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Abstract

This thesis presents a decentralised task assignment method that uses auctioning
mechanisms to propagate requests. It is designed to be implemented on top of
the MQTT protocol and to be used in a fog computing network. The use-case is to
route a request from an edge client to a fog node that is suitable for processing the
requested service. The auction based task assignment method behaves such that
a node that is incapable of handling a requested service invites its neighbouring
fog nodes to participate in auctions. The neighbours place a bid in the auction
that is proportional to their capabilities of providing the service. By propagating
the request to the highest bidders, this approach finds the most optimal next step
in the propagation based on the information that is contained in the bid. The
feasibility of the method was proven by implementing a working demonstration
program. The performance of the program was tested against two other methods,
a modified version of the system outlined by Battistoni et al. in [1] and a random
approach to request propagation. A limitation of the demonstration program is
that the sizing of the bids was based on an expression that solely considers the
immediate processing capability of the node in question. The method was shown
to have better performance for some examples where the capabilities of nodes that
would be part of a re-auction were included as a component in the bid. The main
contribution of this thesis is this selective method for propagating messages in an
MQTT network that contains multiple brokers based on autonomous collaboration.
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Sammendrag

Denne masteroppgaven beskriver et desentralisert system for å delegere forespørsler
ved hjelp av auksjoner. Metoden er designet for MQTT protokollen og har fog com-
puting nettverk som tenkt bruksområde. Formålet med metoden er å videreføre
forespørsler fra en edge klient til en fog node som er en god kandidat for å ut-
føre den aktuelle tjenesten. Auksjonsmetoden fungerer slik at når en node får en
forespørsel som den ikke burde utføre selv så inviterer den sine nabonoder til
en auksjon. Naboene byr på forespørselen i henhold til deres evne til å håndtere
forespørselen. Ved å videresende ansvaret for forespørselen til de høystbydende
naboene så sørger auksjonsmetoden for at de best mulige valgene blir tatt ut ifra
den tilgjengelige informasjonen som er innbakt i budene. Den praktiske gjennom-
førbarheten ved auksjonsmetoden ble vist ved å lage et fungerende demonstras-
jonsprogram. Ytelsen til auksjonsmetoden ble testet opp imot en modifisert ut-
gave av Battistoni et al. sitt verk i [1] og en tilfeldig tilnærming til delegering. En
mangel ved demonstrasjonsprogrammet er at størrelsen på budene er utregnet
med et uttrykk som utelukkende tar i betraktning nodenes evne til å utføre den
forespurte tjenesten. Auksjonsmetoden er igjennom eksempler vist til å yte bedre
når den også tar hensyn til de forventede budene fra nodene som vil være en del
av neste budrunde. Bidraget er gitt ved å fremlegge denne selektive metoden for
å delegere meldinger i et MQTT nettverk som inneholder flere brokere ved hjelp av
autonomt samarbeid.
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Chapter 1

Introduction

The need for remotely available Infrastructure as a Service (IaaS) products has
been made clear by the emergence and quick adoption of cloud technology. The
dawn of the COVID-19 pandemic in March 2020 brought cloud computing into the
households of the general public as more and more had to leave their offices and
work from home. The transition to the home-office meant getting used to daily
interaction with remote computing services for video conferencing, VPNs, project
management, and other work-at-home solutions. The cloud has become a part of
everyday life for many people. The digital industry has been employing the cloud
for a long time and are using it to replace local IT infrastructure either partially
or fully. Cloud computing has overshadowed other remote computing paradigms
for some time now, but recently there is much talk about moving towards the
edge. That means moving closer to the application logic and has been a natural
step because the cost of computing power is lower than ever. Despite hardware
historically being at the lowest price-performance ratio there are still benefits to be
had from remote computing. However, the decreased cost of computing resources
provide greater opportunities for highly distributed systems that place powerful
hardware closer to the locations of the consumers.

The services that are provided by the cloud are naturally centralised and that
is a downside in certain applications. Any system with limited network capabilities
are especially at a deficit because they can not reliably connect directly to a distant
data centre. Many such systems that are traditionally constrained in the network
department belong in the industrial and Internet of Things (IoT) landscape. These
are comprised of low-cost edge devices that require remote computing to perform
the tasks that they are unsuited for because of their limited capabilities. The fog
computing technology aims to solve this challenge by introducing an intermediary
layer between the edge and the cloud. This intermediary layer, which is commonly
referred to as just the fog, is a distributed network of fog nodes that will be closer
to the edge devices than any data centre that is offered by the cloud. The purpose
of fog computing is to offload edge devices by placing an interface to the fog that
is in their proximity. This allows the edge devices to be built with less powerful
hardware and to use networks that would otherwise be too unreliable for edge to
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cloud communication.
This thesis presents a decentralised task assignment method for fog networks.

The presented approach employs the MQTT protocol and uses auctioning mechan-
isms to propagate requests from the edge clients to fog nodes. The MQTT protocol
provides reliable messaging with low bandwidth requirements and decouples the
fog nodes such that they can operate in a dynamic fog network. Assigning tasks
through auctioning ensures that a request is delegated to the most capable fog
node in each step of the propagation. The auction approach is a selective message
propagation method for cooperative and distributed multi-broker architectures. A
demonstration program of the auction approach has been implemented and has
been tested against two other decentralised task assignment schemes. A random
approach to task assignment and a modified implementation of the method out-
lined by Battistoni et al. in [1].

1.1 Aims and Objectives

The main objectives for this thesis is to present and determine the feasibility of a
decentralised task assignment system for fog computing architectures. The basis
of the method is to hold autonomous auctions between fog nodes to propagate
requests from edge clients. The feasibility of implementing the method will be
determined by developing a representative demonstration program where the fog
nodes exclusively communicate in accordance with the MQTT protocol. The thesis
also aims to evaluate the viability of the auction approach by empirically compar-
ing it to a random approach and an approach inspired by the method outlined by
Battistoni et al. in [1]. To achieve this, the performance of the approaches will be
measured in experiments that feature simulated fog computing networks that are
populated with fully functional MQTT clients.

1.2 Structure of Document

This thesis is written with the intention to introduce its readers to a fog computing
architecture that employs the MQTT messaging protocol. It is assumed that the
readers are familiar with some networking terminology and general IoT concepts.

Chapter 2 gives an overview of fog computing, MQTT, and a look at the most
important elements that found a basis of publish-subscribe messaging in fog ar-
chitectures. The chapter also covers previous work on task assignment in fog com-
puting networks. Chapter 3 outlines the components and behaviour of the auction
approach, its intended functionalities, and an overview of the component interac-
tions. Chapter 4 presents a working implementation of the auction approach. In
addition to the behaviours of the random and modified Battistoni approach that
it was compared to. The chapter also covers the method and the results of the ex-
periments. Chapter 5 reflects on the results from the experiments, the advantages
of using the MQTT protocol in fog networks, and provides an evaluation of the
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auction approach. Chapter 6 concludes the report and points to areas of further
research.

3





Chapter 2

Theory

This chapter provides the necessary context and technical knowledge that lay the
fundamentals of the work presented in this thesis. It does so by introducing the
technologies that are used and background literature on the topic. This thesis
presents an MQTT-based auctioning mechanism which is used for assigning ser-
vice requests in a fog network. This chapter starts with a description of the fog
computing paradigm and the MQTT messaging protocol. Following this, there are
sections that will explain how MQTT can be used in fog computing architectures
and previous research on this topic. By the end of this chapter, the reader should
have a good understanding of the scope of fog computing and how MQTT can
be used to route requests in a fog network. The following chapter 3 covers how
requests can be propagated with auctions.

2.1 Fog Computing

The scope of fog computing is a widely discussed topic, for this thesis we are us-
ing the definition and elaborations as outlined by the survey of Yousefpour et al.
in [2]. They mention the definition of fog computing as provided by the Open
Fog Consortium (OFC), which is now a part of the Industry IoT Consortium (IIC).
The OFC define fog computing as "a horizontal system-level architecture that dis-
tributes computing, storage, control and networking functions closer to the users
along a cloud-to-thing continuum" [3]. Yousefpour et al. further elaborates on this
definition by comparing fog computing to other similar paradigms. The names of
these paradigms are often used interchangeably because of their similarities. How-
ever, this has lead to confusion when differentiating between the various architec-
tures. The comparisons of Yousefpour et al. include well known paradigms such
as edge computing, cloud computing, mobile ad hoc cloud computing (MACC),
etc. It is important in the context of this thesis to have a clear picture of the scope
and properties of fog computing. Therefore, a discussion outlining the differences
between fog computing and some of the similar paradigms is included for clarity.
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2.1.1 Comparing Fog Computing to Similar Paradigms

Fog computing bridges the gap between the edge and the cloud by introducing
an intermediary component, the fog network, which is a collection of fog nodes
that are in a closer vicinity to the edge in comparison to the cloud. The fog nodes
enable computing, storage, networking and data management to be performed
close to the edge. The term fog computing is often used interchangeably with
edge computing, however these two paradigms are not identical. Edge computing
relates to computing done at the edge and provides no hierarchical connection to
the cloud. The exact location of the edge is dependent on the type of system.
But in the context of the general IoT landscape, the edge is thought of as being
contained in the local network and thus the edge nodes are normally a single
hop away from end-devices. Consequently, edge computing is concerned with the
organisation and offloading of tasks for a localized system. The edge servers can
provide necessary real-time computations and services to constrained end-devices.
In contrast to edge computing, fog computing is concerned with providing its
services to multiple local systems.

One of the main characteristics of the fog computing architecture is that it acts
as a junction for the local edge and remote cloud. Fog computing is often confused
with edge-cloud computing because the fog network also connects the edge with
the cloud. In the edge-cloud paradigm, some tasks are performed locally at the
edge and some tasks are requested to be done remotely by a cloud provider. These
remotely executed tasks are often referred to as services. In edge-cloud there are
no services that are done along the way between the edge and the cloud. This is
the major distinction between fog computing and edge-cloud. The fog network
can provide services to the edge in addition to handling the transport of messages
between the edge and cloud. The fog computing architecture is flexible and the
messages it routes from the edge to the cloud may be any message which is typic-
ally used in edge-cloud, e.g., serverless function invocations, database entries and
queries, raw data, remote procedure calls (RPC).

Fog computing is similar to cloud computing in the way that it also provides
additional hardware resources and software as a service to the edge. Despite this
resemblance, fog computing is rarely mistaken for cloud computing because they
have clearly different strategies for organizing their hardware. A fog network is a
highly distributed system, which means that its resources consist of many entit-
ies which are spread out across a wide area. Cloud computing architectures are
also distributed, however to a lesser extent in comparison to fog computing. The
cloud is comprised of large data centres that are spread out over a few select loc-
ations. A fog network consist of heterogeneous fog nodes which means that each
individual fog node’s computing resources may be different. A variety of moder-
ately powerful devices can take the role of a fog node, e.g., small data centres,
personal computers, sophisticated routers, IoT gateways. A fog network consists
of interconnections between the fog nodes and also extended connections to the
edge devices and cloud clusters. The fog network can be managed in a decentral-
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ized fashion, i.e., the fog nodes operate without a central organizational entity.
However, centralized methods can also be used to manage a fog network, e.g., to
introduce new fog nodes, delegate tasks, and maintain the network topology.

A fog network is dynamic, which means that the amount of participating nodes
can vary as well as the available resources. As a result, the capabilities of a fog
network can be scaled by adding new fog nodes. The dynamic and distributed
nature of fog computing resemble the MACC paradigm. In addition, the MACC
architecture also leverages cloud data centres. The main difference between fog
and MACC is in how the architectures view the reliability and longevity of their
participants. A MACC network is more dynamic than a fog network. The nodes in
MACC are generally seen as mobile participants that create temporary ad hoc net-
works. In comparison to MACC, fog nodes are much more static and are expected
to participate in the network for an extended period. Fog nodes are additionally
considered to have moderately robust Internet connections such that they have
greater availability than MACC nodes.

To summarize, the fog computing architecture describes three layers to do
computations. The local edge, the intermediate fog network, and the remote cloud.
The fog network consists of fog nodes which are distributed such that they cover
a large geographical area. The fog network is moderately dynamic so the nodes
may join, leave, and re-join the network but they will mostly remain as activate
participants. The fog nodes are on the scale of small servers and can do mod-
erately intensive tasks for multiple clients simultaneously. However, cloud data
centres are much more powerful than a single fog node. Lastly, a fog network is
an intermediate component that can aid the edge by providing remote services at
the fog nodes or bridge requests to the cloud.

2.1.2 Naming the Fog Computing Components

This thesis uses a consistent set of nicknames for the components of the fog com-
puting paradigm to alleviate the excessive need for the fog prefix throughout the
text. The fog network is referred to as the Fog, the fog nodes that provide the ser-
vices in the Fog are Nodes, and finally, the edge devices or fog clients that request
services from the Fog are called Clients. Large scale cloud data centres are part of
the fog computing paradigm and are referred to as a single entity, the Cloud.

Note that, the components which are nicknamed here are used as entities
that are part of the fog computing architecture described by this thesis, i.e., the
components are later assigned with qualities and requirements which are specific
only to the proposed design. The section 3.2 provides further descriptions of the
components in relation to the presented auction approach which uses MQTT and
auctioning mechanisms for task assignment.

2.1.3 How Resources are Provisioned by the Fog

The fog computing paradigm is a three-layer model that includes the Clients, the
Fog and the Cloud. Processing happens at each layer, however the Clients located
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at the far edge will at times issue requests for remote services to the Fog. Each
request from the Clients must be allocated suitably to either a Node or the Cloud.
A task assignment method is necessary in order to decide on which entity the
request shall be delegated to. The aim of the task assignment method is to ensure
a good trade-off between efficient use of resources and good performance. Finding
a suitable Node or forwarding the request to the Cloud is referred to as finding
a solution. A solution is associated with positive attributes such as low response
times, load balancing, and energy efficient.

Each request from a Client is associated with some task that must be remotely
processed either at a Node or by the Cloud. The task is referred to as a service that
the processing entity provides to the Client. The requests should be delegated in an
inherently load balancing method such that there is a smaller chance that a Node
is overloaded. When a Node is overloaded it will either fail to provide its services
or have low performances because it has been delegated too many concurrent
requests. A request should be sent to the Cloud if it will lead to a better solution
than what is available in the Fog. Additionally, requests may have properties that
make them more suitable to be handled by the Cloud, such as long term storage,
hosting globally accessible servers, and heavy computations.

Besides accounting for the isolated capabilities of each available Node the as-
signment method could also consider network congestion in the Fog. This thesis
assumes that the connection between a Node and a Client is primarily established
by propagation. Such that a request may pass through multiple Nodes before it
reaches the Node that finally processes the service. This assumption is in place
because the Clients are already assumed to have restrictive network properties
that may not allow them to directly connect to a sufficiently large group of Nodes
or the Cloud. The route that a request takes from a Client to the processing Node
is referred to as the transmission path, propagation path, or just the path depend-
ing on the context. Some transmission paths are more constrained and could be
compromised if a lot of request traffic was routed through them. The path consid-
erations can be handled by routing requests with Software Defined Networking
(SDN) tools. This has been studied for fog computing architectures by Gupta et
al. in [4].

The assignment of requests can either be done in a decentralised fashion or
through central delegation mechanisms. Centralized methods for organising and
delegating requests in the Fog rely on transparent networks. With a complete view
on the current load on the Nodes and network congestion it is possible to optim-
ally assign tasks to the most appropriate Nodes in terms of a trade-off between
the total cost and performance. An example of a practical implementation of a
centralised task assignment system intended for fog computing was explored by
Jung-Fa et al. in [5]. Their method can make specified trade-offs between time
consumption and the cost of processing by solving an objective function reliant
on detailed knowledge about the participating nodes. They were able to determ-
ine the optimal global solution but notes that the computational complexity of the
centralised approach increases rapidly in proportion to the size of the network.
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Therefore, a presumed disadvantage of centralized task assignment systems is
that they will scale poorly because they have to process large amounts of data at
a single point.

A decentralised task assignment method assumes that the Nodes are autonom-
ous agents that are able to interact with other Nodes such that they can collabor-
ate by sharing information and propagating requests. The Nodes will collectively
strive to find the most optimal solution that can be found based on the local in-
formation that is available to them. The data that each Node will base its decision
on will be limited to the knowledge it has about itself and any additional data that
has been shared by its neighbours. As a result of not having a global state of the
system, a Node will at each step of the propagation path determine if it should pro-
cess the service and/or further delegate the responsibility to other Nodes. There
are numerous decentralised task assignment systems that can be applied to fog
computing and this thesis presents one in chapter 3 that utilises auctions and the
MQTT publish-subscribe protocol. The advantages of a decentralised task assign-
ment system is that the task of delegating requests is separated into sub-tasks that
can be solved at each Node and that a global state of the system does not have to
be maintained. The disadvantage is the challenge of finding good solutions based
on the limited data that is available to each Node.

Auction algorithms to task assignment is not a novel topic but it has not been
fully explored in neither a fog computing context or how it can be applied to
publish-subscribe protocols in practice. Brunet et al. presents a consensus-based
auction algorithm for decentralised task assignment in the context of autonomous
UAVs in [6]. They showed through numerical experiments that the their auction
algorithm was able to find identical solutions to a centralised greedy algorithm
with good average performance. Le et al. introduce a device-to-device middleware
architecture that enables multi-hop assignment of RPCs using Wi-Fi Direct in [7].
They proved the feasibility of their design on a test-bed comprised of Android
smartphones.

2.1.4 How the Fog Provides Services to Clients

The Fog makes a pool of shared computing resources available to the Clients.
The Clients can utilise the computing power of the Fog by making a request to
one of the Nodes. The request is delegated to a subset of the available Nodes
according to the applicable assignment method. The Fog delegates the requests
without intervention from the Clients. Therefore, the Client applications should
not assume the location and identity of the Node that will process the requests.
The previous section 2.1.4 covered how the Fog allocates service requests based
on the desired trade-off between performance and resource efficiency. The result
is that a requested service can be processed by any suitable Node. The maintainers
of the Clients do not necessarily have an opportunity to affect the configuration
of the Nodes and therefore the Client applications that interact with the Fog must
do so through a standardised interface. The implementation of the interface will
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vary based on the types of services that a Fog provides to its Clients. This section
covers some of the proven types of services that can be offered by a fog computing
architecture.

The Fog consists of many heterogeneous Nodes which means that the Nodes
can run a variety of different hardware and operating systems. Therefore, the Fog
needs to offer hardware and operating system abstraction to provide the Clients
with the same experience when using whichever Node. The Fog is well suited
for providing serverless services to the Clients. Because serverless services are
state-less and agnostic to the hardware such that each request can be assigned to
any Node without affecting the functionality. In their article Cheng et al. present
Fog Function, a serverless programming model for fog computing applications
[8]. Golem has deployed a peer-to-peer computation network that is used in a
serverless manner where users request services by publishing task templates [9].
However, there is a demand for running self-written stateful services in the Fog and
this has lead to designs that leverage virtual machines and container technology. In
their article Hoque et al. present an architecture for orchestrating containers in fog
networks via a centralized manager node [10]. SONM is distributed marketplace
that allows its customers to upload Docker containers to suppliers utilizing the
shared resource pool of the participants [11].

2.2 Overview of MQTT

This section is a summary of the MQTT messaging protocol and covers the most
important mechanisms in the context of this thesis. Some readers may already
be familiar with the material and can continue reading from 2.3, however 2.2.3
includes material on the request-response pattern which is new in version 5.0 of
the MQTT specification. This summary is included to familiarize the reader with
MQTT. Which is the underlying message protocol that is used by the presented
auction-based task assignment method.

MQTT is a popular messaging protocol that is commonly used for M2M com-
munication and IoT applications. The protocol was first developed by Arlen Nip-
per and Andy Standford-Clark in 1999 to be used with SCADA systems in the oil
and gas industry [12]. MQTT is an open OASIS standard for a publish-subscribe
messaging protocol [13]. A widely used alternative to MQTT is HTTP. The major
difference between these two application layer protocols is the messaging pattern.
HTTP is a request-response type of protocol, where a client sends its request to the
server and receives a response. In contrast, MQTT is a publish-subscribe protocol
where clients publish or subscribe to a topic hosted on a broker.

