cross-sections in each of the
four rivers.

No. Method Coefficient Vector Method Description

1 Direct linear b = b b Direct linear fit with depthdir 0,dir 1,dir
[ ]

2 R -corrected bcorr = [b0,corr b1,corr] Direct linear with R2 > 0.602

3 Regional breg =
[ ]
b0,reg b1,reg

Averaged across four rivers
using bcorr

4 b = b
Regional, depth and
brightness adjusted reg_dbr 0,reg_dbr b1,reg_dbr

[ ] Averaged across four rivers
using bcorr and corrected by
average estimated local depth
and normalized brightness

Using the cross-section point files in each river, we sampled RGB pixel values and
observed depth in all images for each of the three platforms. Sampling was done using
the nearest neighbor resampling technique. We calculated Xg and X for each sampleb
point and assessed the direct linear relationship between Xg and X , and observed depth inb
cross-sections. The quality of fit between calculated and observed depth was determined by
calculating the coefficient of determination (R2) for each cross-section. We repeated the pro-
cess for all images across the three platforms in each of the four rivers. For each of the three
platforms, we calculated a final river-specific coefficient vector b = [b b aver-dir 0,dir 1,dir] by
aging the individual cross-section vectors in all platform-specific images. From the initial
cross-sectional Xg and X dataset, we removed cross-sections with a coefficient of determi-b
nation less than 0.60, based on an assumption of adequate linear fit above this threshold
value. The river- and platform-specific R2-corrected coefficient vector bcorr = [b0,corr b1,corr]
was then calculated by averaging all remaining cross-section vectors in all platform-specific
images. By averaging the four river-specific R2-corrected coefficient vectors bcorr, we ob-
tained final multiple-river regional coefficient vectors breg = 0,reg 1,reg

We tested the relationship between the average depth and the coefficient vector in the
cross-sections by setting up two separate linear regression models using coefficients

[ ]
b b for each platform.

b0,dir
and b from the initial cross-sectional Xg and Xb dataset as predictor variables and depth,1,dir
d, as the response variable. Linear regression was done separately for each platform, and
the results were summarized as a platform-specific coefficient of determination averaged
across all four rivers. Examples of linear models for the calculation of b for Worldview-2dir
images in our study are given in Equations (4)–(7).

For Xgb = 0.6526 − 1.4346 ∗ d (4)0,dir

b = −0.9313 + 5.0843 ∗ d (5)1,dir

For X b = 0.8061 − 2.0049 ∗ d (6)b 0,dir

92



Remote Sens. 2021, 13, 3897

b = −0.8532 + 3.8351 ∗ d (7)1,dir

In addition, we introduced a “brightness” variable BR to adjust the regionallocal
coefficient vectors for the local variations in the red, green, and blue (RGB) pixel values pr,
pg, and p . For each river, we calculated the normalized brightness value by dividing theb
median value of all three band image pixel values in each cross-section with the median
RGB pixel value across all cross-sections within the study area.

BR = median RGB /median RGB (8)local XS All

median RGB = median [pr, pg, pb] (9)

For each platform, in each of the four rivers, we calculated a local depth and brightness[ ]
corrected regional coefficient vector b = b b by adding averagereg_dbr 0,reg_dbr 1,reg_dbr

estimated depth, dest, and the normalized “brightness” variable BRlocal as product variables
to the regional coefficient vector breg:

b = b0,reg_dbr 0,reg ∗ dest ∗ BR (10)local

b = b ∗ dest ∗ BR (11)1,reg_dbr 1,reg local

We used the statistical software R [41] and the package lme4 [42] for regression and
statistics on depth average and brightness.

2.2.5. Mean Error and RMSE Calculation

To test the quality of depth retrieval from the coefficient vectors, we used mean
error (ME) and root-mean-square error (RMSE) as accuracy and precision parameters,
respectively. ME was calculated as the deviation between average calculated and observed
depth. Thus, negative ME values represented an underestimation of depth, while positive
values indicated an overestimation. RMSE was calculated as the square root of the mean of
the squares of the deviations for n predictions, as shown in Equation (12). All calculations
of ME and RMSE were done using Microsoft Excel (2021).

√

RMSE =

√√ n√∑i=1

(
d̂i − d

)2

n

2.2.6. Polygon Validation of Linear Models

For the assessment of model depth retrieval quality across platforms, we selected a
separate validation location in each of the four rivers (Figure 4). A total of 100 randomly
distributed points were generated within each validation polygon and used for band-
specific image pixel quantity and depth sampling (corresponding to step [G] in Figure 2).
From the sampled image pixel quantities in the validation polygons, we applied the three
bathymetry models from the initial training datasets:

1. A direct linear model using locally calculated coefficient vectors.
2. A basic regional model using coefficients averaged across the four rivers.
3. An adjusted regional model with basic regional model coefficients corrected by the

local estimated average depth and image brightness.

(12)
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(a) (b)

(c) (d)

Figure 4. Validation polygons for the model quality assessment in rivers Gaula (a), Laagen (b), Nea
(c), and Surna (d). Source: © Kartverket and Geovekst.

We used mean error, RMSE, and R2 as indicators of model quality. As the band
combination blue on red provided the best overall model results on depth retrieval during
the initial model calculations, we only applied this specific band combination in the final
assessment. Initial calculations of depth from Sentinel-2 images in the validation polygons
provided non-significant relationships to in-situ depths in all four rivers, and the platform
was removed from the final assessment. Visual inspection of Sentinel-2 images in the
validation polygons confirmed the low image quality and diffuse pixel quantities in the
dry/wet zones along the riverbanks.

As the adjusted regional models used estimated local average depth and brightness
as corrective factors, we needed to calculate these factors in the validation polygons. We
split each validation polygon longitudinally into five sections. For each section, we used
average in-situ depth in the 20 random points as a proxy for the estimated average depth.
The section brightness was calculated by dividing the median section RGB value by the
median RGB value in the whole validation polygon.

3. Results

3.1. River-Specific Platform Coefficient Vectors in Cross-Sections

Training data coefficient vectors b and bcorr for platforms Worldview-2, Sentinel-2,dir
and aerial image are given in Table 5. The overall best fit was obtained by using the blue on
red band combination Xb on the aerial images. Sentinel-2 images provided the least fitted
models, especially for the green on red band combination Xg. Removing cross-sections

2with R less than 0.60 and thus increasing the overall fit generally increased the absolute
value of the coefficients.
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Table 5. Vector coefficients and R2 for (a) b and (b) bcorr for band combinations Xg and Xb for thedir
three platforms in each of the four rivers. The total number of points in cross-sections (n) is given in
the last column.

Xg Xb

River Platform CV b0 b1 R2 n1 2b0 b1 R

Gaula Worldview-2 a −0.89 5.67 0.71 −1.38 3.72 0.70 611
b −1.09 6.24 0.74 −1.79 4.35 0.75 504

Sentinel-2 a −0.05 3.61 0.42 −0.18 1.93 0.37 638
b −0.42 4.95 0.74 −0.68 2.69 0.69 205

Aerial image a 1.48 6.91 0.65 1.77 3.97 0.70 1395
b 1.67 8.07 0.75 1.88 4.59 0.82 1026

Lågen Worldview-2 a −1.25 5.44 0.57 −1.88 4.13 0.58 1195
b −1.61 6.67 0.80 −2.34 4.93 0.78 565

Sentinel-2 a −0.08 3.54 0.63 −0.30 2.82 0.64 1780
b −0.24 4.35 0.85 −0.48 3.43 0.86 1051

Aerial image a 0.42 5.46 0.89 1.19 4.67 0.85 597
b 0.42 5.46 0.89 1.19 4.67 0.85 597

Nea Worldview-2 a 0.04 1.28 0.31 −0.19 0.96 0.31 1366
b −0.29 2.21 0.67 −0.63 1.75 0.67 320

Sentinel-2 a −0.07 1.38 0.33 −0.45 1.27 0.36 2030
b −0.61 2.62 0.78 −1.32 2.48 0.77 478

Aerial image a 0.47 0.68 0.23 0.41 0.43 0.36 1317
b 0.68 1.84 0.67 0.49 1.12 0.77 138

Surna Worldview-2 a −0.45 2.76 0.64 −0.56 1.82 0.64 432
b −0.68 3.36 0.76 −0.71 2.03 0.76 270

Sentinel-2 a 0.15 1.57 0.47 0.65 0.04 0.56 595
b −0.20 1.95 0.94 0.76 −0.18 0.88 216

Aerial image a 0.62 3.14 0.65 0.50 1.71 0.80 484
b 0.65 3.65 0.76 0.49 1.77 0.83 313

1 CV = Coefficient Vector.

Figure 5 shows examples of cross-section depth retrievals using coefficient vectors bdir
and bcorr for the Xb band combination in rivers Lågen, Gaula, and Nea. For the Worldview-
2 image in river Lågen, both coefficient vectors led to an overestimation of depths in the
shallow areas close to the left bank. The best fit was obtained by using the coefficient vector
b . For the Lågen aerial image, both methods provided an adequate calculated versusdir
observed depth fit.

For the Worldview-2 and the Sentinel-2 images in river Gaula, both coefficient vectors
b and bcorr underestimated the depths in the deeper part of the cross-section. For thedir
aerial image in river Gaula, most methods provided an adequate fit to the observed depth.
The presence of “noise” in the deeper parts of the aerial image can be observed as a slightly
“fluctuating” riverbed in the depth calculations (Figure 5f).

River Nea was the shallowest river among the four in terms of average river section
depth. For the Worldview-2 image, overall depth was overestimated along the cross-
section. Both coefficient vectors provided a relatively good fit with the observed depth
for the Sentinel-2 image. For the aerial image in river Nea, both coefficient vectors were
inadequate in estimating depth.

95



Remote Sens. 2021, 13, 3897

Worldview-2 Sentinel-2 Aerial images

Lå
ge

n

(a) (b) (c)

G
au

la

(d) (e) (f)

N
ea

(g) (h) (i)

-1,0

-0,5

0,0 

0,5 

1,0 

1,5 

2,0 

2,5

D
ep

th
 (m

)

-1,0

-0,5

0,0 

0,5 

1,0 

1,5 

2,0 

2,5

-1,0

-0,5

0,0 

0,5 

1,0 

1,5 

2,0 

2,5

-1,0

-0,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

D
ep

th
 (m

)

-1,0

-0,5

0,0

0,5
1,0

1,5

2,0

2,5

3,0
3,5

-1,0

-0,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

-0,2

-0,1

0,0

0,1
0,2

0,3

0,4

0,5

0,6
0,7

D
ep

th
 (m

)

-0,2
-0,1
0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8

-0,2
-0,1
0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8

Water surface Bed elevation Direct R2>0.6

0 20 40 60 0 20 40 60 0 20 40 60

0 20 40 60 0 20 40 60 0 20 40 60

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

R2

Figure 5. Examples of calculated versus observed depth in selected cross-sections. The horizontal axis is given in meters
from the left bank. The columns represent platforms Worldview-2 (a,d,g), Sentinel-2 (b,e,h), and aerial images (c,f,i) for
rivers Lågen (a–c), Gaula (d–f), and Nea (g–i). The lines represent the water surface, bed elevation, and depth calculated
using the coefficient vectors b and bcorr, respectively, for the Xb band combination on the Y-axis.dir

3.2. Cross-Section Mean Error and RMSE

The cross-sectional average depth retrieval mean error was in the −0.07–0.01 m range
for all platforms and models. Excluding cross-sections with R2 < 0.6, reduced the mean
error to ≈ 0, while no overall reduction in RMSE was observed. RMSE across all platforms
and models ranged from 0.15 m to 0.31 m. While the cross-platform average mean error
was slightly less for X , no overall difference in RMSE was observed between Xg and Xb b.

Average mean error and RMSE were lower in depths less than 2 m when compared to
the inclusion of all depths (for coefficient vector b , Table 6).dir
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Table 6. Cross-sectional mean error and RMSE for depth retrieval on all depths (for b and bcorr)dir
and depths below 2 m (b only) across platforms and rivers for band combinations Xg and Xdir b.

CV 1 Data Included
Xg Xb

Platform ME RMSE ME RMSE

Worldview-2 b All −0.06 ± 0.09 0.28 −0.07 ± 0.11 0.28dir
Depths < 2 m −0.01 ± 0.08 0.19 −0.02 ± 0.08 0.19

bcorr XS R2 > 0.6 0.00 ± 0.17 0.31 0.00 ± 0.18 0.31

Sentinel-2 b All −0.04 ± 0.06 0.27 −0.04 ± 0.06 0.27dir
Depths < 2 m 0.00 ± 0.03 0.18 0.00 ± 0.04 0.18

bcorr XS R2 > 0.6 0.00 ± 0.08 0.25 0.00 ± 0.08 0.28

Aerial image b All −0.04 ± 0.05 0.26 −0.03 ± 0.05 0.24dir
Depths < 2 m 0.01 ± 0.04 0.16 0.00 ± 0.03 0.15

bcorr XS R2 > 0.6 0.01 ± 0.07 0.26 −0.01 ± 0.05 0.23
1 CV = Coefficient Vector.

3.3. Regionalization of Coefficient Vectors

Using river-specific coefficient vector bcorr (as given in Table 5) as input, we obtained
platform-specific regional coefficient vectors breg for the band combinations Xg and Xb
(Table 7).

Table 7. The regional platform-specific coefficient vectors breg for the band combinations Xg and Xb
as an average of bcorr in rivers Gaula, Lågen, Nea, and Surna.

Xg Xb

Platform b b b0,reg 1,reg 0,reg b1,reg

Worldview-2 −0.89 ± 0.59 4.39 ± 2.10 −1.31 ± 0.85 3.11 ± 1.55
Sentinel-2 −0.37 ± 0.22 3.17 ± 1.46 −0.38 ± 1.21 1.99 ± 2.17

Aerial image 0.92 ± 0.80 4.65 ± 2.67 0.99 ± 0.75 2.81 ± 1.74

We tested for an overall non-river-specific linear relationship between the coefficient
vector b and average depth in cross-sections for each of the three platforms. The resultsdir
showed that the slope variable b was significantly related to average depth in all platforms1,dir
(p < 0.01, Table 8), while the intercept variable b was significantly related to depth in0,dir
Worldview-2 images (Xg and X , p < 0.01) and aerial images (Xb, p < 0.01). Sentinel-2 imageb
intercept (b for Xg and Xb) were not significantly related to average depth.0,reg

Table 8. Quality of fit by coefficients of determination R for the band combinations Xg and X for the2
b

relationship between the direct linear coefficient vectors b and average depth d in cross-sections.dir

Xg Xb

b0,dir b1,dir b0,dir b1,dir

Platform R p-Value R p-Value R p-Value R2 p-Value2 2 2

Worldview-2 0.93 <0.01 0.93 <0.01 0.95 <0.01 0.98 <0.01
Sentinel-2 0.00 0.93 0.94 <0.01 0.07 0.48 0.74 <0.01

Aerial image 0.41 0.12 0.95 <0.01 0.82 <0.01 0.83 <0.01

We found that normalized brightness was significantly related to average depth in
cross-sections in images with low levels of surface disturbance (Table 9).
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Table 9. The linear fit between the “brightness” factor BR and average depth d in cross-sectionslocal
for platforms Worldview-2, Sentinel-2, and aerial image.

Platform R2 p-Value
Number of Cross

Sections

Worldview-2 0.61 <0.001 34
Sentinel-2 0.71 <0.001 51

Aerial image 0.78 <0.001 51

Using the significant relationships between the coefficient vectors, average depth,
and brightness, we calculated a depth- and brightness-adjusted b for all images, asreg_dbr
described in Equations (10) and (11). While no overall significant average depth-relation
was found for intercept b for platforms Sentinel-2 (Xg and Xb) and aerial image (for Xg),0,reg
we included the platforms in a final calculation of platform-specific b for comparison.reg_dbr
An example of regional coefficient vector use in a cross-section is shown in Figure 6. The
use of the adjusted coefficient vector b improved the results of the basic regionalreg_dbr
coefficient vector breg across platforms.
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Figure 6. Example of cross-section depth calculations in river Gaula using regional coefficient vectors breg and b forreg_dbr
(a) Worldview-2, (b) Sentinel-2, and (c) aerial image. breg is the basic regional coefficient vector (orange line), while breg_dbr
is the regional coefficient vector with adjustment using estimated local average depth and a brightness factor (green line).

