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The temperature of the lithium-ion battery is a crucial measurement during usage for better
operation, safety and health of the battery. In-situmonitoring of the internal temperature of
the cells is an important input for temperature control of battery management systems and
various other related measurements of the battery, such as state-of-charge and state-of-
health. Currently, most commercial battery management systems rely on the surface
temperature measurements of the cell. However, the internal temperature is comparatively
higher than the surface temperature due to heat generation within the cell and lower heat
rejection compared to the surface; therefore, accurate internal temperature monitoring
methods are essential to improve our knowledge of battery safety and health. This paper
reviews the most recent studies of various online internal temperature monitoring
techniques under two main themes of hard sensors and soft sensors. The hard
sensors include sensors that need to be inserted into the cell and other methods that
use contact-less measuring techniques to infer the internal temperature. The soft sensors
include estimators/observers that use surface measurements and various models to
estimate the internal temperature. More focus is given to the soft sensors due to the
lack of an existing, in-depth review of these. These methods are analyzed in detail with their
accuracy, implementation, measurement frequency, and the common challenges and
benefits are discussed. Further, possible future trends in internal temperature sensing are
also discussed.

Keywords: li-ion battery, soft sensors, temperature sensor, thermal model, kalman filter, estimator, hard sensor,
fiber optic senors

1 INTRODUCTION

A vehicle battery may be operated in various weather conditions including both hot and cold
conditions. Further, while in use, heat is generated inside the battery due to electrochemical reactions
and resistances. The internal temperature is an important ageing accelerator which then influences
the battery capacity and power characteristics. Some of the ageing effects are lithium plating, solid
electrolyte interphase (SEI) growth, loss of cyclable lithium and particle cracks (Waldmann et al.,
2014). Moreover, at high internal temperatures the risk of safety hazards such as thermal runaway,
venting, fire or explosions are higher. Figure 1A shows various stages of thermal runaway. While
increased temperature accelerates the ageing of LIB above 30°C, once the battery reaches
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temperature higher than 85°C more critical reaction pathways
start being triggered (Yang et al., 2006). The SEI on the carbon
anode starts decomposing exothermically when the temperature
rises above 85°C. Due to the incomplete SEI, the negative
electrode material starts reacting exothermically with the
solvent at temperatures near 100–110°C. Some of the released
heat might lead to evaporation of the electrolyte and melting of
the separator (130–190°C). This again leads to further problems
like combustion of the organic electrolyte if oxygen is available
from the delithiated positive electrode. The positive electrode
can either react with the electrolyte directly or evolve oxygen
that reacts with the electrolyte. A melted separator triggers
short-circuits and therefore additional heating. The negative
electrode reacts at 330°C, releasing additional heat. Eventually
the aluminum current collector can be melted at 660°C if an
explosion has not occurred first (Yang et al., 2006; Bandhauer
et al., 2011; Waldmann et al., 2014). Therefore, for safe
operation of the battery, proper monitoring and controlling
of internal temperature is a key factor.

Internal thermal sensing is a broad area with different
methods where some techniques are well established while

others still require development. These sensing methods can
be categorized into “hard sensors” and “soft sensors”: hard
sensors are hardware-based sensors, measurement systems, or
data acquisition systems that can measure the internal
temperature directly or indirectly. This includes the sensors
that need to be inserted into the cell (contact sensors) and
other non-intrusive, non-invasive sensors that can infer the
internal temperature (contactless sensors). Soft sensors are
estimators or observers that can estimate the internal
temperature using various types of models based on other
measurements such as the surface temperature, voltage and
current.

In recent reviews, most of the hard sensors that are commonly
used in battery management systems (BMS) are presented by
Srinivasan et al. (2020); Liu et al. (2019); Xiong et al. (2018), while
Raijmakers et al. (2019); Ma et al. (2018) discussed various hard
sensors used in lithium-ion batteries (LIBs), and Liao et al. (2019)
summarized thermal runaway monitoring techniques. Although
there are individual studies that are done on soft sensing in LIBs,
there are no reviews on soft sensors for LIBs known to the
authors. LIB technology is moving towards smart technology,

FIGURE 1 | (A) The influence of temperature on the battery and the importance of temperature control. (not to scale) (B) Categorization of various sensor types.
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consequently soft sensors are expected to have increased
applicability in the near future combined with state-of-the-art
hard sensors. Therefore, an up-to-date literature survey is needed
on both hard and soft sensors for LIBs and the main objective of
this review is to provide a comprehensive overview of state-of-
the-art internal temperature sensors that are used in LIBs. As
there are a few existing reviews on hard sensors, the section on
hard sensors is kept succinct with lists of various types of hard
sensors updated with the most recent studies. More weight is
given to the soft sensors focusing on different types of models and
estimation methods used. The categorization and the types of
sensors that are used in the study are shown in Figure 1B. The
literature collection comprehensively summarises relevant
studies within the last 5years and some of the older, yet highly
relevant studies. For the soft sensors, only explicit internal
temperature estimation studies are considered, excluding other
estimations such as state-of-charge (SOC), state-of-health (SOH),
or thermal runaway.

The paper is organized as follows, where section 2 lists various
hard sensor types and their advantages and disadvantages, while
section 3 discusses different types of soft sensors, their challenges,
benefits, and accuracies. Then the future trends in online internal
temperature sensing are presented in section 4, and finally, the
conclusions that are drawn from the review are presented in
section 5.

2 HARD SENSORS

Hard sensors can further be categorized based on the type of the hard
sensors, namely contact sensors and contactless (non-intrusive and
non-invasive) sensors. Contact sensors (eg., thermocouples,
thermistors, fibre optic sensors) are placed inside the cell and
directly measure the internal temperature, while the contactless
sensors (eg., electrochemical impedance spectroscopy) are non-
destructive and do not require placing inside as they measure the
internal temperature indirectly. Commonly used contact and
contactless sensor types and their typical challenges and benefits
are discussed in this section. When comparing sensors more focus
in general, is given to the accuracy (closeness of the measurand to the
true value) than precision (reproducibility of measurands) unless it is
mentioned specifically. For hard sensor accuracy, the rated accuracy of
sensor is considered together with the temperature difference between
in and out of the cell when applicable.

2.1 Contact Sensors
Typical contact sensors that are used in LIBs are thermocouples,
thermally sensitive resistors, resistance temperature detectors (RTD),
or optical fiber sensors. The RTD and the thermocouples are the most
commonly used sensors in commercial batteries for internal
temperature measurements (Wei et al., 2021).

2.1.1 Thermocouples
Thermocouples are one of the most well-utilized sensors in
industry due to the low cost, portable size, wide measurement
range (−200–2500°C), adequate sensitivity, robustness, and fast
response (Childs et al., 2000; Duff and Towey, 2010). Therefore,

thermocouples have been widely used in commercial batteries for
both surface temperature measurements and internal
temperature measurements (Raijmakers et al., 2019). The
dependency on a reference temperature, susceptibility to
corrosion, and noise are some of the disadvantages of
thermocouples (Duff and Towey, 2010).

Some of the details of the thermocouple sensor-based
temperature measurement studies are listed in Table 1. This
includes the thermocouple type, measured temperature (T) range
of the study, the temperature (ΔT) difference recorded between
the internal and surface temperature and any other important
remarks of the study. Additional studies that used thermocouples
for validating soft sensors are not included here as they are
mentioned in section 3. The most widely used thermocouple
types are K or T type, where N (Hofmann et al., 2017), J (Xiao,
2015) or E (Al Hallaj et al., 1999) types are less frequently used.

2.1.2 Thermally Sensitive Resistors (Thermistors)
Thermally sensitive resistors are more commonly known as
thermistors that are variable resistors where its resistance
responds to the surrounding temperature. These have a wide
measurement range (−55–300°C) and are widely used and
considered as low cost, small in size, and highly sensitive to
the temperature (Wei et al., 2021). Thermistors are one of the very
few sensor types that are used for monitoring in commercially
available BMSs, especially in the Toyota Prius and Honda Civic
hybrid vehicles (Cao and Emadi, 2011).

There are two types of thermistors, positive temperature
coefficient (PTC) and negative temperature coefficient (NTC).
When the temperature increases, the resistance of PTC will
increase while the resistance of NTC will decrease. NTC
thermistors are widely used as these have high precision, near-
linear beta curve (temperature versus resistance), wide
availability, and a temperature range of −20–120°C (Fleming
et al., 2019). Although thermistors are widely used in battery
applications, their use in research studies is low. Some of the
details of the thermistor-based temperature measurement studies
of LIBs are listed in Table 2.

An embedded thermistor and the cell setup can be seen in
Figure 2. Here, the raw thermistor sensors were bonded into a
25 μm flexible Kapton tape that acts as a substrate for the
thermistor elements. A protective coating (1 μm thickness) of
Parylene was applied to both the thermistor and the substrate
before bonding. This was to increase the lifetime of the devices
inside the harsh environment of the battery cell. This approach
has provided stable measurements and the devices have lasted
more than 3 months without any adverse effect on the sensor
performance (Fleming et al., 2019).