2.2.1 Publish and Subscribe

The MQTT protocol leverages the publish-subscribe pattern for delivering mes-
sages. MQTT defines three main entities: the broker, the subscriber, and the pub-
lisher. The broker is a server application and organises the routing of messages in
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an MQTT network. The publisher and subscribers are clients that are connected
to the broker. A publisher is a sender of messages and a subscriber is a recipient.
The connection of a subscribing client is being kept open by the broker such that
it remains connected until it actively disconnects or the connection is broken. A
publisher will send (publish) a message to the broker onto a specified topic. The
broker will in response forward the message to any subscriber that has subscribed
to the topic. A topic is a structured string where each topic level is separated by a
forward slash.

Figure 2.1: An overview of the MQTT topic-based publish-subscribe messaging.
[14]

The figure 2.1 shows how messages are being routed in an MQTT network.
The two devices (subscribers) on the right are subscribed to the topic "Y". They
are expecting to receive the messages which are published to topic "Y". The sensor
(publisher) publishes a message containing "X" onto the aforementioned topic
"Y". The published message first reaches the broker, which in turn forwards the
message to the subscribers of topic "Y".

The MQTT protocol is able to decouple the senders of messages from the re-
cipients by handling the messaging in this fashion. In other words, the publisher
is not aware of the existence of the subscribers who are receiving its messages.
Neither do the subscribers need explicit information regarding the publishing cli-
ents. The subscribers are interested in any message that is posted onto a topic
which they are subscribed to, without concerns about who the original publisher
is. It is important to note that an MQTT client is able to act as a publisher and as a
subscriber at the same time. Such that a single client can send outgoing messages
and also receive incoming messages.
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2.2.2 Quality of Service

The MQTT protocol has Quality of Service (QoS) defined as part of its specific-
ations. QoS refers to the guarantee that is given for the successful transmission
of a message. The MQTT protocol supports three levels of QoS. A higher level of
QoS will offer more consistency in message delivery, however it comes with the
cost of increased latency and bandwidth consumption. The following bullet points
summarize the different levels of QoS that are available in MQTT.

0. The broker/client will deliver the message at most once, with no confirma-
tion.

1. The broker/client will deliver the message at least once, with confirmation
required.

2. The broker/client will deliver the message exactly once by using a four step
handshake.

The QoS level is specified for either a subscription or to a published message in
MQTT. Therefore, QoS can be applied by both subscribing and publishing clients.
A publisher can make sure that its message is received by the broker if it specifies
a QoS higher than 0. A subscriber can make sure that it receives all messages
which it is subscribed to by specifying a QoS higher than 0. This assumes that the
messages were successfully published onto the broker with a QoS higher than 1.

MQTT allows clients to set their preferred QoS. A higher level of QoS allows
clients to be confident that their data is being received or sent in a fault tolerant
matter. Being able to set the QoS is beneficial for systems that either have to assure
message delivery or that has unreliable client connections.

2.2.3 Using the Request-Response with MQTT

The request-response pattern is new in MQTT v5.0 and is later referenced in sec-
tion 3.3.5 where it is used to propagate responses back to the client. The request-
response pattern is one of the most common ways of handling the transaction of
messages between a client and a server. In request-response, the client will send
a request to the server, and the server will send back a response to the client.

The request-response pattern requires that a response must be tied to a specific
request. In other words, the client can match an incoming response to a request
that it had previously sent. For practical reasons, implementations of request-
response commonly use messaging protocols that offer 1-to-1 and synchronous
client-server connections, such as HTTP. The benefit of having a 1-to-1 relationship
between a client and the server is that their communication channel is exclusive to
them. Which means that there wont be any interference from other clients. With
synchronous communication, the request is directly followed up by a response
and there is no concurrent exchange of messages. The combination of these prop-
erties let clients issue requests and be certain that the following response is only
intended for them and that the response is an answer to their last request.

The request-response pattern is not inherently supported by the publish-subscribe
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messaging used in MQTT. With publish-subscribe the requesting clients are de-
coupled from the responding clients. Therefore, the publish-subscribe pattern can
not assure a 1-to-1 relationship. The messaging in publish-subscribe is also done
asynchronously such that a requesting client may receive any number of messages
before the awaited response arrives. This makes it challenging to match a response
to a specific request from the requesting client’s perspective.

As of MQTT v5.0 the specification defines a standard method for implementing
the request-response pattern in a publish-subscribe network. The main challenge
is to match a response to a specific request. To achieve this, the request and re-
sponse messages may contain additional data. The attributes of a message may
contain a response topic and some correlation data. The response topic indicates
which topic the responding clients should publish their response on. The correla-
tion data is used to match a response to a request. When using request-response
with MQTT there can be multiple responses to a single request. This situation oc-
curs when there are multiple responding clients subscribed to the same request.
However, the requesting client will still be able to recognize that these responses
are tied to a single request by checking the correlation data. Additionally, the mes-
saging can be done asynchronously because the responses are linked to requests
by the correlation data which is embedded as a part of the properties of the mes-
sages.

Figure 2.2: An overview of the Request and Response procedure in MQTT.[15]

13



The figure 2.2 is a sequence diagram that shows how the request-response
pattern is implemented in MQTT. The figure includes the broker and two clients,
a requesting client and a responding client. The client on the left is a requesting
client and will publish messages that contain some request. On the right, the re-
sponse client will be in charge of handling the request and publishing a response.
The responding client is subscribed to the topic "aaa", which is where it will re-
ceive its requests. The requesting client publishes a message to the topic "aaa".
This is the request and it contains two important additional pieces of information
compared to a regular MQTT message. The request has attached a response topic
"ack/1" and some correlation data "12345". The requesting client sends another
request before it has received a response to its first request. The second request is
also published to the topic "aaa" and has the same response topic. However, the
correlation data has changed to "54321". On the right hand side of the diagram,
the responding client first publishes a response with correlation data "54321" and
then a second response with correlation data "12345". The requesting client will
be able to tell which response is intended as an answer to the first and second
request by matching the correlation data.

The request-response pattern can be implemented in MQTT by utilizing the
response topic and correlation data attributes. This allows MQTT clients to verify
the responses to their requests. The request-response pattern is practical when a
client wants to invoke some remote functionality offered by another client in the
network that results in a response.

2.3 Remote Service Requests in Fog Architectures with
MQTT

One of the primary subjects of this thesis is to use the MQTT protocol for commu-
nicating remote service requests in a fog computing architecture. The architecture
that is considered consists of multiple connected Nodes that each host a broker
and a set of MQTT clients. Each Node provides remote services that are available
to the Clients and upon receiving a request they can delegate the responsibility of
handling the request to their neighbouring Nodes. Depending on the situation, a
request can be propagated to none, one, a few, or all of the neighbours. Therefore,
a task assignment method is needed to decide if a Node will initiate the processing
of a service and how it further propagates a request to its neighbours. This thesis
presents a task assignment method that uses auctions mechanisms to do so. Before
covering the auction approach in chapter 3, this section provides an overview of
how Clients publish their requests to the Fog, the service types that can be offered,
and previous work on the topic.

2.3.1 Providing Remote Services with MQTT

An MQTT client can order a request for a remote service by specifying the name of
the function in either the message payload or by publishing to a designated topic.
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The message that contains the request must reach at least one subscribing client
and contain some information that maps to a specific service on that client. The
receiving client will interpret the contents of the request and handle it accordingly.

The figure 2.3 shows an example where a Client that is located at the edge
requests a service from a Node in the Fog. The Client makes a request for Service
A by publishing an MQTT message onto the topic "Request/ServiceA" with input
arguments "input" in the payload. The Node hosts the broker which the request
is published to in addition to an internal MQTT client that is subscribed to the
topic. The internal client on the Node receives the request, recognizes the reques-
ted service-name from the topic, and carries out the processing of Service A with
arguments "input".

Figure 2.3: A representation of a Client requesting a service from a Node in the
Fog. The topic is being used to specify the request of Service A.

Service Types

The MQTT protocol can be used to request services but using a 1-to-1 request-
response protocol is far more common in practice. That is because MQTT has
additional considerations in regards to maximum message size, asynchronous be-
haviour, and publish-subscribe messaging. The MQTT protocol allows for a max-
imum payload size of 255 MB [16]. This is a substantial message size in practice
and it is common to have broker instances with lower limits set because of band-
width or application constraints. Due to the generous payload size, small files can
be sent as a single message but messages that are too large must be published
as multiple messages in sequence. However, ordered messaging would require
supporting application logic because MQTT is asynchronous and does not guar-
antee the order of messages. As a result, MQTT is inherently better suited for
transporting messages with small footprints and is not suitable for sending large
data structures and ordered sequences such as high resolution images and video
streams.

MQTT can effectively be used for transmitting stateless service requests and
possibly be used to initialise stateful services. A service that is stateless has a short
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life cycle that terminates after some task has been performed and does not store
state information between requests. An example of a stateless service is download-
ing a file from a web server. Stateless services can be provided by a different server
each time and are characterised by a single request and a response. On the other
hand, a stateful service maintains a record of past requests or transactions and are
long-term commitments for the provider of the service. An example of a stateful
service is file storage. The stateful services are characterised by maintaining a his-
tory of past events and are therefore usually provided by only one server. A general
challenge for requesting services with a publish-subscribe protocol, such as MQTT,
is that the relationship between the publisher and the amount of subscribers is not
guaranteed. As a result, any amount of clients may receive and want to respond
to a single published request. Furthermore, the identity of the subscribers may
change between consecutive requests as any client may subscribe or unsubscribe
from the topic. When requesting a stateless service, the requesting party is gen-
erally unconcerned with the identity and amount of responding parties because
the expected outcome is unchanged. As a result, MQTT can naturally be used
for stateless service requests as long as the published message reaches at least
one provider. In contrast, stateful service requests are required to reach the same
provider every time because the provider is maintaining the state of the service.
The MQTT protocol is unsuitable for guaranteeing this type of strong coupling
between clients. For stateful service requests, it would be practical to establish
a direct connection between the requester and provider with a protocol such as
HTTP after the initial request has been made. The initial request can be issued
with the intent of identifying a provider of a stateful service and could feasibly be
communicated as a request-response message in MQTT.

This is a conceptual example of how the stateful service of hosting a Docker
container can be initiated with MQTT. The size of a minimal Docker image with
Ubuntu is 188 MB and could be sent as a single MQTT message. An Ubuntu con-
tainer image might in practice be larger than the maximum message size if it is
more sophisticated or if the maximum payload size has been configured to a lower
size than the specification allows. However, in such cases there exists smaller con-
tainerized environments that may be used instead, e.g. an Alpine Docker Image
is only 5 MB. To host the container a Client publishes the container image to a
Node. That Node and its neighbouring Nodes are notified of the request. A task
assignment method is used to determine the Node that will host the container.
The application that is contained on the image is a program for a web server. The
Node that is assigned with the task runs the image and publishes a response to
the Client that requested the service. The Client can recognise that it is the inten-
ded recipient of the response if the request-response pattern that was covered in
section 2.2.3 is used. The contents of the response is the public IP-address of the
web server and the address of the REST API that the Node hosts as an interface for
managing the container. The Client interacts with the Node over HTTP through
the REST API to manage the container for the remaining lifespan of the service.

The work of Benedetti et al. in [17] analyse the suitability of serverless func-

16



tions in IoT applications by comparing the performance of cold start and hot start
function pods. They present an architecture that monitor published events on an
MQTT broker where the contents of the event can trigger the invocation of a
serverless function with the OpenFaaS framework. An experiment performed by
the Ericcson Research group shows that MQTT messaging (at QoS 1) can provide
a higher throughput and lower latencies compared to HTTP for a smart vehicle
that requests services from an edge or cloud server [18]. They showed that MQTT
performed significantly better than HTTP in cases where there were many con-
nected clients.

2.3.2 Decentralised Task Assignment with MQTT

The system architecture in this thesis is a distributed system that contains multiple
MQTT brokers. The brokers are hosted by Nodes and the Nodes are connected to
each other. The connections between Nodes are further covered in section 3.2.2.
The Clients send their service requests to the Node that they are connected to
which is presumably their closest Node. All Nodes that are part of the Fog are able
to provide a set of services and can also further delegate the responsibility of a
request to their neighbouring Nodes which they are connected to. Upon receiv-
ing a request, a Node will decide if it shall process the service and/or propagate
the service to neighbouring Nodes. The specific actions that the Node will have in
response to a request is dependent on the task assignment method that is imple-
mented. The task assignment method determines which Nodes that will process
the service that is associated with a request and will therefore affect the perform-
ance of the system.

There are two perceived paradigms of decentralised task assignment that can
be used to delegate the responsibility of handling a request. The Node that cur-
rently has the responsibility of handling a request can order, as in command, its
neighbours to take responsibility or the neighbours can freely decide if they would
like to take the responsibility. Instructive assignment from the currently respons-
ible Node is the most primitive way of propagating a message because it requires
the least interaction between the delegating Node and its neighbours. On the other
hand, the neighbours can also participate in the decision-making process but this
requires additional communication. The minimal requirement is that the currently
responsible Node must inform all or a subset of its neighbours of the request. This
will allow the informed neighbours to make a decision for themselves if they wish
to handle the service. For some task assignment methods this is sufficient to make
a decision but the drawback is that the number of neighbours that will handle
the request can not be guaranteed. Such that it is probable that all of the neigh-
bouring Nodes decide to handle the request or that none of them will. Other task
assignment methods, such as the auction approach, allows the informed Nodes to
collaborate in the decision making process by publishing a response to the given
information on the request. The response can either be publicly available to the
all the neighbouring Nodes or sent privately to the delegating Node. The response
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will contain information that is relevant for the decision making process. The in-
formation that was previously only available to each individual Node is shared
such that the Nodes can collaborate in the decision making.

This thesis present an auction approach that a Node uses to delegate the re-
sponsibility of handling a request to neighbouring Nodes. If a Node decides that
it is unable to process the service that is associated with a request that it is re-
sponsible for then it invites its neighbours to an auction. The auction is initiated
by informing all the neighbours of the request. The neighbours respond by pla-
cing their bids in the auction that is held by the currently responsible Node. The
bid contains information that reflects the performance that can be expected if the
request was delegated to the Node that placed the bid. As such, the highest bid-
der in the auction is, based on the available information, expected to offer the
best performance. The bids that are placed in an auction are publicly available
to all the neighbours that participate in the auction. By comparing their bids to
the highest bid, the neighbouring Nodes are able to decide for themselves if they
should handle the request.

The auction approach is inspired by the works of Battistoni et al. in [1] and
the system architecture used in this thesis is comparable to the one presented in
their article. The article presents a decentralised approach to propagating requests
with MQTT. The intended use-case was to route requests for remote services in a
fog-mist environment. The objectives of their work was to offload mist nodes by
leveraging the available computing resources of other mist nodes. The mist nodes
are connected to a local fog node which is responsible for hosting an MQTT broker
that relays the request from a mist node to the other mist nodes. The mist nodes
are defined as edge devices that have limited hardware and storage resources,
additionally they may provide services to multiple end-devices. Therefore, they
sometimes need assistance to perform their tasks. The article includes a tactic for
producing a response as well as a topic structure that can be used to route the
requests and responses. The framework proposes a routing mechanism where a
request is routed to every available mist node in the network. The tactic used for
producing a response is a direct competition between the mist nodes to complete
the task the fastest. The winner is the fastest mist node to publish its result. The
losers will stop their ongoing computations when they are notice that another
mist node has completed before them and return to their normal operation. The
drawbacks of their design is that the competitive tactic does not offer conditional
assignment of tasks which could lead to inefficient use of resources. A modified
version of the system outlined by Battistoni et al. was implemented and tested
against an implementation of the auction approach. The results are available in
section 4.6.
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Chapter 3

Method

This chapter covers the main characteristics and components of an auction-based
task assignment system. In addition, considerations that are related to certain
design aspects are included. The auction approach is a decentralised system that
can be used for propagating service requests in the Fog. The benefit of the auction
approach is that each Node’s capability of handling a request is represented as
a one-dimensional bid. A request is propagated through a series of auctions in
which the participating Nodes place their bids. The winners of the auctions are
assigned with the responsibility of further handling the request. A Node that is
in charge of handling a request will either process the service or auction it to
its neighbouring Nodes. A working demonstration program that uses the auction
approach is covered in chapter 4.

3.1 Introduction to Assigning Requests with Auctioning
in the Fog

The fundamental strategy is that the Fog uses an auction-based way of assign-
ing the processing of remotes service to the Nodes or the Cloud. A Client that is
placed on the edge will be connected to the MQTT broker that is hosted by a Node
in close proximity. This allows the Client to request services from the Fog. The re-
quested services may be processed by any capable Node in the Fog or the Cloud.
The auction approach delegates the task of processing a service by propagating a
request through a series of auctions. The propagation ends when a suitable Node
has been declared the winner of an auction. A Node is decided to be suitable
for processing the requested service if its bid is above the asking price. The ask-
ing price is a threshold that puts a requirement on the capabilities of processing
Nodes. If a Node wins in an auction with a bid that is lower than the asking price.
Then it will still be responsible for the request, but it is unsuitable for processing
the associated service. The Node will therefore re-auction the request to its neigh-
bouring Nodes. The Cloud may also participate in auctions in the same manner
as a Node that is part of the Fog. This thesis uses the term ’Node’ to refer to fog
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nodes, however it should be noted that a Node may in some circumstances also
be run from within the Cloud.

When a Node is assigned with the responsibility of handling a request then
it will decide if it is going to process the service or auction it to its neighbouring
Nodes. The decision is determined by the Node’s bid size for the given request and
the asking price of the request. If the Node has a bid that is above the asking price
then it will process the service and if it does not then it will auction the request.
When a request is auctioned then it is referred to as an item. The participants
of an auction will bid on the item according to their capabilities of handling the
request. A Node that auctions an item will hold the auction on a topic that is avail-
able through the MQTT broker that the Node is hosting. The neighbouring Nodes
receive notice of auctions because they have MQTT clients that are subscribed to
the auction topic on multiple Nodes in their vicinity. An MQTT client may only be
connected to a single broker and therefore a Node has one client for each Node
that it is connected to. The MQTT clients on a Node are responsible for particip-
ating in auctions by publishing bids and observing the bids of other participants,
detecting new auctions, and also managing the Node’s auctions.

Node N0
Request/ServiceA "input"

Client

Node N1

Node N2

Auction/ServiceA/1 "input"

Auction/Item/1 "10"

Auction/ServiceA/1 "input"
Auction/Item/1 "93"

Figure 3.1: A representation of a Client requesting a service from a Node in the
Fog. The Node starts an auction and the request is assigned to a neighbouring
Node.

The figure 3.1 shows an example of a Client that requests Service A to be done
remotely by the Fog. The Fog contains three Nodes in this example: N0, N1, and
N2. The request is first published to N0 on the topic "Request/ServiceA" with a
payload containing the input arguments. The Node N0 decides that it will start an
auction and publishes the request as an item on the topic "Auction/ServiceA/1". In
the figure, the auctioned item has been given an ID of 1 and the input arguments
of the original request is in the payload of the item. The Nodes N1 and N2 receive
the published item as they are subscribed to auctions for the Service A and they
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participate in the auction by placing their bids on the item. The bids are published
onto the topic "Auction/Item/1". For this example, assume that the valid bidding
range is from 0 to 100. N1 places a relatively low bid of 10 because it believes that
it wont be able to adequately process the request. This could be due to latency
between N0 and N1, heavy load on N1 from other requests, the nature of the
requested service, and so on. N2 places a high bid of 93 because it believes it is a
great candidate to process the request. The Node N2 has made a higher bid than
N1 and therefore N2 is the winner of this auction. As the winner, N2 should be
given the responsibility of handling the request of Service A. In this example, N2
presumably processes the service because of its large bid size, however if it does
not then it is responsible for re-auctioning the item to its own neighbours.