3.4. Application and Quality Assessment of Regional Models in Validation Polygons

In the final step of the study, we applied and assessed the regional models for the
calculation of depth, using the band combination Xb for platforms Worldview-2 and aerial
images in validation polygons. See Figure 7 for results on model depth in the validation
polygon for river Gaula. Local river-specific models were also applied for comparison. The
model performances of each of the three models were compared in terms of mean error,
RMSE, and R2.
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(b) (c)(a)

Figure 7. Calculated depth in river Gaula using (a) local, (b) basic regional, and (c) adjusted regional models for band
combination Xb in a Worldview-2 image. The flow direction is from left to right. Negative depths are apparent in the
downstream mid-section, where dry land is protruding from the water surface, and close to the left riverbank, where surface
turbulence distorts the pixel quantities. Zonal differences in depth retrieval are observed in (c), where each zone has its
specific estimated depth and brightness.

The overall performances of the basic regional models were equal to or higher than the
local models for all rivers, with an exception for the aerial image in river Surna (Table 10).
Performances of the adjusted regional models improved upon the local and basic regional
models in rivers Gaula and Surna for the Worldview-2 image, and in river Gaula for the
aerial image.

Table 10. Model performance results in validation polygons.

Platform River Model ME RMSE R2

Worldview-2 Gaula Local −0.30 0.34 0.74
Basic regional −0.30 0.34 0.76

Adjusted
regional −0.22 0.27 0.83

Lågen Local 0.31 0.39 0.76
Basic regional 0.07 0.27 0.76

Adjusted
regional 0.88 0.91 0.74

Nea Local −0.58 0.66 0.52
Basic regional 0.11 0.27 0.52

Adjusted
regional 0.36 0.43 0.47

Surna Local −0.35 0.68 0.82
Basic regional −0.32 0.54 0.82

Adjusted
regional −0.09 0.31 0.84

Aerial image Gaula Local −0.39 0.43 0.77
Basic regional −0.22 0.27 0.77

Adjusted
regional 0.22 0.27 0.78

Lågen Local 0.17 0.22 0.91
Basic regional −0.15 0.24 0.91

Adjusted
regional 0.46 0.48 0.91

Nea Local −0.58 0.65 0.70
Basic regional 0.52 0.60 0.70

Adjusted
regional 0.81 0.88 0.71

Surna Local −0.54 0.68 0.83
Basic regional 0.59 0.67 0.83

Adjusted
regional 1.00 1.22 0.84

An example of the results of the model performance for depth retrieval is given in
Figure 8 for the validation polygon in river Gaula. The best result using the Worldview-2
image was obtained by applying the adjusted regional model (Figure 8d, mean error = −0.30,
RMSE = 0.34, R2 = 0.83). The best result for the aerial image was also obtained by using the
adjusted regional model (Figure 8g, mean error = 0.22, RMSE = 0.27, R2 = 0.78).
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Figure 8. Model performance in river Gaula validation polygon (a). Depth bias maps using local models, basic regional
models, and adjusted regional models, respectively, are given for the Worldview-2 image (b–d) and the aerial image (e–g).
White indicates a mean error of less than 0.25 m, while red and blue colors indicate an over- and underestimation of
depth, respectively. Scatterplots for calculated versus observed depth using the three different models are given for the
Worldview-2 image (h) and the aerial image (i).

For river Lågen, the local and basic regional models had matching model performances
for both platforms, while the adjusted regional models led to higher levels of mean error and
RMSE. For river Nea, while the basic regional model had the best relative model performance
for the Worldview-2 image (mean error = 0.11, RMSE = 0.27, R2 = 0.52), the overall model per-
formance was low for both image platforms and across models. For river Surna, the adjusted
regional model performed best for the Worldview-2 image (mean error = −0.09, RMSE = 0.31,
R2 = 0.84), while for the aerial image, all three models had low performance levels.

3.5. Application of an Adjusted Regional Model in River Nea

In a separate study, using an adjusted regional model approach, as described above,
we created bathymetry for a 30 km river reach in river Nea. River Nea was originally
scanned using green LIDAR, but the resulting LIDAR data provided no data for river sec-
tions deeper than 0.5 m. We applied the adjusted regional model setup on an aerial image to
calculate depth in sections where LIDAR coverage was missing. From the calculated depths,
we used information on local water surface elevation from the LIDAR dataset to transfer
model depths to bathymetry. The bathymetry was used as input to a hydraulic model
using Hec-RAS (HEC-RAS 5.0.7., https://www.hec.usace.army.mil/software/hec-ras,
acessed on 17 August 2021). An example of bathymetry for a 5 km reach in river Nea is
given in Figure 9.
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Figure 9. Bathymetry for a 5 km reach in river Nea. The bathymetry was calculated using an adjusted regional model setup
on an aerial image combined with LIDAR data in dry areas. The green color outlines are the main river course which runs
from right to left.

4. Discussion

A Web of Science publication search for the application of regional models for bathymetry
(using keywords “regional”, “remote sensing”, “river”, and “spectral analysis”) resulted in
no relevant publications. Thus, there is a lack of studies testing the potential for regional
models applicable across several rivers. Our study outlines a novel method for calculating
and applying regional models for depth retrieval using single predictors from multispectral
images. In the first part of our study, we used a set of RS imagery and local bathymetry
to set up linear regression models for depth retrieval in training data polygons for each of
the four rivers. From these locally derived models, we extracted the intercept and slope
coefficients to calculate regional coefficients. In the final part of the study, we applied the
regional coefficients in regional linear models for application and performance assessment in
a set of validation polygons. The regional models were calculated separately for Worldview-2,
Sentinel-2, and aerial images.

We observed the best overall fit between depth d and X in high-resolution aerial
images (0.10–0.50 m pixel width). The low-resolution Sentinel-2 images (10 m pixel width)
provided the least fitted models. Worldview-2 images (1.65–2.07 m pixel width) provided
adequately fitted models in rivers Gaula and Surna, while less fitted models in rivers
Lågen and Nea. As the average river width was in the range of 30–100 m, the pixel width
would influence the capability to capture local variations in bed elevation, especially in the
cross-sectional direction. Thus, the application of Sentinel-2 images with a pixel width of
10 m was least suitable for setting up models in our region.

Assessing the optimal band combination for depth retrieval, we found that the overall
mean error and RMSE were lower for the X pixel combination than for Xg in Worldview-2b
and Sentinel-2 images. For aerial images, Xg provided fewer overall errors than Xb.

The overall depth retrieval was more successful in river sections with depths less
than 2 m. This issue is a known factor in image analysis [29]. As the image quality for all
four rivers ranged from medium to low, we expected deeper parts to be less accurately
calculated in the different models. We also tested the inclusion of the non-linear 2nd degree
polynomial model in river Gaula. The polynomial model compensated for the limited
range of X by introducing a steeper slope vector in the deeper parts (Figure 10b). While a
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negative intercept b0 in a linear approach could introduce negative calculated depths in
shallow areas (Figure 10a), the polynomial model could potentially be applied to avoid
negative depths in the calculations. As we tested the transferability of linear models with
two coefficients, we did not include polynomial models in our study.
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Figure 10. Examples of (a) direct linear and (b) 2nd degree polynomial relationships between depth
and Xg for a Worldview-2 image in river Gaula. The band combination Xg is shown on the x-
axis, while the calculated depth (m) is shown on the y-axis. The direct linear relationship would
potentially lead to negative depths in the shallow areas (Xg below ~0.2), while the 2nd degree
polynomial relationship would avoid negative depths in the shallow areas.

4.1. Local Adjustments of Regional Models

We observed that local adjustments of basic regional models using estimated depth
and “brightness” improved model performance for depth retrieval. Using the training data
in the first part of the study, we found that average cross-sectional depth d was significantly
related to b , more specifically for Worldview-2 and aerial images. From the trainingdir
dataset, we also found a significant relationship between a normalized brightness factor
BR and average cross-sectional depth d for all platforms.local

To assess the application of the two local correction factors in regional models, we used
a 10 × 10 m point grid in the training data polygons and sampled RGB values and in-situ
depth. Assuming a d to b relationship for Sentinel-2 images for comparison purposes,dir
we calculated depth in each image by applying an adjusted regional vector coefficient for
each point in the polygon point grid by using the setup from Equations (10) and (11). As a
substitute for the estimated average local depth dest, we calculated the average depth of the
10 latitudinally closest points in the point grid. We used the same approach to calculate the
local brightness factor BR for each point. Results on the calculated depth range fromlocal
the different coefficient vectors showed that using the locally adjusted regional coefficients
provided the best overall fit with an observed depth range for all three platforms, although
with larger uncertainties than for other coefficient vectors. While these results are optimistic
in terms of depth retrieval, some limitations may apply to the use of adjusted regional
coefficients. Firstly, as the regional coefficients are based on initial depth to image pixel
value relations, the inclusion of estimated depth in a second iteration of the model may
introduce interdependencies between variables. Secondly, as we used actual depths in 10
local points to set up the dest for the polygon grid points, the models may be overfitted in
terms of depth.

When applying adjusted regional models, care should be taken when partitioning
the river into specific zones for local adjustment using estimated depth and brightness.
As each zone will have its specific linear model, zonal boundaries may have abrupt, non-
neglectable differences in depth. In the case of river Gaula, where the adjusted regional
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model was applied in five separate zones within the validation polygon, depth differences
were observed as cross-sectional discontinuities (Figure 7c). Such discontinuities will be
most apparent where neighboring zones have larger differences in estimated depth and
brightness. To address and potentially avoid the issue of zonal boundary discontinuity,
we suggest either to (1) define zone boundaries where there is a natural flow disruption,
e.g., at weirs, riffle sections, or rapids, (2) smooth the resulting depth maps by cross-
sectional interpolation at zone boundaries, or (3) apply adjusted regional models in densely
distributed cross-sections.

4.2. The Problem of Time Lag between RS Imagery Acquisition and In-Situ Depth Measurements

In an optimal assessment of the relationship between depth and X, the RS imagery and
in-situ depth measurements would be captured and measured at approximately the same
time. Any time lag between image capture and depth measurement could lead to errors in
the results due to potential temporal hydromorphological changes in the bed elevation [23].
As several images in our assessment were captured at a different time than the in-situ
depths, we sought to minimize potential time lag errors by selecting river sections with
relatively stable bed conditions. We used visual inspection to select the training and
validation locations in each of the four rivers. By visually comparing contrast-enhanced
platform images and local bathymetry, we selected locations where the bed topography
appeared constant over time. Figure 11 shows an example of visualization of bed elevation
using images for rivers Gaula and Lågen. While the water surface levels differed, a similar
bathymetry could be observed in both the Worldview-2 and aerial images. For river Nea,
the river sections used for training data sampling and validation are both located between

3 −1two low-head weirs in a bypass section with a minimum flow of 1.5 m s during the
summer season. The upstream dam and reservoir retain most floods creating a stable flow
and bed elevation conditions throughout the year.

(a) (b)

(e)

(c)

(f)(d)

Figure 11. Visualization of bed elevation using Worldview-2 images (first column), aerial images
(second column), and LIDAR bathymetry (third column) for rivers Gaula (a–c) and Lågen (d–f).

4.3. Limitations and Considerations

A range of limitations may apply when using remote sensing imagery for depth
retrieval. Dependent on the image quality, most studies report the application to be optimal
in shallow (<2 m) and clear rivers [43]. Others mention the capability of the platform sensor
to adequately capture the surface nuances in radiance, which may determine the predictor
range in the linear modeling of depth [40]. Additionally, local variation in substrate color
and surface turbulence can induce large errors [44]. These factors and others must be
carefully considered when applying spectral depth retrieval models.

Our methods were developed and calibrated in one single region of Norway. The
local geology and hydromorphology may be specific to the region and using our methods
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outside of this region may require local adaptation through a recalibration of coefficient
vectors. Another limitation in our study was the relatively low quality of many of our
images. Clouds and sun reflections on the water surface were frequent, in addition to
riverbank vegetation and mountain shadows. These factors reduced the number of river
sections available for model training and validation.

As we developed our models to facilitate an overall regional mapping of depths,
our models had limited accuracy and precision when compared to local bathymetry. For
hydraulic or hydromorphological modeling with high levels of detail, our methods may be
less suited and necessitate the application of locally calibrated models.

4.4. Application in River Management

Many rivers lack adequate data on the geomorphology and information on whole river-
scapes from the connected floodplains and the riparian zone to riverbanks and riverbeds.
While many countries have already established detailed surveys to provide digital terrain
models for the terrestrial part, fewer surveys exist in the below-water part of the riverscape.
In river management, regional assessments might include several rivers or water bodies,
e.g., in relation to anthropogenic influences like flood protection and mitigation measures.
Thus, it sometimes may be necessary to effectively establish a range of bathymetric data
for different rivers within the same region.

The EU WFD requires the development and implementation of river management
plans for all water bodies. When WFD targets are not met, the management plans must
include mitigation measures such as habitat improvements, the creation of spawning
grounds for fish, or other geomorphological changes. Norway has many rivers regulated
by hydropower, where the terms of the license will be revised in the coming years [32].
These revisions of terms may lead to changes in environmental flow releases, adjustments
of operation rules for reservoirs, and implementation of mitigation measures to improve
ecological conditions in river reaches. Like the requirements for WFD, planning and
implementation of mitigation measures often include the use of habitat-hydraulic models
and detailed geomorphological information. Additionally, future operations of hydropower
plants may include more hydropeaking due to changes in demand and renewable energy
generation, and such scenarios might require extensive data and information on river
bathymetry in relation to issues like sediment transport, erosion and deposition, ice build-
up, and water temperature.

Challenges in river management are often related to obtaining good data and in-
formation about the current situation with appropriate spatial and temporal coverage.
Our method may allow for a cost-effective retrieval of detailed riverbed information to
improve modeling and assessments of the rivers for multiple purposes, including flood risk
mapping, flood control operations, ecological mitigation measures for the implementation
of the EU WFD, licensing, and revision of terms in hydropower rivers, urban, industrial,
and infrastructure development as well as restoration of rivers.

5. Conclusions

By using multispectral images from three different platforms and publicly available
green LIDAR data, we found significant relationships between image-derived quantities
and depths. We found that platform-specific, regionalized models could potentially be
used to create depth maps and subsequent bathymetry across rivers within a geographical
region. By adding estimated local depth and a brightness factor to the regional models,
the results on depth retrieval were improved. While the regional models were not tested
outside of the four rivers included in this study, we believe our method for setting up
regional models could potentially be promising for the application in other regions.
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Abstract: Hydropower is a highly appreciated climate-friendly source of energy production. How-
ever, it has non-negligible negative impacts on the environment and landscape aesthetics where
the energy is produced, affecting the recreational interests of the public using the respective local
river spaces. The preferences of the local public are increasingly assessed and involved in the plan-
ning of mitigation measures for impacted rivers. Aesthetic assessment methods using a common
user perspective, i.e., an “on-the-ground” perspective, could potentially be improved by using an
aerial perspective facilitated by modern drone technology. Studies on the compatibility of these
two perspectives of assessment in terms of public preference elicitation are lacking so far. In river
Nea, Norway, we conducted a quantitative analysis of the visual preferences of the local public
for different environmental mitigation measures related to weirs, minimum flow, and recreational
infrastructure using both perspectives. The results indicate that there exist significant differences in
the preferences for scenarios based on the two different visual perspectives, and that a compatibility
between them cannot be assumed and therefore requires further investigation. Finally, based on
our study setup and previous experience, we outline and propose a standardized procedure for
the visualization of mitigation measures as an input to environmental design projects where public
perception is incorporated.

Keywords: photo-based questionnaire; aesthetic value; hydropower production; mitigation measures

1. Introduction

There are large ambitions for a green energy transition worldwide in order to mitigate
climate change and to rely increasingly on renewable sources of production. Hydropower
production is one of the main pillars of this green energy transition. However, as with all
sources of energy production, hydropower generation has non-negligible environmental
impacts and is frequently seen as severely degrading river ecosystems and local biodiver-
sity [1,2]. It also affects the aesthetic qualities and the recreational use of the respective
local river spaces where people live [3,4]. Impacts on environmental, aesthetic, and recre-
ational use are found to be highly relevant for the public perception and acceptance of
hydropower projects [5,6]. The involvement and participation of the public in the planning
of new and the revision of existing hydropower infrastructure is becoming increasingly
relevant [7] and is mandated by the European Water Framework Directive as well as
national guidelines [8,9]. As a consequence, there is an increasing number of assessments
of local public preferences for environmental mitigation measures in rivers or lakes that
are regulated for hydropower production [10,11]. Hereby, the use of visual simulation of
different environmental mitigation scenarios at stake is a very valuable method.

