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Abstract: This work evaluates the characteristics of calcium aluminate slag and pig iron samples
obtained from the smelting of calcined and reduced diasporic bauxite ore. The study is conducted in
the Pedersen process framework, which is a method to produce alumina from low-grade resources.
Parameters such as the effect of crucible type, lime addition, and atmospheric conditions are studied
considering the characteristics of the product pig irons and calcium aluminate slags for further uses.
The behavior of the bauxite and distribution of the species between slag and metal was assessed
based on the applied analytical techniques and thermodynamic calculations. Iron was reduced and
separated from the slags in the presence of carbon (graphite crucible) for both the reduced and
calcined bauxite. Si and Ti were mainly concentrated in the slags. Iron was separated from the slag in
the absence of carbon (alumina crucible) for the H2-reduced bauxite. The results show that slags with
increased lime additions are composed mainly of 5CaO.Al2O3 and CaO.Al2O3, that are considered
highly leachable compounds. An optimum CaO/Al2O3 mass ratio of 1.12 was suggested. The
presence of O2 and/or OH- in the furnace atmosphere will result in the formation of 12CaO.7Al2O3.

Keywords: Pedersen process; alumina production; bauxite; smelting reduction; calcium aluminate
slags; iron

1. Introduction

Considering the depleting tendency of the high-grade ore deposits, alternative pro-
cesses are necessary to be developed and utilize the available resources efficiently and
holistically. Aluminum metal, which finds broad applications due to its properties, is
produced mainly through metallurgical grade alumina. The Bayer process is the current
dominant commercial method used to produce alumina. Even though the Bayer process
has been adapted for years, it has environmental challenges—the main being the formation
of the Bauxite Residue (BR) [1–3]. Another limitation relates with the characteristics of the
utilized ore since they will affect the overall process [4]. Low Al2O3/Fe2O3 ratio in the
bauxite ore is prohibited in the Bayer process since higher amount of the generated BR
will be produced [5]. As such, the development of processes that can utilize lower grade
alumina-containing sources is essential.

The Pedersen process was commercialized and is a high temperature (molten state)
process that can separate iron and calcium aluminate slag [5]. The method is regarded to be
more material efficient and flexible in terms of the raw materials qualification to produce
alumina as it can holistically utilize the bauxite or other alumina sources and avoid the pro-
duction of BR [5]. Further details on the process can be found in the available bibliographic
sources [5–7]. Significant research has been conducted recently in the framework of the
EnsureAl EU project for modernizing the Pedersen process [8–15]. As an example in our
earlier work, the partial replacement of coke with charcoal was studied and it was found
to ease the smelting process [16]. The simplified flowsheet of the process can be seen in
Figure 1.
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Figure 1. A simplified process flow of the Pedersen process, the stream by-products are highlighted 
in red color. 

The slag mineralogy and other process parameters will play a key role in the charac-
teristics of the product slags and the subsequent leaching efficiency of the alumina. Fur-
ther details on the slag characteristics and the calcium aluminate (C-A) phases have been 
reported in earlier publications [9,17–22]. The 12CaO.7Al2O3 (C12A7) and the metastable 
5CaO.3Al2O3 (C5A3) phases, have similar chemistry and are classified as the most leacha-
ble C-A compounds. Their stabilization depends on the atmospheric conditions and/or in 
the presence of other anions in the furnace atmosphere [17,20–22]. The C5A3 is an ordered 
layered structure with crystal density 3.03 g/cm3 [22] while the C12A7 is a disordered clath-
rate with crystal density of 2.68 g/cm3.  

In our earlier articles, emphasis was given in the valorization of the bauxite residue 
as a feed material for the Pedersen process [17,23,24]. Adapting a similar research strategy, 
this work focuses on the smelting reduction of diasporic bauxite ore. Preliminary experi-
ments [16] were first conducted in a bigger scale (>0.4 kg bauxite), offering the basis for 
the present approach that seeks to investigate more the effect of process parameters in the 
final products. Earlier works mainly focused on the carbothermic smelting reduction or 
semi-smelting reduction of iron-rich bauxites [9,25] and usual parameters are the reduc-
tion temperature, carbon to iron ratio, and slag basicity. The gas reduction of bauxite has 
been poorly reported, and its consideration could offer significant advantages in the over-
all process. When the Pedersen process was commercialized, the environmental issues 
that are currently demanding were not that crucial. Among others, the decrease of the CO2 
gas emissions from the smelting furnace is of importance. Recent technological ad-
vantages can be used to overcome such obstacles. In particular, the pre-reduction of baux-
ite by H2 gas can decrease the demand in carbon-based reductants and herein decrease 
the process CO2 gas emission. As such, the H2-reduction of bauxite prior to its smelting is 
suggested in the present work and considered as a novel approach. The present study 
seeks to exploit and optimize the conditions to achieve highly leachable slag by analyzing 
the effect of the studied parameters in the product phases. The products were analyzed 
for their chemical, mineralogical, and microstructure characteristics. In addition, the char-
acteristics of the feedstock bauxite samples (calcined and H2-reduced) and the different 
smelting conditions on the characteristics of the products are evaluated based on the the-
oretical and experimental results. 

2. Materials and Methods 
This section describes the experimental procedure that was followed in the present 

research. 

2.1. Preparation and Analytical Techniques 

Figure 1. A simplified process flow of the Pedersen process, the stream by-products are highlighted
in red color.

The slag mineralogy and other process parameters will play a key role in the charac-
teristics of the product slags and the subsequent leaching efficiency of the alumina. Further
details on the slag characteristics and the calcium aluminate (C-A) phases have been re-
ported in earlier publications [9,17–22]. The 12CaO.7Al2O3 (C12A7) and the metastable
5CaO.3Al2O3 (C5A3) phases, have similar chemistry and are classified as the most leachable
C-A compounds. Their stabilization depends on the atmospheric conditions and/or in
the presence of other anions in the furnace atmosphere [17,20–22]. The C5A3 is an ordered
layered structure with crystal density 3.03 g/cm3 [22] while the C12A7 is a disordered
clathrate with crystal density of 2.68 g/cm3.