2.1.3 Resistance Temperature Detectors
Resistance temperature detectors (RTD) use metallic conductors
where the temperature-dependent electric resistance is used for
temperature measurement. RTDs have been widely used in
commercial batteries, mainly for surface temperature
measurements (Wei et al., 2021). Chalise et al. (2017) attached
Pt-100 RTD sensors to the poles of 18 ,650 cells, and Chen et al.
(2021) mounted Pt-1000 sensors on a 2.3 Ah 26 ,650
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cylindrical cell, for surface temperature measurements.
Similarly, Wang et al. (2016) used a Pt-1000 sensor (of size
2.3 mm× 2.0 mm) of 0.9 mm of thickness and a measuring
range of −50–400°C inside a coin cell as shown in Figure 3. The
coin cells are LMO, CR2032 type with a Pt-500 sensor
mounted on the surface for the surface temperature. For the
protection of the sensor, the copper foil and the sensor were
covered by a 50 μm polyimide foil, as polyimide is electrically

and chemically inert. The tests were carried out at an ambient
temperature of 26°C, where the temperature difference of the
measured inside and surface temperatures are in the range of
0–0.08°C under various C rates.

A gold RTD type flexiblemicro sensor was fabricated on a parylene
thin film and placed inside a battery for internal temperature
measurement by Lee et al. (2011). The parylene acts as a protective
layer, an isolation layer, and a substrate. The temperatures were

TABLE 1 | Details on thermocouple sensors used in LIBs.

Type T Range °C ΔT °C Study Remarks

T 10–55 1.1 Li et al. (2013) 12 sensors each in 5 and 25 Ah pouch cells of dimension 50×80×7 mm sensor time constant: 35 ms, diameter:
< 0.5 mm, accuracy: 0.3°C

T micro −30–45 1–3 Zhang et al. (2014) 4 sensors radially in NMC111G 18 ,650-size cylindrical cells of 9 mm radius sensor diameter: 80 μmwith 10 μm
for insulation

K 0–30 — Mutyala et al. (2014) Thin-film thermocouple micro sensors were fabricated by encapsulating the sensors in polyimide. The sensor is
then attached to one side of an electrode in a 3 Ah pouch cell

K 10–50 — Nascimento et al.
(2017)

3 sensors on the surface of a Li-ion Polymer Battery of a mobile phone cell voltage: 4.3 V, capacity: 1,440 mAh,
dimension: 130×90×20 mm, conductor 1.0/0.2 mm, sensor operation temperature: −75–260°C, accuracy:
0.17°C

— −25–45 0–3 Farag et al. (2017) 1 sensor inside the center of a NMC prismatic cell of 26 Ah, dimension: 17.2 × 9.6 × 2.4 cm
— 0–45 0–10 Anthony et al. (2017) 3 sensors at the core of a LFP 26650 cell of 2.85 Ah

TABLE 2 | Details on thermistors used in LIBs.

Type T Range °C ΔT °C Study Remarks

NTC 25–81 0–4.3 Fleming et al. (2019) 2 sensors in LCO pouch of 5.5 Ah and 5 sensors in NCA 18 650 cylindrical cell of 3 Ah and volume 16.54 cm3

sensor temperature range: −20–120°C, accuracy: 0.1°C
NTC 25–27 0–1.2 Amietszajew et al. (2019) 1 sensor and a copper pad (for electrochemical measurement) is mounted on a 25 μm flexible Kapton substrate

sensor temperature range: −20–120°C, ΔT is with ambient temperature
NTC 20–45 0–6 Bolsinger and Birke,

(2019)
3 sensors in the core of a 26 ,650 cell of 2.5 Ah, sensor distance from top of cell 9, 33, and 59 mm. The tests are
done for various cooling mechanisms. sensor accuracy: 0.2°C

FIGURE 2 | Thermistor sensors embedded into pouch and cylindrical cells (Fleming et al., 2019; Panel 5, p. 41). (A) the pouch cell, (E) the cylindrical cell, (B,F)
sensor inserted in the cell, (C,G) complete instrumented cell, (D,H) in-situ X-ray images of the cells post-modification, (CC BY-NC-ND 4.0).
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measured in the range of 0–90°C where the temperature differences
between inside and surface temperatures were in the range of 0–2°C.
Martiny et al. (2014) have also used an RTD sensor-based sensor array
for in-situ monitoring of batteries. Another thin film sensor was
fabricated by Zhu S. et al. (2020) using a platinum RTD sensor,
due to the platinum sensors’ good stability, high accuracy, linear
behavior, and wide operating temperature range (−260–960°C). A
20 μm polyimide foil was used as the flexible substrate and the cover
layer. An array of 7 sensors is made by depositing the platinum onto
the flexible substrates to form seven measuring points where each
measuring point was 5 × 5mm in size and 5mm distance from each
other. The sensors were then inserted into a NMC532 pouch cell, and
the measured temperature range is 25–35°C. The temperature
difference between the sensors was 1°C which suggests near
uniform temperature development along the spatial direction of the
layer inside the cell. Similarly, Parekh et al. (2020) have developed
internal sensors using RTD sensors and placed them inside an LCO
CR2032 coin cell. A Pt-1000 sensor of 4 × 5mm was placed in a 3D-
printed spacer composed of polylactic acid and the assembly was
placed behind the current collector of the anode. The temperature
measurements ranged between 24 and 38°C, while the maximum
temperature difference between internal and surface temperatures
was 8.8°C.

2.1.4 Optical Fiber Sensors
The application of optical fiber sensors for battery temperature
measurement is an emerging technology in recent years. This is
mainly due to the properties such as multi-functionality, fast
thermal response, low transmission loss, high optical damage
threshold, and low optical non-linearity of the optical fibers

(Kersey, 1996; Kashyap, 1999). The glass fibers are electrically
and chemically inert, which further explains the interest in these
sensors towards internal battery sensing.

The most commonly used optical fiber sensors are the fiber
Bragg grating (FBG) sensors (Kersey et al., 1997), due to their
quasi-distributed sensing capabilities (Cheng and Pecht, 2017). The
grating has a strong reflectivity at a certain wavelength, where it is
sensitive to the environment. The grating encodes an absolute
wavelength to be reflected to the light detector without dependence
on total light levels, losses in the connecting fibers, and couplers or
source power. Secondly, they have a quasi-distributed sensing
capability where each FBG sensor is assigned a different section
of the available source spectrum, which can be used to conduct
wavelength division multiplexing in an optical fiber sensing
network. A possible solution to the challenges related to the
cross-sensitivity between temperature and strain in FBG sensors
was investigated by Nascimento et al. (2019), who could decouple
the two parameters by creating a Fabry-Perot cavity with different
sensitivities in close proximity to the FBG.

Fully distributed sensing can also be realized by measuring
backscattered light (Rayleigh, Brilluoin, Raman) in conventional
optial fibers, where the position in the fiber is determined either
through a time-of-flight principle or by applying a Fourier
transform in the frequency domain (Rogers, 1999; Yuksel
et al., 2009). This technique was applied by Vergori and Yu
(2019) to measure continuous temperature and strain profiles
along the surface of a LIB.

Some of the details of the fiber optical sensor-based
temperature measurement studies of LIBs are listed in
Table 3. Different FBGs are used with single or multi mode
fibers, and the most widely used material is silica, that determines
the measurable temperature (range) (Raijmakers et al., 2019).
Only one study (known to the authors) has tested at sub-zero
temperatures (Fortier et al., 2017), which needs to be improved,
especially for LIB usage in colder climates. Figure 4 displays the
methods used for internal and external incorporation of FBG-
based sensors for LIB temperature measurements.

The variations of the temperature difference between internal
and surface temperature for each sensor type shows the
importance of the internal temperature monitoring. Further, it
also shows that the internal temperature changes due to many
factors such as the cell type, ambient temperature, and charging/
discharging conditions.

2.2 Contactless Sensors (Non-Destructive
Sensors)
Typical contactless sensors that are used in LIBs are
electrochemical impedance spectroscopy (EIS), Johnson noise
thermometry (JNT), thermal imaging and liquid crystal
thermography. These are also known as non-destructive
sensors. EIS and JNT are used for internal temperature
measurements, while thermal imaging and liquid crystal
thermography are mostly used for surface temperature
distribution measurement or hot spot detection (Khan et al.,
2017; Raijmakers et al., 2019). Only the internal temperature
measurement techniques are discussed here.

FIGURE 3 | A Pt-1000 RTD sensor in a coin cell (Wang et al., 2016,
Panel 4, p. 462). Reprinted from (Wang et al., 2016), Copyright (2016) with
permission from Elsevier.
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2.2.1 Electrochemical Impedance Spectroscopy
EIS is commonly used in kinetic and transport property
extraction in electrode materials, in aging, modeling and SOC/
SOH estimation studies (Waag et al., 2013; Xie et al., 2014;
Westerhoff et al., 2016; Zhou and Huang, 2020; Babaeiyazdi
et al., 2021). Further, EIS is also used as an internal
temperature inference method by relating impedance
parameters to the temperature.

Srinivasan et al. (2011) used the EIS method in three different
cells (2.3, 4.4, and 53 Ah), utilizing the relationship of the

internal temperature with phase shift between an applied
sinusoidal current and the resulting voltage, which is a
measurable electric parameter. The impedance and the phase
shift were measured at a span of frequencies throughout a
temperature range of −20–66°C. These measurements were
used to derive the electrolyte and separator resistance and
the resistance of the SEI layer, which are then used to
monitor the internal temperature.

The same principle was extended by Schmidt et al. (2013) to
measure internal temperature of a commercial 2 Ah pouch cell.

TABLE 3 | Details on optical fiber sensors used in cells.

Type T
Range °C

ΔT °C Study Remarks

SMF-FBG 10–74 0.1 Yang et al. (2013) A single mode fiber (SMF) with 7 FBG on positive and negative surfaces of 400 mAh cylindrical
LCO-G cell, and 40 mAh coin cells of LCO, LMO-NMC111, NMC111 and LVP [Li3V2(PO4)3],
sensor diameter: 125 μm

FBG 20 1.5–4.7 Novais et al. (2016) Sensor in a LFP pouch cell of 20 mAh
SMF FBG 10–50 — Nascimento et al.