The environmental impacts of hydropower production relate, in general, to changes in
the natural flow and water temperature regime, hydro-morphology and sediment transport,
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the loss or alteration of habitats, obstructing downstream and upstream fish migration past
dams, weirs, and other infrastructure. The impacts are so far best known for fish species,
and many environmental mitigation measures aim to improve living conditions for fish
specifically. Fish are a central quality element in the European Water Framework Directive
and are considered a suitable indicator for hydro-morphological alterations in rivers [12].

Alterations of flow and water temperature can be mitigated by releasing environ-
mental flows of a suitable volume. Different structural mitigation measures, such as
constructing riffles and pools, adding stones and gravel, and adding large organic debris,
when combined with flow release are used to re-establish or improve habitats. Guiding
devices and fine trash racks can help fish move downstream. Fish ladders and nature-like
fishways in dams in addition to removing or adjusting weirs can help them move upstream.
Another common mitigation measure has been fish stocking [13]. While some of these
environmental mitigation measures are not visible to the public, others affect the river
landscape aesthetics, e.g., changes in flow, the removal/adjustment of weirs and low-head
dams. These can be decisive for the approval or disapproval of measures by the local public.
The most common view taken to develop and present visual scenarios of river scenes to the
public in order to elicit its preferences has been an “on-the-ground” perspective, one that
a person standing on the riverbank looking over the river would have [10,14–16]. There
is an ongoing discussion on which perspective would be the most valid one in assessing
visual preferences [17–19], including the question as to whether modern LIDAR/drone
technology and the resulting aerial perspective would improve assessments by providing a
larger overview of a scene [20,21]. Studies on the compatibility of these two perspectives of
assessment—i.e., the compatibility of the on-the-ground and aerial perspectives—in terms
of public preference elicitation are lacking so far.

Historically, weirs were introduced in rivers mainly for hydraulic and hydrological
control as well as for aesthetic reasons, due to a lack of water cover in river sections with
reduced flows [22,23]. Later studies have shown that weirs may be a threat to riverine
species in terms of both their habitats and migration [24–27]. The adjustment and removal
of dams and weirs are now considered a relevant environmental measure [28,29]. In a
Norwegian study on weir removal, Fjeldstad et al. demonstrated that hydraulic modeling
could be used for to simulate suitable fish habitats before and after weir removal [30].
Another example of the use of hydraulic simulation in a weir removal study is given by
Mouton et al. [31], indicating improved habitat conditions for fish after removal. More
recently, Tang et al. demonstrated improved fish migration and habitat suitability by
removing a low-head dam [32]. While hydraulic models can provide flow-related hydro-
dynamics in river sections affected by environmental measures [33,34], few studies have
used hydraulic model outputs to set up visual representations of the consequences of envi-
ronmental measures such as weir adjustment or removal. One example of the visualization
of environmental measures is given by Barton et al. in a multicriteria analysis study, where
hydraulic simulations were used to set up photo scenarios for weir removal as an input for
a reference group survey [10]. While the above-mentioned study provides a good example
of a visual preference study, a standardized procedure for developing visual scenarios for
preference elicitation has yet not been established.

We conducted a case study at the Norwegian Nea River with a quantitative anal-
ysis of visual preferences of the local public in the adjacent municipalities for different
environmental mitigation measure scenarios related to weirs, minimum flow, and recre-
ational infrastructure using both on-the-ground and aerial perspectives. We used hydraulic
modeling to simulate outlines of the water-covered area for each alternative scenario of
environmental measures. The outlines were used as an input for photo manipulation of
the different scenarios. Photos were taken from two separate perspectives: aerial, using a
drone-mounted camera, and on-the-ground, using a standard hand-held camera. We de-
scribe the procedure of generating visual simulations of environmental measure scenarios
for preference assessment in the Materials and Methods section.
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Our main objectives were to:

(1) Establish a standardized procedure for preference assessments using visualization of
mitigation measure scenarios;

(2) Shed more light on the issue of aerial versus on-the-ground perspectives in terms
of potential improvement of visual assessment studies. For the latter objective we
tested the hypothesis that there are no significant differences between public visual
preferences for scenarios with an on-the-ground perspective and scenarios with an
aerial perspective.

2. Materials and Methods

2.1. Study Area

The study was conducted in the Nea River, situated in Central Norway (Figure 1). The
Nea River runs through the Selbu and Tydal municipalities, where the power company
Statkraft operates several hydropower plants and reservoirs along the course of the river.
The regulation in the study reach includes an upstream reservoir and high-head dam, a
bypass section, and a downstream outlet. Thirty-three low-head weirs were introduced
to the bypass section in the 1980s to increase the water-covered area during low flows. A
minimum flow of 1.5 m3/s is released at the dam from May through September. No flows
are released outside this period.

Figure 1. Nea River outline (main picture, in white) in Central Norway (upper-left picture), where (a) is the upstream part
of the bypass section/dam location, (b) is the downstream part of the bypass section/hydropower plant outlet, and (c) is
lake Selbusjøen. The surrounding landscape is dominated by floodplain agriculture in the lower parts (d) and a steep valley
in the upper part (e). The thick, black arrow indicates flow direction. Straight lines are water transfer tunnels and outlined
names are hydropower plants. © Kartverket, Geovekst.
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The Nea River is part of the Nidelv catchment (3118.4 km2), which originates in
Sweden and runs into a fjord close to the city of Trondheim. The total length of the river
is 176.9 km. The study reach is 30.0 km with a steep valley landscape in the upper part
(Figure 1e) and a river delta landscape with floodplains dominated by agriculture in the
lower part (Figure 1d). In the upper part of the study reach, the river is 20–200 m wide
with depths ranging up to 3 m during normal flows. In the lower part, the river width is
in the range of 50–230 m with depths up to 6 m close to the outlet into lake Selbusjøen.
Most sections are within the 1–2 m depth range. The study reach is mainly dominated by
gravel, with sections of larger rocks in the upper part and sand in the lower part. Due to the
minimum flow release (i.e., 1.5 m3/s during summer, no flow release during winter), the
flow regime is dominated by inflow from tributaries. During a normal year of precipitation,
the average flows in the upper and lower parts of the study reach are 5.3 and 18.9 m3/s,
respectively. The corresponding flows before regulation for hydropower was implemented
were 67.8 and 75.4 m3/s, respectively.

2.2. Method Outline

The visual simulation of the environmental measures and survey of public preferences
was done in a structured way, building on earlier experiences in previous studies [10,30,35].
Figure 2 gives an overview of the methodology we used for the assessment of visual
preferences in this case study, and which we propose as a standardized procedure for such
assessments in the future. It included initial site selection and scenarios of environmental
measures, hydraulic modeling, the visualization of environmental scenarios during differ-
ent flows, and finally the public preference survey. The procedure is further described in
the following chapters.

Figure 2. Method outline. (A) Selection of sites and environmental measures for scenario development, (B) hydraulic
modeling of the scenario-based water-covered area, (C) outlines of the water-covered area in different environmental
measures scenarios, (D) visualization of scenario images based on outlines and two sets of image acquisition types, and (E)
the resulting questionnaires with weir scenario images as an input for (F) the survey.

2.3. Selection of Sites and Environmental Measures for Scenario Development

The selection of representative sites for visual simulation of measures in the study area
was based on two criteria: (1) its relevance for recreational activities and (2) its bathymetric
coverage obtained during the green LIDAR scanning process.

The first site-selection criterion was based on a qualitative pre-study, in which we had
located where along the river the different types of use and recreational activities occurred.
The different types of recreational use were each represented by one weir, resulting in the
choice of weir no. 1 (named “Bogstadhølen”), no. 7 (named “Hyttbakken Bridge”), and no.
22 (near the Lower Nea power station). The separate locations of the three weirs are shown
on the map for the study area in Figure 3.
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Figure 3. Site selection for the preference study. Weirs no. 1, 7, and 22 (outlined in orange) were selected to be visualized in
environmental measure scenarios. Original images of the weirs are shown from the on-the-ground perspective © Sweco
2015.

The second site-selection criterion was based on riverbed point measurement density
during the pre-study green LIDAR data collection. To adequately simulate the water-
covered area on different flows during the hydraulic modeling, riverbed coverage needed
to exceed a certain density threshold (>1 points/m2 on average in the area surrounding the
weir and close to the riverbanks).

The choice of specific mitigation measures to be visualized in our study was based on
the following sources:

(1) A pre-study assessment report by Sweco [36] that proposed a series of potential
structural mitigation measures at the weirs in the Nea River.

(2) Expert opinion discussions by an interdisciplinary project group of research scientists
active in the HydroCen national research center, including hydraulic engineers, fish
ecologists, and a social scientist. This group of experts inspected the weirs in the Nea
River during a joint visit in June 2019, discussed the measures proposed by Sweco
in 2015, and drafted an adjusted set of measures coherent with new insights and
experiences from research and practice, e.g., Pulg et al. [12].

(3) Flow conditions: We used the minimum summer flow of 1.5 m3/s as a basis in the
upstream part of the study area. In addition, we added a flow scenario of 3.0 m3/s as
a realistic requirement after an upcoming revision of concession terms [37]. The flows
were used as an input for the hydraulic assessment.
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(4) A qualitative pre-study of recreational use in the area as reported in [3], where the
addition of recreational infrastructure on the riverbank near the weirs as a potential
mitigation measure related to local visual preferences was identified.

Based on these sources we set up a draft of weir adjustments, relevant flow quantity,
and recreational infrastructure. The two most relevant factors when deciding upon the
shape of weir adjustments were fish migration (more specifically for brown trout, Salmo
Trutta L.) and hydraulic stability across the weirs for different flows. For brown trout, the
channel had to be shaped to facilitate possible upstream and downstream migration. This
included inserting larger rocks just upstream of the entry point to the deepest channel
across the weir to avoid too high velocities through the channel at higher flows. To provide
hydraulic stability, the deeper channel was supplied with an adjacent shallow channel on
one side. During higher flows, the water would thus fill the shallow channel in addition
to the deep channel, allowing for a reduction in hydraulic stress on the entry point of the
adjustment area, and a possible alternative migration route for brown trout.

Based on the project group discussion and drafts, each weir had three configurations
to be simulated and visualized: original weir, adjusted weir, and full removal. For the
original weir and the full removal configurations, two scenarios were added (based on [3]):
(1) no recreational infrastructure and (2) added recreational infrastructure. The added
infrastructure included a walking path, an information plate, boards and benches, and a
campfire. The adjusted weir configuration consisted of two separate types of adjustments:
(1) a lowering of the midsection and a deep channel across the weir and (2) a riffle-pool-
type adjustment with cell-shaped, partly overlapping pools with a riffle structure in the
overlapping sections. The first adjustment type was simulated in weirs no. 1 and 7, while
the second adjustment type was simulated in weir no. 22. The adjusted weir configuration
had no added recreational infrastructure during the visualization. During the subsequent
hydraulic simulation all scenarios were run on (1) a typical mid-summer low flow specific

3to the location of the weir (i.e., 1.5 m /s at weirs 7 and 22; 3.0 m3/s at weir 1), and
3(2) a doubled low flow rate (3.0. m /s at weirs 7 and 22; 6.0 m3/s at weir 1). Table 1

summarizes the measures related to weir configuration and adjustments, simulated flows,
and recreational infrastructure visualized in the single scenarios.

Table 1. Environmental measures visualized in the different scenarios in this study.

No. Weir Configuration
Simulated Weir Simulated Flow

Adjustment in Weirs no. 1/7/22 (m3/s)

Recreational
Infrastructure Added to

Image

1 Original form None 3.0/1.5/1.5 None

2 Original form None 3.0/1.5/1.5
Walking path, information
plate, boards and benches,

and campfire

3 Adjusted

Weirs 1 and 7: lowering of
midsection and deep

channel
Weir 22: cell-shaped, partly
overlapping pools across

weir

3.0/1.5/1.5 None

4 Removed Removal 3.0/1.5/1.5 None
5 Removed Removal 6.0/3.0/3.0 None

6 Removed Removal 3.0/1.5/1.5
Walking path, information
plate, boards and benches,

and campfire
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2.4. Hydraulic Modeling of Environmental Measure Scenarios

The Nea River was scanned with an airplane-mounted green LIDAR in 2018 and
2019. A green LIDAR scans the terrain using several light beams in the visible and near-
visible spectrum, where the green light can penetrate a water surface. The scan returns
a three-dimensional local point cloud, with each point’s position defined in x-, y-, and
z-coordinates. Fixed ground points with global coordinates are used to georeference the
LIDAR point cloud. During scanning, the light in the beam is reflected off the surface of
the terrain and returned to the LIDAR lens. In the LIDAR, the time of return and signal
footprint are captured and determine the position and type of surface the light beam has
hit. In post-processing, the surface points are then classified into different types of terrain.

The overall results from the scans of the Nea River were poor to adequate in areas
with depths less than 1.0 m, while deeper areas were missing in the riverbed classification.
Most areas of interest for the current study were in the shallow parts of the river. We
used high-definition aerial images and local depth knowledge to estimate the height of
the riverbed in the deeper parts of the river. The aerial images were downloaded from
www.norgeibilder.no, accessed 1 June 2019. We used the riverbed classified points in the
LIDAR dataset and supplied with manual adjustment using polygons and -lines with
defined bed levels in the deeper sections of the river to set up a base raster terrain file using
natural neighbor interpolation in ArcGIS [38].

We used Hec-RAS (HEC-RAS 5.0.7., https://www.hec.usace.army.mil/software/hec-
ras, accessed on 1 June 2019) for modeling. Hec-RAS is a river analysis system that allows
for one- and two-dimensional calculations of river hydraulics. We used the green LIDAR
and polygon/-line interpolated raster terrain file as a basis for a 2D hydraulic model. The
model was calibrated by adjusting the Manning’s n value to match the water-covered area
in the model to the observed water-covered area in high-definition aerial images during
two different flows. The Manning’s n value represents the riverbed roughness. No gauging
stations were available in the sections of interest of the river. A minimum flow release
from the upstream dam amounts to 1.5 m3/s in the period from May through September.
We estimated the calibration flows based on the minimum flow release from the dam and
local knowledge of hydrology in the main river as well as the tributaries downstream
of the dam. Local measurements of depth and velocity were conducted using a SonTek
M9 RiverSurveyor [39]. Calculations of observed versus simulated depth resulted in a
mean error of 0.20 m and a root mean square error (RMSE) of 0.21 m. For the velocity the
corresponding values were −0.18 m/s and 0.22 m/s. RMSE was calculated as the square
root of the mean of the squares of the deviations for 120 points in the study reach.

The three weirs were tested for changes in the water-covered area as a function of weir
adjustment and removal. Each of the three weirs had three configurations in the hydraulic
simulations: (1) original form, (2) adjusted form (excavated channel across the weir or
interconnected cell-shaped pools across the weir, Figure 4), and (3) fully removed. Shape
adjustments to the weirs were done using the original LIDAR point cloud with added break
lines and bed elevation polygons as terrain restrictions. These restrictions were included in
the interpolation process to obtain new terrain rasters with the added weir adjustments.

2.5. Creating Water-Covered Area Outline Maps

Hydraulic simulations were run at flows of 1.5, 3, and 6 m3/s for all three weirs. The
resulting water-covered areas in each of the weir river sections were exported as polygons
from the hydraulic model into ArcGIS. For each weir, the three weir-state polygons (i.e.,
original, adjusted, and removed) were displayed as outlines in the same image. The
process was repeated for the most relevant flows. Figure 5 shows weir no. 1 for all three
configurations during a flow of 6 m3/s.
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2.6. Visualization of Environmental Measure Scenarios
2.6.1. Taking Baseline Photographs

To establish the baseline photos for our scenario simulation we took photos of the
original weirs on a day with low flow conditions in June 2019, using a Canon SX70HS
camera. The two locations for photo capture were:

A. From an on-the-ground perspective, standing on the banks of the river, ca. 50 m
below the weir, and looking up the river (see also Figure 6);

B. From an aerial perspective, using a drone flying 10 m above the ground, and ca. 50
m below the weir (see also Figure 7).