In our earlier articles, emphasis was given in the valorization of the bauxite residue as
a feed material for the Pedersen process [17,23,24]. Adapting a similar research strategy,
this work focuses on the smelting reduction of diasporic bauxite ore. Preliminary experi-
ments [16] were first conducted in a bigger scale (>0.4 kg bauxite), offering the basis for
the present approach that seeks to investigate more the effect of process parameters in the
final products. Earlier works mainly focused on the carbothermic smelting reduction or
semi-smelting reduction of iron-rich bauxites [9,25] and usual parameters are the reduction
temperature, carbon to iron ratio, and slag basicity. The gas reduction of bauxite has been
poorly reported, and its consideration could offer significant advantages in the overall
process. When the Pedersen process was commercialized, the environmental issues that
are currently demanding were not that crucial. Among others, the decrease of the CO2 gas
emissions from the smelting furnace is of importance. Recent technological advantages
can be used to overcome such obstacles. In particular, the pre-reduction of bauxite by H2
gas can decrease the demand in carbon-based reductants and herein decrease the process
CO2 gas emission. As such, the H2-reduction of bauxite prior to its smelting is suggested
in the present work and considered as a novel approach. The present study seeks to
exploit and optimize the conditions to achieve highly leachable slag by analyzing the effect
of the studied parameters in the product phases. The products were analyzed for their
chemical, mineralogical, and microstructure characteristics. In addition, the characteristics
of the feedstock bauxite samples (calcined and H2-reduced) and the different smelting
conditions on the characteristics of the products are evaluated based on the theoretical and
experimental results.

2. Materials and Methods

This section describes the experimental procedure that was followed in the present
research.

2.1. Preparation and Analytical Techniques

Bauxite ore was provided by Mytilineos AS Metallurgy Unit, Viotia, Greece (former
Aluminium of Greece, AoG). Quicklime was used as flux, and it was provided from
Franzefoss Minerals AS. The ore with a particle size of 2.4–4.8 mm was calcined at 900 ◦C
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in a muffle furnace for 3 h. The sample is called CB. Representative CB and quicklime
samples were then dried at 100 ◦C in a static furnace for 24 h prior any further treatment.
Part of the utilized CB (148 g) was reduced by 50 vol.-%H2 and 50 vol.-%Ar mixture to
obtain reduced bauxite, RB, with 2 Nl/min total flow rate at 900 ◦C for 120 min, using
a thermogravimetric (TGA) technique. Details of the equipment can be found in our
previous publication [26]. The main purpose being the reduction of the iron oxides in
bauxite to metallic iron prior to the smelting and the subsequent comparison with the
smelting-reduction of the calcined bauxite. The reduced and calcined samples were further
crushed to powder to increase the contact and surface area for the reactions during the
heating and smelting. The quicklime was received in powder form. Mixtures of lime with
CB or RB samples were prepared in different analogies. The CaO additions were based
on mass balance calculations according to the characteristics of the raw materials and to
achieve 12CaO.7Al2O3 (C12A7), CaO.Al2O3 (CA), CaO.TiO2 (CT), and 2CaO.SiO2 (C2S)
phases in the slags. The studied range was selected to obtain phases that are considered
leachable. The experimental design and the corresponding changes in the slag phases were
further supported from the theoretical calculations.

The particle size distribution of the input materials was measured with laser particle
size analyzer, Partica LA-950 Horiba, Kyoto, Japan. The chemical composition of the raw
and product samples was determined through X-ray Fluorescence (XRF) technique, Thermo
Fisher, Switzerland. The mineralogical analysis was done by X-ray Diffraction (XRD)
technique using a Bruker D8 A25 DaVinciTM, Karlsruhe, Germany, with CuKα radiation in
2θ range of 10 to 75◦ diffraction wavelength and 0.02 deg step size. For that purpose, the
materials were crushed to fine powder and the assessment was done using the available
crystallographic databases (PDF) and with the Diffract. EVA Software. Selected samples
were refined for their quantitative phase analysis (Rietvelt) with the use of TOPAS software
(version 5). TOPAS was originally developed by Alan Coelho in Brisbane, Australia and the
version used in the present study is the commercially available edition that was developed
by Bruker and Coelho. The microstructure of the raw and product materials was assessed
employing Scanning Electron Microscope (SEM), using FE-SEM, Zeiss Ultra 55 LE, Carl
Zeiss, Jena, Germany. The distribution of the elements was further evaluated with the use
of X-ray elemental mapping and use of Energy Dispersive Spectroscopy (EDS), Bruker
AXS, microanalysis GmbH, Berlin, Germany. Furthermore, JXA-8500FTM Electron Probe
Micro-Analyzer (EPMA) supported with Wavelength Dispersive Spectroscopy (WDS),
JEOL Ltd., Tokyo, Japan, for the accurate chemical analysis of the apparent phases in
the product species was employed. The composition of the obtained pig iron was done
with EPMA.