(2017)
3 FBGs on the surface of a Li-ion Polymer Battery (mobile phone) of 4.3 V, cell capacity:
1,440 mAh, dimension 130×90×20 mm, sensor operating temperature: 0–350°C, accuracy:
0.12°C

FBG −40–75 10 Fortier et al. (2017) 1 sensor in a LCO coin cell of 2.2 mAh, different sealants are tested.
ΔT is with the ambient temperature

FBG 20–60 5 Amietszajew et al.
(2018)

Sensor in the core of a cylindrical (NCA) 18 ,650 cell of 3 V and capacity 3 Ah

SMF FBG 20–50 5 McTurk et al. (2018) Sensor in the core of a 18 ,650 cylindrical cell, sensor temperature range: −270–300°C
FBG 25–50 0–6 Fleming et al. (2018) Sensor in the core of a 18 ,650 cylindrical cell
FP, SMF and
MMF FBG

— 1.2–3.3 Nascimento et al.
(2019)

3 hybrid sensors of Fabry-Perot (FP) and FBG, in a LFP pouch cell, MMF: multi mode fiber

MMF silica core — — Modrzynski et al.
(2019)

Sensor embedded in each electrode of a LFP pouch cell, 2 mAh
Temperature measurements are not presented

FBG 23–27 0–2 Peng et al. (2020) Sensor set up consists of a FBG mounted on the outer side of a metal ring and covered by
protective plates. 2 rings are installed on each external electrode of a 60 Ah cell.
Sensor temperature range: 5–85°C, accuracy: 0.01°C

SMF FBG 26–65 0.2–5.4 Huang et al. (2020) Sensor in the center of jelly roll of 800 mAh 18 ,650 cells of sodium-ion Na3V2(PO4)2F3-G (NVPF/
HC) chemistry, a SMF-FBG and a micro-structured optical fiber were tested.

FIGURE 4 | FBG sensors on the surface and inside various cell types (Wei et al., 2021; Panel 6, p. 15). (A) FBG on coin cells and (B) FBG on a cylindrical cell (Yang
et al., 2013), (C) FBG on a prismatic cell (Nascimento et al., 2017), (D) FBG in a coin cell (Fortier et al., 2017), (E) FBG in a pouch cell, (F) FBG in a cylindrical cell
(Amietszajew et al., 2018; Fleming et al., 2018; McTurk et al., 2018), (G) FBG in a cylindrical cell (Huang et al., 2020), (H) FBG in a coin cell (Peng et al., 2020). Reprinted
from (Wei et al., 2021), Copyright (2021) with permission from Elsevier.
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The accuracy of the internal temperature measurement at
isothermal conditions is stated as ± 0.17°C when the SOC is
known and ±2.5°C when SOC is unknown. Further, Richardson
et al. (2014); Richardson and Howey (2015); Richardson et al.
(2016a) have used EIS for surface temperature measurements and
developed soft sensors to estimate the internal temperature,
which are explained in Section 3 in detail.

2.2.2 Johnson Noise Thermometry
JNT uses thermal fluctuations in conductors to measure the
temperature. In the JNT technique, both the resistance
measurement of the conductor and the power spectral density
of the thermal noise are used to determine the temperature. The
variation of the resistance of the sensing conductor is
representative of the changes in structural and material
properties due to harsh environmental effects such as
oxidation, corrosion, and vibration. Since this is already
included in the JNT temperature measurement, JNT is
applicable for harsh environments such as nuclear reactors
and electrochemical batteries, where the sensors may
significantly degrade over time (Childs et al., 2000; Liu X.
et al., 2018).

A JNT method for electric vehicle batteries (tested on a lead-
acid battery not on LIB) is proposed by Liu X. et al. (2018), by
using a giant magneto resistance (GMR) sensor as the sensing
resistor. This GMR-based JNT can operate even when the GMR
sensor is subjected to external magnetic fields, as the temperature
measurement is independent of the magnetic parameters of the
GMR sensor. The temperature sensor was tested in the range of
−40–150°C and the measurements were compared with type K
thermocouple and platinum RTD measurements. The absolute
measuring error of JNT temperature and the reference
measurements for two different tests were within the range of
−1.42 and 1.76°C and −1.37 and 1.83°C. During the dynamic
performance of the lead-acid battery test the absolute error was
−2.67 and 3.08°C. The tests were carried out to measure the
surface temperature of the battery cells (Liu X. et al., 2018). This
method has been used to measure the surface temperature, and
although the measurement error is up to 3°C, it has a good future
potential for estimating internal temperature.

The contactless methods have the advantage of operating
outside the cell without the need to insert into the battery for
measuring the internal temperature. However, these are at the
research and development stage and have not been proven on an
industrial scale (Raijmakers et al., 2019).

2.3 Common Challenges and Benefits of
Hard Sensors
Onemajor benefit of embedded sensors is that they can give high-
fidelity and reliable benchmark values for internal temperatures,
especially for thermal model validations and thermal model-
based SOC, SOH estimations (Wei et al., 2021). Another
advantage is that it can be highly useful in fast detection of
thermal runaway events. It could be too late if thermal runaway
detection is only based on the surface temperature measurements

as the internal temperature can increase rapidly even though the
surface temperature changes slowly.

The contact sensors need to be inserted into the cells, making
this method a destructive method. One major challenge is to
insert the sensors without damage to the cell and with no loss of
the electrolyte. This is not a problem when the sensors are
inserted during the manufacturing stage as shown by
Amietszajew et al. (2019). However, in the research and
development stage, this is a challenge as most researchers use
already assembled commercial cells. In that case, various setups
have been tested for sensor installing. One such installation done
by McTurk et al. (2018), is shown in Figure 5A.

Another challenge is when a sensor is inserted into the cell, the
sensors can be damaged due to the harsh environment inside the
cell. Figure 5B shows a microscopic picture of a damaged
thermistor sensor that has been exposed to the electrolyte
within the cell, where the damage to the tracks has broken the
connectivity and stopped the data collection.

The internal temperature changes with the spatial position
inside the cell; therefore, it is difficult to get a representative
measurement if the sensor is placed in one position. This also
requires many sensors spatially positioned inside the cell, which
makes the monitoring process more complex and difficult. In this
regard, fiber optic sensors have a good capability of supplying
distributed sensing options. The size of the sensor is also another
problem when placing inside the cells. A comparison of size
together with the accuracy and range is shown in Table 4.
Therefore, development of smaller sensors would be
advantageous.

3 SOFT SENSORS

Process or plant models designed to estimate various plant
variables are known either as soft sensors, virtual sensors,
inferential models, or estimators. Soft sensors are mostly used
when it is difficult to use hard sensors in harsh environments or
when hard sensors are not available. The estimation error to the
respective reference value is considered as the accuracy of the soft
sensors and standard deviations as precision when specified. The
main steps for designing a soft sensor are data collection and
filtering, variables, model structure selection, model identification
(also known as parameterization) and model validation (Fortuna
et al., 2007).

A general estimator would include a model that calculates the
desired state, with the model value being updated by a value that
corresponds to a correction term based on feedback
measurements. The term estimation refers to the calculations
of the state at current time based on the current or past
measurements, while the term prediction refers to the
estimation of a state at future time based on current or past
measurements. A common estimation algorithm can be
represented for state x as shown in Eq. 1, where x̂ is used for
state estimates. Here, xm

k , y
m
k and yk represent the model value of

the state, the model value of measurements and the actual
measurements, respectively at time k.
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x̂−
k � xm

k a priori state estimate
e−k � f e+k−1( ) estimation gain
x̂+
k � x̂−

k + e−k yk − ym
k( ) a posteriori state estimate

e+k � g e−k( ) estimation gain update

(1)

Thefirst two are known as time updateswhere the latter are known
asmeasurement updates or corrections. The calculation and update of
estimation gain is themain difference among estimators as functions f
and g are different for each estimator. The choice of the estimator
depends on the system, the type of model and measurements.

The measurements of the soft sensor can be onboard
measurements, such as the surface and ambient temperature,
current, and voltage. Any observable battery model system can be
used for this. The model can be a black box model or a
mathematical model based on physics or a combination of
these two. For linear models, a Kalman filter (KF) or a linear
observer is the optimum estimator, while for nonlinear models
other nonlinear estimators can be used.

The soft sensors that are reported in the literature are
discussed based on the type of model that is used; a
mathematical model-based or hybrid model-based. The
mathematical model-based sensors are categorized based on
bulk temperature estimation, distributed temperature
estimation, and the type of thermal model of heat generation
of the battery.

3.1 Mathematical Model-Based Estimators
Estimators that use physics-based mathematical models are
discussed here which are mainly categorized in to local bulk
temperature estimation and distributed temperature estimation.

3.1.1 Estimators of Bulk Internal Temperature
A simple model for any geometrical shape of the battery can be
developed using the energy balance for the cell assuming constant
heat capacity and a bulk internal temperature of the cell.

The definition of enthalpy (H = U + pv) can be used together
with the first law of thermodynamics (ΔU = Q − W) as follows,

_H � _U + _pv( ) � _Q − _W + _pv( ), (2)
whereH is the enthalpy,U is the internal energy, p is the pressure,
v is the volume, Q is the heat added to the system, and W is the
work done by the system on the surroundings. The work can be
expressed as a combination of pressure-volume work and other
work such as electrical, magnetic, or gravitational work. Using
only the rate of pressure-volume work (p _v) and the rate of

FIGURE 5 | Common challenges of hard sensors. (A) Sealing configurations of a cylindrical cell with an embedded thermo-electrochemical sensor (McTurk et al.,
2018; Panel 2, p. 311). (B) A microscopic image of a damaged thermistor due to the harsh environment of the cell (Fleming et al., 2019; Panel 9; Appendix A). (CC BY-
NC-ND 4.0).