Figure 4. Polygons for weir adjustment in weirs no. 1 (a), 22 (b), and 7 (c). For (a,c), the cross-hatched, thickly outlined
polygons represent a 2 m deep and wide channel across the weir, while the thin-lined polygons represent a minor lowering
of the weir level, gradually increasing towards the deep channel. White-outlined black dots indicate the placement of rocks
for hydraulic disruption at the entry point to the deep channel. For weir 22 in picture (b) the cross-hatched, thickly outlined
polygons represent gradually lowered cell pools. The thick white arrow indicates flow direction.
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Figure 5. Water-covered area for weir no. 1 with the following configurations: (a) original form, (b) with a channel across,
and (c) fully removed. The simulated flow is 6 m3/s. The blue arrow shows the flow direction. The yellow arrow indicates
the location of the hydropower plant outlet and thus the end of the bypass section.

Figure 6. Visual scenario example from the questionnaire with the complementary answer scale. The scenario represents
the on-the-ground-perspective with the weir removed at weir no. 22 (visual scenario: Rolseth Foto).
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Figure 7. The same scenario as shown in Figure 6 from an aerial perspective (visual scenario: Rolseth Foto).

The weather and light conditions were constant for all three weirs. Flow was measured
onsite at the same time as taking the photos resulting in the low flow quantities used in

3this study (1.5 m /s for weirs 7 and 22 in the upstream part of the study area, and 3 m3/s
for weir 1 in the downstream part of the study area).

2.6.2. Visualizing Water-Covered Area, Changes in Weirs, and Recreational Infrastructure

The baseline photos were manipulated with Adobe Photoshop [40] to show the se-
lected environmental measures listed in Table 1 and using the water-covered area outline
maps. The manipulation was done in an iterative process by a photo manipulation ex-
pert (K. Rolseth at Rolseth Foto), an expert on hydro-morphology and fish ladders (H. P.
Fjeldstad), and an expert on recreational use (B. Junker-Köhler). Photographic material
of recreational infrastructure and existing weirs in other rivers (e.g., cell-shaped weirs in
river Mandalselva and river Numedalslågen) were also used to aid photo manipulation to
visualize the different scenarios.

2.7. Setting Up the Questionnaire and Conducting the Survey

We designed a questionnaire that started with a short introduction stating the intention
of our study. To assess the visual preferences of the respondents for the different scenarios
we asked “To what degree do you like what you see on the following pictures? Mark the
value on the scales that fits you best. −3 = I don’t like it at all, and +3 = I like it very much.
Please give an answer to each single one of the pictures.” We then showed the different
visual scenarios per weir location, one after another, each with its own respective answer
scale to receive the respondents’ ratings for all of them. Figure 6 shows an example of
one of the visual scenarios for weir no. 22 with the weir removed, from an on-the-ground
perspective, and the answer scale.

All scenarios were developed both from an on-the-ground perspective as well as from
an aerial perspective from 10 m above ground.

Figure 7 shows the corresponding aerial scenario to the scenario depicted in Figure 6.
For the specific purpose of this study, which was to compare preferences for on-the-

ground vs. aerial perspectives, we assembled two questionnaires. One contained the entire
series of scenarios with the on-the-ground perspective and the other one was identical
except for the aerial perspective. We sent questionnaires with scenarios based on these two
different perspectives alternately to the potential respondents on our address list.
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In order to receive quantitative information on the recreational use of the Nea River
by the local inhabitants, we further asked our respondents to answer the following ques-
tion: “Have you participated in any of the following activities in or along Nea in the
last 12 months?”, followed by a list of recreational activities that we found to be relevant
in a qualitative pre-study in the case study area, and an additional item with an open
category to give room for indicating any additional activities. Using the two versions of
our questionnaire, we conducted a representative postal survey of the local public in the
Selbu and Tydal municipalities, located along the Nea River in our case area.

We sent the printed questionnaire together with a pre-paid return envelope to all
households within the Selbu and Tydal municipalities that were located directly adjacent
to the Nea River in November 2019. A reminder to those that had not answered yet was
sent in January 2020.

2.8. Characteristics of the Survey Respondents

From the postal survey in the two municipalities of the case study area (Selbu and
Tydal), we received 526 valid responses. That corresponded to a relatively high response
rate of 35.7%. Male respondents prevailed over female respondents, and older age groups
prevailed significantly over younger ones. About two-thirds of the respondents grew
up in the case study municipalities, and about two-thirds reported that their domicile
overlooks the Nea River. Most of the respondents reported that the Nea River was of
large importance to them (Table 2). This corresponds with the share of the respondents
having conducted one or several recreational activities in or along the Nea River during the
previous 12 months. The activities walking and staying along the river, observing plants
and animals, and biking along the river were the most favored.

Table 2. Socio-cultural characteristics of survey respondents.

Socio-Cultural
Variables

Classification Sample Proportion (%)

Gender Female 26.4
Male 73.6

16–39 9.9
Age 40–59 38.0

60+ 52.1

Grown up in the
case study municipalities

Yes 60.3
No 30.4

Partially 9.3

Domicile overlooking Yes 35.6
Nea River No 64.4

Importance of the Nea River
Low importance

Middle importance
High importance

4.7
25.4
69.9

Recreational activity
(during the last 12 months)

Fishing
Bathing

Canoeing
Walking along the river

Staying at the river (relaxing,
picnic, campfire, etc.)
Biking along the river

Observing animals and plants
Ice skating

Other

31.7
31.0
13.9
65.0
49.8
38.0
44.1
3.4
5.2
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3. Results

3.1. Water-Covered Area Outlines from Hydraulic Model

Simulation results from the hydraulic models show that weir adjustment scenarios in
all three river sections will alter the water-covered areas minimally, while full removal of
the weirs will result in a larger reduction in the water-covered area. The main changes in
the water-covered area due to weir adjustment will appear near the proposed channels or
cell-shaped pools through the weirs. Figure 8 shows the water-covered area outlines for
the three weirs for all configurations at a simulated flow of 1.5 m3/s.

Figure 8. Results on water-covered area outline at (a) weir 1, (b) weir 7, and (c) weir 22 at a simulated flow of 1.5 m3/s. The
outline colors of black, purple, and light green represent original weir, adjusted weir, and removed weir, respectively.

While adjusted weirs resulted in minor visual changes of the water-covered area
during low flows when compared to the original weirs, full weir removal reduced the
water-covered area significantly during low flow. By doubling the simulated flow with
weirs removed, the effect of removal on the water-covered area was reduced. An example
of the effect of weir adjustment and removal on the water-covered area for weir no. 1 at
flows 3 and 6 m3/s is given in Figure 9.
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Figure 9. Example of the effect of weir adjustment and removal on the water-covered area for weir no. 1 at flows 3 and
3 36 m /s. (a) WCA outline for full weir removal simulated at flows of 3 m /s (light green) and 6 m3/s (dark green). (b) WCA

3outline for weir adjustment at 3 m /s (purple) and weir removal at 6 m3/s (dark green). As shown in (b), doubling the flow
3to 6 m /s with weir removal compensates for a large proportion of the WCA for weir adjustment at a flow of 3 m3/s.

3.2. Visual Scenarios

Following the structured procedure described in the method section, we arrived at
the 18 visual scenarios shown in Table 3 and used them in our questionnaire to elicit the
preferences of the survey respondents.

3.3. Visual Preferences for On-the-Ground versus Aerial Scenarios

Figures 10–12 show the mean values for respondents’ visual preferences for the
different mitigation measures related to weirs, minimal flow, and recreation infrastructure
for the three sites. We found significant differences in mean values between visual scenarios
with on-the-ground versus aerial perspectives for all measures (1–6) at weirs 1 and 7. This
was not entirely the case for weir 22, where we could not detect significant differences
between the two different perspectives for three of the six measures (1, 3, and 4). An
important finding was that visual scenarios from an on-the-ground perspective were
generally rated higher than those from an aerial perspective. The only exception is the
rating for measure 3 at weir 1 (where the mean value for the aerial perspective is higher
than the one for its on-the-ground counterpart, Figure 10).
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Figure 10. Mean values for preference ratings for pairs of scenarios developed from on-the-ground and aerial perspectives
for weir 1 at Bogstadhølen. Differences between mean values are indicated at the respective significance levels: ***, p≤ 0.001;
**, p ≤ 0.01; and *, p ≤ 0.05.
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Figure 11. Mean values for preference ratings for pairs of scenarios developed from on-the-ground and aerial perspectives
for weir 7 near the Hyttbakken bridge. Differences between mean values are indicated at the respective significance levels:
***, p ≤ 0.001; **, p ≤ 0.01; and *, p ≤ 0.05.
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Figure 12. Mean values for preference ratings for pairs of scenarios developed from on-the-ground and aerial perspectives
for weir 22 near the Lower Nea power station. Differences between mean values are indicated at the respective significance
levels: ***, p ≤ 0,001; **, p ≤ 0,01; and *, p ≤ 0,05. n.s. = not significant.

Table 4 shows the order of mean preference ratings among the measures at the single
sites. The numbered scenarios in the final column correspond to those given in Table 1. We
can observe large differences in the orders between on-the-ground and aerial perspectives
for weirs 1 and 7. This is not the case for weir 22, where the order is the same for both
perspectives.

Table 4. Order of mean values of the preference ratings for the single sites. The numbered scenarios
in the final column correspond to those given in Table 1.

Weir No. Perspective
Descending Order of Preference Ratings

for Single Scenarios (Scenario No.)

1
On-the-ground 5–4/6–2–1–3

Aerial 3–5–4–6–2–1

7
On-the-ground 6–5–2–4–3–1

Aerial 5–6–2–3–4–1

22
On-the-ground 5–6–4–2–1–3

Aerial 5–6–4–2–1–3

4. Discussion

The purpose of our study was twofold. Based on this and our previous work we
intended (1) to establish a standardized procedure for the visualization of mitigation
measure scenarios. Additionally, (2) we aimed to test the hypothesis that visual preferences
for such scenarios are related to perspective (on-the-ground versus aerial perspectives).

4.1. A standardized Procedure for Visualization of Mitigation Measures

To our knowledge there are no studies that have outlined a detailed procedure for
designing visual scenarios of environmental mitigation measures in rivers regulated for
hydropower production to be used in public preference assessments. Visual assessment
studies of the scenic beauty of rivers and riverscapes do not commonly lay much focus on
describing in detail how the depicted scenarios were developed. That is an aspect that the
standardized procedure we propose aims to amend. Regarding a structured selection of
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variables and environmental measures depicted in the survey, however, we were inspired
by several aesthetic preferences studies using visualized scenarios that are explicit about
this issue [10,35,41].

While model simulation visualization of hydrological and hydrodynamic responses
of alternative flow regimes have been central in environmental design projects, the transfer
from model simulation visuals to photorealistic scenarios has not been extensively tested.
By using hydraulic model output as an input for the photo manipulation of alternative
scenarios, we were able to consolidate a realistic flow-to-water-covered area to be used
as a baseline for the scenarios. Our model results also indicated during which flows
the adjustment and potential removal of weirs would be less protruding in terms of the
reduced water-covered area visible to the public. The visualization of environmental
measure scenarios that we propose here has the advantage that all resulting visual images
show the same rate of light and shadow since they are based on the same base photo. This
is a known disadvantage of surveys, with photos showing, for example, different flows of
a river section, yet with a differing light/shadow rate [42].

We consider it useful to propose a questionnaire design as described in Chapter 2.7 as
a standard for future assessments to ease the preparation and to make assessment results
comparable between different rivers. As, for example, the overview by LeLay et al. [21] of
previous river- and waterscape perception studies shows, there is a multitude of answer
scales that could potentially be employed. After ample consideration we suggest a seven-
point answer scale to allow for enough data resolution, but at the same time sufficient
lucidity for the respondents.

What is the minimum input of data necessary for our proposed method to work? A
certain amount of bathymetric and topographical data must be available for setting up
a river model and simulating the flow/water-covered area relationship. As our study
included the adjustment or removal of weirs, these hydraulic structures needed to be
adequately covered by topographical points. We used a combination of LIDAR data
covering the weirs and riverbank areas and manually inserted breakpoints and -lines in the
deeper parts mid-river. We did not test the sensitivity of the added breakpoints and -lines
in the simulation results. As the LIDAR data were collected at very low flows, we assumed
the areas covered by LIDAR to adequately represent the bathymetry and topography of
the weirs and riverbank areas.

In terms of the selection of sites for scenario development, an overview of the recre-
ational use of the respective river stretch is highly beneficial, and a qualitative or quantita-
tive pre-study, as in our case, should be taken into consideration. If this is not a feasible
option, an effort should be made to gain information, for example, from local community
managers or other persons with longstanding knowledge of the locality.

In our study, the three specific weirs that we visualized were selected based on a
pre-study in the case area at the Nea River [3]. As there are more than 30 weirs along
the bypass reach downstream of the dam, results are thus limited to the selected weirs
only. Still, the three weirs with their respective combinations of environmental measures
resulted in a total of 18 visual scenarios to be judged and assessed in the public survey. A
higher number of scenarios would most likely have provided an exhaustive exercise for
the participants of the survey, potentially reducing the number of respondents. This is a
commonly occurring methodological trade-off in visual aesthetic preference surveys that
requires sensitive judgement for each case context.

For the visual manipulation of the scenarios, it is otherwise highly relevant to also gain
other photo material than the baseline photos from the respective river stretch, showing,
for example, larger rocks and gravel. As these have a specific appearance in all locations, a
realistic visualization of areas where reduced flow uncovers the underlaying river structure
is dependent on such visual baseline material.
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4.2. On-the-Ground versus Aerial View

The results of our study did not confirm our hypothesis that the public visual prefer-
ence that there are no significant differences between public visual preferences for scenarios
with an on-the-ground perspective and scenarios with an aerial perspective. We found
instead statistically significant differences between the mean values of visual preference
ratings for most of the visual scenario pairs (i.e. on-the-ground versus aerial view scenarios)
for two of the three weirs (Figures 10–12). Our results also show, clearly, that scenarios
from an on-the-ground perspective are then also rated distinctly higher than aerial view
scenarios. That there is a difference in the visual preference ratings for the two perspec-
tives was confirmed by comparing the ranking order of the respective visual scenarios
per weir for the two different perspectives (Table 4). These findings indicate that visual
scenarios from an aerial perspective cannot be taken as surrogates for scenarios from an
on-the-ground perspective—i.e., the point-of-view location that is commonly used until
now.

However, the results for the third weir in our study—weir 22—appear different.
Discussing the possible reasons for this might be interesting for our comparison of the
interchangeability of the two perspectives. Weir 22 is located at the upper section of the
Nea River case study area where the state road to Sweden runs directly along the river,
granting car drivers and cyclists an elevated view over the river, substantially above the
on-the-ground perspective, yet still below an aerial view (in this study from a 10 m height).
Figures 6 and 7 give an impression of this. Apart from some recreational anglers, the main
share of the population has this elevated view of the river. This might be a reason for
the less pronounced differences in mean visual preference ratings (see Figure 12) as well
as the congruence in the order ranking for weir 22 (see Table 4). This might imply then
that it would be most accurate to choose the most common user perspective for visual
preference elicitation. Following this line of thought, one could then also argue that an
on-the-ground perspective would be the more accurate and valid one for river sections
where user activities with an on-the-ground point of view are the most common, such as
for the other two weirs (1 and 7) in our study [3].

The comparison between visual preferences based on the two different perspectives
was a special objective for this study. In our view, it would not be recommendable to
develop visual scenarios based on both perspectives in parallel—as was done here—in
future assessments. However, we think that this study gives an indication that an ample
examination should be given of the most common view that recreational users in the
respective river sections would have in order to choose the “right one” before starting to
design visual scenarios for a preference assessment. To confirm these interpretations, more
studies will be needed.

We did not find that the photo manipulation of aerial perspective scenarios was more
difficult than of on-the-ground view scenarios, or vice versa. Given the availability of a
drone with a mounted photo camera there is thus a large specter of technical possibilities
to gain appropriate base photos in relation to the local context.

4.3. Weir Adjustment and Modeling

The Nea River is a relatively wide and mostly shallow river, especially after the
establishment of hydropower regulation, where most areas are affected by the withdrawal
of water for production. Areas just downstream of many of the weirs are hydraulically
complex during lower flows due to course substrate occasionally obtruding the water
surface. This hydraulic complexity is indicated in the water-covered areas shown for
weir 22 in Figure 8c. At higher flows (i.e., >10 m3/s) the complexity diminished as the
weirs become less of a hindrance for flows.