2.2. Smelting and Smelting-Reduction Trials

The main parameters that are studied in the smelting and smelting-reduction trials are
the CaO additions, charge material (CB, RB), cooling rate, and the atmospheric conditions
(Table 1). Most of the results are referred to CB due to sample availability. Most of the
experiments were conducted in a close-top induction furnace, ELEKTRO-MASCHINEN,
Schultze GmbH & Co. KG, Hirschhorn, West Germany. An open top induction furnace
was also used, which seeks reducing conditions in the presence of air. The cooling was
controlled through the decrease of furnace power to reach 1000 ◦C in approximately 75 min,
which gives an average cooling rate of ~10 ◦C/min for most of the experiments in both the
closed and open furnaces. To examine the effect of the moisture in atmospheric reducing
conditions, the presence of higher O2 partial pressure were adjusted with the use of Ar-H2O
gas in closed furnace in the presence of carbon, open top induction furnace with sample
exposure to air in the presence of C, and alumina crucible in closed furnace under Ar gas,
respectively. The H2O-containing gas was introduced through a humidifier in which steam
(H2O of 5 vol.%) is added into the dry argon and the humidified gas is introduced into the
melt. Selected experiments were repeated to ensure the reproducibility of the results. The
mixtures of 35 g of CB or RB and lime in adjusted amounts were placed in two different
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inner (sample) crucibles, an alumina (A5, Ø50/44 -by- 75 mm) and a graphite (IG-15,
Ø60/52 -by- 100 mm), which were placed inside an outer graphite crucible. The furnace
chamber was evacuated and then filled up by argon. The power was then regulated to
reach the target temperature. The smelting temperature was regulated to 1650 ◦C ± 20. The
temperature was recorded with a thermocouple C, which was put in an alumina insulating
tube and was placed in between the outer graphite crucible and the inner sample crucible.
The pO2 in Table 1 was estimated with FactSage and based on a simplified slag composition
(CaO, Al2O3, SiO2, TiO2, and Fe2O3, FTlite, and FToxid databases). The amount of H2O
was calculated assuming ideal gas behavior and based on the input amount (5 vol.%). The
calculated pO2 is used to offer an estimation for the changes in the different scenarios.

Table 1. Experimental conditions.

Test Code Crucible mCaO/
mAl2O3

Holding
Time (min)

Average Cooling
Rate a (◦C/min)

Atmospheric Conditions
during Smelting

Estimated pO2
b

(atm)

S-CB-T1 Graphite 0.88 60 10 Ar, Reducing in absence of O2, presence of C
S-CB-T2/L1 Graphite 0.88 45 10 Ar, Reducing in absence of O2, presence of C

S-CB-L2 Graphite 0.95 45 10 Ar, Reducing in absence of O2, presence of C
S-CB-L3 Graphite 1.12 45 10 Ar, Reducing in absence of O2, presence of C 5.62 × 10−16

S-RB Graphite 1.12 45 10 Ar, Reducing in absence of O2, presence of C
S-CB-FC Graphite 1.12 45 26 Ar, Reducing in absence of O2, presence of C

S-CB-open Graphite 1.12 45 10 Reducing in presence of O2 and C, exposure
to air 4.38 × 10−2

S-CB-H2O Graphite 1.12 45 10 Ar- (5 vol.%) H2O 5.63 × 10−16

S-A-CB Alumina 1.12 45 10 Ar, absence of C 0.17
S-A-RB Alumina 1.12 45 10 Ar, absence of C 0.17

a to 1000 ◦C, b based on FactSage calculations.

A typical temperature profile (heating, holding, and cooling) can be seen in Figure 2.
The measured temperatures are representative of the sample crucible (inner) as seen in
Figure 2.
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Figure 2. Thermocouple reading from inside (Tin) and outside (Tout) of the inner graphite crucible
and the applied power (kW) used for heating and cooling from the closed furnace.

After the smelting-reduction trials, the crucibles were removed from the furnace, and
they were cut to separate the slag and metal phases. The slag was further crushed to
powder and representative samples were analyzed with XRF and XRD, while slag pieces
were analyzed with SEM and EPMA techniques. The metallic samples were analyzed using
the EPMA technique.

2.3. Thermodynamic Equilibrium and Scheil-Gulliver Calculations

Equilibrium and Scheil-Gulliver calculations were conducted using FactSage 7.3 ther-
mochemical software [27]. The commercial FToxid, FactPS, and FTlite databases were used.
Equilibrium calculations were conducted in the smelting temperature and based on the
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S-CB-L1, S-CB-L3, and S-RB compositions with varying carbon additions. Scheil-Gulliver
cooling calculations were conducted subsequently on the predicted liquid compositions
for the phase’s distribution [27,28]. The main purpose being to support the experimental
design and to evaluate the obtained results. Due to lack of thermodynamic data for the
C12A7 phase in the commercial databases, a dedicated database developed in EnsureAl
project was also used and the thermodynamic data were based on the available litera-
ture [29]. Nevertheless, there is a lack in the thermodynamic data for the metastable C5A3
and therefore it was not possible to be included in the calculations.

HSC Chemistry 10 software was used [30] to provide an estimation basis for the
phase composition of the slags. The species converter module was used, which allows
to convert elemental analysis to species. For the output analysis, a greater weight coeffi-
cient was considered for the main phases (C12A7, C2S and CT), which was based on the
experimental results.

3. Results

The obtained theoretical and experimental results will be presented as follows.

3.1. Theoretical Results

The composition of bauxite (ternary) is projected in the ternary phase diagram of
CaO-Al2O3-SiO2 (Figure 3) along with the target compositions (ternary) for the S-CB-L1,
S-CB-L2, and S-CB-L3 slags, points A, B, and C, respectively. Figure 3 presents the ex-
pected differences on the primary calcium aluminate phase for the different lime additions,
from a thermodynamic point of view. As an example, point A is on the primary crys-
tallization area of CA, while point C is placed in the primary area of C12A7. As such,
increased lime additions are expected to enhance the formation of the leachable phases.
Moreover, Figure 3 indicates that the non-leachable C2AS will not be favored according to
the thermodynamic predictions.
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S-CB-L2 and point C to S-CB-L3 compositions.

Equilibrium calculations were done to examine the equilibrium of the phases, and
the distribution of the chemical species between the slag and metal. Typical results are
presented in Figure 4A for the S-CB-L3 composition. At the smelting temperature (1650 ◦C),
the system is mainly composed of the liquid slag (SLAGA), liquid Fe (Fe_LQ), and stable C
(s) phase. The composition of the metal and slag are presented in Figure 4B,C, respectively.
The slag phase is mainly composed of Al2O3 and CaO while the metallic phase is mainly
composed of Fe, as expected according to the thermodynamic stability of these species
under the applied conditions. The Fe2O3 and FeO will be reduced from the slag by
carbon additions.