3.1.1 Auction Propagation

The auction approach provides a method for selectively propagating service re-
quests in a system that has multiple brokers. A request is propagated from the
domain of one broker to another broker by publish and subscribe mechanisms
that provided by a set of MQTT clients that are managed by a centralised control
program in the form of a Node. The Node manages clients that are connected to
multiple brokers. This method has been chosen over something such as broker
bridging because it is more suitable for making decisions based on the contents
of messages. Broker bridging is a strategy for forwarding the messages that are
related to a specific set of topics from one broker to another broker. It is provided
by most MQTT broker implementations.

The Nodes in the auction approach manages a set of MQTT clients that they
use to forward requests from one broker to another. The propagation of requests
from a Node to its neighbouring Node is achieved by holding an auction. The auc-
tioning Node manages an MQTT client that announces a new auction by publish-
ing a message onto its own broker. The MQTT client managed by its neighbouring
Node is subscribed to the auction topic on the auctioning Node’s broker. The sub-
scribing client is notified of the auction and can publish a bid on the behalf of
the neighbour Node. The neighbour Node can further propagate the request by
initiating an auction on its own broker. The auction approach is selective because
the neighbour Node will only initiate a new auction when it is unable to process
the service because it has a bid that is below the asking price. Additionally, the
neighbour Node will not consider a re-auction if it did not win the auction that
was held on the original auctioning Node.

The figure 3.2 visualises the bids of Nodes as a scale and the asking price as a
threshold. Any bid can be in the range of 0 to 100 and the asking price is set to 50.
The asking price of a request determines the minimum bid size required to carry
out the processing of that specific request. In this example, any Node that won the
auction with a bid below 50 will be forced to re-auction the item its neighbours. In
addition to providing an example of an asking price, the figure also separates the
bid range into three colored sections. The green section represents the winners
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Figure 3.2: The asking price is set to 50, any Node with a lower bid than this will
be forced to re-auction the item in the case where they win the auction.

who are above the asking price and which could proceed with directly processing
the request. The yellow section indicates that the winners here will have to re-
auction the request, and the red section shows a part of the bid range where there
should mostly exist losers. The probability of winning an auction will scale with
the size of the bid and the bid size gives an indication to the expected capabilities
of the winning Nodes.

The figure 3.3 is an example of how the asking price of an auctioned item
can be used to propagate requests in the Fog. The Client is represented as a white
circle and the Nodes by slightly larger and colored circles. The top part of the figure
shows that a Node may be in four different states. Any Node which is not occupied
with the specific request in this example is deemed as idle, i.e., it may process
other unrelated requests. A Node can go from the idle state to either a losing
or winning state. The winners are categorised into winners who are above and
below the asking price. In this example, every auction with multiple participants
will have two winners. Step 1 in the figure shows that all Nodes in the network
are in the idle state and additionally that the Client sends the initial request for a
service to the top-most Node. Step 2 shows that the first Node was unable to bid
above the asking price and therefore auctions the item to its neighbouring nodes
that are one layer below it in the graph. Step 3 shows the result of the re-auction
that was started in step 2. Among the three active nodes in step 3 there are two
winners and one loser. The losing Node does not continue handling the request
and can return to its idle state. The winning Node that bid above the asking price
will process the service and not re-auction the request. However, the winning Node
with a bid below the asking price re-auctions the the request to its neighbours in
the layer below. Step 4 concludes the figure and shows that there was another
winner above the asking price for the re-auction that occurred in step 3.
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Step 1 Step 2

Step 3 Step 4

IDLE Winner, Above Asking Price

Winner, Below Asking PriceLoser

Figure 3.3: The asking price decides whether a Node should re-auction the item.
The auctions in the figure have two winners when possible.
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3.2 Participants of the Auction

This section revisits the key architectural components of the fog computing archi-
tecture but in the context of the design of the auction approach. As presented in
2.1.1, the main fog components are the Nodes, the Clients, and the Cloud. Where
the Fog is comprised of a network of Nodes. The descriptions of the fog compon-
ents in this section are specific to the auctioning approach that is presented in
this thesis and therefore the attributed qualities are not true for all fog computing
architectures.

3.2.1 The Clients

The Clients represent end-devices or local systems which are placed at the edge.
The Clients are requesting services to be performed remotely by the Fog. To be
able to request services from the Fog, the Clients are required to be connected to
a Node in their proximity. They request the services by publishing MQTT messages
to a Node. Therefore, the Clients must be able to run an MQTT client. To request
a specific service, the Clients must be aware of the catalogue of services that are
provided by the Fog. This thesis assumes that the requests which are made by the
Clients will always map to a legitimate service that is provided by Nodes in the
Fog or the Cloud. However, missing services may appear in practical applications
and complete service availability is not a requirement of the auction approach in
general.

The Clients must have a set of qualities and abilities to interact with the Fog:

• They have network capabilities that allow them to connect to a Node in their
vicinity.
• They are able to run an MQTT client which can publish and subscribe to a

Node.
• They know the set of services that are offered by the Fog.

3.2.2 The Nodes

The Fog is comprised of multiple connected Nodes which provide services to the
Clients. The Nodes are connected to each other by a group of managed MQTT
clients. The Nodes are responsible for holding and participating in auctions. Each
Node carries a set of services which they are able to provide to the Clients. The
services can be requested by publishing to any Node. The Node handles the re-
quest, which means that it either delivers the requested service or that it puts the
request up for auction. They should also be able to route responses back to the
Clients. Note that this is not part of the demonstration program of the auction
approach that is covered in section 4.2 but guidelines to how responses may be
propagated is presented in section 3.3.5.
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A Node is the interface between the Fog and the Clients. The Nodes have the
responsibility of hosting an MQTT broker such that the Clients in their proximity
can connect to them and request services from the Fog. The neighbouring Nodes
are also connected to the broker such that they can subscribe to auctions and
publish their bids. Each Node has a set of MQTT clients in addition to the broker.
The MQTT clients are in charge of functionalities which are not supported by the
broker. That includes tasks such as handling requests and services, placing bids,
and managing auctions.

The Nodes will partake in auctions as either bidders or auctioneers. When a
service request is put up for auction it becomes an item. The Nodes bid on an
auctioned item when they receive notice of a new auction that is hosted by one of
their neighbouring Nodes. The Nodes become responsible for a request whenever
they receive a request directly from a Client and when they win an auction. The
Nodes put a request up for auction if they are not able to bid above the asking
price. An auction can either be in the form of active or automatic participation. The
types of auctions are described in section 3.3.3. For active auctions, the neighbours
of an auctioning Node are notified of the start and end of an auction such that they
can place their bids in the active auction. Automatic auctions only notify about the
end of an auction. In addition to placing bids and holding auctions, the Nodes are
also responsible for declaring the winners and losers of the auctions. The tactics
for determining the winners of an auction are discussed in section 3.3.3.

The Nodes are in this thesis assumed to carry the complete catalogue of ser-
vices that is offered by the Fog but are not required to in practice. The Fog con-
sist of Nodes that are heterogeneous in terms of hardware and capabilities. That
means that some Nodes may not be able to carry specific services. Additionally,
the demand for a service will affect the necessity that a certain Node carries it.
Therefore, a Client may request a service that is not implemented on its nearby
Nodes. If that is the case, then the request must be forwarded to other Nodes or
the Cloud. If it is a recurring request then a new and capable Node can be intro-
duced or a nearby Node upgraded such that similar requests can be handled in
the future. How to handle service availability is outside the scope of this thesis
and is therefore not further discussed.

The Nodes may leverage the Cloud to offer or improve some of its services. The
Cloud can be contacted through an interface, such as cloud agent, to offer parts
of the service. For example, this would be useful if the Node could offer services
such as inserting data into and querying from a remote database. The Cloud may
also be used to off-load the Fog if tasks such as heavy computations are forwarded
to a powerful cloud-hosted server. The Cloud can also be used as an interface to
manage the Nodes and the network topology in the Fog.

The Nodes have a set of qualities and capabilities required to partake in the
Fog:

• They must host an MQTT broker and clients.
• They offer a set of services that may be requested by Clients.
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• They can participate in and manage auctions autonomously.
• They can collaboratively route responses back to the Clients.
• They are able to connect to the Cloud.
• They are able to subscribe and publish to neighbouring Nodes.

3.2.3 The Cloud

The Cloud is located at centralized data centers and is seen as a single entity in this
thesis, however in reality the Cloud is a distributed system. The Cloud carries an
implementation of all of the services that may be offered by the Fog. Additionally,
the Cloud also carry services that are beneficial for the Nodes and Clients. The
Cloud can aid the Nodes with services such as neighbour discovery, downloading
missing services, and supplementary computing resources. The Clients may want
to use the Cloud to receive a set of available services, finding their closest Node,
tracking their activity and expenditures, etc. The Cloud is a good candidate for
delivering these services as it is publicly accessible to all Nodes and Clients and
can supervise the Fog as a centralized component.

The Cloud may join the network in a similar fashion as a Node in the Fog.
Which means that the Cloud can participate in auctions, manage auctions and de-
liver services to Clients. The Cloud can join the Fog at multiple locations because it
is able to process more requests than a single Node and therefore serve effectively
as a neighbour to more Nodes compared to the typical Node.

The Cloud must offer certain functionalities which benefit the Nodes and Cli-
ents:

• It carries the full catalogue of services that may be requested.
• It can join the Fog at various positions as a Node.
• It offers services to both Nodes and Clients.

3.3 Design Aspects of the Auction

This section covers the key design aspects that have to be considered when design-
ing and implementing an auctioning tactic for task assignment in publish-subscribe
style systems. The introduction to the auctioning tactic was given at the start of
this chapter in section 3.1. Furthermore, an overview of the responsibilities and
requirements of the participating components were outlined section 3.2. This sec-
tion aims to clarify some of the details that were left out in the previous sections
by providing a roughly chronological look at how a service request is delegated to
a set of Nodes. It starts of with how Clients issue their requests to the Fog. Then
the choices with regards to auction design are examined which affects the flow of
messages in the Fog. Lastly, the challenges related to routing a response back to
the Client and late joiners in auctions are considered.
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3.3.1 Requesting Services From the Fog

The service requests that are sent by the Clients must contain information regard-
ing the specific service that is requested, which is referred to as the service class,
and the request must be structured in a standardised format. Any service request
is sent as an MQTT message and contains information related to the request in the
topic that it was published on, the payload, and in the properties of the message.

When the requested service induces a response then the request from the Cli-
ent should contain a response topic and optionally some correlation data. In this
case, the request-response information is contained in the properties of the MQTT
message. How to handle services that incite a response is covered in section 3.3.5.
The class of the requested service can either be present in the payload or in the
topic that was published to. The input parameters of the requested service is a
part of the payload because these can not be used to categorize the service. The
input parameters may be unique for every request for a certain service and there-
fore they do not follow a pattern such that they can not be subscribed to at the
topic level. The request may also contain a suggested asking price in cases where
it is not equal to the standard asking price that is associated with the requested
service. The asking price is further examined in the following section 3.3.2. The
table 3.1 summarizes the information that a request might contain and displays
how the message is constructed.

Message Format of Service Request
Information Placement Required
Service Class Payload or Topic Yes
Input Arguments Payload Depends
Response Topic Properties Depends
Correlation Data Properties No
Asking Price Payload No

Table 3.1: Service Request Message Structure

3.3.2 Setting the Asking Price

The asking price of an item puts a requirement on the capabilities of the Node that
is handling a request. A Node is considered to be unsuitable to process a requested
service if it bids below the asking price in an auction. If a Node wins with a bid
below the asking price, it should re-auction the item to search for better candid-
ates. As a result, the magnitude of the asking price determines the probability that
the item will be re-auctioned. It should be noted that the bid size of a Node may
change during the lifespan of the system such that a given Node may have a bid
that is above the asking price at one point and below at another. This thesis does
not give a precise answer to how the asking price of a request can be calculated
but introduces the one-dimensional product as a way to propagate items in the
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Fog. However, this section describes what the asking price practically represents
and suggests that it may be implemented as a weighted sum.

The asking price of an item is a one-dimensional number that represents a
multi-dimensional sum of the various factors that determine the processing capab-
ilities of a Node. The asking price is expressed as a weighted linear combination in
the equation 3.1, where wi is the weight that is associated with the characteristic
ci . The characteristics represent the performance specifications of a Node, e.g.,
CPU clock speed, persistent storage space, bandwidth. The value of the weights
depends on the service that is requested and each implementation of a service
defines their own set of weights in accordance with their priorities. Therefore, the
only considerations when setting the asking price for an item are the preferred
characteristics of the Nodes. The asking price of an item should be set such that
any Node with a combination of characteristics that allows it to bid above the
asking price will be suitable for processing the service. The section 3.3.4 shows
how the bid size of Nodes are calculated with a component that is equal to the
expression for the asking price.

Asking Price=
n
∑

i=0

wici (3.1)

Items with tall asking prices are more likely to be re-auctioned and therefore
they are propagated further into the Fog than items with lower asking prices. Items
with lower asking prices find a suitable Node more easily because there are more
Nodes that can bid above the asking price. But will expect a lower performance
from the Nodes. The benefit of setting a tall asking price for an item is that only
highly motivated Nodes will be able to bid above the asking price. A Node that
is highly motivated is confident in its current ability to perform the requested
service. However, the asking price of an item can be overly tall such that it becomes
troublesome to find a Node that is able to produce a satisfactory bid.

The class of the service that is requested is the main factor that determines the
magnitude of the asking price for an item. Some classes of services will have high
performance requirements for the Nodes and as a result have tall suggested asking
prices. Each class of service has a set of weights that determine the priority of a
Node’s various characteristics. The set of weights for a service will determine how
Nodes calculate their bid size for items that represent that service. The asking
price for an item may also be adjusted in accordance to the preferences of the
requesting Client. This is beneficial in cases where the Client have higher or lower
requirements to the performance than what is typical for a given service.

3.3.3 Managing an Auction

There exists a vast variety of ways to manage an auction and the style considered
for this thesis was chosen to be easily implemented with MQTT and understand-
able. The work of Parsons et al. in [19] provides a general guide to different ways
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of managing an auction and has been used as a reference for technical terms and
as a source of inspiration.

The auction style presented in this thesis is by formal definitions an open cry,
single unit, and one-sided auction. The bids that are placed are one-dimensional.
In other words, the bids are made publicly, the auctions are held for a single item
that may consist of bundled sub-items, and the auctioneer does not actively match
bids with items based on the asking price. The bids are given as a number, however
they represent conditions that are multi-dimensional. A unique feature of the auc-
tion style that is used for this thesis is that the bidders themselves will declare the
winners and losers of the auction. Therefore, the auctioneer has limited respons-
ibilities compared to typical auction styles and is only in charge of presenting an
item, starting the auction, providing a space to make bids, and marking the end
of the auction.

Starting an Auction

A Node will start a new auction when it is not able to bid above the asking price
of a request that it is responsible for. A Node becomes responsible for an request
in two distinct cases. Either when it is the first Node to receive the request from a
Client or when it wins an auction.

A new auction for an item starts by informing the neighbours of the auctioning
Node. This is done by publishing an MQTT message on to an auction topic that
the neighbours are subscribed to. The message contains the fields that were listed
in table 3.1 and, optionally, information related to participating in the auction.
Depending on the implementation, the auction topic which the item is published
on may represent a marketplace for all auctioned items or a separate auction room
for a specific item.

The procedure of participating in an auction will be determined by the topic
structure that is used to hold the auctions and the subscription pattern of the
neighbours. Depending on the topic structure, the auctioneer may only notify
neighbours that are interested in handling the service in question or it may notify
them whenever any new auction is started. The topic structures are referred to
as either "inclusive" or "selective". The subscription pattern may be designed such
that neighbours that wish to participate in an auction will have to actively enter
an auction room to join in on the bidding round or automatically subscribe them
to all auction rooms. The subscription patterns are referred to either as "active" or
"automatic".

The figure 3.4 shows an overview of how the topic structure and subscrip-
tion pattern will affect where auctions are being held and which Nodes that will
participate. It features two ways for an auction space to be represented as an
MQTT topic and two ways of joining an auction. These are combined to make
four examples of auction systems. The categories active and automatic refer to
how Nodes join an auction. The active category refers to a subscription pattern
where the Nodes deliberately join only the auction rooms which they are inter-
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Figure 3.4: Visualisation of some possible topic structures for auction rooms and
subscription patterns. Highlighting active vs. automatic subscription pattern and
inclusive vs. selective topic structures.
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ested in. While for the automatic category, all Nodes are invited into the auction
room even if they do not plan to bid on the item. The selective and inclusive
categories decides the topic structure for the auction rooms. The selective way
of holding auctions allow Nodes to only subscribe to auctions for services which
they are interested in bidding on. The inclusive way of holding auctions will not
discern between the service that the item represents at the topic level.

The top left diagram is an example of an active and inclusive system. The
Nodes are subscribed to the Auction topic and are notified of the new auction with
a message that contains the item, Item 1, and an auction room topic, Room 3. All
Nodes which are subscribed to the auctioneer are notified of the auction because
this is an inclusive system. However, the Nodes can choose to subscribe to the
auction room topic Auction/Room 3 after having looked at the nature of Item 1.
This is possible because it is an active system. The Nodes that do not subscribe to
Auction/Room 3 will not see the bids that are posted for Item 1. The first message
to be sent in the auction room topic is a start signal. A start signal is recommended
for active participation auctions. After the start signal has been sent, the auction
participants may place their bids until the end signal is published. The start signal
is included such that the early bids are not lost at a frequent rate and ensure that
late joiners are aware of their lateness. The section 3.3.6 further discusses how to
deal with late joiners. After receiving the end signal, the auction participants can
determine if they won the auction as there will be no further bidding. The period
from when a new auction has been declared until the start signal is published to
the auction room topic is referred to as the joining period. The active period is the
time between the start signal and the end signal where participating Nodes may
place their bids. The sum of the joining period and the active period is named as
the auction period.

The top right diagram shows an automatic and inclusive system. The neigh-
bouring Nodes are subscribed to all the auction room topics with a wildcard sub-
scription because this is an automatic system. That includes Auction/Room 3 and
the Nodes receive notice of the auction when Item 1 is published directly in the
designated auction room topic. The bids are also placed in Auction/Room 3 such
that all Nodes will be able to look at the bids posted for Item 1. The automatic par-
ticipation auctions do not need a start signal because the participants are already
subscribed to the auction room such that no early bids will be lost. The auctioneer
will publish an end signal in automatic auctions as well. The suitable time to close
an auction is discussed in the following section 3.3.3. There is no joining period
for automatic auctions such that the active period is equal to the auction period.

The bottom left diagram shows an active and selective system. The system is
selective because the Nodes are able to only subscribe to the auctions of services
which they are interested in as indicated by ServiceX. ServiceX may be any service
and items published on Auction/ServiceX will only contain items that require the
processing of the service X. The item, Item 1, is posted on the selective topic Auc-
tion/Service X and contains the auction room topic, Room 3. The system is active,
so the Nodes can decide if they would like to subscribe to Auction/ServiceX/Room
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3 where the bids will be posted.
The bottom right diagram shows an automatic and selective system. The item,

Item 1, is posted directly to the auction room topic Auction/ServiceX/Room 3.
Only the Nodes that are subscribed for auctions for service X will be notified,
however all of these Nodes will see the bids on Item 1 because this is an automatic
system. The bids are made in Auction/ServiceX/Room 3.

Closing an Auction

The auctioneer has the responsibility of closing an auction and does so by pub-
lishing a message to the auction room that indicates that the auction has been
closed. The ideal time to close an auction will depend on the bids and the class
of service requested. If a highly satisfactory bid is made early on in the auction
then there are only marginal and potential benefits to be gained from continu-
ing to search for a more suitable candidate. Additionally, an auction for a service
request that requires a low latency response should keep the active period short
such that a winner can be determined quickly and the processing of the service
can start without further delay. However, the auctioneer is faced with increased
overhead if it must dynamically consider the bids that have been made and the
class of the service. Therefore, an auctioneer can also be implemented to close
an auction based on independent conditions, such as predetermined joining and
active periods. It is also possible to implement a mixed strategy that includes ob-
serving how the auction unfolds in addition to having predetermined conditions
for when an auction should close.