We used two different weir adjustment strategies: deep/shallow channel combination
and partly overlapping cell pools. The former strategy is adapted to low-head weirs with
relatively limited width across, while the latter is better suited for wider, high-head weirs.
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In our study, we defined weirs no. 1 and 7 as low-head while weir no. 22 was defined as
high-head (i.e., upstream/downstream water level difference during low flows > 2 m).

Although the weir configuration scenarios were based on expert knowledge within the
project group, we used a simplified setup for the weir adjustments. As the main goal of the
hydraulic simulations was to create water-covered area outlines for photo manipulation, as
opposed to creating weir adjustments specifically for fish migration, we did not consider
factors such as optimal bed roughness or flow-related water velocity and depth for the
weir adjustment scenarios. A detailed overview of relevant factors for weir adjustment and
removal can be found in Pulg et al. [12] and Fjeldstad et al. [29].

While we used the publicly available model software Hec-Ras for creating the flow/water-
covered area relationship, other model tools may also be applied. The possible biggest
bottleneck for successful modeling of mitigation measures at different flows is the density
of the bathymetric/topographical data. While we had access to a dense LIDAR point
cloud, other sources of riverbed elevation such as differential GPS and boat-mounted
ADCPs could potentially provide an adequate dataset to be used as an input for the
hydraulic modeling.

In our view, the procedure that we describe here could be used as a standardized
method for developing visual simulation scenarios of environmental measures for the
mitigation of negative effects due to hydropower production in rivers. It could potentially
ease the design of surveys and preference assessments in future studies and practical
preference assessments, as, for example, in the large number of upcoming revisions of
older hydropower concessions. A more standardized design would also improve the
comparability of results and thus the state of the art of visual preferences of the public for
mitigation measures and riverscapes. While we assessed the adjustment and removal of
weirs specifically in our study, other mitigation measures could be modeled and provided
as an input for photo manipulation. Examples may include dam removal, fish migration
barrier adjustment, and de-channelization.

As our experience shows, it is important to develop such visual scenario assessments
in a multi-disciplinary team. While the standardized procedure we propose here aims
to make the design more efficient and easier, it still requires relatively specific expertise
for a successful implementation, in terms of hydraulic modeling, hydro-morphology, fish
ecology, photo manipulation, and social science.

5. Conclusions

Assessing local public preferences for decisions regarding the management of near-by
river spaces is increasingly demanded and desired. Visual stimuli play an important
role. To our knowledge, there has been no previous study that establishes and describes a
detailed procedure for designing visual scenarios of environmental mitigation measures in
rivers regulated for hydropower production to be used in public preference assessments.
Neither have there been studies testing the comparability of the traditional on-the-ground
and the modern aerial perspectives in visual assessments. Therefore, we consider our study
novel in these two ways.

The methodological framework or procedure that we have outlined here consists
of the following steps: (A) selection of sites and environmental measures for scenario
development, (B) hydraulic modeling of the scenario-based water-covered area, (C) out-
lines of the water-covered area in different environmental measures scenarios, (D) and
the visualization of scenario images based on outlines and photo image acquisition, (E)
resulting in questionnaires with weir scenario images as an input for (F) the survey. The
detailed information given in regard to these single steps together with the results of the
comparison of using on-the-ground versus aerial perspectives can be a steppingstone to a
standardized procedure for future visual preference assessments.

We expect this procedure to gain an increasing relevance in the public administration
of watercourses with hydropower production in the years to come. It might also be
beneficial for hydropower companies in their attempt to gain local acceptance and to
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avoid conflicts when planning new hydropower infrastructure or in the revision process
of existing concession terms. However, we acknowledge that further elaboration and
standardization of this procedure requires additional testing and implementation, together
with proper documentation in future studies to make it robustly applicable in different
contexts.

Author Contributions: B.J.-K. was responsible for the conception of this article, the questionnaire
design, organizing the scenario visualization process, conducting the postal survey, and the visual
preference analysis. H.S. was responsible for the hydraulic modeling and all related technical issues.
Both authors contributed equally to the writing—both to the original draft preparation as well as to
the review and editing. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Norwegian Research Center HydroCen, including re-
sources from the Norwegian National Research Foundation (project number: 257588). It was con-
ducted within HydroCen’s project 4.3., concerned with extended environmental design.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: The data supporting the reported results can be found with the two
authors of this article.

Acknowledgments: We would very much like to thank Hans-Petter Fjeldstad/SINTEF for his
invaluable help and hydro-morphological/fish migration expertise; Kjetil Rolseth/Rolseth Foto for
the photo taking—both on the ground and from the air, as well as the photo manipulation work;
Line Sundt-Hansen, Torbjørn Forseth, and Ingebrigt Fuglem (all NINA) for the expert discussion and
excursion related to the selection of environmental mitigation measures; and Margrete Skår (NINA)
for her cooperation in the survey and questionnaire design.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Abazaj, J.; Moen, Ø.; Ruud, A. Striking the Balance between Renewable Energy Generation and Water Status Protection:
Hydropower in the context of the European Renewable Energy Directive and Water Framework Directive. Environ. Policy Gov.
2016, 26, 409–421. [CrossRef]

2. Forseth, T.; Harby, A. Handbook for Environmental Design in Regulated Salmon Rivers. 2014. NINA Special Report 53. 90 pp.
Available online: www.nina.no/archive/nina/PppBasePdf/temahefte/052.pdf (accessed on 6 October 2021).

3. Skår, M.; Köhler, B. Rekreasjonsinteresser i Utvidet Miljødesign: Demovassdrag Nea. 2019. HydroCen report No. 9. Avail-
able online: www.ntnu.no/documents/1269211504/1279317385/Rapport_Nea_Nr9.pdf/62254e43-fc23-460e-aac6-cec929a2283e
(accessed on 6 October 2021).

4. Whittaker, D.; Shelby, B. Flows and Aesthetics: A Guide to Concepts and Methods. 2017. National Park Service, Hydropower
Assistance Program, Hydropower Reform Coalition, Confluence Research and Consulting, Oregon State University. Available
online: https://hydroreform.org/wp-content/uploads/2020/05/Flows-and-aesthetics-A-guide-to-concepts-and-methods-20
17_Final_web.pdf (accessed on 6 October 2021).

5. Mayeda, A.; Boyd, A. Factors influencing public perceptions of hydropower projects: A systematic literature review. Renew.
Sustain. Energy Rev. 2020, 121, 109713. [CrossRef]

6. Venus, T.E.; Hinzmann, M.; Bakken, T.H.; Gerdes, H.; Godinho, F.N.; Hansen, B.; Pinheiro, A.; Sauer, J. The public’s perception of
run-of-the-river hydropower across Europe. Energy Policy 2020, 140, 111422. [CrossRef]

7. Hostmann, M.; Buchecker, M.; Ejderyan, O.; Geiser, U.; Junker, B.; Schweizer, S.; Truffer, B.; Zaugg Stern, M. Collective Planning of
Hydraulic Engineering Projects. Manual for Participation and Decision Support in Hydraulic Engineering Projects; Eawag: Dübendorf,
Switzerland; WSL: Santa Monica, CA, USA; LCH-EPFL: Lausanne, Switzerland; VAW-ETHZ: Zurich, Switzerland, 2005; p. 8.
[CrossRef]

8. Feichtinger, J.; Pregernig, M. Beyond Mandated Participation: Dealing with hydropower in the context of the water framework
directive. Environ. Policy Gov. 2016, 26, 351–365. [CrossRef]

9. Newig, J.; Koontz, T. Multi-level governance, policy implementation and participation: The EU’s mandated participatory
planning approach to implementing environmental policy. J. Eur. Public Policy 2013, 21, 248–267. [CrossRef]

10. Barton, D.N.; Sundt, H.; Adeva-Bustos, A.; Fjeldstad, H.-P.; Hedger, R.; Forseth, T.; Köhler, B.; Aas, Ø.; Alfredsen, K.; Madsen,
A.L. Multi-criteria decision analysis in Bayesian networks - Diagnosing ecosystem service trade-offs in a hydropower regulated
river. Environ. Model. Softw. 2020, 124, 104604. [CrossRef]

128



Water 2021, 13, 2985

11. Sundt-Hansen, L.; Alfredsen, K.; Bongaard, T.; Fossøy, F.; Arnesen Hagen, I.J.; Harby, A.; Köhler, B.; Majaneva, M.A.; Sivertsgård,
R.; Skoglund, H.; et al. Utvidet Miljødesign i Demovassdrag Nea. 2021. HydroCen report No.19. Available online: https:
//www.ntnu.edu/hydrocen/hydrocen-report (accessed on 6 October 2021).

12. Pulg, U.; Barlaup, B.; Skoglund, H.; Velle, G.; Gabrielsen, S.; Stranzl, S.; Espedal, E.; Lehmann, G.; Wiers, T.; Skår, B.; et al.
Tiltakshåndbok for Bedre Fysisk Vannmiljø. God Praksis ved Miljøforbedrende Tiltak i Elver og Bekker. 2017. Uni Research Miljø.
Report 296. Available online: https://www.miljodirektoratet.no/globalassets/publikasjoner/m1051/m1051.pdf (accessed on 6
October 2021).

13. Harby, A.; Adeva Bustos, A.; Szabo, M. Good International Practice for Mitigating Hydropower Impacts on Aquatic Ecosystems
Himalayan Aquatic Biodiversity and Hydropower: Review and Recommendations. SINTEF Energy Research Report. 2020.
Available online: https://sintef.brage.unit.no/sintef-xmlui/bitstream/handle/11250/2753952/2020-01331.pdf?sequence=2&
isAllowed=y (accessed on 6 October 2021).

14. Hetherington, J.; Daniel, T.C.; Brown, T.C. Is motion more important than it sounds? The medium of presentation in environment
perception research. J. Environ. Psychol. 1993, 13, 283–291. [CrossRef]

15. Le Lay, Y.-F. L’évaluation environnementale du bois en rivière par les gestionnaires des cours d’eau français. Geocarrefour 2006, 81,
265–275. [CrossRef]

16. Pflüger, Y.; Rackham, A.; Larned, S. The aesthetic value of river flows: An assessment of flow preferences for large and small
rivers. Landsc. Urban Plan. 2010, 95, 68–78. [CrossRef]

17. Meitner, M.J. Scenic beauty of river views in the Grand Canyon: Relating perceptual judgments to locations. Landsc. Urban Plan.
2004, 68, 3–13. [CrossRef]

18. Lange, E. 99 volumes later: We can visualise. Now what? Landsc. Urban Plan. 2011, 100, 403–406. [CrossRef]
19. Gobster, P.H.; Ribe, R.G.; Palmer, J.F. Themes and trends in visual assessment research: Introduction to the Landscape and Urban

Planning special collection on the visual assessment of landscapes. Landsc. Urban Plan. 2019, 191, 103635. [CrossRef]
20. Daniel, T.C. Aesthetic preference and ecological sustainability. In Forests and Landscapes: Linking Ecology, Sustainability and

Aesthetics; CABI: Wallingford, UK, 2009; pp. 15–29.
21. Le Lay, Y.-F.; Cottet, M.; Piégay, H.; Rivière-Honegger, A. Ground Imagery and Environmental Perception: Using Pho-to-

Questionnaires to Evaluate River Management Strategies. In Fluvial Remote Sensing for Science and Management; Carbonneau, P.E.,
Piegay, H., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2012; pp. 405–429.

22. Grill, G.; Lehner, B.; Thieme, M.; Geenen, B.; Tickner, D.; Antonelli, F.; Babu, S.; Borrelli, P.; Cheng, L.; Crochetiere, H.; et al.
Mapping the world’s free-flowing rivers. Nature 2019, 569, 215–221. [CrossRef] [PubMed]

23. Jones, J.; Borger, L.; Tummers, J.; Jones, P.; Lucas, M.; Kerr, J.; Kemp, P.; Bizzi, S.; Consuegra, S.; Marcello, L.; et al. A comprehensive
assessment of stream fragmentation in Great Britain. Sci. Total. Environ. 2019, 673, 756–762. [CrossRef] [PubMed]

24. Winter, H.V.; Van Densen, W.L.T. Assessing the opportunities for upstream migration of non-salmonid fishes in the weir-regulated
River Vecht. Fish. Manag. Ecol. 2001, 8, 513–532. [CrossRef]

25. Poff, N.L.; Hart, D.D. How Dams Vary and Why it Matters for the Emerging Science of Dam Removal. Bioscience 2002, 52, 659–668.
[CrossRef]

26. Atkinson, S.; Bruen, M.; Sullivan, J.J.O.; Turner, J.N.; Ball, B.; Carlsson, J.; Bullock, C.; Casserly, C.; Kelly-Quinn, M. An inspection-
based assessment of obstacles to salmon, trout, eel and lamprey migration and river channel connectivity in Ireland. Sci. Total.
Environ. 2020, 719, 137215. [CrossRef]

27. Koster, W.M.; Dawson, D.R.; Kitchingman, A.; Moloney, P.D.; Hale, R. Habitat use, movement and activity of two large-bodied
native riverine fishes in a regulated lowland weir pool. J. Fish Biol. 2020, 96, 782–794. [CrossRef]

28. Branco, P.; Segurado, P.; Santos, J.M.; Ferreira, T. Prioritizing barrier removal to improve functional connectivity of rivers. J. Appl.
Ecol. 2014, 51, 1197–1206. [CrossRef]

29. Fjeldstad, H.-P.; Pulg, U.; Forseth, T. Safe two-way migration for salmonids and eel past hydropower structures in Europe: A
review and recommendations for best-practice solutions. Mar. Freshw. Res. 2018, 69, 1834–1847. [CrossRef]

30. Fjeldstad, H.-P.; Barlaup, B.T.; Stickler, M.; Gabrielsen, S.-E.; Alfredsen, K. Removal of weirs and the influence on physical habitat
for salmonids in a Norwegian river. River Res. Appl. 2012, 28, 753–763. [CrossRef]

31. Mouton, A.M.; Schneider, M.; Depestele, J.; Goethals, P.L.; De Pauw, N. Fish habitat modelling as a tool for river management.
Ecol. Eng. 2007, 29, 305–315. [CrossRef]

32. Tang, L.; Mo, K.; Zhang, J.; Wang, J.; Chen, Q.; He, S.; Zhu, C.; Lin, Y. Removing tributary low-head dams can compensate for fish
habitat losses in dammed rivers. J. Hydrol. 2021, 598, 126204. [CrossRef]

33. Im, D.; Kang, H.; Kim, K.-H.; Choi, S.-U. Changes of river morphology and physical fish habitat following weir removal. Ecol.
Eng. 2011, 37, 883–892. [CrossRef]

34. Adeva-Bustos, A.; Alfredsen, K.; Fjeldstad, H.-P.; Ottosson, K. Ecohydraulic Modelling to Support Fish Habitat Restoration
Measures. Sustainability 2019, 11, 1500. [CrossRef]

35. Junker, B.; Buchecker, M. Aesthetic preferences versus ecological objectives in river restorations. Landsc. Urban Plan. 2008, 85,
141–154. [CrossRef]

36. Haug Bjølstad, O.K.; Angell-Petersen, S.; Skatvold, B.R.; Bergan, P.I.; Storfor, M. Plan for Biotoptiltak i Nea på Strekningen Bogstadhølen
til Gresslidammen, 2015–2017; Oversikt og visualiseringer av tiltak. Sweco Report; Sweco Norge AS: Stockholm, Switzerland, 2015.

129



Water 2021, 13, 2985

37. NVE. Vannkraftkonsesjoner Som Kan Revideres Innen 2022. Nasjonal Gjennomgang og Forslag til Prioritering. NVE Report
49/2013. 2013. Available online: https://www.miljodirektoratet.no/globalassets/publikasjoner/m49/m49.pdf (accessed on 6
October 2021).

38. Esri Inc. 2020. ArcGIS Desktop (Version 10.8). Esri Inc.. Available online: https://www.esri.com/en-us/home (accessed on 6
October 2021).

39. Sontek. RIVERSURVEYOR®S5 AND M9. 2021. Available online: www.sontek.com/riversurveyor-s5-m9 (accessed on 6 October
2021).

40. Adobe 2021, Photoshop. Available online: https://www.photoshop.com (accessed on 6 October 2021).
41. Hunziker, M.; Michel, A.H.; Buchecker, M. Landschaftsveränderung durch Erneuerbare Energien aus der Sicht der Bevölkerung.

Forum für Wissen 2014, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf. 2014, 43–49.
Available online: https://www.researchgate.net/publication/274057357 (accessed on 6 October 2021).