For C additions higher than ~7 g (carbon saturation conditions), the iron oxides will be
completely reduced to the metallic phase. The TiO2 will be partially reduced to Ti2O3 and
for higher C concentrations (>7%) the Ti will be transferred significantly and distributed
mainly to the metallic phase. It is believed that the carbon saturation conditions are closer
to the experimental conditions as the graphite crucible ensures sufficient carbon. Scheil-
Gulliver cooling calculations were subsequently done based on the previously calculated
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liquid slag compositions for low and high lime additions and are presented in Figure 5 (in
logarithmic scale). For the low CaO addition case (S-CB-L1) the phases in descending order
are C12A7, CA, α-C2S, CaTi (ss), and C3A. Increasing CaO (S-CB-L3 and S-RB) will result
in the formation of C12A7, C3A, α-C2S, CaTi (ss). CaTi (ss) is a solid solution composed
of Ca3Ti2O7(s)-Ca3Ti2O6(s). The last liquid will disappear for temperatures lower than
1306 ◦C.
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3.2. Experimental Results

The characteristics of the input materials, i.e., reduced, and calcined bauxite, and the
characteristics of the products, i.e., slags, and pig irons, will be presented as follows.

3.2.1. Input Materials Characteristics

The D90 of the dried CB, RB, and lime was found to be below 125.4 µm ± 2, 93.5 µm ± 2
and 171.2 µm ± 5, respectively. The XRD analysis results of the raw, calcined, and reduced
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bauxite are presented in Figure 6. The composition of the starting materials can be seen in
Table 2, in dry basis.
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Table 2. Chemical composition (wt.%) of the raw materials as measured by XRF with the calculated st. deviation and Lime
as received.

Al2O3 Fe2O3 * or Fe ** SiO2 TiO2 CaO Cr2O3 MgO CaCO3

wt.%

CB 65.1 ± 0.4 25.6 ± 0.3 * 2.00 ± 0.1 2.80 ± 0.1 4.10 ± 0.1 0.101 ± 0.1 0.00 0.00
RB 71.1 ± 0.6 18.6 ± 0.2 ** 2.31 ± 0.4 3.21 ± 0.1 4.42 ± 0.1 0.202 ± 0.1 0.00 0.00

Lime 0.3 0.1 0.5 0.1 96.6 0.0 0.7 1.7

* Fe2O3 in CB, ** Fe in RB.

Based on the XRD analysis of the raw bauxite, aluminum hydroxides of diaspore and
boehmite were the main Al-containing phases. Iron was found in the form of hematite
Fe2O3 while lower intensity peaks of goethite (FeO(OH)) were also detected. Titanium was
detected as anatase (TiO2) and calcium as calcium carbonate (Ca(CO3)). The calcination
at 900 ◦C resulted in the alternation of the aluminum hydroxides to Al2O3. CaCO3 was
decomposed to CaO. Titanium was in the form of rutile (TiO2 (R)) and anatase (TiO2 (A))
in the CB, while in the RB was found in the form of rutile (TiO2). Iron was reduced almost
completely to metallic iron (Fe) for the RB. Weak intensity peaks of Gehlenite (Ca2Al2SiO7)
were detected for the CB and RB. Finally, part of the lime (CaO) was transformed in
portlandite (Ca(OH)2), which might be due to the moisture absorption upon sample
preparation for XRD. According to the XRF analysis of the CB and RB in Table 2, the
calcined and reduced bauxites were composed of mostly Al and Fe, while Ca, Si, and Ti
oxides have lower concentrations. In return to the XRD analysis, the iron in the RB was
detected as metallic iron rather than Fe2O3.

Therefore, the Fe2O3 content of RB that was reported from the XRF analysis has
been transformed into Fe in Table 2 and for the mass balance calculations to determine
the required CaO additions for the slag making process. The chemical composition was
normalized correspondingly. Oxides with concentrations lower than 0.1 wt.% (V2O5, S,
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P2O5, and NiO) were not included in Table 2. The lime has a purity of 96.6 wt.% while the
rest of the detected oxides and remaining CaCO3 have lower concentrations.

3.2.2. Products Characteristics

Figure 7 summarizes the XRF results of the produced slags. The slags are mainly
composed of CaO and Al2O3, and the iron content is low. The repeated experiments reveal
a proper reproducibility, as the deviations in the chemical compositions were found to
be low. The concentration of Al2O3 is significantly higher in the slags produced in Al2O3
crucibles (S-A-CB and S-A-RB) than in the slags produced in graphite crucibles. This might
indicate that the slags have been contaminated from the Al2O3 crucible, while a relatively
high Fe concentration was also observed most likely due to poor separation of metal from
the slag. Moreover, it was observed that the mCaO/mAl2O3 ratio was lower than the
target for the S-CB-H2O, yet in the desirable range, and this might be partially due to some
inhomogeneities among the samples or due to slight fluctuations during the experiments,
e.g., the temperature. For the rest of the slags, the mCaO/mAl2O3 ratio was in the desirable
range as defined from the mass balance calculations.
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Holding Time

According the XRD analysis of the slags S-CB-T1 and S-CB-T2/L1 in Figure 8, the
product phases were identical and as such the holding time did not significantly affect the
phases at the studied temperature. CA was the main calcium-aluminate phase for both
slags. The slag S-CB-T1 additionally contains C5A3, while C2S and CT were detected in
both slags. C3A was also detected, but it is however challenging to precisely quantify
this phase due to the overlapping with the CT phase. In general, the obtained results are
also in line with the theoretical expectations (Figure 3). The difference in the intensity
of the CA phase at around 35 degrees between the two samples might correlate with
the predominance of this phase in sample S-CB-T2. Nevertheless, the complexity of the
samples makes the exact reason difficult to claim.
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CaO/Al2O3 Ratio