TABLE 4 | Comparison of hard sensors.

Type Thickness
(t)/diameter (d) mm

Range °C Accuracy °C

Thermocouple 0.08–0.5 (d) −75–260 0.17–1.0
Thermistor 0.027 (t) −20–120 0.1–0.2
RTD 0.9–1.0 (t) −50–400 0.15–0.5
Optical fiber 0.125 (d) −270–350 0.01–0.12
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electrical work (IV) and neglecting other works, the expression 2
can be re-arranged as follows for a constant pressure system,

_H � _Q − p _v − IV + p _v � _Q − IV, (3)
where I is the current and V is the voltage of the electrical system.

The rate of enthalpy can be written for a multi-phase system
with multiple species and of nonuniform composition, as follows
(Thomas and Newman, 2003),

_H � ∫∑
j

∑
i

zcij �Hij

zt
dv +∮∑

j

∑
i

cij �Hij udS, (4)

where cij (x, y, z, t) is the concentration of specie i of phase j, and
�Hij(c, p, T) is the partial molar enthalpy of specie i of phase j
(Thomas and Newman, 2003). Here, x, y, z are the spatial
position in Cartesian coordinates, and T is the temperature,
u is the velocity of the boundary, and dS is a differential area of
the surface of the system. The second term on the right-hand
side of Eq. 4 is for the systems with changing volume. This term
can be neglected by assuming that the change of the volume in
LIBs is comparatively small. With the use of the Gibbs-Duhem
equation, Eq. 4 can be expressed as follows (Thomas and
Newman, 2003),

_H � ∫∑
j

∑
i

�Hij
zcij
zt

dv + ∫ ρ
z ~H

zT

zT

zt
+ ρ

z ~H

zp

zp

zt
( )dv, (5)

where ρ is the bulk density and ~H is the specific enthalpy of the
system. Assuming that the cells are thermally thin (heat
conduction in cell is faster than surface convection; Biot
number is less than 0.1), and therefore, the temperature is
considered uniform, the equation can be simplified as follows,

_H � _Q − IV � ∫∑
j

∑
i

�Hij
zcij
zt

dv + Cp
_T. (6)

Here, Cp is the specific heat capacity of the cell, and T is the
internal bulk temperature of the cell. Defining a partial molar
enthalpy evaluated at the volume-averaged concentration at any
point in time as �Ha

ij, the enthalpy changes due to mixing and
reaction can be separated into individual terms as follows for
electrochemical reactions and chemical reactions,

_H � _Q − IV

� ∫∑
j

∑
i

�Hij − �H
a
ij( ) zcij

zt
dv + Cp

_T +∑
m

ΔHa
mrm

−∑
n

InU
a
n +∑

n

InT
zUa

n

zt
.

(7)

Here, ΔHa
m is the enthalpy of reaction for chemical reactionm,

which is evaluated at the volume-average composition in the cell,
rm is the rate of chemical reaction m, In is the amount of the total
current passed through the electrochemical reaction n, and Ua

n is
the enthalpy potential of electrochemical reaction n, which is
evaluated at the volume-average composition in the cell.
Rearranging Eq. 7, the following expression can be obtained
for the heat added to the system.

_Q � Cp
_T + IV −∑

n

InU
a
n

⎛⎝ ⎞⎠
︸�������︷︷�������︸

resistive heat

+∑
n

InT
zUa

n

zt︸����︷︷����︸
entropic heat

+∑
m

ΔHa
mrm︸����︷︷����︸

reaction heat

+∫∑
j

∑
i

�Hij − �H
a
ij( ) zcij

zt
dv︸�����������︷︷�����������︸

heat of mixing

(8)

The second term is the irreversible resistive heating, which
occurs due to the deviation of the cell potential from its
equilibrium potential by the resistance of the cell to the
passage of current. The third term is the reversible entropic
heat while the fourth term is the heat caused by the chemical
reactions (Thomas and Newman, 2003). This is analogous to the
heat generation terms commonly used in electrochemistry (see
Figure 6A). Thomas and Newman (2003) have also shown how
the model can be extended for localized temperature instead of
cell averaged temperature, using a locally averaged concentration
and more localized heat of mixing and enthalpy potential (e.g.,
across each electrode), and with the inclusion of the heat of
mixing within each particle. As this is developed using Cartesian
coordinates, the model applies to both prismatic and pouch cells;
however, for cylindrical cells, the model needs to be converted to
cylindrical coordinates and appropriate assumptions need to be
made accordingly.

This model can be expressed in a composite manner for the
internal bulk temperature of the cell (Ti) as follows, expressing Q
as the heat dissipated out of the system to the surroundings (−Qo)
and the rest of the heat terms as the heat generated in the
system (+Qg),

Cp
_Ti � − _Qo + _Qg. (9)

_Qg � IV −∑
n

InU
a
n +∑

n

InT
zUa

n

zt
+∑

m

ΔHa
mrm

+ ∫∑
j

∑
i

�Hij − �H
a
ij( ) zcij

zt
dv

(10)

Here, _Qo is considered as the net rate of heat transfer out of the
cell and can be taken as a composite heat transfer system as
follows, using all three forms of heat transfer, conduction,
convection, and radiation as shown in Figure 6B. The heat
transfer can be expressed in various ways using equivalent
thermal resistances (Rs) in the cell, composite wall, or the
outer air as follows, and with the use of various temperatures
such as the surface temperature (Ts) and the outside air
temperature (Ta),

_Qo � Ti − T1

R1
� T1 − T2

R2
� T2 − T3

R3
� T3 − Ts

R4
� Ti − Ts( )

Rw

� Ts − Ta

R5
+ T4

s − T4
a( )

Rr
(11)

Estimators With Ohmic Resistive Heating
Most of the thermal models in the literature are based on
simplified versions of models with ohmic resistive heating. The
simplest version is using only ohmic heating for heat generation
in the cell together with simplified equivalent resistance for heat
transfer. Slightly different variations of this simplest model are
commonly used in battery modeling and also known as the
lumped parameter thermal model, or conventional linear
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model. The main challenge of these models is the accurate
calculation of the internal resistance of the cell.

Zhang et al. (2016) used the following model with a commonly
used equivalent electric circuit model of a single resistor (Rc) and
a first order resistor-capacitor (RC) circuit in series for capturing
cell relaxation,

Cp
_Ti � IR2

c − k1 Ti − Ts( ),
Cp2

_Ts � k1 Ti − Ts( ) − k2 Ts − Ta( ), (12)

whereRc is the internal resistance of the cell,Cp2 is the heat capacity of
the cell container, and k1, k2 is the heat conduction coefficients for the
cell and the outside air, respectively. This thermal model is coupled
with the electric model for SOC, voltage, and overpotential. Test data
is used for parameter identification of both the models using least
square methods. The battery internal resistance Rc is calculated based
on instantaneous voltage and load current jumps, and a relationship
between the tested cell internal temperature and Rc is developed from
the tests of a prismatic LFP battery. The Rc for themodel is calculated
by linear interpolation of this relationship. Based on these parameters,
the cell temperature and the surface temperature are found. The
internal cell temperature results are compared with experimental
results and root mean squared error (RMSE) is reported as 0.37°C
and the maximum error is 1.28°C. Similarly, the surface temperature
of the cell is compared with experimental results and the RMSE is
0.36°C, while the maximum error is 1.43°C. These model results are
shown in Figure 7A.

The coupledmodel is then rearranged in the state-space form, and
the states SOC, Rc, Ts, and Ti are estimated in real-time using an
extended Kalman filter (EKF). The measurements used are the
battery voltage, current, and surface temperature. The initial error
in the internal temperature estimation has converged to zero in less
than 60 s as shown in Figure 7B, and the RMSE is reported as 1.01°C.
A slight deviation from the actual value of about 1°C during the
temperature increase was observed, which could have been caused by
the inaccuracies of the simplifiedmodel. Further, the estimation error
of SOC is around 1.5%, which is a reasonable accuracy. However, the
simplified circuit model was not able to capture the full relaxation
dynamics, and the effects of temperature and hysteresis on battery
OCV were not considered in the model, which could give larger
estimation errors for SOC estimations (Zhang et al., 2016).

The same model (Eq. 12) for a set of cylindrical cells was
applied by Ma et al. (2020) with an additional equation for the
outside air temperature of each cell as follows,

Cp3
_Ta � Ts − Ta( )

R5
+ _maCpa Ta, i−1 − Ta, i( ), (13)

whereCp3 is the heat capacity of the air, _ma is the mass flow rate of
air between the cells, Cpa is the specific heat capacity of air, and i is
the cell number in a row. Ti, Ts and Ta were taken as the states, the
resistive heat and the air temperature of the previous cell (Ta, i-1)
were inputs in the linear system, while the Ts was the
measurement. From the tests on a single cell, a second order
polynomial was fitted for the internal resistance of the cell, using
the average temperature of Ts and Ti. For the rest of the
parameters, off-line parameterization with recursive least
squares was conducted for a single cell. The necessary
temperature data for the parameterization was obtained from
CFD simulation results. The model validation was done using
similar CFD results for different air velocities in between the cells,
the model errors for the surface temperature of cells have a
maximum value of 0.6 K at a 3 m/s air velocity, and 0.5 K at a
0.1 m/s air velocity (Ma et al., 2020).