Deciding the Winners of an Auction

The winner of an auction is the Node that produced the highest bid for the item.
The bids that are made in an auction are public such that all participating Nodes
can see how their bid compares to the others. This allows the Nodes to declare the
winner of the auction by themselves after receiving the end signal. The respons-
ibility of handling the item is delegated to the winners of the auction.

Depending on the implementation, an auction may have multiple winners.
The amount of winners will decide how the item is blooming across the Fog. The
number of winners could be configured for the whole network as a general rule
or be auction or item specific. If the number of winners is high for an auction then
there will be many Nodes that are handling the same item and there is a high
likelihood that the service will be processed shortly by either some of the winners
of the current or future auctions. In contrast, if there is a single or fewer winners
then there will be less load across the Fog which will spare networking resources
and processing resources at the Nodes. But the requested service will take longer
to be processed because there are fewer candidates.

The bidders in an auction will have to decide if they won the auction or not
at the end of the auction. Any bid that is received by the bidding Nodes later than
the end signal from the auctioneer will not be able to win the auction. A bid may
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be received after the end signal because they were either published too late or had
a long transmission period to the broker on the auctioning Node. The process of
deciding the winners of an auction should only consider the messages that were
received by the Nodes through their subscriptions. In other words, if a Node makes
a bid and the auction closes before the Node’s own bid is echoed back through its
subscription then it was too late to bid on the item and can therefore not win the
auction. MQTT assures the order of messages will be consistent for messages that
have the same level of QoS [13]. This means that the auctioneer will publish the
bids in the same order as it receives them. However, it should be noted that this
does not keep an accurate account of the real ordering that considers the time
when the bids were sent by the Nodes.

There are some special cases to consider when deciding a winner that might
make it troublesome to correctly decide on a set of winners. There are consid-
erations that should be made with regards to multiple Nodes producing equal
winning bids, when Nodes join auctions after it has already started, and the QoS
used between the auctioneer and the bidders.

When there are more Nodes that have produced equal winning bids than the
number of winners for that auction then there is an issue when selecting the win-
ners. By the assumptions of how bids are defined in section 3.3.4, any of the Nodes
can be chosen as winners because the Nodes are assumed to be equally capable be-
cause their bids are the same. Therefore, this could be resolved by simply choosing
the Nodes that issued their bids first.

A Node may subscribe to the auction after it has already started such that the
Node has not been notified of the previous bids that have been made before it
joined the auction room. The resolution to this challenge requires some further
interaction with the auctioneer. The Node which has joined late needs to see the
previous bids that have been made such that it knows if its own bid beats these
when a winner is decided at the end. The auctioneer must send at least the largest
current bids to any Nodes that join an auction late. This is challenge is discussed
in more detail in section 3.3.6.

If the QoS level set for the published bids or subscriptions to the auction rooms
are set to 0 then some bids may not reach all of the participants. The result of not
communicating all bids to the participants is that they will have an inconsistent
history of the bids. This could potentially lead to more winners than expected in
an auction. There will be too many winners if a Node has not received the winning
bids in an auction and therefore declares itself as the winner. Therefore, a QoS of
at least 1 should be set for the bids and the subscriptions to the auctioneer. This
may lead to duplicate messages, but the size of all the bids will be received by the
participants.

3.3.4 Bidding in an Auction

A Node shows its motivation to handle a request with the bid that it places in the
auction. The size of the bid is determined by two components, the naive portion
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and the intelligent portion. The naive portion represents the Node’s static capabil-
ity to process the service which is associated with the item. The intelligent portion
is a dynamic component that factors the current state of the Node in addition to
surrounding factors. The Nodes may place their bids during the active period of
an auction.

The following list is a summary of the factors that may be considered when a
Node calculates its bid size for an item:

• If the Node has the service implementation installed
• The previous bids on similar items from neighbouring Nodes
• The current load and available resources of the Node
• The characteristics of the Node
• The weights of the service

The method that a Node uses to calculate its bid size is two-fold. The first part
is similar to how the asking price was expressed in equation 3.1, this is referred
to as the naive portion of the bid. The second portion of the bid is the intelligent
portion and accounts for dynamic factors that affect a Node’s capability to handle
an item.

To calculate the naive portion of its bid, a Node inspects the auctioned item
to determine the service class which is requested. The Node will input its char-
acteristics and multiply these by the corresponding weights to produce its naive
portion of the bid. The naive portion of the bid could be used as the final bid for
a Node but it does not take into account the dynamic variables that affects the
performance in terms of processing a service. The naive portion is therefore static
and assumes that the Node has all of its computing power available.

The intelligent portion is a dynamic component that takes into account addi-
tional information that a Node may have at a certain time that should affect its bid
size. This could be excessive current load, availability issues, scheduled downtime,
etc. The implementation and magnitude of the intelligent portion can vary but it
will add an additional component to the bid size that will either lower or increase
the size of the final bid. The intelligent portion of the bid is included to make
the bids more realistic in terms of what can be expected of a Node at the current
time. The intelligent portion can also be used to determine a Node’s capability of
further propagating a request by including an expectation of the bids that would
be present if it were to re-auction the item to its neighbours. As with the naive
portion, presenting a practical method for calculating the intelligent portion is
outside of the scope of this thesis.

Bid=
n
∑

i=0

wici + C (3.2)

The equation 3.2 is an expression for the bid size that a Node can provide
for an auctioned item. The sum is similar to what was used in equation 3.1 for
the asking price. This is the naive portion of the bid. The intelligent portion is
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represented by C .
An example scenario of when the intelligent portion should affect the final bid

of a Node is when a neighbour is a good candidate for processing a service. Assume
that two Nodes with equal characteristics are bidding against each other in an
auction for an item. One of the Nodes, N1, has no neighbours that would bid above
the asking price if the item was re-auctioned. The other Node, N2, has a neighbour,
N3, that can provide a high bid on items of this kind. If both N1 and N2 were to use
the naive portion as their final bid, then their bids would be equal. Assume that
N1 and N2 can not bid above the asking price such that if either won the auction
it would trigger a re-auction of the item. In this scenario, it is inherently better
that N2 wins the auction because it has the motivated neighbour N3. However, N1
and N2 are seen as equal without including an intelligent portion. The information
could be gained from historic events where N2 has noted that N3 has provided a
high bid for items that are similar to the currently auctioned item. If N2 and N1
had derived their bids with an intelligent portion that included this information,
then N2 would out-bid N1. However, when their bids are equal or N1 has a higher
bid than N2 then a less optimal decision will be taken.

The MQTT protocol’s QoS level should be set such that the auctioneers can
assure the delivery of all bids to the Nodes that are participating in an auction.
All published bids should be made with QoS 1 or 2 such that a Node knows that
its bid has been sent successfully to the auctioneer and be guaranteed that its bid
will be delivered to the other participants. The participants of an auction should
also subscribe with a QoS of 1 or 2 such that they can be guaranteed that they
will be aware of all the bids that have been posted to the auction. If QoS is set
to 0 then some bids may unknowingly be lost and this will lead to uncertainty
when deciding a winner. As mentioned in section 3.3.3, the order that the bids are
received by the Nodes that subscribe to the auction is guaranteed by the auctioneer
if all of the bids and subscriptions share the same QoS level. The QoS level should
not be mixed because this could lead to inconsistent ordering.

3.3.5 Routing the Response Back to the Client

Some services may produce a response that should be routed back to the Client
that made the request. The Fog delegates the requested service to a Node and
wherever the Node resides it should be able to send the response back to the Cli-
ent. The MQTT request and response pattern that was covered in section 2.2.3
can be used to implement this behaviour. The system architectures that is presen-
ted in this thesis uses multiple brokers and if the same network shall be used for
propagating the response back to the Client then it may pass through a series of
Nodes. Providing a method that uses the network in the Fog is essential because
establishing a direct connection between the processing Node and the Client may
be impossible. The response can be routed back to the Client in numerous ways
and this section covers some routing schemes for responses.

Initially a service that generates a response starts as a request from a Client
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and is sent to the Node that the Client is connected to. The Node that first receives
the request is referred to as the origin Node. The request includes a response topic
that indicates where the Client expects the response to be published. The Client
subscribes to the response topic on the broker that the origin Node is hosting.
In the simplest case, the first Node that receives the request, the origin Node, is
able to process the service and the resulting response is published on the response
topic of the origin Node’s broker which the Client is directly subscribed to.

An item can be routed deeper into the Fog through a series of auctions. The
resulting response must in every case reach the response topic on the origin Node’s
broker that the Client is subscribed to. The first Node to publish the response will
always be the Node that has processed the service. However, there are multiple
options regarding where the response should subsequently be sent. Three natural
candidates are the brokers hosted on either the processing Node, the previous
auctioneer, or the origin Node. Any of these options has their own rules that decide
how the response is routed back to the Client.

The origin Node is the final Node which the response shall be published onto.
In some cases, it is possible to include the address of the origin Node as part of
the request such that the processing Node can connect and directly publish the
response to the origin Node. This is a simple solution but assumes any Node can
reliably connect to the origin Node. Depending on the nature of the Nodes that
assumption might not be satisfied.

The response can be routed back to the origin Node by using the connections or
paths that are already present in the Fog. When doing so, the response follows the
same path back to the Client as the item took to the Node, however in the opposite
direction. The processing Node can either publish the response onto itself or to
the previous auctioneer.

When a processing Node publishes the response back onto itself then it is as-
sumed that the previous auctioneer has subscribed to it. This is ensured by intro-
ducing a rule that every auctioneer should connect and subscribe to the winners
of an auction that they have held if the item will produce a response. When the
previous auctioneer receives the response that was posted on a winner’s response
topic, then it will publish the response back onto its own broker. This method will
follow the trail back until the origin Node receives the response and publishes
the response onto its own response topic which the Client is subscribed to. The
method where a Node publishes the response onto its own topic is referred to as
self-publishing. The drawback of the self-publishing method is that an auctioning
Node is not necessarily managing MQTT clients that are connected to the winning
Nodes.

The figure 3.5 shows an example where a Client requests a service that gen-
erates a response and the response has to be routed back to the Client from a
Node which it is not connected to. The example uses the self-publishing response
method. The figure includes a Client and two Nodes N1 and N2. The Client pub-
lishes its request to N1 and subscribes to its response topic. Then N1 decides that
it will not carry out the processing and auctions the item. N2 wins the auction
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Figure 3.5: The self-publishing response method. The auctioneer subscribes to
the winning Node’s response topic. The processing Node publishes the response
to its own broker.

and N1 subscribes to a response topic on N2. The processing of the service is per-
formed by N2 and it publishes the response onto the response topic on its own
broker. Since N1 is subscribed to N2’s response topic, the response is sent to N1.
Upon receiving the response N1 re-publishes the response onto its own broker.
The Client is subscribed to N1 and is therefore sent the response.

A second option that keeps the existing connections, without further potential
new connections, is that the processing Node will publish the response back to
the previous auctioneer. To route the message back to the Client a rule must be
made such that all Nodes that turn into auctioneers will have to subscribe to a
response topic on their own broker if the item generates a response. The auction-
eer will subscribe to the response topic and the winner of the auction will publish
its response back to the auctioneer. When the auctioneer receives the response, it
re-publishes the response to its previous auctioneer if applicable. The Client will
be notified when the response reaches the origin Node. The origin Node does not
have an auctioneer that was previous to it and will therefore not re-publish the
response, unless the Client has subscribed to a response topic that is different from
what was used between the Nodes. Then the origin Node will publish the response
to that topic. This response propagation method is referred to as self-subscribing.

The figure 3.6 shows an example of how the response is routed back to the
Client where the processing Node publishes the response back to its previous auc-
tioneer. The figure illustrates the self-subscribing response method. The figure
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Figure 3.6: The self-subscribing response method. The auctioneer subscribes to
its own response topic. The processing Node publishes the response to its previous
auctioneer.

contains a Client and two Nodes N1 and N2. The Client requests a service that
will generate a response message on N1 and subscribes to the response topic on
N1. The item is auctioned to N2 because N1 decides to not process the service
itself. After the item has been auctioned, N1 subscribes to its own response topic.
The service is processed by N2 and the response is sent to the response topic on
N1. The response is sent to the Client because it is subscribed to the response topic
on N1. Note that, N1 is the origin Node and therefore does not have any previous
auctioneers. Because N1 is the origin Node it does not re-publish the response. In
addition, N2 does not subscribe to itself because it did not auction the item and
is therefore not expecting any responses for this item. If N2 had to re-auction the
item, it would subscribe to a response topic hosted on its own broker.

If multiple requests are expected to share the same response topic then correl-
ation data should be included to distinguish between the responses. Each request
and auctioned item can have correlation data attached to it, so if there is a colli-
sion on the response topic then the correlation data may be used to determine if
the response should be re-published by the Node or accepted by the Client.

3.3.6 Joining Late to an Auction

For active participation auctions as seen in 3.4 the Nodes subscribe to the auction
room when they receive notice. It could happen that a Node joins an auction late
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and therefore will not see the bids that were posted before it arrived. Additionally,
the Nodes that participate in active auctions will be unaware that they have joined
late without further mechanisms to alert them of this. Therefore, active auctions
should include a start signal that indicates that the auction has begun and that
the Nodes can start placing their bids on the item. The period between when the
Nodes are notified of a new auction and the start of the auction is referred to
as the joining period for that auction. The joining period can be set uniquely for
every auction and the duration will affect how much the delay the auction causes
for the processing of the service.

Nodes that subscribe after the joining period will not receive any previous bids
to their subscription. To address this issue, the joining Node can publish a message
to the auctioneer which indicates that it was late to the auction room and has not
been sent the bids yet. The only bids that the joining Node needs to be aware of is
the currently highest bid for auctions with a single winner and a set of the highest
bids if there may be multiple winners with unequal bid sizes. The auctioneer will
have to respond with a message that contains the currently highest bid or bids
for that auction. Alternatively, an active auctioning system could be implemented
such that Nodes that miss the start signal are not allowed to join the auction.

For automatic participation auctions this is not an issue since the neighbouring
Nodes are already subscribed to the auction room topic and have received all the
previous bids. The bidding Nodes may in the case of a temporary disconnect from
the auctioneer during an active auction receive the full message history if they
have set their MQTT connection to be persistent [13].
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Chapter 4

Results

An implementation of an auction-based task assignment system was developed
for this thesis. The auction approach propagates requests to Nodes by selecting
the most capable Node that is available at every step. The approach and its com-
ponents were outlined in the previous chapter. Two additional approaches, the
modified Battistoni and random choice, were also implemented with the intent
of comparing their performance characteristics with the auction implementation.
The modified Battistoni is an assignment method that is inspired by the approach
that is outlined by Battistoni et al. in their paper on off-loading edge devices [1].
It is a competition-based system that favors a rapid response time more than the
conservation of resources. The random choice approach propagates the respons-
ibility of handling a request to a neighbouring Node in a random fashion. These
methods were chosen as comparisons because they test two important aspects of
the auction implementation with regards to performance. The modified Battistoni
was selected to see the performance trade-off in response time that is made when
assigning requests to individual Nodes in contrast to any that are able. The ran-
dom choice approach was selected to see if a demonstration program based on
auctions with naive bids would outperform a random assignment method. A set of
experiments were performed to compare the implementations. Each of the exper-
iments changed a single independent variable that influences the performance of
the implementations. The variables that were experimented with were the mean
bid size of Nodes, the standard deviation of bids, and the network topology.

This chapter covers the design of the auction, random choice, and modified
Battistoni implementations and a comparison of their performance in a series of
experiments. It starts of with the common design aspects of the implementations.
The following sections cover the specific details of each implementation. The final
parts of this chapter explain how the performance of the implementations were
compared and the results of the experiments.
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4.1 General About the Implementations

The task assignment implementations that were developed for this thesis share nu-
merous similarities in the way that they were developed, in attributes that define
their behaviour, and factors that affected their performance in the experiments.
This section intends to provide an overview of the characteristics that are common
for the auction, random choice, and modified Battistoni implementations. All of
the implementations were developed to represent systems that might have been
deployed in a distributed fog computing context by using functional MQTT clients.
However, note that the MQTT messages are passed through a single broker and
not multiple. The system was made such that they can be installed onto a phys-
ical multi-brokered test-bed with only slight modifications to the topic schemes
and broker addressing. However, the performance of the implementations were
gathered through experiments that were performed on a single virtual machine.
The implementations are using MQTT as their messaging protocol and the Nodes
are represented as MQTT clients. The capabilities of the Nodes were represented
as an integer and is referred to as their bid, however only the Nodes in the auc-
tion implementation communicate their bids. This section is dedicated to covering
these and other similarities between the implementations in more detail.

4.1.1 Development

The Nodes, Client, and other components made for this thesis were programmed
in Python. The Nodes and Client are MQTT clients and the MQTT client library
Paho version 1.6.1 was used to implement the specifications that are required for
communication with the MQTT protocol [20]. The open-source Mosquitto MQTT
version 2.0.13 broker was used to govern the MQTT traffic [21] and all the traffic
is directed through a single broker. The source code for the implementations and
supporting software is publicly uploaded as a repository to Github [22]. An excerpt
of the main program file and a description is also included in the appendix A.

4.1.2 Simulating Multiple Brokers

The implementations were designed to work with a single broker instead of each
Node hosting its own broker. Each Node is assigned with a top-level topic which
represents their broker. This was done in order to simulate the intended construc-
tion of the Nodes in a distributed application setting. The MQTT traffic that is
under a top-level topic of a Node is interpreted as traffic that would be local to
the Node’s broker. The Client and Nodes are connected to the broker such that
there are no MQTT connections between the entities. Any entity that is supposed
to be connected to a broker that is hosted by another entity will instead sub-
scribe and publish to the relevant top-level topic. For all of the implementations
the Nodes subscribe and publish with QoS 2. Additionally, there was no network
latency between the entities when the experiments were performed because the
broker was run on the same hardware as the Nodes and the Client.
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4.1.3 Simplifications of Services

The type of service that was implemented for this thesis is simplified compared
to the service types that were covered in section 2.3.1. The service implementa-
tion offers no practical use cases beside being used to compare the performance
of the implementations in a series of experiments. The intent of the experiments
was to measure the processing and completion time that is associated with a re-
quest. Therefore, the service implementation was only required to have two key
attributes, a standard processing time and an asking price.

The standard processing time attribute serves as a baseline for how long a
Node will process the service from start to finish. When a Node starts to process
the service, it will calculate its actual processing time in accordance with the ex-
pression found in equation 4.1 and set a timer that expires after the processing
period has ended. When the timer expires, the requested service is interpreted as
being completely processed and the request is satisfied. The asking price determ-
ines which Nodes that will be selected to do the processing. The asking price of
the service is a one-dimensional integer that lies somewhere in the bid range of
the Nodes. The service type that was implemented has no associated weights and
neither do the implemented Nodes have specialised characteristics that would dif-
ferentiate their capabilities of carrying out varying types of services. The asking
price of the service is a static parameter that is determined by the service config-
uration and can not be changed by the Client or Nodes.

The service type that was implemented does not induce a response that would
be routed back to the Client upon completion. In addition, the task assignment
implementations were not developed to offer services that would require them to
send a response back. Therefore, the request-response pattern that was covered
in section 2.2.3 and 3.3.5 is not offered by the implementations.

4.1.4 Simplification of Bids

The implementations use bids as a measure of their capability in regards to pro-
cessing a service. To extensively include the features of the bid as they were ex-
plained in section 3.3.4 would increase the complexity of the implementations to
a large extent and would introduce more variables to consider during the com-
parisons. Therefore, the bids were designed such that they are one-dimensional,
static, and to only include the naive portion of the bid. Considering the simpli-
fications, the bids still represent a Node’s capability to process a given service.
That is because the bid directly affects the processing time. The calculation of the
processing time that was used for this thesis is expressed in equation 4.1.