Increasing the CaO/Al2O3 ratio enhances the formation of C5A3 as the main C-A
containing phase according to the XRD analysis of the tests S-CB-L1 (Figure 8), S-CB-L2,
and S-CB-L3 in Figure 9. In the S-CB-L2, both CA and C3A were seen. The peak of C3A
overlaps with CT, which makes the precise quantification difficult. The formation of C2S
and CT phases were common for all the slags, while low intensity peaks of C2AS were
detected in the slags S-CB-L1 and S-CB-L2. The dominant phase of the slag S-CB-FC is the
C5A3 as for the S-CB-L3 (Figure 9). As such, the increased cooling rate did not affect the
product phases. However, a difference was observed in the hardness of the material upon
crushing, and this should be examined further, considering its leachability.
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The slag from the H2-reduced bauxite (S-RB) in Figure 9 indicates that the main phase
is the C5A3 as for the slag of the calcined bauxite (S-CB-L3). It is evidenced that C5A3 was
the dominant C-A containing phase, while CA was also detected. Besides, CT and C2S
were also seen. Thereafter, the slags produced from both the reduced and calcined bauxite
seem to be identical and contain highly leachable phases (C5A3 and CA). It is worth to
notice that during the smelting of the reduced bauxite the slag was seen to be less foamy,
and this might be attributed to the less gas generation since iron was already reduced.

Effect of Atmosphere and Crucible

The XRD analysis of the slags S-CB-open, S-CB-H2O, S-A-CB, and S-A-RB, is given
in Figure 10. For the slags S-A-CB and S-A-RB apart from CA, CA2 was also detected,
which indicates the dissolution of the crucible material into the slag, which confirms the
observation made earlier according to the XRF analysis. Neither the C5A3 nor the C12A7
phases were detected in these slags. The dissolution of the alumina crucible into the slag
might prohibit the stabilization of C12A7 [31] while under these experimental conditions
C5A3 seems unstable. The iron was recovered in the metallic phase for the S-A-RB as
was expected since iron was already reduced. The slags S-CB-open and S-CB-H2O were
composed mainly of C12A7 and CA to a lesser extent.
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Phase Quantification

Typical phase quantification results are presented in Table 3. As will be discussed
below, due to the limitations of this method, the results are considered to provide a semi-
quantitative estimation.

Alumina is distributed between CA, CA2, and C2AS for the samples smelted in
alumina crucible (S-A-CB, S-A-SR). A higher amount of CA2 was quantified for the S-
A-SR than S-A-CB due to the higher Al2O3 content of this slag (Figure 7). The silicon is
distributed between the C2AS and C2S for the S-A-CB while for sample S-A-SR in the
C2AS. The C2S was seen in two modifications, which might indicate a non-uniform cooling
during solidification. For samples S-CB-L1, S-CB-L2, the alumina is distributed between
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the CA and CA3, and for the S-CB-L3 in C5A3. The C2AS and C5A3 phases could not
be quantified precisely in the S-CB-L1 and S-CB-L2, respectively, most likely due to their
low concentration.

Table 3. Semi-quantitative Rietvelt analysis of selected slag samples.

Mineral
Formula S-A-CB S-A-SR S-CB-L1 S-CB-L2 S-CB-L3 S-CB-H2O S-CB-Open ICCD

Number, Reference

CA 72 76 64 55 - 42 18 04-013-0779, [32]
CA2 10 17 - - - - - 00-023-1037, [33]
CT 3 2 4 5 5 6 6 04-015-4851, [34]

C2AS 3 5 - 2 - - - 04-014-4683, [35]
C3A - - 30 38 - - - 00-006-0495, [36]
C5A3 - - - - 92 - - 04-007-8643, [37]
C12A7 - - - - - 50 72 00-009-0413, [38]
C2S * 3 - - - - - - 00-033-0302, [39]
C2S ** 4 - 2 - 3 3 4 04-012-6734, [40]
FeO 2 - - - - - - 04-011-7345, [41]

Fe3O4 3 - - - - - - 04-015-9120, [42]
Rwp 8.8 11.8 6 6.1 9.5 9 11.8 -

* Larnite monoclinic, ** Calcio olivine orthorhombic.

Clearly, the increase in lime additions resulted in the C5A3 dominance area. The C3A
phase improved the fitting quality of the S-CB-L1 and S-CB-L2 although its formation or
more specifically its high participation in the samples is questionable according to the ther-
modynamic analysis presented above. It should be highlighted that the C3A and CT phase
overlap makes the quantification challenging. In addition, the samples are composed of
several phases that increase the complexity and difficulty for their quantification. Alumina
is distributed between the CA and C12A7 phase for the S-CB-H2O and S-CB-open. For all
samples Ti was distributed in the CT phase.

The SEM images of the slags S-CB-L3, S-CB-FC and S-CB-open are presented in
Figure 11. The chemical composition of the marked phases based on EDS is given in
Table 4. It is worth to notice that the suggested phases in Table 4 are based on the chemical
compositions obtained and in correlation with the XRD analysis.
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Table 4. Averaged chemical composition of slag phases for the samples S-CB-L3, S-CB-FC and
S-CB-open based on EDS point analysis and metal phases based on EPMA (WDS) analysis.

Phases Suggested Phase Slags

S-CB-L3 (Atomic %)

Al Ca O Mg Si Ti V C
A-L3 C5A3 26.5 27.1 45.3 0.52 0.62 - - -
B-L3 CT 12.5 24.8 50.4 0.62 2.22 9.61 - -
C-L3 TiC - 0.9 - - 0.7 47.1 13.1 37.2

S-CB-FC (Atomic %)

A-FC C5A3 26.8 26.4 46.1 0.33 0.71 - - -
B-FC C2AS 16.5 23.2 52.7 1.12 6.21 0.72 - -
C-FC CT/C2AS 26.9 27.2 46.9 0.91 2.31 5.82 - -
D-FC C5A3/C2AS 20.6 43.8 30.9 0.52 2.31 1.83 - -

S-CB-open (Atomic %)

A-open C12A7 34.4 19.9 45.7 - - - - -
B-open CA/C2S 18.7 31.6 44.5 0.83 3.61 0.82 - -
C-open CT/CA 17.5 24.2 44.8 0.72 0.91 8.44 - -

Sample Metals *

Fe Ti V Cr Si S C
S-CB-L3 99.5 0.03 0.21 0.31 0.01 0.01

S-RB 99.2 0.03 0.21 0.50 0.01 0.01
* averaged from 5 parallel measurements.