The validated model is then used with a KF to estimate the
internal temperature based on the Ts measurements of the CFD
results (Figure 7C). The estimation errors for the internal
temperature of cells have a maximum value of 0.6 K at a 3 m/s
air velocity, and 0.8 K at a 0.1 m/s air velocity (Ma et al., 2020).
However, as the CFD simulation results are considered as the
measurements for the estimator, the generated noise may not
represent the real conditions, which could increase the estimation
error compared to the reported values for real measurements.

The discussed models considered only the conductive and
convective heat dissipation from the cell. Sun et al. (2020)
extended the model for radiation while allowing the estimators
to operate in the presence of sensor bias. For the thermal model
the radiation heat term (T4

s − T4
a)/Rr is added to the surface

temperature in Eq. 12 as follows,

Cp2
_Ts � Ti − Ts( )

Rw
− Ts − Ta( )

R5
− T4

s − T4
a

Rr
. (14)

FIGURE 6 | A common illustration of (A) heat generation categories in batteries, (B) the heat transfer mechanism from inside the cell to the surrounding
environment.
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The state-space system was developed using the two
temperatures as the states, squared current as input, and Ts as
the measurement. A thermocouple is inserted into a cylindrical
cell and Ts and Ti were measured in tests together with the other
measurements, and these data are used for the model parameter
identification. The optimum model parameters were obtained by
using the non-dominated sorting genetic algorithm II, and it is
shown by the root-mean-squares of the residuals of the
temperatures, that the radiation term has added considerable

accuracy in Ts calculations and a slight improvement in Ti
calculation.

The estimations were done using an extended state observer
based approach, as it can account for both nonlinear uncertain
dynamics and the variation of uncertainties (Guo and Zhao, 2011;
Xue et al., 2015). Sun et al. (2020) have introduced the sensor bias
as an additional state and augmented with the rest of the states
with an additive noise term. If a normal nonlinear state-space
system in its discrete form can be expressed as follows,

FIGURE 7 | (A) Model results (EKF) at an ambient temperature of 26.3°C (Zhang et al., 2016; Panel 7B, p. 151) and (B) EKF estimation results at an ambient
temperature of 5.5°C (Zhang et al., 2016; Panel 8A, p. 153). Tin: internal temperature, Tsh: surface temperature. (C) Structure of the parameter identification and
temperature estimation method (Ma et al., 2020; Panel 14, p. 6). Reprinted from (Zhang et al., 2016), Copyright (2016); reprinted from (Ma et al., 2020), Copyright (2020)
with permission from Elsevier.
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xk+1 � f xk, uk( ) + wk, and
yk � g xk, uk( ) + vk,

(15)

then the extended state observer system is expressed with the
extended states x′ such that xk′ � [x⊤

k bk]⊤, with the sensor bias (bk)
as the augmented state. The augmented state is updated as a
piecewise constant state as f (3) = bk, the output equation for
the surface temperature is changed to g(xk′ , uk) + bk, and the input
is updated as uk − bk for the bias correction (Sun et al., 2020). An
unscented Kalman filter (UKF) algorithm of uniformly distributed
sigma points is followed for this extended system and named as an
extended unscented Kalman filter (EUKF) by the authors.

The results of the EUKF are compared with the UKF for online
test results for a set of biased sensor measurements in the current,
and the surface temperature, separately. In both the cases (as
shown in Figure 8), the EUKF was capable to estimate the
temperatures without the bias unlike the UKF, and the sensor
bias estimation error convergence from the initial error has taken
a considerable time, approximately 500–1,000 s. When there is
bias in the input measurements, then the UKF gave biased

estimations in both the internal and surface temperatures as
expected. When there is bias on surface temperature
measurement (no bias in inputs) the UKF gave correct surface
temperature estimation. However, the internal temperature
estimations were biased. This showed that both the UKF and
EUKF are good for internal temperature estimation in general, as
the sensor bias is affecting all types of estimators that are
discussed here and have to be accounted for separately. In
general, the addition of the radiation term in the heat transfer
has improved the estimations considerably, compared to the
estimation without the radiation term.

The same first-order RC circuit model with ohmic heat is used
for internal temperature estimation by Zhu C. et al. (2020), with a
self-heater for automotive batteries that operate in cold climates.
Since there is a self-heating unit on board with the battery pack,
the current measurements are not available for this application
during heating, unlike the other estimators that were discussed
above. The model is the same as shown in Eq. 12, with two
additional inputs (surface temperature) from the adjacent cells.
The current and the internal resistance are inaccurately estimated

FIGURE 8 | Online estimation results for both UKF and EUKF during charging and discharging tests. (A) with a 10°C sensor bias in the surface temperature
measurement (Sun et al., 2020; Panel 13, p. 11). (B) with a 10 A sensor bias in the current measurement with additional noise (Sun et al., 2020; Panel 14, p. 12).
Reprinted from (Sun et al., 2020), Copyright (2020) with permission from Elsevier.
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at the beginning, and these estimates are considered as one of the
inputs instead of the real value of I2Rc. The disturbance caused by
these inaccurate estimations is considered as a state (as the root
mean squared value of the disturbance; d � I2Rc − Î

2
R̂c) together

with the internal and surface temperatures. A linear observer is
designed for this augmented linear system (an ESO), and the
initial error that occurs due to inaccurate internal resistance and
current value converges to zero, as the observer ensures that the
disturbance diminishes over time. This is the same underlying
basic principle that was used by Sun et al. (2020) to eliminate the
sensor bias in the inputs and measurements. Therefore, any
suitable KF variant could have been used in this application as
well, although the authors claim that a KF is not usable due to the
lack of current measurements. The use of ESO in the presence of
high noise can be problematic due to its deterministic nature as
opposed to the stochastic nature in KFs. Similarly, the use of KF
could be problematic in an application of a high number of cells
in a row of a pack, as the inversion of matrices with larger size
could be computationally heavy as opposed to the direct
calculation of observer gain in ESOs.

The ESO is tested online with six 2,500 mAh, 18 ,650 LMO
cells where the surface temperatures were monitored using
K-type thermocouples. Urban dynamometer driving schedule
cycles were performed and the data were used for parameter
identification of the model. For the reference internal
temperature values, EIS-based internal temperature estimations
were used instead of an insertion of a thermal sensor into the cells.
The test results showed that the internal temperature estimates
are accurate (estimation error was less than 0.6°C) and converge
fast when the mismatch of internal resistance is comparatively
low. When the mismatch is higher (15:1,500 mΩ) the internal
temperature has an offset throughout the heating period, until it
converges again when the measurements are available. During
this offset, the estimation error is less than 1.2°C, which suggests
that the ESO compensates well enough even for high model
parameter mismatches.

Zhang et al. (2020) also used the same thermal model to
inversely estimate the heat generation inside the cell, while Debert
et al. (2013) used the model as a linear parameter varying model
and estimated the temperature using a polytopic observer. The
model expands to three temperature equations, where the surface
temperature is considered as the cell surface temperature and an
additional cell casing temperature is calculated outside the cell
surface. The internal resistance is considered as a time-variant
parameter ( _R � 0) and estimated together with the other states.
The output internal cell temperature is measured using a
thermocouple, and the input is considered as the ambient air
temperature, while the estimated states are the internal
temperature, cell surface temperature (measured by a
thermistor), cell casing temperature (measured by a
thermocouple), and the internal resistance. A typical electric
vehicle drive test was carried out on a four-cell module to
identify the thermal resistances using a Nelder-Mead simplex
optimization algorithm. The model is then validated using test
data, where the RMSE is 1.6°C for the internal temperature.

A linear observer is designed for this linear system, and the
observer validation results are shown in Figure 9A, where the

RMSE for internal cell temperature is reduced down to 0.38°C
from model to estimation. However, the system is reported to be
not observable at near-zero currents; therefore, for currents less
than 0.5 A (which is considered as a maximum sensor error) the
system does not estimate and only the open-loop model
calculations are performed. This could have been improved by
a lesser observable system during this time frame by estimating
only the temperatures and considering a constant internal
resistance.

Further, the estimated Rc closely followed the lookup table
values as shown in Figure 9B, which are based on different
temperature and SOC values. As is evident from all the models,
the model parameter identification is of high importance in
these model-based estimators. The Rc is the most important
parameter among these. Therefore, the ability to
simultaneously estimate the Rc is highly valuable in an
estimator, such that the estimator can be easily used in
various dynamic conditions without any major offline
parameterizations.

Estimators With Resistive and Entropic Heating
The heat generation term with partial resistive heat that was
discussed earlier has been modified by adding the entropic heat
by Xie et al. (2020). They used a 1-D thermal model with three
nodes along the length of the core of a cylindrical cell from the
middle to the top. The system of equations was reduced to three
ordinary differential equations (ODEs) with the finite difference
method. To estimate the Rc, they have used the model by Ding
and Chen (2005) which expresses the terminal voltage in terms of
overall current and the dynamic internal resistance. The
unknown parameters and states of this model are found by
recursive extended least-squares algorithm, where the Rc
including ohmic and polarization resistances is estimated
together with the noise of the first-order RC circuit. This
model is then further extended into linear state-space form
and used with KF to estimate the SOC. Another KF is jointly
used with the thermal model to estimate the three temperatures.
The remaining geometrical parameters were found by various
approximations and tests. Several experimental data sets were
used for the validation of the estimators, and it was shown that the
estimations are accurate and also shows that the initial error can
be converged to zero approximately within 1,000 s. Since the Tis
are not measured in the tests, a CFD simulation has been carried
out to assess the estimation accuracy of the KFs. The RMSE values
of the two Ti estimates compared to the CFD values are 0.2891
and 0.2767°C (first node at the middle of the cell and the second
closer to the top), where the Ts estimate has a RMSE value of
0.04°C. Although these values are comparatively low, it is difficult
to determine whether this accuracy is due to the addition of the
entropic heat to the thermal model, or due to the dynamic
estimation of the internal resistance. However, the addition of
both have considerably increased the accuracy of the temperature
estimations. The estimation accuracy could be reduced when it is
used with real measurements, rather than using CFD
measurements that contain no noise and disturbances.