The bid size is one-dimensional and is represented as an integer in the range
of 0 to 100. The services themselves do not have any weights associated with them
and neither do the Nodes have characteristics that make them objectively better
suited for processing a given service. The amount that a Node is willing to bid
on a service is directly tied to the service that is requested and is pre-configured,
e.g., Node N1 is configured such that it will have a bid of 42 for the service A. The
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bids are static and the intelligent portion of the bid has not been implemented.
Which means that each Node bids without accounting for dynamic and surround-
ing factors such as current load and the expected capabilities of its neighbouring
Nodes. The Nodes are therefore completely naive and their bid sizes do not change
in response to any events during operation.

4.1.5 Calculating the Processing Time

The same expression for calculating the processing time was used for all of the task
assignment implementations that are covered in this thesis, namely the auction,
random choice, and modified Battistoni. The Nodes in all of the implementations
have a bid attribute that represents their capabilities and is used to calculate the
time it takes to process a requested service.

T = T0 ·
�

1− k ·
Bid− 50

50

�

(4.1)

The equation 4.1 is the expression for how the processing times are calculated
by the implementations. The processing time refers to how long it takes for a
certain Node to complete the processing of a service. The processing time T is
related to the bid which the Node made for the item. The standard processing
time of a service T0 is defined in the catalogue of services and is the time it would
take for a Node that produces a bid of 50 to complete the processing of the given
service. The processing time T will be longer for Nodes with bids below 50 and
shorter for bids above. The size of any bid is defined to be in the range of [0, 100].
The factor k determines the impact that the bid size has on the processing time and
is a constant in [0,1). If k is zero then the bid size has no effect on the processing
time. Note that if the bid of a Node is 50, then T = T0 and that 0 < T < 2T0 for
all bids and values of k.

4.2 Auction Implementation

This section covers the implementation of an auction-based approach to assigning
requests in the Fog. The implementation was made with the intent of providing a
demonstration program and to show the capabilities of the system in comparison
to other approaches. The previous chapter on Method provided a general outline
of the behaviour and components of any auction approach. The implementation
that was made is a only a demonstration and therefore some of the covered fea-
tures were either simplified or not implemented. Most importantly, the auction im-
plementation propagates requests by holding local auctions between neighbours
and the most capable Nodes are assigned with the responsibility of further hand-
ling the auctioned request.

This section starts of with a top level view of the implementation by exploring
the rules regarding the auction. The rules are followed by a summary of the sim-
plifications that were made regarding the bid sizes of the Nodes. Then the topic
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structure of the auction implementation is covered. Lastly, this section provides
an example of the auction implementation in action which is intended to provide
clarity as to how the auction implementation decides on a suitable Node to process
a requested service.

4.2.1 Rules

This section provides an overview of how the auction implementation operates.
The auction implementation is an active and inclusive auctioning system such that
the Nodes themselves have to decide if they want to participate in an auction. The
auctioneer is in charge of declaring a new auction, starting it, and finally ending
it. In addition, the Nodes in the auction implementation must follow a set of rules
that are specific to the particular implementation that is featured in this thesis.

These are the rules for the implemented auction-based task assignment sys-
tem:

1. All Nodes are assumed to carry the requested services.
2. If a Node wins an auction with a bid below the asking price, then it should

re-auction the item to its neighbouring Nodes.
3. The Nodes should wait with publishing their bids until they see the start

signal in the auction room.
4. The Nodes can determine if they were a winner at the end of the auction

which is marked by an end signal.
5. The auctioneer participates with a bid in its own auctions.
6. The auctioneer will process the service if it wins the auction and not re-

auction the item.
7. The auctioneer will process the service if it is the only bidder in its auction.
8. There will only be multiple winners to an auction if there were multiple

equal bids that were winning.

The list above provides an overview of the rules that are applicable for the
auction implementation. It starts of with an assumption that all Nodes carry the
requested services in rule 1. This assumption is made to avoid the increased com-
plexity of handling requests that have been propagated to the end of the Fog
without having found a suitable match. In this case the last Node must process
the requested service and is therefore required to carry its implementation. This
behaviour is covered by rule 7 that states that the auctioneer must process the ser-
vice given that no other Nodes have bid on the item. The premise of the auctioning
approach is that an unsuitable Node should re-auction an item to its neighbours,
this is covered by rule 2. The rules 3 and 4 cover how a Node that participates
in auction knows when it supposed to publish its bid and when to determine a
winner. The implication of rule 3 is that a Node is unable to bid in an auction if it
subscribed after the start signal was sent. This was done to alleviate the need for
mechanisms that would inform late joiners of the currently highest bids, how to
handle late joiners was discussed in section 3.3.6. The rules 5 to 7 describe how
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auctioneers participate in the auctions which they are holding. In the implement-
ation made for this thesis, an auctioneer will bid in its own auctions as stated
by rule 5. According to rule 6, the auctioneer will process the service if it wins
its own auction regardless of its bid size. This is to avoid further propagation to
neighbours that are seen as more unsuitable for processing the service. Lastly, rule
8 clearly states an exception to the general behaviour of the auction implementa-
tion. Primarily, each requested service is only handled by a single Node. However,
in the case where multiple Nodes provide equal winning bids, then they are all
tasked with the responsibility of treating the request. This rule is in place such
that the winning Nodes do not have to make an agreement between themselves.

4.2.2 Topic structure

The auction implementation is an active and inclusive system. Such that when a
Node auctions an item it will notify all of its neighbours. On receiving the notice
of the auctioned item, the neighbouring Nodes can decide to participate in the
auction or not. If they wish to join the auction, then they must subscribe to the
dedicated auction room topic. Nodes that do not participate in the auction will
not be notified of any events occurring in the auction room. The other types of
auctioning systems were explained in section 3.3.3.

Node_id

Request Auction

Room_nr

Node_id

Request Room, Service

Start EndBids
Service

Figure 4.1: A visualisation of the topic structure used for the auction implement-
ation and common messages that are sent on these topics. The auction imple-
mentation is an active and inclusive auctioning system.

The figure 4.1 provides a visual representation of the topic structure that was
used for the demonstration. As mentioned in section 4.1.2, each Node is given a
top level topic that represents their own broker. Each Node is initialised with a
subscription onto their id as their top level topic, in addition to a wildcard sub-
scription for all lower level topics. An origin Nodes receives requests from Clients
on the request topic. If a Node is unable to process the requested service, then
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it must notify its neighbours of a new auction by publishing onto the auction
topic which its neighbours are subscribed to. The message from the auctioneer
contains the service class in question and a room number that indicates which
topic the auction will be held in. The neighbours that wish to participate in the
auction subscribe to the auction room topic that was indicated by the room num-
ber. In the auction room topic, the first message to appear is the start signal from
the auctioneer. The participating Nodes may then begin to publish bids onto the
auction room topic. The auction closes when the auctioneer publishes a message
that marks the end of the auction. When the auction has ended, the participating
Nodes will individually determine the winner.

4.2.3 Practical Example

This section covers an example case of the auction implementation handling a
request from a Client. This has been included to provide clarity surrounding the
order of operations and how the auction implementation acts in response to an
incoming request. The example covers a Fog that consists of three auction Nodes,
where one of the Nodes act as the origin Node and the rest are direct neighbours
to origin Node. The origin Node has an insufficient bid and auctions the request to
its neighbours. The neighbours compete in the auction and determine a winner.

The figure 4.2 provides a visual look on how the auction implementation
handles an incoming request. There are three Nodes, N1, N2, and N3, in addi-
tion to a Client. Each Node is initialised by a wildcard subscription to all topics on
their broker that is represented by their id in the top level topic. The topology of
the Fog is formed by N2 and N3 subscribing to the auction topic of N1. After doing
so, N2 and N3 are ready to receive notice of any auctions that will be held by N1.
The Client publishes a request for service A onto the request topic of N1. After
deciding to re-auction the item because it can not bid above the asking price, N1
publishes a message containing the requested service class, A, and a room num-
ber, 0, onto its own auction topic. N2 and N3 receive the message because they
are subscribed to the auction topic of N1. They both wish to participate in an auc-
tion for a service of class A and subscribe to auction room 0. The auctioneer N1
publishes the start signal that indicates the start of the auction in room 0. Then
N2 publishes a bid of 55 and N3 bids 52. The auctioneer N1 also publishes a bid of
48 in its own auction in case its the highest bidder. All of the participating Nodes
are aware of the bids made by any other Node because they are subscribed to
the auction room topic. The auction continues, but is in this example idle, until
N1 publishes the end signal. The participating Nodes are now individually able to
decide a winner of the auction. Because the auction has closed, N2 and N3 are no
longer required to subscribe to the auction room and unsubscribe from it such that
it may be reused at a later point. The highest bidder and winner of the auction
was N2, it has a bid above the asking price and therefore processes the service A.
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Figure 4.2: A sequence diagram that shows the flow of messages in the auction
implementation. The messages that are caused as a result of subscriptions are not
included.
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4.3 Random Choice Implementation

A random approach to task assignment was one of two methods that were com-
pared to the auction implementation that was covered in section 4.2. The random
choice implementation randomly assigns a request to a neighbour if the original
recipient of the request has a bid that is below the asking price. To allow for a
direct comparison to the auction implementation, the asking price of a requested
service was used to determine if a Node in the random choice implementation
should process the task or further propagate to its neighbouring Nodes. Each ran-
dom choice Node is assigned a non-communicated bid size which they compare
to the asking price of an incoming request.

4.3.1 Rules

The random choice implementation is publish-based in contrast to how the imple-
mented auctioning approach relies on subscriptions for task assignment. For the
random choice implementation a Node that decides to propagate a request ran-
domly selects one of its neighbours to publish the request to. To keep track of the
Nodes neighbours, all Nodes carries an internal list of neighbouring Nodes which
they may propagate requests to. When propagating requests, a Node publishes
a similar message as a Client would. As a result, the propagated request from a
Node is handled in the same fashion as the initial request from a Client.

To summarize the behaviour of the random choice Nodes, a list of rules has
been added below. Rule 1 states that the general condition for when a Node should
process or propagate a request. Rule 2 decides how random choice Nodes decides
on a neighbour to propagate a request to, this is done in a random fashion. Rule
3 is an edge case where a request has been propagated to the end of the network
and the last remaining choice is for the currently responsible Node to process the
request.

The rules for the random choice Nodes:

1. A request should be propagated if the responsible Node has a bid on the
service that is below the asking price.

2. A Node must randomly select a neighbour to publish the request to when
propagating.

3. A Node must process the service if it has no neighbours to propagate a re-
quest to.

4.3.2 Topic Structure

The figure 4.3 shows the topic structure that was used for the random choice
implementation. Each Node has a wildcard subscription to a top level topic which
is given by their id. The requests from Clients or neighbouring Nodes are received
on the request topic. The message contains the requested service class. To build
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a list of neighbours that each Node stores internally, a connect topic is used. A
neighbouring Node may request to be appended as a neighbour by publishing
their own id to another Node’s connect topic.

Node_id

Request Connect

Node_id

Request Neighbour_id

Service

Figure 4.3: A diagram of the topic structure for the Nodes that handle requests
by assigning randomly them to their neighbours.

4.3.3 Practical Example

The figure 4.4 provides an overview of the behaviour of the random choice im-
plementation in light of an example. The network is initialised with three Nodes
N1, N2, and N3. Each Node makes a wildcard subscription to its designated top
level topic as indicated by its own id. N2 and N3 are then added to N1’s neighbour
list by publishing their ids to N1’s connect topic. The Client publishes a request to
N1 on the request topic. The request is for service A. N1 receives the request and
decides that it should propagate it to one of its neighbours because its internal
bid is lower than the asking price of the request. The decision between N2 and N3
is randomly made, but in this case N1 propagates the request to N3. This is done
by publishing to the request topic of N3 with a message containing the requested
service. N3 starts to process the request either because it has no neighbours or
because it has a bid above the asking price associated with service A.

4.4 Modified Battistoni Implementation

The task assignment system designed by Battistoni et al. was adapted such that the
modified Battistoni implementation more closely resembles the design of the auc-
tion and random choice implementations. The changes that were made affect the
topic structure, subscription patterns, and the way Nodes connect to each other.
However, the competitive behaviour of the Nodes have been kept such that the
fundamental strategy of the original design remains in the modified version. The
modified Battistoni implementation allows multiple Nodes to process a request
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Publish N1/request "A"

Subscribe N1/# Subscribe N2/#

Publish N1/connect "N2"

Publish N1/connect "N3"

Publish N3/request "A"

Figure 4.4: A sequence diagram that shows the behaviour of the random task
assignment implementation. The messages that are caused as a result of sub-
scriptions are not included.
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simultaneously in contrast to the auction and random choice implementations
where only a select few Nodes end up in the processing stage.

The original system was intended to be used for edge computing and offload-
ing purposes. Therefore, there is a difference in the naming convention used for
the Clients and Nodes when comparing the descriptions found in this thesis and
the original paper. In the original descriptions the clients are the main source of
processing power and a node is serving as a host for an MQTT broker. Further
on, this thesis addresses the processing entities of the modified Battistoni imple-
mentation as Nodes and views the MQTT broker as its own instance. This is to
keep the naming convention consistent throughout the discussions that compare
the implementations and to avoid confusion when explaining the implementation
of the modified Battistoni. To more closely follow the Node design for auction
systems that was explained in section 3.2.2, the modified Battistoni Nodes are
designed such that they also host their own MQTT broker.

4.4.1 Rules

In the original design, the Nodes may decide based on their current capabilities if
they want to assist by processing the task related to a request. The capabilities of a
Node will be affected by the hardware, load, etc. In the auctioning approach pro-
posed in this thesis, the current capabilities are represented by the bid size. Since
the concepts are similar, each modified Battistoni Node carries an internal and
un-communicated numerical bid for each service class. The modified Battistoni
Nodes will opt out of processing a task if the asking price of the request is lower
than their bid. Therefore, all Nodes in the modified Battistoni implementation will
process a request when notified if they have a bid above the asking price.

The modified Battistoni Nodes are not collaborating and therefore they do not
notify each other when they start processing a service. It might happen that all of
the modified Battistoni Nodes opt out of processing a request and the request goes
unprocessed. To ensure that all requests are eventually processed an addition to
the original design was made. When the origin Node in the modified Battistoni
implementation has a bid below the asking price it will generally not process the
request. However, if the request has not completed processing after the worst case
guaranteed by the expression 4.1 then the origin Node will start processing. The
processing of the task is done with the assumed capabilities of the origin Node
such that processing time will vary according to the bid size of the origin Node.
The origin Node will set a reminder when it receives a request from a Client to
check if the request is still active after the worst case processing time has elapsed.

The rules for the modified Battistoni Nodes:

1. A Node propagates all incoming requests by publishing a room number to
its service topic.

2. When propagating a request, the Node subscribes to its associated room
topic.
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3. A Node will subscribe to the room topic on the propagator whenever it re-
ceives a propagated request.

4. A Node must process the service if it has a bid above the asking price.
5. When a Node has finished processing a service it publishes an end signal to

its own room topic.
6. When a Node receives an end signal on its own room topic, it unsubscribes

from its own and propagator’s room topic and publishes an end signal to its
propagator’s room topic.

7. When a Node receives an end signal on its propagator’s room topic, it pub-
lishes the end signal in its own room topic.

8. A Node stops the processing of a service if it receives an end signal in the
associated room topic.

9. The origin Node must process a requested service if it has not received an
end signal after the worst case period has elapsed.

The table above has been included to provide an overview of the behaviour
of the modified Battistoni Nodes. Any time a Node receives a request from either
a Client or another Node it should propagate the request by publishing a room
number onto its service topic. This is covered by rule 1. The room number that is
published refers to a room topic that the Node will associate with the request. As
per rule 2, the Node subscribes to the room topic after it has propagated the re-
quest. If it was a propagated request, then rule 3 applies and the Node should also
subscribe to the propagators room topic. In the modified Battistoni implementa-
tion, all Nodes that have a bid above the asking price shall process the request.
This is stated in rule 4. After a Node has finished processing a request then it
notifies Nodes that are subscribed to its room topic by publishing an end signal
according to rule 5. Rule 6 states that when a Node receives an end signal on
its own room topic then it unsubscribes from both its own and its propagator’s
room topic, it then publishes an end signal to the propagator’s room topic. This
ensures that the propagator is notified as well, and the propagator will in turn no-
tify its own propagator. Rule 7 states that when an end signal has been received
on a propagator’s room topic, then the Node will publish the end signal to its own
matching room topic as well. The Node will subsequently receive an end signal
on its own room topic and follow rule 6. According to rule 8, a Node shall stop its
ongoing processing of a service if it receives an end signal in the associated room
topic. This ensure that unnecessary resources are not spent on requests that have
already been satisfied. Rule 9 is an insurance that guarantees that all requests will
at some point be satisfied by the origin Node.

4.4.2 Topic Structure

The proposed topic scheme and subscription pattern in the original paper suggests
that a Client will only handle one request for a specific service at the time. This
implies that there will be no concurrent requests of the same service class at any
time. The topic structure was modified to allow for concurrent requests instead
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of guaranteeing no such cases. Therefore, the topic structure for the modified
Battistoni implementation uses the same strategy as the auction implementation
that dedicates a room topic to active requests.

Node_id

Request Service

Room_nr

Node_id

Request Room

End
Service

Figure 4.5: A diagram of the topic structure for the Nodes that are in the modified
Battistoni approach.

The figure 4.5 provides an image of the topic structure that was used for
the modified Battistoni implementation. Each Node has a corresponding top level
topic that is given by their id. The top level topic represents the brokers that each
Node would be hosting. Each Node is subscribed to their own request topic. The
requests from Clients are published on the request topic with a message indicat-
ing the service class to process. Upon receiving a request, a Node will publish to
the appropriate service topic. The messages that are published to a service topic
includes a room number that the Node associates with the corresponding request.
The room number points to an active room topic that the Node subscribes to. It
knows that the request has been processed once a message containing an end
signal is published in the active room topic.

4.4.3 Practical Example

The figure 4.6 shows an example of the modified Battistoni implementation where
there are three Nodes, N1, N2, and N3 and where a Client requests a service A.
The network has been initialized by N2 subscribing to any service topic on N1, and
N3 doing the same on N2. Note that, each Node is also subscribed to their own
request topic. The Client issues a request by publishing to N1’s request topic. The
message contains a request for service A. Upon receiving the request, N1 chooses
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Figure 4.6: A sequence diagram that shows the flow of messages in the modified
Battistoni implementation. The messages that are caused as a result of subscrip-
tions are not included.
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an available room number and publishes to the service topic that is dedicated to
service A. The message contains a room number that points to the active room
topic which N1 associates with the request. After publishing the information on
which active room topic N1 will be using, N1 starts processing service A because
it has a higher internal bid than the asking price of the request. The neighbour,
N2, was notified of the request because of its subscription to N1’s service topic.
N2 subscribes to the the active room topic on N1 such that it is notified whenever
an end signal is published. After doing so, N2 decides on a room number that it
wishes to associate with the request and publishes a message onto its own service
topic. N2 subscribes to its active room topic and starts processing. N3 do the same
steps upon receiving notice of the request as N1 and N2 previously performed
and starts processing. The first to complete the processing of service A is N2 and
it indicates that it has done so by publishing an end signal to the active room topic
on itself. N2 then unsubscribes from the topic. When N2 was notified of the request
it subscribed to an active room topic on N1, because it has completed the task it
may unsubscribe from that topic as well. After doing so it publishes an end signal
onto the active room topic on N1 as well, such that N1 and any other subscribers
are notified of the completion. When N1 receives the end signal, it aborts its own
processing and unsubscribes from the active room topic it hosts. Because N3 is
subscribed to the active room topic on N2 it was notified when N2 published its
end signal. In response, N3 aborts its processing and publishes an end signal to
the active room topic it hosts before unsubscribing from it. The active room topic
on N2 may also be unsubscribed from. Because N3 does not regard who the end
signal came from in the modified Battistoni implementation it publishes to the
active room topic on N2 to ensure that N2 and any other subscribers are notified.

4.5 Design of the Experiments

This section covers how the auction, random choice, and modified Battistoni im-
plementations were compared and the results of the comparisons. The implement-
ations have been tested with various configurations of network topology, mean bid
sizes, and standard deviation of bids in a series of experiments. The data that was
gathered from the experiments are the total processing time that is spent when
handling a request and the completion time which is the elapsed time from when
a service is requested until it has been processed.