The major phase in the S-CB-L3 is a homogeneous dark grey phase (Phase A-L3) that
is mainly composed of Ca and Al. The Ca/Al ratio is approximately 0.96. Thereafter,
the phase A-L3 might be attributed in the C5A3 phase detected in the XRD analysis. A
brighter in appearance phase is also formed (phase B-L3) to a lesser extent and is mainly
concentrated around the main phase A-L3 in a random distribution.

The phase B-L3 has high concentration of Ca and Ti, while around 12.5 at. % of Al
was detected in this phase. The small size of this phase makes the precise analysis difficult.
The Al content of phase B-L3 might be from the surrounding phase as a Ca-Ti-Al-O phase
was not seen in the XRD analysis considering however the complexity of the obtained
diffractograms. Based on other studies [43] the CaO.TiO2 phase might incorporate some Al
(as CaTi1−xAlxO3−δ, 0 ≤ x ≤ 4) in its structure, which preserves the diffraction peaks of
CaO.TiO2. A similar behavior was seen in our earlier work and the formation of this phase
should be studied further [17]. The entrained Fe phase is surrounded by a phase rich in Ti,
V, and C at the interface with the slag. The carbon content detected in the phase C-L3 is
mainly from the C coating of the SEM sample preparation.

The micrographs of the S-CB-FC (Figure 11) indicate that the primary phase of the slag
is a light grey phase, phase A-FC. A darker grey phase B-FC and two irregulars in shape
phases C-FC and D-FC were also seen to a lesser extent. Pores were observed throughout
the surface of the sample while no Fe-entrains were seen. The phases B-FC, C-FC, and D-FC
are mainly concentrated around the main phase A-FC in a random distribution. The size
and morphology of these phases make the exact identification difficult. The phase A-FC
is composed mainly of Al and Ca while Si was also detected in low concentration. The
Ca/Al ratio (Table 4) is ~0.96 as for the phase A-L3 in the S-CB-L3 and might be attributed
to the C5A3 phase in line with the XRD analysis. The phase B-FC contains mostly Ca, Al
with Si of ~6 at. %, and this phase might be non-stoichiometric C2AS, even though this
phase was not clearly seen in the XRD results possibly due to its low concentration. Ti
was concentrated in the light grey phase C-FC. Phase D-FC has higher concentration of
Ca and Al while Mg, Si, and Ti were also detected. Phase D-FC contains more than one
phase based on its appearance. It might be reasonable to claim that the S-CB-FC has more
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complex and less pure phases (B-FC, C-FC, and D-FC phases) than the S-CB-L3 and this
might be attributed in the increased cooling rate.

The slag S-CB-open is composed mainly of a light grey phase (phase A–open) that
consists of Al and Ca. In correlation with the XRD analysis, it might be attributed to the
C12A7 phase. A bright phase (phase B–open) and a dark grey phase (phase C–open) of
irregular shape were also detected. The phase B–open is composed of Al and Ca while
some Si was also detected. The phase C–open has higher concentration of Ti, than the
phases A–open and B–open. However, the size and shape of phase C-open made its
analysis difficult.

A typical BSE image and elemental X-ray mapping of the metallic phase produced
from the S-CB-L3 can be seen in Figure 12. The matrix is composed mainly of iron
(~95 wt. %) based on the WDS point analysis in Table 4. The graphite flakes are ran-
domly distributed, which is a typical appearance for the grey cast irons [44]. In the grey
phase (marked as Ti-C in the BSE image), Ti, V, and C are concentrated. Other elements
such as S, Cr, and Si have a low concentration.
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4. Discussion

This section contains the discussion of the presented experimental results.

4.1. Reduction of Oxides

Iron was almost completely reduced from the slags in the presence of carbon based on
the results (XRF, XRD, and SEM/EDS) and the theoretical considerations. The iron phase
was found to contain a low level of impurities (Table 4) while complex (Ti,V)C carbides were
seen to precipitate. This was observed in other similar studies on the smelting-reduction
of bauxite in graphite crucibles [9,45]. The distribution coefficient (Li) is described in
Equation (1), in which (wt.% i) and [wt.% i] are the mass pct of element i in slag and
metal, respectively and express the distribution of the elements between the slag and
metal phases. The Li was calculated according to the mass balance assumptions that were
controlled to represent the experimental results and the FactSage predictions (Figure 4C).
The distribution of the elements between the slag and metal can be schematically seen in
Figure 13, in which species with positive log10Li distributed in the slag phase and species
with negative log10Li are distributed in the metallic phase.

Li = (wt.% i)/[wt.% i], (1)

Based on the theoretical results (Figure 4C), under carbon saturation conditions, Ti
is concentrated in the metallic phase. Nevertheless, this was not confirmed through
the experimental results (Table 4). Ti was distributed mainly in the slag phase. This
contradiction might be related among other reasons to uncertainties in the databases used,
as was pointed out in our earlier work [17]. Moreover, partial reduction of silica was
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predicted from the FactSage calculations and was also seen from the experimental results,
although it is mainly concentrated in the slag phase. Cr was distributed mainly in the
metallic phase while S was concentrated more in the slag phase. These characteristics are
of interest for further utilization of pig iron.
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4.2. Aluminates in the Slags Produced in Different Crucibles