On the other hand, Xiao (2015) used the complete resistive
heat term and the entropic heat term in Eq. 10 for the heat

Frontiers in Chemical Engineering | www.frontiersin.org February 2022 | Volume 4 | Article 80470413

Jinasena et al. Temperature Sensing in Batteries

https://www.frontiersin.org/journals/chemical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/chemical-engineering#articles


generation of the cell model. The cell has been divided into two
layers (core and surface) and then each layer is divided into
several nodes, and for each node the thermal model is considered.
They have plotted the resistive heat and the total heat with
inclusion on entropic heat for a cell for 1C rate, and from 0 to
2,500 s the resistive heat is higher than the total heat by about 3W
and after 2,500 s total heat dominates with an increasing margin
up to about 8 W. This shows that even at 1C rate the heat
generation can be improved by the addition of entropic heat.
Although this has given a slight improvement in the temperature
calculation with entropic heat, this is not a significant
improvement compared to the temperature. Further, what
caused the sudden change at 2,500 s for the heat generation is
not stated in the study. The state-space system developed based
on the model contains two states, the voltages of the core and
surface layer, and the heat generation at the core layer as the
input. The model parameters were obtained from the battery
dimensions, material properties and experimentally measured
heat transfer coefficient. The calculations using these parameters
have shown that the maximum temperature calculation error for
different test conditions were 0.4–0.9°C. Then the parameters
were tuned using a prediction error minimization method, and
the calculations with tuned and initial parameters were compared
together. It can be seen that the model parameterization has a
considerably larger effect than the addition of entropic heat,
where the parameterization has shown a significant reduction
of error, where the maximum error with initial parameters was
0.64–1.1°C while the maximum error with tuned parameters was
0.3–0.6°C for various nodes. Then the tuned model was used with
a KF for estimating the temperature. The observability conditions
revealed that the system is observable only when the number of
measurements is the minimum number of surface temperature
measurements that are obtained from the cell (12 in this study).
The optimum locations for the temperature sensors (type J
thermocouples) were found by testing various locations and

determining the mean squared error of real and estimated
temperatures. Once the locations were found, the temperature
estimations were carried out. The KF was started with large initial
errors (10°C) but quickly converged to zero within about 15 s. The
estimation error of the KF is stated as 0.1°C (possibly the
maximum error) and the time duration for the estimation is
mentioned as less than 2 s.

Rath et al. (2020) used the same heat generation model for a
battery module of 36 cells with top and bottom cooling plates.
Therefore, the equation of the surface temperature of the cell
contains the heat transfer with adjacent cells, with the top and
bottom plates, and with the ambient air. Similarly, the model
contains two additional equations for the top and bottom plates,
which are dominated by convection cooling. These four equations
for a common cell can be rearranged into a linear state-space
system. The thermal capacity of a single cell was found using an
accelerating rate calorimeter. The remaining parameters were
identified using various test results. As the tests did not include
the internal temperature measurements, a 3-D finite element
model was used to generate the necessary data for resistance
values. A KF-based estimator was applied to match the model and
test results of worldwide harmonized light vehicle test drives.
Since only the surface temperature measurements are available,
the estimations are only compared with surface temperatures,
where the maximum RMSE was 0.6°C both at normal operation
and at sensor failure conditions, while the error is 0.75°C during
sensor malfunction. It is reported that in all operating conditions
and at every ambient condition that is tested, the RMSE remains
well below 1.5°C. However, as only the surface temperatures are
available, it is difficult to get an assessment on whether the
inclusion of entropic heat has improved the estimations.
Furthermore, it is also shown that the entropic heating can be
insignificant to Ohmic heating at higher charging rates (4–12C)
and can be significant as much as Ohmic heating at lower
charging or discharging rates (1–2C) (Burheim et al., 2014).

FIGURE 9 | The estimation results, (A) temperatures, (B) internal resistance against the actual values. Internal temperature is denoted as Tcell, surface temperature
is denoted as Tsens and the casing temperature is denoted as Tcas. Reprinted from (Debert et al. (2013)), Copyright (2013) with permission from Elsevier.
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This could also change based on the cathode chemistry of the cell
(Burheim et al., 2014).

3.1.2 Estimators of Distributed Internal Temperature
Richardson et al. (2014) used a steady-state thermal model in
cylindrical coordinates for a cylindrical cell coupled with a
thermal impedance model so that the internal temperature can
be estimated with the use of an EIS system. The steady-state
thermal model gives the temperature distribution of the cell with
respect to the radius (r) as follows,

T r( ) � Ts + ar2o 1 − r2

r2o
( ) 1 − ln ro/r( )

ln ro/ri( )[ ] − Ts − Ti( ) ln ro/r( )
ln ro/ri( ),

with, a ≔
Ti − Ts

r2o − 2r2i ln ro/ri( ) + 1
,

(16)
where ri and ro the radius of the center core, and the outer surface,
respectively. This expression is then used with the measured
admittance of the cell to get an expression for the maximum
temperature of the distribution, which is at the core (ri) and
interpreted as the internal cell temperature (Ti). Although this
does not include an estimation algorithm, it directly calculates the
temperature based on online EIS and surface temperature
measurements with a maximum error of 0.9°C. This study
shows that the temperature distribution is important as the
maximum temperature of the distribution is the best fit with
the real measurements at the core, while a uniform distribution
would always underestimate the temperature by a mean error
value of 2.6°C.

However, as this is a direct calculation without a feedback
correction term, this error in a uniform distribution can be
reduced further. Similarly, the use of maximum temperature
from the distribution would reduce the error even more. Kim
et al. (2013) have used a similar method with a KF, where they
have used the 1-D unsteady heat conduction equation for a
cylinder as the thermal model as follows,

ρCp
zT r, t( )

zt
� k3

z2T r, t( )
zr2

+ k3
r

zT r, t( )
zr

+
_Qg

Vc
, (17)

with the boundary conditions:

k3
zT r, t( )

zr

∣∣∣∣∣∣∣r�0 � 0

zT r, t( )
zr

∣∣∣∣∣∣∣r�ro � − h

k3
T ro, t( ) − Ta( )

(18)

where Vc is the volume of the cell, k3 is the thermal conductivity,
and h is the convective heat transfer coefficient. The solution to
the unsteady thermal model T (r, t) is approximated by a fourth-
degree polynomial of the parameter (r/ro) where the polynomial
coefficients are considered time-dependent. Using this
temperature expression, the two states (TV, TG) of the system
are derived by integrating over the radius, where TV is the volume
averaged temperature and TG is the temperature gradient along
the radius. This allowed the polynomial coefficients of the
temperature distribution T (r, t) to be expressed in terms of

TV, TG, Ts and ro. A similar expression for the surface
temperature Ts (k, h, TV, TG, Ta) was developed using the
boundary condition of the unsteady model where convective
heat transfer happens at the outer surface of the cell taking h
as the convective heat transfer coefficient.

The system in continuous form is then arranged for the two
states using the heat generation and air temperature as inputs,
with the two additional equations for Ti and Ts as follows,

_TV � −48αh
bro

TV − 15αh
b

TG + α

kV
_Qg + 48αh

bro
Ta,

_TG � −320αh
br2o

TV − 120α 4k + roh( )
br2o

TG + 320αh

br2o
Ta,

Ti � 24k − 3roh
b

TV − 15ro 8k + roh( )
8b

TG + 4roh
b

Ta,

Ts � 24k
b

TV − 15rok
2b

TG + roh

b
Ta,

with, b ≔ 24k + roh, and _Qg � IV − IUOCV,

(19)

where α is the thermal diffusivity and UOCV is the open-circuit
voltage which is considered as the bulk enthalpy overpotential of
all the reactions. The model parameter identification was carried
out by minimizing the error between model and test values from
‘urban-assault driving cycle’ experiments. The same states and
inputs are rearranged in state-space form together with the
measurement equation for the state estimation using a KF
with the test results of an escort convoy driving cycle. The
RMSE value of the internal temperature estimations is
reported as 0.2°C.

Further, Kim et al. (2014) have extended this study to establish
that the heat transfer coefficient h has the highest sensitivity on
the model; therefore, h is estimated separately as a parameter
together with the states. For this parameter estimation, the
parameter is included in the system as a piecewise constant
with additive white noise (hk+1 = hk + zk). The system was
then tested by dual extended Kalman filter (DEKF), where a
separate parameter filter goes through the same update process
but with the updated a posteriori state x̂k and the a priori
parameter state ĥk−1 (Wan and Nelson, 2001). The
temperature measurements were taken using type-T
thermocouples and tests were done for “escort convoy driving
cycle” under various cooling conditions. The KF showed accurate
results as long as the correct hwas given, while the DEKF was able
to compensate for the error in h though it takes a considerable
time to converge (400 s), and both have the same RMSE value of
0.26°C. When the cooling conditions suddenly changed, the
RMSE of DEKF increases (0.39°C) as it takes a longer time to
accurately estimate the h. When the initial h was given to the KF
as twice the actual value, it overestimated the temperature about
0.5°C and the RMSE value was increased up to 1.18°C, while the
DEKF estimated correctly with an RMSE of 0.31°C. Furthermore,
the parameter estimation error converged to zero within about
500 s.