This section starts of with how the data was acquired with the request monitor.
That is followed by how the experiments were designed and performed. This cov-
ers the default configuration and the variations that were tested. The data that
was gathered from the experiments was used to compare the implementations
and the results are found in section 4.6.
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4.5.1 Measuring the Total Processing and Completion Times

Two types of data was gathered from the experiments to compare the performance
of the implementations. The intent of the experiments was to gather data that re-
veals the behaviour of the task assignment implementations when responding to a
request from the Client under varying configurations. The collected data was the
total amount of time that was spent on processing the requested service and the
time it takes from when a service has been requested until it is processed. The total
processing time was chosen because it reveals how much resources that is spent
on processing a task by all of the Nodes. An approach like the modified Battistoni
will generally have multiple Nodes processing a request, while the random choice
will dedicate the processing to a single Node. The efficiency of the approaches
may be compared by looking at the total processing time. The response speed of
the implementations was compared by looking at the completion times of the re-
quested services. The completion time is unrelated to the amount of Nodes that
are processing a request and only accounts for the first completion. Most import-
antly, the completion time gives an indication of how much time it takes to find a
suitable Node and the quality of that Node. For instance, the time it takes to auc-
tion an item will be present in the time it takes to complete a request, however not
in the time it takes for each Node to process it. The total processing time and the
completion time of a request was collected by the request monitor. The request
monitor is an independent entity that the Client and Nodes notify whenever they
perform an action on a request.

Get R_ID

Request Service with R_ID

Start Timer for R_ID

Client
Auction with R_ID

Node

Finish Timer for R_ID & N_ID

Request Monitor

Start Processing for R_ID & N_ID

Finish Processing for R_ID & N_ID

Node

1

2

3 4

5

6
7

Figure 4.7: A diagram for how the processing times for each request was kept
track of for the demonstration. This diagram is drawn in a context for the auc-
tioning approach.

The request monitor as seen in figure 4.7 measures the time it takes between a
request is sent and the service is processed. It allows for multiple Nodes to process
the request and stores each processing time. The request monitor is reachable for
all Nodes and Clients. The Client will get a request ID from the request monitor
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before it publishes its request to the origin node. When the request is published,
the Client will also start a timer for the request by notifying the request monitor.
The request ID is part of the message such that the Nodes are able to communicate
which request they are processing to the request monitor. A Node that processes a
service notifies the request monitor before it starts the processing and also when
it finishes. In this way, the request monitor can keep a history of how much time
a Node spent on processing each request. In addition to this, the request monitor
will also track the first completion of a request. In this way it is possible to measure
the fastest time to serve a request and the total time that was spent processing it.

The results of the experiments are stored in csv files that has information re-
garding the completion time and the total processing time for each request that
was made. Each file contains a history of multiple requests that were made under
different configurations and each line is referred to as a run.

4.5.2 Comparison Method

Three experiments were conducted for this thesis. For each experiment, a single
independent variable in the configuration was changed while keeping everything
else equal. The intent of the experiments was to gather data about the perform-
ance of the implementations under various configurations. The data that was col-
lected is total processing time and completion time which were measured with
the request monitor. The experiments were done on an Microsoft Azure D2s_v3
virtual machine running an Ubuntu 18.04 operating system. The mean bid size,
the standard deviation of bids, and the network topology of the connected Nodes
in the Fog were the independent variables that were explored by the experiments
performed for this thesis. All of the implementations were tested on the same
hardware with equal configurations. They also use the same formula calculate
their processing times, the expression can be found in equation 4.1. The same
random seed was used throughout the experimentation for setting the bid sizes
of the Nodes such that the results can be reproduced.

Static parameters and their value
Parameter Value
Asking Price 50
Standard Processing Time, T0 3 seconds
Processing Constant, k 0.5
Number of Nodes 15
Joining period 0.1 seconds
Active period 0.1 seconds

Table 4.1: An overview of the static parameters that was used for the experiments
and their values.

During the experiments a set of static parameters were used throughout. The
table 4.1 provides an overview of the static parameters. The asking price of a
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request is tied to the service that is requested. The service that was requested
stayed the same throughout the experiments and had an asking price of 50. The
standard processing time of the service was 3 seconds. The processing constant k
was set to 0.5 which indicates that the range of the processing times lies between
0.5 T0 and 1.5 T0 for all possible bid sizes. The amount of Nodes in the Fog was set
to 15 for all of the experiments, however the effect of changing the topology has
been explored. The joining period for the auction implementation is 0.1 seconds,
which is the period before an auctioneer publishes the start signal to its auctions
after it has notified its neighbours. Additionally, the active period of each auction
is also 0.1 seconds.

Variable parameters and default value
Parameter Variations Default
Topology Network 1, 2, 3 Network 1
Mean bid size 30, 50, 70 50
Standard deviation of bids 10, 20, 40 20

Table 4.2: An overview of the variable parameters that was used for the experi-
ments and their default values.

The values for the independent variables that were used for the experiments
are featured in table 4.2. Each experiment was performed with three different
values for each of the independent variables. While an experiment for an inde-
pendent variable was done, the values of the remaining variables were set to their
default value. The network topology was chosen to see how the implementations
would respond to a differently structured Fog. For instance, a deeper network
might require the implementations to propagate the request further to find a suit-
able match because for each layer there might not be a candidate Node with a
bid larger than the asking price. The mean bid size was chosen as an independent
variable for one of the experiments to determine how the average capabilities of
the Nodes in the Fog will influence the performance of each implementation. A
lower mean bid size means that fewer Nodes in the Fog will have a bid which is
larger than the asking price of the request. Note that the distribution of bid sizes in
the Fog are only centered about the mean bid size, such that some Nodes may still
have bids that are below the asking price even when the mean bid size is larger.
The standard deviation of the bids in the Fog will determine variance in capability
between the Nodes. A higher standard deviation indicates that there is a larger
discrepancy between the capabilities of the Nodes and therefore an approach that
actively selects the best Nodes, for instance though an auction, might do better
than a random approach. The standard deviation of the bids was chosen as an
independent variable for one of the experiments to see how the implementations
performed in response to a smaller and greater difference between the capabilities
of the Nodes.

The figure 4.8 provide a visual representation of the networks that were used
for the experiments. All of the networks contain 15 Nodes and the origin Node is
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Figure 4.8: A visualisation of the three network topologies that were used in the
experiments. Network 1 is the default network.

the root of the structure. Network 1 is a full binary tree with four layers and acts
as the default network. Network 2 has a topology that is deeper than Network 1
and Network 3 is the widest topology that has been tested.

A total of three experiments were performed where each experiment tested
a single independent variable, either the network topology, the mean bid size, or
standard deviation of bid size. Each of the experiments were divided into three
sessions where each of the sessions had a set value for the independent variable
that was tested. For instance, one of the sessions that are associated with testing
the network topology have the network topology of Network 3. The sessions are
a collection of runs. A run is defined as a single request from a Client on a given
configuration. Each time a new run is performed, every corresponding Node for
all of the implementations are instantiated with the same bid sizes. Such that the
state of each implementation is equal and the only factor that separates them for
a given run are the respective task assignment methods. Note that the state of the
implementations will vary for each run because the bid sizes are drawn from a
distribution, however the implementations will always be tested on the same set
of states. For the experiments performed in the context of this thesis, each session
consists of 500 runs. Each run will carry information regarding the completion
time and total processing time that was spent handling the associated request.
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4.6 Results of Experiments

The comparisons of the implementations are divided into the three experiments
that were performed in accordance with the previous section. They were made
by testing the implementations with equal states on a varied set of configura-
tions. This ensures that the difference in total processing time and completion
time between the implementations are as a result of their method for assignment.
The static parameters that were used for the experiments our found in 4.1 and
the variable parameters in 4.2. Diagrams for the experiments are included in the
following subsections and feature the average values of the performance metrics
for each experiment. The diagrams have been created with the matplotlib library
in Python.

The results of these comparisons show that the auction implementation has
a significantly longer completion time in most cases when compared with the
modified Battistoni implementation and that it has comparable completion time
performance to the random choice implementation, however the auction was con-
sistently slower by a small margin. The total processing time of the auction im-
plementation is comparable to that of the random approach and the modified
Battistoni has a substantially longer processing time than the other implementa-
tions.

4.6.1 Experiment: Network Topology

An experiment was dedicated to researching the effect that the network topology
would have on the performance of the implementations. The different network
topologies that were used for this experiment had an equal number of 15 Nodes,
but had different connections. The networks that were used for this experiment
were made such that they would show how the implementations would behave
in response to a wider and deeper network compared to the default of Network
1.

The figure 4.9 displays the average completion times that the implementa-
tions had for three sessions in this experiment. The colour of the bars represent
the auction, random choice, and modified Battistoni implementations as green,
yellow, and red respectively. In all of the sessions, the auction implementation
had the highest average completion time followed by random choice which per-
formed slightly better. The modified Battistoni clearly had the lowest completion
times in this experiment. Changing the network topology between Network 1 and
2 had no significant effect on the behaviour of the implementations. However, for
the widest network, Network 3, the auction performed slightly better and random
choice slightly worse. The result is that they had nearly identical completion times
for the session that used Network 3.

The table 4.3 shows some statistical measurements that are included to give
some insight into the completion times of the implementations and their response
to the tested network topologies. As previously mentioned, the auction imple-
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Figure 4.9: A bar chart of the completion times for the various task assignment
methods for Network 1, 2, and 3.

Measurement Auction Random Choice Modified Battistoni
Network 1

Mean Completion Time (s) 2.74 2.59 2.11
Min Completion Time (s) 1.58 1.57 1.53
Max Completion Time (s) 3.93 4.51 2.94
SD Completion Time (s) 0.45 0.39 0.27

Network 2
Mean Completion Time (s) 2.78 2.58 2.12
Min Completion Time (s) 1.54 1.54 1.54
Max Completion Time (s) 4.22 4.24 2.93
SD Completion Time (s) 0.46 0.37 0.27

Network 3
Mean Completion Time (s) 2.70 2.69 2.15
Min Completion Time (s) 1.53 1.54 1.55
Max Completion Time (s) 4.06 4.26 2.92
SD Completion Time(s) 0.38 0.46 0.27

Table 4.3: A table of the obtained statistics on completion times for the imple-
mentations on networks 1, 2, and 3.
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mentation had the longest completion times on average. It had a mean comple-
tion time that was up to 0.2 seconds slower than the random choice and up to
0.66 seconds slower than the modified Battistoni implementation. The auction
performed the worst on Network 2, which is the deepest network. The minimum
completion time for the implementations were close in all of the sessions, but
the the modified Battistoni performed the best in terms of maximum completion
time. The modified Battistoni implementation had the smallest standard deviation
in completion times for all of the sessions, it was consistently 0.27 seconds. The
auction implementation had the highest standard deviation for the completion
times for Network 1 and 2, but was lower than random choice for Network 3.

Figure 4.10: A bar chart of the processing times for the various task assignment
methods for Network 1, 2, and 3.

The figure 4.10 illustrates the average processing times that were measured on
the different network topologies. The processing times for the modified Battistoni
is substantially higher than the other implementations. The modified Battistoni
implementation had a slightly lower average processing time on the widest topo-
logy, Network 2, compared to the other topologies. The auction implementation
had marginally better performance than random choice on Network 1 and 3, but
random choice had a lower average processing time on Network 2. In general,
the processing times for the implementations did not change to a great extent
between the sessions.

The table 4.4 has statistical measurements on the processing times of the
implementations from this experiment on network topologies. In all of the ses-
sions, the modified Battistoni implementation had the longest processing time by
a large margin. It had its longest mean processing time of 19.29 seconds on Net-
work 2, which is the deepest network, and its shortest mean processing time of
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18.78 was on Network 3. Additionally, it had the largest standard deviation in
processing times as well. The modified Battistoni had its largest standard devi-
ation of 4.32 seconds on Network 2 where it had a minimum processing time of
8.46 seconds and a maximum of 33.00 seconds. Which results in a gap of 24.54
seconds between its longest and shortest processing time. The random choice im-
plementation had the lowest standard deviation in processing times in all sessions.
It was comparably similar to the standard deviation measured for the auction on
Network 1 and 3. However, the auction implementation had a significantly higher
standard deviation on Network 2. In this session, the auction had a maximum pro-
cessing time of 8.91 seconds which compared to the random choice implementa-
tion in the same session is more than double. The reason for the large discrepancy
is likely because the auction implementation chose to process with multiple Nodes
during a run. In general, the processing times of the auction and random choice
were fairly equal, however the auction implementation had the longest maximum
processing time in all sessions.

Measurement Auction Random Choice Modified Battistoni
Network 1

Mean Processing Time (s) 2.54 2.57 19.20
Min Processing Time (s) 1.56 1.56 9.82
Max Processing Time (s) 4.62 4.38 30.90
SD Processing Time (s) 0.39 0.38 4.18

Network 2
Mean Processing Time (s) 2.64 2.56 19.29
Min Processing Time (s) 1.53 1.53 8.46
Max Processing Time (s) 8.91 4.11 33.00
SD Processing Time (s) 0.61 0.36 4.32

Network 3
Mean Processing Time (s) 2.49 2.67 18.78
Min Processing Time (s) 1.53 1.53 7.93
Max Processing Time (s) 6.06 4.23 30.66
SD Processing Time (s) 0.49 0.45 4.23

Table 4.4: A table of the obtained statistics on processing times for the imple-
mentations on networks 1, 2, and 3.

4.6.2 Experiment: Mean Bid Sizes

The amount of Nodes that have a bid size above the asking price of a request is
related to the mean bid size of the participating Nodes. In addition, the processing
time of a service is tied to the bid of the processing Node. Therefore, the mean
bid size of the Nodes was used as factor to determine the overall capabilities of
the Fog to handle requests. This experiment was aimed at researching how the
performance of the implementations would vary according to the mean bid size
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of the Nodes. In each session, the mean bid size of the Nodes was set to a value
that was either below, exactly, or over the asking price of the request. For all of
the experiments, the bid size for each Node was drawn from a truncated normal
distribution. Therefore, some Nodes may have bid below the asking price even
when the mean bid size was larger.

The results of this experiment that tested the implementations on a few se-
lected mean bid sizes showed that the average completion times get significantly
lower for all implementations when the mean bid size increases. Additionally, it
showed that the total processing time of the modified Battistoni implementation
increased when more Nodes had a bid above the asking price. However, the auc-
tion and random choice implementations had lower total processing times as a
response to an increase in the mean bid size.

Figure 4.11: A bar chart of the completion times for the various task assignment
methods for when Nodes have a mean bid size of 30, 50, and 70.

The figure 4.11 visualises the completion times for the implementations over
three sessions that had mean bid sizes of 30, 50, and 70. The asking price of the
requests are static and has been configured to be 50. For all of the implementa-
tions, the completion time got lower when the mean bid size was increased. The
auction implementation had the longest average completion time in all of the
sessions. Random choice had the second best results and the modified Battistoni
had the lowest average completion time for all sessions. The modified Battistoni
implementation showed substantially better performance than the others for the
sessions with mean bid sizes of 50 and 70. However, random choice was close in
completion time when the mean bid was 30.

The table 4.5 provides statistical measurements of the completion times from
the sessions. It shows that the standard deviation in completion time tends to
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Measurement Auction Random Choice Modified Battistoni
Mean Bid Size = 30

Mean Completion Time (s) 3.40 3.23 3.16
Min Completion Time (s) 1.86 1.81 1.62
Max Completion Time (s) 4.81 4.62 10.10
SD Completion Time (s) 0.59 0.63 1.90

Mean Bid Size = 50
Mean Completion Time (s) 2.74 2.59 2.11
Min Completion Time (s) 1.58 1.57 1.53
Max Completion Time (s) 3.93 4.51 2.94
SD Completion Time (s) 0.45 0.39 0.27

Mean Bid Size = 70
Mean Completion Time (s) 2.34 2.31 1.78
Min Completion Time (s) 1.51 1.50 1.50
Max Completion Time (s) 3.38 3.01 2.43
SD Completion Time (s) 0.40 0.39 0.16

Table 4.5: A table of the obtained statistics on completion times for the imple-
mentations when the mean bid size of the Nodes are 30, 50 and 70.

decrease as the mean bid size is increased. The modified Battistoni was heavily
affected by this trend. It had a lower standard deviation than the rest when the
mean bid sizes were 50 and 70. However, when the mean bid size was 30 the
standard deviation of the modified Battistoni was 1.90 seconds. That is substan-
tially larger than the standard deviations in completion time for the auction and
random choice, which were 0.59 and 0.63 seconds respectively. The reason for
this may be due to how the implementations handle requests that fail to find a
Node that has a bid above the asking price. The auction and the random choice
implementations will force the last responsible Node to process the service while
the modified Battistoni implementation delegates this responsibility to the origin
Node that starts processing once it is certain that no other Nodes will process it.

The figure 4.12 provides a view on the total processing times of the imple-
mentations and how they were affected by changing the mean bid size of the
Nodes. The modified Battistoni had a substantially longer total processing time
compared to the other implementations. The processing time for the modified
Battistoni implementation increased with the mean bid size. In contrast, the auc-
tion and random choice implementations had a reduction in processing time as
the mean bid size grew larger. The performance in terms of processing time for
the auction and random choice implementations were close to equal in all of the
sessions.

The table 4.6 provides statistical measurements on the total processing times
that were gathered from the sessions. The mean of the total processing times for
the modified Battistoni was much longer compared to the other methods. For a
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Figure 4.12: A bar chart of the processing times for the various task assignment
methods for when Nodes have a mean bid size of 30, 50, and 70.

Measurement Auction Random Choice Modified Battistoni
Mean Bid Size = 30

Mean Processing Time (s) 3.18 3.16 10.06
Min Processing Time (s) 1.56 1.80 2.98
Max Processing Time (s) 10.98 4.50 22.47
SD Processing Time (s) 1.10 0.60 3.67

Mean Bid Size = 50
Mean Processing Time (s) 2.54 2.57 19.20
Min Processing Time (s) 1.56 1.56 9.82
Max Processing Time (s) 4.62 4.38 30.90
SD Processing Time (s) 0.39 0.38 4.18

Mean Bid Size = 70
Mean Processing Time (s) 2.31 2.31 24.44
Min Processing Time (s) 1.50 1.50 16.01
Max Processing Time (s) 5.28 3.01 37.12
SD Processing Time (s) 0.45 0.39 3.08

Table 4.6: A table of the obtained statistics on processing times for the imple-
mentations when the mean bid size of the Nodes are 30, 50 and 70.
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mean bid size of 70, the modified Battistoni implementation spent on average
24.44 seconds processing a request. In comparison, the auction spent on average
2.31 seconds and the random choice 2.31 seconds processing a request in the same
session. The auction implementation had in all sessions a maximum processing
time that was longer than random choice, the difference was substantial for the
sessions with mean bid sizes of 30 and 70. In the session with a mean bid size of
30, the auction implementation had a maximum processing time that was more
than double compared to the random choice. However, the mean processing times
of the auction and random choice implementations were close to equal for this
and other sessions. The reason might be that the auction implementation was
able to select a better candidate to do the processing in some of the runs and
that this brought their mean processing times closer despite a worse maximum
performance.

4.6.3 Experiment: Standard Deviation of Bids

The bid size for each Node, regardless of implementation, is sampled from a trun-
cated normal distribution which is centered around the mean bid size. Each bid
can not be less than 0 or more than a 100. However, the shape of the distribution
and the likelihood to get a sample close to the mean bid size is determined by
the standard deviation that is used for the bid size. This will impact the spread of
the bid sizes but will not affect the mean. A higher standard deviation will result
in Nodes that have a larger variance in their bid sizes and may represent a het-
erogeneous network of Nodes that have significantly different capabilities. This
experiment explored the effect that altering the standard deviation of bid sizes
will have on the performance of the implementations.