42. Brown, T.C.; Daniel, T.C. Landscape Aesthetics of Riparian Environments: Relationship of Flow Quantity to Scenic Quality Along
a Wild and Scenic River. Water Resour. Res. 1991, 27, 1787–1795. [CrossRef]

130



Paper IV:

Using hydrodynamic models for guiding eDNA sampling in a river dominated by
weirs and hydropower flow regulation 

Sundt, H., Fossøy, F., Sundt-Hansen, L.E., Alfredsen, K. (2022) 

Manuscript

131



132



Using hydrodynamic models for guiding 
eDNA sampling in a river dominated by 
weirs and hydropower flow regulation 

1 2 2Håkon Sundt , Frode Fossøy , Line Elisabeth Sundt-Hansen , Knut Alfredsen 1

1 Department of Civil and Environmental Engineering, Norwegian University of Science and 
Technology, Trondheim, Norway 

2 Norwegian Institute for Nature Research, Trondheim, Norway

AABSTRACT

Environmental DNA (eDNA) can provide vital information on key species composition and distribution 
in freshwater ecosystems with little or no impact on the local fauna, but eDNA concentrations will be 
affected by streamflow and physical barriers such as weirs. Assessing the effects of local instream 
conditions on eDNA concentrations levels require studies with extensive spatial and temporal 
information on riverbed conditions. Modern remote sensing technologies can provide high-resolution 
data covering large parts of rivers and be highly applicable for simulating flow-dependent 
hydrodynamics at eDNA sampling locations. In this study, we applied LIDAR data (i.e., from airborne 
laser scanning) and remote-sensing imagery to establish the bathymetry in a 24 km bypass section in 
a regulated river dominated by 35 weirs. Using eDNA data from water samples based on species- 
specific assays of two fish species, brown trout (Salmo trutta, Linnaeus, 1758) and Eurasian minnow 
(phoxinus phoxinus L.), collected during two temporal periods (spring and autumn), we simulated local 
flow-related hydrodynamic conditions on sample locations and assessed the effect of selected 
variables on eDNA concentration levels. The initial results of the study demonstrate the successful 
application of remote sensing data as input to assessments on the coupling of instream conditions and 
eDNA. Our findings show that eDNA concentrations are dependent on the type of habitat in the 
sample location, but that season shift the relationships. The presence of weirs also has an effect on 
eDNA concentrations, e.g., the distance from sample location to the downstream weir and the height 
of the same weir. We also found evidence of positive covariation of eDNA concentrations for the two 
dominant fish species. Our results can be applicable in the strategic planning and execution of eDNA- 
based biomonitoring campaigns in rivers where streamflow alteration and presence of physical 
barriers affect local habitats for key species.

1 INTRODUCTION

Freshwater resources are increasingly affected by anthropogenic pressures, e.g., water withdrawal, 
pollution and renewable energy production (Grill et al. 2019). On the European level, efforts are made 
to deal with such pressures through the EU Water Frame Directive (WFD). These efforts include setting 
up river management plans for rivers all over Europe and require joint efforts from a range of scientific 
communities. The scientific field of combining ecology and instream hydraulics (e.g., “ecohydraulics” 
or “hydroecology”) has emerged within the last decades as an important assessment basis for 
mitigation or conservation efforts in rivers (Maddock et al. 2013, Bovee et al. 1998). Many studies on
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ecohydraulics use hydraulic or hydrodynamic models to assess flow-dependent habitat availability and 
use for riverine species (Wegscheider et al 2020, Richter et al. 1997). But while flow and flow-related 
variables are prominent in many recent eDNA studies in rivers (Stoeckle et al. 2021, Tillotson et al. 
2018, Song et al. 2017), there is a lack of studies using hydrodynamic models to assess how local 
instream conditions may affect eDNA concentrations for riverine fish species. 

Environmental DNA (eDNA) is now considered an important element for biomonitoring in freshwater 
ecosystems (Elbrecht et al. 2017, Cordier et al. 2020, Jerde 2019, Seymour et al. 2018, Ricciardi et al. 
2017). eDNA is a cost-efficient method for detecting single species and monitoring complex 
ecosystems using simple water samples collected in rivers and lakes. eDNA is the remains of genetic 
material shed by living organisms through saliva, faeces, scales, hair, etc. suspended in water or soil 
or adhered to particles. By filtering water, sampled eDNA can be used to identify species living in the 
environment using genetic markers (Taberlet et al. 2018). Comparisons with conventional methods 
show that analyses of eDNA often is more sensitive in detecting rare species, and can generate more 
comprehensive species lists and broader biodiversity information across diverse taxa (Valentini et al. 
2016). 

Local conditions may influence the amount of detectable eDNA, especially in lotic environments where 
sample locations are represented by a certain upstream area (Jerde et al 2016, Pont et al. 2019). Water 
flow affects eDNA concentrations through downstream transportation and may determine the 
number of species detected through sampling (Curtis et al. 2021, Milhau 2019). Milhau (2019) also 
reported that sampling during low-flow periods improved results on local taxonomic richness for fish 
in lotic environments, as samples were less likely to contain eDNA from second order locations (e.g., 
tributaries, lakes, wetlands). Mize (et al. 2019) found that higher flows and warmer water temperature 
reduced the likelihood of eDNA capture and detection, and that eDNA abundance in such spots might 
be higher than registered. 

While many eDNA-related studies focus on taxonomic richness or occurrence (Carraro et al. 2021, 
Erickson et al. 2019) fewer studies have focused on individual species’ eDNA concentrations in relation 
to local conditions in lotic systems (Fukaya et al. 2021, Pont et al. 2019). While local spatial and 
temporal conditions in lotic and fluvial systems may interact with eDNA through complex spatial and 
temporal patterns (Jerde et al 2016), some relevant factors have been identified. Seymour et al. (2018) 
found that eDNA could decay to non-detectable levels within two days and that decay rates increased 
with acidic levels and decreased with water temperature. Mächler et al. (2019) found that temporal 
changes in stream flow were strongly linked to biological richness, highlighting a need to consider local 
habitats (i.e., at the sample location) in relation to upstream habitats. Carraro et al. 2018 proposed a 
framework for modelling eDNA concentrations within hydrologically homogeneous river sections as a 
function of discharge, source area, river length, decay time, water velocity and eDNA production. 

Brown trout (Salmo trutta, Linnaeus, 1758) and Eurasian minnow (phoxinus phoxinus L.) are both 
commonly found in freshwater habitats, such as lakes and rivers in Norway. Brown trout are found 
all across Norway, while the Eurasian minnow is endemic only to the south-eastern and north-eastern 
(Finmark) parts of Norway (Museth et al. 2007; Museth et al. 2010). It is regarded as a regional invasive 
species in other parts of Norway and has negative impacts on local brown trout populations, by 
reducing population abundance (Museth et al. 2010). The Eurasian minnow has continued to spread 
outside its native range in the last decades due to several factors, such as being used as live bait in 
recreational fishing, but also due to transferal of water between waterbodies because of hydropower 
regulation (Museth et al. 2007). Hydropower regulation commonly alters the river environment, by 
altering water flow and river substrate (Poff et al 2010). In regulated rivers where there is a permanent 
reduction of waterflow, a common mitigation measure has been to construct weirs to keep the water
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covered area, despite reduced water flow. All though the water covered areas are maintained, the 
weirs act as barriers, and reduces connectivity, particularly for migrating salmonids (Junge et al. 2014). 

The successful application of multidimensional hydraulic models in lotic environments requires 
sufficient riverbed topography maps (i.e., bathymetry). While traditional riverbed mapping efforts can 
be time consuming and resource demanding, recent advances in remote sensing techniques have 
enabled large-scale mapping of rivers (Legleiter et al. 2019, Entwistle et al. 2018, Mandlburger et al. 
2015). LIDARs are frequently applied for riverbed mapping and can provide high-resolution elevation 
models (Legleiter et al. 2019, Petroselli 2012), but acquisition and processing may come at high costs. 
An alternative mapping technique to LIDAR is the use of multi- or hyperspectral imagery for modelling 
and calculating bathymetry (Bizzi et al. 2016, Legleiter et al. 2015, Lyzenga 1978). In Norway, Sundt et 
al. (2021a) assessed the use of multispectral imagery and aerial photos for the mapping of bathymetry 
in four rivers within a geographical region. In a separate study, Sundt et al. (2021b) used a combination 
of LIDAR data and multispectral imagery for hydraulic modelling of seasonal habitat use assessment 
for Eurasian grayling and brown trout in a river regulated for hydropower. 

In Norway, many rivers regulated by hydropower are currently subject to revision of environmental 
and productional conditions (Barton et al. 2016). In River Nea, a regulated river located in central 
Norway soon coming under revision, seasonal reduction in flow and weirs are the dominating 
elements affecting instream biota. In an effort to map and mitigate the effects of hydropower 
production, river Nea have been subject to studies on biodiversity and taxonomic richness, fish 
migration, weir removal, recreation and hydrodynamics (Junker-Köhler et al. 2021). Accessing data on 
eDNA from seasonal sampling in river Nea and using novel techniques for bathymetry mapping, we 
assessed how habitat conditions and the presence of weirs affected eDNA concentrations for the 
dominant fish species brown trout and minnow. By extracting local hydraulic and habitat conditions 
from a hydrodynamic model based on image- and LIDAR derived bathymetry we: 1) investigated 
seasonal habitat-related variations in eDNA concentrations, and 2) tested potential barrier effects of 
weirs on eDNA concentrations. Furthermore, we assessed brown trout and minnow eDNA interactions 
with local conditions. Results show that local hydrodynamic conditions can affect the amount of eDNA 
collected by water sampling depending on the season. Additionally, the proximity to weirs can affect 
eDNA concentration. We also discuss covariation of brown trout and minnow eDNA amounts in the 
samples. Based on the results suggestions are proposed as input to strategic sampling of eDNA in 
rivers dominated by physical barriers and reduced flows.

22 MATERIALS AND METHODS

2.1 SITE DESCRIPTION 
The Nea River is the upper part of the Nea-Nidelv catchment which originates in the Sylan mountains 
on the Swedish-Norwegian border. The total river course is 160 km with a 3125 km2 watershed and 
has its outlet into the fjord in the city of Trondheim. The Nea-Nidelv catchment is regulated by 
hydropower and has a total of nine hydropower plants (677 MW installed effect, 2697 GWh yearly 
average production). The study site is located in the upper part of the Nea-Nidelv catchment and runs 
from the Hegsetdammen dam to the Nedre Nea power plant outlet 9.7 km upstream of Lake 
Selbusjøen (Figure 1). Total length of the study site is 24 km and includes 34 cross-river weirs 
introduced to the system in the mid 1980’s to enhance water covered area due to hydropower- 
induced reduction of seasonal flow. The study site section of River Nea is dominated by seasonal 
minimum flow release from the Hegsetdammen reservoir. A total flow of 1.5 m3s-1 is released in the
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period from the 1 of May to the 1 of October. No flow is released from the dam outside of this
period. There are several tributaries along the study site river section, and the major tributaries were
included in the hydrological model (a total of six).

st st

Figure 1 The River Nea study site located in central Norway. Flow direction is from right towards left. River outline in grey is
also the extent of the hydraulic model (up- and downstream end). The upstream boundary of the study site is the
Hegsetdammen Dam (lower right in the figure), while the downstream end is the power plant outlet (upper left in the figure).
Two additional sampling locations downstream of the power plant outlet were included in parts of the analysis not using
data from the hydraulic model. Sampling stations during the spring period are shown as black dots, while autumn sampling
stations are shown as white dots. During a two-day field campaign autumn 2019 pair-wise sampling was done along a 4 km
river section (dotted outline).

In a pre-study assessment of flow change due to hydropower regulation, we analysed the 7-day
minimum flow during summer and winter at six consecutive locations in river Nea downstream of
Hegsetdammen dam site. Present day summer flows were reduced by 65-70% when compared to
historical flows prior to hydropower regulation. the corresponding reduction for winter flows were
64-88%. The total river section of 24 km includes 34 weirs constructed perpendicular to the local flow
direction (Figure 2). The weirs stop and detain the flow of water causing pool-like habitats in the
upstream end of each weir. Downstream of each weir the river is dominated by riffle/rapid habitats
gradually transforming into pools upstream of the next weir. The weirs have been identified as
bottlenecks for the local brown trout populations, in terms of impeded migration and reduced access
to spawning sites and winter habitats (Sundt-Hansen et al. 2021). In the study, each river section
between two consecutive weirs was defined as a reach, assuming weirs to detain water and reduce
the flow of water into the next reach, amounting to a total of 35 individual reaches. Reach depth
averages and lengths were not related to location in the total river section.

Norway

River Nea
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22.2 TARGETT SPECIES 
The population of brown trout in River Nea
consists of both resident individuals and lake-run 
migratory individuals, the latter type using Nea as 
spawning and rearing habitat. The Nea also 
supports a number of burbot (Lota lota (L.) and in 
the last decades the regional invasive Eurasian 
minnow (Phoxinus phoxinus L.) has been 
introduced and spread throughout the whole river 
in large numbers. The minnow in River Nea thrives 
particularly well in areas with low water velocities, 
such as backwater and weir pools. As brown trout 
and Eurasian minnow was to central elements on 
the full-scale assessment on biodiversity in River 
Nea, these two species were selected for analysis 
in the current study.

2.3 FIELDD COLLECTION ANDD LABORATORYY ANALYSIS 
Water samples for eDNA analysis were collected during four field campaigns: 12th of June 2018, 11th

of October 2018, 19th and 26th of June 2019 and 10th and 11th of October 2019. A total of 49 separate 
instream locations were sampled. In the subsequent analysis the June campaigns were defined as 
spring season samples, while the October campaigns represented the autumn season.

At each location, two replicate samples of 5-10 L of water were filtered through a 2.0 μm glass fibre
filter (Merck Millipore). The water samples were filtered using a vacuum pump (Microsart e.jet; 
Sartorius GmbH) connected to a 3-place filter funnel manifold (Pall Corporation). Filter holders and all 
collecting equipment were bleached in 10% chlorine between each sample to avoid contamination 
among stations. The glass fibre filters were placed in 5-ml plastic tubes with 4,050 μl ATL buffer and 
stored at room temperature until further processing in the genetics laboratory at the Norwegian 
Institute for Nature Research (NINA) in Trondheim.

In the genetic laboratory, DNA-isolation was initiated by adding 450 μl (2 mg/ml) Proteinase K (Qiagen) 
to the sampling tubes collected in the field and incubated overnight at 56°C. DNA was isolated using 
NucleoSpin Plant II Midi spin columns (Machery-Nagel) with Blood & Tissue kit buffers (Qiagen).
Concentration of target DNA was assessed using droplet digital PCR (QX200 Droplet Digital PCR system 
with AutoDG™, Bio-Rad Laboratories). All samples were analyzed using species-specific primers 
developed for brown trout Salmo trutta (Gustavson et al. 2015) and Eurasian minnow Phoxinus 
phoxinus  (Fossøy et al. 2017)  The ddPCRs consisted of 0.9 μM forward and reverse primers, 0.25 μM 
of the probes, ddPCR™ Supermix for Probes (No dUTP) (Bio-Rad Laboratories), dH2O, and 5 μl 
template-DNA. To generate droplets, an AutoDG™ Instrument (Bio-Rad Laboratories) was used, with 
subsequent PCR amplification in a Veriti™ 96-Well Thermal Cycler (Applied Biosystems). The following 
thermal cycling conditions were used: an initial denaturation step at 95°C for 10 min, 40 cycles of 
denaturation at 95°C for 30 s, annealing and extension at 60°C for 1 min, a final step of denaturation 
at 98°C for 10 min, and a final hold at 4°C. PCR plates were transferred to a QX200™ Droplet Reader 
(Bio-Rad Laboratories) to automatically detect the fluorescent signal in the droplets. QuantaSoft 
software v.1.7.4 (Bio-Rad Laboratories) was used to separate positive from negative droplets, 
according to manufacturer's instructions. PCR-negative control samples revealed that one or two 
positive droplets sometimes occurred without the presence of DNA template. A low level of false 

Figure 2 Weir no. 11 in River Nea. Total width of the weir is 
105 m and the drop in water surface from upstream to 
downstream is 0.98 m on a flow of 2 m3/s.
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positives is consistent with results using other assays for other species in our laboratory, and we have 
conservatively set a limit of minimum three positive droplets for assessing a sample as positive (Dobnik 
et al. 2015, Fossøy et al. 2019). 