Richardson and Howey (2015) used the same model,
estimation, and the method with EIS measurement system and
compared with the Ts measurement system. Therefore their
model has an additional impedance measurement, which is
expressed as a function of the states (TV, TG) and the air
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temperature Ta. Then in the state-space model, both the
measurements; the impedance and Ts, are taken as the
measurement equation, one at a time. In addition to the EKF,
and DEKF, a dual Kalman filter (DKF) was used. The results are
similar to the results of Kim et al. (2014), where the EKF with
impedance measurement overestimated the Ti and
underestimated the Ts by approximately 2°C, when the heat
transfer coefficient was twice the true value. The DEKF
estimation had RMSE values of 0.47 and 0.42°C after the error
convergence, for Ti and Ts, respectively. However, the error
convergence took a longer time (approximately 1,200 s) to
come to zero from the high mismatch that was introduced
initially. Similarly, from the KF and DKF results when Ts was
the measurement, the KF had an offset of 3°C (maximum) with
the actual values, and the DKF has shown superior results to the
DEKF according to the RMSE values of 0.16 and 0.14°C after the
error convergence, for Ti and Ts, respectively. Further, the
convergence of the DKF is comparatively quicker than with
the DEKF. Both the studies show again that the parameter
identification is crucial for the estimation, and the parallel
estimation of critical parameters together with the maximum
temperature provides better estimations even with a simplified
lumped thermal model.

Richardson et al. (2016b) further modified the model into 2-D
by including the longitudinal direction for the thermal model and
improved the computational time by solving it using the spectral
Galerkin method with Chebyshev approximation. The model was
tested for different cooling methods and validated against
commercial finite element method-based solutions. Additional
measurements were taken by three thermocouples on the cell
surface along the length. This model is then used with an EKF
with impedance measurements and KF with surface temperature
measurements from tests done on an Artemis driving cycle with
cell cooling (Richardson et al., 2016a). Two configurations were
tested with cooling for a fully insulated cell and without cooling
for a normal cell, where the measurements were taken using three
different current excitation profiles, named HEV-I, HEV-II, and
HEV-III, where these cycles were generated by looping over
different portions of the Artemis HEV drive cycle. HEV-I was
used for parametrization and the rest were used for estimation
(Figure 10).

The estimation results follow the actual values in general,
except with the HEV-III test results where the temperature was
considerably underestimated. The authors suspected that this
may be due to the simplified thermal model which only has ohmic
heating, as the underestimates dominated during periods with
very low or zero applied currents. This suggests that the cell
testing with various drive cycles is important to test the estimators
in all possible conditions and more complete thermal models
would increase the estimation accuracy, although this might
increase the computational time. The RMSE values are quite
similar between the configurations and driving cycles for each
method, where the EKF with impedance has 0.2–0.7°C and the KF
with temperature measurement has 0.1–0.4°C RMSE values. This
suggests that the Ts measurement is more reliable for Ti
estimations than the EIS method, possibly due to the higher
accuracy of the used thermocouples sensors.

Wang and Li (2017) converted Eq. 17 into 2-D with the
inclusion of longitudinal direction. A Karhunen-Loeve
transformation method is used to approximate the model
during the model order reduction to get a set of ODEs. Two
different analytical expressions were developed as solutions to these
ODEs for known cooling conditions, and unknown cooling
conditions, where the h is adapted. Available heat generation
data is used on a three-layer feed-forward neural network
model to find out the relationship of heat generation in terms
of the current, voltage, and mean temperature. The model
parameters were identified using the Nelder–Mead simplex
optimization method on a set of urban dynamometer driving
schedule test data. The state-space form of the estimation
system contains the time coefficients of each approximated basis
function as states, the air temperature, and the generated heat
expression from the neural networks model, together with the
surface temperature as output. A DKF is used to jointly estimate
both the states and the parameter h. The results showed higher
accuracy compared to the other 2-D model based estimators
discussed here, where the spatial normalized absolute error is
between ±0.2°C and the RMSE over the spatiotemporal domain
is 0.0946°C. This may be due to the dual effect of the model order
reduction technique and the better thermal model approximation
by the data-driven method where it has given a better accuracy
within the tested drive range. However, one major drawback of the
method is that the need of sufficient training of the model before
estimation. Furthermore, it is stated that the trained model has not
considered any battery aging problems. Therefore, sufficient
training over all possible data ranges is needed in these types of
models. However, this has several advantages as well. It is shown
that the solution technique is more computationally efficient than
the numerical methods, which allows the model to be faster in
estimations. It is also shown that the temperature differences
between the 2-D model and the 1-D model (where a bulk
temperature is assumed instead of local temperatures) can reach
up to 8°C over time for the same cell conditions.

A similar 2-D model was developed by Hu et al. (2021) for a
pouch cell for estimation and control. Here, the 2-D transient
heat conduction equation was written in Cartesian coordinates
for width and length directions of the pouch cell, and then
transformed in to unit spectral domain such that the
orthogonal functions can be easily approximated. Then the
model is reduced to ODEs by using the Galerkin method with
Chebyshev polynomial approximations. The equivalent ohmic
resistance was taken to be a combination of cell resistance in
series with the resistance from the two tabs. The tabs are
considered as separate lumped models, where the heat
generation of tabs are considered to be only from I2R and the
heat flow between tabs and cell body are considered only to be
through convection. The Chebyshev Galerkin approximated
model is used for the cell body with discretized elements.
Therefore, for each element, the total heat generation is taken
to be resistive and entropic heat where the resistive heat
generation is taken to be from the ohmic and polarization
resistances of the respective element. Seven T-type
thermocouples were placed on the surface of a 20 Ah battery
and 2 thermocouples were placed in the tabs, and the cell was
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tested for various conditions to obtain the test data. The particle
swarm optimization method is used for parameterization. Data of
1C constant current excitation profiles at seven temperatures
were used for parameterization of the lumped models for the two
tabs. A hybrid pulse power characterization test was used to
parameterize the 2-D cell body model. These parameters were
used to calculate the heat generation and then compared with the
values calculated by voltage difference method and overpotential
method, where the parameterized method was the highest due to
high valued resistances obtained. All the models were then
validated where each temperature is calculated and then
compared with the sensor values. The RMSEs were in the
range of 0.006–0.277°C for different data sets. Although this
method has not calculated nor estimated Ti, the fidelity and
the short computational time it takes to solve shows that this can
be used for Ti estimation of pouch cells.

3.2 Hybrid Model-Based Estimators
Similar to physics model-based estimators, we can use data-
driven approaches for estimation. Although fully data-driven

temperature estimation studies are not yet done, there exists a
few that estimates SOC and other states in BMS (Li et al., 2019).
However, there are also data-based methods that are combined
with physics-based models and estimators. These are commonly
called hybrid method-based estimators. Most of these BMS
estimators use neural networks (NN), support vector
machines, fuzzy logics and deep learning methods for various
state estimations (How et al., 2019). These hybrid methods have
been mainly used for various BMS thermal management related
estimations (Liu K. et al., 2018; Zhang et al., 2019). These
methods can also be adopted for Ti estimations of the cell.

There are a few hybrid method-based estimators for Ti
estimation of the battery. One example is where Mehne and
Nowak (2018) used a stochastic physics-based model for a LFP
battery to estimate the temperature as a probability density
function (PDF) by running Monte-Carlo simulations. The
stochastic physics-based model is a coupled pseudo-2D
electrochemical and thermal model of a cylindrical cell
(Mehne and Nowak, 2017). The thermal model contains both
convection and radiation from cell to the surroundings. For the

FIGURE 10 | Estimation results of EKF with impedance and KF with surface temperature measurement. (A) HEV-I test with cooling (B)HEV-III test with cooling (C)
temperature distribution modeled at the end of the HEV-I cycle (D) HEV-I test with no cooling (E) HEV-II test with no cooling (F) temperature distribution modeled at the
end of the HEV-II cycle (Richardson et al., 2016a; Panel 7, p.733). (CC BY-NC-ND 4.0).
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probabilistic temperature determinations, an error model (a
time-dependent stochastic multiplier included in the rate of
heat generation) is added to this model as a stochastic
extension. The model parameters need to be pre-calibrated
and the prior PDF of the Ti can then be found using a
summation of Dirac delta functions by running a certain
number of realizations of the stochastic model ensemble. The
uncertainty of this prior PDF is calculated by the variance and
similarly the posterior variance is found based on a linear additive
measurement model with Gaussian measurement noise. The
procedure is similar to a particle filter with a single
measurement update and the data worth of the measurements
is done using the preposterior analysis. Various testing scenarios
have been carried out for the performance testing of the estimator
including uncertain future discharge conditions, and uncertain
SOC for two different cases, where the discharge current is
modeled either using a white noise model or an auto-
regressive process. Predictions of Ti based on the two cases
showed that the auto-regressive process has low prediction
error than the white noise model, where the RMSE is ±0.18°C
and ±0.3°C, respectively (for ± 3σ level of standard error). This
study shows that when the Ts sensor provides inaccurate data, the
discharge current measurement with auro-regressive modeling
can improve the Ti predictions using this stochastic model.
Although this can be used for predictions, it is not practical to
use this as an online application for a shorter sampling time (less
than 90 s), due to the high number of Monte-Carlo simulations
that are needed to be run within the sampling time.