The results of the experiment are that the average completion time of all the
implementations was shorter when a larger standard deviation was used for the
bids. In accordance with this, the results showed that the completion time is longer
for a smaller standard deviation. The trend for the total processing time is similar.
A larger standard deviation will result in a shorter total processing time. However,
only the processing time of the modified Battistoni implementation was substan-
tially affected by this.

The figure 4.13 provides an overview of the average completion times that the
implementations had when the standard deviation of bids were set to 10, 20, and
40. The completion times of the implementations were the longest for the ses-
sion that had the lowest standard deviation. As the standard deviation increases,
the average completion decreases. The auction implementation has the longest
completion time in all of the sessions, followed by the random choice and the
modified Battistoni implementation which was the fastest. The effect of changing
the standard deviation are similar for all of the implementations. However, the
modified Battistoni approach performs better with a higher standard deviation
compared to the other implementations.

The table 4.7 includes statistical measurements of the completion times that
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Figure 4.13: A bar chart of the completion times for the various task assignment
methods for when the Nodes bid size has a standard deviation of 10, 20, and 40.

Measurement Auction Random Choice Modified Battistoni
SD Bid Size = 10

Mean Completion Time (s) 2.99 2.82 2.59
Min Completion Time (s) 2.11 2.11 2.02
Max Completion Time (s) 3.97 3.90 2.97
SD Completion Time 0.31 0.21 0.17

SD Bid Size = 20
Mean Completion Time (s) 2.74 2.59 2.11
Min Completion Time (s) 1.58 1.57 1.53
Max Completion Time (s) 3.93 4.51 2.94
SD Completion Time 0.45 0.39 0.27

SD Bid Size = 40
Mean Completion Time (s) 2.57 2.43 1.86
Min Completion Time (s) 1.51 1.51 1.51
Max Completion Time (s) 4.30 4.57 2.80
SD Completion Time 0.51 0.52 0.23

Table 4.7: A table of the obtained statistics on completion times for the imple-
mentations when the bid size of the Nodes have a standard deviation of 10, 20,
and 40.
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were gathered in the sessions. The minimum completion time was similar for all
of the implementations, however the modified Battistoni has the lowest maximum
completion time in all of the sessions. For the session that had selected bid sizes
with a standard deviation of 40, the maximum completion time of the auction was
4.30 seconds, the random choice was 4.57 seconds, and the modified Battistoni
2.80 seconds. In this session, the modified Battistoni was 1.77 seconds faster than
the random choice implementation. The standard deviation of the completion
times were in most sessions largest for the auction implementation. However, the
random choice implementation showed a trend of increasing standard deviation
in completion time as the standard deviation of bids increased. When the stand-
ard deviation of bids were 40, the auction and random choice implementations
had effectively equal standard deviation in completion times. In general, the mod-
ified Battistoni was the most consistent as it had the lowest standard deviation in
completion times in all of the sessions.

The figure 4.14 shows an overview of the average total processing times that
the implementations had when they were tested with different standard devi-
ations of bids. The modified Battistoni implementation had the longest average
processing time by a large margin. The auction and random choice implementa-
tions were close to equal in processing times. A higher standard deviation of bids
resulted in lower average total processing times for the implementations. The
modified Battistoni implementation was the most affected by this trend.

Figure 4.14: A bar chart of the processing times for the various task assignment
methods for when the Nodes bid size has a standard deviation of 10, 20, and 40.

The table 4.8 provides an overview of the statistical measurements on total
processing time that was collected from the sessions. The maximum processing
times for the auction implementation are slightly or substantially higher com-
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pared to the random choice implementation. However, the differences between
their mean processing time are insignificant. Collectively, the Nodes in the modi-
fied Battistoni implementation spent substantially more time processing compared
to the other methods. In the session where the standard deviation of the bids were
set to 10, the modified Battistoni had a mean processing time of 22.86 seconds
while for the auction it was 2.86 seconds. This mean that the modified Battistoni
implementation spent 8 times more processing time on average than the auction
implementation in this session. The standard deviation in processing time became
lower for the modified Battistoni implementation as a result of the standard devi-
ation of bids getting larger. For the random choice it was the opposite, the standard
deviation in processing time got larger with an increase in standard deviation of
bids. The auction implementation had its lowest standard deviation of processing
times, 0.39 seconds, when the standard deviation of bids were 20.

Measurement Auction Random Choice Modified Battistoni
SD Bid Size = 10

Mean Processing Time (s) 2.86 2.80 22.86
Min Processing Time (s) 2.10 2.11 8.75
Max Processing Time (s) 9.00 3.87 36.57
SD Processing Time 0.57 0.20 4.95

SD Bid Size = 20
Mean Processing Time (s) 2.54 2.57 19.20
Min Processing Time (s) 1.56 1.56 9.82
Max Processing Time (s) 4.62 4.38 30.90
SD Processing Time 0.39 0.38 4.18

SD Bid Size = 40
Mean Processing Time (s) 2.38 2.41 17.07
Min Processing Time (s) 1.50 1.50 7.97
Max Processing Time (s) 5.88 4.44 29.87
SD Processing Time 0.55 0.51 3.32

Table 4.8: A table of the obtained statistics on processing times for the imple-
mentations when the bid size of the Nodes have a standard deviation of 10, 20,
and 40.
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Chapter 5

Discussion

This thesis has explored the auction approach, which is a decentralised task as-
signment method. The approach was designed with the publish-subscribe pattern
of MQTT in mind and the presented use case is for propagating requests in a
fog computing architecture. The auction approach was implemented as a demon-
stration program and it was tested against other decentralised task assignment
methods in a series of experiments. This chapter covers a discussion surround-
ing the results of the experiments, the potential benefits of using MQTT in fog
applications, and a final evaluation of the auction approach.

5.1 Discussing the Results of the Experiments

A functioning demonstration program of the auction approach was developed for
the purpose of showing the feasibility of an implementation. The auction approach
was then tested against other task assignment systems in a series of experiments
and the results were promising. The auction implementation did not include soph-
isticated features that would be present if the approach was used in a real system.
However, the basic implementation served as a baseline that could be compared
to other decentralised approaches for propagating requests. The findings in sec-
tion 4.6 showed that the auction implementation was consistently able to achieve
lower total processing times than the implementation that was inspired by the
design of Battistoni et al. in [1]. In addition, the experiments indicated that the
auction implementation had similar processing times and slightly higher comple-
tion times when compared to a random approach. This section emphasizes the
most crucial findings, argues for the final outcome of the experiments, and sheds
light on the implications of the results.

5.1.1 Evaluating the Performances

The distinct properties of the implemented approaches caused some early expect-
ations regarding how they would perform in the experiments. The results were
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mostly in line with the anticipations, but some were also surprising. The modi-
fied Battistoni implementation was expected to have the lowest completion time
and the highest processing time due to its competitive behaviour. The auction
implementation was expected to perform better than the random choice imple-
mentation because it chooses an optimal solution at every step in the propagation.
This section provides an overview of the expected and unexpected results from the
experiments.

Expected Results

The modified Battistoni implementation was expected to have a significant ad-
vantage in producing quick responses. That was confirmed on the basis that the
Battistoni approach had the lowest completion times throughout the experiments.
The intuitive argument for this outcome is that the Battistoni approach allows
more Nodes to process a service than the other approaches. In fact, all Nodes
with a higher internal bid than the asking price of the request will immediately
process the service when notified. The optimal Node, the Node with the highest
bid and lowest processing time, will therefore be part of the group that processes
the service. That is under the assumption that the optimal Node has a bid that
is above the asking price. In addition, the Battistoni approach is able to notify
all available Nodes with inconsiderable delay. As a result, the modified Battistoni
implementation had the lowest completion times of the bunch.

The auction and random choice implementations had lower total processing
times than the modified Battistoni implementation. That was expected given that
both of the approaches will in general only select a single Node to process a ser-
vice. However, the auction implementation would sometimes have multiple win-
ners in auctions. Because of this possibility, the auction approach was assumed
to have longer total processing times than the random approach. It was apparent
when this occurred because the auction implementation clearly had higher max-
imum processing times than the random choice implementation in a few sessions.

Unexpected Results

It was unexpected that the auction and random choice implementations had nearly
the same performance in the experiments. The auction implementation was as-
sumed to perform better due to the active decision making process that took place
in the auctions. However, for most of the sessions, the random choice implement-
ation performed slightly better in terms of completion times. The auction imple-
mentation had slightly lower average total processing times in about half of the
sessions.

It was presumed that the auction implementation would not always be able to
find the best global solution for each run. The reason is that the first winner of an
auction with a bid that is higher than the asking price would process the service.
Therefore, a more suitable Node residing at a deeper layer would not be found. As
a result, the random approach may have found better solutions at a deeper layer
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in some of the runs. However, there is no consistent pattern in the way that the
networks were populated that suggests that a solution at a deeper layer would
be different from an earlier solution. Although the random approach may miss
an earlier solution, its completion time is not significantly affected by finding a
solution at a deeper layer. That is because its method of propagation does not
have any inherent delays. Unlike the auction approach that has a delay in each
step of the propagation which is equal to the auction period. The auction period
is the total of the joining period and the active period. Given that the random
approach finds a solution it will have used less time on making decisions and
the solution it finds is expected to be equally as good. Depending on the exact
structure of the network and the population, this will in some cases yield a better
performance. This may explain why the random approach was a slight favourite
in completion times. The likelihood of the random approach finding a solution is
further explored in section 5.1.2.

It was assumed that the auction implementation would have a lower standard
deviation in terms of processing times and completion times than the random ap-
proach. The reasoning was that the auction implementation, by taking an active
choice in the auctions, would be able to find a suitable solution when the ran-
dom approach would be forced to go to the end of the network and encounter
an unsuitable Node. That could lead to a long processing and completion time.
However, the results show that the auction approach has for some sessions a signi-
ficantly larger standard deviation in the processing time. The most likely reason is
that some runs had multiple auction winners which effectively increases the pro-
cessing time by a factor equal to the amount of winners. The standard deviation
in completion times were in most cases higher for the auction implementation
as well. Each auction had an auction period of 0.2 seconds and having a varying
amount of auctions in each run will yield significant variations in the delays that
are caused by the auctions. The variance in the amount of auctions might explain
the higher standard deviation in completion times. In contrast, the standard de-
viation in completion times for the random approach were not expected to be
greatly affected by finding deeper solutions. But it was assumed to have a mod-
erately high standard deviation because it may reach unsuitable Nodes at the end
of the network quite often.

5.1.2 Further Analysis

One of the potential reasons for the auction implementation having not only com-
parable, but slightly worse performance than the random choice implementation
in both total processing time and completion time is that the auction implement-
ation did not include an intelligent bid portion. An intelligent bid portion that
includes the expected bid sizes that would be present in a re-auction might have
improved the choice of winners in auctions. This section covers two examples
that will highlight why the experimental results of the auction implementation
and random choice implementations were surprisingly similar and how the per-
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formance of the auction approach might be improved with the intelligent portion.

The Cumulative Probability Properties of Auction vs. Random Propagation

The auction implementation had an advantage over the random choice imple-
mentation at every step in the propagation because of its ability to select the Node
with the highest bid. If the winner of an auction had a higher bid than the asking
price then the Node can start processing the service. The random approach has
a chance of selecting an incapable Node and then further propagate the request
to a deeper layer. A solution, that is any capable Node, found at a deeper layer
may be assumed to have equal processing times compared to a solution found at
a previous layer. The random approach does not have any inherent delay in its
propagation method and, unlike the auction approach, the completion time is not
significantly affected by finding deeper solutions. Therefore, a random approach
may perform better than auctioning in cases where it is likely to find a solution
at a deeper layer that has similar qualities to a missed solution at a previous step.
The effect of this is further considered by looking at an example session from the
experiments. The session that is regarded is from the experiment on mean bid
sizes and the mean bid was set to 30, the results from the experiment are found
in section 4.6.2.

For the experiment on mean bid sizes, the bids were drawn from a truncated
standard distribution with a standard deviation of 20 and Network 1 was used
for all the sessions. The session that is considered had a mean bid size of 30. The
three-sigma rule states that 68% of findings from a standard distribution will be
found within 1 standard deviation from the mean. When the mean bid size was
30 and with a standard deviation of 20, then it is assumed that there was approx-
imately a 16% chance that the bid size of any Node was above the asking price.
Going by this approximation, there was an 84% chance that the first Node would
not have a bid above the asking price. This would incite an auction or further
propagation for both implementations. Network 1 is a binary tree such that every
subsequent branch contains two Nodes. In each step of the propagation there was
a 29% chance that at least one of the two Nodes had a bid above the asking price.
The auction approach would find a solution if present, but the random choice im-
plementation had only a 50% chance of finding it. The probability of the random
choice implementation being able to find a solution at every step is equal to the
probability of the selected Node being above the asking price, which is 16%. The
probabilities of there existing a solution at every layer are independent. As a res-
ult, for two repeated trials, the random choice implementation had a cumulative
probability of 29% for finding a solution at either the first or second propagation
step according to the binomial theorem. In comparison, the auction implement-
ation would have a cumulative probability of 50%. However, it would choose a
solution at the first step if it was present.

In this example, the probability of the random approach finding a solution at
the first or second step are similar to the probability of the auction implementation

76



finding a solution in its first auction. This partially explains why the random choice
approach fared slightly better in deep networks and the auction did a bit better
in the wider networks. When the network topology is narrow, then there are few
options for the random approach to miss and few options to choose from in the
auctions. When the network topology is wider, then the possibility of choosing
between multiple solutions is more likely to be present and the random approach
given more options would be less accurate in finding a solutions. To exemplify this,
given the same circumstances as the previous example but with 4 Nodes at every
branch. The probability of there at least being one solution at the first step is 50%,
the random approach would still have a 16% chance of finding it in the first step.
The cumulative probability of finding a solution at step two in the propagation is
29% for the random approach and 75% for the auction approach. Maybe trivial,
but its worth noting that the cumulative probabilities would be the same for both
approaches if each layer only had a single Node.

Introducing the Intelligent Portion

An example of where the heuristic component would be advantageous is when
the topology of the network is similar to the one showed in figure 5.1. If this case
was part of the experiments then the auction implementation would have a worse
processing time and completion time in comparison to the expected times of the
random choice implementation. The auction implementation would go down the
path N0, N1, N3 and N3 would do the processing. The random choice imple-
mentation would have an equal chance of selecting N0, N2, N4 as its path. If the
processing constant k was set to 0.8 and the standard processing time T0 was
set to 2 seconds, then the auction implementation would have a processing time
of 2.16 seconds and the random choice implementation would have an expected
processing time of 1.6 seconds given that the processing times are given by ex-
pression 4.1. The completion time of the auction implementation would be 2.56
seconds given that the auction period is set to 0.2 seconds. The random choice
implementation is assumed to have no delay in propagation and the processing
and completion times are seen as equal. As a result, the expected difference in
processing time is 0.56 seconds and 0.96 seconds for the completion time which
accounts for the delay that is introduced by auctioning twice.

The best solution for the example in figure 5.1 is to choose the path N0, N2,
N4. This path leads to N4 which has a processing time of 1.04 seconds. The ran-
dom choice implementation is expected to choose this path half of the time, but
the auction implementation with naive bids will never choose this path. The in-
telligent portion of the bid can steer the auction implementation to choose the
correct path. The figure 5.2 shows an example where an intelligent portion is in-
cluded that accounts for the bids of neighbouring Nodes. The composite bid of
each Node is adjusted according to the naive bid portion of its neighbouring Node
that would be part of a re-auction. The adjustment in this example is made ac-
cording to expression 5.1. The intelligent portion is added to the naive portion to
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Figure 5.1: A network topology with naive bids. One of the paths are clearly
better than the other, but the second layer Nodes have misleading bid sizes.

make up the composite bid marked in blue boxes for the path on the left and in
red on the right. Note that the origin Node N0 has two adjusted bids, but that the
method for joining them is inconsequential in this case. The result of including
information on the bids of neighbouring Nodes by adjusting the bids accordingly
is that the auction implementation will choose the correct path in this case.

Intelligent Portion=
Naive Bid− 50

2
(5.1)
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Figure 5.2: A network topology with intelligent bids with heuristics on neigh-
bouring bids. The bids are adjusted such that the best path is chosen through
auctions.
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Auction
w/ Naive bids

Random Choice
Auction
w/ Intelligent bids

Processing Time (s) 2.16 1.6 1.04
Completion Time (s) 2.46 1.6 1.44

Table 5.1: An overview of the performance of the auction implementation in
comparison to the random choice implementation when bids are completely naive
and when including an intelligent portion. The data is drawn from an example
case.

This exemplifies the potential improvement that could be gained by adding
an intelligent portion to the auction implementation. In this example, the expec-
ted performance of the random choice implementation is better when competing
against an auction implementation that only uses naive bids. However, the auc-
tion implementation performs better with the addition of intelligent bids. The im-
provement in performance for this example is summarised in table 5.1. A further
discussion on the implications of including an intelligent portion in implementa-
tions of the auction approach are further discussed in section 5.3.3.

5.1.3 Implications

The data that was gathered in the experiments indicates that a task assignment
system that is based on an auction approach may be a viable strategy for a fog com-
puting architecture. The auction approach has been shown to statistically perform
better against the random approach on wide and shallow networks. However, the
auction approach has an inherent delay for each step in the propagation. It is
therefore more suited for networks where a good solution is likely to exist in the
layers that are in close vicinity to the origin Node. The auction approach with
naive bids does not consider the best path to an optimal solution. However, it
can be adjusted to do so by including an intelligent portion that accounts for the
capabilities of neighbouring Nodes. The modified Battistoni implementation has a
trade-off that prefers quick completion times over the efficient use of resources. It
was clearly the fastest approach but in one of the sessions it had a total processing
time that was more than 10 times longer when compared to the auction and ran-
dom approach. In a real application, this translates to higher electricity costs and
opportunity cost in terms of what other tasks that could have been performed
instead.

5.2 Advantages of Using MQTT in the Fog

The MQTT protocol is commonly used for IoT applications because of its light-
weight messaging and publish-subscribe messaging pattern. The properties that
make MQTT successful in distributed sensor networks are also beneficial for rout-
ing requests in a fog computing architecture. The main reasons are the decoupling
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features of topic-based publish-subscribe style messaging, reliable message deliv-
ery, and lightweight messaging. A fog network consists of a moderate amount of
physically distributed Nodes and it likely has some dynamic properties because
of Nodes entering or leaving, unreliable connections, and the eventual restructur-
ing of connections. The MQTT messaging protocol has purpose-built features that
make it suitable for distributed and dynamic networks.

5.2.1 Lightweight Messaging

The response times and bandwidth consumption for MQTT compared to HTTP are
significantly lower as reviewed by C. Wang for Google in [23]. The results were
found by measuring the response time and packet size when sending multiple
messages to a remote server and was tested with QoS 1 over persistent and reused
MQTT sessions. The MQTT protocol has small packet headers in comparison to
other commonly used application layer protocols such as HTTP. This makes MQTT
messages lightweight and the protocol generally uses little bandwidth. This is one
of the main reasons that MQTT is popular among constrained devices because
MQTT clients can publish messages with relatively small packet sizes. The payload
is often small and the short header allows the payload to be the primary factor
that determines the packet size. This is beneficial when the devices are connected
to rudimentary networks with low bandwidth.

A fog computing architecture will also benefit from lightweight messaging.
The MQTT protocol will save on bandwidth when it is used in both Node-Node
and Node-Client relationships. However, lightweight messaging is likely to primar-
ily benefit the Clients. They might be constrained devices that are located on the
edge. If this is the case, then they will in most cases have limited networking cap-
abilities to save on device and network costs. The Clients should for that reason
be able to communicate with the Fog over a lightweight protocol such as MQTT.
The Nodes are assumed to have moderately powerful hardware that can perform
computations and utilize a large bandwidth network. However, in certain applic-
ations, e.g., where the Nodes are either mobile or placed in desolate areas, the
network can be a limiting factor for the Nodes as well. A network connection in
a remote area may have costs associated with the transmission of messages. For
example, an LTE connection with a set amount of monthly data. In such case, the
Nodes will also benefit from using the network capacity sparingly and gain the
advantages of lightweight messaging. Therefore, the MQTT protocol can provide
benefits with its lightweight messaging at various levels in the Fog. It may only be
used for communications between Nodes and Clients but it can also be used for
communication between Nodes. Lightweight messaging will aid in fulfilling any
constraining criteria that are set on network capabilities and the associated costs
of messaging.