22.4 HYDROLOGICAL AND HYDRAULIC MODELLING 
As no gauging stations were available in the river section, hydrological scaling was used for River Nea 
and six tributaries (Archfield et al. 2010). The neighbour catchment of River Garbergselva was used as 
a donor catchment (Equation 1). In the upper end of the river section, a daily minimum flow release 
of 1.5 m3/s from the reservoir was used in the period May through September. Outside this period no 
minimum flows are released from the reservoir. For each day of water sampling, local discharge was 
calculated and used as inflow to the 2D hydraulic model. 

 ்ܳ = ்ܳതതതതܳ஽തതതത ∙ ܳ஽ , തܳ = ܨ ∙  Equation 1 ܣ

Where ்ܳ is the discharge of the target catchment (m3/s), ܳ஽ is the discharge of the donor catchment 
(m3/s), തܳ  is the average discharge (m3/s), ܨ is the specific runoff (l/s*km2) and ܣ is the area (km2). 
Specific runoff and areas were extracted using nevina.nve.no (accessed on 17 august 2021). 

During two separate campaigns River Nea was scanned using airplane-mounted green LIDAR 
technology. Further details on the campaigns are described in Köhler et al. (2021). While data collected 
using the green LIDAR sufficiently covered river sections on top and in the vicinity of the weirs, river 
sections with depths above 0.5-1.0 m were missing in the riverbed class of the dataset. To obtain 
sufficient bathymetric coverage in all parts of the study area, we created depth maps from aerial 
imagery using platform-specific (i.e., the source platform of imagery) models for relationships 
between image-derived pixel quantities and local depth. For River Nea, models for depth retrieval 
from images were developed in a separate study as reported in Sundt et al. (2021). More specifically, 
a regional, adjusted model for depth retrieval using aerial photos was applied (Equation 2). The aerial 
photos were downloaded from www.norgeibilder.no (accessed at 17 August 2021).  

 ݀ = ܾ଴,௥௘௚ ∗ ݀̅௘௦௧ ∗ ௟௢௖௔௟ܴܤ + ܾଵ,௥௘௚ ∗ ݀̅௘௦௧ ∗ ௟௢௖௔௟ܴܤ ∗ ܺ Equation 2 

Where ݀ is calculated point depth, ܾ଴,௥௘௚೏  is the local intercept value as a product of the original 
intercept ܾ଴,௥௘௚ (as reported in Sundt et al. 2021), estimated average river section depth ݀̅௘௦௧  and a 
brightness-adjustment variable ܴܤ௟௢௖௔௟. ܾଵ,௥௘௚೏  is the corresponding slope value as a product of the 
original slope ܾଵ,௥௘௚, ݀̅௘௦௧  and ܴܤ௟௢௖௔௟ . ݀̅௘௦௧  was set for based on visual observation of images and 
expert knowledge on local depth conditions. ܴܤ௟௢௖௔௟ is a filtering factor adjusting for the variation in 
overall brightness throughout the image (Equation 3 and Equation 4). 

௟௢௖௔௟ܴܤ  =  ௥௜௩௘௥ Equation 3ܤܩܴ ௟௢௖௔௟݉݁݀݅ܽ݊ܤܩܴ ݊ܽ݅݀݁݉

ܤܩܴ ݊ܽ݅݀݁݉  = ௚݌,௥݌ൣ݊ܽ݅݀݁݉  ௕൧ Equation 4݌,

In River Nea, ܴܤ௟௢௖௔௟  was set to 1 due to low apparent variations in image brightness. To obtain 
bathymetry, instream calculated depth were subtracted from water surface elevations extracted from 
the green LIDAR dataset. A final bathymetry was created by combining the green LIDAR-derived raster 
for shallow river sections with the depth-induced raster for the deeper river sections. 
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Figure 3 River Nea aerial photo (A) and corresponding instream, image-derived bathymetry (B) for a 730 m river section 
(reach no. 12) between two consecutive weirs. Left-hand image is an aerial photo acquired at the time of the green LIDAR 
scan. Right-hand image is the calculated bathymetry from the regional adjusted model applied on the aerial photo. (a) points 
to the upstream weir, while (b) points to the downstream weir.

The hydraulic model was set up to simulate 2D flow using an unstructured grid containing 
approximately 142000 cells with an average cell size of 23 m2 for a length of 24 km of river. The LIDAR 
and image-derived bathymetry was used as the underlying terrain (Figure 3). The model performance 
was tested using a fixed Mannings n for the whole area. To assess the hydraulic sensitivity to input 
Mannings n values, the model was run on two separate values for Mannings n and simulated depth 
and velocity was compared to in-situ values of depth and velocity in point locations sampled on 3 km 
of river (n=4400, using a SonTek M9 RiverSurveyor, www.sontek.com/riversurveyor-s5-m9). A fixed 
Mannings n of 0.06 resulted in a model velocity and depth deviance of -0.04±0.11 m/s and -0.05±0.27 
m, respectively. A fixed Mannings n of 0.035 resulted in a model velocity and depth deviance of -
0.01±0.14 m/s and -0.07±0.29 m, respectively. As a Mannings n of 0.035 is more typical in river 
environments (ref), this was selected for use in the following simulations. In the final step of the model 
performance test, we tested simulated versus observed water covered area on two flows (i.e., high 
and low). Results showed that simulated WCA matched observed WCA on low flows (model deviance 
per reach 101%±7%), while simulated WCA was slightly underestimated on high flows (93%±9%, 
Figure 4).

Within each reach, i.e., river section between two consecutive weirs, simulated hydraulic variables 
were extracted at point locations every 25 m along the river centreline for the given flow at the time 
of water sampling. Average reach point number was 27 adding up to a total of 942 points throughout 
the study area. Additional spatial data on water covered data was extracted from inundation maps at 
the same flows. Covariates extracted from the hydraulic model and the hydrological scaling model are 
summarized and described in Table 1.

(a)

(b)

A B
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Figure 4 Simulated versus observed water covered area on high flows in reach 4, 5 and 6 (3 m3/s, 1,2 km length in total, flow 
direction from right to left). Blue lines represent the simulated water covered area, while black lines represent the observed 
water covered area. Cross-sectional lines indicate the location of weirs. 

Table 1 Random effects (control) and fixed effects (covariates) extracted from the hydraulic model and the hydrological 
scaling model for use in the mixed model analysis. 

Category Covariate Type Description 
Habitat Pool / Artificial River / Rapids Factor Classification data based on difference in water surface 

height h, between two consecutive point locations for a 25 
m river section in the hydraulic model. h>0.01m indicated 
rapid type habitat, while h<0.01m indicated pool type 
habitat. The artificial river section was separated by spatial 
extent in the model. 

Weir height Downstream weir height Numeric Difference in water surface elevation between locations 25 
m upstream and downstream of the mid-section of the weir 
downstream of the sample location 

Upstream weir height Numeric Difference in water surface elevation between locations 25 
m upstream and downstream of the mid-section of the weir 
upstream of the sample location 

Distance Distance to DS weir Numeric Distance from the sample location to the downstream weir 
Distance between weirs Numeric Distance between the upstream and downstream weir 

relative to sample location (i.e., reach distance). 
Area Accumulated upstream area Numeric Accumulated water covered area from dam site to the 

sample location for the given flow at the time of sampling 
Abiotic Water temperature Numeric Water temperature registered at the sample location at the 

time of sampling 
Hydraulics 
and 
hydrology 

Average depth in reach Numeric Average depth across all hydraulic model extraction points 
within the sample location reach (i.e., between two 
consecutive weirs) 

Change in flow Numeric 
/ ratio 

Calculated as sample time flow divided by average flow the 
previous week. Ratios >1 indicate rising flows, ratios <1 
indicate falling flows.  

Flow (random effect) Factor  Reach discharge at the time of sampling. Calculated using 
hydrological scaling from a neighbour catchment. 

Location Reach ID (random effect) Factor Reach identification (n=35) 
Reach size (random effect) Factor Flow-dependent water covered area between the upstream 

and downstream weir relative to sample location  

2.5 MMIXED EFFECTS MODELLING AND MODEL PERFORMANCE 
To test covariate effects on sampled brown trout and minnow eDNA concentrations from water 
samples, we applied generalized mixed effects models with control options for residual variation. All 
modelling was done in R (R Core Team, 2022) using glmmTMB (Brooks et al. 2017). Model selection 
was performed using single covariate comparison by AIC (Akaike’s Information Criterion) and 
subsequent selecting the most relevant covariates. Statistics on model performance were calculated 
using ANOVA and reported by 2 from the null model (i.e., response variable average only) on = 
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0.05 significance level. General model setup for covariate effects on eDNA concentrations for both 
species is given in Equation 5. ݈ܵ݁ܽܽ݊݋ݏ ܣܰܦ݁ ݊݋݅ݐܽݎݐ݊݁ܿ݊݋ܿ ݃݋݈) ݁ݐܽ݅ݎܽݒ݋ܿ ~ (10 ߝ +(݈݋ݎݐ݊݋ܿ) +
Models on habitat and season effects were controlled for residual variation by sampling location 
throughout the study area (reach ID) and reach size. Weir influence models were fitted with 
standardized covariates (i.e., mean of 0 and a standard deviation of 1) to allow for fixed effect slope 
size comparison, and controlled for residual variation by sampling location throughout the study area 
(reach ID). Brown trout and minnow eDNA concentration interaction models were controlled for 
residual variation by sampling location throughout the study area (reach ID) for the autumn dataset. 
Spring season models had added control for residual variation by sampling location flow.

Equation 5

33 RESULTS

3.1 THE EFFECT OF HABITAT TYPE AND SEASON ON EDNA CONCENTRATIONS 
The highest eDNA concentrations of brown trout throughout the study area were found in pool
habitats when compared to both rapids or the artificial river sections (p<0.001, Table 2). However, 
model performance was not significantly different from the null model (average eDNA concentrations 
across all habitat types, Δχ2=5.3875, p=0.068). A supplementary assessment using a second dataset 
for a 4 km river section with paired cross-sectional sampling (outlined in Figure 1) confirmed higher 
eDNA concentrations in pool habitats compared to the artificial river and rapid type habitats 
(Δχ2=13.036, p=0.001). During spring the highest brown trout eDNA concentrations were found in 
rapid type habitats (p<0.001) and significantly improved upon the null model (Δχ2=11.863, p=0.003). 
For minnow during autumn, eDNA concentrations were significantly higher in pool habitats than rapid 
type habitats (p<0.001), while the effect of the artificial river section was non-significant (p=0.514). 
The habitat covariate improved significantly upon the null model (Δχ2=9.513, p=0.009). For minnow 
during spring, no significant differences in eDNA concentrations were found in the different habitat 
types (p=0.948). Average brown trout eDNA concentrations were significantly higher during autumn 
than spring (t-test, α=0.05, T=-5.822, p<0.001), while average minnow eDNA concentrations were 
significantly higher during spring than autumn (T=7.223, p<0.001). 

Table 2 Seasonal impacts on habitat-related log-transformed eDNA concentrations for brown trout and minnow using 
generalized mixed models controlling for residual variation by sampling location throughout the study area (reach ID) and 
reach size (flow-dependent water covered area between up- and downstream weir). Model improvement upon the null 
model is reported using anova, Δχ2 and p-value.

Fish species Season Fixed effects Estimate Std. error z value p-value Δχ2

Brown trout Autumn Pool (intercept) 4.243 0.146 29.044 <0.0010 5.3875,
Artificial river -0.160 0.078 -2.052 0.0402 p=0.0676 
Rapids -0.197 0.078 -2.536 0.0112

Spring Pool (intercept) 3.475 0.043 81.13 <0.0010 11.863,
Artificial river -0.150 0.021 -7.02 <0.0010 p=0.0027 
Rapids 0.069 0.017 3.99 <0.0010

Minnow Autumn Pool (intercept) 4.121 0.188 21.863 <0.0010 9.5132,
Artificial river -0.251 0.097 -2.575 0.0100 p=0.0086 
Rapids -0.063 0.097 -0.652 0.5140

Spring Pool (intercept) 4.576 0.115 39.75 <0.0010 0.1076,
Artificial river -0.043 0.165 -0.26 0.7970 p=0.9476 
Rapids 0.045 0.158 0.28 0.7770
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To assess differences in instream conditions between the two main habitat types (pools and rapids), 
values on depth, water velocity, simulated Froude-number and retention time (i.e., courant as 
simulated by the hydrodynamic model) were calculated for inter-habitat comparison. The flow-
dependent variables were extracted from the hydrodynamic model at the sampling location and 
averaged per season and habitat type. For each season and variable differences in averages between 
habitat types were significant on a α=0.05 level (Table 3). 

Table 3 Simulated average seasonal instream variable values for the two main habitat types across all sampling locations 
from the hydrodynamic model. All variables were significantly different in the two habitat types (α=0.05). The retention time 
variable in this study is a version of courant where higher values mean higher retention. 

Season Instream variable Habitat type Estimate Std. error t value p-value 
Autumn Depth 

(m) 
Pools 
Rapids  

0,82 
0,26 

0,52 
0,30 

3,233 
 

0,0030 

Velocity 
(m/s) 

Pools 
Rapids 

0,02 
0,23 

0,01 
0,19 

-4,617 
 

<0.0010 
 

Froude-number 
 

Pools 
Rapids  

0,01 
0,22 

0,01 
0,19 

-4,329 
 

<0.0010 
 

Retention time (courant) Pools 
Rapids 

0,19 
2,39 

0,20 
2,24 

-4,009 
 

<0.0010 
 

Spring Depth 
(m) 

Pools 
Rapids 

0,71 
0,20 

0,54 
0,11 

3,075 
 

0,0053 

Velocity 
(m/s) 

Pools 
Rapids 

0,16 
0,42 

0,11 
0,23 

-3,543 
 

0,0012 

Froude-number Pools 
Rapids  

0,08 
0,35 

0,05 
0,18 

-5,165 
 

<0.0010 
 

Retention time (courant) Pools 
Rapids 

1,31 
3,96 

0,96 
2,32 

-3,759 
 

<0.0010 
 

 

33.2 THE INFLUENCE OF WEIRS ON LOCAL EDNA CONCENTRATIONS 
Weir influence on brown trout and minnow eDNA concentrations were modelled using four covariates 
(i.e., fixed effects): Downstream weir height, upstream weir height, distance to downstream weir and 
distance between up- and downstream weir. Weir height was calculated as the difference in water 
surface elevation between locations 25 m upstream and downstream of the mid-section of the weir.  
extracted from the hydraulic model for the simulated flow at the time of sampling. Weirs were found 
to significantly affect both brown trout and minnow eDNA concentrations during autumn (Table 4). 
During autumn, brown trout eDNA concentrations significantly increased with higher downstream 
weir height (p=0.009), while eDNA concentrations significantly decreased with distance to the same 
downstream weir (p=0.025). Upstream weir height did not affect brown trout eDNA concentrations 
during autumn. Increased distance between up- and downstream weir affected eDNA concentrations 
negatively (p=0.017). The full model significantly improved the null model ( 2=9.718, p=0.046). No 
significant effect of weirs was found for brown trout eDNA concentrations during spring. During 
autumn, for minnow, the distance to the downstream weir had no significant effect on eDNA 
concentrations, while eDNA concentrations increased with higher downstream weir height (p<0.001). 
Higher upstream weir height and longer distance between up- and downstream weir both decreased 
eDNA concentrations of minnow (both p<0.001). The full model significantly improved the null model 
( 2=24.19, p<0.001). As with brown trout, no significant effect of weirs was found for minnow eDNA 
concentrations during spring. 
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Table 4 The influence of weir height, intra-weir sample location and intra-weir distance on local log-transformed eDNA 
concentrations using generalized mixed models controlling for residual variation by sampling location throughout the study 
area (reach ID). Fixed effects were standardized with a mean of 0 and a standard deviation of 1 to allow for fixed effect slope 
size comparison. Model improvement upon the null model is reported using anova, 2 and p-value. 