The studied mCaO/mAl2O3 ratios were resulted in phases that are considered leach-
able [9] (graphite crucibles), while increasing the lime addition enhances the formation
of more C5A3. The formation of C2S and CT should be considered for optimum lime
additions that depend on the ore characteristics. The dominant phase was the C5A3 and
not the C12A7, as was expected and will be discussed in the following section. Even though
in terms of leachability both phases are equal, it is of interest to examine the effect of the
process conditions in their stabilization. However, the stabilization of either C5A3 or C12A7
was not achieved when the Al2O3 crucible was used, most likely due to the dissolution of
Al2O3 into the slag that might affect the slag phases [31]. In this case, main slag phases were
the CA and CA2. Therefore, despite the higher pO2 , the C12A7 was not the stable phase. As
mentioned, the high Al2O3 content (Figure 7) and CA2 (Figure 10) indicate the dissolution
of the crucible material in the melt. Nevertheless, the CaO/Al2O3 ratio of the obtained
slag (S-A-RB, considering binary composition) indicate that the slag will be solidified
in the crystallization area of CA. To further investigate the formation of CA2 FactSage
calculations were done to predict the slag phases after solidification and the results are
presented in Figure 14. The chemical composition of slag S-A-RB (excluding Fe-content)
was considered for the calculations, while to make the calculations rather simple only the
major components were selected. As can be seen, FactSage predicts that the solidified slag
will be mainly composed of CA and to a lesser extent of C3A.

In correlation with the experimental results, the formation of CA2 was not predicted.
To further understand the formation of CA2, the SEM analysis of slag S-A-RB is described
in Figure 15. It seems that the crucible material has penetrated in the slag, creating an
Al2O3-rich layer (marked A in Figure 15) while the phase B (appears as dark grey) seems to
contain a higher concentration of alumina than CaO. Therefore, this phase is attributed to
the CA2 phase that was mainly concentrated close to the Al2O3 crucible. Herein, the CA2
is distributed mainly close to the interphase with the Al2O3 crucible. This indicates that
the dissolution is slow and as such it might be reasonable to assume that the dissolution is
governed by kinetic effects that are not considered from the FactSage calculations.

It is also seen that iron presents as metallic entrains in the slag phase while phase C
might be attributed to the CA phase in correlation with the XRD analysis (Figure 10). The
separation of the iron in a metallic phase can be achieved in a carbon-free atmosphere by
the pre-reduction treatment.
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4.3. The Effect of Process Conditions

In the absence of humidity and/or oxygen, the formation of the C12A7 phase is not
favored and the C5A3 phase will form instead [46]. The formation of C12A7 is favored in
humid, ambient conditions. The C12A7 phase is in equilibrium with H2O above 950 ◦C
and its stoichiometry in fully saturated conditions is defined as Ca12Al14O32(OH)2 [47,48].
The water presence is as hydroxyl anions in the crystal structure. In oxidizing atmosphere,
C12A7 absorbs the excess of oxygen and it is stable even when pO2 is as low as 10−8 atm [49].
On the other hand C12A7 can be stabilized in the presence of a) other anions such as S, F−,
Cl− [50,51] or b) of SiO2/TiO2 [31,52]. Therefore, the existence of template anions can be
satisfied from the reactants. The smelting of pure and less pure reactants in graphite cru-
cibles (without lid) resulted in the formation of C5A3 and C12A7, respectively [31]. Recent
studies are emphasizing the stabilization of C12A7 from C2

2− (from the graphite crucible)
in reducing conditions (pO2 = 10−16 atm) that can equilibrate the oxygen deficiency in its
structure [53]. In addition, C12A7 might decompose to C3A and CA at temperatures higher
than 1500 ◦C in a reducing, moisture-free, or inert atmosphere [54]. Nevertheless, the
formation of C12A7 was not favored in the absence of O2/OH− in the present study when
the reduction was done in graphite crucible under dry Ar and estimated pO2 = 6.54−16 atm.
Therefore, the C2

2− contribution in the C12A7 stabilization seems to not be significant in



Materials 2021, 14, 7740 16 of 20

the present study. According to the results of the current study, they might further support
the theory that C12A7 might decompose to C5A3 in the absence of template anions due to
its thermodynamic instability [21]. The decomposition of C12A7 into C5A3, C3A, and CA
might happen upon cooling of the slag in dry-reducing atmospheres [20,31]. Nevertheless,
the decomposition product will depend on the experimental conditions [20] and more
work is required to identify whether decomposition occurs or not. In Table 5, the studied
atmospheric conditions and obtain phases in the slags are summarized. The SiO2 presence
may play a role in the stabilization of C5A3 as it may tie up the oxygen and thus slow
down the formation of C12A7 [55]. Nevertheless, this was not observed in the present
study since C5A3 would have been observed in all the obtained slags. An O2 containing
atmosphere or small amount of H2O in an inert atmosphere can enhance the formation of
C12A7 [22,48,49,56–58]. The results obtained in the present study supports the literature
since C12A7 was the stable phase upon exposure in air (presence of O2 in open top furnace
and estimated pO2 = 4.38−2 atm) and in inert but moist atmosphere (5 vol.% H2O and
estimated pO2 = 5.63−16 atm). Although based on literature sources and the present study,
the pH2O will affect the C12A7 stabilization, and the required levels of O2 or H2O that
are necessary are not yet defined. Based on the thermodynamic predictions, the gas will
contain H2/H2O/OH− for the open top furnace and humid atmosphere. Therefore, it
might be reasonable to assume that the stabilization of C12A7 is strongly affected by the
presence of these species from the atmosphere. Frequently the literature reports the OH− as
the stabilizing agent. Nevertheless, it is currently unknown whether the exact mechanism
should be addressed by the individual species.

Table 5. Impact of atmospheric conditions during smelting and crucible material on the obtained
slag phases.

Conditions during Smelting Crucible Material Obtained Slag Phase

Exposure in Air Graphite C12A7
Inert dry Ar Graphite C5A3

Ar-H2O Graphite C12A7
Absence of C Al2O3 Neither C12A7 nor C5A3

It is proposed that the existence of atmospheric template anions affect in great extent
the formation of C12A7 than other impurities, and it is more stable under higher O2,
and H2O partial pressures compared to the inert atmosphere in which C5A3 is stable.
Therefore, the stabilization mechanism that is suggested from the present study is the
existence of O2/OH− anions in the smelting atmosphere. Despite the fact that both phases
are considered to be leachable in the Pedersen process [59], it is of scientific interest to
investigate the effect of the smelting conditions in the formation of the several phases.
Nonetheless, the complexity of the system makes it difficult to further conclude on the
exact parameters that define the C5A3/C12A7 stabilization, and this will require more
experimental and modelling work since the literature is scarce.