80



5.2.2 Reliable Message Delivery

Important messages such as the request of a service might be lost when transmit-
ting it over an unreliable network. To counteract this, the MQTT protocol features
a range of built-in message delivery guarantees which are referred to as QoS. The
levels of QoS and their use-cases were covered in 2.2.2. In fog computing applic-
ations, the Nodes and Clients may be subjected to unreliable network conditions
due to the signal type that is used, some hardware issue, unfortunate accidents,
etc. The benefit of applying a high level of QoS in the Fog is that the Nodes and
Clients can be sure that their requests will not be lost as a result of any unstable
connections.

5.2.3 Decoupling

MQTT clients are naturally decoupled because MQTT is a topic-based publish-
subscribe messaging protocol. The message traffic passes through a broker such
that even the clients that interact with each other are not directly connected. The
decoupling nature of MQTT was covered in section 2.2.1. The main advantage
of having decoupled clients is that the functionality of client does not rely on
any other specific client. The implication is that when a client is removed from
the system it may be replaced by another client that performs the same duties.
The replacement client may have vastly different properties in terms of hardware
components, service implementations, or network capabilities. However, as long
as the interfaces and functionalities that it provides match those of the original
client, then other clients that relied on interactions with the original client will be
unaffected by its replacement. The term unaffected has been loosely used here,
because the performance of the replacement can be different. However, it is as-
sumed that the replacement client behaves the same as the original client and that
the application logic is decoupled as well.

During the life cycle of a Fog, some Nodes have to be replaced, added, or re-
moved for various reasons. If the Nodes were not decoupled, it would be difficult
to keep the affected part of the Fog operating as intended after either of these
incidents. When a Node is added to the Fog it connects to the broker hosted on
an existing Node. The new Node may also connect to multiple existing Nodes.
Any existing Nodes may connect to the new Node as well. After the new Node
has connected to any number of existing Nodes it can support the Fog through its
interactions with the Nodes which it is connected to. The Nodes that it connected
to will not change their behaviour to accommodate for the newly added Node be-
cause of the decoupled nature of MQTT. The subscriptions and any topics that the
existing Nodes publish to will remain unchanged. When a Node is removed from
the Fog then the behaviour of the Nodes that it was connected to do not change.
However, any Nodes that were connected to Node that was removed may lose
their relative connections to other Nodes. This occurs when the removed Node
served as an intermediate connection to any other Nodes. In the worst case, some
Nodes can be separated from the Fog if an intermediate Node leaves the network.
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Therefore, when a Node is permanently removed from the Fog there should exist
some mechanism for restructuring the network. Assuming that such a mechanism
is implemented, then the decoupled properties of MQTT allow the Nodes to not
change any other parts of their behaviour except for their connections. The same
case applies when a Node needs replacement. The replacement Node will likely
have a different address than the original Node. To replace a Node, the connec-
tions to address of the original Node are dropped and equal connections are made
with the replacement Node on the new address.

5.3 Evaluation of Auction-based Propagation

The argument for using an auction approach for assigning tasks is that the method
inherently finds the best local solution at every step in the chain of propagation.
This will ensure that the processing of the request will be performed by a single
or a few suitable Nodes. The approach uses a decentralised design for request
propagation and does not require a supervisor that has knowledge of the entire
state of the Fog. However, the approach has drawbacks such as inherent latency,
traceability issues, and may choose unfavourable paths when presented with bids
that are based on incomplete information. This section serves as an evaluation
of the auction approach. It starts of with the advantages of propagating requests
with auctions. Then the disadvantageous aspects of the approach are covered.

5.3.1 Advantages

Any task assignment method that is used for propagating requests in the Fog must
be able to find good solutions in an efficient manner. The auction approach is
able do achieve this without relying on centralised services. That is beneficial for
the many applications that have requirements such that it is either impractical or
impossible to depend on centralised services. The auction approach is decoupled
and provides the necessary flexibility to either assign tasks in a contained local
network or be expanded by connecting additional Nodes to the Fog which enables
the approach to provide broader coverage. In cases where it is applicable, tasks
may be transferred from the Fog to the Cloud in a standardised manner.

Optimal Local Solutions

The auction approach is a suitable method for request propagation in a Fog where
the Nodes are likely to have varying capabilities. The task assignment system used
in a Fog should be able to arrive at an optimal Node to process any given request,
or at least a Node that is close to optimal. Other task assignment systems may
achieve this through periodic updates on the capabilities of neighbouring Nodes,
rely on centralised supervision and control, or introduce some redundant del-
egations in an effort to include the optimal Nodes. The auction approach finds
the current capabilities of neighbouring local Nodes in a decentralised fashion by
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holding auctions at every step in the propagation. This ensures that the auction
approach makes its decision based on recent information and that requests are
delegated to the optimal Node among the auction participants. As discussed in
section 3.3.4, the approach may also be expanded to include heuristics on the
capabilities of Nodes that reside at deeper layers by introducing intelligent bids.
This would enable the auction approach to make better long term decisions and
is further elaborated on in section 5.3.3.

Decentralised Decision making

Decentralised task assignment schemes such as the auction approach do not rely
on a global up-to-date state of the system, which may be hard to maintain in a large
and dynamic Fog. A Node that operates according to a centrally governed assign-
ment strategy would be required to have the information about the optimal Node
to propagate their request to. To acquire the current optimal solution, the Node
must constantly receive over-the-air updates or poll the central system whenever it
handles a request. In contrast, a decentralised propagation system leverages local
information that is either immediately available to the Node or through updates
from neighbouring Nodes. As a result, the Nodes in a decentralised system do not
need to maintain a robust connection to a centralised service. This is an advant-
age because the Nodes can operate in unreliable networks in remote areas and
are only required to have an immediate connection to their neighbouring Nodes.

Decoupled Components

The presented auction approach is designed such that the Client is only directly
connected to the broker on its origin Node. The origin Node acts as the Client’s
interface to the rest of the Fog and any requests from the Client are sent to its origin
Node. The advantage of this structure is that the Client does not need to make any
new connections after it has established its connection to the origin Node. As a
result of this, the topology of the Fog may change but the Client would not notice
this or need to change its behaviour as long as it remains connected to the origin
Node. This is because the Client is entirely decoupled from the rest of the Nodes
in the Fog. The Nodes are only partly decoupled because they need to connect to
each others brokers to construct the Fog. This is common for all the approaches
presented in this thesis. However, the auction approach is also decoupled at the
application logic because the Nodes do not need to update how they manage their
auctions to accommodate for any changes to the number of participating Nodes.
However, a Node or a complete branch of Nodes may be separated from the rest
of the Fog if an intermediate Node is terminated. This was discussed in section
5.2.3 which covered the decoupling properties of MQTT.
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Cloud Participation

In some cases a request would most effectively be handled by the Cloud. This will
occur whenever a request can not be handled by the Nodes or the Cloud is the
better alternative performance wise. The Nodes may be unable to carry out the
request because it has premium hardware or network requirements or when the
Nodes are already overloaded with concurrent requests. The auction approach
allows the Cloud to participate in the Fog as any other Node. Incorporating the
Cloud directly into the Fog is advantageous because the Cloud has superior com-
putational capabilities compared to the Nodes and it is better suited at reliably
handling long term services. The Cloud can join the Fog at several locations such
that it can aid in computations wherever it is needed. The considerable network
latency to the Cloud can be accounted for in the bids that the Cloud place in
auctions.

5.3.2 Disadvantages

The auction approach requires the cooperation between its participating Nodes
to successfully propagate requests. The requests are propagated through a series
of auctions. Each auction causes a delay into each step of the propagation and
therefore a challenge of the auction approach is to perform well despite the delay.
Using a method that relies on propagation, instead of establishing a direct con-
nection between the Client and the processing Node, makes it hard to track the
path of a request. The Nodes must also be trusted to provide valid bid sizes that
accurately represent their capabilities. The auction approach is unable to locate
optimal solutions at deeper layers if the intelligent portion is not included in the
bid.

Auctions Introduce Latency

The strategy of holding auctions introduces a source of latency into each step
of propagation. This is because any style of auction will have to be active for an
extended period. An auction consists of the declaration of the item to be auctioned
and the auction round itself. The properties of an item must be communicated
to the bidders and the participants of an auction need time to place their bids.
The inherent delay of holding auctions may be compensated for if the strategy
is able to find considerably better matches than faster task assignment methods.
The challenge is to find an optimal trade-off between consistently being able to
find the optimal candidates and to do so in a timely manner when compared
to other task assignment approaches. The experiments showed that the auction
implementation was not able to outperform a random approach under the given
circumstances. The results from the experiments show that it is uncertain if the
increased overhead of holding auctions is worthwhile in practice.
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Difficult to Trace

The path that a request has taken from the origin Node to the processing Node may
be difficult to follow for task assignment methods that rely on propagation such
as the auction approach. This is because each Node along the path of a request is
only aware of who the request came from and who the request was sent to. If each
Node kept a full log of all the requests that they have handled then the complete
path of a given request may be found by joining logs. Starting from the origin
Node, the path of a request can be trailed by iterating through each intermediate
Node until the processing Node is reached. This method for identifying the path
of a request is impractical in a fog computing context because each Node is a
separate computer and the request logs of each Node is unlikely to be readily
available. However, it is highly beneficial to be able to trace the path of a request
to gain performance metrics, monitor the network, and for debugging purposes.

Inaccurate Bids

An important consideration of the auction approach is to what extent the Nodes
can be trusted to place accurate bids that honestly represent their capabilities. The
Nodes calculate their bids individually and could provide dishonest or inaccurate
information about their capabilities by altering their bid sizes either intentionally
or unintentionally. A Node that bids too large will in certain situations outbid other
Nodes due to its inflated bid. As a consequence of this, a Node that bids too high
based on its capabilities will win more auctions and handle more requests than it
should. In the opposite direction, a Node can also bid too low in auctions. A Node
that bids too low will receive fewer than optimal requests to handle. The result
of Nodes having inaccurate, and potentially dishonest, bids is that less qualified
Nodes will win more auctions.

Requires Heuristics to Choose the Best Paths

An auction approach that uses naive bids will sometimes choose a path that leads
to a suboptimal solution. The naive portion of a bid equates to a Node’s static
capability to process a requested service under ideal conditions. Dynamic factors
such as the current load and heuristic factors like the capabilities of its neighbour-
ing Nodes are only accounted for in the intelligent portion of a bid. Regardless
of how bids are composed, the highest bidder in an auction is always declared as
the winner of the auction. If the winner of an auction is unable to process the re-
quested service then the request is re-auctioned. However, if the winning bid was
purely naive then it did not take into account the capabilities of the Nodes that will
be participating in the re-auction. This is also true for dynamic bids that include
the intelligent portion, but that do not incorporate this heuristic factor. Therefore,
there is a significant chance that choosing a different Node in the original auction
would have been better. Because another participant may have better neighbours
than the winner despite having a lower bid in the auction. As such, the auction
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approach can make suboptimal choices when the bids are naive and all the parti-
cipants of an auction bid below the asking price of the item.

5.3.3 The Importance of the Intelligent Portion

The implementation of the auctioning approach did not include an intelligent
portion in the bids. It was not included because the other implementations would
not benefit from it, the complexity of the implementation would increase, and the
auction approach is able to operate without it. However, including an intelligent
portion with heuristics on the capabilities of neighbouring Nodes might have im-
proved the path of propagation. This might have increased the performance of the
auction implementation in the experiments. Possibly to the point where it would
have better performance than the random choice implementation.

The naive and the intelligent portions of a bid conceptually represent two
different reasons for a Node’s suitability to win in an auction. The naive portion of
the bid is a static representation of the Nodes capability to perform the requested
service if it was forced to do so under its ideal conditions. Any dynamic factors
that might affect the performance of the Node are not accounted for. Therefore,
the auction approach will only find the Node that is the most suitable for instantly
processing a service when the bids are completely naive. This may be acceptable in
situations where the most optimal solution is found in the first auction. However,
the most capable Node in the first auction is likely to win a lot of auctions because
it has a high static bid. This may over time reduce its performance due to the
load itself and additional dynamic reasons are also not communicated though the
naive bid. Additionally, any solutions that would have been found in the second,
third, or later auctions are not considered. If the Nodes in the first auction were
only barely capable then the most optimal solution might have been found in the
subsequent auction. The choice of Node at that point also matters because the
path to the optimal Node in any potential second auction is not affected by the
bids in the first auction. Therefore, choosing the highest bidder in the first auction
gives no guarantees to finding the optimal or even a well qualified Node in a re-
auction. The method takes the best choice given the circumstances, but may make
mistakes that end up being costly at a later stage.

The intelligent portion of the bid aims to adjust the bid according to the dy-
namic factors that directly affect the capabilities of a Node and give a heuristic
measure to what capabilities that could be expected from its neighbours if an item
were to re-auctioned. The benefit that is enabled by having an expectation or heur-
istic on the bid size of neighbouring Nodes is vital to explore the most efficient
paths to a processing Node. Without this heuristic it would not be, disregarding
network latency, meaningful to be delegating an item to the Node that bids the
highest in an auction if the winning bid is still below the asking price. Because it
will be equally likely that a loosing Node will be connected to a better Node than
the winning one.

A composite bid of the naive and the intelligent portion of a bid will give a
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more honest bid from the Nodes. Because it represents the Node’s current cap-
ability of handling the request in general. However, the size and components of
the naive bid and the intelligent bid has not been studied widely in this thesis.
Although the implementation may have uncovered the importance of it. It is un-
likely that throughout the experiments, having an active decision regarding the
most optimal Node did not yield any results. That makes it likely that the auction
approach is unable to make the correct decisions, in particular when it comes to
choosing good paths.

An alternative to including an intelligent portion is to allow all Nodes to re-
auction an item given that no Node was able to bid above the asking price. This
would allow all participating Nodes to search for a suitable candidate among their
neighbours. A strategy as this would increase the processing time since the item
is sent along multiple paths, however it may produce a faster completion time as
well.
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Chapter 6

Conclusion

This thesis has presented a decentralised task assignment system that uses an
auction mechanism and the MQTT protocol to propagate requests. The intended
use for the auction approach is to be applied in fog computing architectures that
require interaction between multiple MQTT brokers. The show the feasibility of
implementing the auction approach a demonstration program was made along-
side implementations of two other decentralised task assignment methods. The
program was developed in Python and the fog nodes are represented by genu-
ine MQTT clients, the source code is available in [22]. A series of experiments
were performed to evaluate the performance of an implementation of the auction
approach with naive bids.

The demonstration program was tested against a random approach and an im-
plementation based on the works of Battistoni et al. in [1]. The total processing
times and completion times when responding to requests were measured under a
variety of configurations. The results of the experiments showed that an auction
approach with entirely naive bids was on par with the random approach in terms
of completion times and processing times. It outperformed the modified Battistoni
implementation with regards to processing times, but it had longer completion
times. The demonstration program of the auction approach was unable to find
the most favourable propagation paths beyond the current step and as a result
there were occasions where the random approach would have a lower processing
times. However, the performance of the auction approach was shown to be im-
proved by including additional heuristics on the subsequent propagation stages
for some network configurations. Therefore, further studies of the presented auc-
tion approach should consider employing a heuristic component in the form of an
intelligent bid portion as described in section 3.3.4.

The auction approach has been shown to be viable as a decentralised task as-
signment method and does not require centralised control mechanisms in order to
selectively propagate messages in a multi-broker architecture. The performance
of a demonstration program that uses the auction approach with naive bids has
been measured and empirically compared to similar task assignment methods.
The auction approach offers flexible parameters in the asking price and bids that
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can be configured to adapt the behaviour of the system. The auction approach also
accommodates the use of heuristics, cloud participation, and request-response ser-
vices. As a result, the auction approach is an expandable method that based on
publish-subscribe patterns is able to find suitable fog nodes for off-loading edge
clients in response to remote service requests.
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Appendix A

Additional Material

The Python code below is an excerpt from the main program file. It has been in-
cluded to provide some insight into how the results of the experiments can be
tested at a later point and how to modify the program to test other scenarios. The
full source code for the program is available through GitHub in [22]. The main
file is located at AuctionFog/src/main.py. It contains code to run a single session.
Lines 30-38 creates a dictionary which represents the network topology. Line 39
initialises the request monitor that measures the total processing time and com-
pletion time of each request in the session. Line 40 initialises the node controller
that has methods to create Nodes and modify them. The network controller is
initialised in the following line 41 and is in charge of creating each network, pop-
ulating the network, and making changes to all the Nodes. The session is started
by calling the run_sim function in line 42.

The run_sim function initialises the networks and runs the session, the out-
put is then written to a file whose name is given as a parameter. The function
definition starts at line 1. Lines 5-8 populates multiple networks according to the
structure given and the approach types that are requested. The origin Node of
each network is then added to the appropriate key in the origin_nodes diction-
ary. In this case, each network is structured as the default Network 1, 5 networks
for each approach is created, and all approaches are included. Lines 12-20 makes
requests to the origin Nodes and updates their bids and services for each run.
The Client is initialised in line 13. The Client makes a request to each of the ori-
gin Nodes that were created. The id of the request is inserted into the dictionary
named requests at the appropriate key. The bids and services are updated for all
the networks in line 20. After doing so, another batch of runs may begin with the
updated state. After completing the session, the results are written to a .csv file.
The session writer that is initialised in line 25 queries the request monitor for each
request id that is present in the request dictionary. The results are returned and
written as a line into the file.

The code in the main program file may be changed to simulate a different
network structure. To do so, a dictionary like net1 at line 30 is made. Each key is
the id of a Node and the values are its neighbours, leaf Nodes do not have a key
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associated with them. The ids given in the dictionary are not the actual ids that
are given to the Nodes, and may be any valid string or number. The amount of
simulations that are run simultaneously can be adjusted at line 6. Note that when
simulating all approaches, the amount of networks will be the number in the range
multiplied by 3. Each Node has its own thread to keep track of the processing,
so this number should be kept low. However, the simulation can be performed
faster with a larger number of simulated networks. The amount of subsequent
simulations is configured in line 14. In this example there are 15 networks and 3
batched iterations, therefore there will be a total of 45 runs. Any parameters such
as the mean bid size, standard deviation of bid size, asking price, auction period,
etc. can be set in the configuration file found in AuctionFog/src/Configuration.py
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def run_sim(network_controller, request_monitor, filename, structure, n_type):

    #Create Nodes and make connections according to structure

    origin_nodes = {"auction":[], "choice":[], "battistoni":[]}

for k in range(5):

for type, node_obj in network_controller.create_network(structure=structure, n_type=n_type).items():

            origin_nodes[type].append(node_obj)

    #Make Requests to origin Nodes and update all Node bids in batches.

    requests = {"auction": [], "choice": [], "battistoni": []}

    client = Client(request_monitor=request_monitor)

for i in range(3): #Amount of batched iterations

for type, o_nodes in origin_nodes.items():

for node in o_nodes:

                req_id = client.make_request(origin_node_id=node.client_id, service="A")

                requests[type].append(req_id)

sleep(6) #Allow Nodes to finish up processes

        network_controller.updateNetworkServices(service_probabilities={"A":100})

    #Write requests to file

sleep(10)

    writer = SessionWriter(request_monitor=request_monitor)

    writer.set_headers(filename=filename)

for n_type, req_ids in requests.items():

for req in req_ids:

            writer.write_request_results(filename=filename, request_id=req, n_type=n_type)

net1 = {

0: [1,2],

1: [3,4],

2: [5,6],

3: [7,8],

4: [9,10],

5: [11,12],

6: [13,14]

}

request_monitor = RequestMonitor()

node_controller = NodeController(request_monitor=request_monitor)

network_controller = NetworkController(node_controller)

run_sim(network_controller,request_monitor, structure=net1, n_type="all", filename="default")
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Figure A.1: Excerpt from the main program file.
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