Fish species Season Fixed effects Estimate Std. error z value p-value 2

Brown trout Autumn (intercept) 
Downstream weir height  
Upstream weir height  
Distance to DS weir 
Distance between weirs 

3.855 
0.660 

-0.084 
-0.075 
-0.784  

0.230 
0.254 
0.110 
0.033 
0.330 

16.79 
2.60 

-0.76 
-2.24 
-2.38 

<0.0010 
0.0094 
0.4456 
0.0250 
0.0172 

9.7177, 
p=0.0455 

Spring (intercept) 
Downstream weir height  
Upstream weir height  
Distance to DS weir 
Distance between weirs 

3.501 
-0.100 
0.033 

-0.026 
0.144 

0.032 
0.062 
0.038 
0.045 
0.068 

111.13 
-1.62 
0.87 

-0.57 
2.14 

<0.0010 
0.1048 
0.3820 
0.5700 
0.0324   

3.7253, 
p=0.4445 

Minnow Autumn (intercept) 
Downstream weir height  
Upstream weir height  
Distance to DS weir 
Distance between weirs 

3.687 
0.595 

-0.229 
0.025 

-0.980 

0.031 
0.122 
0.032 
0.047 
0.134 

118.15 
4.89 

-7.28 
0.53 

-7.29 

<0.0010 
<0.0010 
<0.0010 

0.5980 
<0.0010 

24.19, 
p<0.0010 

Spring (intercept) 
Downstream weir height  
Upstream weir height  
Distance to DS weir 
Distance between weirs 

4.617 
-0.179 
0.020 

-0.065 
0.075 

0.068 
0.111 
0.065 
0.052 
0.131 

68.71 
-1.61 
0.31 

-1.23 
0.57 

<0.0010 
0.1080 
0.7580 
0.2190 
0.5680 

5.1387, 
p=0.2734 

33.3 SPATIAL AND INTERACTIONAL IMPACTS ON EDNA CONCENTRATIONS 
To assess the effect of local conditions on the covariation, the initial models included a range of spatial 
and temporal variables as additional predictor variables. We then excluded non-significant variables 
in turn until only significant variables remained (on a α=0.05 significance level). The exercise was 
repeated for three datasets: autumn and spring for the whole study area (24 km), and autumn for a 
spatially confined river section with paired cross-sectional sampling (4 km). No significant models were 
found for the spring dataset, and discussions on this period is omitted. The final interaction models 
with the corresponding significant covariates are summarized in Table 5 with model performance 
given as 2 for dAIC between full model and the null model (intercept only). For the autumn dataset 
using sampling throughout the study area, we found that increased minnow eDNA concentrations 
significantly increased brown trout eDNA concentrations in the same samples when including average 
depth in reach, accumulated upstream water covered area and recent changes in flow as covariates 
( 2=42.39, p<0.001). Analysing the second autumn dataset for the 4 km river section with paired 
cross-sectional sampling, increased minnow eDNA concentrations significantly increased brown trout 
eDNA concentrations in the same samples when accounting for water temperature which were 
negatively correlated with brown trout eDNA concentrations ( 2=24.53, p<0.001). Testing for the 
inverse relationships, increased brown trout eDNA concentrations significantly increased minnow 
eDNA concentrations in the same samples when including water temperature and distance between 
up- and downstream weir as covariates ( 2=22.80, p<0.001). 

  

143



Table 5 Generalized mixed covariate models for seasonal log-transformed brown trout and minnow eDNA concentration 
interaction. Models were controlled for residual variation by sampling location throughout the study area (reach ID). Spring 
season models had added control for residual variation by sampling location flow. Model improvement upon the null model 
is reported using anova, 2 and p-value. 

Response 
variable 

Season Fixed effects Estimate Std. error z value p-value 2

Brown 
trout 
eDNA 
concentra
tion 

Autumn (intercept) 
eDNA concentration minnow 
Average depth in reach 
Accumulated upstream area 
Change in flow 

2.770 
0.315 
0.402 

-0.890 
0.312 

0.244 
0.060 
0.126 
0.112 
0.067        

11.36 
5.22 
3.19 

-7.97 
4.69   

<0.0010 
<0.0010 

0.0014 
<0.0010 
<0.0010 

42.39, 
p<0.0010 

Autumn 
local 

(intercept) 
eDNA concentration minnow 
Water temperature 

3.215 
0.316 

-0.178 

0.444 
0.122 
0.041   

7.24 
2.60 

-4.45   

<0.0010 
0.0092 

<0.0010 

24.53, 
p<0.0010 

Spring (intercept) 
eDNA concentration minnow 
Average depth in reach 

2.403 
0.239 

-0.030   

0.361 
0.078 
0.009   

6.66 
3.08 

-3.41 

<0.0010 
0.0021 

<0.0010 

3.52, 
p=0.1718 

Minnow 
eDNA 
concentra
tion 

Autumn (intercept) 
eDNA concentration trout 
Water temperature 
Distance between weirs 

2.216 
0.448  
0.100 

-0.322 

0.623 
0.148 
0.025 
0.065    

3.56 
3.03 
4.03 

-4.98 

<0.0010 
0.0025 

<0.0010 
<0.0010   

22.80, 
P<0.0010 

Autumn 
local 

-      

Spring -      
 

44 DISCUSSION 
There is a lack of studies testing and applying hydrodynamic models for the assessment of eDNA 
concentration and sampling strategies in lotic environments. We found that the application of a 
regional adjusted model for extraction of bathymetry from images provided a sufficient basis for 
hydrodynamic modelling of local abiotic conditions. By extracting habitat and weir related hydraulic 
variables from the hydrodynamic model on flow conditions at the time of eDNA sampling, we found 
significant evidence of brown trout and minnow eDNA concentrations being dependent on season, 
habitat type and the proximity and shape of weirs. 

Remote sensing-based hydrodynamics. River hydraulics are a complex mix of depth, velocity, riverbed 
conditions and hyporheic interactions that vary with stream flow. Indeed, few if any models are able 
to simulate all elements affecting hydraulics in rivers. Two central factors influencing the ability of a 
hydraulic model to represent real-life conditions are bathymetry and calibration data. While 
calibration data (e.g., stream flow, water covered area, point depth and velocity, riverbed conditions) 
often can be accessed through online data or non-exhaustive field sessions, the acquisition of 
bathymetry can be time- and resource demanding, especially for spatially extensive river sections. In 
river Nea, two full scale green LIDAR scan returned no riverbed data on depths more than 0.5-1.0 m, 
thus requiring us to use alternative methods for mapping the bathymetry of the deeper sections. In a 
former study in river Nea, the application of remote sensing imagery for depth calculation was tested 
in a river section (Sundt et al. 2021). By applying the method throughout the study area, we 
successfully created full bathymetry maps in combination with the LIDAR data for weirs. The 
bathymetry enabled the simulation of local hydraulics on the specific (simulated) flows during the 
sampling campaigns. 

eDNA concentrations in different habitats. By comparing eDNA concentrations in three dominant 
hydraulic habitats (i.e., pools, rapids and an artificial river section) we found that the effects of habitat 
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were seasonal and species-specific. While there was evidence of higher brown trout and minnow 
eDNA concentrations in pools than in rapids during autumn, spring sampling returned the highest 
eDNA concentrations for brown trout in rapids. No effect of habitat was found for minnow during 
spring. For both autumn and spring, the overall lowest eDNA concentrations for both brown trout and 
minnow were found in the artificial river sections, which hypothetically might be related to 1) the 
spatially concentrated stream flow quickly transporting eDNA downstream into the next river section, 
or 2) lower amounts of eDNA-shedding fish in the artificial river section. The effect of season on the 
spatial distribution of eDNA concentrations can potentially be related to seasonal differences in both 
biotic and abiotic conditions. Lacoursiere-Roussel et al. (2016) found that eDNA-shedding rates were 
linked to local water temperature. Tillotson et al. (2018) and Milhau et al. (2021) reported on biological 
events (e.g., spawning) having effect on the amount of eDNA that could be sampled. In river Nea, 
average water temperatures at sampling locations were significantly different between seasons 
(T=22.33, p<0.001) with temperatures at 14.51±1.99 and 3.38±1.87 for spring and autumn, 
respectively. But no isolated effect (i.e., single predictor model) was found for local temperature on 
eDNA concentrations in either season. In fact, average eDNA concentrations (for brown trout) were 
significantly lower during spring than during autumn (t=-4.22, p<0.001), in contrast to other studies 
reporting on an increase in eDNA concentrations with water temperature (e.g., Lacoursiere-Roussel 
et al. 2016, Tsuji et al. 2017). For minnow, the results were more in line with previous studies on 
temperature as the highest eDNA concentrations were observed during spring, coinciding with the 
highest temperature averages. Minnow will also spawn during spring, more specifically in June, thus 
coinciding with the spring sample campaigns carried out in River Nea. A reason for the lower brown 
trout eDNA concentrations in spring compared to autumn, may be because at this time of year alevins 
are at the swim-up stage, either hiding in the gravel or recently emerged. In the autumn, young of the 
year juveniles have reached a larger size and are consequently shedding more DNA, this is also true 
for juvenile brown trout from older year classes. Furthermore, large adult brown trout from the 
nearby lake Selbusjøen enter the river Nea during autumn to reach the spawning grounds (Arnekleiv 
& Rønning 2004), together with spawning resident brown trout. Thus, during autumn the biomass of 
brown trout in Nea will be larger than in spring and there is also more movement of fish up - and 
down-stream, which may explain the higher eDNA concentrations during autumn. Seasonal flow was 

3significantly lower during autumn (1.78±5.27 m /s) than in spring (4.75±15.98 m3/s, T=2.52, p=0.0073). 
While flow was observed to affect local instream conditions like depth and velocity, no major changes 
in habitat type per location were observed between seasons. In river Nea, the observation of low inter- 
seasonal changes in habitat is likely because of the 65-70% overall reductions in flow due to the 
hydropower operations in the bypass section, thus creating low temporal changes in instream 
conditions. We did however observe strong relationships between flow and the amount of time water 
used through pass through the study area. Indeed, the low flows during autumn meant water would 
spend above 200 hours to go from the upstream to the downstream end of the study area, while the 
corresponding time during spring was 70 hours, potentially influencing the transportation and 
dispersion of eDNA downstream, and subsequent eDNA concentrations at the sample locations. While 
we found significant relationships between habitats and eDNA concentrations, the underlying reasons 
for the relationships can be complex. Habitats can be separated by factors like e.g., depth, velocity 
and sediment/substrate conditions, all of which might influence the amount of eDNA found in the 
samples. In the study area, pool type habitats are dominated by finer substrates (gravel and sand) 
while the rapid habitats feature courser substrate (small rocks and gravel). While the effects of 
riverbed conditions on eDNA concentration decomposition is frequently studied (Barnes et al. 2015, 
Levy-Booth et al. 2007), the role of substrate composition on eDNA dispersion and transport is less 
clear. Indeed, while Turner et al. 2015 found that riverbed substrate held more eDNA than the above
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water column, Shogren et al. (2017) reported on low effects of substrate composition on eDNA 
transport. 

The impact of weirs on eDNA concentrations. While a selected studies have assessed the influence 
of barriers and weirs on fish communities using eDNA in lotic systems, there are still major knowledge 
gaps regarding the influence of barriers on eDNA concentrations (Alam et al. 2020, Antognazza et al. 
2021, Bracken et al. 2019, Muha et al. 2021). Historically, in Norway, weirs were introduced to obtain 
a certain water covered area in river sections with reduced flows. In our study area, the combination 
of major flow reductions and weirs has had major impact on connectivity, impacting migration and 
habitat availability. While the altered instream conditions have had a positive effect on minnow by 
creating more favorable habitats, weirs and low flow conditions have reduced access to and 
availability of relevant habitat for brown trout. In this study the effect of weirs was assessed based on 
eDNA concentrations and not on specific fish observations. Indeed, the link between eDNA 
concentrations and actual fish density/biomass in lotic systems is still not fully understood. Therefore, 
the use of eDNA concentrations in this study could rather be seen as methodical input to barrier 
impact assessments. We found that the effects of weirs on eDNA concentrations were highly seasonal, 
i.e., we only found significant relationships during the autumn season. More specifically, for brown 
trout during autumn downstream weir height had the strongest positive effect on eDNA 
concentrations, while distance between weirs had the strongest negative effect on eDNA 
concentrations. Additionally, distance to downstream weir also had a negative effect on brown trout 
eDNA concentrations. This might suggest that the highest levels of eDNA concentrations would be 
found in shorter reaches (i.e., between two consecutive weirs) where the downstream weir height is 
higher than the overall weir average, and that eDNA concentrations will increase closer to the 
downstream weir. This result is in correspondence with the results of the habitat assessments where 
higher eDNA concentrations were found in pools sections (all which are located in the downstream 
end of each reach). For minnow, downstream weir height had a strong positive effect on eDNA 
concentration while the upstream weir height had the opposite effect. But while higher minnow eDNA 
concentrations were found in the shorter reaches as with brown trout, the distance to the 
downstream weir had no effect on minnow eDNA concentrations. These results may indicate that 
weirs are major barriers for the transportation and dispersion of eDNA. On a more hypothetical basis, 
if eDNA concentrations are proxy indicators of fish presence (e.g., related to spawning or migration 
activity), the results may indicate that the highest weirs represent the largest migration barriers, while 
lower weirs might have less impact on migration. 

Spatial and interactional impacts on eDNA concentrations. The uniqueness of having a few dominant 
species (i.e., brown trout and minnow in addition to northern pike (Esox lucius Linnaeus, 1758) in a 
restricted area in the downstream end of the study area) enabled us to test and evaluate the 
covariation of species eDNA concentrations with additional variables from the hydrodynamic model. 
For pike, the presence of weirs in the study area functions as a major barrier for upstream migration, 
confining the carnivorous fish to the lower ends of the bypass section. That leaves brown trout and 
minnow to dominate all other parts of the river. In this study we tested brown trout and minnow 
eDNA concentration covariation using either species eDNA concentrations as a response variable and 
a predictor variable, respectively. We then singled out the most significant additional covariates by 
model selection. Based on the results, there is evidence of brown trout and minnow cohabitation 
during the autumn season if eDNA concentrations indicate the presence of fish. But potential 
cohabitation is affected by hydrological factors (i.e., recent changes in flow), reach depth and the 
specific location in the study area. More interestingly, the local autumn assessment in the 4 km river 
section revealed water temperature as the main effect in both species’ models, potentially indicating 
the importance of local water temperature on the interaction between the species. The positive
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relationship between brown trout and minnow eDNA concentrations may also be influenced by other 
factors than potential cohabitation. The spatial segmentation of “weir reaches” in River Nea means 
water is accumulated in the pool sections just upstream of each weir. Indeed, as expected, retention 
time was significantly higher in pools than in rapids (p<0.0010 for both seasons, Table 3). The 
accumulation of water might mean that eDNA for both species also accumulates in the same area, 
leading to the positive covariation of eDNA concentrations between species. 

Strategies for eDNA sampling in rivers dominated by weirs and reduced flows. Widely recognised as 
a major step forward for biomonitoring and conservational efforts, sampling and analysis of eDNA can 
provide vital information on species composition and presence in rivers. But challenges remain on 
understanding how sampled eDNA concentrations reflect actual abundance of species and how local 
instream conditions might affect the ability to collect representative eDNA concentrations. The use of 
remote sensing data on LIDAR and multispectral imagery in this study enabled the simulation of two- 
dimensional hydrodynamics on specific flows during sampling. To the best of the authors knowledge, 
this is the first time the application of a two-dimensional, remote sensing-based hydrodynamic model 
have been tested for use in eDNA concentration studies in rivers. 

By assessing the amount of eDNA found by sampling in different habitat types, we found that sampling 
location affect the levels of eDNA concentrations. But the effect of season also prevailed, emphasising 
the need to implement seasonal considerations during the planning and execution of eDNA sampling 
campaigns. And as eDNA is becoming an important factor in impact studies in regulated rivers, 
accounting for effects of flow regulation and barriers on eDNA results should also be considered. In 
this work, we found evidence of eDNA concentrations being unevenly distributed between two 
consecutive weirs and significantly related to local conditions like water temperature and the 
presence of other species’ eDNA. Also, we found evidence of weirs influencing levels of eDNA 
concentrations, more specifically the distance to the closest downstream weir and the relative height 
of the weir. 

In summary, our methods and results can be used as input in the planning of eDNA sampling 
campaigns in barrier-dominated river systems. More specifically, care should be taken to get a 
representative number of samples in different habitat types. In the case of limited resources for 
extensive field campaigns, models fashioned in the same manner as those in our study could be used 
to estimate potential eDNA concentrations outside of the sampled locations, but care should be taken 
to include the proximity to weirs as an additional predictor. Additionally, our models may be used to 
simulate the potential spatial distributions of eDNA concentrations using eDNA concentration levels 
of coexisting fish species in combination with covariates like water temperature.
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