Similarly, Liu et al. (2016) used a hybrid estimator where they
jointly estimated the temperature using both a linear NN model
and an EKF. They have used current, voltage and surface
temperature measurements as inputs to the linear NN to
capture the dynamics where the model output is the internal
temperature. A fast-forward, fast recursive algorithm is used to
find the NN structure and for the parameterization, such that
optimum inputs are selected, computational efficiency is
improved and redundancy is minimized. The lumped battery
thermal model with partial resistive heat (Eq. 12) based EKF is
then used to estimate Ti based on the output of NN and the Ts
measurements. This allows the EKF to filter out the noise and the
outliers in the NN so that the total estimation error is reduced.
The estimation error for different temperature ranges are stated,
where the RMSE for NN model is 0.179–0.233°C and for both
EKF and NN is 0.081–0.129°C. This shows that the addition of
EKF has reduced the estimation error, however the EKF mainly
acts as a filter to reduce noise rather than acting as an estimator.
The reason is that the authors have used the EKF in a way that it
relies on the NN output as a measurement, but the model
contains a linear interpolation of the mathematical
relationship for battery internal resistance which is obtained
from the test results. Usually the EKF alone can achieve
similar results, and the NN has not improved EKF
performance. A similar performance could also be obtained
from attaching a filter to the NN model and with less
computational resources.

The inability to react to unpredicted outliers, the requirement
of large amounts of data for training and the less global

applicability of these models are some of the disadvantages of
data-driven models. However, some of these can be avoided by
using them together with physics-based methods as shown from
the above examples.

3.3 Potential of Development of Soft
Sensors
Simplified thermal models like the lumped thermal models or
other cell level models considering homogenized properties,
allow us to estimate an average cell temperature but prohibit
localized hotspot prediction. More detailed models allow for
hotspot prediction and better understanding of electrochemical
processes, but depending on the model fidelity, computing
requirements vary. If the computational cost is too high it
becomes difficult to use those models in an online system and
the trade-off between accuracy and applicability has to be
considered.

Many studies utilize the coupling of an electrochemical and
thermal model that incorporate heterogeneity at the microscopic
length scale (Yan et al., 2013; Shirazi et al., 2015; Zhoujian et al.,
2018). Multi-physics models allow to analyze and predict
electrochemical reactions and transport processes and the
associated heat generation spatially resolved.

Spitthoff et al. (2021) developed a model considering the
electrode layer and surface layer distinctly including the
coupling of heat, mass and charge transport. Instead of
including the reversible entropic heating by using the entropy
change over the full cell, the reversible heat effects are included
locally at each electrode surface. This results in a heat release on
one electrode surface and a simultaneous heat absorption at the
other electrode surface. This adds an advantage towards models
using the entropy change over the cell as the maximum
temperature as well as internal temperature gradients are
underestimated. A disadvantage contains the advanced need of
material properties.

Furthermore, various models and estimators can be coupled to
get more accurate estimations results. A summary of accuracies
that are achieved by various models and estimators is shown in
Table 5. The accuracy can further be improved by combining
with increased number of hard sensors for more measurements.

3.4 Common Challenges and Benefits of
Soft Sensors
As is evident from the various estimators that are discussed above,
proper parameterization is of paramount importance similar to
the model accuracy. As the estimation accuracy highly depends
on the parameters, especially the internal resistance of the cell,
parameterization tests need to be done for all possible scenarios to
be sufficiently representative. Similarly, the validation tests
should be well representative of the battery usage during
actual charging, discharging, and resting conditions. Only a
few studies have used a collection of various established
driving cycles, the other studies have used either a single
specific driving cycle or specific tests that are less
representative. Therefore, the estimation accuracy of these soft
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sensors could decrease in real battery usage scenarios. However,
the estimators that have been validated through various driving
cycles show that these can be of high accuracy. Although this
dependency on parameterization and validation test conditions is
a major challenge, it can be overcome by the proper use of
relevant tests.

Both types of sensors need to be properly calibrated offline,
before installation and during routine maintenance. However, an
additional challenge with soft sensors is that it needs an actual
internal temperature measurement of a hard sensor (or an already
tuned soft sensor) for the calibration. Furthermore, the
estimation accuracy depends on the accuracy and precision of
the other measurements that are used (such as surface
temperature measurement and current); therefore, the soft
sensor would not be of higher accuracy than the other sensors
that are used.

Soft sensors are generally considered to be of low cost, and low
power compared to the hard sensors, which allows realization of
more comprehensive monitoring networks. The non-destructive
ability is also a huge benefit, as the proper sealing of the cell is
ensured and any maintenance related to outer measurements or
the system can be done without any opening of the cell. Similarly,
any sensor bias or sensor faults that can occur are easily corrected
either by calibration or by using embedded fault detection and
diagnosis systems.

Another main benefit is that additional information on various
parameters that are useful for SOC estimation, can be obtained
from the estimators apart from the temperatures. Furthermore, the
soft sensors are easy to add into other estimators in the BMS, such
as SOC and SOH estimations. Also, the estimators can be easily re-
arranged to work with various BMS control structures, whether it is
inbuilt with estimators or not. This is beneficial in smart
monitoring and control systems, such as the control of self-
heating in cells or control of the cooling system in BMS, where
the soft sensor can minimize the time delay due to sensor data
transfer by hard sensors.

4 FUTURE TRENDS IN THERMAL SENSING
IN BATTERIES

Integration of smart functionalities into the battery is one of the
main visions in worldwide future battery innovation research
(Edström, 2020). Among these, smart cells and smart battery
packs are conceptualized as emerging techniques. The smart cell
concept is an integrated design of a cell with its management
system. Each cell has a cell-level BMS that monitors and controls
the critical states and parameters, which is then integrated with

the system-level smart battery pack BMS. This provides high
modularity, plug-and-play integration, high scalability, and
enhanced fault tolerance for packs (Wei et al., 2021).

The use of smart sensors that can self-monitor and
communicate is a major component of these smart cells. A
smart sensor would be able to measure and do digital
processing and on-board diagnostics, and communicate with
other systems. Soft sensors can easily be incorporated into
smart sensors due to their generality and online applicability
(Xiong et al., 2018). However, the cell-level controller must be
able to handle the additional computational burden of the soft
sensor, together with pre-processing, and decision-making (Wei
et al., 2021). The use of cloud computing technology for
computationally heavy tasks is one option.

Another option is to use a hard sensor to lift this burden by
directly measuring the temperature and communicating with the
smart sensor. Thin-film thermocouples and thermistors, portable
EIS or FBG sensors are good candidates for this. However, the
sensors must be well-developed to have frequent real-time
measurements, communication, and durability conditions.
Another good candidate is the micro-structured optical fibers,
also known as photonic crystal fibers. These are optical fibers that
obtain total internal reflection by manipulating the waveguide
structure, unlike FBGs that rely on the change in refractive index
of the bragg gratings. The air-hole patterns within the core
determine the properties of the sensor; therefore the careful
design of these patterns provides a possible way to measure
both internal temperature and pressure independently within a
single fiber. However, the manufacturing of these sensors is still in
the early stages, and intensive research and development are
needed for testing the feasibility of using these in future batteries
(Edström, 2020).

Further, future hard and soft sensors need to be able to
operate accurately and reliably in the presence of non-
ignorable electromagnetic interference that will occur due
to increased communications between many cell BMSs. The
use of various sensor fusion methods is a good candidate for
future techniques for smart sensors, where various hard and
soft sensors are combined for better performance. Moreover,
for the hard sensors, more development is needed on smaller
sizes and better substrates for less interference to the cell,
durability, and high tolerance to the corrosive environment
(Fleming et al., 2019). Furthermore, the future batteries are to
be of low manufacturing cost and minimal in life cycle impact,
which should also be considered for the attached/embedded
sensors.

Generally, embedded sensors need to be equipped with
effective insulation, less thermal impact, high flexibility for
distributed measurement, and long-term stability in addition
to the above-mentioned abilities (Wei et al., 2021). These
qualities should be able to be applied to future battery types
and chemistries, such as solid-state and semi-solid-state
batteries or silicon-based lithium-ion batteries. Similarly, for
the soft sensors, the main development that is needed is the
ability to accurately sense the distributed internal temperature.
It will further be advantages if these are cheaper and faster
than today.

TABLE 5 | Comparison of soft sensors.

Model type Estimators Accuracy °C

Lumped models: Ohmic EKF, KF, ESO, UKF, EUKF 0.38–1.01
Lumped models: Entropic KF 0.1–0.75
Distributed models KF, EKF, DEKF, DKF 0.09–1.18
Hybrid models NN, NN + EKF 0.08–0.23
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5 CONCLUSION

In this review, the most recent studies on various online internal
temperature monitoring techniques were reviewed under two
main themes of hard sensors and soft sensors. Contact sensors
such as thermocouples, thermistors, RTDs, and fiber optic
sensors, and contactless sensors such as EIS and JNT are
discussed under hard sensors. Physics model-based and hybrid
method-based soft sensors are discussed under soft sensors,
focusing on various types of models that are used. More
weight is given to the soft sensors due to the lack of in-depth
review studies on these. The sensor types are analyzed in detail
with their accuracy, implementation, measurement frequency,
and their common challenges and benefits. Furthermore, possible
future trends in internal temperature sensing in future LIBs
technologies are also discussed.

Generally, hard sensors are themost accurate; however, proper
sealing methods are needed for embedding, and good insulation
and protective layers are needed for the durability and reliability
of the sensor. Typical soft sensors are non-destructive, flexible,
low-cost, and low-power; however, proper parameterization and
accurate additional measurements such as surface temperature,
current, voltage are needed for the accuracy of the sensor. Both

types of sensors need rapid advancements to cater to the future
BMS requirements as well as future smart battery requirements.
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