Increased cooling rates might result in the formation of less or even non-leachable
phases such as C3A and C2AS [17,19]. Nevertheless, this was not observed in the present
study since the C5A3 phase was the dominant phase under the applied slow and fast
cooling rates. The SEM analysis (Figure 11) indicates that the microstructure of the S-CB-FC
and the purity of the phases were more complex. A similar observation was made in our
previous work related to the smelting of bauxite residue in which the increased cooling rate
resulted in the formation of less pure phases and enhanced the formation of non-leachable
phases [17]. This might affect the leaching efficiency due to the co-dissolution of Al2O3 and
other impurities (mainly Si).

4.4. Alumina Recovery Evaluation

As mentioned, the quantification of the phases with the Rietvelt method is considered
semi-quantitative with respect of the limitations of the method. The results were cross-
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checked with the FactSage and HSC results. The HSC output analysis resulted in a residual
error of 0.44 for the estimated phases and it was based on the XRF analysis of the slag.
Table 6 presents typical results for the distribution of the phases in the final slag based on
the Rietvelt, FactSage, and HSC results for the S-CB-open. The results were based on the
composition of the final slag. Differences were observed for the phase amounts between
the theoretical and experimental results. Both FactSage and HSC calculations are referred
to equilibrium conditions which deviate from the experimental conditions, highlighting
the limitations to predict and fully simulate a real case system. This can result in deviations
between the theoretical predictions and experimental results in the product phases and
their participation in the final slag. A typical example is that the formation of CA was
not predicted from FactSage and HSC while its participation in the sample was evidenced
through XRD and EPMA results. Moreover, limitations in the thermodynamic data used is
another aspect that needs to be considered.

Table 6. Comparison of the phase distribution between HSC, FactSage, and Rietvelt results for
the S-CB-open.

Mineral Formula Rietvelt FactSage HSC

12CaO.7Al2O3 72 86 87
CaO.Al2O3 18 - -

CaO.3Al2O3 - 5 4
CaO.TiO2 6 - 4

Ca3Ti2O7 (ss) - 4 -
2CaO.SiO2 4 5 5

In addition, possible inhomogeneities among the samples can also deviate the results.
As an example, a change in the TiO2, considering the range of deviation observed from
the repeated experiments, can result in approximately a 10% difference in the percentage
of CaO.TiO2 in the final slag. The distribution of C12A7 and C2S was crosschecked within
an acceptable range considering the aspects discussed earlier. The participation of CT
was however less satisfying and further evaluation in the properties of this phase, the
thermodynamic data, and sample refinement might be necessary. In general, less deviation
was observed for the main calcium aluminate phase between the FactSage, HSC, and
Rietveld results.

The semi-quantitative Rietvelt analysis indicates the distribution of the stable oxides
between the detected phases. The lack of C2S (S-A-SR and S-CB-L2) and the formation
of C2AS (S-A-CB, S-CB-L2) foreshadows possible Si contamination and retardation in the
alumina recovery. The presence of SiO2 as a free oxide should be controlled. The formation
of C2S is believed to prevent the dissolution of SiO2 and the contamination into the leaching
solution, if all the input SiO2 is distributed in the C2S phase. In addition, the C2AS is a
phase that retards the alumina recovery. If all Al is in leachable phases, then more than
90% of Al recovery can be achieved [60]. As such, the samples with higher mCaO/mAl2O3
(S-CB-L3, S-CB-H2O, and S-CB-open), believed to result in high alumina recoveries since
the input alumina, participated in the leachable phases. Nevertheless, the exact yield of
alumina will be further defined from the leaching parameters and kinetics.

Finally, the smelting of reduced bauxite resulted in slag with proper characteristics
(identical to the slag from calcined bauxite) and this might be important as the pre-reduction
of bauxite can decrease the CO2 gas emissions from the smelting furnace while also
increasing its capacity. The control in slag chemistry and smelting conditions (i.e., cooling
rate) can ensure the formation of slags that could be used for Al2O3 recovery and in this
way make use of lower grade bauxites or other Al-sources that are not considered proper
for the Bayer process or that are disposed of.
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5. Conclusions

The smelting reduction of reduced and calcined bauxite samples were carried out and
resulted in the formation of pig irons and slags. The following concluding remarks can
be made:

• Iron was reduced and separated from the slags in the presence of carbon regardless
of the characteristics of the feed material (reduced and calcined bauxite). This was
further confirmed from the thermodynamic evaluations. Iron was separated in the
form of pig iron that was found to contain low level of impurities such as Si, S, and Ti,
and more specifically:

• Cr was distributed in the metallic phase;
• Ti was precipitated in complex (Ti,V)C carbide particles;
• Si and Ti were mainly distributed in the slag;

• In the absence of carbon (alumina crucible), iron was separated from the slag for the
reduced bauxite, and this offers promising perspective for a process with reduced
CO2 emissions;

• The distribution of the major species and phases in the solidified slags was cross-
checked between the thermodynamic predictions and experimental results. Differ-
ences for the minor phases and quantification aspects require further evaluation of the
thermodynamic data and limitations;

• Slags with alumina containing leachable phases were formed in graphite crucible while
increasing the lime addition resulted in the formation of C5A3, which is considered a
highly leachable phase. As such, high alumina recoveries can be assumed according
to the phase quantification;

• The dissolution of the alumina crucible into the slags and the provided atmospheric
conditions (absence of C, higher pO2) result in changes in the product phases of the
slags as compared to the graphite crucible. The slags contain both leachable (CA) and
non-leachable (C2AS, CA2) phases and this is expected to retard the alumina recovery;

• The stabilization of C5A3/C12A7 was seen to be affected mainly from the atmospheric
conditions that include the presence of higher partial pressures of O2/OH−.
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